
1

The “UML Profile for Schedulability, Performance and Time” in the Schedulability Analysis
and Modeling of Real-Time Distributed Systems1

Julio L. Medina, Michael González Harbour, and José M. Drake

Departamento de Electrónica y Computadores, Universidad de Cantabria
Avda. de los Castros s/n, 39005 - Santander, SPAIN

{medinajl, mgh, drakej}@unican.es

ABSTRACT

In this paper we address some aspects of the “UML Profile for Schedulability, Performance and Time” (SPT), that have
been found to be improvable. In particular, we describe problems and possible solutions related to the usage of the profile
in the representation of schedulability analysis models for real-time distributed systems. The issues appear mainly from a
comparison between the SPT and the concepts used in MAST (Modeling and Analysis Suite for Real-Time Applications).

1. INTRODUCTION

Even though the “UML Profile for Schedulability, Performance and Time” (SPT) [14][13] has been adopted as a
specification of the Object Management Group (OMG) there still are some pending issues, most of which are already
posted [1] and are in the course of discussions to be possibly incorporated in the next revised version of the profile.

This brief position paper provides arguments to supports some of the pending issues, presents some additional ones,
and comments on the intended purpose of the profile. All these issues arise from the experience in the development of
MAST (Modeling and Analysis Suite for Real-Time Applications) [3][18] and UML-MAST [10][2]. MAST is a
conceptual modeling framework and a set of tools for schedulability analysis of real-time distributed systems. It supports
UML-MAST, a set of mappings, concepts, and a tool for the representation of real-time analysis models in UML and the
generation of MAST models from UML-CASE tools.

Considering that MAST tools and concepts are in the scope of the SPT profile, in the development of the UML-MAST
meta model we have endeavoured to keep semantic compatibility as far as possible. Unfortunately this has not been strictly
achieved, mainly because the SPT profile limits some important aspects of the MAST conceptual model. Adapting MAST
to these limitations would have implied either loosing capacity to model certain types of systems or internally redefining
concepts of a higher abstraction level, concepts that clearly deserve its own entity in the SPT profile.

The next section describes very briefly UML-MAST. Section 3 shows and explains the limitations found in the SPT
profile as well as the respective proposals. Section 4 comments on other more general aspects of the profile that could be
improved, though no concrete proposals are provided. Finally Section 5 makes some short concluding remarks.

2. UML-MAST

UML-MAST is a UML-based set of modeling concepts and a tool for representing the real-time behaviour of
distributed systems. At present, single and multiple processor systems with fixed priority scheduling are supported by the
MAST tools. There are different flavour of scheduling such as preemptive, non-preemptive, sporadic server and polling
scheduling policies. The MAST toolset can be used for modeling and schedulability analysis of real-time applications.

One of the main features of the UML-MAST modeling approach is that it separates the definition of the models of the
platform (processors, networks, timers, network drivers, schedulers), the application software (operations, messages,
shared resources, threads), and the real-time situations (external events, transactions, timing requirements).

The real-time models are formulated in UML and they are managed like a “Real-time View” of the system, which is
complementary to those used for the software development process. The tool that generates and extracts the MAST model
from a UML CASE tool has been implemented and integrated to Rational Rose’2000e like a pseudo Add-in.

UML-MAST is a tool and a modeling environment representative of those which are the target of the SPT profile. In
particular it can be considered as an implementation/extension of the SAprofile.

3. LIMITATIONS AND PROPOSALS

Most of the limitations we have found seem to be based in the conceptualization of schedulability analysis techniques
as they were in their beginnings. These techniques have evolved significantly along the last decade, particularly those
oriented to fixed priority scheduling schemes, being these the most widely used in commercial and standard operating
systems and concurrent languages. Although the first widely known techniques (RMA) were suited for single-processor
systems [9][7][8][6][4], at present a growing range of techniques enable analysis in distributed systems [11][12][17][5].
Particularly now that real-time communications infrastructure is more available [15][16].

It is upon these premises and by observing the evolution of the SPT profile along the successive versions up to its final
adopted specification, that the limitations described next arise.

1. This work has been partially funded by the Comisión Interministerial de Ciencia y Tecnología of the Spanish 
Government under grant TIC2002-04123-C03-02



2

3.1. Definition of ExecutionEngine
3.1.1. Limitation:

ExecutionEngine was formerly required to be a Processor, excluding it from being a CommunicationResource or
Device, something that in a holistic analysis would enable the actions in a SchedulingJob to represent code execution as
well as messages on networks. After some discussion a text relaxing the definition was introduced (see 6.1.3.3), and
explanatory phrases in 6.1.1 make the concept more general than Processor, but the diagram in Figure 6-2 still shows the
inheritance relationship.
3.1.2. Proposal:

This seems to be a “typo”, so just removing the inheritance relationship in Figure 6-2 would make the text consistent.
If that solution appears not specific enough, something like the proposal in [5706] shown in Fig. 1 should be considered.

3.2. Relationship between SchedulingJob and Trigger
3.2.1. Limitation:

The association between a SchedulingJob and its Trigger was
formerly one-to-one. It meant that a SchedulingJob could be
stimulated by one and only one Trigger. There are cases in which
several Triggers can be involved in a SchedulingJob and
viceversa: One Trigger launching several SchedulingJobs, a
SchedulingJob invoked alternatively by different Triggers, or a
complex triggering pattern resulting from the combination of
events that occur at different stages along the execution of the
SchedulingJob. The adopted specification allows several Triggers
for a SchedulingJob, each with its own particular Response,
considering different Responses as part of the SchedulingJob.
These multiplicities do not reflect the underlying semantics.
3.2.2. Proposal:

The association between the SchedulingJobs and its Triggers should be multiple in both directions, see Fig. 2.

3.3. Sequences of SActions
3.3.1. Limitation:

SActions inherit from TimedAction and transitively from Scenario, though they do not inherit predecessor, neither
successor nor requiredQoS properties from ActionExecution, so they can not be put in sequence or demand concrete
QoSvalue from their resources.According to the dynamic resource usage model shown in Figure 3-8 (reproduced here in
Fig. 3-right) a Scenario may contain an ordered sequence of ActionExecutions, and these in turn may be connected to
others by means of the predecessor and successor roles or contain others since they are a specialization of Scenario. The
desired model for a SAction is such that it allows for connection to others in sequence as well as encapsulate the behaviour
of others, which in turn can be allocated to different SchedulableResource and/or have their own scheduling parameters.
3.3.2. Proposal:

Make TimedAction a specialization of ActionExecution [5720], instead of inheriting directly from Scenario, this allows
SAction to inherit both behaviors. See in the left side of Fig. 3.

3.4. Relationship between SAction and SchedulableResource
3.4.1. Limitation: 

An SAction is deployed to one and only one SchedulableResource (host). This limits the definition of distributed
SActions, whose internal SActions could not be effectively deployed by different ExecutionEngines. This became already
relaxed in the host attribute definition of SAction (6.1.3.2), but the “just one” multiplicity shown in Figure 6-1 misleads.
3.4.2. Proposal:

Have a 0..1 multiplicity in the host role of the association between SAction and SchedulableResource [5721]. Fig. 4(a).

Fig. 1. Extension of ExecutionEngine to enable the holistic analysis of distributed systems.

ExecutingResources represent 
any type of resource that 
support services for the 
execution of actions

ResourceInstance
(from CoreResourceModel)

ProtectedResource UnprotectedResource

Processor CommunicationResourceDevice

PassiveResource ActiveResource

protectionKind

purposeKind

activinessKindExecutingResource

ProtectedResource
(from ResourceTypes)

ActiveResource
(from ResourceTypes)

SResourceExecutionEngine

SchedulableResource

ExecutingResource
(from ResourceTypes)

Fig. 2. Relation between SchedulingJob and Trigger

SchedulingJob
Response

Utilization
SpareCapacity
Overlaps
SlackTime

1..n 1

Trigger
isSchedulable
occurrencePattern

1..n 1

1

1

+effect

+cause 1..n

1

1..n

1..n



3

3.5. Duration of a SAction
3.5.1. Limitation:

Inherited from TimedAction, SActions have a unique timing attribute, whether expressed by means of the duration or
the start and end attributes. This characterization is not sufficient to feed advanced schedulability analysis techniques like
the offset based ones [12][11], which take advantage of the minimum known duration of the actions.
3.5.2. Proposal:

The duration attribute of TimedAction can be considered a list [5711] of generic durationCharacteristics, in which the
meaning of the values can be tailored by the implementation, see Fig. 4(b). Another more specific possibility is to define
at least three concrete values: WCET, BCET and ACET, worst best and average case execution time, respectively. The
start and end lists may keep their present semantics or adapt consistently to the new duration definition.

3.6. Modeling branching and merging sequences
In the reasonable presumption that the proposal in section 3.3.2. above is accepted, the next limitation arises on the

connectivity possibilities given to the predecessor and successor roles of an ActionExecution.
3.6.1. Limitation:

Successor-predecessor relations between SActions, inherited from ActionExecution, allow only for join (input AND)
and fork (output AND) relationships, excluding others like merge (input OR) or branch (output OR). Although this is
consistent with the general instance-based intended usage context to which the profile seems to be oriented, it is an
unnecessary restriction of its modeling power. It would be very useful to have in just one model all the alternative control
flow lines that a scenario could display. There are schedulability analysis tools [5] that can manage this kind of models.
Besides it would allow the same model to be used in simulation or even to feed worst case execution time calculation tools.
3.6.2. Proposal:

Extend the successor and predecessor roles semantics, to allow also the merge and branch possibilities. 

4. OTHER COMMENTS TO THE SPT PROFILE ORIENTATION AND USAGE STYLE

4.1. Modeling software components instead of only software execution
Exploring the possibilities of the profile in the generation of higher abstraction level extensions, we consider interesting

to reduce the emphasis on the instance-based nature of real-time analyses, clearly expressed in the profile, in favour of the
descriptors that support the respective concepts and are more suitable for reusability and parameterization. We found this

Fig. 3. Enabling sequences of SAction and the usage of QoSvalues

DynamicUsage
(from ResourceUsageModel)

{ordered}
ResourceServiceInstance

(from CoreResourceModel)

ResourceInstance
(from CoreResourceModel)

1..n +offeredService1..n

Scenario
(from CausalityModel)

1..n

1..n

+usedServices

1..n

1..n

1..n

1..n +usedResources

1..n

1..n

QoSvalue
(from CoreResourceModel)

0..n

0..n

0..n

+offeredQoS 0..n 0..n+offeredQoS 0..n

ActionExecution

1..n +step1..n

0..n

0..n

+successor

0..n

+predecessor 0..n

0..n

0..n

+requiredQoS0..n

0..n

X
Proposal

TimedAction
(from TimedEvents)

SAction

Scenario
(from CausalityModel)

ActionExecution
(from DynamicUsageModel)

Fig. 4. (a) SchedulableResource and SAction relationship

SAction
Priority
WorstCaseCompletionTime
DelayTime
PreemptedTime
ReadyTime
ReleaseTime
BlockingTime
Laxity
AbsoluteDeadLine
RelativeDeadLine
isAtomic

SchedulableResource 1

+host

1

0..1

<<deploys>>
TimeInterval
(from TimeModel)

TimedAction
(from TimedEvents)

+durationCharacteristic 1..*

0..n

1..*

0..n

SAction

Fig. 4. (b) Multiple association that allows for several 
kinds of timing parameters in actions



4

particularly important in the context of real-time component-based software engineering models and also in the modeling
duties of the infrastructure provider.

4.2. Timer effects and other operating system services
The processing capacity of an ExecutionEngine is reduced and affected by the operating system services that run on it.

These can be modeled as part of the application, but they are usually known in detail only by the infrastructure provider,
so it would be useful to have at least the most frequent interaction characterized: the effect of the timer resolution in the
execution of activities (alarm clock or ticker), the overload of the network drivers, the interruption mechanism, etc. So far,
all these seem to be specializations to be included in more specific profiles but it is interesting to see how general they are.
In particular the possibility of having more complex scheduling mechanisms (possibly hierarchical) should be considered
in the multiplicities shown in Figure 6-3, as well as the fact that in distributed systems the schedulable entity for a
scheduler is not the SchedulingJob but the SchedulableResource instead. 

4.3. The usefulness of a real-time view
Using stereotypes and tag values spread all over any entity of the UML model, has several drawbacks. The real-time

aspects of the model become quickly unreadable and unexpressive for a human observer, particularly in big applications
with a relatively small but not negligible part having real-time requirements. In addition, stereotypes and tag values are
not fully supported by all the tools.

In our opinion a better representation would be the packaging of all real-time related aspects in a separate view,
complementary to the others considered. This would make maintenance and management easier. As for the UML mapping
of concepts, the usage of classes/objects to represent descriptors/instances, attributes for QoScharacteristics, and
ActionStates for SActions, has the advantage that it uses notational resources widely available in many UML-CASE tools.

5. CONCLUDING REMARKS

The UML SPT profile supports most of the necessary concepts for building real-time analysis models for applications
and software infrastructure. Some limitations have been detected on its usage in applications that use communication
resources and have end-to-end timing requirements. The construction of specific UML real-time analysis models instead
of annotating other user-defined models is proposed, as well as the mapping of concepts to conveniently stereotyped
classes, attributes, actionstates or other semantically closer UML conceptual and notational entities.

BIBLIOGRAPHY
[1] Pending Issues sent to the OMG Finalization Task Force corresponding to the “Schedulability Performance and Time”,

profile http://www.omg.org/issues/uml-scheduling-ftf.html.
[2] J.M. Drake and J.L. Medina: “UML-MAST Metamodel, specification, example of application and source code”. http://

mast.unican.es/umlmast
[3] M. González Harbour, J.J. Gutiérrez, J.C.Palencia and J.M. Drake: "MAST: Modeling and Analysis Suite for Real-Time

Applications". Proceedings of 13th Euromicro Conference on Real-Time Systems, Delft, The Netherlands, IEEE Computer
Society Press, pp. 125-134, June 2001

[4] M. González Harbour, M.H. Klein, and J.P. Lehoczky. “Fixed Priority Scheduling of Periodic Tasks with Varying Execution
Priority”. Proceedings of the IEEE Real-Time Systems Symposium, December 1991, pp. 116-128

[5] J.J. Gutiérrez García, J.C. Palencia Gutiérrez, and M. González Harbour, “Schedulability Analysis of Distributed Hard Real-
Time Systems with Multiple-Event Synchronization”. Euromicro Conf. on Real-Time Systems, Stockholm, Sweden, 2000.

[6] M. Joseph and P. Pandya, “Finding Response Times in a Real-Time System,” BCS Computer Journal, Vol. 29, no. 5,
October 1986, pp 390-395.

[7] M. Klein, T. Ralya, B. Pollak, R. Obenza, and M. González Harbour, “A Practitioner's Handbook for Real-Time Systems
Analysis”. Kluwer Academic Pub., 1993.

[8] J.P. Lehoczky. “Fixed Priority Scheduling of Periodic Tasks Sets with Arbitrary Deadlines”. IEEE Real-Time Systems
Symposium, 1990.

[9] C.L. Liu, and J.W. Layland, “Scheduling Algorithms for Multiprogramming in a Hard Real-Time Environment”. Journal of
the ACM, 20 (1), pp 46-61, 1973.

[10] J.L. Medina, M. González Harbour, and J.M. Drake: “MAST Real-Time View: A Graphic UML Tool for Modeling Object-
Oriented Real-Time Systems” RTSS'01, London, December, 2001.

[11] J.C. Palencia, and M. González Harbour, “Schedulability Analysis for Tasks with Static and Dynamic Offsets”. Proc. of the
19th IEEE Real-Time Systems Symposium, 1998.

[12] J.C.Palencia, and M. González Harbour, “Exploiting Precedence Relations in the Schedulability Analysis of Distributed
Real-Time Systems”. Proceedings of the 20th IEEE Real-Time Systems Symposium, 1999.

[13] B. Selic, “A Generic Framework for Modeling Resources with UML”. IEEE Computer, Vol.33, N. 6, pp. 64-69. June, 2000.
[14] Bran Selic, Alan Moore, Murray Woodside, Ben Watson, Morgan Bjorkander, Mark Gerhardt and Dorina Petriu: “UML

Profile for Schedulability, Performance and Time”. OMG document formal/03-09-01 September 2003. http://
www.omg.org/technology/documents/formal/schedulability.htm

[15] J.K. Strosnider, T. Marchok, J.P. Lehoczky, “Advanced Real-Time Scheduling Using the IEEE 802.5 Token Ring”.
Proceedings of the IEEE Real-Time Systems Symposium, Huntsville, Alabama, USA, pp. 42-52, 1988.

[16] K. Tindell, A. Burns, and A.J. Wellings, “Calculating Controller Area Network (CAN) Message Response Times”.
Proceedings of the 1994 IFAC Workshop on Distributed Computer Control Systems (DCCS), Toledo, Spain, 1994.

[17] K. Tindell, and J. Clark, “Holistic Schedulability Analysis for Distributed Hard Real-Time Systems”. Microprocessing &
Microprogramming, Vol. 50, Nos.2-3, pp. 117-134, 1994.

[18] MAST project web page, documentation, download and related tools. Real-Time and Computers Group. University of
Cantabria - Spain. http://mast.unican.es/

[XXXX] Pending issue XXXX: http://www.omg.org/issues/uml-scheduling-ftf.html#IssueXXXX


