
REAL-TIME POSIX: AN OVERVIEW

Michael González Harbour1

Departamento de Electrónica
Universidad de Cantabria

Avda. los Castros s/n
39005 - Santander

SPAIN
E-mail: mgh@ccucvx.unican.es

Abstract

The POSIX standard defines a portable interface for UNIX-
based operating systems. The goal of this increasingly
important standard is source-level portability of applications.
In this paper we discuss the real-time extensions to POSIX and
how these extensions address the needs of applications with
real-time requirements.

I. INTRODUCTION

POSIX is the acronym for Portable Operating System
Interface. It is a proposed operating system interface standard
based on the popular UNIX2 operating system; its main goal is
to support application portability at the source-code level. It is
being standardized by the Computer Society of IEEE as the
IEEE standard P1003, and also by ISO/IEC, as the
international standard ISO/IEC-9945.

POSIX is an evolving group of standards, each of which
covers different aspects of the operating systems. Some of
these standards have already been approved, while others are
currently being developed. They can be grouped in three
categories:

1) Base Standards: They define system interfaces related to

Table I. List of POSIX Base Standards

POSIX.1 System Interface (basic reference standard)a,b

POSIX.2 Shell and Utilitiesa

POSIX.3 Methods for Testing Conformance to POSIXa

POSIX.4 Real-time Extensions

POSIX.4a Threads Extensions

POSIX.4b Additional Real-time Extensions

POSIX.6 Security Extensions

POSIX.7 System Administration

POSIX.8 Transparent File Access

POSIX.12 Protocol Independent Network Interfaces

POSIX.15 Batch Queuing Extensions

POSIX.17 Directory Services

a Approved IEEE standards
b Approved ISO/IEC standard

different aspects of the operating system. The standard
specifies the syntax and semantics of system interfaces so
that application programs can directly invoke the operating
system services. The standard does not specify how these
services are to be implemented, just their semantics; system
implementors can choose their implementation as long as
they follow the specification of the interface. Initially, the
base standards were developed for the C language, but now
they are being specified as language-independent interfaces.
Table I and Table II list the base standards that are
currently being standardized under POSIX.

Table II . Additional POSIX Base Standards

P1224 Message Handling Services (X.400)

P1224.1 X.400 Application Portability Interface

P1238 Common OSI Application Portability Interface

P1238.1 FTAM OSI Application Portability Interface

P1201.1 Windowing Application Portability Interface

P1201.2 Recommended Practice on Driveability

1 This work was supported in part by theComisión Interministerial de Ciencia y Tecnologíaof the Spanish Government, under grants ROB91-0288
and ROB91-1553-E.

2 UNIX is a trademark of AT&T



2) Language bindings: These standards provide the actual
interfaces for different programming languages. The
languages that are currently being used are C, Ada,
Fortran 77, and Fortran 90. Table III lists the POSIX
language bindings that are currently under development.

3) Open Systems Environment. These standards include a

Table III . List of POSIX Language Bindings

POSIX.5 Ada Bindingsa

POSIX.9 Fortran 77 Bindingsa

POSIX.16 C Language Bindings

POSIX.19 Fortran 90 Bindings

POSIX.20 Ada Bindings to Real-time Extensions

a Approved IEEE standards

guide to the POSIX environment, and application profiles.
An application profile is a list of the POSIX standards that
are required for a certain application environment, along
with the options and parameters of these standards whose
support is required for that application environment.
Application profiles are a very important means of
achieving a small number of well-defined types of
operating system implementations appropriate for
particular application environments. Table IV shows the list
of standards that are being developed in this group.

The POSIX standard is necessary because, although UNIX

Table IV . List of POSIX Application Environment Standards

POSIX.0 Guide to POSIX Open System Environment

POSIX.10 Supercomputing Application Environment
Profile

POSIX.11 Transaction Processing Application
Environment Profile

POSIX.13 Real-time Application Environment Profiles

POSIX.14 Multiprocessing Application Environment
Profile

POSIX.18 POSIX Platform Application Environment
Profile

is a de-facto standard, there are enough differences among the
different implementations to make applications not be
completely portable. But, while a UNIX application may need
some changes to be ported to a different platform, portability
of real-time applications is far more difficult, since there exist
a large variety of real-time operating systems. UNIX is not a
real-time operating system, and there is no de-facto standard
for these applications.

Because of the need to achieve application portability for
real-time systems, a real-time working group was established
in POSIX. This group is developing standards to add POSIX
(or UNIX) the OS services that are needed by real-time
applications. The charter of the POSIX Real-time Working
Group is to "develop standards which are the minimum
syntactic and semantic changes or additions to the POSIX
standards to support portability of applications with real-time
requirements."

Many real-time applications, such as small embedded
systems, have special physical constraints that demand for
operating systems with a reduced set of functionality. For
example, many systems exist which cannot have a disk drive,
do not have a hardware memory management unit, and have
a small amount of memory. For these systems it is necessary
that the standard allows implementations to only support a
particular subset of the POSIX functions. The subsets
necessary for real-time applications are also being addressed by
the Real-time Working Group, which has specified four real-
time application environment profiles: for small embedded
systems, real-time controllers, large embedded systems, and
large systems with real-time requirements.

According to these requirements, the Real-time Working
Group is currently developing four standards, that we will
review in this paper:

POSIX.4:
Real-time extensions. Defines interfaces to support the
portability of applications with real-time requirements.

POSIX.4a
Threads extension. Defines the interfaces to support
multiple threads of control inside each POSIX process.

POSIX.4b
Additional real-time extensions. Defines interfaces to
support additional real-time services.

POSIX.13
Real-time application environment profiles. Each profile
lists the services that are necessary for a particular
application environment.

The following sections discuss the most relevant aspects of
each of these standards. The discussion is based on the status
of these standards at the time this paper is being written. This
status corresponds to Draft 13 of POSIX.4 [10], Draft 6 of
POSIX.4a [11], Draft 6 of POSIX.4b [12], and Draft 5 of
POSIX.13 [13]. Since all these standards are still being
developed, changes made to them could affect the discussions
in this paper. However, we believe that the spirit of most of
what is discussed here will apply to the final standards.



II. REAL-TIME EXTENSIONS

This section discusses some of the most important features
of POSIX.4 [10], which is the part of POSIX that defines
system interfaces to support applications with real-time
requirements. POSIX.4 is very near to its approval as a
standard.

A. Real-time Process Scheduling

The base POSIX.1 standard [9] defines a model of
concurrent activities called processes, but does not specify any
scheduling policy nor any concept of priority. For real-time
applications to be portable it is necessary to specify some
scheduling policy suitable for real-time. POSIX.4 specifies
three scheduling policies. Each process has a scheduling
attribute that can be set to any of the three policies:

• SCHED_FIFO: This is a fixed-priority preemptive
scheduling policy, in which processes with the same
priority are treated in first-in-first-out (FIFO) order. At
least 32 priority levels must be available for this policy.

• SCHED_RR: This policy is similar to SCHED_FIFO, but
uses a time-sliced (round robin) method to schedule
processes with the same priorities. It also has 32 priority
levels.

• SCHED_OTHER: It is an implementation-defined
scheduling policy.

Fixed-priority scheduling is a popular scheduling policy for
real-time systems. It is very simple, and high utilization levels
can be achieved by using rate-monotonic [4] or deadline-
monotonic [3] priority assignments. With these scheduling
policies and with the functions used to set and get the policies
and priorities of each process, real-time applications can be
scheduled in POSIX operating systems. A good introduction to
the design and analysis of this kind of real-time systems using
recent results for fixed-priority scheduling is provided in [7].

B. Virtual Memory Locking

Although virtual memory is not required by POSIX.1, it is
common UNIX practice to provide this mechanism that has
great benefits for non real-time software, but introduces large
amounts of unpredictability in the timing response. In order to
bound memory access times, functions are defined in POSIX.4
to lock into physical memory either the whole address space
of a process, or selected ranges of this address space. These
functions should be used for time-critical activities, and also
for those activities with which they may synchronize. In this
way, their response times can be made predictable.

C. Process Synchronization

POSIX.4 defines functions to manage process
synchronization with counting semaphores. These semaphores
are identified by a name that belongs to an implementation-
defined name space. This name space may or may not coincide
with the file name space. The counting semaphore is a
common synchronization mechanism that allows mutually
exclusive access to shared resources, signaling and waiting
among processes, and other synchronization requirements. One
of the most common uses of semaphores is to share data
among processes, and this can be accomplished in POSIX.4 by
using shared memory objects (see Section II.D) together with
semaphores.

Unfortunately, the counting semaphores specified in
POSIX.4 do not prevent unbounded priority inversion [6].
Priority inversion occurs when a high priority process has to
wait for a lower priority process to complete some action.
Using appropriate protocols, priority inversion can be bounded
by the duration of critical sections, that is, sections of code
during which the process reserves a particular resource for
exclusive use. However, with conventional semaphores
unbounded priority inversion may occur; this means that the
delay experienced by high priority tasks is not bounded by the
duration of critical sections, but depends on the total execution
time of lower priority tasks. This situation can occur when a
high priority task is waiting for a low priority task to release
a semaphore that controls access to a shared resource, and the
low priority task is preempted by an intermediate priority task.
Figure 1 shows an example of this situation. These long delays
are usually unacceptable for tasks with hard real-time
requirements. If appropriate protocols are used [6] the amount
of priority inversion can be bounded by the duration of critical
sections, which is usually very small. In Section III.C we will
discuss a different synchronization mechanism —the mutex—
that prevents unbounded priority inversion and can optionally
be used across processes.

Figure 1. Example of Unbounded Priority Inversion



D. Shared Memory

POSIX.1 processes have independent address spaces, but
many real-time (and non real-time) applications require sharing
large amounts of data with very little overhead. This can be
accomplished if processes are allowed to share portions of
physical memory. POSIX.4 defines shared-memory objects,
which are regions of memory that can be mapped into the
address space of a process. When two or more processes map
the same memory object they share the associated region of
memory. As with semaphores, shared memory objects are
identified by a name belonging to an implementation-defined
name space. If data objects allocated in shared memory require
mutually exclusive access, semaphores can be used to control
these accesses. Files can also be mapped into the address space
of a process, and can be shared among processes.

E. Real-Time Signals

The signal mechanism defined in POSIX.1 allows to notify
events occurring in the system, but is not completely
satisfactory for real-time applications. The signals are not
queued, and thus some events may be lost. Signals are not
prioritized, and this implies longer response times for urgent
events. Also, events of the same kind produce signals with the
same number, which are indistinguishable. Since many real-
time systems are heavily based on the rapid exchange of events
in the system, POSIX.4 has extended the signals interface to
achieve the following features:

• Real-time signals are queued, so events are not lost

• Pending real-time signals are dequeued in priority order,
using the signal number as the priority. This allows
designing applications with faster response times to urgent
events.

• Real-time signals contain an additional data field that may
be used by the application to exchange data between the
signal generator and the signal handler. For example, this
data field may be used to identify the source of the signal.

• The range of signals available to the application is
expanded.

F. Interprocess Communications

A simple message queue mechanism is specified for
interprocess communications. Message queues are identified by
a name belonging to an implementation-defined name space.
Messages have an associated priority field and are extracted in
priority order. This helps in reducing unbounded priority
inversion in the system. Transmission and reception of
messages can be blocking or non-blocking; transmission and
reception are not synchronized, that is, the sender does not
wait until the receiver has actually retrieved the message from

the queue. The maximum sizes of messages and queues are
user definable, and the resources needed by the queue may be
preallocated at creation time; this allows to increase the
predictability of message queue operations.

G. Clocks and Timers

A real-time clock that measures wall-time is defined. This
clock must at least provide a resolution of 20 ms. Time is
represented with nanosecond resolution, so implementations
can take advantage of high-precision hardware clocks. Timers
can be created to count time intervals, using the real-time clock
or other implementation-defined clocks as the timing basis.
When the specified time interval has elapsed, these timers
generate a signal directed to the process that created the timer.
Several options such as periodic signaling, single shot, etc.
exist, allowing for example an easy implementation of periodic
event generation. A relative sleep function is defined
(nanosleep) to suspend the calling process for a specified time
interval.

H. Asynchronous Input/Output

POSIX.4 defines functions that provide the ability to
overlap application processing and I/O operations initiated by
the application. Asynchronous I/O operations are similar to the
normal I/O operations, except that, after an asynchronous
operation has been initiated by a process, that process proceeds
executing in parallel with the I/O operation. When the
operation completes, a signal can be delivered to the
application.

I. Other Functions

POSIX.4 defines other functions such as synchronized
input/output, real-time files, etc. For a description of these
functions the reader is referred to the documentation of the
standard [10].

III. THREADS EXTENSION

The POSIX.1 process model is not adequate for some of
the systems that require high efficiency, because processes
have high context switch times, the time needed to create or
destroy them is very high, special hardware is needed (memory
management units) to provide each process with an
independent address space, and the model is not adequate for
shared memory multiprocessors. In most of the real-time
kernels that are commercially available for small embedded
systems the concurrency model is based on tasks that share the
same address space and have an associated state that is small,
compared to POSIX processes. The Real-time Working Group
considered all these issues, and decided to develop the threads
extension.



POSIX.4a defines interfaces to support multiple concurrent
activities, called threads, inside each POSIX process. The
threads defined in POSIX.4a have an associated state that is
smaller than the state of processes. All threads inside the same
process share the same address space. They can be
implemented with context switch times and creation/destruction
times lower than those of processes. POSIX.4a has been
specifically developed to also address the needs of shared
memory multiprocessors. With these characteristics, the thread
model is much closer to the concurrency model of commercial
real-time kernels than the process model. But threads are not
only intended for real-time applications; they can also be
applied for non real-time systems requiring efficient context
switch times and creation/destruction times, such as windowing
applications, multiprocessor software, etc.

Threads can use all the process functions defined in
POSIX.4 and POSIX.1, in addition to the functions defined
specifically for threads in POSIX.4a. The most relevant of
these functions are discussed next:

A. Thread Management

These functions allow to manage thread creation and
termination, and related operations. Functions are defined to
create a thread, wait for thread termination, terminate a thread
normally, detach a thread —that is, indicate to the
implementation that the storage associated with a thread may
be reclaimed when the thread terminates—, or create a
particular thread only if it has not been created already. Other
functions allow to handle thread identifiers. Also, functions are
defined to manage thread creation attributes such as stack size,
whether the thread storage is detachable from creation time,
etc.

B. Thread Scheduling

The scheduling policies defined for threads are the same as
those defined for processes in POSIX.4 (priority preemptive,
with either FIFO or round robin treatment of equal priority
threads). Since two schedulers may coexist in the system —the
process and thread schedulers—, the concept ofcontention
scopeis defined. The contention scope of a thread defines the
set of threads with which it must compete for the use of the
CPU. Three main kinds of implementations with different
contention scopes can arise:

• Global Scheduling: All threads have global contention
scope, are therefore every thread is scheduled against all
other threads in the system, no matter which process they
belong to. The scheduler works only at the thread level,
and the process scheduling parameters are ignored.

• Local Scheduling. Threads only compete with the other
threads belonging to the same process. Scheduling is done
at two levels. First, processes are scheduled against each

other. Then, the threads of the selected process compete
among each other for the CPU.

• Mixed Scheduling. Some threads have global contention
scope, and other threads have local contention scope.
Scheduling is done at two levels: in the first level,
processes and global threads are scheduled; at the second
level, local threads within the selected process are
scheduled.

Both the global and mixed schedulers will provide the best
results for most real-time applications, since they allow to
schedule all the different concurrent objects that have strict
timing requirements at the same level. Systems with mixed
scheduling can also handle local scheduling for selected
threads. Local scheduling is usually faster and more efficient
than global scheduling. However, this feature should only be
used for groups of threads whose priority is globally smaller
than or larger than the priorities of other groups of threads in
the system (i.e., when no other thread in the system is required
to have a priority level in between the priority levels of any of
the threads in the group). The reason for this is that the
process priority, rather than the thread priorities, will be used
to schedule the group of threads with local contention scope.
The same discussion applies to systems with local scheduling.

C. Thread Synchronization

Two synchronization primitives are defined for threads:
mutexes, and condition variables. Mutexes are used to
synchronize threads for mutually exclusive access to shared
resources, while condition variables are used to signal and wait
for events among threads. Waiting for a condition variable to
be signaled can be specified with a timeout. These primitives
can optionally be used by threads belonging to different
processes.

Mutexes are defined with three optional synchronization
protocols:

• NO_PRIO_INHERIT: The priority of the thread does not
depend on its ownership of mutexes (a mutex isownedby
the thread that locked it).

• PRIO_INHERIT: The thread owning a mutex inherits the
priorities of the threads waiting to acquire that mutex. This
is the priority inheritance protocol [6].

• PRIO_PROTECT: When a thread locks a mutex it inherits
the priority ceiling of the mutex, which is defined by the
application as a mutex attribute. With the appropriate
ceiling priorities, this is the priority protect protocol, also
called the priority ceiling protocol emulation [2][7].

Unbounded priority inversion may be avoided by using one
of the last two protocols, thus allowing to achieve a high level



of utilization in systems with hard real-time requirements. The
priority protect protocol with the appropriate priority ceiling
definitions, can also be used to avoid a special kind of priority
inversion that appears in multiprocessors, calledremote
blocking. See [5] for a discussion on remote blocking and
synchronization in multiprocessors.

D. Other Functions

Other functions are defined in POSIX.4a for managing
thread specific data, thread cancellation, delivery of signals to
threads, and reentrant functions. For a description of these
functions the reader is referred to the draft of the standard
[11].

IV. ADDITIONAL REAL-TIME EXTENSIONS

POSIX.4b defines additional real-time extensions to support
portability of applications with real-time requirements. The
reason for the real-time extensions being divided into two
standards is to facilitate a faster approval of the features that
were considered essential for real-time —those specified in
POSIX.4—, leaving other real-time features for a second
standard.

Since POSIX.4b has started its standardization process later
than POSIX.4, the features that are now included in the draft
documents are more likely to change than those of POSIX.4.
Here are some of the most relevant features that are being
standardized in POSIX.4b:

A. Timeouts

Some operating system services defined in POSIX.1 and
POSIX.4 can suspend the calling process for an indefinite
period of time, until the necessary resources become available.
In time-critical systems it is important to limit the maximum
amount of time that a process can stay waiting for one of these
services to complete. This allows to detect abnormal
conditions, thus increasing the program robustness and
allowing fault-tolerant implementations. POSIX.4b defines new
versions of some of the blocking services with built-in
timeouts. These timeouts specify the maximum amount of time
that the process may be suspended while waiting for the
service to complete. The services chosen are those that are
most likely going to be used in time-critical code, and did not
already have timeout capability:

• Wait for a semaphore to become unlocked
• Wait for the arrival of a message to a message queue
• Send a message to a queue
• Wait for a mutex to become unlocked.

B. Execution-Time Clocks

An optional CPU-time clock is defined for each process
and each thread. The POSIX.4 clocks&timers interface is used
to manage execution-time clocks. Timers may be defined based
on these clocks; they can detect the consumption of an
excessive amount of execution time by a process or thread,
allowing run-time detection of software errors, or errors in the
estimation of the worst-case execution times. Detecting when
a task exceeds the worst-case execution time assumed during
the analysis phase is very important in robust time-critical
systems, because if the assumptions are violated, the results of
the schedulability analysis are no longer valid, and the system
may miss its deadlines. Execution time clocks allow to detect
when an execution time overrun occurs, and to activate the
appropriate error handling actions.

C. Sporadic Server

A new scheduling policy is defined (SCHED_SPORADIC)
that implements the sporadic server scheduling algorithm [8].
This policy can be used to process aperiodic events at the
desired priority level, allowing to guarantee the timing
requirements of lower priority tasks. The sporadic server gives
fast response times and makes systems with aperiodic events
predictable.

D. Interrupt Control

Many real-time systems need the ability to capture
interrupts generated by special devices, and handle them at the
application program. The functions proposed in the standard
allow a process or thread to capture an interrupt by registering
a user-written interrupt service routine, to block waiting for the
arrival of an interrupt, and to protect critical sections of code
from interrupt delivery. The interfaces defined will not achieve
complete portability of the application programs due to the
many differences in interrupt handling for the different
architectures. However, application portability is enhanced by
this interface, because a reference model is established and
because non portable code is confined to specified modules,
thus reducing the number of changes necessary to port the
application.

E. Input/Output Device Control

In real-time systems it is common to interact with the
environment through special devices such as digital or analog
input/output devices, counters, etc. Typically, drivers for these
special devices are written by the application developer, and a
standardized operation for interfacing with these drivers allows
the application operations calling that driver to be well defined.
POSIX.4b defines a function that allows an application
program to transfer control information to and from a device
driver. In the same way as with the interrupt control functions,
programs using the device control function may not be



completely portable, since the drivers themselves are not
usually portable across platforms. However, application
portability is enhanced by the use of this interface that
provides a reference model for interfacing device drivers.

F. Other Functions

Other interesting features are defined in POSIX.4b such as
efficient process creation (spawn). For a description of these
functions the reader is referred to the draft of the standard
[12].

V. REAL-TIME APPLICATION
ENVIRONMENT PROFILES

The POSIX.1 standard along with the real-time extensions
and the threads extension constitute a powerful set of interfaces
that allow to implement large operating systems capable of
addressing real-time requirements. However, for smaller
embedded real-time systems a subset of these interfaces would
be preferable. For example, many small embedded systems
have limited hardware that makes it very difficult to implement
features such as a file system or independent address spaces
for processes. The real-time application environment profiles
(AEPs) defined in POSIX.13 provide the adequate subsets of
features of the base standards that are required for a particular
application environment. Four real-time AEPs are being
defined in POSIX.13:

1) Minimum System: Corresponds to a small embedded system
with no need for a memory management unit (MMU), no
file system (no disk), and no I/O terminal. Only one
process is allowed, but multiple threads can run
concurrently.

2) Real-time Controller: Corresponds to a special purpose
controller system. It is like the minimum real-time profile,
but adding a file system and I/O terminal. Only one
process but multiple threads are allowed.

3) Dedicated System: Corresponds to a large embedded system
with no file system. It has multiple processes and threads.

4) Multi-purpose System: Corresponds to a large real-time
system with all the features supported.

Table V summarizes the main characteristics of each of the
real-time profiles.

Table V. Characteristics of the Real-Time Profiles

Profile File
System

Multiple
Processes

Threads

Minimum Real-
Time System

NO NO YES

Real-Time
Controller

YES NO YES

Dedicated Real-time
System

NO YES YES

Multipurpose Real-
Time System

NO YES Optional

With the real-time AEPs defined, POSIX compliant
operating systems can be implemented for a variety of real-
time platforms of different sizes and hardware requirements.
Applications will be portable from one platform to another,
provided that they comply with the same AEP, or that the new
platform includes all the features of the previous one. For

example, an application will be portable from a minimum
system to a real-time controller, or a dedicated real-time
system platform. Furthermore, the same application that runs
on a very small embedded system can run on a full-featured
development system for debugging purposes. With the large
range of possibilities defined in the current profiles, current
small commercial real-time kernels will have the possibility to
provide a POSIX interface. It is forecasted that most of the
real-time kernels and operating systems that will be
commercially available in the next few years will comply with
one of the POSIX real-time AEPs; this will bring application
portability to the real-time world.

VI. CONCLUSIONS

POSIX is an emerging operating system standard that is
forecasted to be widely extended in the next few years. One
important part of this standard is intended for providing
portability to applications with real-time requirements.
Application environment profiles are being standardized which
will allow implementors to develop real-time POSIX operating
systems for a variety of platforms, from small embedded
kernels to large real-time operating systems. The standard
defines interfaces in different programming languages. In
particular, real-time interfaces are being defined for C and
Ada, which are the most important standard languages used in
practical real-time systems.

The functionality specified in the POSIX standard is similar
to what is found in most of the current commercial real-time
kernels and operating systems. The POSIX interfaces follow
recent results of fixed-priority scheduling theory.
Implementations based on the early drafts of POSIX.4 and
POSIX.4a have already been developed [1], and show
promising results. In summary, the POSIX standard will allow
to build analyzable and predictable systems that meet their
real-time requirements, and that can be easily portable across
different platforms.



VII. ACKNOWLEDGEMENT

The author would like to thank José Angel Gregorio
Monasterio for his careful review of this paper.

VIII. REFERENCES

[1] B.O. Gallmeister, and C. Lanier. "Early Experience with POSIX
1003.4 and POSIX 1003.4a".Proceedings of the IEEE Real-
Time Systems Symposium, December 1991, pp. 190-198.

[2] B.W. Lampson, and D.D. Redell. "Experience with Processes
and Monitors in Mesa".Communications of the ACM23, 2,
February 1980, pp. 105-107.

[3] J. Leung, and J.W. Layland. "On Complexity of Fixed-Priority
Scheduling of Periodic Real-Time Tasks".Performance
Evaluation 2, 237-50, 1982.

[4] C.L. Liu and J.W. Layland. "Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment". Journal
of the ACM, Vol. 20, No. 1, 1973, pp. 46-61.

[5] R. Rajkumar, L. Sha, and J.P. Lehoczky. "Real-Time
Synchronization Protocols for Multiprocessors".IEEE Real-Time
Systems Symposium, December 1988.

[6] L. Sha, R. Rajkumar, and J.P. Lehoczky. "Priority Inheritance
Protocols: An approach to Real-Time Synchronization". IEEE
Trans. on Computers, September 1990.

[7] L. Sha, and J.B. Goodenough. "Real-Time Scheduling Theory
and Ada". IEEE Computer, Vol. 23, No. 4, April 1990.

[8] B. Sprunt, L. Sha, and J.P. Lehoczky. "Aperiodic Task
Scheduling for Hard Real-Time Systems".The Journal of Real-
Time Systems, Vol. 1, 1989, pp. 27-60.

[9] ISO/IEC Standard 9945-1:1990, and IEEE Standard 1003.1-
1990, "Information Technology —Portable Operating System
Interface (POSIX)— Part 1: System Application Program
Interface (API) [C Language]". Institute of Electrical and
electronic Engineers, 1990.

[10] IEEE Standards Project P1003.4, "Draft Standard for
Information Technology —Portable Operating System Interface
(POSIX)— Part 1: System Application Program Interface (API)
— Amendment 1: Realtime Extension [C Language]". Draft 13.
The Institute of Electrical and Electronics Engineers, September
1992.

[11] IEEE Standards Project P1003.4a, "Threads Extension for
Portable Operating Systems". Draft 6. The Institute of Electrical
and Electronics Engineers, February 1992.

[12] IEEE Standards Project P1003.4b, "Draft Standard for
Information Technology —Portable Operating System Interface
(POSIX)— Part 1: Realtime System API Extension". Draft 6.
The Institute of Electrical and Electronics Engineers, February
1993.

[13] IEEE Standards Project P1003.13, "Draft Standard for
Information Technology —Standardized Application
Environment Profile— POSIX Realtime Application Support
(AEP)". Draft 5. The Institute of Electrical and Electronics
Engineers, February 1992.


