
Integration of a flexible network in a resource
contracting framework∗

R. Marau, L. Almeida, P. Pedreiras
DETI/IEETA

Universidade de Aveiro, 3810-193 Aveiro, Portugal
{marau,lda,pedreiras}@det.ua.pt

M. González Harbour, D. Sangorrín, J. L. Medina†
Grupo de Computadores y Tiempo Real

Universidad de Cantabria, 39005 - Santander, Spain
{mgh,daniel.sangorrin,medinajl}@unican.es

Abstract— In this paper we overview the integration of a
framework that generically manages the system resources in the
form of contracts, namely the FRESCOR framework, with a
flexible network resource. We describe how a network resource,
namely FTT-SE, supports the FRESCOR framework services
and, likewise, how the network services are made available to
the application through the contracting framework.

I. INTRODUCTION

Networked Embedded Systems (NES) were originally as-
sociated with industrial supervision and control applications,
which employed simple sensors, actuators and controllers.
However, a steep evolution in this application domain is being
experienced, pushed by the growing number of sensors and
overall complexity present at the plant level. As an example,
the use of imaging sensors, both for supervision and control
purposes, is spreading widely in classes of applications such as
mobile robotics, traffic control and assembly lines inspection.
Consequently, the sensors become inherently more complex,
so as the flows of information exchanged at the cell and
plant levels, integrating periodic and aperiodic flows of short
and large data, some of multimedia nature, with considerable
variability during run-time.

The new demands and increased complexity posed by these
applications pushed the development on new techniques and
design methodologies. Two key aspects in this regard are
the complexity management and the resource management.
Complexity management is being addressed by the adoption
of adequate middleware layers in NES (e.g. CORBA and Java
RMI, DCOM, etc) [1], which facilitate distribution, aiming
at transparent interaction mechanisms between objects, com-
ponents or applications. Regarding the resource management
(e.g. CPU, memory, network, energy, etc) several approaches
have been proposed recently, aiming at fulfilling the needs of
those emerging applications in aspects like dynamic configura-
tion and QoS management, support for new and more efficient
scheduling techniques, etc.

∗ This work has been funded in part by the Plan Nacional de I+D+I
of the Spanish Government under grant TIC2005-08665-C03 (THREAD
project), and by the European Union’s Sixth Framework Programme un-
der contracts FP6/2005/IST/5-034026 (FRESCOR project) and IST-004527
(ARTIST2 NoE). This work reflects only the author’s views; the EU is not
liable for any use that may be made of the information contained herein.
† In a Post-doctoral internship in CEA LIST, Laboratoire des Logiciels pour
la Sûreté des Procédés, Boîte 94, F-91191, Gif-sur-Yvette, France.

The FIRST Scheduling Framework (FSF) [2] provides
a high-level abstraction for real time resource schedulers
while maintaining predictability and performance efficiency.
It provides a homogeneous interface so it can be used in
different platform architectures. This framework was initially
designed to cope with the application needs for processor
and network management, although with some limitations in
the latter. The Framework for Real-time Embedded Systems
based on COntRACTS (FRESCOR) aims at extending the FSF
framework for multi-resource reservation, comprising various
classes of resources commonly found in NES applications.

Regarding the communication subsystem, the recently pro-
posed Flexible Time triggered communication over Switched
Ethernet (FTT-SE) [3] provides flexible and deterministic real-
time communication services combined with dynamic Quality-
of-Service (QoS) management. This protocol has been de-
veloped specifically to address the requirements presented by
the emerging applications referred above, combining realtime
requirements with a high degree of adaptability. It looks, thus,
a natural network candidate for inclusion in a contracting
framework, to efficiently exploit and enrich the high level of
flexibility that it already offers.

This paper analyzes the integration of the FTT-SE protocol
in the scope of the contract model framework and describes
how this integration can be performed. Using the former FSF
framework, a network resource implementation exists for the
Real-Time Ethernet Protocol (RT-EP) [4]. However, for FTT-
SE, a different architecture must be used due to the different
data link layer features of the two network protocols.

The remainder of the paper presents an overview of
FRESCOR and FTT-SE background in sections II and III,
discusses the integration of FTT-SE under FRESCOR in
section IV, details the contracting procedure in section V and
shows conclusions and on-going work in section VI.

II. FRESCOR BACKGROUND

The FRESCOR framework is based on the notion of
contracts between the application and the system resources
manager. These contracts are created, managed and enforced
by a Contract Layer, which assures that sufficient resources
capacity is available. The framework is divided in modules that
allow abstracting away the specificities of the resources typi-
cally found in NES. Of particular interest to this work are the



Fig. 1. Contract layer

Core module, which contains the basic contract information
that must exist in all contracted resources, the Spare capacity
module, which defines how the application may take advantage
of currently unused resource capacity, and the Distribution
module that deals with issues of distributed applications.

The contract parameters associated to these modules are
referred in table I. The Contract id is a unique identifier inside
one resource (here a network resource) that distinguishes the
contracts globally, the Resource type and the Resource id
inform about the kind of, and which resource the contract
refers to; the Minimum budget and Maximum period define
the minimum resource capacity required by the application,
Importance and Weight allow prioritizing the contracts asso-
ciated to one resource when distributing spare bandwidth.

TABLE I
CONTRACT PARAMETERS

Core

Contract id
Resource type
Resource id
Minimum budget
Maximum period
Deadline

Spare capacity

Granularity
Maximum budget
Minimum period
Utilization set
Importance & Weight
Stability

Distribution Protocol dependent information

A. FRESCOR application model

Within FRESCOR, the application is a global entity enclos-
ing several Threads that access the system resources by means
of Virtual resources (Vres) residing in the Contract Layer.
Each Vres holds one associated contract. In distributed appli-
cations, this layer is also distributed and comprises the man-
agement of both, the processors and the network resources.
Several network contracts may be atomically negotiated as a

group, ensuring that they are either all accepted, or all rejected
as a whole. The contract negotiation for a given stream is
initiated at the sending node. If successful, the associated Vres
may be created in that node, or in some other node that may
be in charge of scheduling the network traffic.

In a distributed application, the FRESCOR framework con-
siders the network as just another resource that is managed
by contracts. Each of these contracts refers to one Stream
through which application threads exchange messages. Each
stream has a unique identifier mapped on the Contract id
and used as a stream descriptor by the application when
accessing the Contract Layer. Figure 1 shows the FRESCOR
distributed application model with a network resource high-
lighting just the network contracts under two possible sit-
uations: when a contract Virtual resource is created in a
transmitter node (Stream 1), or in a contract group situation
(Streams 2 .. (2+n)).

III. FTT-SE BASICS

The FTT-SE protocol was designed to support hard real time
applications using Switched Ethernet networks in a flexible
but predictable manner. It supports both time-triggered and
event-triggered communication semantics in two well defined
and temporally isolated communication subsystems, namely
the Synchronous and the Asynchronous Messaging Systems,
SMS and AMS, respectively [3].

The protocol is based on a master-slave paradigm, in which
a master controls the access to the network by the remaining
nodes in the system (slaves). This allows managing the com-
munication load submitted to the switch at each instant, thus
preventing overloads and maintaining a predictable behavior.

However, the master-slave control is carried out on a cyclic
basis, i.e., the master sends out one control message per cycle,
only, indicating which messages must be transmitted therein.
The cycle is called Elementary Cycle (EC) and it is triggered
by the master control message called Trigger Message (TM),
which is broadcast to all nodes.

The master holds the System Requirements DataBase
(SRDB) that contains, among other information, the current
communication requirements, and builds the traffic schedules
for each EC on-line. Changes to these requirements can be
carried out at run-time and are subject to an admission control
that guarantees continued timely communication.

The requirements tables for synchronous and asynchronous
message streams hold the following parameters, respectively:

SMi

(
Ci, Di, Ti, Oi, Si, {R1

i ..R
ki
i }

)
, i = 1..N

AMi

(
Ci, Di,miti, Si, {R1

i ..R
ki
i }

)
, i = 1..N

Ci is message i transmission time, Di is its deadline, Ti the
period, miti is the minimmum inter-transmission time and Oi

the offset. Both Di, Ti/miti and Oi are expressed as integer
numbers of ECs. Si is the sender node and {R1

i ..R
ki
i } is the

set of ki receivers for this message stream.



Finally, FTT-SE also provides mechanisms to synchronize
the application threads with their periodic communications.
This synchronization plus the use of offsets is the basis for the
so-called network-centric approach to the design of distributed
systems, which facilitates the synchronization of threads in
different nodes and the reduction of end-to-end delays.

IV. INTEGRATION OF FTT-SE UNDER FRESCOR

One important goal of the integration was to keep the
performance level of the FTT-SE real-time communication
services throughout the abstraction process associated with
the creation of a middleware. The FRESCOR framework was
selected as middleware because it facilitates achieving this
goal given its simple and generic application interface and
real time concerns. Moreover, its modular flexibility extends
the resource management to an holistic application perspective
which reduces the project design complexity.

This section describes how the FTT-SE protocol can be
integrated as a FRESCOR pluggable resource. This integration
allows abstracting away the network access from the applica-
tion perspective and it defines two sets of services, the negoti-
ation procedure and the communication access primitives. The
former handles the contract (re-)negotiations requested by the
application to change the Stream properties provided by the
network resource. Once a contract is accepted the application
may start using the respective communication Stream through
the services provided by the latter.

As referred before, the FRESCOR modules used when inte-
grating FTT-SE are the Core, Spare capacity and Distribution
modules. Each of these takes its role in the contract negotiation
with the parameters described in table I. The Distribution mod-
ule needs specific attention since it contains network protocol
dependent information. For the RT-EP distributed resource no
special parameters were required, thus the Core parameters
Minimum period and Maximum Budget were enough to carry
out the network management. However, FTT-SE includes
several features that require appropriate configuration and
management, which must thus be included in this module:

• Two communication triggering models are provided by
the network, namely time-driven and event-driven, which
must be defined in the contract specification;

• To take advantage of the multiple forwarding paths in the
network switch and still provide real-time guarantees, the
contract must include the specific switching path used
by each channel, i.e., the identification of the producer
and consumers involved and the switch ports they are
connected to;

• To exploit the explicit synchronization between time-
driven channels supported by the network, the contracts,
or contract groups, must include two additional param-
eters, one describing the Contract id of the channel
to synchronize with, and another specifying the desired
synchronization offset. If no synchronization is specified
the channel is considered as float and the network will
arbitrarily allocate relative offsets to the contract;

Fig. 2. Architecture overview

The integrated FRESCOR / FTT-SE architecture is sketched
in Fig. 2. The network contract negotiation procedure is
centralized in the FTT master node and it is handled by the
Master Contract Layer. This is a natural choice since the FTT
master centralizes all the real time requirements of current
communication channels and controls the network access.
The contracts are then reflected on the involved slave nodes.
The Slave Contract Layer handles network contract requests,
holds local contract copies and makes them available to the
application threads. This centralized approach is substantially
different from the one taken in the RT-EP implementation,
where the negotiation procedure is fully distributed requiring
every node to keep a consistent replica of all running contracts.

A. The FRESCOR / FTT-SE interface

The communication between the Master Contract Layer
and the Slaves Contract Layer, both for conveying negotiation
requests and publishing the contract copies, uses permanent
bi-directional channels between the master and each slave
node in the network, implemented with FTT-SE asynchronous
messages (AM).

The network contracts in the Master Contract Layer are
reflected in the FTT Master, in its Requirements Table (RT).
On the other side, the Slave Contract Layer keeps the copies
of its contracts, reflecting them in the respective FTT Slave, in
the Node Requirements Table (NRT). This layer also provides
interfaces to the application, to negotiate contracts and to
access the communication services, both synchronous (SM)
and asynchronous (AM).

Fig. 3. FRESCOR interface for network contracts



Fig. 4. Negotiation steps

B. Supporting the application interface

Figure 3 shows the FRESCOR common resource interface
and the objects involved in network contracts. The Negotiation
service allows the system to establish the required resource
reservations and, in this case, involves communication with
the Master Contract Layer. Upon a negotiation success, the
respective contract Virtual resource(s) is created/updated in
the Master Contract Layer and the Virtual resource copies
are created/updated in the Slaves Contract Layer. The Thread
Bind allows associating an application thread with a contracted
resource and provides access to the respective Vres copy. The
access to the contracted resource, a Stream in this case, is
made through an endpoint, which is created and bound to the
Vres by the Create & Bind Endpoint services. Finally, the
Send/Receive services allow the communication through the
respective endpoint.

The network Virtual resources in the contract layer must be
consistent with the communication parameters within FTT-SE
so that the protocol actually enforces the contracted commu-
nication parameters with its control mechanisms. Therefore, a
parameters daemon is used to keep such consistency.

V. INTERNALS OF THE CONTRACTING PROCEDURE

The establishment of network contracts with FTT-SE, as
referred before, requires an interaction between the Slave
Contract Layer of the involved nodes and the Master Contract
Layer. The process is triggered by the thread that manages
the contract or the contract group and its sequence diagram is
depicted in Fig. 4.

The request is enqueued in the Master Contract Layer until
it can be processed (Fig. 5). At that point, it is removed from
the requests queue and submitted for admission process, which
involves the admission control in the FTT-SE master. If the
contract is accepted, which may result in changes to other
contracts, the master updates the FTT-SE internal structures
and publishes all Vres that were updated. The respective slaves
receive this information and update/create the respective Vres
copies. Then, the master acknowledges the negotiation result.

Fig. 5. Master contract negotiation procedure

VI. CONCLUDING REMARKS AND ON-GOING WORK

The FRESCOR framework has been proposed recently to
cope with the growing application complexity and interop-
erability requirements in embedded systems. The approach
followed by FRESCOR allows abstracting the management
of the application resources, which are accessed through a
common interface based on contracts.

In this paper we discussed the integration of the FTT-
SE real-time communication protocol within the FRESCOR
contract layer framework. This framework efficiently exploits
the FTT-SE natural ability for dynamically adapting the net-
work resource usage while maintaining predictability. Another
positive aspect in this symbiosis is that the interface given by
the framework to the application can be commonly applied
together with other shared resources of the system.

Previously, only the RT-EP network protocol had been inte-
grated within the FSF/FRESCOR framework. Such protocol
works over a shared medium with a priority based event-
triggered messaging paradigm. The integration of FTT-SE
brings in the features of a different network paradigm and
topology, namely time-triggered and event-triggered communi-
cation over Switched Ethernet. We believe that the dynamism
of FTT-SE will impact positively on the efficiency of network
management in the FRESCOR framework. On the other hand,
the abstraction provided by FRESCOR will benefit the FTT-SE
protocol in terms of its usability and applications development.

Currently we are carrying out the temporal analysis of the
negotiation process. In the near future we plan to apply the
implementation herein described to an application that allows
illustrating its flexibility and negotiation capabilities.

REFERENCES

[1] N. Wang, D. Schmidt, K. Parameswaran, and M. Kircher, “Towards a
Reflective Middleware Framework for QoS-enabled CORBA Component
Model Applications,” IEEE Distributed Systems Online special issue on
Reflective Middleware (Vol. 2, No. 5), May 2001.

[2] M. Aldea et al., “FSF: A Real-Time Scheduling Architecture Framework,”
in 12th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS’06). San Jose (CA, USA): IEEE, Apr. 2006, pp.
113–124.

[3] R. Marau, L. Almeida, and P. Pedreiras, “Enhancing real-time communi-
cation over COTS Ethernet switches,” in WFCS’06: IEEE International
Workshop on Factory Communication Systems, 27 June 2006, pp. 295–
302.

[4] J. M. Martínez and M. G. Harbour, “RT-EP: A Fixed-Priority Real Time
Communication Protocol over Standard Ethernet,” in 10th International
Conference on Reliable Software Technologies, Ada-Europe. Springer,
June 2005, pp. 180–195.


	Introduction
	FRESCOR background
	FRESCOR application model

	FTT-SE basics
	Integration of FTT-SE under FRESCOR
	The FRESCOR / FTT-SE interface
	Supporting the application interface

	Internals of the contracting procedure
	Concluding remarks and On-going work
	References

