
Bandwidth Isolation for Composability in Fixed Priority Real-Time Networks

Daniel Sangorrı́n
Nagoya University, Japan

dsl@ertl.jp

Michael González Harbour
University of Cantabria, Spain

mgh@unican.es

Abstract

The increasing complexity of real-time systems has mo-
tivated the application of component-based software engi-
neering principles during the last few years. Temporal en-
capsulation is key to smoothing the integration stage of soft-
ware components in complex distributed hard real-time sys-
tems. This paper presents a network scheduling server al-
gorithm to guarantee and at the same time limit the net-
work bandwidth assigned to streams of messages with dif-
ferent real-time requirements in a fixed priority network.
The algorithm is based on a recently corrected version of
the POSIX sporadic server whose rules, originally intended
for scheduling tasks, have been adapted and optimized for
the special case of fixed-priority networks. The algorithm
is able to provide bounded response times that can be ana-
lyzed with off-the-shelf real-time analysis tools and can be
used for both synchronous and asynchronous messages. The
proposed approach has been implemented and evaluated on
real hardware, using the CAN bus. The performance evalu-
ation results show that bandwidth isolation can be achieved
with rather low overhead both on the processor and the net-
work resources.

1. Introduction
The complexity of developing large real-time applica-

tions can be handled by independently developing compo-
nents that are later integrated into a physical platform. The
success of the integration depends on the ability of the plat-
form to provide the required resource usage guarantees to
every component while protecting each component from
timing faults in the others. Some compositional frameworks
[5] have an integrated view of the different resources in-
volved in a distributed application. In particular, for net-
work resources, application components are able to specify
their bandwidth requirements, so that the implementation
can make the corresponding guarantees or reservations.

In real-time distributed systems, the communication
paradigm (event- or time-triggered [10, 23]) plays an im-
portant role in the composability, flexibility and responsive-
ness of the system. In the time-triggered paradigm, mes-
sages are sent at predefined time windows according to a
global schedule. This approach is well-suited for periodic
activities that require very low jitter. Furthermore, it en-
ables composability regarding to the temporal behavior be-
cause the access to the bus is predefined and decoupled from

Figure 1: Bandwidth reservations

the actual network load. The major drawbacks of this ap-
proach are the lack of flexibility in the design process, the
need of global synchronization between the nodes and its
poor support for aperiodic messages. In the event-triggered
paradigm, messages are sent as a response to the occurrence
of an event. This approach is generally more flexible and
better suited to support asynchronous traffic together with
critical activities that require very short response times. The
major disadvantages of this approach are the increased mes-
sage jitter and the lack of temporal isolation.

Since both paradigms have strong and weak points, sev-
eral protocols that combine support for both event- and
time-triggered traffic have been proposed. In some proto-
cols (e.g., FlexRay [3] or FTT-CAN [15]), temporal iso-
lation between both types of traffic is enforced by imple-
menting a cyclic sequence that alternates between them.
However, the arbitration of the event-triggered phase of
these protocols, implemented with different approaches
such as fixed priorities (FTT-CAN) or TDMA with min-
islots (FlexRay), has the same drawbacks that were men-
tioned before, high jitter and lack of temporal isolation. For
instance, in case of a software babbling idiot failure [13], a
misbehaving task may affect the bandwidth preallocated to
other tasks that are working correctly by transmitting exces-
sive messages at a higher priority.

This paper presents a network scheduling algorithm that
follows the event-triggered paradigm and is able to satisfy
the requirements for the integration of independently de-
veloped components. The algorithm is based on a recently
corrected version [25] of the POSIX sporadic server whose
rules, originally intended for scheduling tasks, have been
adapted and optimized for the special case of fixed-priority
networks. The algorithm is able to control the jitter caused
by aperiodic messages, provide bounded response times

that can be analyzed with off-the-shelf real-time analysis
tools and it can be used for both synchronous and asyn-
chronous messages. It enables the creation of bandwidth
reservations, which can be thought as unidirectional virtual
links between two nodes providing a guaranteed service, as
shown Fig. 1.

The paper is organized as follows. After an introduction
to server-based scheduling for networks in Sec. 2, Sec. 3
proposes an algorithm for an optimized version of the spo-
radic server policy for fixed-priority networks. Sec. 4 gives
details about the implementation of the algorithm on real
hardware, whose overhead is evaluated in Sec. 5. Sec. 6
compares the proposal with previous work and Sec. 7 closes
the paper with conclusions.

2. Server-based scheduling in networks
Server-based scheduling techniques have been used for a

long time to limit the processor time assigned to a particular
computation or set of computations while also guaranteeing
some minimum level of service. Servers such as the peri-
odic server [14], the sporadic server [24], or the constant
bandwidth server [9] are a few examples.

The concept of server is also applicable to the outgoing
direction of a network stack to limit the bandwidth used by
message streams. However, scheduling in the networks is
somehow different than in the processors. When a server is
used to schedule a network the concept of execution time
must be mapped into transmission time. In most networks,
messages are fragmented in units called packets which are
usually non preemptible. Therefore, an easy way to spec-
ify budgets in a network server is to measure them in terms
of number of packets. The maximum packet size is usually
limited by the network, but a smaller limit can also be im-
posed by the implementation as necessary, for instance as
an application-defined parameter. Of course, if the message
stream mixes very short messages with longer messages that
fit into the maximum packet size, the bandwidth available to
the message stream may be suboptimal, since each message
consumes one unit of budget regardless of its size. How-
ever, it is easy to design a solution to this problem by creat-
ing several sporadic servers with different maximum packet
sizes, and submitting the messages to the appropriate server
based on their size. The non-preemptability of the network
packets has bounded delay effects that can be easily mod-
eled through a blocking time term. Other more complex
analysis models can also be used to better estimate response
times [12].

2.1. Sporadic server
The sporadic server is a bandwidth preserving schedul-

ing algorithm designed for processing aperiodic events in
hard real-time systems [24, 18]. It allocates a specific band-
width for processing aperiodic requests at a given priority
level (the normal priority). This bandwidth is provided by
allocating a certain execution time capacity for each inter-
val of time called the replenishment period. The scheduling
algorithm is defined through a set of rules for consuming
this execution capacity when the sporadic server runs, and

Figure 2: Communication elements

for later replenishing this capacity. When the capacity is
consumed, the sporadic server may still do useful work at a
background priority level, to make full use of the resource.

When the sporadic server was standardized in the addi-
tional real-time extensions [6] of the POSIX standard for
portable operating system interfaces (later included in the
unified version of the standard [7]), it was defined with a set
of consumption and replenishment rules, intended to allow
for a feasible implementation in the context of a real-time
operating system (RTOS). Unfortunately, except for some
specific cases, the new rules had the same problem of the
original sporadic server definition that could cause preemp-
tions to occur too early [18]. Recently, in [25], a new set of
rules has been proposed in order to fix the original POSIX
sporadic server problem while maintaining its main value,
the simplicity of its implementation.

In the next section, the sporadic server proposed in [25]
is adapted and optimized for the case of fixed priority net-
works. To simplify the implementation, the presented ap-
proach takes advantage of the discrete nature of the network
packets and considers that the capacity chunks used in the
sporadic server are always of size one. This allows to create
a capacity queue of fixed size, equal to the number of pack-
ets represented in the budget of the sporadic server. Each
packet in the capacity queue is annotated with its replen-
ishment time. This simplifies the budget arithmetics and
eliminates the need to introduce optimizations to limit the
fragmentation of the capacity.

3. Network Sporadic Server algorithm
The proposed network sporadic server policy is based

primarily on two parameters: the replenishment period and
the initial transmission capacity. The replenishment period
is called repl period and is measured as an absolute time.
The initial transmission capacity is called the init budget
and is an integer number of network packets of bounded
size. As shown in Fig. 2, the network sporadic server policy
is used to schedule a stream of messages that are sent from
a specific sender node in the system, through the network.
The destination node of these messages is any node that is
reachable in a single hop. Messages to be sent are submitted
by the application and stored in a transmission queue until
they are sent. Messages in this queue fit into one packet,
but a fragmentation layer is provided outside the sporadic
server implementation if larger messages are required.

Fig. 3 shows the architecture of the network sporadic
servers. For each sporadic server the system maintains in
the sender node a capacity queue, with transmission capac-
ity chunks. The size of the queue is equal to init budget.
Each chunk represents a transmission capacity of one

Figure 3: Network Sporadic Server

packet, and contains a replenishment time, which is an ab-
solute time after which the capacity may be consumed. Ini-
tially, all the chunks in the queue have a replenishment time
equal to the time at which the queue is initialized. In addi-
tion, the system keeps one value associated with each spo-
radic server: an absolute time called the activation time. Fi-
nally, the system has a conceptual replenishment timer as-
sociated with each sporadic server.

The priority assigned to messages sent though a sporadic
server is determined in the following manner: if the replen-
ishment time of the head of the capacity queue is equal to
or earlier than the current time, the server is considered
to have execution capacity available, so it is assigned the
priority specified by normal priority, and its replenishment
timer is disarmed; otherwise, the assigned priority shall be
low priority, and the replenishment timer is armed to expire
at the replenishment time of the head of the capacity queue.
The modification of the capacity queue and, consequently
of the assigned priority, is done as follows:

1. Each time the server is made ready at the nor-
mal priority level, either because a new message ar-
rived at the transmission queue while it was empty
(path (a) in Fig. 3) or because the replenishment timer
expired and the transmission queue is not empty (path
(b)), the time at which this operation is done is stored
in the activation time

2. When a message is sent at the normal priority level a
replenishment operation is performed (path (c)), as de-
scribed in 3. Then, if the replenishment time of the
new head of the capacity queue is larger than the cur-
rent time, the server is assigned the low priority and
the replenishment timer is armed to expire at the re-
plenishment time of the head of the capacity queue.

3. Each time a replenishment operation is performed the
head of the capacity queue is removed from the queue
and reinserted at the tail with a replenishment time
equal to the maximum of the activation time and its
current replenishment time, plus repl period (see path
(c) in Fig. 3).

Figure 4: Scheduling sequence using the network sporadic server

4. When the replenishment timer expires the server is as-
signed the normal priority level.

3.1. Example
The following example illustrates the presented network

sporadic server algorithm. Consider a system with three
periodic message streams with parameters shown in Table
1, with deadline-monotonic priority ordering. Suppose that
m2 is a network sporadic server to transmit aperiodic mes-
sages. The sporadic server is given a initial transmission
capacity of C2 = 20 packets, and a replenishment period
T2 = 50 time units. For simplicity, the transmission time of
one packet is supposed to take one time unit.

Table 1: Periodic message streams

Message Ci Ti Di

m1 10 200 20
m2 20 50 50
m3 50 200 100

Fig. 4 shows a transmission sequence scheduled under
the network sporadic server policy defined in this paper. It
also shows the evolution of the replenished time value in the
head and tail of the capacity queue, the activation time vari-
able associated to the server, the number of packets in the
transmission queue, the current priority of the server, nor-
mal (N) or low (L) and the status of the replenishment timer
which can be armed (1) or disarmed (0). The example is
similar to the one used in [25] to illustrate the correction of
the premature replenishments defect in the original POSIX
sporadic server.

4. Implementation
The network sporadic server policy defined in Sec. 3 has

been implemented on real hardware. As a relevant exam-
ple of fixed priority networks, the Controller Area Network
(CAN) [2] was chosen. CAN has been used extensively in
the automotive industry to connect Electronic Control Units
(ECUs) using a shared bus. CAN features non-preemptive
frame transmission and priority-based arbitration through

Figure 5: Implementation layers

a bit dominance protocol which enables bounded latencies
that can be analyzed through real-time schedulability the-
ory. Popularity of CAN has reached other sectors such as
industrial control applications or medical equipment.

Fig. 5 shows the main elements of the implementation.
The architecture was implemented on MaRTE OS [11], a
hard real-time operating system that follows the Minimal
Real-Time POSIX.13 subset and provides an easy-to-use
and controlled environment to develope multi-thread real-
time applications. The core of MaRTE OS is written in Ada
language, and it supports mixed-language applications in
Ada, C and C++. In this study, MaRTE OS was extended
with a driver that supports the NXP SJA1000 chipset [8], a
stand-alone controller for CAN commonly used within au-
tomotive and general industrial environments. The driver
provides a POSIX character interface (i.e., open, read,
write, etc.). In addition, several hooks can be installed
inside the driver through the ioctl system call.

The implementation of the network sporadic server exe-
cutes on top of the MaRTE OS interface. The main sources
of overhead introduced by the network sporadic servers,
compared to using the native CAN protocol, are the follow-
ing:

• The replenishment operations (see path (c) in Fig. 3)
which are executed every time a CAN frame is sent.
A hook is installed in the CAN bus driver, through the
ioctl system call, in order to be notified about the
transmission of a CAN frame.

• A replenishment thread, which waits for expirations of
the replenishment timers, modifies the priority of the
server and updates the activation time.

In addition, as shown in Fig. 5, a previously presented
high-level protocol for CAN (CAN-RT-TOP [19]) was
adapted to send messages through the developed network
sporadic server. Details about the adaptation of the proto-
col and its source code, distributed under the GNU/GPL v2
license, can be obtained at [4].

5. Evaluation
This section presents evaluation results of the network

sporadic server presented in this paper. The evaluation en-
vironment consisted of nodes equipped with AMD Duron
800 Mhz processors, 256 MB RAM memory and Adlink
PCI-7841 CAN bus cards [1], which are based on the

 0

 5

 10

 15

 20

 25

 30

 35

 40

 371 372 373 374 375 376 377 378 379

F
re

qu
en

cy

8-bytes message round trip in µs

Fixed priorities
Sporadic server

Figure 6: 8-bytes message round-trip measures

NXP SJA1000 controller. The CAN bus was configured to
1Mbps and CAN 2.0B mode. MaRTE OS version 1.8 was
built, using the AdaCore GNAT/GPL 2007 (gcc 4.1.3) com-
piler, with default options which disable assertions, inlines
code and perform some optimizations for targets with Local
APIC.

5.1. Message round-trip latency measures
In order to measure the influence of the network sporadic

server on the end-to-end latency of the message streams,
two nodes were connected through the CAN bus and pro-
grammed to send query-reply messages continuously un-
der two scenarios: using fixed priorities and using the pro-
posed network sporadic server. Each measure, defined as
a round-trip measure, was taken from the instant when the
message was sent and the moment when the reply was re-
ceived. Measures were repeated for 100 times for different
message sizes.

Table 2: Maximum round-trip measured values

Bytes Fixed Priorities Sporadic Server
8 0.375 ms 0.379 ms
32 1.355 ms 1.372 ms
64 2.643 ms 2.673 ms
512 20.78 ms 21 ms
1488 60.37 ms 61.03 ms

Fig. 6 shows the comparison of the measured values
when using 8-bytes messages, which fit in the maximum
size of a CAN frame and therefore do not require fragmen-
tation. Table 2 shows the comparison of the maximum mea-
sured values for several message sizes. The overhead intro-
duced by the network sporadic server is rather small com-
pared to the transmission times.

5.2. Overhead in the CPU
Table 3 shows execution-time measures of the main

sources of processor overhead caused by the sporadic server
policy. The first row represents the overhead associated to a
replenishment operation. The second row represents the ex-
ecution time of the body of the replenishment thread which
is executed on every replenishment timer expiration.

In order to better evaluate the influence that the mea-
sured values, shown in Table 3, represent on the total CPU
overhead, simulations of the network sporadic server exe-

Figure 7: Simulation procedure for the estimation of the CPU
overhead under different configurations

Table 3: Sporadic servers measured CPU execution time (in µs)

Measure Min Avg Max
Repl. Program 0.78 0.81 2.34
Repl. Thread 2.69 2.88 3.52

cution have been performed under different configurations.
Fig. 7 depicts the procedure followed during the simula-
tions. First, 1000 random aperiodic events (packets arriv-
ing to the transmission queue) are generated according to
an exponential distribution. Then, packets are sent using
the presented sporadic server policy. Each time a replen-
ishment operation or a timer expiration occurs, the corre-
sponding CPU overhead is accounted (maximum measured
overhead values, 2.34µs and 3.52µs, were used). When all
packets are sent, the total overhead time is divided by the
total time to get the overhead as a percentage. The sporadic
server was configured with an utilization equal to the mean
of the packet inter-arrival instants. It has the highest prior-
ity in the network (to evaluate its performance in isolation)
and it never transmits at low priority (i.e., because there are
always lower priority messages being transmitted). For sim-
plicity, each packet is supposed to occupy the bus for a con-
stant time of 1 ms. Simulations were repeated for different
inter-arrival rates and different server budget/period config-
urations.

Table 4 contains the overhead results for several inter-
arrival rates (defined by 1/λ) of aperiodic events. The over-
head is rather small and can be decreased even more by con-
figuring the sporadic server appropriately. Fig. 8 separates
the overhead caused by replenishment operations from the
timer expirations. Replenishment operations cause a con-
stant overhead since they appear each time a packet is sent.
On the other hand, timer expirations overhead can be re-
duced considerably by increasing the capacity of the server.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0 0.05 0.1 0.15 0.2 0.25 0.3

C
P

U
 O

ve
rh

ea
d

(%
)

Server utilization (C/T) with T=1/λ

repl. ovhd 1/λ=20ms
timer ovhd 1/λ=20ms
repl. ovhd 1/λ=30ms
timer ovhd 1/λ=30ms
repl. ovhd 1/λ=40ms
timer ovhd 1/λ=40ms
repl. ovhd 1/λ=50ms
timer ovhd 1/λ=50ms

Figure 8: replenishments overhead vs. timer overhead

Table 4: Simulated sporadic server CPU overhead (in %) with pa-
rameters Budget = n packets and Period = n · 1

λ

1/λ n = 2 n = 4 n = 6 n = 8 n = 10

20ms 0.0286 0.0284 0.0275 0.0269 0.0266
50ms 0.0114 0.0112 0.0111 0.0110 0.0109
250ms 0.0023 0.0023 0.0022 0.0022 0.0022
1000ms 0.0005 0.0005 0.0005 0.0005 0.0005

6. Related work
The leaky bucket concept used in network traffic shaping

[17, 16] is similar to the concept of server-based schedul-
ing. The leaky bucket algorithm is useful to control that the
traffic is sent to the network at a constant rate. However,
it does not handle efficiently the available bandwidth since
the leak rate is a fixed parameter and, there may be instances
when the network is unused while there are packets pend-
ing to be sent. The benefits of the network sporadic server
when compared to the leaky bucket are a higher capacity,
a shorter response time and minimal interference on lower
priority tasks, because the available execution capacity is
usable without delay at the specified priority level, and be-
cause the effects on lower priority tasks are no worse than
those of an equivalent periodic task with an execution time
equal to the execution capacity, and period equal to the re-
plenishment period.

In [21], server-based mechanisms based on dynamic pri-
orities (EDF) were proposed for scheduling the CAN bus
[2]. The algorithms proposed in that work are based on a
master-slave architecture where nodes are synchronized to
a trigger message sent periodically by the master. Although
the use of dynamic priorities may allow optimal resource
utilization, the overhead generated by the necessary syn-
chronization messages and the scheduling algorithm must
be taken into account. The benefits of the network sporadic
server when compared to that work, are the ability to pro-
vide faster response times while minimizing the overhead
and the fact that it does not require a complicated imple-
mentation.

In addition, the network sporadic server can be inte-
grated with previously presented protocols that organize the
bus time as a sequence of time- and event-triggered win-
dows. Fig. 9 depicts an FTT-CAN [15] cycle, divided into
synchronous and asynchronous windows. The use of net-

Figure 9: Network sporadic server integrated with FTT-CAN

work sporadic servers in the asynchronous window makes
it possible to provide bandwidth isolation between aperi-
odic message streams. For instance, if a software babbling
idiot failure [13] occurs, the messages transmitted by the
misbehaving task would be shaped by the server and would
not affect the deadlines of other message streams with lower
priority.

7. Conclusions
The sporadic server is a very interesting scheduling pol-

icy for handling resource reservations, which are key to
smoothing the integration stage of software components in
complex distributed hard real-time systems. This paper de-
scribed how to adapt a recently corrected version of the
POSIX sporadic server, originally intended for scheduling
tasks, to the case of fixed-priority networks. The algorithm
was optimized to take into account the discrete nature of
the network packets. An implementation on the CAN bus
was also described together with its evaluation. The mea-
sured performance shows that bandwidth isolation can be
achieved at rather low overhead both on the processor and
the network resources. The algorithm can be applied to
other networks where message streams compete for the me-
dia access through fixed priorities. For example, a porting
exists to provide reservations on the RTEP protocol [20].
The work presented in this paper has been used in [22, 5] to
implement contract-based network bandwidth reservations
in the context of a flexible scheduling framework.

References
[1] ADLINK Website. http://www.adlinktech.com/.
[2] CAN Specification Version 2.0. 1991, Robert Bosch GmbH,

Postfatch 30 02 40, D-70442 Stuttgart.
[3] FlexRay Consortium. http://www.flexray.com/.
[4] FRESCOR Fieldbus Systems (D-ND1). http://www.

frescor.org/index.php?page=publications.
[5] FRESCOR Website. http://www.frescor.org.
[6] IEEE Std. 1003.d-1999. Information Technology -Portable

Operating System Interface (POSIX)- Part 1: System Ap-
plication Program Interface (API) Amendment: Additional
Realtime Extensions [C Language]. The Institute of Electri-
cal and Electronics Engineers.

[7] ISO/IEC 9945-1:2003. Standard for Information Technol-
ogy -Portable Operating System Interface (POSIX).

[8] NXP Website. http://www.nxp.com.
[9] L. Abeni and G. Buttazzo. Integrating multimedia applica-

tions in hard real-time systems. In RTSS ’98: Proceedings of
the IEEE Real-Time Systems Symposium, pages 4–13, Wash-
ington DC, USA, 1998. IEEE Computer Society.

[10] A. Albert. Comparison of Event-Triggered and Time-
Triggered Concepts with Regard to Distributed Control

Systems. In Proceedings of Robert Bosch GmbH Em-
bedded World, pages 235–252, Nuremberg, February
2004. http://www.semiconductors.bosch.de/
pdf/embedded_world_04_albert.pdf.

[11] M. Aldea and M. González Harbour. MaRTE OS: An Ada
Kernel for Real-Time Embedded Applications. In Pro-
ceedings of the International Conference on Reliable Soft-
ware Technologies, Ada-Europe-2001, Leuven, Belgium,
May 2001. Lecture Notes in Computer Science. http:
//marte.unican.es.

[12] R. J. Bril, J. J. Lukkien, and W. F. J. Verhaegh. Worst-
case response time analysis of real-time tasks under fixed-
priority scheduling with deferred preemption revisited. In
ECRTS ’07: Proceedings of the 19th Euromicro Conference
on Real-Time Systems, pages 269–279, Washington, DC,
USA, 2007. IEEE Computer Society.

[13] I. Broster and A. Burns. The Babbling Idiot in Event-
triggered Real-time Systems. In Proceedings of the Work-
In-Progress Session, 22nd IEEE Real-Time Systems Sympo-
sium, pages 25–28, 2001.

[14] G. C. Buttazzo. Hard Real-Time Computing Systems.
Kluwer Academic Publishers, 2002.

[15] J. Ferreira, P. Pedreiras, L. Almeida, and J. A. Fonseca. The
FTT-CAN Protocol for Flexibility in Safety-Critical Sys-
tems. IEEE Micro, 22:46–55, 2002.

[16] E. Hernández and J. Vila. A new approach to optimize
bandwidth reservation for real-time video transmission with
deterministic guarantees. Real-Time Imaging, 9(1):11–26,
2003.

[17] C. F. John Evans. Deploying IP and MPLS QoS for Multi-
service Networks: Theory and Practice. Morgan Kaufmann
Publishers, 2007.

[18] J. Liu. Real-Time Systems. Prentice Hall, 2000.
[19] J. López Campos, J. J. Gutiérrez, and M. González Har-

bour. CAN-RT-TOP: Real-Time Task-Oriented Protocol
over CAN for Analyzable Distributed Applications. In Pro-
ceedings of the 3rd International Workshop on Real-Time
Networks (formerly RTLIA), Catania, Sicily (Italy), 2004.

[20] J. M. Martı́nez and M. González Harbour. RT-EP: A Fixed-
Priority Real Time Communication Protocol over Standard
Ethernet. In 10th International Conference on Reliable Soft-
ware Technologies, Ada-Europe, pages 180–195. Springer,
June 2005.

[21] T. Nolte, M. Nolin, and H. Hansson. Real-Time Server-
Based Communication for CAN. IEEE Transactions on In-
dustrial Informatics, 1(3):192–201, August 2005.

[22] D. Sangorrı́n, M. González Harbour, H. Pérez, and
J. Javier Gutiérrez. Managing Transactions in Flexible Dis-
tributed Real-Time Systems. In Proceedings of the 15th In-
ternational Conference on Reliable Software Technologies,
Ada-Europe 2010, Valencia, Spain, June 2010.

[23] J. Scarlett and R. Brennan. Re-evaluating Event-Triggered
and Time-Triggered Systems. In 11th IEEE International
Conference on Emerging Technologies and Factory Automa-
tion, ETFA ’06, pages 655–661, Sept. 2006.

[24] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic Task Schedul-
ing for Hard-Real-Time Systems. In The Journal of Real-
Time Systems 1(1), pages 27–60. Kluwer Academic Publish-
ers, 1989.

[25] M. Stanovich, T. P. Baker, and M. González Harbour. De-
fects of the POSIX Sporadic Server and How to Correct
Them. In Proceedings of the 16th IEEE Real-Time and
Embedded Technology and Applications Symposium, RTAS
2010, Stockholm, Sweden, April 2010.

http://www.adlinktech.com/
http://www.flexray.com/
http://www.frescor.org/index.php?page=publications
http://www.frescor.org/index.php?page=publications
http://www.frescor.org
http://www.nxp.com
http://www.semiconductors.bosch.de/pdf/embedded_world_04_albert.pdf
http://www.semiconductors.bosch.de/pdf/embedded_world_04_albert.pdf
http://marte.unican.es
http://marte.unican.es

	1 . Introduction
	2 . Server-based scheduling in networks
	2.1 . Sporadic server

	3 . Network Sporadic Server algorithm
	3.1 . Example

	4 . Implementation
	5 . Evaluation
	5.1 . Message round-trip latency measures
	5.2 . Overhead in the CPU

	6 . Related work
	7 . Conclusions

