

Programa Oficial de Postgrado en Ciencias, Tecnología y Computación Máster en Computación Facultad de Ciencias - Universidad de Cantabria

Análisis de planificabilidad de un sistema de cálculo de orientación en tiempo real basado en GNSS

Autor:

María Campo-Cossío Gutiérrez

Director:

Michael González Harbour

Grupo de Computadores y Tiempo Real, Departamento de Matemáticas, Estadística y Computación Universidad de Cantabria

Octubre 2011

ÍNDICE

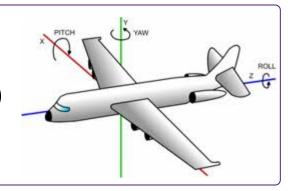
- 1. Introducción
- 2. Sistema de cálculo de orientación

- 3. Modelo del sistema
- 4. Análisis de planificabilidad
- 5. Conclusiones y trabajo futuro

Antecedentes:

Prototipo de sistema de cálculo de orientación basado en GNSS y apoyado por giróscopos MEMS.

- Desarrollado en colaboración entre:
 - Unidad Aeroespacial del CTC
 - Dpto. 'Electrónica y Computadores' de la UC
 - Dpto. 'Matemáticas, Estadística y Computación' de la UC



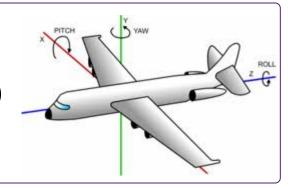
- Financiado por el Ministerio de Industria, Turismo y Comercio del Gobierno de España:
 - o "Desarrollo de un sistema de cálculo de orientación en tiempo real basado en GNSSs no dedicados" (2006-2007).
 - "Sistema de Cálculo de Orientación basado en GNSSs no dedicados y apoyado por Sensores Inerciales MEMs de bajo coste" (2008-2010).

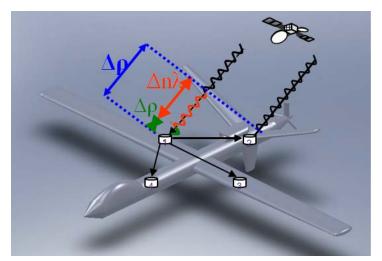
Misión del sistema:

Obtener en tiempo real los ángulos de inclinación de Euler (Roll, Pitch y Yaw) del vehículo en el que se encuentra empotrado.

Datos de entrada:

- Medida de fase de onda portadora de 4 receptores GNSS (1 Hz).
- Medias de velocidades angulares de 3 giróscopos (100 Hz).




Misión del sistema:

Obtener en tiempo real los ángulos de inclinación de Euler (Roll, Pitch y Yaw) del vehículo en el que se encuentra empotrado.

Datos de entrada:

- Medida de fase de onda portadora de 4 receptores GNSS (1 Hz).
- Medias de velocidades angulares de 3 giróscopos (100 Hz).

¿Por qué un sistema operativo de tiempo real?

Sistema de tiempo real:

Aquellos sistemas en los que las restricciones temporales determinan el correcto funcionamiento del sistema.

Sistema operativo de tiempo real:

Aquel que garantiza no sólo que los procesos completan su trabajo correctamente, sino que lo hacen en un plazo determinado de tiempo.



¿Por qué un sistema operativo de tiempo real?

Requisitos del sistema de cálculo de orientación:

- El sistema responde a eventos externos provenientes de un entorno cambiante.
- El cumplimiento de plazos temporales en las respuestas es parte de la especificación (frecuencias de muestreo, salida de datos, el tiempo máximo permitido para ejecutar los cálculos).
- El incumplimiento de los plazos puede provocar fallos irrecuperables: tanto al vehículo como al entorno.

Terminal SATCOM On the move (ACORDE)

Vehículo aéreo no tripulado (Aermática)

¿Por qué MaRTE OS?

- Requisitos del sistema:
 - Bajo coste
 - MaRTE OS se distribuye como software libre bajo licencia GPL (GNU Public License).
 - Estructura interna modular y código fuente accesible
 - Soporte de lenguaje C
 - MaRTE OS Permite ejecutar aplicaciones Ada y C.
 - Interfaz POSIX
 - MaRTE OS sigue el subconjunto mínimo definido en el POSIX.13.

Análisis de planificabilidad

 En un sistema de tiempo real, es fundamental saber a priori si el sistema será capaz de cumplir las restricciones temporales establecidas, es decir, si el sistema es planificable.

Técnicas:

- Simulación: para comportamiento temporal promedio.
- Test de planificabilidad: para comportamiento de peor caso.

Objetivo:

Análisis de planificabilidad del sistema de cálculo de orientación.

El análisis de planificabilidad tiene como objetivos:

- Garantizar el cumplimiento de plazos del sistema.
- Obtener la carga de trabajo del sistema para dimensionar el futuro hardware.
- Comparar los resultados obtenidos mediante:
 - Herramienta de simulación JSimMAST
 - Herramienta de análisis de planificabilidad MAST

INDICE

- 1. Introducción
- 2. Sistema de cálculo de orientación

- 3. Modelo del sistema
- 4. Análisis de planificabilidad
- 5. Conclusiones y trabajo futuro

Hardware:

4 Receptores GNSS

OEMV1 de Novatel (RS232)

AC12 de Magellan (TTL)

4 Antenas GNSS

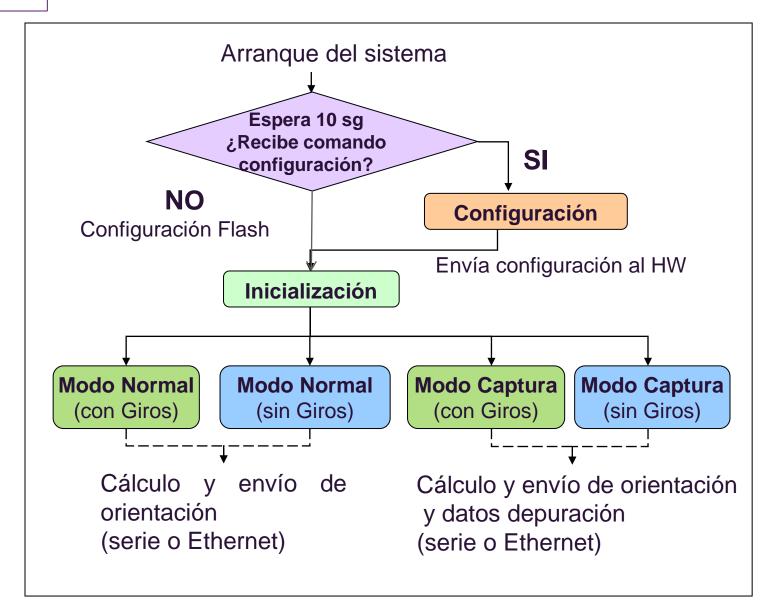
GNSS18 de Garmin (RS232)

3 Giróscopos

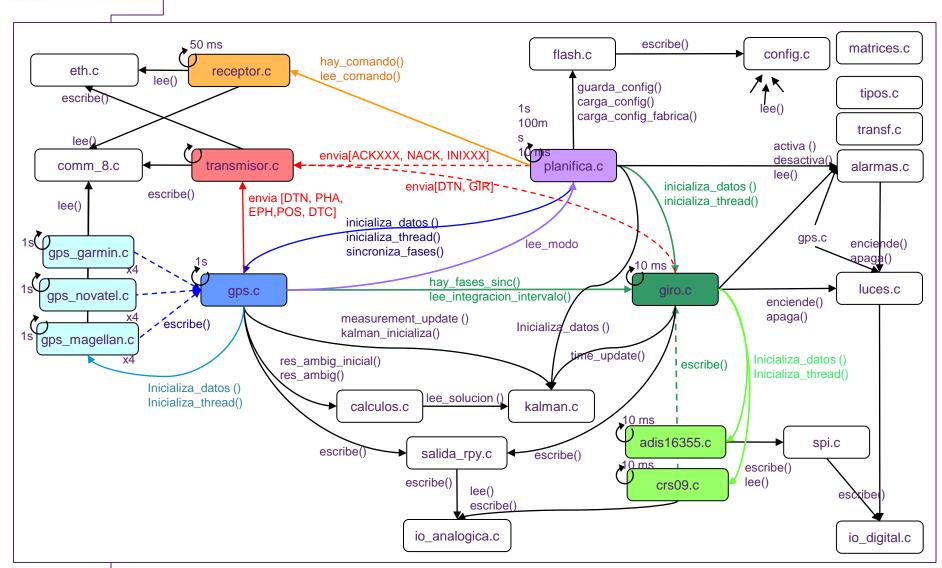
ADIS 16 de A.D (SPI)

CRS09 de S.S. (Analógico)

Novatel



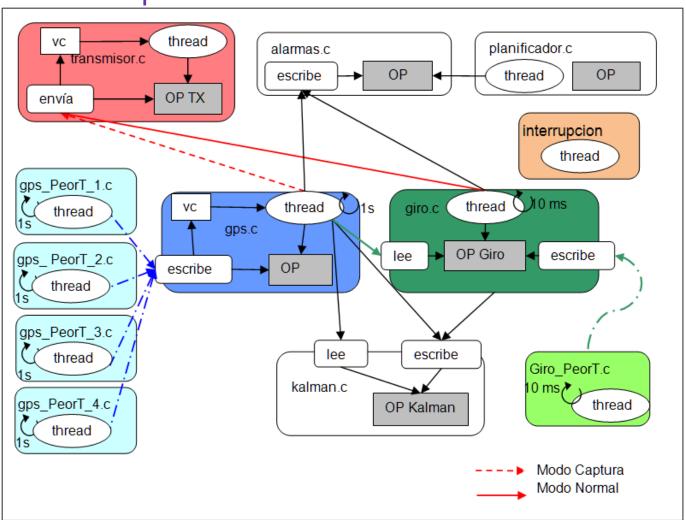
Hardware:


- PC 104 Parvus (PENTIUM III @900Mhz)
- Tarjeta E/S Digital/Analógico
- Tarjeta extensora 8 puertos serie
- Tarjetas conversoras TTL-RS232

INDICE

- 1. Introducción
- 2. Sistema de cálculo de orientación

- 3. Modelo del sistema
- 4. Análisis de planificabilidad
- 5. Conclusiones y trabajo futuro



Modelado del sistema:

- •Simplificación de tareas y objetos protegidos
- •Medida de tiempos de ejecución:
- -Tiempo de interrupción incluido en la medida de tiempo de ejecución. (MaRTE 1.9)
 - Medidas de tiempos sin transmisión serie.
- •Modelado de interrupción:
 - -Medida de tiempos de interrupción -> 20 μs
 - -Tarea de prioridad de interrupción -> Prior. = 99
- •Medida de tiempos de cambio de contexto -> 9 µs

Modelo simplificado:

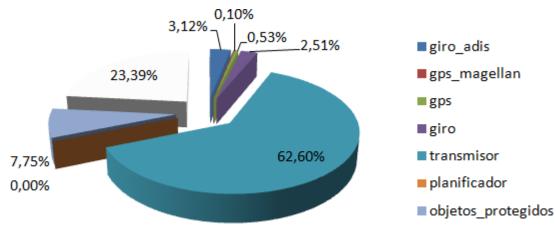
Asignación de prioridades deadline monotonic:

•Modo captura con giróscopos:

Tarea	T (ms)	Plazo (ms)	Prioridad
interrupcion	0.086	-	99
giro_peor_caso	10	5	20
giro	10	5	18
gps_peor_caso[14]	1000	10	16
gps	1000	20	14
planificador	1000	500	10
transmisor	1000	1000	8

•Modo normal con giróscopos:

Tarea	T (ms)	Plazo (ms)	Prioridad
interrupcion	0.1	-	99
giro_peor_caso	10	5	20
giro	10	5	18
transmisor	10	10	16
gps_peor_caso[14]	1000	10	14
gps	1000	10	12
planificador	1000	500	8

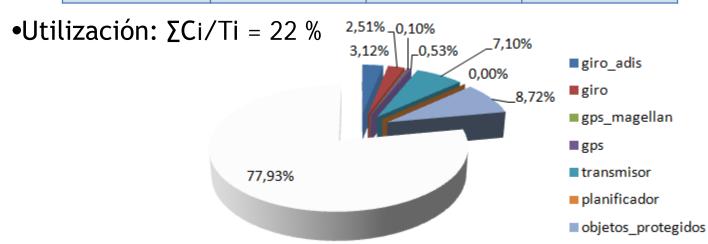


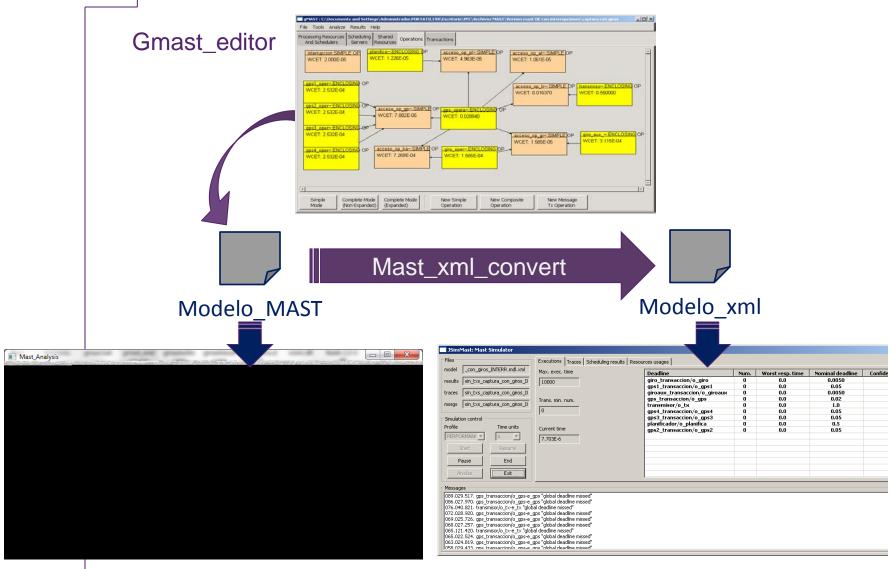
Tiempos de ejecución:

Modo captura con giróscopos

Tarea	Máximo (s)	Mínimo (s)	Medio (s)
giro_adis	3.115 E-04	1.746 E-04	1.785 E-04
giro	2.508 E-04	7.314 E-05	1.064 E-04
gps_magellan	2.509 E-04	7.314 E-05	1.064 E-04
gps	5.302 E-03	2.848 E-03	4.199 E-03
transmisor	7.101 E-04	8.896 E-05	2.723 E-04
planificador	1.300 E-05	8.005 E-06	8.096 E-06

•Utilización: ∑Ci/Ti = 76.6





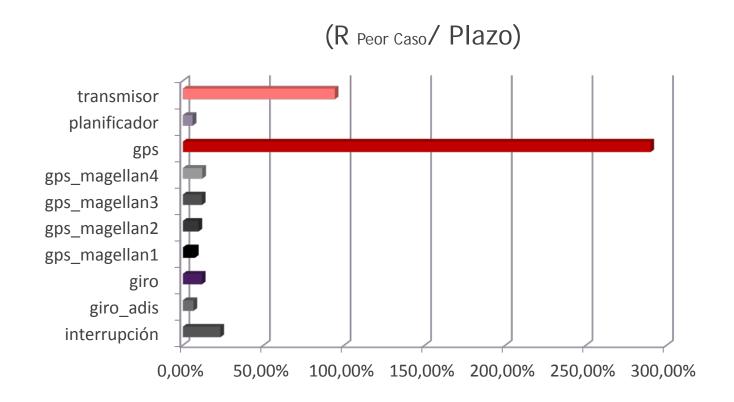
Tiempos de ejecución:

•Modo normal con giróscopos:

Tarea	Máximo (s)	Mínimo (s)	Medio (s)
giro_adis	3.115 E-04	1.746 E-04	1.785 E-04
giro	2.508 E-04	7.314 E-05	1.064 E-04
gps_magellan	2.509 E-04	7.314 E-05	1.064 E-04
gps	5.302 E-03	2.848 E-03	4.199 E-03
transmisor	7.101 E-04	8.896 E-05	2.723 E-04
planificador	1.300 E-05	8.005 E-06	8.096 E-06

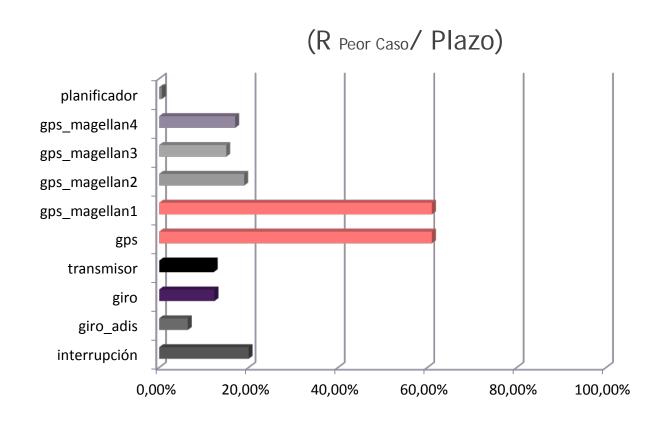
INDICE

- 1. Introducción
- 2. Sistema de cálculo de orientación


0101010101010101010101010105001050

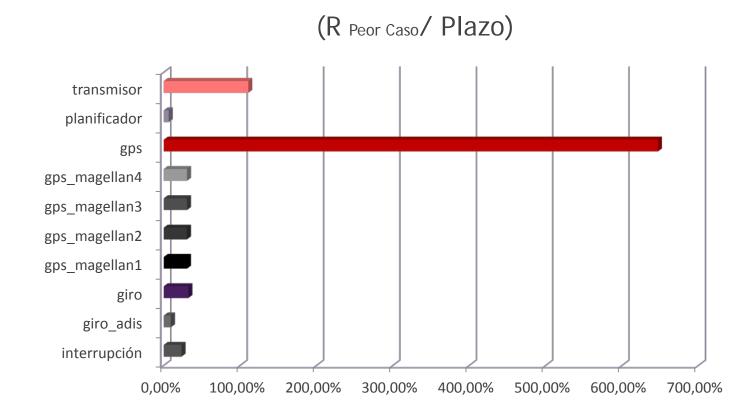
- 3. Modelo del sistema
- 4. Análisis de planificabilidad
- 5. Conclusiones y trabajo futuro

Simulación JSimMAST


Modo captura con giróscopos : Utilización 76 %

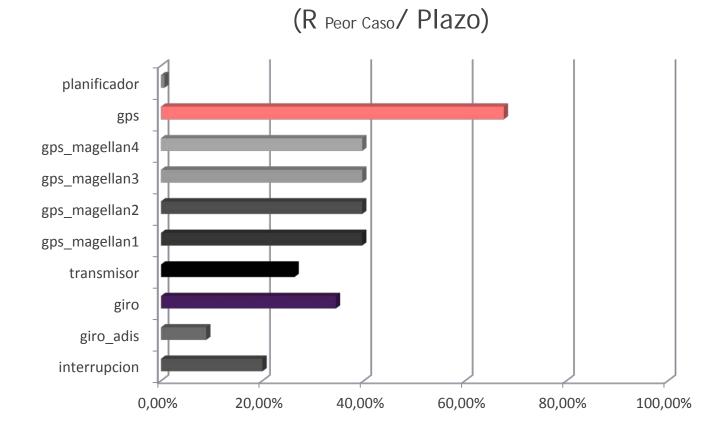
Simulación JSimMAST

Modo normal con giróscopos: Utilización 21 %



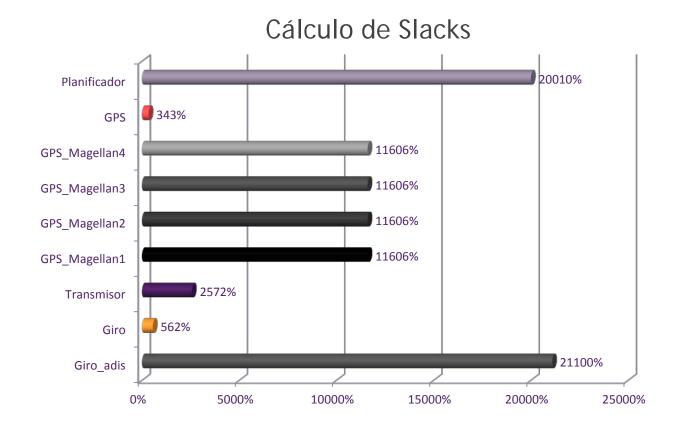
Análisis MAST

Modo captura con giróscopos: Utilización 94 %



Análisis MAST

- Modo normal con giróscopos: Utilización 31%



Análisis MAST

- Modo normal con giróscopos: Utilización 31%

INDICE

- 1. Introducción
- 2. Sistema de cálculo de orientación

- 3. Modelo del sistema
- 4. Análisis de planificabilidad
- 5. Conclusiones y trabajo futuro

5. Conclusiones y trabajo futuro

Conclusiones

- ✓ Se ha llevado a cabo el análisis temporal del sistema tal y como se pretendía:
 - Detección de tarea con tiempo de ejecución excesivo.
 - Detección de punto crítico: transmisión serie.
 - El sistema es planificable en su modo de operación normal.
- ✓ Se ha establecido la carga computacional del sistema.
- ✓ Se ha comparado el resultado obtenido mediante un simulador y una herramienta de análisis exacto de planificabilidad.

5. Conclusiones y trabajo futuro

Trabajo futuro:

- Repetir medidas con la nueva versión de MaRTE que diferencia tiempo de ejecución del debido a las interrupciones.
- Comprobar que el sistema es planificable en modo Captura de datos utilizando el puerto Ethernet.
- Implementar el sistema en plataforma tipo microcontrolador y repetir medidas de tiempo para comprobar que el dimensionamiento es correcto.

Parque Científico y Tecnológico de Cantabria (PCTCAN)

C/ Isabel Torres, 1 - 39011 Santander.

Cantabria. España Tel.: 942 29 00 03 Fax: 942 76 69 84

Email: info@ctcomponentes.com

www.ctcomponentes.es