WATERS 2012

39

Advances in the automation of model driven software engineering for hard real-
time systems with Ada and the UML Profile for MARTE

Julio L. Medina and Alejandro Pérez Ruiz

Departamento de Electronica y Computadores, Universidad de Cantabria, 39005-Santander, SPAIN
{julio.medina, alejandro.perezruiz}@unican.es

Abstract

The traditional application of model based development
techniques in the design of real-time systems comprises usu-
ally the generation of code from both structural and behav-
ioral models. This work describes recent advances in a tool-
aided methodology that enables the assembly and transfor-
mation of such design intended models into schedulability
analysis models that match the corresponding automatical-
ly generated implementation code. Both, the analysis mod-
els and the code are generated by means of model transfor-
mations from the high-level architectural formalisms
provided by the UML Profile for MARTE standard. As a
novelty the Ada code generator uses not only the typical in-
formation provided in structural models, which is used to
create the skeleton of the classes and procedures, but also
its activities, whose scenario based behavioral information
is used to fill the code inside the procedures and functions
there contained. From the perspective of the real-time prac-
titioner, the use of activities instead of state machines helps

significantly to keep in tune the two fundamental views of

the system. the implementation code, and its corresponding
schedulability analysis model.

1. Introduction!

Model-based software development is progressively
taking momentum in industry as one of the most promising
software engineering approaches. It helps to create and
keep assets of many kinds along the development process.
It facilitates the separation of concerns, increasing the
process efficiency, and finally empowering the quality of
software.

For real-time applications, a model-based methodology
can also help to simplify the process of building the tempo-
ral behavior analysis models. These models constitute the
basis of the real-time design and the schedulability analysis
validation processes. With that purpose, the designer must

1. This work has been funded by the European Union under contract
FP7/NoE/214373 (ArtistDesign); and by the Spanish Government under
grant TIN2011-28567-C03-02 (HI-PARTES). This work reflects only the
author’s views; the EU is not liable for any use that may be made of the
information contained herein.

generate, in synchrony with the models used to generate
the application’s code, an additional parameterizable
model, suitable for the timing validation of the system
resulting out of the composition of its constituent parts.
The analysis model for each part abstracts the timing
behavior of all the actions it performs, and includes all the
scheduling, synchronization and execution resources infor-
mation that is necessary to predict the real-time qualities of
the applications in which such part might be integrated. In
the approach here presented, these analysis models are
automatically derived from high level design models anno-
tated with a minimum set of real-time features taken from
the requirements of the application in which they are to be
used. Following the generation of the application’s code as
a composition of the code of its constituent parts, the com-
plete real-time analysis model of the application can also
be automatically generated from the composition of the set
of real-time sub-models that form it.

A discussion of such process used for the design of the
real-time characteristics in a strict component-based devel-
opment methodology may be found in [1].

The research effort that this paper presents considers the
definition of schedulability analysis models as part of the
chain of tools and techniques used in a model driven engi-
neering approach. At this abstraction level, the concrete
modeling paradigm used to conceive and elaborate the sys-
tem is not specified, but for practical purposes we assume it
is able to be expressed in UML[16]. This is a general pur-
pose modeling language but we will use with it its stand-
ardized extensions for Modeling and Analysis of Real-
Time and Embedded systems, namely the UML Profile for
MARTE [13].

The very basic use of model based development tech-
niques, not only in the design of real-time systems but in
the software domain in general, comprises usually the gen-
eration of code from structural models like class diagrams.
With those automations an initial set of skeletons of the
classes and structural packages that form an application is
usually easy to obtain. Also some form of reverse engineer-
ing is available through the usage of specially formatted
“comments” placed as textual marks surrounding the space

WATERS 2012

for the real code. The final implementation code is then
inserted (usually typed by hand) between the marks man-
aged by the code generators. A further refinement that gen-
erates both, specifications and bodies, in the modeling side,
are code generators that use state machines for modeling
the behavior of the classes. This mechanism uses the opera-
tions of a class as messages handlers that trigger the events
between states. That way the messages from other objects
can interact with the automaton of the class, though in a
non-predictable order. Then, this kind of code generators is
not consistent with the required wosrt case scenario-based
description of activities used for schedulability analysis.
For this reason a different approach to the code generation
is necessary if we want to keep both models in tune.

The mechanism for code generation that may be used to
fill the code inside the marks of the structural skeletons is
the use of the behavioral models given for each operation
of the class. These models are usually made for explana-
tory or documentation purposes, but they are well suited
for specification. For this labor the proper modeling ele-
ments are activity diagrams. The formalization of the
“code” inside actions may be either the standardized action
language [17] of the OMG, or specific annotations in the
target language with the actions to be performed.

This paper presents some advances in the methodology
proposed and reports as a relevant contribution the defini-
tion and implementation of a new kind of code generator. It
does not only generate the classical skeletons from UML
classes and operations, but also fills the bodies of those
operations with code generated from the interpretation of
UML activities. The activities are graphically described
using activity diagrams.

The paper is organized as follows: Section 2 presents a
global view of the approach and situates the research
efforts undertaken in its perspective. It also makes a brief
summary of the challenges, and presents some related
efforts as well as the basis of the modeling languages used
for it. Section 3 summarizes the concrete rules for the code
generation. It describes and identifies the intermediate for-
malisms in the modeling language for the generation of the
implementation code and points out the technologies used
for its automation. Section 4 presents a usage example that
assesses the code generation features and illustrates the
available results. Finally some conclusions and the defini-
tion of our next steps in the completion of the envisioned
model driven engineering approach.

2. The approach

The approach that supports the efforts here described
uses UML as modeling language. The UML standard
extensions proposed by MARTE [13] for the modeling and
analysis of real-time and embedded systems are used with

40

it. It complements UML to enable the specification of the
necessary real-time features in the models. A synthetic
view of the approach is shown schematically in Figure 1.

UML+MARTE \
—P

SAM
MZNI/A' M2T—M
HLAM WCET + +Conf,

M2M_C ADA
\ UMLforCode| >
/ ACG

Figure 1. Models & transformations used in this approach

MAST

The initial model used to describe the application and its
real-time features is constructed using the MARTE exten-
sions for high level application modeling (HLAM). From
this formalisms, two model-to-model (M2M) transforma-
tions are used. One, M2M_A, is used to create the UML
representation of the analysis model. This transformation is
used to create a model for each real-time situation under
analysis together with the model of the processing
resources, and the workload to consider. For this model the
schedulability analysis modeling capabilities of MARTE
(SAM) are used. The other, M2M_C, is used to generate an
intermediate model useful for the code generation. In this
methodology the target implementation language is Ada
and the intermediate model, called UMLforCode in Figure
1, is a typical UML object oriented generic model that
comprises structural as well as behavioral information. The
behaviors of the operations in this model are expressed by
means of activity diagrams.

The model-to-text transformation, denoted as M2T_M
in Figure 1, is needed to generate the final schedulability
analysis models in this approach, and it is part of our previ-
ous work [2]. An eclipse based tool [15] is provided for the
generation of analysis models, the invocation of the analy-
sis tools, and the retrieval of results back into the modeling
analysis context. The tool then converts SAM models into
the formalisms used by MAST [12] and then recovers its
results back into the UML+MARTE model.

This paper presents the advances achieved in the tech-
niques and tools used to generate the Ada implementation
code from the UMLforCode object oriented generic model.
This is a model-to-text transformation, called ACG (stand-
ing for Ada Code Generation) in Figure 1. The code imple-
mented out of the combination of M2M _C and ACG is
consistent from the execution semantics point of view with
the analysis models generated out of the combination of
M2M_A and M2T M. Instrumented versions of the code
will serve to meassure actual execution times (WCET) for

WATERS 2012

the SAM model. Once the analysis is performed, schedul-
ing results are back annotated to the SAM models. These
real-time configuration data include priorities (or relative
deadlines) for the concurrent units, and priority ceilings (or
preemption levels) for shared resources. Then, these data,
denoted as Conf. in Figure 1, is used as part of the configu-
ration information in the UMLforCode generation model.

2.1. The need for a new code generation technique

Following previous efforts that have studied the design
of real-time systems using object oriented formalisms, we
observe that most of them include the specification of the
concurrency using structural models, usually at the design-
for-implementation level. These dual structural-behavioral
formalisms are made in the aim that this will help to realize
schedulability analysis with the simple tasking model in
mind and basic RMA techniques later on. Unfortunatly the
complexity of the mechanisms used to generate the code
makes this assumption not realistic, such as in ROOM [3]
[4], Octopus/UML [8], ACCORD/UML [10] [11], Comet
[7], or the design model extremely constrained and mono-
lithic such as in HRT-HOOD [5], OO-HARTS [6].

Being a syncretism of all those mentioned, and in order
to ease the application of simple schedulability analysis
techniques, the high level application modeling constructs
in MARTE (see its HLAM section in [13]) also facilitate
the use of structural models for the specification of the con-
currency. But the interactions between them (including dis-
tribution) may take complex patterns that require a richer
model for the analysis. The offset based analysis tech-
niques scale better to deal with this scenarios than the basic
tasking model. HLAM proposes two basic building blocks,
the real-time unit: RtUnit and the passive protected unit:
PpUnit. As for the behaviors in them (the code inside the
marks), due to its natural complexity it is usually not just
passive linear code that can be modeled as a computation
time; instead they include delays, and interactions among
objects and nodes, mostly when they become formed out of
a composition of distributed operations (behavioral mod-
els). In these cases a state machine is not directly trans-
formable into an analysis model.

From the analysis perspective, the models that are
required to apply the modern offset based analysis tech-
niques, are fundamentally scenarios. A scenario is an
expression of the (worst case) expected or observable man-
ifestation of the design intents (coded behaviors). This is
the basis for coping with complexity that distinguishes
RMA schedulability analysis techniques from those other
strategies based on timed automata or synchronous lan-
guages.

As a modeling language for this domain, the scheduling
analysis modeling section of MARTE (SAM) is also able

41

to express that kind of scenario models, and then it is an
adequate formalism to feed the corresponding analysis
tools. Unfortunately these scenarios are not necessarily part
of the initial specification of the system behavior. They are
a means to express: the expected stimuli, the high level
expected workload, and the end-to-end timing require-
ments, but they are usually not the basic data used for
design intent or code generation drawn by the designers.

The creation of these (usually worst case) analysis ori-
ented scenarios in tune with the final code is actually the
main duty and a high responsibility of the real-time practi-
tioner. In order to help in this labor the automation tools
need the model used for code generation to have the behav-
iors of its operations expressed as scenarios. For this reason
the adequate input models for the generation of the code
inside the operations in the UMLforCode model are UML
activities. Then the tool that fills the code for the proce-
dures and functions associated to the classes retrieves it
from activity diagrams.

The use of scenarios has an additional benefit. This
method helps to support the design of applications in terms
of composable parts, which are closer in granularity to the
concept of real-time objects than to the fully CBSE inter-
pretation of components. In a fully component-based
approach, the creation of the analysis models would have
to be made as a combination of both, structural elements
plus their deployment. In a model-driven approach, this
later strong form of composability is in a higher level of
abstraction, but still may benefit of the approach here
described in order to assess a variety of non-functional
properties, in our case of course the assesment of its timing
properties by means of schedulability analysis.

3. The UMLforCode (meta)model

The purpose of having this intermediate model is basi-
cally to have a UML object oriented representation of the
system that allows us to have the behaviors expressed in a
way as close as possible to the way it is expressed its
schedulability analysis model. Also this model must serve
to implement the system in potentially different target pro-
gramming languages. As a starting point for its practical
implementation we have considered Ada as the target lan-
guage.

In this section we describe the elements of UML that
have been selected for the creation of these models, and the
way they are used to generate Ada code. Instead of using a
full metamodel, or a reduced version of the UML meta-
model to formalize this description, we prefer to present it
by identifying the capacities of the object oriented mode-
ling/programming that are supported.

The technologies used for this automation are those pro-
vided by PapyrusUML as graphical tool, the UML2 plug-in

WATERS 2012

as model repository, and the Acceleo plug-in for the extrac-
tion of text from the UML2 models. As in marte2mast
(M2T_M) [15], also here a number of Java functions have
been necessary to implement the code generation.

3.1. Structural elements

The structural object oriented elements currently sup-
ported are Classes, Packages, and Interfaces. They are
modeled in Class Diagrams.

e Packages may contain classes and have dependencies
among them. Dependencies are implemented by means
of with clauses between the ada package construct.

® Classes are the basic building blocks of code in an object
oriented language. In Ada they are implemented by
means of what Ada calls tagged types. These con-
structs support the inheritance and polymorphism, and
hold in a natural way the UML concepts of object prop-
erty (attribute) and operation (method). Static attributes
and methods are declared out of the tagged type, so to
keep them together they need to be hold by a wrapping
Ada package in which the tagged type is also defined.
This mechanism allows us to implement in Ada also the
dependencies between classes and the visibility (accessi-
bility) restrictions of the properties and operations. The
inheritance and the realization of interfaces are imple-
mented natively by Ada in the tagged types definition.
Figure 2 shows how the Ada wrapping package visibility
scopes match the visibility of the class members.

File name.ads File name.adb
package name is
Public visibility
private
--Protected visibility
end name;

package body name is

--Private visibility
end name;

Figure 2. Class members visibility in the wrapping package

e [nterfaces are directly implemented by using the corre-
sponding Ada concept, which supports the definition of
object methods. Static methods and attributes (including
constants) are implemented like in classes by generating
the corresponding code in the wrapping package. Inter-
face object attributes are not supported.

Next we present some limitations of the tool, and mode-
ling constraints for UMLforCode models. The tool is able
to detect them and warn the user about their occurrence:

1. For members of a Class (properties and operations) the
visibility clause package will not be enforced by the
Ada language. They will be public and consistently
renamed with the prefix package .

2. Other visibility clauses (public, protected, and
private) are supported as indicated in Figure 2.

42

3. Attributes need to have a name and a type.

4. Operations need to have a name and a type. Also each
parameter needs: a name, the direction of assignment
(in, out, or inout), and a type.

5. Classes and Interfaces need to have public visibility.
6. Nested classes are not supported.

7. Multiple inheritance is not supported in Ada. Interfaces
realization is suggested to overcome this issue.

In order to handle inheritance, classes contained inside
packages, and do so respecting the visibility defined by the
modeler, three possible solutions where studied: (a) use the
containing package directly as the wrapper, (b) use the
class wrapping package as a child package of the container,
(c) use the containing-contained relationship only as a
mechanism to define the name of the wrapping packages
for the class. The chosen solution was (c).

package Data| [&] Inheritance between classes contained in different packages]J

[
PackageR

A

Package$S

=

Figure 3. Inheritance among classes in different packages

To see this, consider the example in Figure 3. The wrap-
ping package for class B will be denominated PackageS B,
correspondingly, the wrapping package for class A will be
denominated PackageR A. The fully qualified name of
class B is PackageS B.B and inherits from PackageR A.A.

3.2. Behavioral models

Following the structure of SAM models described in
previous research efforts [2] [14], MARTE provides con-
cepts to organize the analysis models using three main cat-
egories: the platform resources, the elements describing the
logical behavior of the system constituent parts, and finally
the real-time situations (scenarios) to be analysed.

Scenarios are expressed usually by the annotation of
SaSteps (SaCommStep, ResourceUsage or GaScenario) in
sequence charts or activity diagrams. In marte2mast [15],
scenarios may also be constructed from the lists of steps
that are implicit in the chain of internal sub steps of a SaS-
tep. These are expressed using the sub-usages list, hence
using a structural element of the MARTE profile. This
helps the tools to extract the analysis model in a more effi-
cient way. But to express the high level end-to-end flows
scenarios, sequence charts or activity diagrams are used
instead.

WATERS 2012

package Data| example]J

1]

StudyExample

Vehicle
DieselEngine () -speed : float
+setStartingMode() +gtart()
+setMormalMode!) +stop()
A" +getSpeed() : float
+setSpeed(speed : float)
~ " -autoTest() : Integer
~ T
DieselCar
Tachometer +seats : Integer

— . |#automatic : Boolean
+myTachometer : Tachometer

+setStartingMode()
+setMormalode()

43

(activity start[[start] 3

| error:= autoTest() |

error=0 I errori=0

| engineHeater.start() |
[raise autoTest_Failed H@

| setStartingMode() |

| starter.on() |

myTachometer value()<400 | Starter.off() |

[delay 0.1)

[setlormalMode() |

| starter.checkTimeOut() |

Figure 4. Structural and behavioral models used in the study example.

The elements that are currently used for the generation
of the code inside class operations (bodies of the methods)
are activities described by means of activity diagrams. The
concrete modeling elements used in the diagrams are:

Initial nodes / Control Flow /Guards / Decision nodes /
Opaque actions / Final nodes

These elements may be considered intuitively as corre-
sponding to the basic assembly instructions for an Eckert-
Mauchlyin architecture (also called Von Neuman architec-
ture). With them the tool is able to extract out of the dia-
grams: regular sentences, invocations, simple while loops
as well as if-then-elseif-else conditional branches (see the
example in Figure 4). These basic constructs are the mini-
mum required to describe scenarios, but they are sufficient
for the general case; specially considering that, in the scope
of the full approach, UMLforCode models are to be auto-
matically generated by M2M_C from HLAM structural
and behavioral models.

From its implementation point of view, in order to make
code from activities, ACG has required much more than
the basic automations provided by Acceleo. In particular
due to the difficulties to handle variables inside the
Acceleo scripts. The use of Java code inside the scripts,
and the UML2 Java library created by the eclipse commu-
nity, have been necessary to overcome this problem.

4. Study example

In order to show the capabilities of this tool we propose
as an example the structural and behavioral models shown
in Figure 4. They represent a very simplified extract of a
car class and the activity model of an operation to start it.

Two pieces of code extracted from that model are shown
next: the specification, and an extract of the implementa-

tion body of the DieselcCar class. The implementation
body shows the code for the function start.

The obtained Ada specification is:

with StudyExample_Vehicle.Vehicle;
with StudyExample_ Tachometer.Tachometer;
package StudyExample DieselCar is

type Public_Part is abstract new StudyExample Vehicle.Vehicle
and StudyExample DieselEngine.DieselEngine with record
seats : Integer;
myTachometer : StudyExample_ Tachometer.Tachometer;
end record;

-- Complete_type
type DieselCar is new Public_Part with private;

-- Public methods:

procedure startIgnition (Self : DieselCar'Class);
procedure setNormalMode (Self : DieselCar'Class);
procedure setStartingMode (Self : DieselCar'Class) ;
overriding procedure start (Self : DieselCar'Class);
overriding procedure stop (Self : DieselCar'Class);

private
-- Protected attributes
type DieselCar is new Public_Part with record
automatic : Boolean;
end record;

end StudyExample DieselCar;

The Ada body obtained for the start function inside
DieselCar Class is:

package body StudyExample DieselCar is
--Methods

overriding procedure start (Self :
begin
error:=autoTest () ;
if error/=0 then
raise Autotest_Failed;
elsif (error=0) then
engineHeater.start () ;
setStartingMode () ;
starter.oOn() ;
while myTachometer.value () <400 loop
delay(0.1) ;
starter.checkTimeOut () ;
end loop;
starter.off () ;
setNormalMode () ;
end if;

DieselCar'Class) is

WATERS 2012

end start;
--Methods

procedure setStartingMode (Self : DieselCar'Class) is

begin
(AP) Generated: replace with real body!
pragma Compile Time Warning (True, "setStartingMode
unimplemented") ;

raise Program Error;
return setStartingMode (Self) ;
end startIgnition;

end StudyExample DieselCar;

5. Conclusions and future work

This work has presented the recent advances in a tool-
aided methodology that enables the assembly and transfor-
mation of high level design intended UML models into
schedulability analysis models that match the correspond-
ing automatically generated implementation code. Both,
the analysis models and the code are generated by means of
model transformation from the high-level architectural for-
malisms provided by the UML Profile for MARTE stand-
ard. As a novelty this paper presents a new kind of Ada
code generator that generates not only the skeleton of the
classes, but also the code inside the procedures and func-
tions there contained. It uses activity diagrams to fill them.

The necessity of this way of generating code lays in the
fact that the UML+MARTE schedulability analysis spe-
cific models are described by means of scenarios. The crea-
tion of this (usually worst case) analysis oriented scenarios
is actually the main duty of the real-time practitioner. Then,
in order to automate the consistency between the code
structure and the analysis model, both need to be expressed
as scenarios, instead of state machines behaviors. From the
real-time and embedded systems research community per-
spective, this effort constitutes another step to get the effec-
tive exploitation of the capabilities of the available analysis
and verification techniques, which despite the efforts in
dissemination, have not yet reached an audience large
enough to reward the many years of work in the field. The
modelling strategy and tools proposed in this work are
another step in this direction.

References

[1] Lopez P., Drake J.M., and Medina J.L., Enabling Model-
Driven Schedulability Analysis in the Development of
Distributed Component-Based Real-Time Applications. In
Proceedings of 35th Euromicro Conference on Software
Engineering and Advanced Applications, Component-
based Software Engineering Track, Patras, Greece, August
2009, IEEE, ISBN 978-0-7695-3784-9, pp. 109-112.

[2] J. Medina and A. Garcia Cuesta. Model-Based Analysis
and Design of Real-Time Distributed Systems with Ada
and the UML Profile for MARTE. In Proc. of the 16th
International ~ Conference on Reliable Software

[15]
[16]

[17]

44

Technologies-AdaEurope 2011, LNCS 6652, pp 89-102,
ISSN 0302-9743

Bran Selic, Garth Gullekson, and Paul T. Ward. Real-time
Object Oriented Modeling. ISBN 0-471-59917-4, John
Wiley & Sons, Inc., USA, 1994

Bran Selic and Jim Rumbaugh. Using UML for Modeling
Complex Real-Time Systems. Rational white papers, http://
www.rational.com/products/whitepapers/UML-rt.pdf,
March 1998

Alan Burns, Andy Wellings. HRT-HOOD, a structured
design method for hard real-time ADA systems. ISBN 0
444 82164 3. Elsevier, Amsterdam, 1995

Mazzini S., D'Alessandro M., Di Natale M., Domenici A.,
Lipari G. and Vardanega T. HRT-UML.: taking HRT-HOOD
into UML. In Proceedings of 8th Conference on Reliable
Software Technologies Ada Europe, 2003

Hassan Gomaa. Designing Concurrent, Distributed and
Real-Time Aplications with UML. ISBN 0-201-65793-7,
Addison-Wesley, USA, 2000

E. Domiczi, R. Farfarakis and J. Ziegler. Octopus
Supplement Volume 1. Nokia Research Center. http://
www-nrec.nokia.com/octopus/supplement/index.html, 1999

Laila Kabous. An Object Oriented Design Methodology for
Hard Real Time Systems: The OOHARTS Approach.
Doctoral Theses, School Carl von Ossietzky, Universitét
Oldenburg. 2002

F. Terrier, G. Fouquier, D. Bras, L. Rioux, P. Vanuxeem and
A. Lanusse. A Real Time Object Model. Presented in
TOOLS Europe'96. Paris, France. Prentice Hall, 1996

A. Lanusse, S. Gerard and F. Terrier. Real-Time Modeling
with UML: The ACCORD Approach. In Selected papers
from the First International Workshop on The Unified
Modeling Language "UML™98: Beyond the Notation.
Mulhouse, France, June 3-4, 1998. Pp. 319-335. ISBN:3-
540-66252-9. Springer-Verlag London, UK 1998.

M. Gonzalez Harbour, J.J. Gutiérrez, J.C.Palencia and
J.M.Drake, MAST: Modeling and Analysis Suite for Real-
Time Applications, in Proc. of the Euromicro Conference
on Real-Time Systems, June 2001.

Object Management Group, UML Profile for MARTE:
Modeling and Analysis of Real-Time Embedded Systems,
version 1.1, OMG doc. formal/2011-06-02, 2011.

J.L.Medina, M.Gonzalez Harbour and J.M. Drake, Mast
Real-Time: A Graphic UML Tool for Modeling Object-
Oriented Real-Time Systems, in Proc of the 22nd IEEE
Real-Time System Symposium (RTSS 2001), pp 245-256,
2001.

http://mast.unican.es/umlmast/marte2mast

Object Management Group. Unified Modeling Language
version 2.4.1, OMG document formal/2011-08-06, 2011

Object Management Group. Action Language for
Foundational UML (Alf), Concrete Syntax for a UML
Action Language. OMG document ptc/2010-10-05, 2010.

