
Enhancing a Hard Real-Time Ethernet Protocol to support

Distributed Contract-Based Bandwidth Reservation

Daniel Sangorrín, Michael González Harbour

Grupo de Computadores y Tiempo Real

Universidad de Cantabria

{daniel.sangorrin,mgh}@unican.es

Abstract

This paper describes the design, implementa-
tion and evaluation of a set of new services for
a token-based hard real-time Ethernet proto-
col. The new services provide support to im-
plement bandwidth reservations in the context
of a contract-based scheduling framework.

1 Introduction

FRESCOR (Framework for Real-time Embed-
ded Systems based on COntRacts) [1] is an
EU project with the objective of providing en-
gineers with a scheduling framework that rep-
resents a high-level abstraction that lets them
concentrate on the speci�cation of the appli-
cation requirements. Key in FRESCOR is the
concept of an integrated view of the di�er-
ent resources involved in a transaction, like
the processor, network, memory or disk re-
sources, that eases the deployment of complex
distributed applications with a variety of real-
time requirements, including hard real-time
behavior as well as soft requirements.
The framework is based on the notion of

contracts, which are negotiated between the
application and the system.
In order to integrate a new network proto-

col into the framework, an adaptation layer in

1This work has been funded in part by the Plan
Nacional de I+D+I of the Spanish Government un-
der grant TIC2005-08665-C03 (THREAD project),
and by the European Union's Sixth Framework
Programme under contract FP6/2005/IST/5-034026
(FRESCOR project). This work re�ects only the au-
thor's views; the EU is not liable for any use that may
be made of the information contained herein.

charge of negotiations of contracts and creat-
ing virtual resources, to enforce the contracted
bandwidth parameters, must be implemented.
This adaptation layer requires some services
from the underlying protocol:

• A way to control and analyze the tra�c

• A way to reliably spread the results of a
negotiation

• A way to negotiate in mutual exclusion

The goal of this paper is to describe our so-
lution for these requirements using the hard
Real-Time Ethernet Protocol called RT-EP
[2].
The rest of the paper is organized as fol-

lows. In Section 2 we provide details about
related works on the matter. Section 3 de-
scribes the solution for the control and ac-
counting of network tra�c through network
scheduling servers and �xed priorities. Sec-
tion 4 shows the implementation of a reliable
multicast mechanism that solves the require-
ment to reliably spread the results of a nego-
tiation. Section 5 presents a solution for the
requirement to negotiate in mutual exclusion,
by adding distributed mutexes to the protocol.
Finally, section 6 shows performance metrics
and section 7 gives our conclusions and future
work.

2 Related work

2.1 RT-EP

RT-EP is a software Ethernet protocol for
hard real-time applications where a �xed pri-



ority can be assigned to each packet. RT-EP
organizes stations in a logical ring and oper-
ates in two phases [2]. In the arbitration phase
a RT-EP token packet is circulated in the ring
to �nd out the station with the highest pri-
ority message. In the transmission phase, the
winner is granted the right to transmit.
RT-EP provides the ability of recovering

from some fault conditions [2]. The recov-
ery method is based on simultaneous listening
to the media, in a promiscuous mode (hubs)
or using broadcast addresses (switches). Each
station, after sending a packet, listens to the
media for an acknowledge, which is implicit
in the correct transmission of the next frame
by the receiving station. If no acknowledge is
received after a timeout, the station assumes
that the packet is lost and retransmits it.

2.2 FTT-SE FNA

Another protocol that is being integrated into
the FRESCOR framework is FTT-SE [3]. As
FTT-SE is amaster-slave protocol, the control
and analysis of the tra�c is done by the master
using a table, and mutual exclusion is provided
through ordinary mutexes.
Compared to that work, here we address

the challenge of implementing the same band-
width reservation capabilities using a fully dis-
tributed approach.

2.3 DFSF

In a previous project [4], we made a proof-
of-concepts implementation of a distributed
bandwidth reservation mechanism by embed-
ding the negotiation process inside RT-EP [5].
In that work, negotiations were not required
to have hard deadlines because they were sup-
posed to happen only sporadicly.
Compared to that work, in this paper we

implement a hard real-time solution. In ad-
dition, our solution is easier to mantain and
extend because it is based on a layered archi-
tecture approach. Other enhancements over
this previous work are the addition of real-
time reliable multicast capabilities, real-time
distributed mutexes, which are available from
the application and the posibility of combining

scheduling servers, presented previously in [4],
with regular �xed-priority messages.

3 Server-based schedulers and �xed

priorities for networks

3.1 Introduction

Server-based scheduling techniques have been
used for a long time, typically associated with
processor time scheduling, to limit the band-
width assigned to a particular computation or
set of computations while also guaranteeing
some minimum level of service. Servers such as
the periodic server [6], the sporadic server [7],
or the constant bandwidth server are examples
of such scheduling policies.

The concept of server is also applicable to
networks. For example, the leaky bucket con-
cept used in network tra�c shaping [8] is sim-
ilar to the sporadic server; EDF-based servers
[9] have been successfully applied to the CAN
bus.

When a server is used to schedule a network
the concept of execution time must be mapped
into transmission time. In most networks, in-
formation is sent in units called packets which
are usually non preemptible and therefore con-
stitute the minimum e�ective budget. There-
fore, in a network the most natural unit for
measuring budget is a number of packets. In
RT-EP the server's budget will be consumed
one packet at a time. The non preemptability
property of a single packet must be taken into
account as a bounded blocking e�ect on higher
priority servers.

In [5], server-based schedulers for networks
were implemented. Since RT-EP packets use
�xed-priorities, a natural choice was to base
the schedulers on the sporadic server policy
[7]. Fig. 1 shows the architecture of the im-
plementation of servers in RT-EP. Each server
is assigned an initial transmission capacity
(in network packets), a replenishment period
(a time interval) and a priority. Internally,
servers keep track of the current available bud-
get and the count of packets pending to be
sent. All this information is kept in a table at
the sending node.

48 II Simposio sobre Sistemas de Tiempo Real



Servers+Create/Delete/Update()+Set_Priority()+Get_Server_Info()+Get_Max_Priority_Server()+Packet_Enqueued()+Packet_Sent()

Priority_Queues<MxServers,Id>Repl_Operation:Amount:Network_Budget:At_Time:TimeQueues<Size,Repl_Operation>
Priority_Queues<MxServers,Id,Time>

Server_Info:Mx_Budget:Network_Budget:Repl_Period:Time_Span:Priority:Priority:Current_Budget:Network_Budget:Packets_Pending:Network_BudgetGeneric_Table<Server_Info,Id>1:Servers_Table
1:Servers_Prio_Queue

1
1..MxServers:First_Repl_Times
:Repl_Queues

Figure 1: RT-EP Network Servers

3.2 Our enhancement

The extension that we have made to RT-EP,
allows messages to be sent through a spo-
radic server or using plain �xed priorities in
the same network. For the plain �xed priority
messages, there is a priority queue (see Fig. 2),
called the FP transmission queue, that stores
the packets pending to be sent. Packets sent
through a sporadic server are stored in a FIFO
queue associated with each server, called the
server transmission queue (see Fig. 2). This
architecture allows engineers to design several
priority bands for using �xed priorities and
other bands for servers, and schedule them at
the same time. It also eases the maintenabil-
ity of the protocol by eliminating the need of
branching the RT-EP implementation in two
di�erent versions.
When the RT-EP main communication task

needs to �nd out which is the packet with
the highest priority, it executes the possible
pending replenishment operations and then it
checks both priority queues, the servers prior-
ity queue and the FP transmission queue, to
�nd out which is the pending packet with the
highest priority. If the packet is from a server,
it �nds it in the corresponding server trans-
mission queue. In Fig. 2 we see the queues
involved and another one for mutexes that will
be explained later.
In the receiving end, RT-EP stores the mes-

sages in priority reception queues, so that they
can be retrieved in priority order, each asso-
ciated with a channel number. Note that to
control the usage of the network we only need

control it in the sender endpoint.

4 Real-Time Reliable Multicast

4.1 Introduction

A reliable multicast service must ensure that
packets are delivered to receivers from the mul-
ticast group in a bounded amount of time, free
of errors and in the order they were sent by the
source.
The most typical approach to reliable mul-

ticast is the sender-initiated approach, where
the sender maintains the state of all the re-
ceivers from whom it has to receive acknowl-
edgments (acks). But this technique has a
scalability drawback, commonly known as the
acknowledgement implosion problem. [10]
A receiver-initiated approach, where re-

ceivers request the sender the retransmission
of packets that are missing, could be more
scalable but requires in�nite bu�ers to prevent
deadlocks. [10]
In [10] two other solutions to the acknowl-

edgment implosion problem that operate cor-
rectly with �nite bu�ers are described. Tree-
based protocols organize the receivers in a tree
and send acks along the tree. And ring-based
protocols where the basic premise is to have
only one token site responsible for acknowl-
edging packets back to the source. These so-
lutions apply to generic protocols rather than
to speci�c implementations so a direct imple-
mentation on RT-EP would be quite ine�cient
compared to the approach presented in this
paper.

Protocolos de comunicación 49



Figure 2: RT-EP Packet Bu�ers

4.2 Our approach

An option available in RT-EP to avoid the ac-
knowledgment implosion e�ect of the sender-
initiated approach is to take advantage of the
RT-EP arbitration phase to receive from all
the receiving nodes a negative acknowledg-
ment (NACK) to a multicast message.

8 14 13 33 4

Pre EthHd TokenHd Spare FCS

Figure 3: RT-EP Token packet

In this work we have chosen another ap-
proach, that takes the premise of ring-based
protocols [10], where only one token site is re-
sponsible for acknowledging packets. Our ap-
proach goes one step further by distributing
the responsibility of retransmissions among all
the nodes in the ring.

The key of our approach consists on sending
multicast information in the spare bytes of the
token packets which, due to the Ethernet min-
imum frame size have some spare transmission
capacity (33 bytes, see Fig. 3). In addition,
we can take advantage of the mentioned built-
in fault handling mechanisms present in the
protocol to ensure automatic retransmission of
faulty packets. The main �elds of a multicast
packet (which would go in the spare bytes of
the RT-EP Token) are:

• MType: Multicast Type selects the mul-
ticast operation: an ordinary multicast
message, a mutex lock or a mutex unlock
operation

• MA: Multicast Address: a static table,
similar to the ring con�guration table,
states which nodes belong to a multicast
group

• Chan: the destination channel

• Prio: the priority of the packet

• Len: the length of Info (in bytes)

• Inf: the information itself

• Also, the source address is implicit in the
Token Master �eld of the RT-EP header

Compared to the �rst option the available
capacity for information is smaller because we
make use of the spare bytes in the token. But
on the other hand, this approach provides bet-
ter response times, because retransmissions
are handled immediately, and it is simpler.
Note that in the �rst option new functional-
ity should be added to receivers so that they
could discard multicast retransmissions that
had already been received.
Summing up the multicast procedure, when

a node wants to send a multicast packet it en-
queues the message as a normal message with

50 II Simposio sobre Sistemas de Tiempo Real



the desired priority, but specifying as the des-
tination address a multicast address. Then it
competes in the arbitration phase of the pro-
tocol like a normal packet. When it is granted
with the right to transmit, instead of send-
ing a normal message, a new arbitration phase
is initiated and the multicast message is sent
through the token. Thanks to the reliability
of the token transmission, which used implicit
acknowledgements and a timeout-based fault
handling mechanism, the protocol ensures that
the multicast message is received by all the
nodes and free of errors, up to the same relia-
bility level as the normal packets have.

5 Real-Time Fault-Tolerant Dis-

tributed Mutexes

5.1 Introduction

Over the last decades there has been a lot of
work in the �eld of distributed mutual exclu-
sion. Some helpful works, [11] [12] [13], have
tried to categorize and compare those algo-
rithms. Probably, the most straightforward
approach to achieve mutual exclusion is to use
a centralized coordinator that serves requests
to enter a critical section. The problem of
this approach is that the coordinator repre-
sents a single point of failure and it can be-
come a performance bottle-neck [14]. The dis-
tributed approach is certainly where most of
the research has been done. Distributed algo-
rithms are usually divided in Token-based and
Non-Token-based algorithms.

In a Token-Based algorithm, the right to en-
ter a critical section is equivalent to the posses-
sion of a unique abstract object, called a To-
ken. How this Token is obtained di�erentiates
the algorithms. One of the simplest Token-
based algorithm uses a logical ring where a
Token is passed from process to process in a
single direction [15] [13]. Another interesting
Token-based algorithm was proposed in [16]
where in order to get the token, a process sends
a request with a sequence number to all other
processes and then waits for the arrival of the
token message.

In most of the Non-Token-based algorithms,

also called Permission-based algorithms, the
right to enter a critical section is formalized by
receiving permission from a set of nodes in the
system. In a previous work [17], Sanders made
an abstraction information structure that gen-
eralizes this approach. Most of these algo-
rithms (i.e.: [18]) use logical clock timestamps
[19] to order the requests.

Other aspects that di�erenciates these al-
gorithms are: static vs dynamic, logical-
structure-based vs broadcast-based. Some of
these algorithms have been extended to be
fault-tolerant and suitable for real-time sys-
tems.

Our requirements on the mutual exclusion
algorithm that we are looking for are rather
hard. It must provide bounded times on the
lock and unlock operations, be fault-tolerant
to node failures or lost packets, be simmetric in
the sense that there is no node more important
than the rest, simple and e�cient.

On the other hand, we have an advantage
that we may be able to exploit. In RT-EP,
messages from di�erent nodes cannot be trans-
mited asynchronously; there is a Token that
allows a single node to transmit at each time.

In [5], a token-based algorithm similar to
the mentioned for logical rings [15] was used
to implement mutual exclusion. Some extra
�elds were introduced in the header of every
packet of the protocol to declare the status of
a single distributed mutex. In this approach,
when a node wants to lock the mutex, it waits
for the token and checks the mutex status �eld.
If the mutex is free, it locks it. The problem
of this approach is that even when there is no
process wanting to lock the mutex, the infor-
mation is always circulated in every packet.
Another problem is that it doesn't provide
scalability because more mutexes would mean
increasing the number of extra �elds. Also,
as RT-EP does not conform a perfect circu-
lar ring, the algorithm does not ful�l the non-
starvation property.

5.2 Our approach

In this paper, we study, implement and com-
pare two alternative algorithms:

Protocolos de comunicación 51



The �rst one is a permission-based algo-
rithm that presents similarities to the gener-
alized mutual exclusion algorithm described
in [17] but instead of using timestamps we ex-
ploit the implicit transmission token present
in RT-EP to order mutex operations accord-
ing to a priority. When a process wants to lock
a mutex, it enqueues a REQUEST message
with a priority in the RT-EP queues. Eventu-
ally, it will win the arbitration phase and the
REQUEST will be sent in the spare bytes of
the RT-EP token packet. The rest of the pro-
cesses, receive the REQUEST in the Token.
If one of them is holding the mutex, it will
set a GRANT bit to FALSE. When the token
packet comes back to the sender, it will look at
the GRANT �eld. If it is True, it will become
the new holder of the mutex. If not, it will
wait for a RELEASE message that will be sent
when the node holding the mutex executes an
unlock. This approach solves the problem of
scalability because a high number of mutexes
can be used. It also helps in bounding the
mutex locking time because locking operations
can be priorized. It is simmetric, simple and
e�cient. Also, lost packets and node faults
are handled by RT-EP. In particular, when a
node is missing, all nodes are informed about
it [2] and therefore we can wake up requests
that were enqueued for a RELEASE message.
On the other hand, there is an e�ciency draw-
back in the algorithm. When there is a RE-
LEASE message, all the enqueued REQUESTs
are awaken to �ght again through priorities for
getting the Token. An alternative would be
that the node holding the Mutex, keeps track
of the received REQUESTS and, send them
later with the RELEASE message that would
only awake the highest priority petition. This
solution is similar to the one proposed in [16]
but it is not scalable because you need to send
an array of data that depends linearly on the
number of nodes.

The second algorithm overcomes all these
problems and ful�ls all the requirements. It is
a token-based algorithm that exploits the RT-
EP transmission token to be more e�cient. In
this algorithm, each node has local informa-
tion of the distributed mutex: the id, whether

it is locked or not, and the holder. When a pro-
cess wants to lock a mutex it will add this com-
mand with a priority to the RT-EP queues.
In the arbitration phase, when the node must
check if it has a higher priority than the one
received in the token, it checks all the queues
that we can see in Fig. 2. The Mutex prior-
ities are only taken into account if the Local
mutex indicates that it is not locked by some-
one else. Eventually it will win the arbitration
phase, lock the mutex and notify the rest of
the processes (during the following arbitration
phase), which will update their local variables
accordingly. For unlocking the mutex, a simi-
lar operation will take place but with an Un-
lock message. As we can see, only TWO RT-
EP messages are needed to lock and unlock a
mutex. Furthermore, from the analysis point
of view they behave just like normal messages
so it simpli�es the design a lot. Like in the
previous alternative, we can make use of the
built-in fault-handling mechanisms. When a
node fails, all nodes will be noti�ed and they
will check if the failing node had any mutex
locked, and will update their local variables
accordingly.

In both algorithms, for the case in which
two nodes compete for the mutex with the
same priority, the order is not de�ned. This
is typically addressed using logical clocks to
timestamp [19] the requests. In our case, RT-
EP sequence numbers could be used instead,
but since for hard real-time analysis only the
worst case scenario is relevant, this timestamp-
ing procedure has not been implemented in the
protocol.

6 Performance and measurements

To measure the performance of these new ser-
vices we have used a time measurement library
that stores the worst, average and best mea-
surements and sends them to a linux node pe-
riodically. The measurement platform is a ring
con�gured with two AMD Duron 800Mhz sta-
tions connected through a 100 Mbps Ethernet
switch. Since RT-EP does not provide a global
time basis, in order to measure the amount of
time to send a message we measure the time

52 II Simposio sobre Sistemas de Tiempo Real



Operations Worst(ms) Avg(ms) Best(ms)

Send+Receive a FP message in previous RT-EP 0.98 0.85 0.68

Send+Receive a FP message in new RT-EP 0.98 0.87 0.69

Send+Receive a SERVER + Low Prio FP messages 1.35 1.1 0.7

Send+Receive a FP + Low Prio SERVER messages 1.33 1.1 0.7

Send+Receive a SERVER message 0.98 0.86 0.7

Lock 1st Algorithm 1 0.8 0.5

Lock 2nd Algorithm 0.36 0.2 0.09

Unlock 1st Algorithm 0.5 0.4 0.2

Unlock 2nd Algorithm 0.37 0.24 0.1

Send+Receive a MULTICAST message 1.79 1.6 1.4

Token round using FP in previous RT-EP 0.37 0.36 0.36

Token round using FP in new RT-EP 0.38 0.37 0.37

required to send a packet, execute a handler
in the other node and receive an answer.

We see that the addition of servers to the
protocol does not a�ect the e�ciency of the
previous implementation with �xed priorities
(FP). Also, the arbitration phase remains with
similar timings. When we mix servers and
�xed priorities the timings are a bit higher (al-
though part of that time is due to low prior-
ity blocking times). Servers timings have been
measured without too many pending replen-
ishment operations and that is the reason they
are similar to FP timings. The good point is
that, as the new architecture is modular we
can remove the servers when we want to use a
static �xed priority RT-EP.

Regarding the metrics of the two mutual ex-
clusion algorithms proposed, we see in the ta-
ble that the second algorithm is slightly better
in performance. Both algorithms have good
timing properties when compared to other
algorithms found in the literature. This is
achieved because in RT-EP we can assume
that there cannot be asynchronous messages
being transmitted at the same time. The dif-
ference between the algorithms is that in case
of contention for locking the mutex, in the �rst
algorithm more messages are sent through the
network, with the associated overhead. On
the other hand, the �rst algorithm has a good
property when a node wants to join the net-
work because it does not need to update any
local variable.

The algorithm based on a token-ring used

in [5] would have similar metrics on average
but with the mentioned starvation issues.

7 Conclusion

The �xed-priority real-time ethernet proto-
col called RT-EP has been extended with the
addition of three new services: server-based
scheduling policy combined with �xed pri-
orities, reliable multicasts and real-time dis-
tributed mutexes. The new services have
been implemented and tested, and their per-
formance metrics show that the transmis-
sion times are very e�cient. These services
will allow us to support bandwidth reserva-
tions in a distributed contract-based schedul-
ing framework that is under development.
This framework, called FRESCOR, de�nes a
network adaptation layer in charge of nego-
tiating contracts and managing virtual net-
work resources that keep track of the network
resources consumed, and provide the neces-
sary quality of service guarantees for support-
ing both hard and soft real-time requirements.
The new RT-EP protocol will be one of the im-
plementations of this layer in FRESCOR.

References

[1] Frescor project home page.
http://www.frescor.org/.

[2] José María Martínez and M. González
Harbour. RT-EP: A Fixed-Priority Real

Protocolos de comunicación 53



Time Communication Protocol over Stan-
dard Ethernet. In 10th International
Conference on Reliable Software Tech-
nologies, Ada-Europe, pages 180�195.
Springer, June 2005.

[3] Ricardo Marau, Luís Almeida, Paulo Pe-
dreiras, M. González Harbour, Daniel
Sangorrín, and Julio M. Medina. Inte-
gration of a �exible network in a resource
contracting framework. In In Proc. of the
WiP session of the 13th IEEE Real-Time
and Embedded Technology and Applica-
tions Symposium (RTAS'07). IEEE, April
2007.

[4] M. Aldea et al. FSF: A Real-Time
Scheduling Architecture Framework. In
12th IEEE Real-Time and Embedded
Technology and Applications Symposium
(RTAS'06), pages 113�124, San Jose
(CA, USA), April 2006. IEEE.

[5] José María Martínez, M. González Har-
bour, Juán López Campos, J.Javier
Gutierrez, and Julio L. Medina. Adding
contract-based reservation services to a
Hard Real-Time Ethernet Protocol. In
4th International Workshop on Real-Time
Networks (RTN'05), Palma de Mallorca
(Spain), July 2005.

[6] Giorgio C. Buttazzo. Hard Real-Time
Computing Systems. Kluwer Academic
Publishers, 2002.

[7] B. Sprunt, L. Sha, and J.P. Lehoczky.
Aperiodic task scheduling for hard-real-
time systems. In The Journal of Real-
Time Systems, pages 27�60, Palma de
Mallorca (Spain), 1989. Kluwer Academic
Publishers.

[8] Clarence Fils�ls John Evans. Deploying
ip and mpls qos for multiservice networks:
Theory and practice. Morgan Kaufmann
Publishers, 2007.

[9] Thomas Nolte, Mikael Nolin, and Hans
Hansson. Real-time server-based commu-
nication for can. pages 353�372. 2006.

[10] Brian Neil Levine and J. J. Garcia-Luna-
Aceves. A comparison of reliable mul-
ticast protocols. Multimedia Systems,
6(5):334�348, 1998.

[11] M. Velazquez. A survey of distributed
mutual exclusion algorithms. In Technical
Report CS-93-116, Colorado State Uni-
versity, 1993.

[12] P. C. Saxena and J. Rai. A survey of
permission-based distributed mutual ex-
clusion algorithms. In Computer Stan-
dards and Interfaces Volume 25 Issue 2,
pages 159�181, 2003.

[13] George Coulouris et al. Distributed Sys-
tems: concepts and design 4th Ed. Addi-
son Wesley, 2005.

[14] Andrew S. Tanenbaum et al. Distributed
Systems: principles and paradigms. Pret-
ince Hall, 2007.

[15] G. LeLann. Motivation, objective, and
characteristics of distributed systems. In
Springer-Verlag, 1(1):1- 9, 1978.

[16] G. Ricart and A.k. Agrawala. Author re-
sponse to 'on mutual exclusion in com-
puter networks' by carvalho and rou-
cairol. In Communications of the ACM,
vol 26 no. 2, pages 147�148, 1983.

[17] Beverly A. Sanders. The information
structure of distributed mutual exclusion
algorithms. In ACM Trans. Comput.
Syst. 5(3), pages 284�299, 1987.

[18] G. Ricart and A.k. Agrawala. An optimal
algorithm for mutual exclusion in com-
puter networks. In Communications of
the ACM, vol 24 no. 1, pages 9�17, 1981.

[19] Leslie Lamport. Time, clocks, and the
ordering of events in a distributed system.
In Communications of the ACM Volume
21, Issue 7, pages 558�565. ACM Press,
1978.

54 II Simposio sobre Sistemas de Tiempo Real




