
Permutational genetic algorithm for the optimized mapping and scheduling of tasks
and messages in distributed real-time systems

Ekain Azketa, Juan P. Uribe
Software Technologies

Ikerlan Research Center
Mondragón, Spain

{eazketa, jpuribe}@ikerlan.es

J. Javier Gutiérrez
Computers and Real-Time
University of Cantabria

Santander, Spain
gutierjj@unican.es

Marga Marcos
Systems Eng. and Automation
University of Basque Country

Bilbao, Spain
marga.marcos@ehu.es

Luı́s Almeida
Electrical and Computer Eng.

University of Porto
Porto, Portugal

lda@fe.up.pt

Abstract—The mapping of tasks and messages and the
assignment of fixed priorities in distributed real-time systems
are known to be NP-hard problems, and thus there are no
optimal methods to accomplish them in polynomial time. This
fact makes them suitable problems to be approached with
generic search and optimization algorithms. In this paper we
propose a genetic algorithm with a permutational solution
encoding, which apart from solving the mapping and the
fixed priority assignment problems using a holistic approach,
can simultaneously minimize the average use of computing,
memory and communication resources, the average worst-
case response time of the transactions and the number of
the used processors. The experimental results show that this
genetic algorithm can find good solutions for industrial size
distributed real-time architectures and in reasonable times
from the perspective of a complex system design process.

Keywords-distributed real-time; holistic; mapping; schedul-
ing; priority assignment; genetic algorithm; linear program-
ming

I. INTRODUCTION

A common distributed real-time system is made up of time
constrained applications composed of tasks and messages.
The tasks execute in processors and the messages are trans-
mitted through the real-time communication networks that
connect the processors. The control of critical systems such
as industrial, automotive, avionics, etc. is often accomplished
using distributed real-time systems.

The design of distributed real-time systems is very chal-
lenging. On the one hand, applications and their functional
and non-functional requirements (such as time constraints)
have to be defined. On the other hand, the physical architec-
ture has to be designed to accommodate the applications in
such a way that all the constraints are met. The accom-
modation of the applications in the physical architecture
involves some other difficulties: tasks and messages have to
be mapped and scheduled in the processors and networks,
respectively, i.e. where and when each task is going to
execute and each message is going to be transmitted.

The scheduling can be viewed as the assignment of such
scheduling parameters to tasks and messages that make the
applications to execute within their deadlines. Depending on

the type of scheduling -fixed or dynamic priority-based- the
parameters may be priorities or deadlines, respectively.

Both the task scheduling and schedulability analysis in
monoprocessor systems is an already solved problem. Al-
though the schedulability analysis of a distributed real-time
system can be made quite precisely with the holistic [1] or
the offset-based [2], [3] methods, the scheduling is proved to
be a NP-hard problem [4], and hence there are no algorithms
to accomplish it optimally in polynomial time. The NP-
hardness makes it suitable to be approached with generic
search and optimization algorithms.

In this paper we propose a genetic algorithm that imple-
ments a permutational solution encoding for the simulta-
neous mapping of tasks and messages and the assignment
of fixed priorities to them in distributed real-time systems
using a holistic approach. This algorithm has been suc-
cessfully applied to the assignment of priorities [5] and
to the optimization of the network traffic in CAN bus [6].
Additionaly, the genetic algorithm can minimize the average
use of computing, memory and communication resources,
the average worst-case response time of the transactions and
the number of the used processors. Similar approaches have
been also applied in the literature to design system-on-chip
architectures with cyclic schedulings, but as far as we know
it has not been used to simultaneously map tasks and assign
priorities in fixed priority-based distributed real-time sys-
tems. On the other hand, the vast majority of the work related
to the mapping and priority assignment in distributed real-
time systems do not use a holistic schedulability approach.

In order to validate our proposal, we compare the perfor-
mance of the genetic algorithm with Mixed Integer Linear
Programming (MILP), a mathematical method to model
complex problems and find optimal solutions.

This paper is structured as follows. Section II discusses
related work. Then, Section III describes the system model.
Section IV explains the genetic algorithm with the per-
mutational solution encoding while Section V shows the
experiments and results that validate the proposed algorithm.
Finally, Section VI outlines conclusions and future work.



II. RELATED WORK

The mapping and scheduling of tasks and messages in
distributed real-time systems have been addressed in the
literature with different generic search and optimization
algorithms. The proposal in [4] is a classical work that
applies the simulated annealing algorithm to solve these
problems, but it neither uses a transactional system model
nor applies a holistic approach. The work in [7] proposes
a branch and bound method, but it does not take into
account memory issues, tasks have no mapping restrictions
and deadlines are defined at task level. Dedicated heuristics
have also been developed [8], [9], but obviating memory
aspects. These problems have also been approached with
genetic algorithms [10], [11], [12], [13], [14], but the system
models differ substantially from ours because they consider
non-preemptive cyclic scheduling and do not use a holistic
approach.

Another set of works propose mathematical programming
methods that in theory are able to obtain optimal solutions.
The work in [15] uses a constraint satisfaction technique,
but it neither optimizes nor applies holistic analysis. A
satisfiability checking approach is proposed in [16] but it
does not use holistic techniques. The linear programming is
another optimization method that allows to model complex
problems in terms of equations and inequalities and find
optimal solutions by means of some well-known algorithms.
The work done by Sangiovanni-Vicentelli’s group in the use
of Mixed Integer Linear Programming (MILP) methods to
design distributed real-time systems is remarkable. Their
proposals cover the synthesis of the activation paradigms
of the tasks [17], the maximization of the extensibility of
the system [18] and the minimization of the response times
of the applications [19]. Although the latter work applies
a periodic task activation model that is more restrictive
than our holistic approach, its system model has similarities
with our proposal. Moreover, it contains some interesting
contributions, such as a rigorous mathematical modelling of
a distributed real-time system mapping and fixed priority
assignment problem and the application of MILP to solve
it. This detailed model description combined with its theo-
retical optimality makes MILP a very suitable technique for
comparison with our genetic algorithm.

III. SYSTEM MODEL

The physical architecture is composed of several pro-
cessors Ph (h = 1, 2, ..., LP ) connected to one or more
communication networks Nh (h = 1, 2, ..., LN ). The pro-
cessors can be heterogeneous in their core architecture, pro-
cessing speed and maximum memory capacity Shmax. Each
processor has maximum computing UPhmax ∈ [0, 1] and
memory UShmax ∈ [0, 1] and each network has maximum
communication UNhmax ∈ [0, 1] utilization limits imposed
by the user. Each processor can provide the tasks different
hardware or software resources such as sensors, actuators,

programs, libraries, etc. The processors, or the operating
systems they execute, implement preemptive fixed priority
scheduling. The speed of the networks is known and they
are scheduled by a packet-based preemptive fixed priority
scheme, e.g. as in CAN bus.

The logical architecture consists of one or several trans-
actions Aj (j = 1, 2, ..., LA) composed of one task Ti (i =
1, 2, ..., LT ) or several tasks with precedence relations that
exchange messages Mi (i = 1, 2, ..., LM ). Each transaction
has defined an activation period or a minimum interarrival
time between activations Tj , as well as a deadline Dj .

A task may have mapping restrictions in the processors,
i.e. each task can be mapped in one, some or any processor
of the architecture depending on the hardware and software
resources offered by the processors and the resources re-
quired by the task. The processors where a task can be
mapped are called the candidate processors of that task. The
worst-case execution time Ch

i and the memory Sh
i required

by a task depend on the processor computing and memory
characteristics, and therefore they may be different in each
of the candidate processors. A task has the period of the
transaction to which it belongs. At first, tasks usually do not
have specified priorities, but they may have defined deadlines
that are relative to the event that triggers the activation of
the transaction.

If the sender and receiver tasks of a message are mapped
in the same processor, the message is exchanged through
a shared memory mechanism which transmission time is
considered negligible. Otherwise, the message is transmit-
ted through one network. In the latter case, messages are
modeled like tasks with the exception that they do not have
memory requirements.

The schedulability of this kind of systems can be analyzed
using a holistic approach, understanding holistic as the
simultaneous consideration of both processors and networks
in the schedulability test. There are some holistic analysis
methods such as the Tindell’s technique [1] and Palencia’s
offset based techniques [2], [3] which allow to calculate the
worst-case response time Rj of each transaction in order to
determine whether it meets the imposed deadline.

IV. GENETIC ALGORITHM

A genetic algorithm [20] is a search and optimization
metaheuristic based on evolving an initial population of can-
didate solutions -individuals- to the problem towards better
solutions through generations of populations by means of
biologically inspired techniques such as inheritance, natural
selection, crossover and mutation. Initially, a generation of
individuals is created, usually applying random or heuristic
methods. The fitness of each individual is computed and
pairs of them are selected according to their fitness: the
larger the fitness, the bigger the probability to be selected.
Those pairs of individuals crossover to generate two new
individuals that may suffer a mutation and may be members



of the next generation, which will inherit part of the solutions
of the previous generation. The new generation is used in
the next iteration of the algorithm, which commonly finishes
when some individual has reached a satisfactory fitness
level or when a maximum number of generations have been
created.

The genetic algorithm presents some advantages over
other search and optimization techniques. The solution space
can be non-linear and since it operates with multiple and
possibly very different solutions at the same time, it is
less vulnerable to converge towards local optimal solutions.
Furthermore, the genetic algorithm can optimize several
different objectives simultaneously and can be quite easily
extended by adding new weighted factors to the fitness
function. Moreover, its execution can be readily parallelized
for the proper exploitation of the modern multicore and
multiprocessor architectures.

A search and optimization problem consists of assigning
values to some variables in a way that all the restrictions
are met and some function is maximized or minimized.
In the present mapping and scheduling problem the value
assignment is done to the following variables:

• Map each task and message to one of its candidate
processors and networks, respectively.

• Assign each task and message a priority different from
the priorities of the tasks and messages mapped in the
same processor and network, respectively.

The restrictions are the following:
• Not exceed the maximum capacity of memory

(UShmax), processors (UPhmax) and networks
(UNhmax).

• The worst-case response time Rj of each transaction
has to be less than or equal to the deadline Dj of the
transaction.

The factors that can be minimized are these ones:
• Average computation, memory and communication re-

source utilizations of the architecture.
• Average worst-case response time of the transactions.
• Number of used processors.
In this work we propose to use a genetic algorithm with

a permutational solution encoding. In the following lines
the representation, initial population creation, crossover,
mutation and clustering operations of the genetic algorithm
are exposed.

A. Representation

A candidate solution is a set of concrete values of the
variables. In a genetic algorithm, a variable is encoded
with an element called gene and a candidate solution is
encoded with a string of genes called chromosome. Usually,
each gene representing a variable has a binary encoded
changeable value and a fixed position in the chromosome.
However, there exist some other type of encodings, such

as the permutation representation [21], which is used to
search the optimal ordering of a set of elements. Unlike
in the common representation, the permutation chromosome
is encoded with a string of genes whose values are fixed
but positions are changeable. Genetic algorithms based on
the permutational encoding have been used to solve some
classical NP-hard problems, such as Travelling Salesman
Problem and Job-shop Scheduling Problem (JSP) [22]. As
flexible JSP is a distributed system mapping and scheduling,
it has some similarities with the present problem, but the
differences are also substantial: JSP searches for a task exe-
cution order instead of a priority assignment, tasks are non-
preemptive, there is no communication, the schedulability
analysis is much simpler, etc. In this paper we propose to
use a hybrid value-permutational representation that is based
on the classical permutation representation [21] for encoding
the candidate solutions of the mapping and the fixed priority
assignment problems. Although the hybrid encoding has
some structural similarities with [23], the latter approaches
a JSP and thus the characteristics of the problems differ
substantially.

The mapping and the fixed priority assignment problems
consists of some variables representing the mapping and
priority of the tasks in the processors and the messages in
the networks. Each variable of the problem has an associated
gene with the structure shown in Figure 1. We define a gene
that is composed of two fields. Code is a fixed field that
stores the name of the variable (in this case Ti for tasks and
Mi for messages), which has to be unique for all variables.
Value is a changing field that represents the mapping of the
associated variable. The value in this field is always one
among the candidate processors (Ph) in the case of task
genes and possible networks (Nh) in the case of message
genes. Additionally, the relative position of the gene in the
chromosome with respect to other genes with the same value
denotes the relative priority of the associated task or message
in its processor or network, respectively. The more to the
left, the larger the priority.

The hybrid value-permutational encoding has some ad-
vantages. The gen value is a candidate value and thus it
is always a valid mapping value. Further, the gen position
is unique and thus the priority is always different from the
priorities of the other variables with the same mapping value.
Additionally, it can manage legacy tasks that are mapped
in concrete processors or have already assigned priorities.
In brief, it allows an efficient representation of both task
and message mapping and priority assignment that supports
a simultaneous search in both dimensions, simplifying the
whole problem solution and optimization process.

B. Initial population

The initial population is the set of individuals -candidate
solutions- that are evolved by the genetic algorithm. It is
essential that the fitness of the candidate solutions can be



Figure 1. Crossover, mutation and clustering operations

calculated, and the larger the fitness the better. It is also
very important that the initial population contains a high
degree of genetic variety, i.e. the candiate solutions must
have significant differences from each other.

Our system creates the initial population in three phases.
In the first step all the individuals are generated randomly.
Since this randomness may create candidate solutions with
processing utilizations more than 100% and hence not
schedulable (invalid), in the second phase tasks of the over-
loaded processors are selected randomly and moved to their
candidate processors with least load until the processing
utilization excess is eliminated. In the last step HOPA [24]
heuristic is used. HOPA is a reference method for the
assignment of fixed priorities in distributed real-time systems
and works as follows.

Firstly, HOPA carries out an initial arbitrary local deadline
assignment on the condition that the summation of them
does not exceed the global deadline of the transaction. After
that, it assigns priorities to tasks and messages according to
the DMS scheme. Then, it applies a holistic schedulability
analysis over the whole system. The excess of the response
times of the transactions with respect to their deadlines are
used to compute some metrics, and the local deadlines -
and hence the priorities- of tasks and messages are adjusted
according to those excess. The system with the new priority
assignment is holistically analyzed again, and so on until a

schedulable solution, a satisfactory level of optimization or
a maximum limit of iterations is reached.

HOPA allows to configure two constant factors, ka and
kr, that control the relative influence of the resources (pro-
cessors and networks) and activities (tasks and messages),
respectively, in the calculation of the new local deadlines.
The smaller these constants are, the higher the influence
is. These factors have a direct impact on the quality of
the obtained schedulings, and different values for ka and
kr give different priority assignments even over the same
architecture. We use this behaviour to create initial candidate
solutions with different partial schedulings by executing
HOPA over each one of them a random integer number of
iterations in the [10, 50] interval and with a random rational
number in the (0, 10] interval selected independently for ka
and kr for each candidate. This way, the initial population
ends up being composed of analyzable candidate solutions
with pseudorandom mappings and schedulings. Since the
scheduling analyzability of the candidates facilitates their
fitness evaluation and their pseudorandomness guarantees
the genetic variety, the algorithm is able to evolve the
candidates to better solutions.

C. Crossover

The genetic crossover operator combines information
from two parent chromosomes to create two children chro-
mosomes. Due to the characteristics of the encoding used
in this algorithm, the crossover operator has to be able to
recombine information about the relative position of the
genes of both parents.

This genetic algorithm uses the OX3 [21] crossover op-
erator, because it respects strictly the relative position, the
absolute position and the value of the recombined genes
of one parent chromosome, and also respects the relative
position and the value of the recombined genes of the other
parent chromosome. OX3 chooses two cut-points randomly
and the block of the genes of the first (second) parent
between those two points is inherited directly by the first
(second) child in the same absolute position. The genes not
included in the inherited block are taken from the other
parent chromosome in strict order.

Figure 1 shows the crossover operation and the resulting
children chromosomes, where the cut-points are the genes
with absolute positions 8 and 15.

D. Mutation

The mutation is an operator that maintains the genetic
diversity of the population through random changes in
the information of the genes. The main objective of the
mutation is to avoid the situation in which the individuals
of a population resemble each other too much after some
generations. Usually, the mutation is applied with a very
low probability to each gene of the children chromosomes.



Our genetic algorithm defines a different mutation oper-
ator for each one of the two types of information that a
gene can contain. The position mutation operator changes
the position of the gene in the chromosome, and hence the
information about the priority of the variable may be altered.
The value mutation operator changes the value of a gene to
another candidate value, and therefore the information about
the mapping of the variable is altered. Each candidate value
of every gen is configured with a related value mutation
probability factor. This numerical factor is multiplied with
the general mutation probability in order to increase it, which
may be adequate in some circumstances, e.g. gen values that
are less preferable than others because can deteriorate the
fitness of the chromosome may have greater factors, thus
increasing their mutation probability and facilitating their
change to other values.

Figure 1 shows the mutation operation over the children
chromosomes. Specifically, gen T43 of Child1 suffers value
and position mutations, genes M38 of Child1 and T49 of
Child2 suffer position mutations, and gen M41 of Child2
suffers a value mutation.

E. Clustering

After the crossover and mutation operations the clustering
of genes is carried out with the aim of grouping the related
genes side by side and creating a variable contiguous block
per processor and network. This operation increases the
probability of the crossover operator to transmit to the chil-
dren chromosomes blocks of variables whose relationship
makes them more likely to belong with the current values
to a solution. The clustering reorders the genes but always
maintaining the relative order of task and message genes
with respect to other genes with the same value, because
otherwise the priority assignment done by the algorithm
would be altered. The chromosome is clustered according
to the value of the genes in ascending order of processors
(P0, P1, etc.) and networks (N0, N1, etc.) and always strictly
respecting the relative order between them.

Figure 1 shows the clustering operation over the two
children chromosomes. In the example, the genes T43 and
M38 of the Child1 and the genes T49, M35, M39 and M41
of the Child2 are reordered.

F. Fitness Function

In a genetic algorithm the fitness function checks how well
a candidate solution solves the problem, which is given by
its restriction fulfillment degree and optimization level. A
candidate is a valid solution if and only if it fulfills all the
restrictions, and the greater the optimization level, the better
the valid solution. The fitness function is a weighted sum of
five partial fitness functions, one per restriction factor and
one for the optimizable factor.

Table I
PARAMETERS OF RESTRICTION FACTORS FITNESS FUNCTIONS

f gh Maximum limit L

fp UPhmax −
∑

∀Ti in Ph

Ch
i

Ti
UPhmax ∈ [0, 1] LP

fs UShmax −
∑

∀Ti in Ph

Sh
i

Shmax UShmax ∈ [0, 1] LP

fn UNhmax −
∑

∀Mi in Nh

Ch
i

Ti
UNhmax ∈ [0, 1] LN

ft 1− (Rj/Dj) Dj > 0 LA

1) Restriction Factors Fitness: As referred earlier, there
are four restriction factors, three of them related with re-
source utilizations and the other with the response time,
which can be considered as another resource. We define
a generic restriction fitness function (1) inspired by the
scheduling index factor defined in [24] and that is valid for
all of them. The restriction fitness function f computes the
average of the resource slacks gh, which is the subtraction
between the normalized maximum utilization limit and the
normalized current utilization. A negative slack represents
the violation of the restriction of not exceeding the maximum
utilization limit, and therefore denotes an invalid solution. If
at least one resource slack is negative, the resource fitness f
is the average value of only the negative parts of the resource
slacks.

f =


1

L
·

L∑
h=1

gh, if ∀h : gh ≥ 0

1

L
·

L∑
h=1

min[0, gh], if ∃h : gh < 0

(1)

Replacing f , gh and L of Table I in Equation (1), the
partial fitness functions of computing (fp), memory (fs),
communications (fn) and response time (ft) are obtained.
Note that ft is the average of the scheduling index factor
[24]. The worst-case response time Rj of each transaction
can be computed by any holistic schedulability analysis
technique, such as the Tindell’s [1] or the offset-based [2],
[3] methods. The current implementation of the genetic
algorithm uses MAST [25], a free tool suite that provides
several holistic schedulability analysis techniques, but the
algorithm can be quite easily modified to invoque any other
tool that uses a holistic approach.

2) Optimizable Factor Fitness: The genetic algorithm
can minimize the average utilization of computing, memory
and communication resources and the response time of the
transactions. Nevertheless, beyond those restriction factors,
we chose to add another optimization parameter to contribute
positively to the overall fitness function, namely the number
of processors, aiming at reducing this number. The comput-
ing utilization of a processor is Equation (2).



UPh =
∑

∀Ti in Ph

Ch
i

Ti
(2)

We consider a processor being dispensable if all the tasks
for whom it is a candidate processor have more than one
candidate processor. The set of dispensable processors is
represented by Pdis, and UPdis (3) is their average comput-
ing utilization. (card(A) gives the number of elements in
the set A.)

UPdis =
∑

∀Ph ∈ Pdis

UPh

card(Pdis)
(3)

The dispensable processor penalty Yh, Ph ∈ Pdis (4) is
the weighted sum of three factors. The first one increases the
penalty if the corresponding dispensable processor is used;
the second increases the penalty with the utilization level of
the processor; and the last factor reduces the penalty with
the utilization deviation of the processor, because a bigger
deviation means that some processors are closer from zero
utilization and thus closer from being dispensed. The sum
of the weights has to be 1 and good values are w1

u = 0.6,
w2

u = 0.3 and w3
u = 0.1.

Yh = w1
u · dUPhe+ w2

u ·UPh + w3
u ·
(
1−
∣∣UPh −UPdis

∣∣) (4)

The used processor fitness function fu is computed with
Equation (5).

fu = 1−
∑

∀Ph ∈ Pdis

Yh

card (Pdis)
(5)

3) Total Fitness: The total fitness F is computed by the
weighted sum of fp, fs, fn, ft and fu. Negative partial
fitness denotes a restriction violation and therefore it is an
invalid solution. If at least one partial fitness is negative,
the total fitness is the sum of only the negative ones. Being
K = {p, s, n, t, u}, Equation (6) is the total fitness function.

F =


∑

∀k ∈ K

wk · fk, if
∧

∀k ∈ K

(fk ≥ 0)∑
∀k ∈ K

wk ·min[0, fk], if
∨

∀k ∈ K

(fk < 0)
(6)

The weights wp, ws, wn, wt and wu denote the impor-
tance given by the genetic algorithm to the corresponding
factor in the solution searching process. The weights can be
configured but taking into account that their sum has to be
1, that a value of 0 means that the corresponding factor will
not be considered, and that the bigger the value, the more
the importance of the factor during the optimization process.

Figure 2. Physical arquitectures: (a) Small system. (b) Large system

V. EXPERIMENTS

The objectives of the following experiments are to test the
genetic algorithm in terms of time to search and optimize
valid solutions, their quality, and compare its performance
with the MILP technique. The experiments are carried out
over a small and a large distributed system based on [24]
and composed of different number of processors, networks,
transactions, tasks and messages. The main difference of
our systems with respect to [24] is that the mapping is not
fixed, i.e. almost all the tasks, and in the large system all
the messages, have more than one candidate processor and
network where they can be mapped, respectively.

The physical architecture of the large distributed real-
time system is composed of 8 processors connected to 3
networks, as can be seen in Figure 2-(b). In this scenario
the networks are equal but the processors have differences
in their core architecture, speed and memory resources (see
Table IV). On the other hand, the logical architecture has 7
transactions composed by tasks and messages. The structure
of those transactions is shown in Figure 3 and their periods
and deadlines in Table II. Each task has different worst-case
execution time (Ch

i ) and memory requirement (Mh
i ) in each

of its candidate processors, e.g. due to different processors
and/or different task implementations, as described in Table
III and IV, respectively. Table V-(a) shows the worst-case
transmission times of the messages in the networks of the
physical architecture. The maximum resource utilizations are
configured as UPhmax = UShmax = UNhmax = 1.

The small distributed real-time system is a subset of
the large scenario. Its physical architecture is formed by
4 processors and 1 network of the large scenario (see
Figure 2-(a)). Despite tasks and messages having the same
computing, memory and transmission time characteristics,
the small scenario has 4 transactions created by cutting some
transactions of the large system (framed ones in Figure 3),
and which periods and deadlines are shown in Table II.

The mapping and the fixed priority assignment process of
the distributed real-time systems is started with each method
and samples of best solutions are stored during the process.
When the executions finish, the system load is altered by
increasing the Ch

i of every task by 8 units of time in the
small system and 4 units of time in the large one, and the



Figure 3. Structure of the transactions (framed ones are small system)

Table II
PERIODS AND DEADLINES

Transaction
Small system Large system

Period Deadline Period Deadline

A0 300 3000 400 4000

A1 400 4000 500 5000

A2 500 5000 700 7000

A3 300 3000 450 4500

A4 - - 550 5500

A5 - - 350 3500

A6 - - 500 5000

experiments are repeated; and so on until 5 incrementations
of Ch

i have been made. Note that in these experiments
memory requirements do not increase and memory resources
are large enough to accomodate the tasks. Nevertheless,
the genetic algorithm can also deal properly with memory
constraints as has been tested with some experiments.

The genetic algorithm is configured with a population of
100 individuals. In the initial population creation, the ka
and kr pair of HOPA parameters are configured with all the
combinations of {1, 2, 3} set of values, and executed with
each candidate solution in order to store the obtained best
scheduling of those 9 executions. The selection method is
a tournament of 2 individuals. The crossover and mutation
probabilities are 0.8 and 0.005, respectively, because they
have been identified empirically as good values. The muta-
tion probability factor is configured as 10 ∗wu for dispens-
able processors and 1 for the others. The genetic algorithm
runs across 1000 generations and in each of them 10 new
individuals are created. The new individuals are included in
the population and the best 100 of those 110 individuals
form the next generation. The worst-case response times are
computed with the Tindell’s holistic schedulability analysis
[1] implementation of the MAST tool, essentially because
it is faster -although more pessimistic- than the offset-based
[2], [3] techniques.

The MILP formulation of these experiments is based on
[19], but has some differences: we do not map signals but

map messages and assign priorities to them, and we apply
a holistic approach [1] -including jitter and blocking terms
in tasks and messages-, which is less restrictive than the
periodic activation model. The function to maximize is the
fitness of Equation (6). SCIP is used as MILP solver since
it is currently one of the fastest non-commercial tools [26].

The weights are configured as wp = ws = wn = 0.01,
wt = 0.02, wu = 0.95. This way, the minimization of
the used processors becomes the main objective, whereas
the worst-case response time minimization has a secondary
importance and the computing, memory and communication
resource utilizations are considered only restrictions.

The experiments are carried out on a dual-core Intel i5-
650 processor running at 3.2GHz with 4GB of memory.
The parallelism of the multi-core architecture is properly
exploited by multithreading the schedulability analysis.

A. Results

We draw some graphs to show the results obtained by both
techniques with different average utilizations of processing
and communication resources in the small and the large
scenarios. The graphs trace the fitness (F ), the number of
used processors and the average utilization of the obtained
best solutions with respect to the execution time. Solutions
with fitness values equal to or larger than 0 are valid
solutions, i.e. they meet all the restrictions.

Figure 4 shows the best solutions obtained by the genetic
algorithm and MILP in the small problem during 2000 sec-
onds. The figure allows to compare both techniques directly
for each utilization level. The first obvious conclusion is
that with bigger systems loads both the genetic algorithm
and MILP obtain worse solutions (less fitness and more
used processors) and need more time to find them. However,
even though those amounts of time are reasonable from the
perspective of a complex system design process, the genetic
algorithm converges to good solutions faster than MILP, and
in some cases it finds better solutions (see the second row
of graphs). Furthermore, the genetic algorithm is able to



Figure 4. Results in the small system: (a) Genetic algorithm. (b) MILP

Table III
WORST-CASE EXECUTION TIMES

P0 P1 P2 P3 P4 P5 P6 P7

T0 48 26 35 50 36 40 45 27

T1 36 52 59 34 26 43 50 48

T2 49

T3 50

T4 46

T5 50

T6 51

T7 26 35 29 42 50 37 20 52

T8 50 40 31 29 33 46 37 29

T9 52

T10 40 39 50 33 36 39 43 41

T11 50

T12 39

T13 38

T14 52

T15 33 46 37 29 35 29 42 50

T16 32 55 29

T17 51 26

T18 51 42 26 35 50 36 33 29

T19 50 28 36

T20 35 29 42 42 26 35 50 54

T21 29 50

T22 48 32

T23 31 45

T24 53 26 35 50 36 26 35 50

T25 48 36

T26 26 50

T27 51 30 50

T28 32 39

T29 50 48 36 26 35 26 35 50

T30 31 39 44

T31 52 27

T32 44 26 35 26 35 30 28 49

T33 30 40 50

T34 49 39 29

T35 53 25 40

T36 32 40 48

T37 30 50 45

T38 54 28 36

T39 50 28 39 47 44 35 26 35

T40 52 28 35 26 35 50 45 33

T41 48 38 28

T42 30 50 40

T43 26 38 48

T44 51 30 42

T45 34 49 30

T46 28 39 47 50 26 35 50 51

T47 36 29 53

T48 51 44 33 28 50 26 39 33

T49 37 50 52 32 29 27 36 40

find valid solutions with larger utilization levels than MILP,
as can be seen in the fifth row of graphs, where the latter
is unable to obtain a valid result. These experiments show
that our genetic algorithm with the permutational solution
encoding is a suitable method to solve the mapping and the
priority assignment problems in small distributed real-time
systems, and according to the results, better than MILP.

Figure 5 shows the results obtained by the genetic al-
gorithm in the large scenario. In this problem instance
the genetic algorithm starts failing with average resource



Table IV
MEMORY REQUIREMENTS

P0 P1 P2 P3 P4 P5 P6 P7

T0 192 104 140 200 144 160 180 108

T1 144 208 236 136 104 172 200 192

T2 196

T3 200

T4 184

T5 200

T6 204

T7 104 140 116 168 200 148 80 208

T8 200 160 124 116 132 184 148 116

T9 208

T10 160 156 200 132 144 156 172 164

T11 200

T12 156

T13 152

T14 208

T15 132 184 148 116 140 116 168 200

T16 128 220 116

T17 204 104

T18 204 168 104 140 200 144 132 116

T19 200 112 144

T20 140 116 168 168 104 140 200 216

T21 116 200

T22 192 128

T23 124 180

T24 212 104 140 200 144 104 140 200

T25 192 144

T26 104 200

T27 204 120 200

T28 128 156

T29 200 192 144 104 140 104 140 200

T30 124 156 176

T31 208 108

T32 176 104 140 104 140 120 112 196

T33 120 160 200

T34 196 156 116

T35 212 100 160

T36 128 160 192

T37 120 200 180

T38 216 112 144

T39 200 112 156 188 176 140 104 140

T40 208 112 140 104 140 200 180 132

T41 192 152 112

T42 120 200 160

T43 104 152 192

T44 204 120 168

T45 136 196 120

T46 112 156 188 200 104 140 200 204

T47 144 116 212

T48 204 176 132 112 200 104 156 132

T49 148 200 208 128 116 108 144 160

Smax
h

18300 19000 21000 20000 20400 16000 15500 18200

utilizations of 0.67. However, it has a great ability to find
valid solutions and optimize them in terms of maximizing
the fitness and minimizing the number of used processors in
reasonable times. On the other hand, the MILP technique,
whose mathematical model has 61792 variables and 346128
constraints after the presolving phase, is unable to find any
valid mapping and fixed priority assignment even in a time
scale of days, and that is why its results are not graphed.
So our experiments corroborate that MILP models for the

Table V
WORST-CASE TRANSMISSION TIMES

(a) N0 N1 N2 (b) N0 N1 N2

M0 11 11 11 M0 11

M1 11 11 11 M1 11

M2 12 12 12 M2 12

M3 13 13 13 M3 13

M4 14 14 14 M4 14

M5 13 13 13 M5 13

M6 12 12 12 M6 12

M7 11 11 11 M7 11

M8 10 10 10 M8 10

M9 9 9 9 M9 9

M10 8 8 8 M10 8

M11 11 11 11 M11 11

M12 10 10 10 M12 10

M13 11 11 11 M13 11

M14 9 9 9 M14 9

M15 10 10 10 M15 10

M16 11 11 11 M16 11

M17 12 12 12 M17 12

M18 13 13 13 M18 13

M19 8 8 8 M19 8

M20 10 10 10 M20 10

M21 12 12 12 M21 12

M22 11 11 11 M22 11

M23 10 10 10 M23 10

M24 10 10 10 M24 10

M25 8 8 8 M25 8

M26 10 10 10 M26 10

M27 10 10 10 M27 10

M28 11 11 11 M28 11

M29 10 10 10 M29 10

M30 9 9 9 M30 9

M31 8 8 8 M31 8

M32 9 9 9 M32 9

M33 10 10 10 M33 10

M34 11 11 11 M34 11

M35 10 10 10 M35 10

M36 12 12 12 M36 12

M37 13 13 13 M37 13

M38 8 8 8 M38 8

M39 10 10 10 M39 10

M40 12 12 12 M40 12

M41 11 11 11 M41 11

M42 10 10 10 M42 10

mapping and scheduling of distributed real-time systems are
tipically too complex for the sizes of industrial applications
[19] and therefore cannot find solutions in acceptable time
frames.

The high complexity of some MILP models can be faced
by decomposing the whole problem into two less complex
subproblems [19]. Based on this approach, we propose a
divide-and-conquer strategy. First, the mapping of the mes-
sages is fixed (see Table V-(b)) and their priority is assigned
by Rate Monotonic Scheduling. The objective becomes the
minimization of the used processors, but always meeting
all the restrictions. The solution of this first subproblem is
a mapping and a priority assignment for the tasks. In the
second phase, this task mapping is used to find a mapping
for the messages and priority assignments for both messages
and tasks with the objective of maximizing the scheduling
index. This decomposition process facilitates the solution of



Figure 5. Best solutions of the genetic algorithm in the large system

the problem, and therefore the genetic algorithm is likely to
find good results, which is confirmed by some experiments
that are not included in this paper. However, the MILP
technique, whose model has 31926 variables and 204944
constraints after the presolving phase, is still unable to obtain
valid solutions even in a time scale of days. Although the
two-phase MILP model converged satisfactorily in [19], it is
very important to note that the cited work applies a periodic
activation model with a simplified method for the worst-
case response time computation in opposition to our holistic
analysis, which is less restrictive but more complex, and thus
harder to converge.

These results let us conclude that our genetic algorithm is
more suitable than MILP to solve the mapping of tasks and
messages and the fixed priority assignment to them in both
small and large distributed real-time arquitectures based on
the system model described in Section III.

VI. CONCLUSIONS AND FUTURE WORK

Mapping tasks and messages and assign fixed priorities
to them in distributed real-time systems is still an open
issue. The NP-hardness of these problems precludes the
existence of optimal algorithms to solve them in bounded
time and makes them very suitable to be approached with

generic search and optimization methods. In this paper we
propose a genetic algorithm with a permutational solution
encoding for the mapping of tasks and messages and the
assignment of fixed priorities to tasks and messages in
distributed real-time systems. Our genetic algorithm solves
these problems using a holistic approach and simultaneously
can minimize the average utilization of computing, mem-
ory and communication resources, the average worst-case
response time of the transactions and the number of used
processors in industrial size distributed real-time systems.
We compare this genetic algorithm with the Mixed Integer
Linear Programming (MILP) technique and conclude that
the genetic algorithm can find better solutions and faster,
obtaining good results even in problem instances for which
MILP is unable to find any valid solution in reasonable time
frames.

On the other hand, the permutational solution encoding of
our genetic algorithm could be used not only for the mapping
and fixed priority assignment but also for the network topol-
ogy optimization of distributed real-time systems by mainly
making the processors mapeable in subnets and adding some
weigthed factors to the fitness function. In future work we
plan to explore the network topology optimization, as well
as the mapping and the fixed priority assignment in systems
with tighter memory constraints and legacy tasks.

REFERENCES

[1] K. Tindell and J. Clark, “Holistic schedulability analysis
for distributed hard real-time systems,” Microprocessing and
microprogramming, vol. 40, no. 2-3, pp. 117–134, 1994.

[2] J. Carlos Palencia and M. González Harbour, “Schedulability
analysis for tasks with static and dynamic offsets,” in Pro-
ceedings of the 19th IEEE Real-Time Systems Symposium.
Washington, DC, USA: IEEE Computer Society, 1998, pp.
26–37.

[3] ——, “Exploiting precedence relations in the schedulability
analysis of distributed real-time systems,” in Proceedings of
the 20th IEEE Real-Time Systems Symposium. Washington,
DC, USA: IEEE Computer Society, 1999, pp. 328–339.

[4] K. Tindell, A. Burns, and A. Wellings, “Allocating hard
real-time tasks: an NP-hard problem made easy,” Real-Time
Systems, vol. 4, no. 2, pp. 145–165, 1992.

[5] E. Azketa, J. Uribe, M. Marcos, L. Almeida, and J. Gutiérrez,
“Permutational genetic algorithm for the optimized assign-
ment of priorities to tasks and messages in distributed real-
time systems,” in 2011 International Joint Conference of
IEEE TrustCom-11/IEEE ICESS-11/FCST-11. IEEE, 2011,
pp. 958–965.

[6] E. Azketa, J. Uribe, M. Marcos, L. Almeida, and
J. Javier Gutiérrez, “Permutational genetic algorithm for fixed
priority scheduling of distributed real-time systems aided by
network segmentation,” in Proceedings of the 1st Workshop
on Synthesis and Optimization Methods for Real-time Embed-
ded Systems (SOMRES), 2011.



[7] M. Richard, P. Richard, and F. Cottet, “Allocating and
scheduling tasks in multiple fieldbus real-time systems,” in
Proceedings of the IEEE Conference on Emerging Technolo-
gies and Factory Automation, vol. 1, 2003.

[8] P. Pop, P. Eles, Z. Peng, and T. Pop, “Analysis and
optimization of distributed real-time embedded systems,”
ACM Transactions on Design Automation of Electronic
Systems, vol. 11, pp. 593–625, June 2004. [Online].
Available: http://doi.acm.org/10.1145/996566.1142984

[9] T. Pop, P. Pop, P. Eles, and Z. Peng, “Optimization of
hierarchically scheduled heterogeneous embedded systems,”
in Proceedings of the 11th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applica-
tions, 2005, pp. 67–71.

[10] Y. Monnier, J. Beauvais, and A. Deplanche, “A genetic algo-
rithm for scheduling tasks in a real-time distributed system,”
in Proceedings of the 24th Euromicro Conference, vol. 2,
1998, pp. 708–714.

[11] R. Dick and N. Jha, “MOGAC: a multiobjective genetic
algorithm for hardware-software cosynthesis of distributed
embedded systems,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 17, no. 10,
pp. 920–935, 1998.

[12] J. Oh and C. Wu, “Genetic-algorithm-based real-time task
scheduling with multiple goals,” Journal of Systems and
Software, vol. 71, no. 3, pp. 245–258, 2004.

[13] L. Shang, R. Dick, and N. Jha, “SLOPES: Hardware–
Software Cosynthesis of Low-Power Real-Time Distributed
Embedded Systems With Dynamically Reconfigurable FP-
GAs,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 26, no. 3, pp. 508–526,
2007.

[14] M. Yoo, “Real-time task scheduling by multiobjective genetic
algorithm,” Journal of Systems and Software, vol. 82, no. 4,
pp. 619–628, 2009.

[15] P.-E. Hladik, H. Cambazard, A.-M. Déplanche, and
N. Jussien, “Solving a real-time allocation problem with
constraint programming,” Journal of Systems and Software,
vol. 81, no. 1, pp. 132–149, 2008.

[16] A. Metzner and C. Herde, “Rtsat– an optimal and efficient
approach to the task allocation problem in distributed archi-
tectures,” in Proceedings of the 27th IEEE International Real-
Time Systems Symposium, 2006, pp. 147–158.

[17] W. Zheng, M. Di Natale, C. Pinello, P. Giusto, and A. S.
Vincentelli, “Synthesis of task and message activation models
in real-time distributed automotive systems,” in Proceedings
of the conference on Design, automation and test in Europe,
2007, pp. 93–98.

[18] Q. Zhu, Y. Yang, E. Scholte, M. D. Natale, and
A. Sangiovanni-Vincentelli, “Optimizing extensibility in hard
real-time distributed systems,” in Proceedings of the 15th
IEEE Real-Time and Embedded Technology and Applications
Symposium, 2009, pp. 275–284.

[19] W. Zheng, Q. Zhu, M. D. Natale, and A. S. Vincentelli,
“Definition of task allocation and priority assignment in hard
real-time distributed systems,” in Proceedings of the 28th
IEEE International Real-Time Systems Symposium, 2007, pp.
161–170.

[20] J. Holland, “Genetic algorithms,” Scientific American, vol.
267, no. 1, pp. 66–72, 1992.

[21] L. Davis, Handbook of genetic algorithms. Arden Shake-
speare, 1991.

[22] M. Garey, D. Johnson, and R. Sethi, “The complexity of flow-
shop and jobshop scheduling,” Mathematics of Operations
Research, pp. 117–129, 1976.

[23] I. Kacem, “Genetic algorithm for the flexible job-shop
scheduling problem,” in IEEE International Conference on
Systems, Man and Cybernetics, vol. 4, 2003, pp. 3464–3469.

[24] J. Javier Gutiérrez and M. González Harbour, “Optimized
priority assignment for tasks and messages in distributed hard
real-time systems,” in Proceedings of the 3rd Workshop on
Parallel and Distributed Real-Time Systems. IEEE Computer
Society, 1995, pp. 124–132.

[25] M. González Harbour, J. Javier Gutiérrez, J. Carlos Palencia,
and J. M. Drake, “Mast: Modeling and analysis suite for
real time applications,” in Proceedings of 13th Euromicro
Conference on Real-Time Systems. IEEE Computer Society,
2001, pp. 125–134.

[26] T. Achterberg, “Scip: Solving constraint integer programs,”
Mathematical Programming Computation, vol. 1, no. 1, 2009.


