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Abstract1

The ARINC-664, Part 7 (AFDX) standard defines a
communications network based on Ethernet and the UDP/
IP protocols. Contrary to general-purpose Ethernet, the
timing behavior in AFDX is deterministic due to the use of
special network switches and end-systems with static
routing tables and traffic policing at the sending end
through mechanisms called virtual links. Even though the
latencies in this network are bounded, there are scheduling
and contention effects that need to be analyzed. In this
paper we develop a response-time analysis of the network
including the scheduling of the virtual links and the
contention in the end-systems and in the switches. This
analysis allows us to obtain worst-case latencies and output
jitter for the network messages. These results can be
integrated with the response time analysis in other
resources to obtain end-to-end response times in
heterogeneous distributed systems.

1. Introduction

AFDX (Avionics Full Duplex Switched Ethernet) is a
communications network defined in the ARINC-644, Part
7 standard [2] and based on the use of point-to-point full-
duplex ethernet links and special-purpose switches in
which the routing of messages is preconfigured so that
there is no delay in the discovery of routing addresses
through network protocols that could interfere with the
transmission of application messages. The AFDX switches
are capable of filtering non conformant traffic, and can do
traffic policing based on two priority levels. In addition,
AFDX provides two redundant hardware communication
links for fault-tolerant operation.

AFDX [9][20] defines the communication process
among end-systems (processing nodes) where bandwidth
and bounded latency are guaranteed. A flow of
communication packets between two end systems suffers

bounded jitter that depends on the global network traffic at
a given time.

This paper describes methods for performing response-
time analysis (RTA) in AFDX deterministic switched
networks. The challenges are modelling the queuing effects
in the end-systems and in the AFDX switches, and
modelling the end-to-end response times of the
communications, including the case with multicasting.

We have defined a real-time model for a
communications network based on AFDX integrated in the
MAST modelling and analysis suite [11][15]. From that
model, we have developed a response time analysis for
AFDX networks that can be integrated with the response-
time analyses in other resources, using the heterogeneous
RTA techniques described in [19]. In this way we can
perform a holistic end-to-end response time analysis in
complex distributed systems.

The paper is organized as follows. In Section 2 we
describe the AFDX network from the point of view of its
scheduling properties and timing behavior. Section 3 states
the model of the AFDX network and our assumptions for
the analysis. Related work is presented in Section 4.
Section 5 derives the response time analysis, and Section 6
describes how to combine this analysis with response times
in other resources to obtain an end-to-end RTA. Section 7
shows a simple example to illustrate the application of the
techniques developed in previous sections, and also shows
the highlights of the proposed holistic technique. Finally,
Section 8 presents the conclusions and future work.

2. The AFDX Network

The usual way for applications to exchange messages in
AFDX is through the communication ports defined in the
ARINC 653 standard [3], which defines the interface of a
partition-based operating system for use in avionics
systems. 

There are two different types of ports: sampling or
queueing. For transmission there is no difference in the
behavior of both types. Messages that are generated are
directly queued in the transmission buffer. For message
reception, the behavior of these ports is different:
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• Sampling Port: the arriving message overwrites the
current message stored in the buffer.

• Queueing Port: the arriving message is appended to a
FIFO queue. 

Queueing ports are required to manage at least 8Kbytes
of data and allow messages to be fragmented into several
packets, while sampling ports are limited to single-packet
messages.

Another mode of transfer in avionics services is the
Trivial File Transfer Protocol (TFTP) and communication
with compliant networks via SAP (Service Access Point)
ports. However, in this paper we have focused on the
normal communication mechanism through sampling or
queueing ports.

The ARINC 653 API has operations to send or receive
messages to or from these AFDX communication ports.
The messages are driven through the transmission protocol
stack based on the UDP/IP protocol, and they might be
fragmented into packets according to the traffic regulation
parameters. The packets are sent through two redundant
networks; the redundancy management of the packets sent
or received is made by specific Ethernet hardware.

The traffic regulation is made via Virtual Links (VL)
defined (see 3.2.1 “Virtual Link” in [2]) as conceptual
communication objects to establish a logical unidirectional
connection from one source end system to one or more
destination end systems, having a dedicated maximum
bandwidth. Each virtual link VLi is characterized by two
parameters used for traffic regulation:

• Lmaxi: the largest Ethernet frame, which is a value in
bytes.

• BAGi: the Bandwidth Allocation Gap, which is a power
of 2 value in the range [1,128]. The BAG represents the
minimum interval in milliseconds between Ethernet
frames transmitted on the VL.

Each virtual link has a FIFO queue for all the
fragmented packets to be transmitted on this VL with its
appropriate bandwidth. In a partitioned system using
ARINC 653, several AFDX communication ports may
share the same VL to transmit their packets as long as they
belong to the same partition. Sharing VLs causes a poor

schedulability of the system, as there is no way to prioritize
messages and they will be enqueued in FIFO order. The VL
queue for packets is a source of contention for the
messages transmitted on an AFDX network.

Since message fragmentation is not allowed for
sampling ports, we need to adjust the Lmax of the virtual
link to accommodate the complete message. On the other
hand, queuing ports can support messages of different sizes
up to a maximum of 8 Kbytes, so fragmentation may be
needed. When very long packets could excessively delay
the transmission of other contending messages with very
short deadlines it is possible to adjust the Lmax value
forcing fragmentation of the long messages.

The Virtual Link scheduler is in charge of selecting the
next packet to be transmitted according to the allocated
bandwidth for each VL. This scheduler selects the first
packet from a VL queue with the packets ready to be
transmitted. When several VLs are ready to transmit then
they are selected in turns until all of their messages have
been transmitted. This choice introduces jitter for the
transmission over any of the VLs, which is bounded by a
maximum value defined in the specification (subclause
3.2.4.3 “Jitter” in [2]). 

The maximum allowed jitter on each VL at the output of
the end system should comply with both of the following
formulas:

where, Nbw is the speed of the Ethernet link in bits per
second, 40 s is the typical minimum fixed technological
jitter, and the maximum allowed jitter is 500 microseconds.
The value 20 is the number of bytes to be added to each
Ethernet frame (see Figure 1): 8 bytes for the preamble and
the start of frame delimiter (SFD) and 12 bytes for the
inter-frame gap (IFG). 

We also have to take into account that the minimum
Ethernet frame has 64 more bytes, which can be used to

MaxJitter 40s

20 Lmaxi+  8 
i set of VLs 


Nbw

---------------------------------------------------------------------------+

MaxJitter 500s
(1)

Figure 1.  Structure of the Ethernet frame with an AFDX payload
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send AFDX payloads between 1 and 17 bytes. This means
that at least 84 bytes are always transmitted. The maximum
Ethernet frame has 1518 bytes for an AFDX payload up to
1471 bytes. So 1538 is the maximum number of bytes
transmitted per packet. The total amount of bytes sent
through the network can be obtained in terms of the AFDX
payload according to the scheme of the Ethernet frame
with UDP/IP illustrated in Figure 1.

A virtual link can be composed of a number of Sub-
Virtual Links (sub-VLs), all of them having a dedicated
FIFO queue which is read on a round-robin basis by the VL
scheduler. The round robin algorithm works over IP
fragmented packets.

The ARINC 664 specification [2] describes that it is the
system integrator’s responsibility to determine that for the
chosen end system configuration and implementation the
500 s limit in Eq. (1) is not exceeded. This specification
also defines the following two limiting cases to
mathematically treat the allowed latency in the end system
transmission (subclause 3.2.4.3 “Jitter” in [2]):

• For those messages that are shorter than Lmax (and
therefore do not require fragmentation) and that are
produced at a frequency that is equal to or lower than the
BAG of the VL, the total allowed latency is:

where, LT is the technological latency in the

transmission, defined as the time required for a packet to
traverse the end system hardware when there is no
contention from other messages. The value of LT should

be bounded and lower than 150s (see subclause 3.2.4.1
“Latency” in [2]) irrespective of whether one or more
messages are sent.

• For those messages requiring fragmentation into p
packets, there could be p-1 packets already waiting to be
processed in the VL FIFO queue, and then the latency for
packet p on the VL can be calculated as follows:

Once a packet is ready to be transmitted, it is sent to the
switch using the full capacity of the physical link. If the
switch detects that the input traffic does obey to the
bandwidth restrictions of the VLs, it will filter spurious or
non-conformant messages to guarantee that the rest of the
traffic remains schedulable. In this paper we assume that
the bandwidth restrictions are obeyed. As a consequence,
no message filtering is needed and non-conformant traffic

is not considered for the response time analysis, which
assumes a correct operation of all the end systems.

The switch delivers correct packets from the incoming
port (where the source end system is connected) to the
outgoing port or ports (where the destination end systems
are connected) in a store-and-forward way. The latency
introduced when a packet is delivered from the incoming to
the outgoing port, known as the hardware latency of the
switch, LS, must also be taken into account in the analysis.
It should be less than 100s.

A new contention point, and a new source of jitter
appears in the queue where packets wait to be sent to the
destination end system. According to the AFDX
specification, the VLs can be configured with two
priorities. The output port queues are priority queues where
messages are enqueued with either high or low priority.
The priority level is defined in a configuration table on a
VL basis. Messages of the same priority are kept in FIFO
order. We will study the contention effects of these queues
in the analysis.

Once the packet is ready to be transmitted from the
outgoing port queue, it is sent to the destination end system
using the full capacity of the physical link.

At the destination end system the packet is driven
through the reception protocol stack. When a message is
completely received, it is enqueued at the corresponding
AFDX port, which could potentially overflow if it is not
read at a sufficient rate. Similar to the LT value, the
technological latency of the end system in reception, LR,
should be bounded and lower than 150s.

3. System model and assumptions 

The objective of the analysis is to allow the calculation
of the worst-case and the best-case latencies or
transmission times for any message from the instant when
the message is sent to the AFDX port by an application
task (called the release time) until the message is ready to
be received by a destination task from the corresponding
AFDX port (called the arrival time). The resulting worst-
and best-case latencies can be used to calculate offset and
jitter terms for the overall analysis of the distributed system
as described in Section 6.

We will assume that the latency in the physical link due
to the propagation of a bit is insignificant compared to the
rest of the latencies, assuming short distance
communications, and therefore we will not take it into
account. In the same way as it is calculated in [20], the
latency for bits transmitted through a fiber optic link of 100
meters length is around 0.5 s. For comparison, the
transmission times for the minimum and the maximum
frame sizes (84 and 1538 bytes) at 100 Mbps are 6.72 s
and 123.04 s respectively.

MaxLatency BAG MaxJitter LT+ + (2)

MaxLatency p  p BAG MaxJitter LT+ + (3)
3



We assume that the queues in the switches and in the
end systems are large enough to accommodate the worst-
case traffic. Our end-to-end response time analysis can be
used to ensure that the application removes messages from
the queues on time by reading them at the correct rates.

The task model used for the analysis of the AFDX
network is concentrated on the elements involved in the
communication. In this simplified model we assume that
applications are composed of tasks released by a stream of
periodic events. These tasks execute one instance, or job,
per event received, and therefore each task executes an
infinite stream of jobs, one for each period or event
activating it. Each of these tasks jobs can send one message
to an AFDX port. The stream of periodic events causes a
stream of task jobs to execute, which results in a stream of
messages being sent. These messages can, in turn, trigger
other tasks. At the end of this sequence of messages and
tasks we can impose end-to-end deadlines, which may be
larger than the event periods.

We will assume that messages from different tasks are
non synchronized, i.e., there is no restriction on the
temporal relation between message releases from different
tasks. 

A message stream i in the AFDX network is
characterized by the following parameters:

• Mi, worst-case number of bytes of a message: it is the
maximum number of bytes of the message payload. ,
is the best-case number of bytes.

• pi, the number of packets into which a message is
fragmented, for the worst-case analysis. The best-case
number of packets is .

• Npi, worst-case number of bytes of a packet payload : it
is the maximum number of bytes of the payload of a
single packet.  is the best-case number of bytes of a
packet payload.

• Ni, total worst-case number of bytes of a packet: it is the
maximum number of bytes of a single packet, including
the message payload (Npi) and the overhead bytes (both
ethernet and protocol overheads).  is the best-case
number of bytes of a packet.

• Ti, period: it is the minimum time between the nominal
release of two messages of the i stream. Each message
in a stream is nominally released at i+nTi, n={0, 1, 2, 3,
...}, where i is an arbitrary phase, considered unknown
due to the non synchronized nature of the message
streams. The actual release of the messages may be
affected by jitter (see below).

• Ji, release jitter: it is the time expressing the variability in
the release of the messages with respect to the nominal
periodic release. It usually depends on the output jitter of
the task sending the message. We assume that Ji may be

larger than Ti. The actual release time of the messages on
stream i is in the interval ,
n={0, 1, 2, 3, ...}.

• Li, worst-case latency, and Li
b, best-case latency: these

are the results of the analysis, and they represent
respectively the worst and the best latencies measured
since the message is released by enqueueing it at the
AFDX sending port until it arrives at the AFDX
destination port.

There are parameters linked to the hardware which are
needed to determine the latency of the complete
transmission of a message:

• Nbw, speed of the Ethernet link: it is the number of bits
per second transmitted through the physical link.

• LT, maximal technological latency in the AFDX
hardware at the sending end system. We obtain it as the
sum of two other parameters defined in the AFDX
standard: 

- LTmin, minimum technological latency in the AFDX

hardware: this is the minimum value of the sender
technological latency.

- JTech, the minimum fixed technological jitter: this

parameter is defined in the ARINC-644, Part 7 standard
(first equation and “note” in subclause 3.2.4.3 “Jitter”
in [2]), with a typical value of 40s. It is the variable
part of the sender technological latency.

• LR, maximal technological latency in reception, defined
in the AFDX standard. The best-case value is called .

• LS, maximal switch hardware latency, defined in the
AFDX standard. The best-case value is called .

Another three parameters can be defined to model the
Ethernet frame and the protocol used:

• OEth, the Ethernet layer 1 overhead: it is the number of
overhead bytes to be added to each Ethernet frame
(Preamble, Start Frame Delimiter, and Inter Frame Gap).
Its value is 20 bytes.

• OProt, protocol overhead: it is the number of overhead
bytes corresponding to ethernet layer 2 and upper
protocol layers used for communications. Its value is 47
bytes for the UDP/IP used in AFDX.

• Fmin, minimum Ethernet frame: it is the number of bytes
of the minimum Ethernet frame, excluding the ethernet
layer 1 overhead, OEth. Its value is 64 bytes.

In the model for the communication process across an
AFDX network we can consider the following stages:

1.Sending operation to reach the FIFO queue of the
AFDX port (CSend). This is the overhead of the message

send operation provided by the API. We will evaluate it

Mi
b

pi
b

Npi
b

Ni
b

i nTi+ i nTi Ji+ + 

LR
b

LS
b
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as part of the execution time of the task sending the
message.

2.Message delivery through the network. This is the
process starting when the message is released from the
source AFDX port and finishing when the message is
queued at the destination AFDX port. It involves the
transmission through the end-system hardware, through
the network links and through one or more switches.

3.Receiving operation to get a message from the AFDX
receiving port (CReceive). In the same way as for the

sending operation, we have to evaluate the overhead for
this operation provided by the API in order to add this
extra execution time to the task receiving the message.

To model the latency of the second stage, message
delivery through the network, we divide it into the
following latencies (see Figure 2):

• Step 1. Latency of scheduling the virtual links (LVL): it is
the time needed to deliver a message from the AFDX
port to the physical link. It takes into account the time
needed to deliver all the packets if the message has been
fragmented and the interference of other messages that
can be awaiting in the VL queue.

• Step 2. Latency of the transmission to the switch (LTr): it
is the time needed to send the last packet of a message to
the switch across the physical link. Notice that the time
needed to send the previous packets (sent in previous
BAGs) is already included in LVL.

• Step 3. Latency of the switch management (LSw): it is the
time needed to deliver the last packet of a message from
the incoming to the outgoing ports of the switch, plus the
interference that the packet can suffer due to other
messages sent to the same destination end system. Notice
that the time needed to deliver the previous packets
(corresponding to previous BAGs) is already included in
LVL, as the minimum BAG is 1ms, while the maximum
transmission jitter, according to the ARINC-644, Part 7
standard (first equation and “note” in subclause 3.2.4.3),
is 0.5 ms.

• Step 4. Latency of the transmission to the destination end
system (LTr): it is the time needed to send the last packet
of a message from the switch to the end system across
the physical link, and is the same as for the transmission
to the switch (Step 2).

• Step 5. Latency of the message management at the
destination end system (LRec): it is the time needed to
enqueue the last packet of the message at the AFDX port.

Figure 2 shows the five steps with their latencies as
described above, as well as the send and receive stages. If a
packet has to cross more than one switch, steps 2 to 4 need
to be replicated for each of the switches that the packet
crosses. Furthermore, Figure 3 summarizes our view of a
distributed application using an AFDX network, which is
composed by a set of end systems executing several tasks
communicating through one or more switches. The
communication process has two kinds of contention points:
the VL schedulers at the sending end systems, and the
prioritized FIFO queues (high and low priorities) at the
output ports of the switches.

Figure 2.  Latencies of the communication process
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4. Related work

We can find a lot of work devoted to the analysis of end-
to-end delays in an AFDX network. The Network Calculus
approach has been used in the context of AFDX [14] for
obtaining upper bounds to the latency of message flows.
The work in [21] proposes a probabilistic analysis of the
network, using a stochastic Network Calculus approach,
for the computation of the distribution of the delay of a
given message flow, but this approach does not guarantee
worst-case latencies. The work in [8] presents a model-
checking approach based on timed automata to compute
the exact worst-case latency of a given message flow, but it
is only useful for small examples. The work presented in
[1] also shows an algorithm to obtain the exact worst case
latencies in AFDX networks by reducing the search space,
which is suitable for up to 50 VLs. Finally, a work based on
the Trajectory concept [13] is presented in [5] showing that
the new method obtains more accurate upper bounds than
previous methods, for the worst-case latency in an AFDX
network. This work was later extended to use prioritized
output queues in the switches [6].

All these works consider the network in isolation, i.e.,
flows of anonymous packets arrive at the network
asynchronously with a minimum interarrival time, and the
worst-case latency to transmit the packet is calculated
without any relation with the application tasks that have
generated the messages. Furthermore, the work in [5]
assumes that jitter is null in the sender nodes, which could
be considered a restriction for the common case in which a
task with variable execution time and preemption effects
produces the message. Other recent work about AFDX [4]
deals with the use of a component-based design
methodology to describe the behavior of the model, and
proposes a stochastic abstraction to provide quantitative
information on the protocol, that obtains guarantees on
latency requirements.

The main difference between our work and the previous
ones is that we deal with the calculation of the worst-case
latencies in AFDX as a part of the analysis of the end-to-
end flow as it is understood by the schedulability analysis
theory for distributed systems, i.e., in a holistic way
[22][23]. An end-to-end flow is released by a periodic
sequence of external events and contains a set of steps,
which are tasks executing code in a processor or messages
being sent through a communications network. The work
in [19] shows that it is possible to compose the response
time analysis in the different resources (processors or
networks) of a distributed system if the analysis can accept
offsets and input jitter for the triggering events and can
generate results with best- and worst-case response times.

In this paper we develop a composable response time
analysis for the messages in the AFDX network, thus

taking into account input offsets and jitter in every
message, and producing best and worst-case results that
can be composed in a holistic analysis of a distributed
system. Messages can be composed by one or more
packets. On the contrary, the analyzed previous works only
calculate the latencies of each individual packet for the
Switched Network depicted in Figure 3. As in [6], our
work also considers priorities in the switches.

5. Analysis of AFDX Systems

This section derives schedulability analysis techniques
that can be applied to the real-time model for a
communications network based on the ARINC 664 Part 7
(AFDX) standard. We describe the analysis techniques to
calculate the latencies of steps 1 to 5 (see Figure 2) in the
communication process for messages produced by non-
synchronized tasks with jitter. We first focus on the
analysis with just one switch. Then we extend the analysis
to the use of multiple switches.

5.1. Analysis for single-switch systems

5.1.1. Transmission of the last packet to the switch 
or to the end system, LTr (steps 2 and 4)

The number of packets of a message belonging to
stream i being sent through VLk can be calculated as
follows, for the worst case:

where Oprot is the protocol overhead in bytes.

The worst-case latency of a packet transmitted through
the Ethernet link depends on the speed of the link, Nbw, and
the worst-case number of bytes of the packet Ni. The
following formula calculates this latency for a packet
belonging to the message stream i:

where, Latency is measured in seconds, Nbw in bits per
second (bps), and Ni is the worst-case total amount of bytes
of the packet:

where, Npi is the amount of bytes corresponding to the
packet payload. As can be seen in Eq. (6) when the payload

pi
Mi

Lmaxk OProt–
-----------------------------------= (4)

Latency
Ni 8
Nbw

------------= (5)

Ni OEth Fmin+= Npi 1 17[ , ]

Ni OEth OProt Npi+ += Npi 18 1471[ , ]

(6)
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is smaller than 18 bytes the minimum ethernet frame, Fmin,
must be transmitted.

The size of the last packet of a message belonging to
stream i being sent through VLk can be obtained for the
worst case by applying Eq. (6) to the worst payload for this
packet, Npi,last. This payload can be calculated as follows:

The equation above calculates the number of packets by
subtracting an integer number of maximum-size payloads
from the message size. Using the worst-case payload of the
last packet we can calculate its total size using Eq. (6):

And then we can calculate the worst-case latency of a
last packet transmitted through the Ethernet link applying
Eq. (5) with this size:

The same calculation can be done for the largest-size
packet of VLk:

5.1.2. Scheduling simple virtual links, LVL (step 1)

For the analysis of a message sent across a simple
virtual link, with no sub-VLs, we assume that the
technological latency on transmission, LT, is counted just
once for all the messages to be transmitted in an
uninterrupted sequence. This can be justified because the
activity of the end system causing the transmission latency
is concurrent with the actual transmission. 

So, in this case the latency of a message from stream i
being sent through VLk due to the scheduling of the virtual
links in a specific processor can be calculated as follows:

where, IVL(ik) is the worst-case interference from the
messages of the other VLs in the same processor
generating message stream i, and LVLQ(ik) is the worst-
case latency in the VLk queue, including the effects of the
messages that can be already awaiting on VLk itself.

To obtain the LVLQ(ik) latency we will create a worst-
case scenario in which, when the message under analysis is
released, the VL buffer already contains the worst-case
amount of packets that can interfere the transmission.
Therefore we need to calculate the interference of the rest
of the messages sharing the VL and also the interference of
the previous packets of the message under analysis. For
this purpose we take into account the following
observations:

• According to the principles of response-time analysis the
analysis technique should be applied for all the message
instances that can be in the queue in the worst case busy
period [7][10]. A busy period is defined as an interval of
time during which the VL queue is not empty. Since the
VL is designed to be able to handle its worst-case
throughput, the utilization is smaller than 100% and this
ensures that there will be time instants at which the VL
queue is empty and, therefore, busy periods are bounded.
The worst case busy period is created by releasing all the
messages from all the message streams of the virtual link
at the same time, after having experienced their
maximum jitter, and with all subsequent messages with
the smallest jitter that makes them arrive within the busy
period. This ensures the maximum amount of work
concentrated towards the start of the busy period and
leads to the worst case.

• Each packet in the queue that is ahead of the packet
under analysis contributes with an interference equal to
the BAGk. Notice that the BAG plays the same role as the
execution time in traditional response-time analysis,
because it represents a time during which the resource,
which is the VL scheduler in this case, is unavailable for
further transmissions.

• A message in the FIFO queue cannot be preempted, so
when calculating the interference of the rest of the
messages in the VL, we only need to consider those
messages that arrived at the queue before the message
under analysis.

• There are no blocking terms as in conventional response
time analysis, because these terms account for the delay
caused by lower priority activities, but there are no
priorities in the VLs.

Since the virtual link uses a FIFO queueing discipline
and packets are non-preemptive, we can analyze the
latencies using an adaptation of non-preemptive response
time analysis [10]. We calculate the worst-case latency of

Npi last Mi pi 1–  Lmaxk OProt– –= (7)

Ni last OEth Fmin+= Npi last 1 17[ , ]

Ni last OEth OProt Npi last+ += Npi last 18 1471[ , ]

(8)

LTr i 
Ni last 8

Nbw

----------------------= (9)

LTrmax k 
OEth Lmaxk+  8

Nbw

----------------------------------------------= (10)

LVL ik  LVLQ ik  IVL ik += (11)
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the last packet of the q-th instance of a message from
stream i to reach the VL scheduler, as follows:

where,  is the worst-case number of packets
contained in the q message instances except the last packet,
and MS(VLk) is the set of message streams that share VLk
with message stream i (excluding itself). The first term in
the equation corresponds to the interference of previous
packets of the message stream under analysis, and the
second term is the interference by all those messages from
other streams that have arrived at the VL queue before the
message under analysis. 

Eq. (12) is applied for all values of q equal to 1,2,3,…,
finishing at q=Qi, where Qi is the number of instances of
message stream i that become ready for transmission
before the end of the busy period. The number of instances
is calculated as indicated in [10]:

where BPk is the length of the busy period for any message
of VLk (note that since the queue is FIFO it does not depend
on the particular message stream), and it is given by the
following recurrence relation, starting with an initial value
of , and finishing when :

where, MU(VLk) is the set of message streams using VLk,
including message stream i.

Using the results obtained for the different values of q in
(12), the worst-case latency for the last packet of the q-th
instance of message stream i due to the messages that can
be waiting on the VL queue can be calculated in the
following way:

where,

The interference of the rest of VLs, IVL(ik), can be
calculated based on the formula indicated in [2] as follows:

where, Sk is the set of VLs in the same processor as VLk
(excluding itself). The following restrictions are defined in
the standard

These requirements should be taken into account when we
are parameterizing the application, in particular in the
assignment of the number of VLs and their Lmax
parameters.

Figure 4 shows an example for illustrating the
calculation of latencies in the VL scheduler of an end
system used in transmission. We assume that there are two
virtual links, VL1, and VL2. Two periodic message streams,
M1 and M2 share VL1, while a third message stream, M3,
uses VL2. Table 1 and Table 2 show the configuration of
the VLs and the message sizes, the number of packets and
packet transmission times, assuming a 100Mb/s wire and
the packet overhead of 67 bytes

wi q  q pi 1–  BAGk

Jj q 1–  Ti+

Tj

------------------------------------ 1+ 
 

j MS VLk 
 pj BAGk 

+=

(12)

q pi 1–

Qi
Ji BPk+

Ti

--------------------= (13)

BPk
0 BAGk= BPk

n 1+ BPk
n=

BPk
n 1+ Jj BPk

n+

Tj

--------------------
j MU VLk 
 pj BAGk = (14)

LVLQ ik  ma x
q 1 2  Qi  =

= LVLQ ik  q   (15)

LVLQ ik  q  wi q  q 1–  Ti–=

(16)

TABLE 1.Configuration of VLs

VL BAG (s) Lmax (bytes)

VL1 16000 200

VL2 16000 1000

IVL ik  LT

OEth Lmaxj+  8 
j Sk


Nbw

------------------------------------------------------------+= (17)

IVL ik 
OEth Lmaxk+  8

Nbw

---------------------------------------------- LTmin–+ 500s

LT LTmin JTech+=  150s

(18)

Figure 4. Example with 2 VLs and 3 message streams

VL1
VL2

T2 T1T3

M1M2
M3
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Figure 5 shows a time diagram of a worst-case scenario
that starts with the VL1 queue having received an instance
of M2 and then an instance of M1, fragmented into two
packets, M1-1, and M1-2. We assume LT=80 s. The figure
also shows the state of the VL queues at the start of each
BAG period. M1-2 has to wait for two BAGs required to
send M2 and M1-1 (total time= 2x16ms=32ms
corresponding to the LVLQ(ik) term). In addition, before it is
sent it suffers the technological latency in the end system1

(LT=80s) and the impact from messages of other VLs, in
this case M3 (81.6s). Both terms contribute to IVL(ik).
Therefore the total latency for the full M1 message is in the
worst case 32000+80+81.6+17.6 = 32179.2 s.

From the analysis, we can derive the following
observations that may be useful to the designer:

• The exclusive use of a VL by an application task can lead
to a high number of VLs, which may make it difficult to
meet the latency requirements.

• Sharing a VL by several applications tasks makes it
easier to meet the latency requirements, but a message
can suffer a high interference due to the rest of messages
sharing the VL (IVLQ).

5.1.3. Scheduling of sub virtual links, LVL (step 1)

When the VL under analysis has more than one sub-VL,
we need to use an alternative analysis from the one in
Subsection 5.1.2. The analysis of a message sent across a
sub virtual link belonging to a specific virtual link is
carried out following similar assumptions to those for
simple virtual links. The latency of a message from stream
i being sent through sub-VL SVLmk belonging to VLk due
to the scheduling of the VLs in a specific processor can be
calculated as:

where, IVL(ik) is the worst-case interference from the
messages of the other VLs in the same processor
generating message stream i, Eq. (17), and LSVLQ(imk) is
the worst-case latency for the last packet of a message in
the SVLmk queue, including the effects of the messages that
can be awaiting in SVLmk and on the other subVLs sharing
VLk. 

To obtain the LSVLQ(imk) latency we will create a worst-
case scenario in which, when the message under analysis is
released, the sub-VL buffer already contains the worst-case
amount of packets that can interfere the transmission.
Therefore we need to calculate the interference of the rest
of the packets sharing the sub-VL, the interference of the
previous packets of the message under analysis, and also
the interference of the rest of the messages of other sub-
VLs sharing the same VL. For this purpose we take into
account the following observations based on the ones used
in Subsection 5.1.2:

• We analyze the messages in a worst-case busy period. 

TABLE 2.Message requirements (times in s)

Message VL Ji Li Ti
Num 
pckts LTr(i)

M1 VL1 0 306 50000 2 17.6

M2 VL1 0 153 100000 1 17.6

M3 VL2 0 953 200000 1 81.6

1. Recall that we assume that this LT latency is only charged once per
BAG, as this is the implicit assumption in the equations that appear in
subclause 3.2.4.2 in [2].

Figure 5.  Time Diagram showing the latencies in the VL scheduler, in s (for visibility, they are not scaled)

VL1 VL2

M2

M1-1

M1-2

t=0 t=16000 t=32000 t=48000
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M3

VL1 VL2

M1-1

M1-2

VL1 VL2

M1-2

VL1 VL2

M3

LT M2

80 17.6

80 17.6

80 81.6

LT M1-1

LT M3

17.6

M1-2

LVL ik  LSVL imk  LSVLQ imk  IVL ik += = (19)
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• Each packet in the sub-VL queue that is ahead of the
packet under analysis contributes with an interference
equal to the BAGk. 

• Each packet in other sub-VL queues sharing the VL
contributes with an interference equal to the BAGk, up to
a bound equal to the number of packets awaiting in
SVLmk, according to the round-robin policy used to
schedule sub-VLs. Notice that other packets that may be
enqueued in the other sub-VLs will be dispatched after
the message under analysis, when they get their round-
robin turn.

• A message in the sub-VL FIFO queue cannot be
preempted, so when calculating the interference of the
rest of the messages in the sub-VL, we only need to
consider those that arrived at the queue before the
message under analysis.

We calculate the interference due to messages in SVLmk
for the last packet of the q-th instance of a message from
stream i to reach the VL scheduler, as follows:

where  is the worst-case number of packets
contained in the q message instances except the last packet,
and MS(SVLm) is the set of message streams that share
SVLmk with message stream i (excluding itself). The
second term in the equation is the interference by all those
messages from other streams that have arrived at the sub-
VL queue before the message instance under analysis. The
result of this equation, wim(q), is the worst-case latency for
the last packet of the q-th instance of message stream i to
reach the VL scheduler after a critical instant assuming
there is only one sub-VL. 

Now we have to consider the interference of the rest of
messages sent through other sub-VLs sharing VLk, with the
following recurrence, starting with  and
finishing when two consecutive values are equal:

with

where N(SVLmk) is the set of sub-VLs that share VLk with
SVLmk excluding itself, and MS(SVLlk) is the set of
message streams sent through SVLlk. The interference due
to messages sent through other sub-VLs, , is
bounded by wim(q), as the packets enqueued after that time
will not influence the last packet of the message stream
under analysis according to the round-robin policy.

Eq. (21) is applied for all values of q equal to 1,2,3,…,
finishing at q=Qi, where Qi is the number of instances of
message stream i that become ready for transmission
before the end of the busy period. The number of instances
is calculated as indicated in [10]:

where BPmk is the length of the busy period for any
message of SVLmk (note that since the queue is FIFO it
does not depend on the particular message stream on this
SVL), and it is given by the following recurrence relation,
starting with an initial value of , and
finishing when :

with

where, MU(SVLmk) is the set of all the message streams
using SVLmk including message stream i under analysis in
the set of its own VL.

Using the results obtained for the different values of q in
Eq. (21), the worst-case latency for the last packet of the q-
th instance of message stream i due to the messages that
can be waiting on the sub-VLs queues for the same VL can
be calculated in the following way:

where,

wim q  q pi 1–  BAGk

Jj q 1–  Ti+

Tj

------------------------------------ 1+ 
 

j MS SVLmk 
 pj BAGk 

+=

(20)

q pi 1–

wi
0 q  wim q =

wi
n 1+ q  wim q  min wim q  Ilm

n 1+ q , 
l N SVLmk 
+=

(21)

Ilm
n 1+

q  Jj wi
n q +

Tj

------------------------ 1+
 
 
 

j MS SVLlk 
 pj BAGk =

(22)

Ilm
n 1+ q 

Qi
Ji BPmk+

Ti

-----------------------= (23)

BPmk
0

BAGk=
BPmk

n 1+
BPmk

n
=

BPmk
n 1+ BPm

n 1+ min BPm
n 1+ BPl

n 1+, 
l N SVLmk 
+=

(24)

BPm
n 1+ Jj BPmk

n+

Tj

-----------------------
j MU SVLmk 
 pj BAGk =

BPl
n 1+ Jj BPmk

n+

Tj

-----------------------
j MU SVLlk 
 pj BAGk =

(25)

LSVLQ imk  ma x
q 1 2  Qi  =

= LSVLQ imk  q   (26)

LSVLQ imk  q  wi q  q 1–  Ti–= (27)
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5.1.4. Switch management, LSw (step 3)

The latency due to the switch management is composed
of two terms: 

• the latency to deliver a packet from the incoming to the
outgoing port queue, which can be considered as the
hardware latency provided by the manufacturer, 

• and the time spent in the output port queue, due to the
interference of the rest of the packets sent to the same
destination end system. 

Although the output ports of a switch have only two
queues, respectively for low and high priorities, selected on
a VL basis, we will propose the formulation to consider P
priority levels and then the AFDX switch will be a
particular case for P=2.

Assuming that the utilization of the output link is under
100%, we can calculate the total latency in the switch for
the last packet of message stream i being sent through VLk
as:

where, LS is the hardware latency of the switch and LSQ(ik)
is the time waiting in the output port queue, due to the
interference of the rest of the packets in that output queue.

To obtain the LSQ(ik) latency we can apply a similar
approach as we used for calculating LVLQ(ik), but
considering that P priority levels can be present, and using
different roles for the response-time analysis. The
traditional role of the execution time is now the time taken
to transmit each packet in the output link. The periodicity
of the packets arriving from a particular VL is the
associated BAG.

We will create a worst-case scenario in which, when the
packet under analysis is enqueued into the output queue of
a specific priority, this queue already contains the worst-
case amount of packets that can interfere the transmission.
In addition, the higher priority queues will receive the
maximum possible traffic during the busy period in which
the implied queues are not empty. For this purpose we take
into account the following observations:

• We analyze the packets in a worst-case busy period. In
this case, a busy period is defined as an interval of time
during which the output queues of the same or higher
priority as the priority of the VL are not empty. The
worst-case busy period is obtained after a critical instant
created with the same criteria as in the analysis of
LVLQ(ik) or LSVLQ(imk). 

• Each packet in the output queue with higher priority or
with the same priority and that is ahead of the packet
under analysis contributes with an interference equal to

its worst-case transmission time on the physical link, that
can be calculated using Eq. (10) with the maximum
packet length for the corresponding virtual link.

• A packet in the FIFO queue of a given priority cannot be
preempted by packets of the same priority, so when
calculating the interference of the rest of the packets of
the message under analysis in the output queue, we only
need to consider those that arrived at the queue before
the packet under analysis.

• A packet of any priority excluding the lowest priority
level can be delayed by an amount of time equal to the
worst-case transmission time on the physical link of the
largest packet with lower priority. This can be considered
as a blocking term.

The interference for the q-th packet coming from VLk to
reach the physical output link is given by the following
recurrence relation finishing when :

where HP(VLk) is the set of VLs that have as destination
port the outgoing port of VLk at a higher priority, and

 is an initial value that accounts for all the terms of
the interference that are constant for the q-th packet, and is
calculated as follows: 

where EP(VLk) is the set of VLs that have as destination
port the outgoing port of VLk at the same priority,
excluding itself. Bk is the blocking term due to packets with
lower priority (it will be zero for a lowest priority packet).
It can be calculated as:

where LP(VLk) is the set of VLs that have as destination
port the outgoing port of VLk and have a lower priority. The
second term in Eq. (30) corresponds to the interference of
previous packets of VLk, and the third term is the
interference by all those packets from other VLs at the
same priority. The second term of Eq. (29) accounts for the
rest of the interference by all those packets from other VLs
at a higher priority. The result of this equation, wk(q), is the

LSw ik  LS LSQ ik +=
(28)

wk
n 1+ q  wk

n q =

wk
n 1+ q  wk

0 q 

Jpj wk
n

q +

BAGj

---------------------------- 1+
 
 
 

j HP VLk 
 LTrmax j 

+=
(29)

wk
0 q 

wk
0 q  Bk q 1– + LTrmax k 

Jpj q 1–  BAGk+

BAGj

------------------------------------------------- 1+ 
 

j EP VLk 
 LTrmax j 

+=

(30)

Bk max LTrmax j ( )= j LP VLk  (31)
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worst-case latency for the q-th packet of VLk to reach the
output physical link after a critical instant. 

Jpj is the worst-case release jitter of the packets coming
from VLj, and is calculated by adding the output jitter of the
packets at the source end systems, and the jitter to deliver a
packet from the incoming to the outgoing port, as follows:

where, Sj is the set of VLs in the same processor as VLj
(excluding it). 

Eq. (29) is applied for all values of q equal to 1,2,3,…,
finishing at q=Qk, where Qk is the number of packets of
VLk that become ready for transmission before the end of
the busy period. The number of packets is calculated as
indicated in [10]:

where BPk is the length of the busy period in the output
port of VLk, and it is given by the following recurrence
relation, starting with an initial value of ,
and finishing when :.

where DP(VLk) is the set of VLs that have as destination
port the outgoing port of VLk at the same or a higher
priority, including itself.

Using the results obtained for the different values of q in
(29), the worst-case latency for the last packet of the q-th
instance of message stream i due to the packets that can
be waiting on its associated output queue can be calculated
in the following way:

where,

5.1.5. Message management at the destination end 
system, LRec (step 5)

We can assume that the latency at the destination end
system is equal to the technological latency in the reception

.

5.1.6. Best-case latencies

In order to calculate the output jitter of the messages
sent through the network it is necessary to calculate a lower
bound on the best-case latencies, in addition to the worst
case values.

Steps 2 and 4: Transmission of the last packet to the switch 
or to the end system

The best-case number of packets of a message
belonging to stream i being sent through VLk can be
calculated as:

where Oprot is the protocol overhead in bytes.

The size of the last packet of a message belonging to
stream i being sent through VLk can be obtained for the
best case by applying Eq. (6) to the best payloads for this
packet, Np

b
i,last. This payload can be calculated as follows:

This equation calculates the number of packets by
subtracting an integer number of maximum-size payloads
from the message payload. It could be argued that for
calculating the best case a minimum payload of size one
can be generated if all the previous packets fill in their
maximum payload. However, this would not lead to a best-
case latency, since we would be producing one more packet
than is necessary, and the latency of a full packet, equal to
the BAG, is much larger than the transmission latency.

Using the best-case payload of the last packet we can
calculate its total size using Eq. (6):

And then we can calculate the best-case latency of a last
packet transmitted through the Ethernet link applying Eq.

Jpj JTech
LTrmax m 

m Sj
 LS LS

b– + += (32)

Qk
Jpk BPk+

BAGk

------------------------= (33)

BPk
0 LTrmax k =

BPk
n 1+ BPk

n=

BPk
n 1+ Bk

Jpj BPk
n+

BAGj

-----------------------
j DP VLk 
+ LTrmax j = (34)

LSQ ik  ma x
q 1 2  Qk  =

= LSQ ik  q   (35)

LSQ ik  q  wk q  q 1–  BAGk–= (36)

LRec LR=

pi
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Lmaxk OProt–
-----------------------------------= (37)
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b
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b
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b OEth Nmin+= Npi last

b 1 17[ , ]
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OEth OProt Npi last
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(5) with this size:

Step 1: Scheduling of virtual links

The latency of a message from stream i sent through
VLk due to the scheduling in the virtual link can be
calculated as the sum of , which is the best-case
latency due to the messages that can be awaiting on VLk;
and , which is the best-case interference from the
messages of the other VLs in the same processor
generating message stream i:

A lower bound on the  latency can be calculated
assuming that there are no messages to be sent in the VL
except for the message under analysis, which has its
minimum payload. In the best case this is a number of
BAGs equal to the minimum number of packets minus one.
For the  latency, we use the minimum technological
latency defined in the ARINC-644, Part 7 standard.

Step 3: Switch management

A lower bound on the best case management latency can
be obtained by assuming that there is no contention from
other messages inside the switch, and therefore we just take
into account the minimum hardware latency of the switch
latency that we call .

Step 5: Message management at destination end system

We can assume that this latency is equal to the best
technological latency in the reception, which is

.

5.1.7. Total latency

The worst-case latency, Lik, for a message stream i sent
through virtual link VLk can be calculated as the sum of
latencies of steps 1 through 5 plus its own input jitter:

Similarly, we calculate the best-case latency, in the
following way:

The output jitter is the difference between the worst-
case and the best-case latencies.

5.2. Analysis for two or more switches and for 
multicast messages

When a message has to cross two or more switches to
reach the destination end system, the latency due to the
management of each switch and one extra transmission for
each switch should be added. Figure 6 shows the
communication process with multiple switches. In this
case, the worst-case latency for the message stream i
being sent through VLk and crossing m switches can be
calculated as follows:

where link(i) is the set of m+1 physical links traversed by
message stream i and switch(i) is the set of m switches
traversed by i. We assume that different or equal link
speeds and switches may be used.

A similar approach can be followed to obtain the best-
case latency for the message stream i being sent through
VLk :

The analysis presented in this section has focused, for
simplicity of presentation, on messages with just one single
destination. However, the analysis works without
modification for multicast messages. For these messages,
the latency of each destination has to be calculated. The
latencies for Steps 1 and 2 in the communication process
are calculated in the same way as for unicast messages.
Step 3 has to be repeated for every output port queue in the
switch. Step 4 has to be repeated using the characteristics
of the corresponding output link, and Step 5 is also
repeated in each of the destination end systems. If one or
more of the paths of the message traverse several switches,
then the analysis for multiple switches is done for each of
these paths.
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Figure 6.  Communication process with m switches
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6. Combined analysis of the distributed 
system

To analyze a distributed application it is necessary to
integrate the analysis in the processors and in the network.
Several response-time analysis techniques exist for the
processors [12][17][18][22][23] and they can be combined
with the developed response time analysis for AFDX
networks using the composition approach presented in
[19].

One of the interesting properties of response-time
analysis is that it provides a natural way of composing
analysis in different resources using different scheduling
policies. The analysis in each resource is made
independently, and therefore we can use whatever
technique is appropriate. As a result of the analysis in one
resource we get response times and jitter terms than can be
used to calculate equivalent offsets and jitters for the
analysis in the other resources. In this way we can combine
techniques for fixed priorities, dynamic priorities, (EDF),
time partitioned scheduling, and AFDX communication.

To make this integration effective we just need to
explain how to calculate response times and jitters from the
latencies obtained in the AFDX network, and how to
calculate the release jitters for the messages in the network.
Suppose the message stream i shown in Figure 7, sent at
the finalization of task aj-1 and activating, in turn, aj+1 in
its end-to-end flow a. Task aj is just the model of the i
message in the end-to-end flow.

The worst-case release jitter of the message stream, Ji, is
obtained as the difference between the worst and the best
case response time of aj-1 :

The worst and best-case latencies of the AFDX message
shown in equations (44) and (45) already take into account
this jitter, and are relative to the best possible release time,
which is . Therefore, the worst- and best-case
response times of i (or aj) are obtained as:

where k is the index of the VL through which message
stream i is sent. From these values we would calculate
inherited offsets and jitters that can be used in the
heterogeneous response-time analysis algorithms [19].

7. Case study and validation

This section shows a simple case study that is used to
illustrate the analysis in an AFDX switch. It contains two
situations: the first situation has 4 message streams, two of
them sharing the same virtual link; the second one has also
4 message streams, and are sent through different virtual
links. In order to validate the holistic schedulability
analysis technique proposed, we discuss the results that this
technique is able to obtain, compared to the related work.

The case-study contains an application with 8 tasks
allocated in 3 processors. Four of these tasks produce
messages. Table 3 shows the relevant characteristic of this
task set (times in milliseconds). Initial input jitter for the
end-to-end flows is assumed to be zero.

We are assuming that the value of LT is 80 s,
LTmin=JTech= 40 s., , ,

=40 s.

7.1. Situation 1

In this situation (Figure 8), tasks T1, T2, T3 and T4 send
messages at the end of their executions with the parameters
shown in Table 4 (times in milliseconds and lengths of
messages in bytes). Messages from T1 and T2 share Virtual
Link VL1. Task T3 and T4 transmit through Virtual Links
VL2 and VL3 respectively. The destination end system for
VL1 and VL3 is processor CPU3. The destination end
system for VL2 is processor CPU2. The release jitter of
each message is produced by the variability of the
execution of the task that generates it. The lengths of the
messages are fixed (the best and the worst sizes are equal),
and we have chosen to have packets of size equal to the
Lmax value of their respective VLs. 

Figure 7.  Portion of an end-to-end flow with a message 

stream sent through an AFDX network

aj-1 aj+1
aj

i...

Ji Rij 1– Rij 1–
b

–= (46)

Rij 1–
b

Rij Rij 1–
b

Lik+=

Rij
b Rij 1–

b Lik
b+=

(47)

TABLE 3.Task set for the case-study

Task Proc. Part. Ci Ti

T1 CPU1 P1 10 50

T2 CPU1 P1 10 100

T3 CPU1 P2 2 20

T4 CPU2 P3 10 40

T5 CPU3 P4 - -

T6 CPU3 P5 - -

T7 CPU2 P6 - -

T8 CPU3 P7 - -

LS 100s= LS
b 70s=

LRec
b
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Virtual Links have been configured to support the
bandwidth necessary to send the messages under their
control. Table 5 shows the BAG and Lmax parameters for
each VL, as well as the connections in the switch (only
processors are indicated for simplicity). Figure 8 shows the
diagram of the system for Situation 1 with its tasks,
messages, VLs and switch connections. 

The difference between the worst and the best cases for
the latencies of M1 results in the contribution to the output
jitter generated to task T5, which is receiving this message
(this jitter is 16.2132 milliseconds).

We have developed a tool to automatically calculate the
latencies in the AFDX network. The results obtained for
the analysis of this example are shown in Table 6 (times in
milliseconds).

7.2. Situation 2

In this situation (see Figure 9 and Table 7) messages
from stream M2 are sent through the new Virtual Link
VL4, which is different from the one used by M1. 

The configuration of the Virtual Links is shown in Table
8. The configuration of the Virtual Link VL1 has changed
to accommodate only the traffic for M1, while the traffic of
M2 goes to VL4. 

In this case the contribution of message M1 to the output
jitter, i.e., the difference between the worst and best case
latencies, is 0.2484 milliseconds, which is shorter than for
Situation 1, and with a shorter worst-case latency. This is
mainly because M1 is sent in one packet.

TABLE 4.Message set for Situation 1

Msg VL
Task 

(Send)
Task 

(Rec.) Ji Li Ti

M1 VL1 T1 T5 20 306 50

M2 VL1 T2 T6 60 153 100

M3 VL2 T3 T7 5 953 20

M4 VL3 T4 T8 15 453 60

TABLE 5.Configuration of VLs for Situation 1

VL BAG Lmax SW-in SW-out

VL1 16 200 CPU1 CPU3

VL2 16 1000 CPU1 CPU2

VL3 32 500 CPU2 CPU3

Figure 8.  Diagram for Situation 1
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TABLE 6.Results of the analysis for Situation 1

Mess
age VL Li Lib Input Ji

Output 
Ji

M1 VL1 32.3984 16.1852 20 36.2132

M2 VL1 32.3984 0.1852 60 92.2132

M3 VL2 0.4208 0.3132 5 5.1076

M4 VL3 0.3480 0.2332 15 15.1076

TABLE 7.Message set for Situation 2

Messa
ge VL

Task 
(Send)

Task 
(Rec.) Ji Li Ti

M1 VL1 T1 T5 20 306 50

M2 VL4 T2 T6 60 153 100

M3 VL2 T3 T7 5 953 20

M4 VL3 T4 T8 15 453 60

TABLE 8.Configuration of VLs for Situation 2

VL BAG Lmax SW-in SW-out

VL1 32 353 CPU1 CPU3

VL2 16 1000 CPU1 CPU2

VL3 32 500 CPU2 CPU3

VL4 64 200 CPU2 CPU3

Figure 9.  Diagram for Situation 2
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The results obtained when applying the analysis with the
developed tool for this example are shown in Table 9
(times in milliseconds).

We can see how M2 now has a shorter worst-case
latency than for Situation 1 due to the fact that for Situation
2, M1 and M2 do not share a virtual link.

7.3. Highlights of the proposed technique

The analysis technique proposed in this work is an
adaptation of the holistic analysis initially developed by
Tindell and Clark [23] and validated by Palencia et al [16].
We have added the analysis of the round-robin VL
scheduler handling the FIFO queues of non-preemptive
packets at the VLs, and the analysis of priority queues of
non-pre-emptive packets at the output ports of a switch. It
is well known that this analysis is pessimistic (it obtains a
safe upper bound of the response times), and that part of
this pessimism can be eliminated by applying offset-based
techniques [17] and also by adding the analysis of best-
case response times, thus reducing the jitter. So the purpose
of this section is not to show the results of our technique
over extensive examples, as it is expected to obtain similar
performance than the holistic technique in which it is
based, Our objective is to highlight that our analysis is
useful to analyze the overall system, even if it can be
pessimistic.

In order to compare our algorithm with existing
techniques, we need to take into account the limitations of
those techniques. We can only compare partially, i.e., for
the analysis of the Switched Network in Figure 3, and only
for single packets. We have selected the example in Figure
3 in [5], showing a network composed by 5 VLs and 3
switches. Table II in [5] shows the latencies of single
packets obtained by the following techniques introduced in
the related work: the exact worst-case (model checking
approach), the basic Network Calculus (NC), the Network
Calculus with grouping (NCG), the basic Trajectory
approach (BT), and the optimized Trajectory approach
(OT). The last one obtains the exact worst-case latencies
for this example while the others obtain upper bounds.
Table 10 reproduces Table II in [5] with the results of the
holistic approach for this example. Our analysis technique

obtains slightly better results than the basic Network
Calculus and is a little bit more pessimistic than the others. 

The OT approach presented in [6] has an example
similar to the previous one, where VL v1 has a high
priority while the other VLs have low priority. In this
example, for the analysis of v1 our algorithm obtains the
exact worst-case response time (232 s), as happens with
the OT approach. The other VLs have the same results as in
Table 10.

On the other hand, as we introduced in Section 4, model
checking [8] is able to compute the exact worst-case
latency of a packet in a VL, but at a very high
computational cost. The approach in [1] uses model
checking with a reduced search space to obtain the exact
worst-case latencies in reasonable times for up to 50 VLs.
We have applied our holistic approach to the switched
network proposed in Figure 13 in [1], which consists of 4
switches and 58 VLs. We have analyzed this example for
different practical loads (after 45% average utilization of
the output ports of the switches the network is almost
unresponsive) and configurations of VLs (crossing up to
three switches), and the maximum time spent by our
algorithm is 0.02 seconds. Table II in [1] shows that for a
similar example with 64 VLs, the calculation of exact
latencies takes more than one hour to enhance by 9% the
results obtained by Network Calculus. As the authors of [1]
state, that technique is not applicable yet for real industrial
configurations with more than 1000 VLs. We have applied
our algorithm over an example of this size consisting of 16
switches and 1000 VLs (crossing up to 6 switches). Figure
10 shows the maximum and average execution times taken
by our algorithm to analyze the example with different
utilizations of the output ports of the switches. We can see
that all the execution times are reasonable enough to allow
design space exploration. All the tests have been made on
an Intel Core i7 CPU 860 at 2.93 GHz without exploiting
its parallelism.

In summary, the key points in favor of the holistic
analysis technique that we propose for distributed systems
based on AFDX networks are:

TABLE 9.Results of the analysis for Situation 2

Msg VL Li Lib
Input 

Ji Output Ji

M1 VL1 0.45808 0.20968 20 20.2484

M2 VL4 0.45808 0.1852 60 60.27288

M3 VL2 0.45064 0.3132 5 5.13744

M4 VL3 0.37064 0.2332 15 15.13744

TABLE 10.worst-case latencies in s

VL NC NCG BT OT
Holis

tic

v1 313.2 273.6 312 272 312

v2 192.4 192.4 192 192 192

v3 313.2 273.6 272 272 312

v4 313.2 273.6 272 272 312

v5 217.2 177.6 216 176 216
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• It deals with the whole system and can be integrated with
other techniques for the processors based on the
composition approach presented in [19].

• It allows the tasks to send messages composed of one or
more packets, taking into account the contention in the
VL scheduler and also input and output jitter.

• Although the technique is pessimistic compared to other
existing approaches, it is scalable and it can be apply to
real systems.

• As our analysis is made in several steps, following the
composition approach in [19], the analysis of the
switched network (Step 4) can be replaced by more
precise future techniques (e.g., adding offsets). As future
work, we could also evaluate if existing less pessimistic
techniques, e.g. optimized Trajectory approach, can be
adapted to this holistic analysis.

8. Conclusions and future work

In this paper we have developed a new response-time
analysis technique for AFDX networks. This analysis
technique can be combined with other response-time
analysis techniques to analyze heterogeneous distributed
systems.

Prototype tools have been developed to assist us in
checking the analysis techniques. They have been used to
analyze the presented case study. As future work, the new
technique will be added as an extension to the open-source
MAST model and toolset for real-time applications [15]. In
addition, we plan to do an evaluation and validation of the
new analysis by comparison with actual latencies in real or
simulated AFDX hardware.

Another planned extension is the adaptation of offset-
based analysis techniques to analyze synchronized message
streams in the AFDX network.
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