POSIX-Compatible Application-Defined Scheduling in MaRTE OS

By: Mario Aldea Rivas and Michael González Harbour
Departamento de Electrónica y Computadores. Universidad de Cantabria

Objectives
- Compatible with current POSIX scheduling policies
- Isolate critical parts from failures in the schedulers
- Single-processor or Multi-processor
- Application-defined protocols for mutexes
- Filtering of Events

Model
- User Space
 - Regular Threads
 - App. Scheduled Threads
 - App. Scheduled Threads

Scheduler Space
- Application Scheduler
 - Sched. Events Queues

Scheduler Thread Body

while (1) {
 posix_appsched_execute_actions (&sched_actions, &timeout, ¤t_time, &sched_event);
 switch (sched_event.event_code) {
 case POSIX_APPSCHED_NEW:
 add_new_thread (sched_event.thread);
 break;
 case POSIX_APPSCHED_READY:
 make_ready (sched_event.thread);
 break;
 case ...
 ...}
}

Advantages compared to application-level implementations
- Extensive information provided by the kernel
- Efficiency

Advantages compared to other implementations
- POSIX compatible
- Integrated Resource management
- Application-Scheduler bugs cannot affect the rest of the system