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Abstract—The fixed priority scheduling of distributed real-
time systems is an NP-hard problem, and therefore it is a
suitable problem to be approached with generic search and
optimization algorithms. On the other hand, the segmentation
of the network can contribute positively to the schedulability
of distributed real-time systems. This paper proposes a genetic
algorithm with a permutational solution encoding that solves
the holistic assignment of fixed priorities in distributed real-
time systems aided by the optimized segmentation of the
network.
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ity; CAN segmentation; permutational genetic algorithm

I. INTRODUCTION

The scheduling of distributed real-time systems is still
an open NP-hard problem [1] for whose optimal solving
no polynomial time method is known. However, it can be
accomplished by means of generic search and optimization
algorithms along with some strategies, such as the segmen-
tation of the network, that can contribute positively.

This paper proposes a genetic algorithm with a permuta-
tional solution encoding for the assignment of fixed priorities
to tasks and messages in distributed real-time systems. Our
technique takes advantage of the network segmentation to
facilitate the scheduling, and can be configured to minimize
and/or meet constraints of both the schedule and the num-
ber of bridges used in the segmentation. Different genetic
algorithms have been applied in the literature to make cyclic
schedules, but as far as we know, they have not been used to
assign fixed priorities in distributed real-time systems based
on a holistic scheduling. On the other hand, we do not know
any previous work that segments the network to ease the
schedulability of distributed real-time systems.

This paper is structured as follows. Section II describes
the system model. Then, Section III discusses related work.
Section IV explains the genetic algorithm while Section V
shows the experiments and results that validate the proposal.
Finally, Section VI outlines conclusions and future work.

II. SYSTEM MODEL

The physical architecture is composed of several proces-
sors Ph ∈ P (h = 0, 1, ..., QP ) that implement preemptive

fixed priority scheduling. The network has a baudrate WB
and a maximum packet length Lpck. The packet has a
payload length Lpay and cannot be preempted by the fixed
priority scheduler of the network once its transmission has
begun. Bridges Bh ∈ B (h = 0, 1, ..., QB) can be used
to arbitrarily divide the network in segments Sh ∈ S
(h = 0, 1, ..., QS). Subsection II-A exposes the advantages
provided by the segmentation.

The logical architecture consists of one or several trans-
actions Aj ∈ A (j = 0, 1, ..., QA) that have defined an
activation period or a minimum interarrival time between
activations Tj , as well as a deadline Dj . The transactions are
composed of one or several tasks Ti ∈ T (i = 0, 1, ..., QT )
that execute in the processors with worst-case execution
times Ci and fixed priorities. Tasks with precedence relations
exchange messages Mi ∈ M (i = 0, 1, ..., QM ) that have
lengths Li and fixed priorities. A message cannot cross
more than one bridge, i.e. at most two segments, but it
can have a different priority in each one of them because a
bridge can forward a message under another identifier. The
network controller fragments each message in dLi/Lpaye
packets, obtaining dLi/Lpaye − 1 packets of length Lpck

and one packet of length (Li mod Lpay) + Lpck − Lpay .
The complete length of a packetized message is Lpck

i =
Lpck · dLi/Lpaye − [Lpay − (Li mod Lpay)]. The priorities
of the tasks and messages are unknown in advance. When
the priorities are assigned, all the packets inherit the priority
of the message to which they belong.

A. CAN Segmentation

A bridge is a commutation device that connects multiple
network segments at the data link layer of the OSI model.
There are some COTS bridges for the CAN bus.

A bridge receives a packet completely and retransmits it
through the other port immediately. However, the current
lack of an appropriate schedulability analysis method for
it requires us to make the pessimistic assumption that
all the packets of a message are received in the bridge
before starting their retransmission. On the other hand, each
segment is treated as a different network in order to apply
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Figure 1. Top: plain bus. Bottom: segmented network

the available schedulability analysis techniques. Anyway, the
bridge-based network segmentation can contribute positively
to the schedulability of distributed real-time systems, as the
following example shows.

Figure 1 shows two distributed real-time systems, one
connected by a plain CAN bus and the other by a segmented
CAN bus. Both systems are composed of 4 processors
connected by a CAN network with Lpck = 125 bits,
Lpay = 64 bits and WB = 1 Mbps. A0 and A1 have high
communication requirements, since they send messages that
need 10 and 20 CAN packets, respectively. The application
has another transaction A3, and their periods, deadlines and
worst-case response times are shown in bottom table of
Figure 1. On the other hand, the column C of the top table
shows the worst-case execution and transmission times of the
tasks and messages, respectively. Since the blocking time in
a network is produced by the longest packet of a smaller
priority, it is 125 microseconds in this case.

In the plain CAN bus system, it can be seen by inspection
that if M1 is assigned the highest priority, A0 does not
meet its deadline, whereas if M0 is assigned the highest
priority -as in the table of the figure-, A1 does not meet its
deadline. In fact, there is no priority assignment that makes
the plain CAN bus system schedulable. The CAN bus can
be segmented in order to avoid the interference caused by
the messages of a segment over the messages transmitted
across another segment, e.g. in opposition to the plain CAN
bus, in the segmented CAN network the message M0 is not
affected by the message M1 and vice versa. Nevertheless,
the real-time model of the transactions that cross the bridge
have more messages, specifically one per segment, which
may make them to have larger worst-case response times.

Using the priority assignment in the table of Figure 1 and
computing the worst-case response times with the offset-
based optimized technique [2], the response times of bottom
table are obtained. As can be seen, the segmentation of the
network allows to find a schedulable priority assignment be-
cause the response times of the transactions with exclusively
intra-segment traffic are reduced.

III. RELATED WORK

Some works approach only the priority assignment using
heuristics [3] and genetic algorithms [4], [5]. Some other
works approach the mapping and the scheduling of tasks
and messages with methods such as simulated annealing
[1], branch-and-bound [6], dedicated heuristics [7], linear
programming [8], and genetic algorithms [9], [10]. However,
either they do not apply a transactional model or use
non-preemptive cyclic schedules. Other proposals combine
the mapping and scheduling of tasks and messages with
the network topology design using parallel recombinative
simulated annealing [11], constructive heuristics [12], it-
erative heuristics [13], evolutionary algorithms [14], and
binary linear programming [15]. However, either they do
not apply a transactional model or use non-preemptive cyclic
schedules. As can be seen, few proposals approach the fixed
priority holistic scheduling of distributed transactional real-
time systems, and none of them takes advantage of the
network segmentation to ease the scheduling.

IV. GENETIC ALGORITHM

A genetic algorithm [16] is a search and optimization
metaheuristic based on evolving an initial population of can-
didate solutions to the problem, named individuals, towards
better solutions through generations of populations by means
of biologically inspired techniques such as inheritance, nat-
ural selection, crossover and mutation.

A search and optimization problem consists of assigning
values to some variables in a way that all the restrictions are
met and some function is maximized or minimized. In the
present scheduling and network segmentation problem, the
value assignment is done to the following variables: segment
the network if necessary and map each processor to one of
the segments, and assign each task and message a priority
different from the priorities of the tasks and messages
mapped in the same processor and segment, respectively.
The restrictions are that the worst-case response time Rj of
each transaction has to be less than or equal to the deadline
Dj of the transaction, and that no more than the configured
maximum number of bridges can be used. And finally, the
factor that can be minimized is the number of bridges.

In this work a genetic algorithm with a permutational
solution encoding is proposed to schedule fixed-priority
based distributed real-time systems aided by the network
segmentation. In the following lines, candidate solution
encoding, initial population creation, fitness function, and
crossover, mutation, correction and clustering operations are
explained supported by Figure 2, which is based on the
architecture of Figure 1.

A. Encoding

A candidate solution is a set of concrete values of the
variables. In a genetic algorithm, a variable is encoded
with an element called gene and a candidate solution is
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Figure 2. Crossover, mutation, correction and clustering operations

encoded with a string of genes called chromosome. This
paper proposes a hybrid value-permutational representation
based on the classical permutation representation [17] for
encoding the candidate solutions.

The present problem consists of some variables repre-
senting the mapping of the processors in the segments, the
priority of the tasks in the processors and the priority of the
messages in the segments. Each variable of the problem has
an associated gene with the structure shown in Figure 2. We
define a gene that is composed of two fields. Code is a fixed
field that stores the name of the variable (in this case Ph
for processors, Ti for tasks and Mi for messages), which
has to be unique for all the variables. Value is a potentially
changing field that represents the mapping of the associated
variable and whose value is one among the candidate values
of the variable. Moreover, the relative position of the gene in
the chromosome with respect to other genes with the same
value denotes the priority of the associated variable, i.e. the
more to the left, the higher the priority.

There are some variables that do not have priorities and
hence only the value of their genes is relevant. This gene
type is called value gene and the algorithm assigns it a
concrete value among its candidates but not a concrete
relative position. Each processor is represented by one value
gene and its candidate values are the segments (Sh). The
second type of variable has both relevant value and relative
position, but the algorithm assigns its gene only a concrete
relative position whereas the value either is fixed or depends
on the network topology. This gene type is called position
gene. Each task is represented by one position gene and
each message by two. In the defined topology (Section II),
a message can be transmitted through at most two segments
and can have a different priority in each one of them. As the

priority is represented by the relative position of the gene
and a gene can only be in one position at each time, one
gene is not enough to represent the two possible different
priorities of a message. Hence, each message is represented
by two position genes Mi -1 and Mi -2. If the message is
transmitted only through one segment, only the position of
the Mi -1 (sender and receiver segment) gene is relevant; and
if it is transmitted through two segments, the position of Mi -
1 (sender segment) and Mi -2 (receiver segment) genes are
relevant.

B. Initial Population

The initial population is the set of candidate solutions that
are evolved by the genetic algorithm. This paper proposes a
initial population creation method composed of two phases.
In the first phase, all the candidate solutions are created
randomly and a clustering algorithm is applied over each
one of them to segment the network and map the processors
in segments. This clustering method traverses cyclically all
the possible segments until the configured maximum number
of them, and maps in each segment a randomly selected
processor until all the processors are mapped in segments.
This way, all the candidate solutions have the maximum
number of segments, so their scheduling is likely to be easier.
In the second phase, all the candidate solutions are pseudo-
randomly scheduled by means of HOPA [3] heuristic. HOPA
allows to configure two constant factors, ka and kr, that
control the influence of the activities (tasks and messages)
and resources (processors and networks), respectively, in the
local deadline and priority assignment process. Different
configurations of ka and kr values give different priority
assignments even over the same architecture. This behaviour
is used to find pseudorandom priority assignments for the
initial candidate solutions by executing HOPA over each one
of them with aleatory values of ka and kr.

C. Crossover

The genetic crossover operator combines information
from two parent chromosomes to create two children
chromosomes. This genetic algorithm uses the OX3 [17]
crossover operator. OX3 chooses two cut-points randomly
and the block of the genes of the first (second) parent
between those two points is inherited directly by the first
(second) child in the same absolute position. The genes not
included in the inherited block are taken from the other
parent chromosome in strict order.

D. Mutation

The mutation is an operator that maintains the genetic
diversity of the population through random changes in the
information of the genes. This genetic algorithm defines two
mutation operators. The position mutation operator changes
the position in the chromosome of a position gene, and
hence the priority of the variable may be altered. The value
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mutation operator changes the value of a value gene to
another candidate value, and therefore the information about
the mapping of the variable is altered.

E. Correction

During the crossover and mutation operations, processors
may be changed to different segments. As a consequence,
the messages sent or received by the tasks mapped in the
changed processors have to be transmitted through the new
segments. However, the mapping value of those messages
reflect their segment before the change. This inconsistency
is corrected by the correction operation.

F. Clustering

The clustering of genes is carried out with the aim of
grouping the related genes side by side and creating a
variable contiguous block per segment and processor. This
operation increases the probability of the crossover operator
to transmit to the children chromosomes blocks of variables
whose relationship makes them more likely to belong with
the current values to a solution. The clustering reorders the
genes but always maintaining the relative order of task and
message genes with respect to other genes with the same
value, because otherwise the priority assignment done by
the algorithm would be altered. First, the chromosome is
clustered according to the value of the genes in ascending
order of segments (S0, S1 , etc.); each segment section is
ordered first in ascending order of processors (P0, P1, P2,
etc.) and then messages in that segment are clustered without
altering the relative order between them. Into each processor
section, tasks are ordered also strictly respecting the relative
order between them.

G. Fitness Function

In a genetic algorithm the fitness function checks how
well a candidate solution solves the problem. In this case,
the fitness function is the weighted sum of the time fitness
and the segmentation fitness.

Time fitness ft (Equation (1)) evaluates how well the
transactions meet their deadlines. The time fitness is the
scheduling index factor [3] divided by the deadline. As
can be seen, ft is the total relative slack of the worst-
case response times of the transactions with respect to their
deadlines, divided by the total number of transactions. A
relative scheduling index smaller than zero (1−Rj/Dj < 0)
denotes the violation of a deadline. If there is at least
one transaction with a relative scheduling index smaller
than zero, the time fitness is the sum of only the relative
scheduling indexes that are negative.

ft =


∑
∀Aj

1−Rj/Dj

card(A)
, if ∀Aj : 1−

Rj

Dj
≥ 0∑

∀Aj

min

[
0,

1−Rj/Dj

card(A)

]
, if ∃Aj : 1−

Rj

Dj
< 0

(1)

The segmentation fitness fs Equation (2) evaluates the
utilization of the bridges used in the network segmentation.
Being Ch

i the worst-case transmission time of the message
Mi that cross the bridge Bh , the communication utilization
in a bridge is UBh =

∑
∀Mi in Bh (C

h
i /Ti), and its average

value is UB =
∑

∀Bh (UBh/card(B)), being card(B) the
number of elements in the set B. The numerator of the
fraction in Equation (2) is the weighted sum of three factors.
The first one increases the penalty if the corresponding
bridge is used; the second one increases the penalty with the
utilization level of the bridge; and the last factor reduces the
penalty with the utilization deviation of the bridge, because
a bigger deviation means that some bridges are closer from
zero utilization, and hence closer from being dispensed. The
sum of the weights has to be 1 and experiments have shown
that good values are w1

u = 0.6, w2
u = 0.3 and w3

u = 0.1.

fs = 1−
∑
∀Bh

w1
u · dUBhe+ w2

u ·UBh + w3
u ·
(
1−
∣∣UBh −UB

∣∣)
card (B)

(2)

Equation (3) gives the total fitness F , which is computed
by the weighted sum of ft and fs. A negative time fitness
denotes the violation of a deadline and therefore it is an
invalid solution. In this case, the total fitness is only the
time fitness. The weights wt and ws have to sum 1.

F =

{
wt · ft + ws · fs, if ft ≥ 0

wt · ft, if ft < 0
(3)

H. Stop Condition

We define a optimization tendency function Oc that stops
the genetic algorithm when the optimization process does
not have the minimum rate required to find a valid solution
within the configured maximum generations. Being gmax

and gc the maximum and current generation of the genetic
algorithm, and f i

t and f c
t the time fitness of the best initial

and current candidate solutions, the optimization tendency is
Oc = (gmax/gc−1) ·(1−

∣∣f i
t/f

c
t

∣∣). This factor is only used
when f c

t < 0 and the algorithm stops when Oc < Omin
c .

V. EXPERIMENTS

Scenario: The experiments of the priority assignment and
network segmentation problems are approached over four
system types: small system with loose deadlines (SL), small
system with tight deadlines (ST), large system with loose
deadlines (LL), and large system with tight deadlines (LT).
Some logical architectures are randomly generated for each
one of those four types of systems using the following pa-
rameters. The number of processors QP and transactions QA

is 4 and 6, respectively, in small systems, and 8 and 12, re-
spectively, in large ones. The number of tasks in each trans-
action QAj

T is random[2, QP ] and the number of messages
QAj

M = QAj
T −1. The worst-case execution time of the tasks

Ci is random[10, 50] ms. and the length of the messages Li
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Figure 3. Average results of the experiments

is random[1000, 5000] bits. The period of the transactions
is
⌈
random [2.0, 4.0] ·

(∑
Ti in Aj

Ci +
∑

Mi in Aj

Lpck
i

WB

)⌉
ms. and the deadline is

⌈
X ·

(
Q

Aj

T +Q
Aj

M

)
· Tj

⌉
ms., being

X = 0.5 in systems with tight deadlines and X = 1
in systems with loose deadlines. The network parameters
are Lpck = 125 bits, Lpay = 64 bits and WB = 1000
bits/ms. The mapping of tasks to processors is carried out
in the following way: processors are iteratively traversed,
and a task whose computation requirement fits in the current
processor is randomly selected, repeating the steps until all
the tasks are mapped.

Process: The average system load -system load now
onwards- is computed adding the utilization of the proces-
sors and the network. It is computed as if it were only
one segment, and each transmitted message is considered
only once even though it crosses a bridge. In each ran-
dom scenario, the initial system load is gradually rised by
increasing the lengths of the messages a random number
between [2000, 2500] bits, and the genetic algorithm is
executed with each one of those system loads, storing the
obtained solutions. Each execution of the genetic algorithm
is based on the following process. First, the maximum
number of segments is configured to 1 and the algorithm
starts searching schedulable priority assignments. If it stops
before having found a valid solution, the maximum number
of segments is reconfigured to 2 and the algorithm starts
again. And so on, until obtaining a valid solution or reaching
the maximum number of segments set by the user. With this
method, the scheduling of the system is started over the
potentially most optimized candidate solutions (1 segment
and 0 bridge) and gradually loses optimality (adding bridges)
if valid priority assignments are not found. The described
technique allows to reduce the probability of not checking
the fitness of a more optimal (fewer bridges) candidate
solution.

Configuration: The genetic algorithm is configured with
a population of 50 individuals. The initial population is pseu-

doaleatorily scheduled by executing HOPA a random integer
number of iterations in the [3, 5] interval and with a random
rational number in the (0, 5] interval selected independently
for ka and kr for each individual. The maximum number
of generations is 100. The minimum optimization tendency
is Omin

c = 0.8. The selection method is a tournament of 2
individuals. Values between 0.7 and 1 for the crossover prob-
ability [9], [10] and between 0.001 and 0.05 for the mutation
probability [10] are configurations that work well in almost
any problem. We use 0.8 for the crossover probability and
0.005 for the mutation probability. Generational replacement
with elitism of 1 individual is used. The fitness weights
are configured as wt = 0.01 and ws = 0.99. This way,
the minimization of the bridges becomes the main objective
whenever the worst-case response times of the transactions
meet their deadlines. On the other hand, segments can be
added gradually to a maximum of 4 in the small scenarios
and 5 in the large ones. The worst-case response times
are computed with the holistic schedulability analysis [18]
implementation of the MAST [19] tool suite, because it is a
fast method that facilitates massive experiments. However,
the elitist candidate solution is reanalyzed with the offset-
based technique [2] to check with more accuracy whether
it meets deadlines. The experiments are done on a dual-
core Intel i5-650 processor running at 3.2GHz with 4GB of
memory, multithreading the schedulability analysis.

Results: Success Rate graph of Figure 3 shows the av-
erage proportion of schedulable priority assignments found
by the genetic algorithm. As the scenarios are larger and
deadlines tighter, the success rate of the genetic algorithm
decreases. Moreover, it can be seen that LL has a success
rate of 100% with larger system loads than ST. It seems
logic, since the greater network utilization of the large sce-
nario is partially neutralized by the segmentation, which has
less power to overcome the drawback of deadline tightness.
Anyway, this graph shows that the genetic algorithm can
find schedulable priority assignments in different distributed
real-time systems. Bridges graphs of Figure 3 show the
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average number of bridges that uses the genetic algorithm
in each system load. As can be seen, the network segmen-
tation allows to increase significantly the loads in which
a distributed real-time system is schedulable, specially in
LL scenarios. Note that in LL scenarios without bridges,
the genetic algorithm has a success rate of 100% up to
system loads of 55%, whereas the segmentation allows the
genetic algorithm to keep the success rate of 100% up to
system loads of 64.5%. This fact falls within the logic.
On the one hand, large scenarios have more messages, i.e.
greater utilization of the network, and consequently, the
segmentation may provide them more noticeable benefits.
On the other hand, the segmentation may sometimes make
some transactions to have larger worst-case response times,
so the fulfillment of the time constraints may be easier if
they have loose deadlines. Time graph of Figure 3 shows
the average execution times of the genetic algorithm in a
logarithmic scale. As can be seen, the times are reasonable
for a complex system design process.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes a genetic algorithm with a permu-
tational solution encoding that solves the holistic priority-
based scheduling aided by the optimized network segmen-
tation of distributed real-time systems. The experimental re-
sults show that our genetic algorithm can find good solutions
for complex distributed real-time architectures in reasonable
times. Further, this genetic algorithm could also be used
for the simultaneous mapping and scheduling of tasks and
messages by adding more candidate values to the genes and
including some weighted factors to the fitness function.
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analysis for tasks with static and dynamic offsets,” in Pro-
ceedings of the 19th IEEE Real-Time Systems Symposium.
Washington, DC, USA: IEEE Computer Society, 1998, pp.
26–37.

[3] J. Javier Gutiérrez and M. González Harbour, “Optimized
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