
Abstract1

This paper presents an application program interface (API)
that enables applications to use application-defined sched-
uling algorithms in a way compatible with the scheduling
algorithms defined in POSIX. Several application-defined
schedulers, implemented as special user tasks, can coexist
in the system in a predictable way. This API is being tested
in our operating system MaRTE with the aim of proposing
it to be included in a future revision of the POSIX standard.

1. Introduction
The fixed priority scheduling policies defined in the cur-

rent version of the Real-Time POSIX [1] standard provide
a nice combination of simplicity, predictability, and effi-
ciency, that make them suitable for most real-time applica-
tions. However, it is well known that with dynamic priority
scheduling policies it is possible to achieve higher utiliza-
tion levels of the system resources than with fixed priority
policies. In addition, there are many systems for which
their dynamic nature make it necessary to have very flexi-
ble scheduling mechanisms, such as multimedia systems,
in which different quality of service measures need to be
traded against one another.

It could be possible to incorporate into the POSIX stan-
dard new dynamic scheduling policies to be used in addi-
tion to the existing policies. The main problem is that the
variety of these policies is so great that it would be difficult
to standardize on just a few. Different applications needs
would require different policies. Instead, in this paper we
propose defining an interface for application-defined
schedulers that could be used to implement a large variety
of scheduling policies.

The idea of application-defined scheduling has been
used in many systems. A common approach is to imple-

ment the application algorithms as modules to be included
or linked with the kernel (S.Ha.R.K, RT-Linux [2], Vassal
[3]) this mechanism implies that the application-defined
scheduling algorithm will be executed inside the kernel.
Another solution is proposed in the CPU Inheritance
Scheduling [4], in which the kernel only implements thread
blocking, unblocking and CPU donation, and the applica-
tion defined schedulers are tasks which donate the CPU to
other tasks. In this approach the only method used to avoid
priority inversion is the CPU inheritance. A different
approach is followed by RED-Linux [5]: a two-level sched-
uler is used, where the upper level is implemented as a user
process that maps QOS parameters into low-level attributes
to be handled by the lower level scheduler. With that mech-
anism many scheduling algorithms can be implemented
although it is not general and protocols for shared
resources are not addressed.

Introducing application-defined scheduling in POSIX
has some challenges that do not appear in existing inter-
faces and implementations. One of the most difficult ones,
is to keep the new schedulers compatible with the existing
scheduling policies, while allowing implementations in
which the application schedulers are not allowed to
“invade” the operating system kernel space. Another one is
to use as much of the existing scheduling interface as possi-
ble, adding the fewest possible new interfaces.

The interface designed is been tested in our operating
system MaRTE OS [6] (Minimal Real-Time Operating
System for Embedded Applications). MaRTE OS is a real-
time kernel for embedded applications that follows the
Minimal Real-Time POSIX.13 subset, providing both the
C and Ada language POSIX interfaces. It allows cross-
development of Ada and C real-time applications. Mixed
Ada-C applications can also be developed, with a globally
consistent scheduling of Ada tasks and C threads.

2. Requirements
The following requirements were stated for the applica-

tion-defined scheduling interface in POSIX:

1. This work has been funded by the Comisión Interministerial de 
Ciencia y Tecnología of the Spanish Government under grant TIC99-
1043-C03-03

POSIX-Compatible Application-Defined Scheduling in MaRTE OS

By: Mario Aldea Rivas and Michael González Harbour
Departamento de Electrónica y Computadores, Universidad de Cantabria

39005 - Santander, SPAIN
{aldeam, mgh}@unican.es



• The new scheduling policies shall have a behavior com-
patible with other existing scheduling policies in POSIX.

• It shall be possible to isolate critical parts of the applica-
tion from failures in the application-defined schedulers.

• It should be possible to define several application-
defined schedulers. 

• It should be possible to execute the application-defined
scheduler in an execution environment different than that
of regular application threads, for example inside the ker-
nel. But the interface should also allow the implementa-
tion to execute the scheduler in the environment of the
application threads.

• The application-defined scheduler should have the ability
to determine the time intervals at which the different
threads scheduled under it run.

• If an application-scheduled thread needs to synchronize
with other system-scheduled threads, there needs to be a
portable mechanism to bound priority inversion.

• It should be possible to define application-defined proto-
cols to access the resources.

• It should be possible for an application-scheduled thread
to pass information to its scheduler.

• It should be possible to filter the specific scheduling
events that the system notifies to the scheduler (for effi-
ciency purposes).

• It should be possible to attach application-specific data to
a mutex.

• It should be possible to achieve multiprocessor applica-
tion scheduling. Efficient multiprocessor scheduling will
require knowledge of the specific architecture, and in
particular of the number or processors capable of execut-
ing application-scheduled threads simultaneously.

• Each scheduler should be capable of activating many of
its scheduled threads at the same time, and/or to block
previously activated tasks.

• It should be possible to have a mechanism for sharing
memory among scheduler threads, their scheduled
threads, other scheduler threads, and/or regular threads.

3. Model for Application-Defined 
Scheduling

In the proposed approach for application-defined sched-
uling, each application scheduler is a special kind of
thread, that is responsible of scheduling a set of threads that
have been attached to it. This leads to two classes of
threads in this context:

• Application scheduler threads: special threads used to
run application schedulers.

• Regular threads: regular application threads

According to the way a thread is scheduled, we can cate-
gorize the threads as:

• System-scheduled threads: these threads are scheduled
directly by the operating system, without intervention of
a scheduler thread.

• Application-scheduled threads: before they can be sched-
uled by the system, they need to be activated by their
application-defined scheduler.

It is unspecified whether application scheduler threads
can themselves be application scheduled. They can always
be system scheduled.

Because mutexes may cause priority inversions, it is
necessary that the scheduler thread knows about the use of
mutexes to establish its own protocols, possibly different
from the priority ceiling or priority protection protocols
currently available in POSIX. For this purpose, two kinds
of mutexes will be considered:

• System-scheduled mutexes. Those created with the cur-
rent POSIX protocols: no priority inheritance
(PTHREAD_PRIO_NONE), immediate priority ceiling
(PTHREAD_PRIO_PROTECT), or basic priority inher-
itance (PTHREAD_PRIO_INHERIT).

• Application-scheduled mutexes: Those created with
PTHREAD_APPSCHED_PROTOCOL. The protocol
itself will be defined by the application scheduler.

3.1. Relations with other Threads

Each thread in the system, whether application- or sys-
tem-scheduled, has a system priority.

For system-scheduled threads, the system priority is the
priority defined in its scheduling parameters
(sched_priority field of its sched_param structure), possi-
bly modified by the inheritance of other priorities through
the use of mutexes.

For application-scheduled threads, the system priority is
lower or equal than the system priority of their scheduler.
The system priority of an application-scheduled thread may
change because of the inheritance of other system priorities
through the use of mutexes. In that case, its scheduler also
inherits the same system priority (but it is not inherited by
the rest of the threads scheduled by that scheduler). In addi-
tion to the system priority, application-scheduled threads
have application scheduling parameters that are used to
schedule that thread among the other threads attached to
the same application scheduler. The system priority always
takes precedence over any application scheduling parame-
ters, therefore application-scheduled threads and their
scheduler take precedence over threads with lower system
priority, and they are always preempted by threads with
higher system priority that become ready. The scheduler
always takes precedence over its scheduler threads.



If application-scheduled threads coexist at the same pri-
ority level with other system-scheduled threads, then the
POSIX scheduling rules apply as if the application-sched-
uled threads were scheduled under the FIFO within priori-
ties policy (SCHED_FIFO); so another SCHED_FIFO
thread runs until completion, until blocked, or until
preempted, whatever happens earlier. A thread running
under the round-robin within priorities policy
(SCHED_RR) runs until completion, until blocked, until
preempted, or until its round robin quantum has been con-
sumed, whatever happens earlier. Of course, because the
interactions between the different policies may be difficult
to analyze, the normal use will be to have the scheduler
thread and its scheduled threads running at an exclusive
system priority level.

In the presence of priority inheritance, the scheduler
inherits the same priorities as its scheduled tasks, to prevent
priority inversions from occurring. This means that high
priority tasks that share mutexes with lower system priority
application threads must take into account the scheduler
overhead when accounting for their blocking times.

3.2. Relations Between the Scheduler and its 
Attached Threads

Each application-defined scheduler may activate many
application-scheduled threads to run concurrently. The
scheduler may also block previously activated threads.
Among themselves, concurrently scheduled threads are
activated like SCHED_FIFO threads. As mentioned previ-
ously, the scheduler always takes precedence over its
scheduled threads.

For an application-scheduled thread to become ready it
is necessary that its scheduler activates it. When the appli-
cation thread executes one of the following actions or suf-
fers one of the following events a scheduling event is
generated for the scheduler, unless the scheduling event to
be generated is being filtered out (discarded).

• when the thread is created attached to the scheduler

• when the thread blocks

• when the thread changes its scheduling parameters

• when a thread invokes the yield operation

• when a thread explicitly invokes the scheduler

The application scheduler is a special thread whose code
is usually a loop where it waits for a scheduling event to be
notified to it by the system, and then determines the next
application thread to be activated.

The scheduler being a single thread implies that its
actions are all sequential. For multiprocessor systems this
may seem to be a limitation, but for these systems several
schedulers could be running simultaneously on different
processors, cooperating with each other. For single proces-

sor systems the sequential nature of the scheduler should
be no problem. Again, it is possible to have several sched-
uler threads running at the same time, and cooperating with
each other by synchronizing through regular mutexes and
condition variables.

4. Activation and Suspension of Application-
Scheduled Threads

The main point in our interface is the
posix_appsched_execute_actions() function, which allows
the application scheduler to execute a list of scheduling
actions. Each element of that list will cause an application-
scheduled thread to be activated or suspended. After the
execution of the scheduling actions the calling scheduler
thread shall suspend waiting for the next scheduling event.

If desired, a timeout can be set as an additional return
condition which will occur when there is no scheduling
event available but the timeout expires.

The time measured immediately before the function
returns can be requested if it is relevant for the algorithm.

The C language prototype of this function is:
int posix_appsched_execute_actions (

const posix_appsched_actions_t *sched_actions,
const struct timespec *timeout,
struct timespec *current_time,
struct posix_appsched_event *event);

5. Schedulings Events
The scheduling events are stored in a FIFO queue until

processed by the scheduler. Each event carries the follow-
ing information with it:

• Event code

• Thread that caused the event

• Additional information associated with the event

• Inherited (or uninherited) system priority

• Timestamp when the thread was preempted

• Pointer to an application-scheduled mutex

• Specific information

The specific events that may be notified to the scheduler 
thread are shown in Table 1.

6. Current Status and Further Work
With the purpose of proving the suitability of our inter-

face it is being implemented and tested in MaRTE OS. Sev-
eral scheduling algorithms not defined in the POSIX
standard are been implemented, such as EDF, the Constant
Bandwidth Server, Proportional Share Algorithm, etc.

Another important aspect to be measured is the overhead
introduced by our interface. With this aim, the Sporadic



Server Algorithm will be implemented as an application-
defined policy in order to be compared with the Sporadic
Server Algorithm implemented inside the kernel. The over-
head introduced for the interface to the POSIX defined pol-
icies, even in the absence of any application scheduler, is
going to be measured as well.

For the purpose of standardization, the application-
defined scheduling API will be proposed for the next revi-
sion of the POSIX standard; in addition, a POSIX-Ada
interface will be developed.

References
[1] ISO/IEC 9945-1 (1996). ISO/IEC Standard 9945-1:1996.

Information Technology -Portable Operating System Interface
(POSIX)- Part 1: System Application Program Interface (API)

[C Language]. Institute of Electrical and electronic
Engineers.

[2] Yodaiken V., “An RT-Linux Manifesto”. Proceedings of the
5th Linux Expo, Raleigh, North Carolina, USA, May 1999.

[3] George M. Candea and Michael B. Jones, “Vassal: Loadable
Scheduler Support for Multi-Policy Scheduling”. Proceedings
of the Second USENIX Windows NT Symposium, Seattle,
Washington, August 1998.

[4] Bryan Ford and Sai Susarla, “CPU Inheritance Scheduling”.
Proceedings of OSDI, October 1996.

[5] Y.C. Wang and K.J. Lin, “Implementing a general real-time
scheduling framework in the red-linux real-time kernel”.
Proceedings of IEEE Real-Time Systems Symposium,
Phoenix, December 1999.

[6] Mario Aldea Rivas and Michael González Harbour, “MaRTE
OS: An Ada Kernel for Real-Time Embedded Applications”.
To appear, Ada-Europe-2001, Lovaina, Bélgica, May 2001.

Table 1. Scheduling Events

Event Code Description
Additional 
information

POSIX_APPSCHED_NEW New thread created NULL pointer

POSIX_APPSCHED_TERMINATE A thread has been terminated NULL pointer

POSIX_APPSCHED_READY A thread has become unblocked by the systemNULL pointer

POSIX_APPSCHED_BLOCK A thread has blocked NULL pointer

POSIX_APPSCHED_YIELD A thread has invoked pthread_yield() NULL pointer

POSIX_APPSCHED_PREEMPT A thread was preempted by a thread with a 
higher system priority.

Timestamp or a 
zero time value

POSIX_APPSCHED_CHANGE_SCHED_PAR
AM

A thread has changed its scheduling 
parameters

NULL pointer

POSIX_APPSCHED_EXPLICIT_CALL A thread has explicitly invoked the scheduler Message

POSIX_APPSCHED_TIMEOUT A timeout has expired NULL pointer

POSIX_APPSCHED_PRIORITY_INHERINT A thread has inherited a new system priority 
due to the use of system mutexes

Inherited system 
priority

POSIX_APPSCHED_PRIORITY_UNINHERIT A thread has finished the inheritance of a 
system priority

Uninherited system 
priority

POSIX_APPSCHED_INIT_MUTEX A thread has initialized an application-
scheduled mutex

Pointer to the mutex

POSIX_APPSCHED_DESTROY_MUTEX A thread has destroyed an application-
scheduled mutex

Pointer to the mutex

POSIX_APPSCHED_LOCK_MUTEX A thread has acquired the lock of an 
application- scheduled mutex

Pointer to the mutex

POSIX_APPSCHED_UNLOCK_MUTEX A thread has released the lock of an 
application-scheduled mutex

Pointer to the mutex

POSIX_APPSCHED_BLOCK_AT_MUTEX A thread has blocked at an application-
scheduled mutex

Pointer to the mutex


