
Modeling and Schedulability Analysis of Hard Real-Time
Distributed Systems based on Ada Components 1

Julio L. Medina, J. Javier Gutiérrez, José M. Drake, Michael González Harbour

Avda. de los Castros s/n, 39005 Santander - Spain
{medinajl, gutierjj, drakej, mgh}@unican.es

Abstract. The paper proposes a methodology for modeling distributed real-time
applications written in Ada 95 and its Annexes D and E. The real-time model
obtained is analyzable with a set of tools that includes multiprocessor priority
assignment and worst-case schedulability analysis for checking hard real-time
requirements. This methodology models independently the platform
(processors, communication networks, operating systems, or peripheral
drivers), the logical components used (processing requirements, shared
resources or remote components), and the real-time situations of the application
itself (real-time transactions, workload or timing requirements). It automates
the modeling of local and remote access to distributed services. The
methodology is formulated with UML, and therefore the software logic design
as well as its real-time model may be represented inside any UML CASE tool.
The real-time model obtained is analyzable with a set of tools that includes
multiprocessor priority assignment and worst-case schedulability analysis for
checking hard real-time requirements.

1. Introduction

The Real-Time Systems Annex (D) of the Ada 95 standard [1] allows users to
develop single-node applications with predictable response times. Furthermore, there
are a few implementations of the Distributed Systems Annex (E), that support
partitioning and allocation of Ada applications on distributed systems [2]. One of
them is GLADE, which was initially developed by Pautet and Tardieu [3] and is
currently included in the GNAT project, developed by Ada Core Technologies (ACT)
[5]. GLADE is the first industrial-strength implementation of the distributed Ada 95
programming model, allowing parts of a single program to run concurrently on
different machines and to communicate with each other. Moreover, the work in [3]
proposes GLADE as a framework for developing object-oriented real-time distributed
systems. Annexes D and E are mutually independent and, consequently, the
distributed real-time systems environment is not directly supported in the Ada
standard [4]. Our research group has been working on the integration of real-time and
distribution in Ada 95. We have proposed a prioritization scheme for remote

1 This work has been funded by the Comisión Interministerial de Ciencia y Tecnología of the

Spanish Government under grants TIC99-1043-C03-03 and 1FD 1997-1799 (TAP)

procedure calls in distributed Ada real-time systems [5], and in [6] we focused on
defining real-time capabilities for the Ada 95 Distributed Systems Annex in order to
allow the development of this kind of applications in a simpler and potentially more
efficient way than with other standards like real-time CORBA.

From another point of view, Ada has been conceived as an object-oriented
language to facilitate the design of reusable modules in order to build programs that
use previously developed components. To design component-based Ada real-time
applications it is necessary to have strategies for modeling the real-time behavior of
these components, and also tools for analyzing the schedulability of the entire
application, to find out whether its timing requirements will be met or not. With the
possibility of distribution in real-time applications development, we also need to
address issues like the modeling of the communications, or the assignment of
priorities to the tasks in the processors and to the messages in the communication
networks. On these premises we can think about identifying and modeling basic Ada
components that can be useful in the development of real-time distributed programs
and for which the schedulability analysis tools can be applied.

This paper proposes a methodology for modeling and performing schedulability
analysis of real-time distributed applications, built with basic Ada logical
components. The methodology has been designed to facilitate the development of
systems written in Ada 95 and using Annexes D and E. The main aspects of the
methodology are the following.
- It is based on independently modeling: the platform (i.e., processors,

communication networks, operating systems, peripheral drivers), the logical
components used (i.e., processing requirements, shared resources, other
components), and the real-time situations of the application itself (event sequences,
real-time transactions, workload, timing requirements) that provide the elements
for the analysis.

- It models the real-time behavior (timing, concurrency, synchronization, etc.) of the
Ada logical entities in such a way that there is a complete parallelism between the
structure of the code written and the real-time model obtained.

- It allows extracting a model of each high-level logical component, via the
instantiation of a generic parameterized real-time model. When all the components
are combined together and the associated generic parameters are defined, an
analyzable model of the overall system is obtained.

- It automates the modeling of local or remote access to distributed services. If a
procedure of a remote call interface is invoked from a component assigned to the
same processor node the procedure is modeled as executed by the calling thread;
but if the same procedure is invoked from a component assigned to a remote node,
the corresponding communication model (with marshalling, transmission,
dispatching, and unmarshalling of messages) is automatically included into the
real-time situation model that is being analyzed.

- The modeling components as well as the software artifacts of the application are
represented and described with UML.
The paper will be organized as follows. Section 2 presents the conceptual

environment in which real-time analysis and modeling are considered. In Section 3,
we describe the basic structure of the UML real-time view in which our models are
hosted, the main abstractions, and the model of the Component class, which is the

element with the highest modeling power. Section 4 discusses and justifies the
feasibility of the approach used for mapping the Ada structures into analyzable real-
time models. Section 5 presents an example of the modeling and real-time analysis of
a simple application. Finally, Section 6 gives our conclusions.

2 Real-Time Analysis Process

The real-time models are based on concepts and components defined in the Modeling
and Analysis Suite for Real-Time Applications (MAST). This suite is still under
development at the University of Cantabria [8][9] and its main goal is to provide an
open-source set of tools that enable real-time systems designers to perform
schedulability analysis for checking hard timing requirements, optimal priority
assignment, slack calculations, etc.

Figure 1 shows a diagram of the toolset and the associated information. At present,
MAST handles single-processor, multiprocessor, and distributed systems based on
different fixed-priority scheduling strategies, including preemptive and non-
preemptive scheduling, interrupt service routines, sporadic server scheduling, and
periodic polling servers. The following tools are already available now (á) or are
under development (-):
á Holistic and Offset-based analysis
- Multiple event analysis
á Monoprocessor priority assignment
á Linear HOPA (Holistic) and Linear simulated annealing priority assignment
- Monoprocessor and Distributed simulation

The main goal of the methodology is to simplify the use of well-known
schedulability analysis techniques during the object-oriented development of real-
time systems with Ada. In this paper we describe only the main characteristics of the
modeling technique; we do not deal with the analysis techniques themselves, the least
pessimistic of them can be found in [10].

The proposed methodology extends the standard UML description of a system with
a real-time model that defines an additional view containing:
- the computational capacity of the hardware and software resources that constitute

the platform,
- the processing requirements and synchronization artifacts that are relevant for

evaluating the timing behavior of the execution of the logical operations,
- and the real-time situations to be evaluated, which include the workload and the

timing requirements to be met.
In the schedulability analysis process, the UML model is compiled to produce a

new description based on MAST components. This description includes the
information of the timing behavior and of all the interactions among the different
components. It also includes the description of the implicit elements introduced by the
semantics of the Ada language components that influence the timing behavior of the
system. All these elements are specified by means of UML stereotypes. The generated
MAST description is the common base on which the real-time analysis toolset may be

applied. Finally, the analysis results may be returned into the UML real-time view as
a report for the designer. This process is illustrated in Figure 1.

Logical
UML
Model

UML RT View

Compiler

MAST
Analysis Tools

Updater

MAST
Model

MAST
Analysis
Results

Stereotypes
Semantic

Symbol Table

Fig. 1. Components of the real-time analysis process

3 Real-Time Model: UML RT View

The real time model is composed of three complementary sections:
The platform model: it models the hardware and software resources that

constitute the platform in which the application is executed. It models the processors
(i.e. the processing capacity, the scheduler, the system timers), the communication
networks (i.e., the transmission capacity, the transmission mode, the message
scheduler, the overheads of the drivers) and the platform configuration (i.e., the
connections between processors using the different communication networks). Figure
2 shows the basic components of the platform model.

Driver

Processor 1

0..n

Fixed_Priority_Processor
Fixed_Priority_Network

Network

n

Ada_Channel

n

Ada_Node

0..n1

1 0..n0..n1

1 0..n n

1

1

RT_Ada_Node

Processing_ResourceScheduling_Server
1..n 11..n 1

Scheduling_Policy

11 Dispatcher

Fig. 2. Basic components of the platform model

The Processing_Resource is the root class of the platform model. It models the
processing capacity of every hardware or software target that executes part or all of
the modeled system activities. Each Processing_Resource has one or more
Scheduling_Servers, in which the execution of the assigned activities is scheduled in

accordance with a specified scheduling policy. At the highest level, the
Processing_Resources are specialized as Processors, which have the capacity to
execute the application’s code, and Networks, which transfer messages among
processors. At the lower levels, there are more specialized resources defined, which
have specific attributes that quantify the processing capacity or the transmission
characteristics.

The logical components model: it describes the real time behavior of the logical
Ada components that are used to build the application. A software component is any
logical entity that is defined as a design or distribution module in an application. A
component may model packages (with libraries or tagged type descriptions), tasks, the
main procedure of the application, etc.

The model of a software component describes:
- The amount of processing capacity that is required for the execution of every

operation in its interface.
- The identifiers of all other components from which it requires services.
- The tasks or threads that it creates for the execution of its concurrent activities.
- The synchronization mechanisms that its operations require.
- The explicit variations that its code introduces for the value of its scheduling

parameters.
- The inner states that are relevant for describing the real-time behavior of its

operations.

Protected

Remote_OperationRemote_Call_Interface 0..n

Task

Local_OperationComponent

0..n

0..n

Main

Parameter

0..n

Operation

Entry0..n

Guarded
0..n

Fig. 3. The software component classes

The Component class (Figure 3) is the root class of the logical model hierarchy, It
supplies the timing behavior models of each operation defined in its interface. If the
operation is simple, its model is a set of attributes which describe the amount of
processing that its execution requires. If the operation is composite, its model
describes the sequence of operations that are executed within it. A component is also
a container for other components aggregated into it, which are declared as attributes
with the <<obj>> stereotype. The aggregated components are instantiated whenever
the container component is instantiated. A component may also have parameters,
which represent unassigned entities (external used components, operations, external
events, timing requirements, etc.) that are used as part of the component’s description.
Parameters are declared as attributes with the stereotype <<ref>>. When a component

is instantiated, a suitable concrete value must be assigned to the instance’s parameters.
The components and parameters declared as attributes in a component are visible and
may be used in the interface, inside the operations’ descriptions and inside its
aggregated components.

The Component class is specialized in accordance with the kinds of operations that
may be declared in its interface or with the semantics of its operations or parameters.
The specialized class Main models the main procedure of the application or of any
partition in case of a distributed system. Every Main instance has an implicit
scheduling server that models its main thread. The Task class is a specialized kind of
Main class that models an Ada task; it also has an implicit aggregated thread
(inherited from Main). A Task class may offer one or more Entry type operations in
its interface in order to synchronize the calling thread with the internal task thread.
The Protected class models an Ada protected object. All of the operations of its
interface (Local_Operations or Guarded operations) will be executed in mutual
exclusion. For the execution of Guarded operations (i.e., the entries of an Ada
protected object) it may be necessary for other concurrent threads to reach a specific
state.

Remote_Operation

Composite_Model

Composite

1

Entry_Model

Entry

1

Parameter

Operation 0..n

InMarshalling

InUnmarshalling

OutMarshalling

OutUnmarshalling

APC_Operation RPC_Operation

Local_Operation Guarded

GuardEvaluation

Simple

Fig. 4. Main operation classes for modeling the component interface

Every Guarded operation has an aggregated Simple Operation that models the
evaluation of the guard. Finally, the Remote_Call_Interface class models a
component whose operations may be invoked either from a local thread or from a
thread in a remote partition assigned to another processor. Every Remote_Operation
has a number of attributes that characterize the transmission parameters, and has
several Simple operations aggregated, which model the marshalling and
unmarshalling of the arguments of the operations. All of this information is used in
the model only when the procedure is invoked remotely. The Operation class and its
specialized classes model the timing behavior and the synchronization mechanisms of
procedures and functions declared in a logical component’s interface. Figure 4 shows
the different kinds of specialized operation classes that have been defined.

Real-time situation model: it represents a certain operating mode of the system
and models the workload that it has in that mode, which needs to be analyzed by the
schedulability analysis tools. The analysis of a real-time system consists of the

identification of all the real-time situations in which the system can operate. The
analysis of each situation is performed separately.

 Used

Processor

Component_Instance

1..n

Host 1

Assigned Timing_Req_Results

External_Event_Source Timing_Requirement
Results1

Operation
1..n

0..nDefined

Real_Time_Situation

1..n Instanciated

Transaction_Results

Transaction

1Trigger_Event Finalized 0..1

Transaction_Activity 1

1..n

1 Results

Fig. 5. Main classes of a real-time situation

Figure 5 shows the basic modeling components that constitute a real-time situation
model. It is described by means of the declaration of the system configuration in that
operating mode and of all the transactions that are expected to occur in it. The system
configuration is described through the declaration of all the instances of the software
components that participate in any of the RT_Situation activities and the declaration
of its deployment on the platform.

The workload of the system in a real-time situation is modeled as a set of
transactions. Each transaction describes the non-iterative sequence of activities that
are triggered by the events generated by a specific external event source. Besides,
these events serve as a reference for specifying the timing requirements of the
RT_Situation. The nature of the stream of events is specified by an instance of any of
the classes derived from the External_Event_Source abstract class. This class has
been specialized into single, periodic, and aperiodic event sources. The aperiodic
class specializes again into sporadic, unbounded, and bursty. The activity that is
launched by the Trigger_Event is specified by the Transaction_Activity. It references
an operation that is declared in the interface of an object instantiated from that
activity. In each transaction we also describe the set of timing requirements that must
be met. The one named Finalized is shown in the transaction declaration and stands
for the final state that is reached when all the transaction activities are completed. The
others are specified as arguments in the invocation of the Transaction_Activity
operation; they are assigned to the operation parameters and in this way they are
attached to the designated states, which were considered relevant from the timing
point of view. Each timing requirement is modeled by an object instantiated from any
of the classes derived from the Timing_Requirement abstract class. These classes are
specialized according to the event that is taken as the reference for the calculus. They
are called Global if they refer to the Trigger_Event of the transaction, and Local if
they refer to the beginning of the last activity before the state to which the timing
requirement is attached. They are also specialized according to other criteria like
whether they represent a hard or soft deadline, whether they limit the amount of
output jitter, etc.

Any object of a class derived from the classes RT_Situation, Transaction,
Timing_Requirement or Scheduling_Server has an object linked, which is instantiated
from the corresponding specialization of the Result class, which in turn holds the set
of variables into which the results of the schedulability analysis tools can be stored.

4 Real-Time Model of the Basic Ada Structures

Even though the modeling and schedulability analysis methodology presented is
language independent and is useful for modeling a wide range of real-time
applications, the semantics of the high-level modeling components defined and the
syntax and naming conventions proposed are particularly suitable and certainly
adapted to represent systems conceived and coded in Ada.

The RT-model has the structure of the Ada application: The MAST
Component instances model the real-time behavior of packages and tagged types,
which are the basic structural elements of an Ada architecture:
- Each Component object describes the real-time model of all the procedures and

functions included in a package or Ada class.
- Each Component object declares all other inner Component objects (package,

protected object, task, etc.) that are relevant to model its real-time behavior. It also
preserves in the model declarations the same visibility and scope of the original
Ada structures.
A Component object only models the code that is included in the logical structure

that it describes. It does not include the models of other packages or components on
which it is dependent.

The RT Model includes the concurrency introduced by Ada tasks: The
<<Task>> components model the Ada tasks. Each task component instance has an
aggregated Scheduling_Server, which is associated with the processor where the
component instance is allocated. Synchronization between tasks is only allowed
inside the operations stereotyped as <<Entry>>. The model implicitly handles the
overhead due to the context switching between tasks.

The RT model includes the contention in the access to protected objects: A
protected MAST component models the real-time behavior of an Ada protected
object. It implicitly models the mutual exclusion in the execution of the operations
declared in its interface, the evaluation of the guarding conditions of its entries, the
priority changes implied by the execution of its operations under the priority ceiling
locking policy, and also the possible delay while waiting for the guard to become true.
Even though the methodology that we propose is not able to model all the possible
synchronization schemes that can be coded using protected entries with guarding
conditions in Ada, it does allow to describe the usual synchronization patterns that are
used in real-time applications. Therefore, protected object-based synchronization
mechanisms like handling of hardware interrupts, periodic and asynchronous task
activation, waiting for multiple events, or message queues, can be modeled in an
accurate and quantitative way.

The RT model includes the real-time communication between Ada distributed
partitions: The model supports in an implicit and automated way the local and

remote access to the APC (Asynchronous Procedure Call) and RPC (Remote
Procedure Call) procedures of a Remote Call Interface (RCI), as described in Annex
E of the Ada standard. The declaration of an RCI includes the necessary information
for the marshalling of messages, their transmission through the network, their
management by the local and remote dispatchers and the unmarshalling of messages
to be able to be modeled and included automatically by the tools.

5 An Example: Teleoperated Machine Tool

The Teleoperated Machine Tool (TMT) example shows how to model and analyze a
real-time distributed system with the presented methodology. The system platform is
composed of two processors interconnected through a CAN bus. The first processor is
a teleoperation station (Station); it hosts a GUI application, with which the operator
manages the tool jobs. It also has a hardware "Emergency-Stop-Button". The second
processor (Controller) is an embedded processor that implements the controller of the
machine tool servos and of the associated instrumentation.

CAN_Bus

Analog/Digital Lines

Controller
Station

Machine Tool

StationPartition
ControllerPartition

Station_Program
<<Main>>

Reporter
<<Main>>

Servos_Controller
<<Active>>

Servos_Data
<<Protected>>

Refresher
<<RCI>>

Command_Manager
<<RCI>>

Interrupt_Server
<<Active>>

Job_Planner
<<Active>>

Remote_Status
<<Protected>>

Fig. 6. TMT deployment diagram

5.1 Software Description: Logical Design

The software is organized in two Ada partitions, one for each processor. Each
partition has its own Main program and offers a Remote Call Interface to the other.
Each processor has a suitable implementation of the System.RPC package with
guaranteed real-time features. The main components and the relations among them
are shown in Figure 6.

The Controller partition’s main program (The_Reporter:Reporter) acquires the
status of the machine tool, with a period of 100 ms, and then notifies about it. Its
active object, Servos_Controller has a periodic task that is triggered by a periodic
timer every 5 ms. The RCI Command_Manager offers two procedures, one for
processing the remote commands coming from the station and the other one to handle

the sporadic "Halt" command raised by the emergency stop button. All the Controller
components communicate among them through the protected object Servos_Data.

The Station partition has a typical GUI application plus two active and one
protected objects. Job_Planner is a periodic task that monitors and manages the jobs
executing in the machine tool. The Interrupt_Server task handles the hardware
interrupt generated by the emergency stop button. The RCI Refresher exports a
procedure that updates the remote status data sent by the controller task.
Remote_Status is a protected object that provides the embodied data to the active
tasks in a safe way.

Controller_Clock :Reporter :Refresher:Servos_Data :Remote_Status

Report

Update_Status
Write_Status

Elaborate_Status

Init_Report

[PERIOD(Init_Report)= 0.1]

Get_Status

Display_Refreshed

[Display_Refreshed - Init_Report <= 0.1]

delay until Init_Report

delay until Init_Report

Update_Graphics

[TYPE(Display_Refreshed)=Global_Hard_Deadline]
[DEADLINE(Display_Refreshed - Init_Report) <= 0.1]

Fig. 7. Sequence diagram of the Report_Process transaction

In this example we model and analyze the normal operating state of the system,
which is named as the Teleoperated_Control real-time situation. It contains four
transactions with hard real-time requirements. They are all triggered by external or
timed events:
- The Control_Servos_Process transaction executes the Control_Servos procedure

with a period and a deadline of 5 ms.
- The Report_Process transaction transfers the hardware status data, in order to

refresh the display and remote status data, with a period and deadline of 100 ms.
- The Drive_Job_Process transaction is activated each second, and its purpose is to

analyze the job status and send the proper commands to the machine tool.
- The Do_Halt_Process transaction is activated by the emergency stop button. It is

sporadic and has a minimum interarrival time of 5 s, and a deadline of 5 ms.
Figure 7 shows the functional description of the Report_Process transaction, using

a sequence diagram.

5.2 UML Real-Time View of the TMT

The three sections of the UML real-time view will be described next.

5.2.1 TMT Platform Model
It describes the processing capacity of the three processing resources of the system:
the Station and the Controller processors, and the CAN Bus network.

Figure 8 shows the platform model and a close up on the Controller partition and
the CAN_Bus network. The processing capacity of the processor and all the attributes
of its platform are modeled by the RT_Ada_Node MAST_Controller component. It is
an embedded processor that executes the controller partition on top of a minimal real-
time kernel. Controller has a periodic ticker timer, which is used for timing the
periodic tasks allocated on it. Only the communication and system scheduling servers
are explicitly declared. The priority and the scheduling policy assigned to the RCI
partition dispatcher are specified by means of attribute The_policy (with an
Interrupt_FP_Policy value assigned) and its argument The_priority (30).

Controller.Timer

Worst_Overhead = 7.1E-6
Period = 1.0E-3

<<Ticker>>

Controller.Dispatcher

The_Policy = Interrupt_FP_Policy(The_Priority=30)

<<FP_Sched_Server>>

MAST_Controller

Speed_Factor = 0.3
Max_Priority = 30
Min_Priority = 1
Max_Interrupt_Priority = 31
Min_Interrupt_Priority = 31
Worst_Context_Switch = 5.0E-6
Avg_Context_Switch = 5.0E-6
Best_Context_Switch = 5.0E-6
Worst_ISR_Switch = 2.5E-6
Avg_ISR_Switch = 2.5E-6
Best_ISR_Switch = 2.5E-6

<<RT_Ada_Node>>

Controller.Comm_Thread

The_Policy = Interrupt_FP_Priority(The_Priority=30)

<<FP_Sched_Server>>

Controller_Driver

Packet_Thread : Controller.Comm_Thread

<<Simple>> Packet_Send(wcet = 8.5E-6, acet = 8.5E-6, bcet = 8.5E-6)
<<Simple>> Packet_Receive(wcet = 7.0E-6, acet = 7.0E-6, bcet = 7.0E-6)

<<Packet_Driver>>

CAN_Bus

Speed_Factor = 1.0
Transmission = Half_Duplex
Max_Priority = 2047
Min_Priority = 16
Packet_Worst_Overhead = 47.0E-6
Packet_Avg_Overhead = 47.0E-6
Packet_Best_Overhead = 47.0E-6
Max_Blocking_Time = 111.0E-6
Max_Packet_Transmision_Time = 64.0E-6
Min_Packet_Transmission_Time = 64.0E-6

<<Fixed_Priority_Network>>

Station_Driver

Packet_Thread : Station.Comm_Thread

<<Simple>> Packet_Send(wcet = 8.5E-6, acet = 8.5E-6, bcet = 8.5E-6)
<<Simple>> Packet_Receive(wcet = 7.0E-6, acet = 7.0E-6, bcet = 7.0E-6)

<<Packet_Driver>>

MAST_Station
<<RT_Ada_Node>>

MAST_Controller
<<RT_Ada_Node>>

pp_Channel
<<ADA_Channel>>

CAN_Bus
<<Fixed_Priority_Network>>

Station.Comm_Thread

The_Policy = Interrupt_FP_Priority(The_Priority=31)

<<FP_Sched_Server>>
MAST_Station

<<RT_Ada_Node>>

MAST_Controller
<<RT_Ada_Node>>

Fig. 8. Partial description of the TMT platform model

The specific values of the Controller processor parameters are:
Max_Priority= 30
Min_Priority= 1

Range of priorities allowed by the Ada compiler and MaRTE OS.

Max_Interrupt_Priority= 31
Min_Interrupt_Priority=31

Range of priorities allowed for hardware-interrupt handlers.

Worst_Context_Switch=5.0E-6
Avg_Context_Switch=5.0E-6
Best_Context_Switch=5.0E-6

Estimated context switch times between the threads of the application.

Worst_ISR_Switch= 2.5E-6
Avg_ISR_Switch= 2.5E-6
Best_ISR_Switch= 2.5 E-6

Estimated context switch times between a thread and an interrupt
service routine and viceversa.

Speed_Factor= 0.3 The Controller processor has 30% of the processing capacity of the
reference processor.

The CAN_Bus network is a packet-oriented half-duplex communication channel.
Each packet has a frame header with 47 bits and a data field with 1 to 8 bytes. The
bus transfer rate is lower than or equal to 1 Mbit/s. The packet transfer is prioritized,
so a packet is never transferred if its priority is lower than the priority of any other
packet that is waiting for being transferred. The real-time model of the CAN bus is
described by means of the Fixed_Priority_Network component and the
Packet_Drivers that run on the processors where the partitions that access the network
are deployed.

The MAST CAN_Bus component has a Fixed_Priority_Network stereotype and it
describes the transfer capacity of the channel. The attributes of this object that
characterize its real-time behavior are:

Max_Priority= 2047
Min_Priority= 16

Priority range allowed for the messages on the CAN bus.

Packet_Worst_Overhead=47.0E-6
Packet_Avg_Overhead=47.0E-6
Packet_Best_Overhead=47.0E-6

This is the overhead due to the non-data bits of the
standard CAN Bus Message Frame format. Non-data bits
represent 47 bits per Data Frame (i.e., per packet).

Transmission= Half_Duplex The transmission mode of the CAN bus is half-duplex.
Max_Blocking= 111.0E-6 The longest network’s blocking time due to a packet

transfer of maximum length.
Max_Packet_Transmission_Time= 6.4E-5
Min_Packet_Transmission_Time= 6.4E-5

Maximum and minimum times required for the
transmission of the data bit field of a single packet frame
(8 bytes/packet).

Speed_Factor= 1.0 The transmission time values refer to an implementation
of the ISO 11898 standard for CAN operating at 1 Mbit/s.

5.2.2 Real-Time Model of the Logical Components
The RT Logical Model describes the timing behavior of all the logical modules that
affect the real-time response of the system. As an example, Figure 9 shows the
modeling elements that describe the temporal behavior of the MAST_Reporter class,
which is the main program of the Controller partition. MAST_Reporter is an example
of a <<Main>> component used both as a container and also as a periodic task. Its
inner objects, The_Data and The_Controller, are declared as attributes of their
corresponding types. Other attributes are the scheduling policy and the priority. For
example the description of the composite operation Report is formulated in the
aggregated activity diagram and follows the syntax proposed in [9]. The arguments of
its simple operation Elaborate_Report, give value to the worst, average, and best case
execution times expected for the operation. Arguments for the operations in the
declaration of protected object The_Data (MAST_Servos_Data) and task
The_Controller (MAST_Servos_Controller) are omitted for the sake of clarity. Notice
that The_rc argument of Report is used in the invocation of the APC procedure
Update_Status of the Refresher RCI, which in turn is defined inside MAST_Reporter
as the Remote_Refresher referencing attribute.

MAST_Servos_Controller

<<obj>> The_Policy : Fixed_Priority_Policy(The_Priority = 30)

<<Composite>> - Control_Servos()
<<Simple>> - Read_Sensors()
<<Simple>> - Control_Algorithm()
<<Simple>> - Do_Control()

<<Task>>

MAST_Reporter
<<obj>> - The_Data : MAST_Servos_Data
<<obj>> - The_Controller : MAST_Servos_Controller
<<obj>> - Policy : Fixed_Priority_Policy(The_Priority = 24)
<<ref>> - Remote_Refresher : Refresher

<<Composite>> + Report(The_rc : APC_Parameters)
<<Simple>> - Elaborate_Report(wcet = 1.5E-4, acet = 1.5E-4, bcet = 1.5E-4))

<<Main>>

MAST_Servos_Data

<<obj>> - Access_Policy : Immediate_Ceiling_Resource

<<Simple>> + Put_Status()
<<Simple>> + Get_Status()
<<Simple>> + Get_Next_Target_Pos()
<<Simple>> + Add_ ()Target_Pos
<<Simple>> + Halt_ ()Target_Pos

<<protected>>

Activity_1

do/ The_Data.Get_Status

Activity_3

do/ Remote_Refresher.
Update_Status(rc=>The_rc)

Activity_2

do/ Elaborate_Report

Fig. 9. TMT logical components model: MAST_Reporter description

5.2.3 Model of the Real-Time Situations
The real-time situation to analyze is formulated by means of the four mentioned
transactions (Control_Servos_Process, Report_Process, Drive_Job_Process, and
Do_Halt_Process). Figure 10 shows the model of the Report_Process transaction,
whose functional behavior has been described by the sequence diagram in Figure 7.
This real-time situation requires the instantiation of four components: The_Reporter,
The_Command_Manager, The_Refresher, and The_Station_Program. In Figure 17
The_Reporter is an instance of the MAST_Reporter component and is hosted in the
MAST_Controller processor.

Report_Process
Trigger = Init_Report
Activity = Do_Report_Activity
Final_Deadline = Display_Refreshed
Results = Do_Report_Results

<<Regular_Transaction>>

Init_Report
- Period = 100.0E-3

<<Periodic_Event_Source>>

Do_Report_Activity
- Activity = The_Reporter.Report(The_rc=>Status_Msg_Priority)

<<Transaction_Activity>>

Display_Refreshed
Deadline = 100.0E-3
Results = Display_Refreshed_Results

<<Hard_Global_Deadline>>

Do_Report_Results
- Is_Schedulable : Boolean
- Slack : Percentage

<<Transaction_Results>>

Display_Refreshed_Results
Is_Satisfied : Boolean
Worst_Response_Time : Time_Interval
Best_Response_Time : Time_Interval
Jitter : Time_Interval

<<Timing_Requirement_Results>>

The_Reporter
Class = MAST_Reporter
Host = MAST_Controller
Remote_Refresher = The_Refresher

<<Ada_Component_Instance>>

Status_Msg_Priority
In_Msg_Priority = 18
Server = 22

<<APC_Parameters>>

Fig. 10. Transaction Report_Process

The transaction is declared by means of a class diagram that is an instance of
Regular_Transaction. Its Trigger attribute is set to the external event Init_Report, and
the Final_Deadline attribute is set to the Display_Refreshed timing requirement. The

external event source Init_Report is an instance of the Periodic_Event_Source class
and its attribute value indicates that it has a period of 100 ms. The timing requirement
Display_Refreshed is an instance of the concrete class Hard_Global_Deadline and its
deadline attribute is also 100 ms. This means that the state Display_Refreshed must
be reached before 100 ms after the Trigger event (Init_Report). The transaction
activity is the Report operation of the component object The_Reporter. The detailed
sequence of activities that constitute the transaction is obtained by recursively
invoking all the operation models declared in the logical model, with the concrete
values of their parameters assigned. The actions in the activities invoke the operations
and the swim lanes represent the scheduling servers (i.e., the threads) in which they
execute.

5.3 Real-Time Analysis and Scheduling Design of the System

The TMT example has been analyzed using the MAST set of tools [8], which let us
calculate the blocking times, ceilings for PCP_Resources, optimum priority
assignment, transaction slack, and system slack. We have chosen the Offset-Based
Analysis method, which is the least pessimistic[10]. Table 1 shows the most relevant
results obtained from the schedulability analysis tools. In this table, we have
compared the worst-case response times of each of the four triggering events of the
RT situation with their associated deadlines. The priorities assigned to the tasks were
calculated with the HOPA algorithm integrated in MAST.

Table 1. Analysis results for the four transactions in the real-time situation

Transaction/Event Slack Worst response Deadline
Control_Servos_Process
 End_Control_Servos

19.53%
3.833ms 5 ms

Report_Process
 Display_Refreshed

254.69%
34.156ms 100 ms

Drive_Job_Process
 Command_Programmed

28.13%
177.528ms 1000 ms

Do_Halt_Process
 Halted

25.00%
4.553ms 5 ms

Although the overall schedulability is interesting information, it does not tell the
designer whether the system is barely schedulable, or it has margin enough for
changes. In order to get a better estimation of how close the system is from being
schedulable (or not schedulable), the MAST toolset is capable of providing the
transaction and system slacks. These are the percentages by which the execution times
of the operations in a transaction can be increased yet keeping the system schedulable
or decreased if necessary. Table 1 also shows the transaction slacks obtained for the
example. We can see that the execution time of every activity of the Report_Process
transaction can be increased by 254.69% and the system will still be schedulable.
From a global point of view, the execution time of all the operations of the system
could be increased by 2.34%, since that is the system slack calculated by MAST.

6 Conclusion

In this work we have presented a methodology for modeling the real-time behavior of
Ada applications, with the appropriate level of detail to guarantee that the
schedulability analysis, the optimum priority assignment, and the slack calculations
using the generated model, can be applied.

Its main feature is that it allows modeling complex Ada components (packages,
tagged types, protected objects, tasks, etc.), independently of the application in which
they are used, which in turn may serve as the basis for the support of a design
methodology for real-time systems based on Ada reusable components.

The modeling power of the proposed methodology is capable of covering most of
the software patterns and programming building blocks that are widely used in the
development of the majority of analyzable Ada real-time applications. Of course non
real-time applications may use complex synchronization structures that cannot be
modeled with the proposed approach, since they don’t have a predictable timing
behavior. But these structures are not commonly used in the real-time application
environment.

The methodology presented in this paper is currently being implemented in the
UML-MAST toolset. The description and implementation of this toolset can be found
at: http://mast.unican.es

References

[1] S. Tucker Taft, and R.A. Duff (Eds.) “Ada 95 Reference Manual. Language and Standard
Libraries”. International Standard ISO/IEC 8652:1995(E), in LNCS 1246, Springer, 1997.

[2]L. Pautet and S. Tardieu, “Inside the Distributed Systems Annex”, Intl. Conf. on Reliable
Software Technologies, Ada-Europe’98, Uppsala, Sweden, in LNCS 1411, Springer, pp. 65-
77, June 1998.

[3] L. Pautet and S. Tardieu: “GLADE: a Framework for Building Large Object-Oriented Real-
Time Distributed Systems. Proc. of the 3rd IEEE”. Intl. Symposium on Object-Oriented
Real-Time Distributed Computing, (ISORC'00) Newport Beach, USA, March 2000.

[4]Luís Miguel Pinho, "Distributed and Real-Time: Session summary", 10th.Intl. Real-Time
Ada Workshop, IRTAW'01, Ávila,Spain, in Ada Letters, Vol. XXI, Number 1, March 2001.

[5] Ada-Core Technologies, Ada 95 GNAT Pro, http:// www.gnat.com/
[6] J.J. Gutiérrez García, and M. González Harbour: “Prioritizing Remote Procedure Calls in

Ada Distributed Systems”, ACM Ada Letters, XIX, 2, pp. 67-72, June 1999.
[7] J.J. Gutiérrez García, and M. González Harbour: “Towards a Real-Time Distributed

Systems Annex in Ada”, ACM Ada Letters, XXI, 1, pp. 62-66, March 2001.
[8] M. González Harbour, J.J. Gutiérrez, J.C. Palencia and J.M. Drake: “MAST: Modeling and

Analysis Suite for Real-Time Applications” Proceedings of the Euromicro Conference on
Real-Time Systems, Delft, The Netherlands, June 2001.

[9] J.L. Medina, M. González Harbour, and J.M. Drake: “MAST Real-Time View: A Graphic
UML Tool for Modeling Object-Oriented Real-Time Systems” RTSS’01, London,
December, 2001

[10] J.C. Palencia, and M. González Harbour, “Exploiting Precedence Relations in the
Schedulability Analysis of Distributed Real-Time Systems”. Proceedings of the 20th IEEE
Real-Time Systems Symposium, 1999.

