
The Chance for Ada to Support Distribution and Real-
Time in Embedded Systems

Juan López Campos, J. Javier Gutiérrez, and Michael González Harbour

Departamento de Electrónica y Computadores
Universidad de Cantabria, 39005 - Santander, SPAIN

{lopezju,gutierjj,mgh}@unican.es

Abstract. This paper presents a modification of GLADE —the current GNAT
implementation of the Ada 95 Distributed Systems Annex (DSA)— to support
the development of distributed applications with hard real-time requirements.
This modified implementation, that we call RT-GLADE (Real-Time GLADE), is
specially suitable for embedded applications composed of a small number of
heterogeneous processors and communication networks, because it ensures pre-
dictable timing behaviour. A real-time model of the implementation allows the
application developer to determine and optimize the overall timing behaviour by
applying the corresponding schedulability analysis and priority assignment tech-
niques. This realtime version of GLADE continues to conform to the DSA, so
the entire real-time application can be built within the Ada 95 context. To imple-
ment RT-GLADE, we provide a priority-based communication network over
standard Ethernet that is used to ensure predictable transmission times.

Keywords: Real-Time, Embedded Systems, Distributed Systems, Ada 95, Mod-
elling, Schedulability.

1 Introduction1

In the past 20 years the concept and necessity of distribution in computer systems have
received increasing attention, and the technology that allows us to make this
distribution now offers a wide range of possibilities. We have seen how the distribution
paradigms have been developing since the message passing services to the remote
procedure calls, to the distributed objects, or more recently, to the distributed
components. This need of distribution was included in the Ada 95 standard [16] in its
Annex E, no doubt coming from the needs of Ada users. For instance, until the
adoption of the Ada 95 standard, only in the ACM SIGADA Ada-Letters series, at
least 38 papers appeared regarding distributed systems and Ada in different aspects
such as real-time, fault-tolerance, communications, or modelling.

However, the truth is that this Annex has had a minimal impact on the different
environments involving the development of distributed applications. We may think of
multiple reasons, but perhaps, the most important one is that instead of using the
implementation of the Distributed Systems Annex (DSA), Ada developers have

1. This work has been funded in part by the Comisión Interministerial de Ciencia y Tecnología (CICYT)
of the Spanish Government under grant number TIC2002-04123-C03-02 (TRECOM), and by the IST
Programme of the European Commission under project IST-2001-34820 (FIRST).

always been able to find an alternative that could better adapt to the specific
requirements of their application. For example, just for distribution, they could choose
changing the programming language to Java, which supports a more modern
distribution infrastructure. If they sought integration with software developed in other
languages and for different platforms, they could choose the CORBA objects
distribution [10]. As far as this last point concerns, there are studies in which some
integration strategies between the Ada and CORBA worlds have been discussed and
considered [12][15].

But perhaps the most important reason why the DSA has not been widely used is that
in the application environment in which Ada is strongest, real-time systems, the DSA
does not provide the required timing behaviour predictability and controllability. We
think that if the DSA would support distribution of real-time applications, it could be
used in those environments in which Ada is chosen as the superior real-time
programming language.

The motivation for this paper is to obtain an implementation of the current Annex E
that could be used for real-time applications, showing that the changes and additions to
the DSA proposed in [6] are viable and complete. The implementation discussed in
this paper is targeted at the application environment in which we usually work, which
is embedded industrial control systems (robots or visual inspection systems) composed
of different distributed processors connected by one or more communication networks,
and in which it is necessary to guarantee temporal requirements.

There are a few implementations of the Distributed Systems Annex, that support
partitioning and allocation of Ada applications on distributed systems. One of these
implementations is GLADE, which was initially developed by Pautet and Tardieu
[11][13] and is currently included in the GNAT project, developed by Ada Core
Technologies (ACT) [1].

The implementation that we present in this paper is called RT-GLADE (Real-Time
GLADE), because it was built by modifying GLADE to enhance its real-time
capabilities. The modifications are based on our previous work towards the
specification of a distributed real-time annex for Ada [5][6].

In order to develop real-time applications it is also necessary that RT-GLADE has
access to communication networks with real-time features. In this paper we integrate
into RT-GLADE the real-time network RT-EP [8], which implements a token-passing
protocol over standard Ethernet hardware. Another important need in this kind of
systems is a real-time operating system. We have implemented RT-GLADE with
MaRTE OS [2], which is a real-time operating system that follows the POSIX Minimal
Profile [14]. Because MaRTE OS is based on version 3.15p of the GNAT compiler, we
have modified the 3.15p version of GLADE, the last public version available, which is
compatible with that compiler. Having built all the parts of the system with real-time
behaviour —application, Ada run-time system, underlying OS, communications
middleware, and communications network—, it is possible to build a model that
allows a correct characterization of the timing response [4][9][7].

The paper is organized as follows. First, in Section 2 we present an overview of
GLADE to show its architecture and the main characteristics related to the real-time
behaviour and the compliance with the DSA. Section 3 presents new capabilities
introduced in the RT-GLADE implementation, as well as the subset of the
configuration parameters usable for real-time applications. It also shows some details
of the communication subsystem that supports real-time requirements. In Section 4 a
simple example on how to use RT-GLADE to build an application is shown. Section 5
gives metrics that help in evaluating the benefits of the new implementation. Finally, in
Section 6 we draw our conclusions.

2 Ada Distribution and GLADE Overview

Ada 95 [16] defines a distributed system as an interconnection of one or more
processing nodes, and zero or more storage nodes, with some communication means
among those nodes. It also defines a distributed program as one or more partitions that
execute independently in the distributed system. The partitions communicate with
each other by exchanging data, using remote subprogram calls and distributed objects.
There are two kinds of Ada 95 partitions: active, which can execute in parallel with
each other, possibly in a separate address space and possibly in a separate computer;
and passive, which have no thread of control of their own, have all their library units
preelaborated, and their data and subprograms are accessible to one or more active
partitions. The communication between active partitions is made in a standard way
using the facilities provided by the Partition Communication Subsystem (PCS). The
PCS has a language-defined interface given by the package System.RPC, so an
implementation of the PCS can be independent of the compiler and the run-time
system.

The DSA leaves some important issues as implementation defined [5][6]. Some of
them are very important to develop an implementation that has real-time capabilities.
For example, the way in which RPCs are handled, or the priorities at which the task
executing an RPC should execute are totally dependent on the implementation. Other
implementation-defined issues like the configuration language to describe the
distributed system, which may be important from a standardization perspective, are not
so important from the real-time point of view.

GLADE is the first industrial-strength implementation of the distributed Ada 95
programming model. The work in [13] proposes GLADE as a framework for
developing object-oriented real-time distributed systems. However, [5] and [6] show
that there are issues that need to be addressed for a predictable and controllable
implementation of the DSA, which are focused on the priority management in the RPC
handlers and on the restrictions that have to be observed when configuring the system.
Some but not all of these issues were implemented in version 3.15p of GLADE.

GLADE is divided in two major parts [11]:

• GARLIC: the Partition Communication Subsystem, which is primarily composed
of the packages System.RPC and System.Garlic and its child packages,
containing the heart of the PCS that takes care of network-related system calls,

concurrent requests, partition localization and launching, error handling and
recovery, etc.

• GNATDIST: the partitioning tool, which is responsible for checking the
consistency of a distributed system before building it, calling GNAT with the
appropriate parameters to build the needed stubs, configuring the filters that will
be used between different partitions, linking the partitions with GARLIC and
building the initialization sequence, and building the main program that will
launch the whole distributed application on the specified hosts.

Inside GARLIC [3], a pool of RPC handler tasks of the type RPC_Handler is created
at initialization time to take care of concurrently executing the RPCs on a given
partition. This preallocation of tasks is done for the purpose of avoiding the overhead
of task creation and destruction at each RPC. If an RPC arrives and all the tasks in the
pool are being used by previously issued RPCs, then a new task will be created for the
new RPC. The pool of tasks can be configured with the partition attribute Task_Pool
of the configuration language, which allows expressing three parameters: the task pool
minimum size (number of RPC handlers preallocated and always available), the task
pool high size (when an RPC is completed, its RPC handler task is deallocated if the
number of task in the pool is greater than this ceiling), and the task pool maximum size
(it is a limit to the number of simultaneously active remote calls; if the number of
active remote calls is greater than this number, then the request is kept pending until an
RPC handler task becomes available).

GLADE also uses dynamic allocation of tasks when a message arrives at the receiver
partition of an RPC. Every partition has one or more TCP/IP incoming ports (created
from configuration parameters such as the Boot_Location pragma, or the
Self_Location partition attribute), and for every incoming port a new task of the
type Accept_Handler is created at initialization time, waiting for incoming
messages. When a message arrives, this task hands over the processing of the message
to another task of the type Connect_Handler, which is found in a second pool of
tasks. At initialization time, this pool is empty, and the task is dynamically created in
case it is necessary. The Connect_Handler task takes care of processing the message
and calling the RPC handler task that executes the subprogram, meanwhile leaving the
Accept_Handler free to wait for new incoming messages at the reception port.

Although it is possible to statically allocate the RPC handler tasks, allocation of the
Connect_Handler tasks is dynamic and is not appropriate for real-time applications.
There needs to be a mechanism for avoiding the dynamic allocation of internal tasks.

The DSA has no provision for expressing the priorities at which the task executing an
RPC should execute, nor the priorities of the messages in a communication network. In
GLADE 3.15p the concept of priority policy is introduced, with two possible values:
Client_Propagated and Server_Declared. The first value provides a simple
mechanism to express the execution priority of the RPC that is transparent to the user:
the priority of the task invoking the RPC is encoded in the message sent to the receiver
partition. Then, in that partition, the RPC handler task that will execute the call reads
the priority of the original calling task, which is encoded in the received stream, and

sets its own priority to that value. It is known, however, that this is not the optimum
priority assignment [5]. The priority policy is set via a configuration pragma
(Priority), which means that all the partitions will use the same policy. The
Server_Declared value establishes a fixed priority for all the RPC handler tasks in a
given partition using a partition attribute (Priority). The original priority of the
RPC handler task is set to the maximum level by default, and also returns to this level
when the task finishes its work. In [5] we showed that it was possible to achieve better
results if the application could specify the initial priority of the RPC handler as well as
the priority for each call. In addition, GLADE does not support specifying priorities
for the messages in the communication networks.

In GLADE, calls between two partitions allocated in the same processing node are
made using the network capabilities, while it would be more efficiently done by using
some local protocol that would avoid going through the network.

There are also some aspects in GLADE introducing non uniform overheads that should
be minimized in hard realtime systems. For example, once a task of the calling
partition has sent a message over the network to make an RPC, it waits for the answer,
the RPC reply, on a single entry of a protected object. Every task of the calling
partition will be enqueued in the same entry, so, when an RPC reply is processed, it is
necessary to determine which task is the ‘owner’ of the answer. To do this, every task
enqueued in the entry is dequeued, and then all the tasks except the one accepting the
RPC reply are enqueued again. This implies an unnecessary overhead that is
proportional to the number of tasks waiting for an RPC reply.

The Shared_Passive pragma defined in the DSA is used for managing global data
shared between active partitions. GLADE’s implementation of this pragma is made
using operating system files to hold the data corresponding to passive partitions, and it
is assumed that the data will be shared using some kind of network file system.
However, most implementations of these distributed file systems do not have real-time
capabilities, and therefore we will not address support for this pragma in RT-GLADE.

3 RT-GLADE Characteristics

The modifications made to GLADE to support real-time behaviour are mainly focused
on the following aspects, that will be described separately in more detail:

• Full application control of the priorities of the RPC handler tasks, and of the
messages sent across the network, according to the recommendations given in [5].

• Incorporating a priority-based communication network based on standard
Ethernet and a new local protocol to increase the efficiency of the calls into the
same processing node.

• Removing the dynamic creation of the tasks at the receiving end of an RPC and
improving the wait mechanism for the RPC reply in the calling partition.

• Adapting the configuration of the system to the new real-time capabilities,
including the aspects related with the real-time communication networks.

The proposed modification makes the implementation still conform to the current
DSA, although a few new interfaces are needed to support the real-time features.

3.1. Priority Management in the Overall System

In order to be able to control the timing behaviour of a real-time application we need
some mechanism to specify the priorities for the RPCs that will be executed, as well as
for the messages that will be sent across the network.

According to the discussion in [6], we use the type Global_Priority defined in
package System.Garlic.Priorities and representing a value with a global
meaning across the distributed system, and we modify that package to make it pure
because we need to exchange priorities across the different partitions. We also use the
mapping functions defined in System.Garlic.Priorities.Mapping that translate
between values of this global priority type and values of System.Priority. The
same naming scheme is used for adding the new mapping functions between the type
Global_Priority and the priorities of the RT-EP network that we use in our
implementation.

In addition, we create the RPC_Priorities package, which contains the operations
to set the priorities of the outgoing message that is sent by the partition calling an RPC,
of the RPC handler task for that particular call, and of the incoming message that is
returned by the called partition when the execution of the RPC has finished:

with System.Garlic.Global_Priorities;
use System.Garlic.Global_Priorities;
package RPC_Priorities is

procedure Set
(RPC_Handler,
 Outgoing_Message,
 Incoming_Message: in Global_Priority);

procedure Get
(RPC_Handler,
 Outgoing_Message,
 Incoming_Message: out Global_Priority);

end RPC_Priorities;

Procedure Set is used to set the priorities used for future RPCs or APCs issued by the
calling task, and can be invoked by the user before making the call. These priorities are
in effect until Set is called again. In this way, the application can specify the priorities
of its RPCs either on an individual basis, or by grouping several calls under the same
priorities. Initial values for the priorities are set to an intermediate priority level.
Procedure Get returns the current values of the RPC priorities. The implementation of
this package stores the priorities by creating three task attributes using the facilities
described in the optional but standard package Ada.Task_Attributes [5].

To avoid context switches, we have moved the work done by the Connect_Handler
tasks into the Accept_Handler tasks. Since the underlying communication
subsystem implements message queuing there is no message loss using this strategy.

To avoid the priority inversion that could be caused by the initial priority of the RPC
handler tasks of the pool, we let the application configure it by specifying in the
configuration file the partition attribute called Priority, of the type
Global_Priority. In our implementation we use this attribute to also set the priority
of the Accept_Handler tasks.

Fig. 1 shows a typical RPC call and how the priorities are managed in the original
GLADE and in our implementation. For the latter, the calling task sets the priority
values involved in the RPC: for the outgoing message, the incoming message, and the
execution of the RPC in the called partition. Then it executes all the middleware code
at its own priority until it sends the request through the real-time network. When the
calling task reaches the Do_RPC or Do_APC functions of the System.RPC package,
instead of writing the priority of the calling task in the message stream as in the
original GLADE, we call RPC_Priorities.Get and we write the RPC_Handler and
Incoming_Message priorities into that stream. The priority at which the stream is

Fig. 1 Priority Schemes in GLADE and RT-GLADE

CALLING

PARTITION

Applic. Code

Stubs

System.RPC

Garlic

Heart

Protocols
Prot1 Prot2 ...

RT-Network

CALLED
PARTITION

Applic. Code

Stubs

System.RPC
[RPC Handler]

Garlic

Heart

Protocols
Prot1 Prot2 ...

R
PC

 H
andler T

ask

A
cc

ep
t

H
an

dl
er

A
cc

ep
t

 H
an

dl
er

 R
PC

 H
an

dl
er

T

as
k

C
al

lin
g

T
as

k

C
alling T

ask

RT-Network

RT-Network

RT-GLADE GLADE

User Priority

Outgoing Priority

Accept Handler Priority

RPC Handler Priority

RPC Handler Priority

Incoming Priority

User Priority

No Priority

Priority’Last

Priority’Last

Server Declared/Client Propagated Priority

No Priority

sent across the network is the Outgoing_Message priority (after mapping it to the
appropriate type).

Once the message arrives at the called partition, an Accept_Handler task (see
Subsection 3.3) running at the established priority processes the stream. As part of this
processing, it reads the priority of the corresponding RPC handler from the message,
selects a free handler from the pool, sets its priority to the desired value, and then
awakens the handler passing the RPC stream to it. This strategy saves context switches
compared to the original GLADE implementation in which it was the own RPC
handler who set its own priority.

The RPC handler task reads the Incoming_Message priority and the parameters of
the call from the message stream, and then invokes the subprogram associated with the
RPC. When the call completes, the return parameters and error indications, if any, are
sent to the calling partition at the Incoming_Message priority level. Then, the RPC
handler task suspends itself by going back into the pool. It’s priority is left unchanged
because before it will start executing again an Accept_Handler task will set its
priority to the value appropriate for the new RPC.

When the stream with the return parameters arrives at the calling partition, it is
processed at the established priority by an Accept_Handler task (see Subsection 3.3)
which in turn passes it to the calling task that was suspended waiting for this answer.

3.2. New Communication Features added to GARLIC

As RT-GLADE uses a network, it is obvious that it is necessary to use one with real-
time characteristics. The TCP/IP network provided by GLADE is not suitable for real-
time communication. In our RT-GLADE implementation we are using the RT-EP
(Real-Time Ethernet Protocol) network [8], which is a software-based token-passing
Ethernet protocol for multipoint communications in real-time applications using
standard ethernet hardware. This protocol can manage messages up to 1492 bytes long
in a single packet, but it is currently being extended to manage larger messages using
packet division.

Within the implementation other real-time protocols may be available, so when an
RPC is performed, it is necessary to determine the protocol that we are going to use for
the communication. Once the protocol has been selected, it is necessary to pass to it the
information required to contact the remote partition through the network. This
information comprises the node identification where the partition is located, and any
other possible information for the protocol chosen, e.g., the destination port as in the
GLADE implementation.

RT-EP [8] uses a concept similar to the port, called the reception channel, which is a
number used for the purpose of identifying communication endpoints in a given
station. To be able to transmit through RT-EP it is necessary to know the MAC address
of the destination node, and the RT-EP reception channel number inside that node. We
code this information using the partition attribute Self_Location and the
Boot_Location pragma of the configuration language (see Subsection 3.4).

We have defined a new virtual network protocol that we call the Local protocol, which
is used to increase the efficiency when making a call to a subprogram belonging to an
RCI library unit in a partition located in the same processing node than the calling
partition. The use of the Local protocol also avoids a limitation of the RT-EP
communication subsystem, which does not allow sending a message to the same node.
This protocol is implemented with the same interface as RT-EP [8], also using a
reception priority queue for each reception channel defined in the configuration
process. A message sent through the Local protocol is enqueued with the priority of
the called task, which is the RPC handler priority for the request and the priority of the
calling task for the answer. When a message is sent through the Local protocol, neither
the Outgoing_Message nor the Incoming_Message priorities are used, because
there is no network scheduling involved. Internally, the priority of the calling task is
written into the stream in order to enqueue the answer message in the right order.

Once a calling task executing an RPC has checked that the call does not belong to the
same partition nor to a partition located in the same node, the implementation has to
determine how to contact the remote partition, i.e., which protocol to use. For this
purpose, the calling task checks a table with information on which protocol to use for
accessing the desired partition. It is not necessary that if, for instance, partition P1 had
to contact partition P2 using the RT-EP protocol, partition P2 had to use the same
protocol to contact P1. In the configuration process, we use the partition links (see
Subsection 3.4) to select the protocol to be used between a calling partition P1 and a
called partition P2.

3.3. RPC Receiver Handling

RT-GLADE removes the dynamic task creation of the GLADE implementation for the
execution of RPCs simply by configuring the number of RPC handler tasks in the pool
to a sufficient number of static tasks, ensuring the execution of all the possible
concurrent RPCs. For this purpose, we just set the minimum number of tasks in the
pool using the partition attribute Task_Pool. If we want a static pool of tasks, the
other two numbers in this attribute (high and maximum sizes) must be set to the same
value as the minimum. This also follows the recommendations stated in [6].

The other place of the GLADE implementation with dynamic creation of tasks is the
management of the Accept_Handler and Connect_Handler tasks. In RT-GLADE
each partition has one Accept_Handler task (and no Connect_Handler task) per
reception channel configured in the real-time protocol (currently the Local protocol
and RT-EP). These tasks are created at initialization time and are immediately blocked
waiting for the reception of messages at their respective reception channels.

In order to avoid the non uniform overhead associated with the use of a unique entry to
wait for the RPC replies, we propose using a family of entries. Every task waiting for
an RPC reply will be enqueued on a different entry. Before issuing the outgoing
message, we determine the identifier of the entry at which the calling task will be
enqueued. This identifier is sent with the message and then sent back with the reply to
determine which entry is to be serviced. After usage, the entry is freed for subsequent

use in some other call. A new configuration parameter is added to specify the number
of entries of the protected object.

3.4. RT-GLADE Configuration Parameters

The GNATDIST tool has its own interface for implementing the configuration of a
distributed application. This tool reads a “.cfg” file which follows the rules of its
Ada-like configuration language. RT-GLADE uses a subset of GLADE’s configuration
language together with a few extensions. We will summarize which of the GLADE
configuration attributes and pragmas are specially relevant to RT-GLADE, which are
not used, and which are forbidden:

• The configuration and partition declarations, or setting the main procedure in a
partition are the same as in the original tool.

• Pragma Starter has to be set to None, because we want to manually launch the
different partitions generated. The reason is that RT-GLADE will be tested on a
real-time OS (MaRTE) that does not have the conventional remote shell used by
the GLADE launcher. Each MaRTE OS node can automatically upload the
partition from a host where the partitions have been created.

• It is not necessary to set the partition attribute Host for every partition. This
attribute is related with the remote launching facility that is not used in MaRTE.

• The partition attribute Self_Location is used to configure how a partition can
be reached through a communication protocol. Each partition must specify this
attribute at least once for every possible location in which the partition can be
allocated. The information coded in this attribute is a list of: a protocol name, a
processing node identifier, a reception channel identifier, and a list of partitions to
which corresponding partition links will be set. A partition link defines the
preferred protocol to send messages from the specified partition to the one to
which the attribute Self_Location is applied.

Pragma Boot_Location has to be specified also in order to determine the
location of the boot server in which all the partitions have been registered. This
boot server is located on the main partition. It contains the same information as
Self_Location.

In order to completely specify the network information an additional file must be
written to associate the network addresses (MAC addresses for RT-EP) and the
processing node identifiers. The reason for adding this new file is to not overload
the configuration file with information that is only relevant to the communication
protocols.

• The partition attribute Task_Pool must be configured as described in section 3.3.
• The filtering service is not necessary and, consequently, nor are the bidirectional

channels that GLADE implements, which are mainly focused on this service. This
part of the configuration is ignored.

• Pragmas or attributes related to the configuration of passive partitions are
forbidden. More work has to be done to arrive at a real-time solution for this issue.

• Dynamic aspects associated with the reconnection in GLADE are also forbidden
for hard real-time applications due to the difficulties in achieving predictable
timing behaviour; they could be used in a future implementation for soft real-time
systems.

• The partition attribute Priority has been reused to configure the initial priorities
of the Accept_Handler tasks.

• A new partition attribute called Max_RPC_Replies has been added to set the
number of entries of the protected object at which the tasks doing an RPC wait for
the reply.

4 Usage Example

Fig. 2 shows a simple example of a distributed application composed of two CPUs
connected by a network using the RT-EP protocol. The example code is divided into
three library units: the main procedure Remote_Caller, the RCI package
Calculator, and a library unit containing the task Local_Caller_Task. Each
library unit is allocated to a different partition and assigned to a CPU as shown. The
main procedure makes an RPC to the Calculator.Add function, through the RT-EP
protocol. This call must specify the three priorities needed to make an RPC. The
Local_Caller_Task calls the same function, but because it is located in the same
CPU it will use the Local protocol, and therefore only the RPC_Handler priority must
be specified.

The RT-GLADE configuration file that corresponds both to the distribution and to the
way in which the protocols are used is as follows:

configuration Configuration_File is
pragma Starter (None);
Partition1: partition := (Calculator);
Partition2: partition := (Remote_Caller);
Partition3: partition := (Local_Caller);
procedure Remote_Caller is in Partition2;
pragma Boot_Location (("RT_EP","CPU1:1"));
for Partition1'Self_Location use

((("RT_EP","CPU2:1"), ("Local","CPU2:1:Partition3")));
for Partition2'Self_Location use

(("RT_EP","CPU1:1"));
for Partition3'Self_Location use

((("RT_EP","CPU2:3"), ("Local","CPU2:3:Partition1")));
for Partition1’Priority use 27;
for Partition1’Task_Pool use (8, 8, 8);
for Partition1’Max_RPC_Replies use 4;

end Configuration_File;

The partition attribute Self_Location applied to Partition2 determines that it has
two communication protocols (RT-EP and Local) and the channels used. Although in
this case it is not necessary to specify a partition link because there is only one network
protocol available, Partition2 explicitly requests from Partition1: “if you send a
message to me, you have to use the RT-EP protocol and reception channel 2”. In this
example, it can be seen also that the number of RPC handler tasks in Partition1 is
statically established to a value of 8, the initial priority of these tasks and of the accept
handlers is set to 27, and the maximum number of simultaneously pending replies is
set to four.

5 Evaluation

The real-time modelling of an application using RT-GLADE may be done by using the
models described in [8] for RT-EP and [9] for the RPCs. The measurement of the time
parameters specified in the model depend on the particular platform and thus their
absolute values are not representative. In this section we will show the response times
of a simple example that shows how the full control of the individual RPC and
message priorities lets us achieve better results than with the two priority models used

Fig. 2 Simple example using RT-GLADE

with RPC_Priorities, System.Garlic.Priorities, Calculator;

procedure Remote_Caller is
 RPC_P,IN_P,OUT_P: System.Garlic.Priorities.Global_Priority;
 ...
begin
 ...
 RPC_Priorities.Set (RPC_P, IN_P, OUT_P);
 Sum := Calculator.Add (X, Y);
 ...
end Remote_Caller;

Partition2 (remote_caller.adb)

package Calculator is
 pragma Remote_Call_Interface;
 function Add (N1: in Integer;
 N2: in Integer)return Integer;
 ...
end Calculator;

Partition1 (calculator.ads)

Partition3 (local_caller.adb)

with RPC_Priorities, System.Garlic.Priorities, Calculator;
 ...
 task Local_Caller_Task body is
 RPC_P : System.Garlic.Priorities.Global_Priority;
 ...
 begin
 ...
 RPC_Priorities.Set (RPC_P);
 Sum := Calculator.Add (X, Y);
 ...
 end Local_Caller_Task;

RT-EP:1

RT-EP: 1

Local: 1

Local: 3

RT-EP: 3

CPU2

CPU1

in the original GLADE. Fig. 3 shows the architecture of a simple application with two
processors and three tasks (numbered 1 to 3) executing remote operations (named ROP
1 to 3) in the opposite processor. The worst-case execution times (C) and periods (T)
are shown in the figure. The application is divided in two partitions, one for each
processor. Task_1 and Task_2 have hard real time requirements with deadlines equal
to their respective periods; Task_3 has no real-time requirements, and thus is executed
at a low priority level. Time units are in seconds. Since the original GLADE does not
consider priorities in the network, we have used a single priority level for all the
messages in the network, to make a fairer comparison. The time measurements have
been made on the same platform, so that the differences are only due to the priority
management scheme.

Table 1 shows the worst-case response times observed for Task_1 and Task_2 with
the following priority schemes: RT-GLADE with some specific assignment that is not
possible in GLADE; and the two possibilities in GLADE: the Client Propagated model
and the Server Declared model, each with different possible priority combinations.

We can see how the timing requirements of this particular example are only met under
RT-GLADE. The results for the Server Declared scheme are especially bad because
the remote operation ROP_3 invoked by the lower priority task is forced to execute at
the same priority as ROP_1. The unbounded response times are obtained in some cases
because the task is unable to complete before its period and work continues to
accumulate with increasing response times.

Table 1. Comparison of the different priority schemes

Priority Schemes Task_1
Prio.

ROP_1
Prio.

Task_2
Prio.

ROP_2
Prio.

Task_1
WCRT (s)

Task_2
WCRT (s)

RT-GLADE High Medium High Medium 4.26 4.81

Client Propagated
High High Medium Medium 3.34 Unbounded

Medium Medium High High 8.17 3.44

Server Declared

High Medium High Medium 16.81 6.18

High High Medium Medium 10.85 Unbounded

Medium Medium High High Unbounded 3.44

Fig. 3 Architecture of an example application

CPU_1 CPU_2

Task_1
C = 1.2
T = 6.0

Task_3
C = 0.0001
T = 50.0

Task_2
C = 0.8
T = 5.0

ROP_1
C = 1.7

ROP_3
C = 10.0

ROP_2
C = 2.2

6 Conclusions and Further Work

We have presented RT-GLADE, which is a new version of GLADE, the GNAT
implementation of the Ada 95 Distributed Systems Annex, with better real-time
capabilities. The new implementation continues to conform to the DSA and is also
offered as free software under the GNU licence. To achieve predictable and
controllable timing behaviour we have modified the priority scheme used by the
implementation to allow the application to fully specify the priorities of the
communication messages and of the RPC handlers. We have also eliminated the need
for dynamic task creation and some sources of non uniform overheads.

In addition to changes to the middleware, we had to add network services capable of
providing real-time behaviour. We have used RT-EP, a real-time protocol based on
standard Ethernet hardware. In addition, because some calls to procedures declared as
remote may result in calls to the same processing node, a Local protocol has been
included for efficiency and generality purposes.

More work needs to be done in the current implementation to remove the unused
features of GLADE that are still coded in RT-GLADE. It is also important to change
the way in which GLADE starts up the system, in order to make it simpler and more
controllable, although the current implementation does not affect the real-time
behaviour once the system has been initialized. Finally, as a very specific issue, a
mechanism to catch the exceptions raised by an APC would be useful for the
applications using RT-GLADE.

In summary, by using RT-GLADE we can build applications that can guarantee
meeting their real-time requirements. As a conclusion, we have shown how the
changes and additions that we proposed in [6] for the DSA are viable and complete,
and can lead to a Real-Time Distributed Systems Annex in Ada with moderate effort.
It would be extremely useful for the Ada Language to incorporate these changes and
additions to the standard DSA. This extension could facilitate using Ada’s distribution
services in real-time systems, and would help in keeping Ada as the reference
language for real-time systems.

References

[1] Ada-Core Technologies, Ada 95 GNAT Pro, http://www.gnat.com/

[2] M. Aldea and M. González. “MaRTE OS: An Ada Kernel for Real-Time Embedded
Applications”. Proceedings of the International Conference on Reliable Software
Technologies, Ada-Europe 2001, Leuven, Belgium, in Lecture Notes in Computer
Science, LNCS 2043, May 2001.

[3] Y. Kermarrec, L. Pautet, and S. Tardieu. “GARLIC: Generic Ada Reusable Library for
Interpartition Communication”. Proceedings of Tri-Ada’95, Anaheim, California, USA,
ACM, 1995.

[4] M. González Harbour, J.J. Gutiérrez, J.C. Palencia and J.M. Drake. “MAST: Modeling
and Analysis Suite for Real-Time Applications”. Proceedings of the Euromicro
Conference on Real-Time Systems, Delft, The Netherlands, June 2001.

[5] J.J. Gutiérrez García, and M. González Harbour. “Prioritizing Remote Procedure Calls in
Ada Distributed Systems”. Proceedings of the 9th International Real-Time Ada Workshop,
ACM Ada Letters, XIX, 2, pp. 67–72, June 1999.

[6] J.J. Gutiérrez García, and M. González Harbour. “Towards a Real-Time Distributed
Systems Annex in Ada”. Proceedings of the 10th International Real-Time Ada Workshop,
ACM Ada Letters, XXI, 1, pp. 62–66, March 2001.

[7] Jane W. S. Liu. “Real-Time Systems”. Prentice Hall, 2000.

[8] J.M. Martínez, M. González Harbour, and J.J. Gutiérrez. “RT-EP: Real-Time Ethernet
Protocol for Analyzable Distributed Applications on a Minimum Real-Time POSIX
Kernel”. Proceedings of the 2nd International Workshop on Real-Time LANs in the
Internet Age, RTLIA 2003, Porto (Portugal), July 2003.

[9] J. Javier Gutiérrez, José M. Drake, Michael González Harbour, and Julio L. Medina.
“Modeling and Schedulability Analysis in the Development of Real-Time Distributed Ada
Systems”. Proceedings of the 11th International Real-Time Ada Workshop, ACM Ada
Letters, Vol. XXII, No. 4, pp. 58–65, December 2002.

[10] Object Management Group, “Realtime CORBA Joint Revised Submission”. OMG
Document orbos/99-02-12 ed., March 1999.

[11] L. Pautet and S. Tardieu, “Inside the Distributed Systems Annex”. Proceeding of the Intl.
Conf. on Reliable Software Technologies, Ada-Europe’98, Uppsala, Sweden, in LNCS
1411, Springer, pp. 65–77, June 1998.

[12] L. Pautet, T. Quinot, and S. Tardieu. “CORBA & DSA: Divorce or Marriage”. Proc. of the
International Conference on Reliable Software Technologies, Ada-Europe’99, Santander,
Spain, in Lecture Notes in Computer Science No. 1622, pp. 211–225, June 1999.

[13] L. Pautet and S. Tardieu. “GLADE: a Framework for Building Large Object-Oriented
Real-Time Distributed Systems”. Proc. of the 3rd IEEE Intl. Symposium on Object-
Oriented Real-Time Distributed Computing, (ISORC'00), Newport Beach, USA, March
2000.

[14] IEEE Std. 1003.13-2003. Information Technology -Standardized Application
Environment Profile- POSIX Realtime and Embedded Application Support (AEP). The
Institute of Electrical and Electronics Engineers.

[15] Scott Moody. “Object-Oriented Real-Time Systems Using a Hybrid Distributed Model of
Ada 95's Built-in DSA Capability (Distributed Systems Annex-E) and CORBA”.
Proceedings of the 8th International Real-Time Ada Workshop, ACM Ada-Letters, XVII,
5, pp. 71–76, September-October 1997.

[16] S. Tucker Taft, and R.A. Duff (Eds.). “Ada 95 Reference Manual. Language and Standard
Libraries”. International Standard ISO/IEC 8652:1995(E), in LNCS 1246, Springer, 1997.

