
Extensions to the UML Profile for MARTE for
Distributed Embedded Systems

Emad Ebeid
Dep. of Engineering

Aarhus University, Denmark
esme@eng.au.dk

Julio Medina
Dep. of Computer Science and Electronics

University of Cantabria, Spain
julio.medina@unican.es

Davide Quaglia and Franco Fummi
Dep. of Computer Science
University of Verona, Italy

{davide.quaglia, franco.fummi}@univr.it

Abstract—The design of distributed embedded systems is a chal-
lenging task that requires raising the level of abstraction to handle
the different involved concerns. In particular, standard modeling
languages and precise semantics specification are necessary to ad-
dress the networking-related aspects at a high level of abstraction.
The Unified Modeling Language (UML) and its MARTE profile
are valid formalisms to model real-time embedded systems but
they lack precise modeling elements when addressing applications
and platforms forming distributed embedded systems. In this
work, we formalize a coherent set of modeling elements for
the design and deployment of distributed embedded systems. A
novel UML profile for networking is proposed as a semantic and
syntactic extension to the UML Profile for MARTE: The Network
Profile.

Keywords–Model-Driven Design, Network, UML Profiles, De-
ployment Diagram, Stereotypes, Modeling Languages, Internet of
Things, Smart Systems.

I. INTRODUCTION

Distributed Embedded Systems (DESs) are finding their
way into a growing range of applications such as environmen-
tal monitoring, health, sport and fitness, to cite only few. They
are distributed applications of networked embedded system
which are special-purpose, resource-constrained nodes inter-
acting together through communication protocols to achieve a
common goal. Today the design of DESs is becoming more and
more complex, involving many different tasks spread over hun-
dreds or thousands of heterogeneous network nodes connected
through different types of channels and protocols [1]. Figure 1
shows an example of the basic entities used to describe DES
at the level of abstraction used in this work. The design of
DESs does not only depend on the technical specifications of
their components but also on the nature of the environment
in which the network will be installed. The environment can
greatly influence the data transmission especially if unguided
transmission media (e.g., radio links) are used. The quality-
of-Service (QoS) of such transmission is the major factor to
achieve a significant quality of experience and it depends on
the surrounding communication environment [2].

Abstraction and Platform-Independent Models (PIM) be-
come a solution to cope with design complexity. High-
level modeling languages such as UML [3] are considered
as a platform-independent modeling language and UML in
particular is widely accepted in the software engineering
community as a common notational framework. The UML
extension mechanism (i.e., the profile) is a feature that adds

This work has been partially supported by the EU large-scale integrating
project CONTREX (FP7-2013-ICT-10-611146).

Figure 1. The structural view of a distributed embedded system.

more modeling elements with semantic details to its dia-
grams and modeling power to be closer to specific applica-
tions. MARTE [4] (Modeling and Analysis of Real-Time and
Embedded systems) profile is well-known in the embedded
systems community. This standard extends the features of
the Schedulability, Performance and Time Analysis (SPT) [5]
profile, and replaces it when used with UML 2.x. MARTE
provides constructs to represent more easily the kinds of timing
and performance artifacts that are needed to model real-time
embedded systems [6].

The Quality of Service and Fault Tolerance characteristics
and mechanisms profile (QoS&FT) [7] is another standard
related to embedded systems. It covers real-time issues with
some capabilities on communication policies and latency. But
QoS&FT promotes the definition of domain specific languages,
an approach to model extra-functional properties differently
than the one adopted in MARTE [8].

Nevertheless, modeling of distributed embedded systems
and specially the modeling of the performance of networks
among embedded devices has not been supported directly by
any standard UML profile. Even MARTE still lacks precise
modeling elements regarding the description of general pur-
pose networks.

Outside UML, networks have been modeled by using
hybrid automata [9]. Hybrid automata are a general ap-
proach to model both discrete and continuous-time processes.
Some other languages/tools go in the same direction such as
SysML [10], Matlab/Simulink, Ptolemy [11], and Composi-
tional Interchange Format [12].

This work aims at proposing a standard and complete



UML/MARTE representation of DES to be used for design
space exploration. As described in the design flow in [13],
the UML presentation will be used to generate configuration
alternatives and, for each of them, simulation scenarios to find
the best solution. This goal is achieved through the following
contributions:

• The formalization of a coherent set of modeling ele-
ments for distributed embedded system;

• The enrichment of the UML MARTE profile regarding
network modeling;

• A novel UML profile (Network Profile) used to expe-
rience in practice the proposals for enhancements of
the MARTE profile.

This paper is structured as follows. Section II gives an
overview about embedded systems modeling languages and the
computational model which are used in this work. Section III
defines the DES elements and formalizes them. Section IV
explains the model views of such systems, while Section V
describes our extension to MARTE and Section VI presents
a home automation application modeled with it. Finally, Sec-
tion VII draws some conclusions.

II. BACKGROUND

This section gives a brief overview of UML, the MARTE
profile, and a model of computation named UNIVERCM, which
are used to model and analyze DESs in this work.

A. UML

UML [14] is a standardized general-purpose conceptual
modeling language exploited mainly in the field of object-
oriented SW engineering and information systems. Since its
introduction it became the de-facto standard for modeling SW
intensive systems.

UML 2.x includes as modeling formalisms 14 types of
diagrams divided into two categories. Structural diagrams
emphasize the components (and kinds of components) that are
in the system (e.g., Class, Deployment and Profile diagrams).
Behavioral diagrams emphasize what must happen (or how)
in the system (e.g., State machines, activities, and sequence
diagrams). In our modelling approach we use the Deployment
Diagram, its elements are described in section IV to relate them
to concrete elements of interest in the DESs entities model,
which is presented in section III.

UML includes the possibility to extend its modeling power
by a generic extension mechanism named Profile. Profiles are
defined using stereotypes, attributes and constraints that are
applied to specific model elements to modify or bring entirely
new semantics to them.

B. MARTE

MARTE [4] is a UML profile standardized by the Object
Management Group (OMG) [15]. It provides support for
specification, design, and verification/validation stages in the
development of real-time and embedded systems. It is orga-
nized in several sub-profiles (units), each with a predefined role
in the set of modeling needs that its potential users may have
(see sections 6.2.3 and 2.4.1 in [4]). The units of relevance for

Figure 2. UNIVERCM representation of a sensor task.

this work are those in the Performance Analysis Compliance
case and the Use Cases for the Analysis Methodology Provider
actor. A particularly relevant capability in MARTE is the aid
in the definition and manipulation in UML of Non-Functional-
Properties (NFP), which help to describe the "fitness" of the
system behavior or the amount of available resources (e.g.
performance, memory usage, power consumption, etc.). The
Architecture Analysis and Design Language (AADL) [16] is
also extensible and may serve the purpose of simulation, but
it has very few reliable tools for doing transformations. Being
MARTE the official UML profile for AADL and being the
OMG an open standardization body the effort presented here
targets UML and MARTE as the basis for its extensions.

C. UNIVERCM

UNIVERCM [17] is a Model of Computation (MoC) ca-
pable to describe discrete and continuous systems resulting
from software and both analog and digital HW components,
within a unique, well defined, mathematical framework, and
capable to support the integration of novel and already defined
components in a mixed top-down and bottom-up flow.

Figure 2 shows an example of a UNIVERCM automaton
for a sensor task of a DES which generates data periodically.
The automaton has two states, e.g., OFF (initial state) and
DELAY, and two transitions. Both states and transitions have
a priority (denoted by (a) and (d) in the Figure) for sorting
their execution. States are characterized by three predicates,
i.e., invariant condition(e) to remain in this state, continuous-
time evolution law (f), and atomic condition(g). Transitions
are enabled by an expression on variables and a set of labels
(b), e.g., the transition can be traversed only if the expression
is satisfied and the labels are enabled. When the transition is
traversed, the variables inside the updating function are up-
dated and outgoing labels are activated (c). Sensor automaton
starts by checking the lowest priority condition (b) first and
then goes to DELAY state. During the transition, the outgoing
label {SEND2CH} is activated, the discrete variable ds is set
to 8 and the continuous variable d is initialized. In the DELAY
state, the delay counter d increases linearly according to time
as represented by the corresponding evolution law. When the
counter reaches the sensor delay time ds, the guard d >= ds is
satisfied, the automaton activates {FINISH_S} label and then
it goes to OFF state. In fact, the automaton remains in state

2



Figure 3. Network elements and relationships

DELAY to reproduce sensor processing time ds. A complete
description of UNIVERCM is available in [17].

III. FORMALIZATION OF DISTRIBUTED EMBEDDED
SYSTEM

This section provides some formal bases to describe dis-
tributed embedded systems with the intention to simulate their
networking operation. It defines the necessary entities in their
structural and behavioral views, as well as the notation to refer
to them in this work.

Definition 1: DES structural view allows to represent the
skeleton of the network, which complements its behavior. It
deals with parameters that remain constant during the design
process and control its behavior. A DES is mainly composed
of topologies (T ).

DES topology (T ) is a combination of entities (E) and rela-
tionships (R). Figure 3 shows the elements which compose the
network along with their relationships (detailed explanations
are in the following sections).

A Distributed Embedded System (DES) consists of the
following entities:

1) Task (t), represents the functional part of the appli-
cation which can be periodic or aperiodic and can be
data producer or consumer.

2) Node (n), represents the physical element of the
network which will host one or more tasks to run on
it. It entails a hardware component that has processing
unit, memory and at least one network interface.

3) Zone (z), represents a partitioning of the physical
environment in which the DES is deployed. It groups
nodes and defines their position. Furthermore, it
captures the relevant environmental parameters such
as room temperature in a temperature monitoring
application.

4) Abstract Channel (ac), represents the communication
link between one or more entities of type node (n).
An ac can be wired or wireless, and it defines the
characteristics of the channel (i.e., delay, capacity.
error rate).

5) Data flow (f ), represents the communication needs
between two entities of type task (t). f synthesizes
this communication in terms of throughput, maximum
delay (latency) and error rate.

6) Contiguity (c), represents the relationship between
two entities of type zone (z). c captures the envi-
ronmental characteristics between two zones which
affect inter-zone communication.

Figure 1 shows an example of 3 nodes allocated in 2
zones and interacting via a channel. The so called task delay
parameter (ttd) is set in this view and represents the duration
of a task.

Definition 2: DES behavioral view represents the dynamic
aspects of the network and complements its structure. It is fully
described by a UNIVERCM automaton consisting of States (S)
and Transitions (φ).

The global behavior of a DES is the parallel composition
of the automata of its entities. Its state can be represented as
an ordered set of the state values of each component entity.
The behavioral aspects of DESs entities such as Tasks (t)
and Abstract Channels (ac) can be described by UNIVERCM
automata while zones, nodes, and data flows are not associ-
ated to behavioral aspects. Automata can represent periodic
or aperiodic task behavior (e.g., sensors and actuators) and
channel behavior. UNIVERCM hybrid automata (Section II-C)
are adopted because we aim at representing both discrete
events and the evolution of time as shown in the example
shown in Figure 4. It starts from the reset state and checks the
transitions conditions based on their priorities. If {en_tx1} la-
bel is enabled, the automaton resets the delay counter tx_delay
and goes to the delay state. In delay state, the automaton
remains to represent the sensor processing time ttd. When
tx_delay reaches its boundary value ttd, the guard condition
tx_delay = ttd is satisfied so that the automaton activates the
{intr_tx1} label and goes to the transmit state. The value of
ttd is set in the structural view (see Definition 1).

Figure 4. UNIVERCM automaton of a Sensor task.

A DES can be described as a triplet: its topology, its states,
and its transition functions. The topology is a tuple itself:
entity plus connection. An entity is defined by its type, which
are a set of elements (i.e., zone, node, task). The connection
structure consists of a set of relations between entities (i.e.,
channel, data flow, contiguity).

The definition is as follows:

Distributed Embedded System (DES) = 〈T, S, φ〉

Topology T = 〈E,R〉
Entity E = {z, n, t}
Relation R = {f, ac, c}
Data flow f = [QoS, task_tx, task_rx] ∈ F

3



where: QoS ∈ QS task_tx, task_rx ∈ T

Abstract Channel ac = [distance,QoS, cost,

mobility,N ] ∈ A C

Contiguity c = [Rs] ∈ C

where: Rs ∈ R

Task t = [mobility, cr] ∈ T

where: mobility ∈ B cr ∈ C R

Node n = [cost,mobility, power, t] ∈ N

where: cost ∈ R mobility ∈ B power ∈ R t ∈ T

Zone z = [c, n] ∈ Z

where: c ∈ C n ∈ N

Quality of Service QoS = [delay, error_rate,
max_throughput]

where: delay, error_rate, max_throughput, ∈ R
Resistance Rs = [added_delay, added_error_rate,

residual_throughput]
where: added_delay, added_error_rate,

residual_throughput ∈ R
Computational Requirements CR = [CPU,

memory_size]

IV. MODELING OF DISTRIBUTED EMBEDDED SYSTEMS

In order to get a standardized representation of the for-
malization proposed for DESs we head for the conceptual
modeling of its separate concerns. Model-driven design and, in
particular, UML profiles such as MARTE [4] and SysML [10]
have been proposed to introduce all the information required
in this stage of the design process. The use of standard
languages enable tool interoperability and the generation of
widely understandable documentation. This section describes
the UML elements and their extensions used to model DES
communication needs. They are presented as a UML profile
for modeling DESs together with their environment.

Modeling DESs in general involves structural as well as
behavioral UML diagrams. The network configuration can be
captured by using Class, Component or Deployment diagrams,
while the behavior of its elements can be modeled as State
Machine, Activity, or Sequence diagrams. The extensions here
proposed are meant for doing simulation of communications
needs. From this perspective behaviors are abstracted away,
keeping only the networks usages, and expressing them as
dataflows on abstract channels in UML Deployment. This
approach results in a formalism semantically closer to our
formal model. To model regular embedded systems elements
as well as the precise behavioral aspects of DESs and their
allocations, plain UML and eventually MARTE would be
sufficient. In particular, using sequence charts would make
it easier to transpose them into UNIVERCM automata (see
section II-C). A new MARTE-based profile (named Network
Profile) is used for modeling the simulation oriented commu-
nication environment. Details about the new profile are in the
following section. The UML Deployment Diagram represents
the network configuration in a static view. Figure 5 shows the
syntax elements of the Deployment diagram; numerical labels
are used to show the items to be explained.

The UML Deployment diagram elements used are:

Figure 5. An example with syntax elements of Deployment Diagrams

1) Artifact: is a software component, such as executable
SW component, files or libraries, deployed inside the
Node. Artifact is used to model the Task element
(see 1).

2) Node: is a physical object that represents a computa-
tional resource of the system, such as HW nodes,
computers, or servers. Node is used to model the
Node element (see 2).

3) Package: is a group of elements and it provides a
name-space for them; it can represent groups of nodes
in a given zone of the space. Package is used to model
the Zone element (see 3).

4) Device: is a type of node in the system that represents
a physical computational resource, such as a wireless
access point. Device is used to model the Abstract
channel element from type wireless (see 4).

5) CommunicationPath: defines the path between two
nodes that are able to exchange signals and messages
such as a wired/wireless communication channel.
CommunicationPath is used to model the Abstract
channel element from type wired (see 4).

6) Dependency: is a relationship between model ele-
ments that require other components for their specifi-
cation or implementation; it can represent a data flow
between network elements (i.e., tasks). Dependency
is used to model the Data flow element (see 5).

7) Association: is a relationship between classifiers that
is used to show that these classifiers are linked
together or logically combined. Association is used
to model the Contiguity element (see 6).

V. NETWORK PROFILE

The proposed Network Profile formally extends the stan-
dard UML 2 metamodel, which is the basis for the vast major-
ity of standard UML profiles, and specializes by inheritance the
MARTE profile. The profile defines a number of stereotypes
to represent DES elements with UML metaclass elements.

4



The main intent of this profile is to compensate the lack
of specific elements in UML and MARTE with the precise se-
mantics to describe the domain of interest for DESs elements.

A. Approach and Structure

This profile is structured around two main concerns, the
Workload, which models the behavioral aspects of DESs
elements (e.g., task), and the Resources, which model the DESs
device library (e.g., nodes and channels). This approach is
consistent with the Generic Quantitative Analysis Modeling
(GQAM) sub-profile in MARTE, though the level of abstrac-
tion at which the deployments are describe includes also ele-
ments from its High Level Application Modeling (HLAM) sub-
profile. The proposed extensions do not restrict the modeller
from using any other valid annotation like analysis results or
any other NFP. No additional NFP libraries have been needed.

B. Profile Elements Description

In this sub-section, we describe the semantics of the
Network Profile.

1) Workload: This package offers the concepts related to
the processing load of the DESs elements (Figure 6). It imports
stereotypes from the HLAM MARTE sub-profile.

a) «Task»: It extends the Artifact UML meta-class and
inherits the attributes and associations from the real-time unit
(RtUnit) element of MARTE. It is described as:

Extensions

• Artifact (from UML::Artifact)

Generalization

• rtUnit (from MARTE::MARTE_DesignModel::HLAM)

Associations

• dataFlow: DataFlow [*]
Data flow that is required to connect two tasks.

Attributes

• requiresMobility: Boolean[1]
specifies the task mobility requirement (fixed or mo-
bile task).

• CPU: Real[1]
specifies the required CPU.

• isPeriodic: Boolean[1]
specifies the task type (periodic or aperiodic task).

Semantics: A task represents a basic piece of functionality of
the whole application. Tasks can be HW components or SW
processes. For example, sensors and actuators. It may require
mobility from the hosting node, and resources such as memory
and CPU.

2) Resources: This package offers the concepts that are
necessary to model a general platform of DESs elements. For
example, nodes and channels. Figure 7 shows the elements in
this package. It imports stereotypes from GQAM and GRM
MARTE sub-profiles.

Figure 6. The Workload package of Network Profile

a) «Node»: It extends the Node UML meta-class and
inherits attributes and associations from GaExecHost in the
GRM MARTE sub-profile.

Extensions

• Node (from UML::Node)

Generalization

• GaExecHost (from MARTE:GRM::ComputingResource)

Associations

• task: Task [1..*]
The tasks that assign to this node.

Attributes

• mobility: Boolean[1]
specifies the node type (fixed or mobile node).

• cost: NFP_Price[1]
specifies the economical cost of the node.

• gamma: RealVector[1]
specifies a vector of coefficient to represent the power
consumption of a node.

Semantics: A Node represents physical processing devices
capable of storing and executing program code. It has attributes
for economical cost and mobility.

b) «AbstractChannel»: It extends the semantics of
CommunicationPath metaclass of UML standard profile and
inherits attributes and implementation of GaCommHost from
GQAM MARTE subprofile.

Extensions

• CommunicationPath (from UML:: Communication-
Path )

Generalization

• GaCommHost (from MARTE::GQAM)

Associations

5



Figure 7. The Resources package of Network Profile

• node: Node [1..*]
The nodes that are connected with this abstract chan-
nel.

• networkInterface: NetworkInterface [1..*]
The network interfaces that are abstracted by the
channel.

• dataFlow: DataFlow [1..*]
The dataflows that assign to this abstract channel.

Attributes

• defaultQos: QoS [1]
specifies the default quality of service which is pro-
vided by this channel.

• wireless: Boolean [1]
specifies the channel type (wired or wireless).

• cost: NFP_Price [1]
specifies the economical cost of the channel.

• distance: NFP_length [1]
specifies the length of the channel.

Semantics: AbstractChannel is a generalization of network
channels since it contains the physical channel, and all the
communication protocols. It can be wire or wireless.

c) «DataFLow»: It extends the semantics of
Dependency metaclass of UML standard profile and inherits
attributes and implementation of GaCommChannel from
GQAM MARTE subprofile.

Extensions

• Dependency (from UML::Dependency )

Generalization

• GaCommChannel (from MARTE::GQAM )

Associations

• task: Task [2]
The source and destination task of this data flow.

Attributes

• requiredQoS: QoS[1]
specifies the required quality of service of the data
flow to perform the communication operation between
two tasks.

Semantics: A data flow represents communication between
two tasks; output from the source task is delivered as input to
the destination task.

d) «Zone»: It extends the semantics of Package
metaclass of UML standard profile.

Extensions

• Package (from UML::Package )

Associations

• node: Node [*]
The nodes that allocate inside this zone.

6



Attributes

• position: RealVector[1]
specifies the zone position in 3D space.

• size: NFP_Real[]
specifies the size of the zone (unit m3).

Semantics: A zone represents the environment that groups
a set of node with a certain environmental information. For
example, room in a building with temperature and pressure
information.

e) «Contiguity»: It extends the semantics of
Association metaclass of UML standard profile.

Extensions

• Association (from UML::Association )

Associations

• zone: Zone [2]
The two zones which are linked by this contiguity.

Attributes

• Resistance: Resistance[1]
specifies the amount of quality of service reduction
which reflects the environmental effects.

Semantics: The contiguity between zones introduces to put
constraints on the reachability of the corresponding nodes.

f) «NetworkInterface»: It represents an interface to
connect a node to a communication channel. It extends the
semantics of an InstanceSpecification that will be linked to a
node or an abstract channel instance.

Extensions

• InstanceSpecification

Associations

• Node: node [1]

• AbstractChannel: abstractChannel [1..*]

Attributes

• overhead : GaWOrkloadBehavior [1]
specifies a given load of processing flow.

• txPower: NFP_Power[1]
specifies the transmission power of a transmitter net-
worked node.

• thresholdPower: NFP_Power[1]
specifies the threshold power of a receiver networked
node.

Semantics: It acts as an interface to connect a physical device
with a communication media. It has an attribute overhead
which represents a given load of processing flows triggered
by external (e.g., environmental events) or internal (e.g., a
timer of the communication protocol) stimuli. The processing
flows are modeled as a set of related steps that contend for
use of processing resources and other shared resources. It may
contain the communication protocol agent. It has two attributes
to model the transmission power and the threshold for the
receiving power.

C. Network Model Library

It is a predefined model library containing primitives and
data types required to define the Network profile and also used
in user models.

1) Model Library for Extended NFP Types: This sub clause
defines a set of NFP Network types that use the MARTE basic
NFP types library.

Figure 8 shows the internals of the concerned package
(i.e., NW Basic_NFPTypes). The semantics and usage of the
pre-defined data types are stated in each of the clauses that
use them.

Figure 8. Network library of general data-types

a) QoS: This is a TupleType that contains the param-
eters that are necessary to specify the quality of service of a
communication link (see figure 8). Attributes:

• delay: Real [1]
A parameter that is used to introduce a delay of a
communication channel.

• error_rate: NFP_Error_Rate[1]
A parameter that is used to introduce an error rate of
a communication channel.

• max_throughput: NFP_Percentage[1]
A parameter that is used to specify the maximum
throughput/capacity of a communication channel as
a percentage value.

b) Resistance: This is a TupleType that contains the
parameters that are necessary to specify the environmental
effects on DESs communication channels (see figure 8).

Attributes:

• added_delay: Real [1]
A parameter that is used to introduce an added delay
on a communication link.

• added_error_rate: NFP_Percentage[1]
A parameter that is used to introduce a decreased
amount of error rate of a communication channel as
a percentage value.

• throughput_reduction_factor: NFP_Percentage[1]
A parameter that is used to introduce a reduction of a
throughput between two zones as a percentage value.

7



• power_reduction_factor: NFP_Percentage[1]
A parameter that is used to introduce a power degra-
dation in a channel as a percentage value.

VI. USE CASE

This section shows an example of the modeling phase of a
home automation application. The application scenario aims to
send sensing data from transmitting unit (temperature sensor
unit) to receiving units (monitor and configurator units). There
are two other units for routing and collecting data (router and
collector nodes) which are connected via wireless and wired
channels with other units.
Papyrus UML [18] editor tool, is used to model this application
and show the profile annotations on its UML elements.

The application consists of three rooms, four nodes, and
two communication channels. Figure 5 shows the structure of
this application. Node_0 is located in Room_0 (room coordi-
nates are x=0, y=0 and z=0 with volume = 125m3) and a sensor
task is deployed on it. That task sends the sensing data to a
Router task that is deployed on Node_1 and located in Room_1
via the wireless channel (wifi_0). The channel characteristics
are: error rate =1 %, throughput = 250 kbps and delay =
150 µ sec and it serve three data flows (DF_S2R, DF_R2C,
DF_CF2S). The communication between those tasks is facing
the environmental effect (Resistance) which adds 2 msec of
delay, 10% of error rate and throughput reduction factor by
15%. Room_2 has two nodes which are interacting via a
wired channel. This channel serves the data flows (DF_C2M,
DF_C2CF, DF_CF2S). Therefore, the communication between
configurator task (configurator_0) and sensor_0 is performed
by the data flow (DF_CF2S) which uses the wired and wireless
channels to reach Node_0. These models are then transformed
to SCNSL [19] code for simulation as it is described in [2].

VII. CONCLUSIONS

This paper formalizes a coherent set of distributed em-
bedded systems elements and presents the modeling phase of
them. It defines the core elements needed to model DESs and
their relationships with the standard UML MARTE profile. It
also addresses the lack of precise networking elements in UML
and MARTE, introducing a novel profile, as a specialization of
MARTE, which essays a contribution to its further standard-
ization. It showed the use of UML deployment diagrams to
model DESs. It proposes and presents in detail a new profile
named as Network Profile and its relationship with MARTE.
Finally, a home automation application is used to show the
effectiveness of the modeling approach.

As future work we aim at capturing the Task functionality
in UML and transforming its behavioral diagrams into the
corresponding UNIVERCM automata.

REFERENCES

[1] Y. Jung, L. Carloni, and M. Petracca, “Cloud-aided
design for distributed embedded systems,” Design Test,
IEEE, vol. 31, no. 3, pp. 32–40, June 2014.

[2] E. Ebeid, D. Quaglia, and F. Fummi, “UML-based
Modeling and Simulation of Environmental Effects in
Networked Embedded Systems,” in 16th Euromicro Con-
ference on Digital System Design (DSD), 2013.

[3] Object Management Group, “UML: Unified Modeling
Language,” URL: http://www.uml.org.

[4] ——, “A UML Profile for MARTE (version 1.1),” in
OMG document number: formal/2011-06-02, Jun 2011,
URL: http://www.omgmarte.org.

[5] ——, “A UML Profile For Schedulability, Perfor-
mance, And Time (version 1.1),” Jan 2005, URL:
http://www.omg.org/spec/SPTP/.

[6] J.-F. Le Tallec, J. DeAntoni, R. de Simone, B. Ferrero,
F. Mallet, and L. Maillet-Contoz, “Combining SystemC,
IP-XACT and UML/MARTE in model-based SoC de-
sign,” in Proceedings of Workshop on Model Based
Engineering for Embedded Systems Design, 2011.

[7] OMG, UML Profile for Modeling Quality of Service
and Fault Tolerance Characteristics and Mechanisms
Specification, Std., 2008.

[8] H. Espinoza, H. Dubois, S. Gérard, J. Medina, D. C.
Petriu, and M. Woodside, “Annotating UML Models
with Non-functional Properties for Quantitative Analy-
sis,” Lecture Notes in Computer Science, vol. 3844, no. 4,
pp. 79–90, 2006.

[9] J. Lee, S. Bohacek, J. Hespanha, and K. Obraczka, “Mod-
eling Communication Networks With Hybrid Systems,”
Networking, IEEE/ACM Transactions on, vol. 15, no. 3,
pp. 630 –643, Jun. 2007.

[10] Object Management Group, “SysML,” URL:
http://www.sysml.org.

[11] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Lud-
vig, S. Neuendorffer, S. Sachs, and Y. Xiong, “Taming
Heterogeneity - The Ptolemy Approach,” Proceedings of
the IEEE, vol. 91, no. 1, pp. 127–144, 2003.

[12] D. A. Van Beek, M. A. Reniers, R. R. H. Schiffelers,
and J. E. Rooda, “Foundations of a Compositional Inter-
change Format for Hybrid Systems,” in Proc. of HSCC,
2007, pp. 587–600.

[13] E. Ebeid, F. Fummi, and D. Quaglia, “Model-driven
design of network aspects of distributed embedded sys-
tems,” Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, vol. 34, no. 4, pp. 603–
614, April 2015.

[14] Object Management Group, “OMG Unified Modeling
LanguageTM (OMG UML), Superstructure(version 2.2),”
in OMG document number: formal/2009-02-02, February
2009, URL: http://www.omgmarte.org.

[15] Object Management Group (OMG), “OMG,” URL:
http://www.omg.org/.

[16] P. Feiler, D. Gluch, and J. Hudak, “The Architecture
Analysis & Design Language (AADL): An Introduction,”
Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, Tech. Rep. CMU/SEI-2006-
TN-011, 2006. [Online]. Available: http://resources.sei.
cmu.edu/library/asset-view.cfm?AssetID=7879

[17] L. Di Guglielmo, F. Fummi, G. Pravadelli, F. Stefanni,
and S. Vinco, “UNIVERCM: The UNIversal VERsatile
Computational Model for Heterogeneous System Integra-
tion,” IEEE Transactions on Computers, vol. 62, no. 2,
pp. 225–241, Feb 2013.

[18] Sébastien Gérard et al., “Papyrus UML,” URL:
http://www.papyrusuml.org.

[19] “SystemC Network Simulation Library – version 2,”
2013, URL: http://sourceforge.net/projects/scnsl.

8


