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Foreword to this version of the Ada Reference Manual

The International Standard for the programming language Adais 1SO/IEC 8652:1995(E).

The Ada Working Group ISO/IEC JTC 1/SC 22/WG 9 is tasked by 1SO with the work item to interpret
and maintain the International Standard and to produce Technical Corrigenda, as appropriate. The
technical work on the International Standard is performed by the Ada Rapporteur Group (ARG) of WG 9.
In September 2000, WG 9 approved and forwarded Technical Corrigendum 1 to SC 22 for 1SO approval,
which was granted in February 2001. Technical Corrigendum 1 was published in June 2001.

In October 2002, WG 9 approved a schedule and guidelines for the preparation of an Amendment to the
International Standard. WG 9 approved the scope of the Amendment in June 2004. In April 2006, WG 9
approved and forwarded the Amendment to SC 22 for approval, which was granted in August 2006. Final
ISO/IEC approval is expected by early 2007.

The Technical Corrigendum lists the individual changes that need to be made to the text of the
International Standard to correct errors, omissions or inconsistencies. The corrections specified in
Technical Corrigendum 1 are part of the International Standard |SO/IEC 8652:1995(E).

Similarly, Amendment 1 lists the individual changes that need to be made to the text of the International
Standard to add new features as well as correct errors.

When SO published Technical Corrigendum 1, it did not also publish a document that merges the changes
from the Technical Corrigendum into the text of the International Standard. It is not known whether 1SO
will publish a document that merges the changes from Technical Corrigendum and Amendment 1 into the
text of the International Standard. However, 1SO rules require that the project editor for the International
Standard be able to produce such a document on demand.

This version of the Ada Reference Manual is what the project editor would provide to 1SO in response to
such a request. It incorporates the changes specified in the Technical Corrigendum and Amendment into
the text of ISO/IEC 8652:1995(E). It should be understood that the publication of any 1SO document
involves changes in general format, boilerplate, headers, etc., as well as a review by professional editors
that may introduce editorial changes to the text. This version of the Ada Reference Manual is therefore
neither an official 1ISO document, nor a version guaranteed to be identical to an official ISO document,
should SO decide to reprint the International Standard incorporating an approved Technical Corrigendum
and Amendment. It is nevertheless a best effort to be as close as possible to the technical content of such
an updated document. In the case of a conflict between this document and Amendment 1 as approved by
1SO (or between this document and Technical Corrigendum 1 in the case of paragraphs not changed by
Amendment 1; or between this document and the original 8652:1995 in the case of paragraphs not changed
by either Amendment 1 or Technical Corrigendum 1), the other documents contain the official text of the
International Standard |SO/IEC 8652:1995(E) and its Amendment.

As it is very inconvenient to have the Reference Manual for Ada specified in three documents, this
consolidated version of the Ada Reference Manual is made available to the public.
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Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or |IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical activity.
ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with 1SO and IEC, also take part in the
work.

In the field of information technology, SO and |EC have established ajoint technical committee, ISO/IEC
JTC 1. Draft International Standards adopted by the joint technical committee are circulated to national
bodies for voting. Publication as an International Standard requires approval by at least 75 % of the
national bodies casting avote.

International Standard 1SO/IEC 8652 was prepared by Joint Technical Committee ISO/IEC JTC 1,
Information Technology.

This consolidated edition updates the second edition (SO 8652:1995).

Annexes A to Jform an integral part of this International Standard. Annexes K to Q are for information
only.
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Introduction

Thisisthe Ada Reference Manual.

Other available Ada documents include:

« Ada95 Rationale. This gives an introduction to the new features of Adaincorporated in the 1995
edition of this Standard, and explains the rationale behind them. Programmers unfamiliar with
Ada 95 should read thisfirst.

* Ada 2005 Rationale. This gives an introduction to the changes and new features in Ada 2005
(compared with the 1995 edition), and explains the rationale behind them. Programmers should
read this rationale before reading this Standard in depth.

¢ This paragraph was deleted.

e The Annotated Ada Reference Manual (AARM). The AARM contains al of the text in the
consolidated Ada Reference Manual, plus various annotations. It is intended primarily for
compiler writers, validation test writers, and others who wish to study the fine details. The
annotations include detailed rationale for individual rules and explanations of some of the more
arcane interactions among the rules.

Design Goals

Ada was originaly designed with three overriding concerns: program reliability and maintenance,
programming as a human activity, and efficiency. The 1995 revision to the language was designed to
provide greater flexibility and extensibility, additional control over storage management and
synchronization, and standardized packages oriented toward supporting important application areas, while
at the same time retaining the origina emphasis on reliability, maintainability, and efficiency. This
amended version provides further flexibility and adds more standardized packages within the framework
provided by the 1995 revision.

The need for languages that promote reliability and simplify maintenance is well established. Hence
emphasis was placed on program readability over ease of writing. For example, the rules of the language
require that program variables be explicitly declared and that their type be specified. Since the type of a
variable is invariant, compilers can ensure that operations on variables are compatible with the properties
intended for objects of the type. Furthermore, error-prone notations have been avoided, and the syntax of
the language avoids the use of encoded forms in favor of more English-like constructs. Finally, the
language offers support for separate compilation of program units in a way that facilitates program
development and maintenance, and which provides the same degree of checking between units as within a
unit.

Concern for the human programmer was also stressed during the design. Above al, an attempt was made
to keep to areatively small number of underlying concepts integrated in a consistent and systematic way
while continuing to avoid the pitfalls of excessive involution. The design especially aims to provide
language constructs that correspond intuitively to the normal expectations of users.

Like many other human activities, the development of programs is becoming ever more decentralized and
distributed. Consequently, the ability to assemble a program from independently produced software
components continues to be a central idea in the design. The concepts of packages, of private types, and of
generic units are directly related to this idea, which has ramifications in many other aspects of the
language. An dlied concern is the maintenance of programs to match changing requirements; type
extension and the hierarchical library enable a program to be modified while minimizing disturbance to
existing tested and trusted components.
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No language can avoid the problem of efficiency. Languages that require over-elaborate compilers, or that
lead to the inefficient use of storage or execution time, force these inefficiencies on all machines and on all
programs. Every construct of the language was examined in the light of present implementation
techniques. Any proposed construct whose implementation was unclear or that required excessive machine
resources was rejected.

Language Summary

An Ada program is composed of one or more program units. Program units may be subprograms (which
define executable algorithms), packages (which define collections of entities), task units (which define
concurrent computations), protected units (which define operations for the coordinated sharing of data
between tasks), or generic units (which define parameterized forms of packages and subprograms). Each
program unit normally consists of two parts: a specification, containing the information that must be
visible to other units, and a body, containing the implementation details, which need not be visible to other
units. Most program units can be compiled separately.

This distinction of the specification and body, and the ability to compile units separately, alows a program
to be designed, written, and tested as a set of largely independent software components.

An Ada program will normally make use of a library of program units of general utility. The language
provides means whereby individual organizations can construct their own libraries. All libraries are
structured in a hierarchical manner; this enables the logical decomposition of a subsystem into individual
components. The text of a separately compiled program unit must name the library unitsit requires.

Program Units

A subprogram is the basic unit for expressing an agorithm. There are two kinds of subprograms:
procedures and functions. A procedure is the means of invoking a series of actions. For example, it may
read data, update variables, or produce some output. It may have parameters, to provide a controlled
means of passing information between the procedure and the point of call. A function is the means of
invoking the computation of avalue. It is similar to a procedure, but in addition will return aresult.

A package is the basic unit for defining a collection of logicaly related entities. For example, a package
can be used to define a set of type declarations and associated operations. Portions of a package can be
hidden from the user, thus allowing access only to the logical properties expressed by the package
specification.

Subprogram and package units may be compiled separately and arranged in hierarchies of parent and child
units giving fine control over visibility of the logical properties and their detailed implementation.

A task unit is the basic unit for defining a task whose sequence of actions may be executed concurrently
with those of other tasks. Such tasks may be implemented on multicomputers, multiprocessors, or with
interleaved execution on a single processor. A task unit may define either a single executing task or a task
type permitting the creation of any number of similar tasks.

A protected unit is the basic unit for defining protected operations for the coordinated use of data shared
between tasks. Simple mutual exclusion is provided automatically, and more elaborate sharing protocols
can be defined. A protected operation can either be a subprogram or an entry. A protected entry specifies a
Boolean expression (an entry barrier) that must be True before the body of the entry is executed. A
protected unit may define a single protected object or a protected type permitting the creation of several
similar objects.
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Declarations and Statements

The body of a program unit generally contains two parts: a declarative part, which defines the logical
entities to be used in the program unit, and a sequence of statements, which defines the execution of the
program unit.

The declarative part associates names with declared entities. For example, a name may denote a type, a
constant, a variable, or an exception. A declarative part also introduces the names and parameters of other
nested subprograms, packages, task units, protected units, and generic units to be used in the program unit.

The sequence of statements describes a sequence of actions that are to be performed. The statements are
executed in succession (unless atransfer of control causes execution to continue from another place).

An assignment statement changes the value of a variable. A procedure call invokes execution of a
procedure after associating any actual parameters provided at the call with the corresponding formal
parameters.

Case statements and if statements allow the selection of an enclosed sequence of statements based on the
value of an expression or on the value of a condition.

The loop statement provides the basic iterative mechanism in the language. A loop statement specifies that
a sequence of statements is to be executed repeatedly as directed by an iteration scheme, or until an exit
statement is encountered.

A block statement comprises a sequence of statements preceded by the declaration of local entities used by
the statements.

Certain statements are associated with concurrent execution. A delay statement delays the execution of a
task for a specified duration or until a specified time. An entry call statement is written as a procedure call
statement; it requests an operation on atask or on a protected object, blocking the caller until the operation
can be performed. A called task may accept an entry call by executing a corresponding accept statement,
which specifies the actions then to be performed as part of the rendezvous with the calling task. An entry
call on a protected object is processed when the corresponding entry barrier evaluates to true, whereupon
the body of the entry is executed. The requeue statement permits the provision of a service as a number of
related activities with preference control. One form of the select statement allows a selective wait for one
of several aternative rendezvous. Other forms of the select statement allow conditional or timed entry
calls and the asynchronous transfer of control in response to some triggering event.

Execution of a program unit may encounter error situations in which normal program execution cannot
continue. For example, an arithmetic computation may exceed the maximum allowed value of a number,
or an attempt may be made to access an array component by using an incorrect index value. To deal with
such error situations, the statements of a program unit can be textually followed by exception handlers that
specify the actions to be taken when the error situation arises. Exceptions can be raised explicitly by a
raise statement.

Data Types

Every object in the language has a type, which characterizes a set of values and a set of applicable
operations. The main classes of types are elementary types (comprising enumeration, numeric, and access
types) and composite types (including array and record types).

An enumeration type defines an ordered set of distinct enumeration literals, for example alist of states or
an alphabet of characters. The enumeration types Boolean, Character, Wide Character, and
Wide Wide_Character are predefined.

xv 10 November 2006 Introduction

20

21

22

23

24

25

26

27

28

29

30

31

32/2



33

34/2

35

36

37

38

38.1/2

39

40

41/2

42/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Numeric types provide a means of performing exact or approximate numerical computations. Exact
computations use integer types, which denote sets of consecutive integers. Approximate computations use
either fixed point types, with absolute bounds on the error, or floating point types, with relative bounds on
the error. The numeric types Integer, Float, and Duration are predefined.

Composite types allow definitions of structured objects with related components. The composite types in
the language include arrays and records. An array is an object with indexed components of the same type.
A record is an object with named components of possibly different types. Task and protected types are
aso forms of composite types. The array types String, Wide String, and Wide Wide String are
predefined.

Record, task, and protected types may have specia components called discriminants which parameterize
the type. Variant record structures that depend on the values of discriminants can be defined within a
record type.

Access types alow the construction of linked data structures. A value of an access type represents a
reference to an object declared as aliased or to an object created by the evaluation of an allocator. Several
variables of an access type may designate the same object, and components of one object may designate
the same or other objects. Both the elements in such linked data structures and their relation to other
elements can be altered during program execution. Access types also permit references to subprograms to
be stored, passed as parameters, and ultimately dereferenced as part of an indirect call.

Private types permit restricted views of atype. A private type can be defined in a package so that only the
logically necessary properties are made visible to the users of the type. The full structural details that are
externally irrelevant are then only available within the package and any child units.

From any type a new type may be defined by derivation. A type, together with its derivatives (both direct
and indirect) form a derivation class. Class-wide operations may be defined that accept as a parameter an
operand of any type in a derivation class. For record and private types, the derivatives may be extensions
of the parent type. Types that support these object-oriented capabilities of class-wide operations and type
extension must be tagged, so that the specific type of an operand within a derivation class can be identified
at run time. When an operation of atagged type is applied to an operand whose specific type is not known
until run time, implicit dispatching is performed based on the tag of the operand.

Interface types provide abstract models from which other interfaces and types may be composed and
derived. This provides areliable form of multiple inheritance. Interface types may also be implemented by
task types and protected types thereby enabling concurrent programming and inheritance to be merged.

The concept of atype is further refined by the concept of a subtype, whereby a user can constrain the set
of allowed values of atype. Subtypes can be used to define subranges of scalar types, arrays with alimited
set of index values, and records and private types with particular discriminant values.

Other Facilities

Aspect clauses can be used to specify the mapping between types and features of an underlying machine.
For example, the user can specify that objects of a given type must be represented with a given number of
bits, or that the components of a record are to be represented using a given storage layout. Other features
allow the controlled use of low level, nonportable, or implementation-dependent aspects, including the
direct insertion of machine code.

The predefined environment of the language provides for input-output and other capabilities by means of
standard library packages. Input-output is supported for values of user-defined as well as of predefined
types. Standard means of representing valuesin display form are also provided.
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The predefined standard library packages provide facilities such as string manipulation, containers of
various kinds (vectors, lists, maps, etc.), mathematical functions, random number generation, and access to
the execution environment.

The specialized annexes define further predefined library packages and facilities with emphasis on areas
such as real-time scheduling, interrupt handling, distributed systems, numerical computation, and high-
integrity systems.

Findly, the language provides a powerful means of parameterization of program units, called generic
program units. The generic parameters can be types and subprograms (as well as objects and packages)
and so allow general algorithms and data structures to be defined that are applicable to all types of agiven
class.

Language Changes
This amended International Standard updates the edition of 1995 which replaced the first edition of 1987.
In the 1995 edition, the following major language changes were incorporated:

e Support for standard 8-bit and 16-bit characters was added. See clauses 2.1, 3.5.2, 3.6.3, A.1,
A.3,and A .4.

e The type model was extended to include facilities for object-oriented programming with
dynamic polymorphism. See the discussions of classes, derived types, tagged types, record
extensions, and private extensions in clauses 3.4, 3.9, and 7.3. Additional forms of generic
formal parameters were allowed as described in clauses 12.5.1 and 12.7.

e Access types were extended to allow an access value to designate a subprogram or an object
declared by an object declaration as opposed to just an object allocated on a heap. See clause
3.10.

« Efficient data-oriented synchronization was provided by the introduction of protected types. See
clause 9.4.

¢ The library structure was extended to allow library units to be organized into a hierarchy of
parent and child units. See clause 10.1.

« Additional support was added for interfacing to other languages. See Annex B.

e The Specialized Needs Annexes were added to provide specific support for certain application
areas.

« Annex C, “Systems Programming”
« Annex D, “Red-Time Systems’

« Annex E, “Distributed Systems”

« Annex F, “Information Systems”

« Annex G, “Numerics’

« Annex H, “High Integrity Systems”

Amendment 1 modifies the 1995 International Standard by making changes and additions that improve the
capability of the language and the reliability of programs written in the language. In particular the changes
were designed to improve the portability of programs, interfacing to other languages, and both the object-
oriented and real-time capabilities.

The following significant changes with respect to the 1995 edition are incorporated:
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5732  * Support for program text is extended to cover the entire ISO/IEC 10646:2003 repertoire.
Execution support now includes the 32-bit character set. See clauses 2.1, 3.5.2, 3.6.3, A.1, A.3,
and A.4.

5742  * The object-oriented model has been improved by the addition of an interface facility which
provides multiple inheritance and additiona flexibility for type extensions. See clauses 3.4, 3.9,
and 7.3. An dternative notation for calling operations more akin to that used in other languages
has also been added. See clause 4.1.3.

s752  * Access types have been further extended to unify properties such as the ability to access
congtants and to exclude null values. See clause 3.10. Anonymous access types are now
permitted more freely and anonymous access-to-subprogram types are introduced. See clauses
3.3,3.6, 3.10, and 8.5.1.

s76;2 * The control of structure and visibility has been enhanced to permit mutually dependent
references between units and finer control over access from the private part of a package. See
clauses 3.10.1 and 10.1.2. In addition, limited types have been made more useful by the
provision of aggregates, constants, and constructor functions. See clauses 4.3, 6.5, and 7.5.

s7.72 * The predefined environment has been extended to include additional time and calendar
operations, improved string handling, a comprehensive container library, file and directory
management, and access to environment variables. See clauses 9.6.1, A.4, A.16, A.17, and A.18.

s7s2  * Two of the Specialized Needs Annexes have been considerably enhanced:

57.9/2 « The Rea-Time Systems Annex now includes the Ravenscar profile for high-integrity
systems, further dispatching policies such as Round Robin and Earliest Deadline First,
support for timing events, and support for control of CPU time utilization. See clauses D.2,
D.13, D.14, and D.15.

57.10/2 « The Numerics Annex now includes support for real and complex vectors and matrices as
previously defined in 1SO/IEC 13813:1997 plus further basic operations for linear algebra.
See clause G.3.

s7a12  *  Theoverall reliability of the language has been enhanced by a number of improvements. These
include new syntax which detects accidental overloading, as well as pragmas for making
assertions and giving better control over the suppression of checks. See clauses 6.1, 11.4.2, and
115.
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Instructions for Comment Submission

Informal comments on this International Standard may be sent via email to ada-comment@ada-
auth.org. If appropriate, the Project Editor will initiate the defect correction procedure.

Comments should use the following format:

Itopic Title summarizing comment
Ireference Ada 2005 RMss.ss(pp)
Ifrom Author Name yy-mm-dd
Ikeywor ds keywords related to topic
ldiscussion

text of discussion

where ss.ss is the section, clause or subclause number, pp is the paragraph number where applicable, and
yy-mm-dd is the date the comment was sent. The date is optional, asis the lkeywordsline.

Please use a descriptive “ Subject” in your e-mail message, and limit each message to a single comment.

When correcting typographical errors or making minor wording suggestions, please put the correction
directly as the topic of the comment; use square brackets [ ] to indicate text to be omitted and curly braces
{ } to indicate text to be added, and provide enough context to make the nature of the suggestion self-
evident or put additional information in the body of the comment, for example:

Itopic [c]{ C} haracter

Itopic it[']s meaning is not defined
Formal requests for interpretations and for reporting defects in this International Standard may be made in
accordance with the ISO/IEC JTC 1 Directives and the ISO/IEC JTC 1/SC 22 policy for interpretations.
National Bodies may submit a Defect Report to ISO/IEC JTC 1/SC 22 for resolution under the JTC 1
procedures. A response will be provided and, if appropriate, a Technical Corrigendum will be issued in
accordance with the procedures.
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Changes

The International Standard is the same as this version of the Reference Manual, except:
e Thislist of Changesis not included in the International Standard.
* The"Acknowledgements’ pageis not included in the International Standard.

e Thetext in the running headers and footers on each page is slightly different in the International
Standard.

* Thetitle page(s) are different in the International Standard.

e This document is formatted for 8.5-by-11-inch paper, whereas the International Standard is
formatted for A4 paper (210-by-297mm); thus, the page breaks are in different places.

* The “Foreword to this version of the Ada Reference Manual” clause is not included in the
International Standard.

e The*“Using this version of the Ada Reference Manua” clause is not included in the International
Standard.

Using this version of the Ada Reference Manual

This document has been revised with the corrections specified in Technical Corrigendum 1 (ISO/IEC
8652:1995/COR.1:2001) and Amendment 1 (ISO/IEC 8652/AMD.1:2007). In addition, a variety of
editorial errors have been corrected.

Changes to the original 8652:1995 can be identified by the version number following the paragraph
number. Paragraphs with a version number of /1 were changed by Technical Corrigendum 1 or were
editorial corrections at that time, while paragraphs with a version number of /2 were changed by
Amendment 1 or were more recent editorial corrections. Paragraphs not so marked are unchanged by
Amendment 1, Technical Corrigendum 1, or editorial corrections. Paragraph numbers of unchanged
paragraphs are the same as in the original Ada Reference Manual. In addition, some versions of this
document include revision bars near the paragraph numbers. Where paragraphs are inserted, the paragraph
numbers are of the form pp.nn, where pp is the number of the preceding paragraph, and nn is an insertion
number. For instance, the first paragraph inserted after paragraph 8 is numbered 8.1, the second paragraph
inserted is numbered 8.2, and so on. Deleted paragraphs are indicated by the text This paragraph was deleted.
Deleted paragraphs include empty paragraphs that were numbered in the original Ada Reference Manual.
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INTERNATIONAL STANDARD ISO/IEC 8652:2007(E), Ed. 3

Information technology — Programming
Languages — Ada

Section 1: General

Ada is a programming language designed to support the construction of long-lived, highly reliable
software systems. The language includes facilities to define packages of related types, objects, and
operations. The packages may be parameterized and the types may be extended to support the construction
of libraries of reusable, adaptable software components. The operations may be implemented as
subprograms using conventional sequentia control structures, or as entries that include synchronization of
concurrent threads of control as part of their invocation. The language treats modularity in the physical
sense as well, with afacility to support separate compilation.

The language includes a complete facility for the support of real-time, concurrent programming. Errors
can be signaled as exceptions and handled explicitly. The language a so covers systems programming; this
requires precise control over the representation of data and access to system-dependent properties. Finally,
a predefined environment of standard packages is provided, including facilities for, among others, input-
output, string manipulation, numeric elementary functions, and random number generation.

1.1 Scope

This International Standard specifies the form and meaning of programs written in Ada. Its purpose is to
promote the portability of Ada programsto avariety of data processing systems.

1.1.1 Extent
This International Standard specifies:
e Theform of aprogram written in Ada;
* The effect of trandating and executing such a program,;
¢ The manner in which program units may be combined to form Ada programs;
* Thelanguage-defined library units that a conforming implementation is required to supply;

e The permissible variations within the standard, and the manner in which they are to be
documented;
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» Those violations of the standard that a conforming implementation is required to detect, and the
effect of attempting to trandlate or execute a program containing such violations;

» Those violations of the standard that a conforming implementation is not required to detect.

This International Standard does not specify:

« The means whereby a program written in Ada is transformed into object code executable by a
processor;

* The means whereby translation or execution of programs is invoked and the executing units are
controlled;

* The size or speed of the object code, or the relative execution speed of different language
constructs;

« The form or contents of any listings produced by implementations; in particular, the form or
contents of error or warning messages,

» The effect of unspecified execution.

* The size of a program or program unit that will exceed the capacity of a particular conforming
implementation.

1.1.2 Structure
This International Standard contains thirteen sections, fourteen annexes, and an index.
The core of the Ada language consists of:

e Sections 1 through 13

* Annex A, “Predefined Language Environment”

* Annex B, “Interface to Other Languages’

e Annex J, “Obsolescent Features’

The following Specialized Needs Annexes define features that are needed by certain application areas:
e Annex C, “Systems Programming”
e Annex D, “Real-Time Systems’
« Annex E, “Distributed Systems”
e Annex F, “Information Systems’
e Annex G, “Numerics’
e Annex H, “High Integrity Systems’
The core language and the Specialized Needs Annexes are normative, except that the material in each of
the items listed below isinformative:
» Text under aNOTES or Examples heading.
» Each clause or subclause whose title starts with the word “Example” or “Examples’.

All implementations shall conform to the core language. In addition, an implementation may conform
separately to one or more Specialized Needs Annexes.

1.1.1 Extent 10 November 2006 2
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The following Annexes are informative:
* Annex K, “Language-Defined Attributes’
e Annex L, “Language-Defined Pragmas’
e M.2, “Implementation-Defined Characteristics’
¢ Annex N, “Glossary”
* Annex P, “Syntax Summary”

Each section is divided into clauses and subclauses that have a common structure. Each section, clause,
and subclause first introduces its subject. After the introductory text, text is labeled with the following
headings:

Syntax
Syntax rules (indented).

Name Resolution Rules

Compile-time rules that are used in name resolution, including overload resolution.

Legality Rules
Rules that are enforced at compiletime. A construct islegal if it obeysall of the Legality Rules.

Static Semantics
A definition of the compile-time effect of each construct.

Post-Compilation Rules

Rules that are enforced before running a partition. A partition is legal if its compilation units are legal and
it obeysal of the Post-Compilation Rules.

Dynamic Semantics
A definition of the run-time effect of each construct.

Bounded (Run-Time) Errors
Situations that result in bounded (run-time) errors (see 1.1.5).

Erroneous Execution
Situations that result in erroneous execution (see 1.1.5).

Implementation Requirements

Additional requirements for conforming implementations.

Documentation Requirements

Documentation reguirements for conforming implementations.

Metrics
Metrics that are specified for the time/space properties of the execution of certain language constructs.

Implementation Permissions

Additional permissions given to the implementer.
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Implementation Advice

Optiona advice given to the implementer. The word “should” is used to indicate that the advice is a
recommendation, not a requirement. It is implementation defined whether or not a given recommendation
is obeyed.

NOTES
1 Notes emphasize consequences of the rules described in the (sub)clause or elsewhere. This materia isinformative.
Examples
Examplesillustrate the possible forms of the constructs described. This material isinformative.

1.1.3 Conformity of an Implementation with the Standard

Implementation Requirements
A conforming implementation shall:

« Trandlate and correctly execute legal programs written in Ada, provided that they are not so
large as to exceed the capacity of the implementation;

e ldentify all programs or program units that are so large as to exceed the capacity of the
implementation (or raise an appropriate exception at run time);

e ldentify all programs or program units that contain errors whose detection is required by this
International Standard;

« Supply al language-defined library units required by this International Standard;

« Contain no variations except those explicitly permitted by this International Standard, or those
that are impossible or impractical to avoid given the implementation's execution environment;

»  Specify all such variations in the manner prescribed by this International Standard.

The external effect of the execution of an Ada program is defined in terms of its interactions with its
external environment. The following are defined as external interactions:

* Any interaction with an external file (see A.7);

« The execution of certain code_statements (see 13.8); which code_statements cause externa
interactions is implementation defined.

* Any cal on an imported subprogram (see Annex B), including any parameters passed to it;

* Any result returned or exception propagated from a main subprogram (see 10.2) or an exported
subprogram (see Annex B) to an external caler;

e Any read or update of an atomic or volatile object (see C.6);

* The values of imported and exported objects (see Annex B) at the time of any other interaction
with the external environment.

A conforming implementation of this International Standard shall produce for the execution of a given
Ada program a set of interactions with the external environment whose order and timing are consistent
with the definitions and requirements of this International Standard for the semantics of the given program.

An implementation that conforms to this Standard shall support each capability required by the core
language as specified. In addition, an implementation that conforms to this Standard may conform to one
or more Specialized Needs Annexes (or to none). Conformance to a Specialized Needs Annex means that
each capability required by the Annex is provided as specified.

1.1.2 Structure 10 November 2006 4
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An implementation conforming to this International Standard may provide additional attributes, library
units, and pragmas. However, it shall not provide any attribute, library unit, or pragma having the same
name as an attribute, library unit, or pragma (respectively) specified in a Specialized Needs Annex unless
the provided construct is either as specified in the Specialized Needs Annex or is more limited in
capability than that required by the Annex. A program that attempts to use an unsupported capability of an
Annex shall either be identified by the implementation before run time or shall raise an exception at run
time.

Documentation Requirements

Certain aspects of the semantics are defined to be either implementation defined or unspecified. In such
cases, the set of possible effects is specified, and the implementation may choose any effect in the set.
Implementations shall document their behavior in implementation-defined situations, but documentation is
not required for unspecified situations. The implementation-defined characteristics are summarized in M.2.

The implementation may choose to document implementation-defined behavior either by documenting
what happens in general, or by providing some mechanism for the user to determine what happens in a
particular case.

Implementation Advice
If an implementation detects the use of an unsupported Specialized Needs Annex feature at run time, it
should raise Program_Error if feasible.
If an implementation wishes to provide implementation-defined extensions to the functionality of a
language-defined library unit, it should normally do so by adding children to the library unit.

NOTES
2 The above requirements imply that an implementation conforming to this Standard may support some of the capabilities
required by a Specialized Needs Annex without supporting al required capabilities.

1.1.4 Method of Description and Syntax Notation

The form of an Ada program is described by means of a context-free syntax together with context-
dependent requirements expressed by narrative rules.

The meaning of Ada programs is described by means of narrative rules defining both the effects of each
construct and the composition rules for constructs.

The context-free syntax of the language is described using a simple variant of Backus-Naur Form. In
particular:

* Lower case words in a sans-serif font, some containing embedded underlines, are used to denote
syntactic categories, for example:

case_statement
« Boldface words are used to denote reserved words, for example:
array
e Square brackets enclose optional items. Thus the two following rules are equivalent.

simple_return_statement ::= return [expression];
simple_return_statement ::= return; | return expression;

5 10 November 2006 Conformity of an Implementation with the Standard 1.1.3
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« Curly brackets enclose a repeated item. The item may appear zero or more times; the repetitions
occur from left to right as with an equivalent left-recursive rule. Thus the two following rules are
equivalent.

term ::= factor { multiplying_operator factor}
term ::= factor | term multiplying_operator factor

* A vertica line separates alternative items unless it occurs immediately after an opening curly
bracket, in which caseit stands for itself:

constraint ::= scalar_constraint | composite_constraint
discrete_choice_list ::= discrete_choice {| discrete_choice}

« |If the name of any syntactic category starts with an italicized part, it is equivalent to the category
name without the italicized part. The italicized part is intended to convey some semantic
information. For example subtype_name and task_name are both equivalent to name alone.

The delimiters, compound delimiters, reserved words, and numeric_literals are exclusively made of the
characters whose code position is between 16#20# and 16#7E#, inclusively. The specia characters for
which names are defined in this International Standard (see 2.1) belong to the same range. For example,
the character E in the definition of exponent is the character whose nameis “LATIN CAPITAL LETTER
E”, not “GREEK CAPITAL LETTER EPSILON".

When this International Standard mentions the conversion of some character or sequence of characters to
upper case, it means the character or sequence of characters obtained by using locale-independent full case
folding, as defined by documents referenced in the note in section 1 of 1SO/IEC 10646:2003.

A syntactic category is a nonterminal in the grammar defined in BNF under “Syntax.” Names of syntactic
categories are set in a different font, like_this.

A construct is a piece of text (explicit or implicit) that is an instance of a syntactic category defined under
“Syntax”.

A constituent of a construct is the construct itself, or any construct appearing within it.

Whenever the run-time semantics defines certain actions to happen in an arbitrary order, this means that
the implementation shall arrange for these actions to occur in a way that is equivalent to some sequential
order, following the rules that result from that sequential order. When evaluations are defined to happen in
an arbitrary order, with conversion of the results to some subtypes, or with some run-time checks, the
evaluations, conversions, and checks may be arbitrarily interspersed, so long as each expression is
evaluated before converting or checking its value. Note that the effect of a program can depend on the
order chosen by the implementation. This can happen, for example, if two actual parameters of agiven call
have side effects.

NOTES
3 The syntax rules describing structured constructs are presented in a form that corresponds to the recommended
paragraphing. For example, an if_statement is defined as:

if_statement :: =
i f condition t hen
sequence_of_statements
{el sif condition t hen
sequence_of_statements}
[el se
sequence_of_statements]
end if;

1.1.4 Method of Description and Syntax Notation 10 November 2006 6
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4 The line breaks and indentation in the syntax rules indicate the recommended line breaks and indentation in the
corresponding constructs. The preferred places for other line breaks are after semicolons.

1.1.5 Classification of Errors

Implementation Requirements
The language definition classifies errorsinto several different categories:
« Errorsthat are required to be detected prior to run time by every Adaimplementation;

These errors correspond to any violation of arule given in this International Standard, other than
those listed below. In particular, violation of any rule that uses the terms shall, allowed,
permitted, legal, or illegal belongs to this category. Any program that contains such an error is
not alegal Ada program; on the other hand, the fact that a program is legal does not mean, per
se, that the program is free from other forms of error.

The rules are further classified as either compile time rules, or post compilation rules, depending
on whether a violation has to be detected at the time a compilation unit is submitted to the
compiler, or may be postponed until the time a compilation unit is incorporated into a partition
of aprogram.

« Errorsthat are required to be detected at run time by the execution of an Ada program;

The corresponding error situations are associated with the names of the predefined exceptions.
Every Ada compiler is required to generate code that raises the corresponding exception if such
an error situation arises during program execution. If such an error situation is certain to arise in
every execution of a construct, then an implementation is allowed (although not required) to
report this fact at compilation time.

¢ Bounded errors;

The language rules define certain kinds of errors that need not be detected either prior to or
during run time, but if not detected, the range of possible effects shall be bounded. The errors of
this category are called bounded errors. The possible effects of a given bounded error are
specified for each such error, but in any case one possible effect of a bounded error is the raising
of the exception Program_Error.

* Erroneous execution.

In addition to bounded errors, the language rules define certain kinds of errors as leading to
erroneous execution. Like bounded errors, the implementation need not detect such errors either
prior to or during run time. Unlike bounded errors, there is no language-specified bound on the
possible effect of erroneous execution; the effect isin genera not predictable.

Implementation Permissions

An implementation may provide nonstandard modes of operation. Typically these modes would be
selected by a pragma or by a command line switch when the compiler is invoked. When operating in a
nonstandard mode, the implementation may reject compilation_units that do not conform to additional
reguirements associated with the mode, such as an excessive number of warnings or violation of coding
style guidelines. Similarly, in a nonstandard mode, the implementation may apply special optimizations or
alternative algorithms that are only meaningful for programs that satisfy certain criteria specified by the
implementation. In any case, an implementation shall support a standard mode that conforms to the
regquirements of this International Standard; in particular, in the standard mode, al legal compilation_units
shall be accepted.

7 10 November 2006 Method of Description and Syntax Notation 1.1.4
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Implementation Advice
If an implementation detects a bounded error or erroneous execution, it should raise Program_Error.

1.2 Normative References

The following standards contain provisions which, through reference in this text, constitute provisions of
this International Standard. At the time of publication, the editions indicated were valid. All standards are
subject to revision, and parties to agreements based on this International Standard are encouraged to
investigate the possibility of applying the most recent editions of the standards indicated below. Members
of IEC and 1SO maintain registers of currently valid International Standards.

ISO/IEC 646:1991, Information technology —1SO 7-bit coded character set for information interchange.

ISO/IEC 1539-1:2004, Information technology — Programming languages — Fortran — Part 1. Base
language.

I SO/IEC 1989:2002, Information technol ogy — Programming languages — COBOL.
ISO/IEC 6429:1992, Information technology — Control functions for coded graphic character sets.

SO 8601:2004, Data elements and interchange formats — Information interchange — Representation of
dates and times.

ISO/IEC 8859-1:1987, Information processing — 8-bit single-byte coded character sets — Part 1: Latin
alphabet No. 1.

ISO/IEC 9899:1999, Programming languages — C, supplemented by Technical Corrigendum 1:2001 and
Technical Corrigendum 2:2004.

I SO/IEC 10646:2003, Information technology — Universal Multiple-Octet Coded Character Set (UCS).
ISO/IEC 14882:2003, Programming languages — C++.

ISO/IEC TR 19769:2004, Information technology — Programming languages, their environments and
system software interfaces — Extensions for the programming language C to support new character data
types.

1.3 Definitions

Terms are defined throughout this International Standard, indicated by italic type. Terms explicitly defined
in this International Standard are not to be presumed to refer implicitly to similar terms defined elsewhere.
Mathematical terms not defined in this International Standard are to be interpreted according to the CRC
Concise Encyclopedia of Mathematics, Second Edition. Other terms not defined in this International
Standard are to be interpreted according to the Webster's Third New International Dictionary of the
English Language. Informal descriptions of some terms are also given in Annex N, “Glossary”.

1.1.5 Classification of Errors 10 November 2006 8
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Section 2: Lexical Elements

The text of a program consists of the texts of one or more compilations. The text of a compilation is a
sequence of lexical elements, each composed of characters; the rules of composition are given in this
section. Pragmas, which provide certain information for the compiler, are also described in this section.

2.1 Character Set

The character repertoire for the text of an Ada program consists of the entire coding space described by the
ISO/IEC 10646:2003 Universal Multiple-Octet Coded Character Set. This coding space is organized in
planes, each plane comprising 65536 characters.

Syntax
Paragraphs 2 and 3 were deleted.

A character is defined by this International Standard for each cell in the coding space described by
1SO/IEC 10646:2003, regardless of whether or not 1 SO/IEC 10646:2003 allocates a character to that
cell.

Static Semantics

The coded representation for characters is implementation defined (it need not be a representation defined
within ISO/IEC 10646:2003). A character whose relative code position in its plane is 16#FFFE# or
16#FFFF# is not allowed anywhere in the text of a program.

The semantics of an Ada program whose text is not in Normalization Form KC (as defined by section 24
of ISO/IEC 10646:2003) isimplementation defined.

The description of the language definition in this International Standard uses the character properties
Genera Category, Simple Uppercase Mapping, Uppercase Mapping, and Special Case Condition of the
documents referenced by the note in section 1 of 1SO/IEC 10646:2003. The actual set of graphic symbols
used by an implementation for the visual representation of the text of an Ada program is not specified.
Characters are categorized as follows:

This paragraph was del eted.

letter_uppercase
Any character whose General Category is defined to be “Letter, Uppercase’.

letter _lowercase
Any character whose General Category is defined to be “Letter, Lowercase”.

letter_titlecase
Any character whose General Category is defined to be “ L etter, Titlecase”.

letter_modifier
Any character whose General Category is defined to be “Letter, Modifier”.

letter_other
Any character whose General Category is defined to be “Letter, Other”.

mark_non_spacing
Any character whose General Category is defined to be “Mark, Non-Spacing” .

mark_spacing_combining
Any character whose General Category is defined to be “Mark, Spacing Combining”.
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number_decimal
Any character whose General Category is defined to be “Number, Decimal”.

number_letter
Any character whose General Category is defined to be “Number, Letter”.

punctuation_connector
Any character whose General Category is defined to be “Punctuation, Connector”.

other_format
Any character whose General Category is defined to be “Other, Format”.

separator_space
Any character whose General Category is defined to be “ Separator, Space’.

separator_line
Any character whose General Category is defined to be “ Separator, Ling”.

separator_paragraph
Any character whose General Category is defined to be “ Separator, Paragraph”.

format_effector
The characters whose code positions are 16#09# (CHARACTER TABULATION), 16#0A#
(LINE FEED), 16#0B# (LINE TABULATION), 16#0C# (FORM FEED), 16#0D#
(CARRIAGE RETURN), 16#85# (NEXT LINE), and the characters in categories
separator_line and separator_paragraph.

other_control
Any character whose General Category is defined to be “Other, Control”, and which is not
defined to be aformat_effector.

other_private_use
Any character whose General Category is defined to be “Other, Private Use”.

other_surrogate
Any character whose General Category is defined to be “Other, Surrogate”.

graphic_character
Any character that is not in the categories other_control, other_private_use,
other_surrogate, format_effector, and whose relative code position in its plane is neither
16#FFFE# nor 164#FFFFE.

The following names are used when referring to certain characters (the first name is that given in ISO/IEC
10646:2003):

graphic symbol name graphic symbol name
" quotation mark : colon
# number sign ; semicolon
& ampersand < less-than sign
' apostrophe, tick = equalssign
( left parenthesis > greater-than sign
) right parenthesis _ low line, underline
* asterisk, multiply | vertica line
+ plussign / solidus, divide
, comma ! exclamation point
- hyphen-minus, minus % percent sign

full stop, dot, point
2.1 Character Set 10 November 2006 10
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Implementation Permissions

This paragraph was deleted. 16/2
NOTES
1 The characters in categories other_control, other_private_use, and other_surrogate are only allowed in comments. 17/2
2 The language does not specify the source representation of programs. 18

2.2 Lexical Elements, Separators, and Delimiters

Satic Semantics

The text of a program consists of the texts of one or more compilations. The text of each compilationisa 1
sequence of separate lexical elements. Each lexical element is formed from a sequence of characters, and

is either adelimiter, an identifier, a reserved word, a numeric_literal, a character_literal, a string_literal, or

a comment. The meaning of a program depends only on the particular sequences of lexical elements that
form its compilations, excluding comments.

The text of a compilation is divided into lines. In general, the representation for an end of line is 22
implementation defined. However, a sequence of one or more format_effectors other than the character
whose code position is 16#09# (CHARACTER TABULATION) signifies at least one end of line.

In some cases an explicit separator is required to separate adjacent lexical elements. A separator isany of 32
aseparator_space, aformat_effector, or the end of aline, as follows:

e A separator_space is a separator except within a comment, a string_literal, or a 412
character_literal.
¢ The character whose code position is 16#09% (CHARACTER TABULATION) is a separator 52

except within acomment.
¢ Theend of alineisaways aseparator. 6

One or more separators are allowed between any two adjacent lexical elements, before the first of each 7
compilation, or after the last. At least one separator is required between an identifier, a reserved word, or a
numeric_literal and an adjacent identifier, reserved word, or numeric_literal.

A delimiter is either one of the following characters: 8/2
& " () *+ , = 1 i < = > 9
or one of the following compound delimiters each composed of two adjacent special characters 10
= , ** = [z >= <= << >> <> 11

Each of the special characters listed for single character delimiters is a single delimiter except if this 12
character is used as a character of a compound delimiter, or as a character of a comment, string_literal,
character_literal, or numeric_literal.

11 10 November 2006 Character Set 2.1
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The following names are used when referring to compound delimiters:

delimiter name
= arrow
double dot
x%* double star, exponentiate

= assignment (pronounced: “becomes”)

/= inequality (pronounced: “not equal”)
>= greater than or equal

<= less than or equal

<< left 1abel bracket

>> right label bracket

<> box

Implementation Requirements

An implementation shall support lines of at least 200 charactersin length, not counting any characters used
to signify the end of aline. An implementation shall support lexical elements of at least 200 charactersin
length. The maximum supported line length and lexical element length are implementation defined.

2.3 ldentifiers

Identifiers are used as names.

Syntax

identifier ::=

identifier_start {identifier_start | identifier_extend}
identifier_start ::=

letter_uppercase

| letter_lowercase

| letter_titlecase

| letter_modifier

| letter_other

| number_letter

identifier_extend ::=
mark_non_spacing
| mark_spacing_combining
| number_decimal
| punctuation_connector
| other_format

After eliminating the charactersin category other_format, an identifier shall not contain two
consecutive characters in category punctuation_connector, or end with a character in that category.

2.2 Lexical Elements, Separators, and Delimiters 10 November 2006 12
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Static Semantics

Two identifiers are considered the same if they consist of the same sequence of characters after applying
the following transformations (in this order):

« The charactersin category other_format are eliminated.
* Theremaining sequence of charactersis converted to upper case.

After applying these transformations, an identifier shall not be identical to areserved word (in upper case).

Implementation Permissions

In a nonstandard mode, an implementation may support other upper/lower case equivalence rules for
identifiers, to accommodate local conventions.

NOTES
3 Identifiers differing only in the use of corresponding upper and lower case letters are considered the same.
Examples
Examples of identifiers:
Count X Get _Synbol Et hel yn Mari on
Snobol _4 X1 Page_Count Store_Next _Item
MA&TOV - - Plato
YaitkoBckmit - - Tchaikovsky
0 o - - Angles

2.4 Numeric Literals

There are two kinds of numeric_literals, real literals and integer literals. A rea literal is anumeric_literal
that includes a point; an integer literal isanumeric_literal without a point.

Syntax
numeric_literal ::= decimal_literal | based_literal

NOTES
4 Thetype of an integer literal is universal_integer. Thetype of ared literal is universal_real.

2.4.1 Decimal Literals

A decimal_literal isanumeric_literal in the conventional decimal notation (that is, the base is ten).

Syntax

decimal_literal ::= numeral [.numeral] [exponent]

numeral ::= digit { [underline] digit}

exponent ::= E [+] numeral | E —numeral

digit::=0]1|2|3]4]5|6]7]8]9

An exponent for an integer literal shall not have aminus sign.

Static Semantics

An underline character in anumeric_literal does not affect its meaning. The letter E of an exponent can be
written either in lower case or in upper case, with the same meaning.

An exponent indicates the power of ten by which the value of the decimal_literal without the exponent is
to be multiplied to obtain the value of the decimal_literal with the exponent.

13 10 November 2006 Identifiers 2.3
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Examples
Examples of decimal literals:
12 0 1E6 123_456 - - integer literals
12.0 0.0 0.456 3.14159 26 -- real literals

2.4.2 Based Literals

A based_literal isanumeric_literal expressed in aform that specifies the base explicitly.

Syntax

based_literal ::=
base # based_numeral [.based_numeral] # [exponent]

base ::= numeral

based_numeral ::=
extended_digit {[underline] extended_digit}

extended_digit ::= digit|A|B|C|D|E|F

Legality Rules

The base (the numeric value of the decimal numeral preceding the first #) shall be at least two and at most
sixteen. The extended_digits A through F represent the digits ten through fifteen, respectively. The value

of each extended_digit of abased_literal shall be less than the base.

Satic Semantics

The conventional meaning of based notation is assumed. An exponent indicates the power of the base by
which the value of the based_literal without the exponent is to be multiplied to obtain the value of the

based_literal with the exponent. The base and the exponent, if any, are in decimal notation.

The extended_digits A through F can be written either in lower case or in upper case, with the same

meaning.
Examples
Examples of based literals:
2#1111_1111# 16#FF# 016#0f f # - - integer literals of value 255
16#E#EL 2#1110_0000# - - integer literals of value 224
16#F. FF#E+2 2#1.1111_1111_1110#E11 -- real literals of value 4095.0

2.5 Character Literals

A character_literal is formed by enclosing a graphic character between two apostrophe characters.

Syntax
character_literal ::= 'graphic_character'

NOTES
5 A character_literal is an enumeration literal of a character type. See 3.5.2.

2.4.1 Decimal Literals 10 November 2006
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Examples
Examples of character literals:
N e Ce
"L T N -- Variousels.
"o 'R - - Big numbers - infinity and aleph.

2.6 String Literals

A string_literal is formed by a sequence of graphic characters (possibly none) enclosed between two
quotation marks used as string brackets. They are used to represent operator_symbols (see 6.1), values of
astring type (see 4.2), and array subaggregates (see 4.3.3).

Syntax
string_literal ::= "{ string_element}"
string_element ::="" | non_quotation_mark_graphic_character
A string_element is either apair of quotation marks (""), or asingle graphic_character other than a
quotation mark.
Static Semantics

The sequence of characters of astring_literal is formed from the sequence of string_elements between the
bracketing quotation marks, in the given order, with a string_element that is "" becoming a single
quotation mark in the sequence of characters, and any other string_element being reproduced in the
sequence.

A null string literal isastring_literal with no string_elements between the quotation marks.

NOTES
6 Anend of line cannot appear in astring_literal.

7 No transformation is performed on the sequence of characters of astring_literal.

Examples
Examples of string literals:
"Message of the day:"

-- anull string literal
A B - - threestring literals of length 1

"Characters such as $, % and } are allowed in string literals"

"Archi medes said ""Evpnko"""
"Vol ume of cylinder (1tr2h) ="

2.7 Comments

A comment starts with two adjacent hyphens and extends up to the end of the line.

Syntax
comment ::= --{non_end_of line_character}
A comment may appear on any line of a program.

15 10 November 2006 Character Literals 2.5

5/2

7.1/2

9/2



10

11

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Satic Semantics

The presence or absence of comments has no influence on whether a program is lega or illegal.
Furthermore, comments do not influence the meaning of a program; their sole purpose is the
enlightenment of the human reader.

Examples
Examples of comments:
- - thelast sentence above echoes the Algol 68 report

end; -- processing of Lineiscomplete

- - along comment may be split onto
- - two or more consecutive lines

---------------- the first two hyphens start the comment

2.8 Pragmas

A pragma is a compiler directive. There are language-defined pragmas that give instructions for
optimization, listing control, etc. An implementation may support additional (implementation-defined)
pragmas.

Syntax
pragma ::=
pragma identifier [(pragma_argument_association {, pragma_argument_association})];
pragma_argument_association ::=
[pragma_argument_identifier =>] name
| [pragma_argument_identifier =>] expression

In apragma, any pragma_argument_associations without a pragma_argument_identifier shall
precede any associations with a pragma_argument_identifier.
Pragmas are only allowed at the following places in a program:

« After asemicolon delimiter, but not within aformal_part or discriminant_part.

« At any place where the syntax rules alow a construct defined by a syntactic category

whose name ends with "declaration”, "statement”, "clause”, or "alternative", or one of the

syntactic categories variant or exception_handler; but not in place of such a construct.
Also at any place where acompilation_unit would be allowed.

Additional syntax rules and placement restrictions exist for specific pragmas.
The name of apragma is the identifier following the reserved word pragma. The name or expression of
apragma_argument_association is a pragma argument.

An identifier specific to a pragma is an identifier that is used in a pragma argument with special meaning
for that pragma.

Satic Semantics

If an implementation does not recognize the name of a pragma, then it has no effect on the semantics of
the program. Inside such a pragma, the only rules that apply are the Syntax Rules.

2.7 Comments 10 November 2006 16
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Dynamic Semantics
Any pragma that appears at the place of an executable construct is executed. Unless otherwise specified

for a particular pragma, this execution consists of the evaluation of each evaluable pragma argument in an
arbitrary order.

Implementation Requirements

The implementation shall give awarning message for an unrecognized pragma name.

Implementation Permissions
An implementation may provide implementation-defined pragmas; the name of an implementation-defined
pragma shall differ from those of the language-defined pragmas.

An implementation may ignore an unrecognized pragma even if it violates some of the Syntax Rules, if
detecting the syntax error is too complex.

Implementation Advice

Normally, implementation-defined pragmas should have no semantic effect for error-free programs; that
is, if the implementation-defined pragmas are removed from a working program, the program should still
be legal, and should still have the same semantics.

Normally, an implementation should not define pragmas that can make an illegal program legal, except as
follows:

* A pragma used to complete a declaration, such as a pragma Import;

« A pragma used to configure the environment by adding, removing, or replacing library_items.

Syntax
The forms of List, Page, and Optimize pragmas are as follows:
pragma List(identifier);
pragma Page;
pragma Optimize(identifier);
Other pragmas are defined throughout this International Standard, and are summarized in Annex L.

Static Semantics

A pragma List takes one of the identifiers On or Off as the single argument. This pragma is allowed
anywhere a pragma is alowed. It specifies that listing of the compilation is to be continued or suspended
until a List pragma with the opposite argument is given within the same compilation. The pragma itself is
always listed if the compiler is producing alisting.

A pragma Page is allowed anywhere a pragma is allowed. It specifies that the program text which follows
the pragma should start on a new page (if the compiler is currently producing alisting).

A pragma Optimize takes one of the identifiers Time, Space, or Off as the single argument. This pragma
is alowed anywhere a pragma is allowed, and it applies until the end of the immediately enclosing
declarative region, or for a pragma at the place of a compilation_unit, to the end of the compilation. It
gives advice to the implementation as to whether time or space is the primary optimization criterion, or
that optional optimizations should be turned off. It isimplementation defined how this adviceis followed.

17 10 November 2006 Pragmas 2.8

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27



28

29/2

11

2/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Examples of pragmas:

pragma List(Of);
pragma Optimize(Of);
pragnma | nline(Set_Mask);
pragma | nport (C, Put_Char,

Examples

- - turn off listing generation

2.9 Reserved Words

This paragraph was deleted.

The following are the reserved words. Within a program, some or al of the letters of areserved word
may bein upper case, and one or more charactersin category other_format may be inserted within or
at the end of the reserved word.

abort
abs
abstract
accept
access
aliased
all

and
array

at

begin
body

case

constant

declare
delay
delta
digits
do
NOTES

else

elsif

end
entry
exception
exit

for
function

generic
goto

if

in
interface
is

limited
loop

mod

- - turn off optional optimizations
- - generate code for Set_Mask inline
Ext ernal _Nanme => “"putchar");

Syntax

new
not
null

of

or

others

out
overriding

package
pragma
private
procedure
protected
raise
range
record
rem
renames
regueue

return
reverse

select
separ ate
subtype

synchronized

tagged
task
terminate
then

type

until
use

when
while
with

Xxor

- - import C putchar function

8 The reserved words appear in lower case boldfacein this International Standard, except when used in the designator of
an attribute (see 4.1.4). Lower case boldface is aso used for a reserved word in a string_literal used as an
operator_symbol. Thisis merely a convention — programs may be written in whatever typeface is desired and available.

2.8 Pragmas

10 November 2006
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Section 3: Declarations and Types

This section describes the types in the language and the rules for declaring constants, variables, and named
numbers.

3.1 Declarations

The language defines several kinds of named entities that are declared by declarations. The entity's name
is defined by the declaration, usually by a defining_identifier, but sometimes by a defining_character_-
literal or defining_operator_symbol.

There are several forms of declaration. A basic_declaration is aform of declaration defined as follows.

Syntax
basic_declaration ::=
type_declaration | subtype_declaration
| object_declaration | number_declaration
| subprogram_declaration | abstract_subprogram_declaration
| null_procedure_declaration | package_declaration
| renaming_declaration | exception_declaration
| generic_declaration | generic_instantiation
defining_identifier ::= identifier
Static Semantics

A declaration is alanguage construct that associates a name with (a view of) an entity. A declaration may
appear explicitly in the program text (an explicit declaration), or may be supposed to occur at a given place
in the text as a consequence of the semantics of another construct (an implicit declaration).

Each of the following is defined to be a declaration: any basic_declaration; an enumeration_literal_-
specification; a discriminant_specification; a component_declaration; aloop_parameter_specification; a
parameter_specification; a subprogram_body; an entry_declaration; an entry_index_specification; a
choice_parameter_specification; a generic_formal_parameter_declaration. In addition, an
extended_return_statement is a declaration of its defining_identifier.

All declarations contain a definition for a view of an entity. A view consists of an identification of the
entity (the entity of the view), plus view-specific characteristics that affect the use of the entity through
that view (such as mode of access to an object, formal parameter names and defaults for a subprogram, or
visibility to components of a type). In most cases, a declaration also contains the definition for the entity
itself (arenaming_declaration is an example of a declaration that does not define a new entity, but instead
defines aview of an existing entity (see 8.5)).

For each declaration, the language rules define a certain region of text called the scope of the declaration
(see 8.2). Most declarations associate an identifier with a declared entity. Within its scope, and only there,
there are places where it is possible to use the identifier to refer to the declaration, the view it defines, and
the associated entity; these places are defined by the visibility rules (see 8.3). At such places the identifier
is said to be a name of the entity (the direct_name or selector_name); the name is said to denote the
declaration, the view, and the associated entity (see 8.6). The declaration is said to declare the name, the
view, and in most cases, the entity itself.

19 10 November 2006 Declarations and Types 3

3/2

6/2



10

11

12

2/2

4/2

4.112

5/2

6/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

As an dternative to an identifier, an enumeration literal can be declared with a character_literal as its
name (see 3.5.1), and a function can be declared with an operator_symbol as its name (see 6.1).

The syntax rules use the terms defining_identifier, defining_character_literal, and defining_operator_-
symbol for the defining occurrence of a name; these are collectively called defining names. The terms
direct_name and selector_name are used for usage occurrences of identifiers, character_literals, and
operator_symbols. These are collectively called usage names.

Dynamic Semantics
The process by which a construct achieves its run-time effect is called execution. This process is also
caled elaboration for declarations and evaluation for expressions. One of the terms execution,
elaboration, or evaluation is defined by this International Standard for each construct that has a run-time
effect.

NOTES
1 At compile time, the declaration of an entity declares the entity. At run time, the elaboration of the declaration creates
the entity.

3.2 Types and Subtypes

Satic Semantics

A type is characterized by a set of values, and a set of primitive operations which implement the
fundamental aspects of its semantics. An object of a given type is a run-time entity that contains (has) a
value of the type.

Types are grouped into categories of types. There exist several language-defined categories of types (see
NOTES below), reflecting the similarity of their values and primitive operations. Most categories of types
form classes of types. Elementary types are those whose values are logically indivisible; composite types
are those whose values are composed of component values.

The elementary types are the scalar types (discrete and real) and the access types (whose values provide
access to objects or subprograms). Discrete types are either integer types or are defined by enumeration of
their values (enumeration types). Real types are either floating point types or fixed point types.

The composite types are the record types, record extensions, array types, interface types, task types, and
protected types.

There can be multiple views of a type with varying sets of operations. An incomplete type represents an
incomplete view (see 3.10.1) of a type with a very restricted usage, providing support for recursive data
structures. A private type or private extension represents a partial view (see 7.3) of a type, providing
support for data abstraction. The full view (see 3.2.1) of a type represents its complete definition. An
incomplete or partial view is considered a composite type, even if the full view is not.

Certain composite types (and views thereof) have special components called discriminants whose values
affect the presence, constraints, or initialization of other components. Discriminants can be thought of as
parameters of the type.

The term subcomponent is used in this International Standard in place of the term component to indicate
either a component, or a component of another subcomponent. Where other subcomponents are excluded,
the term component is used instead. Similarly, a part of an object or value is used to mean the whole
object or value, or any set of its subcomponents. The terms component, subcomponent, and part are also
applied to atype meaning the component, subcomponent, or part of objects and values of the type.

3.1 Declarations 10 November 2006 20
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The set of possible values for an object of a given type can be subjected to a condition that is called a
constraint (the case of a null constraint that specifies no restriction is also included); the rules for which
values satisfy a given kind of constraint are given in 3.5 for range_constraints, 3.6.1 for
index_constraints, and 3.7.1 for discriminant_constraints. The set of possible values for an object of an
access type can also be subjected to a condition that excludes the null value (see 3.10).

A subtype of a given type is a combination of the type, a constraint on values of the type, and certain
attributes specific to the subtype. The given typeis called the type of the subtype. Similarly, the associated
constraint is called the constraint of the subtype. The set of values of a subtype consists of the values of its
type that satisfy its constraint and any exclusion of the null value. Such values belong to the subtype.

A subtype is called an unconstrained subtype if its type has unknown discriminants, or if its type alows
range, index, or discriminant constraints, but the subtype does not impose such a constraint; otherwise, the
subtypeis called a constrained subtype (since it has no unconstrained characteristics).

NOTES

2 Any set of types can be called a“category” of types, and any set of typesthat is closed under derivation (see 3.4) can be
caled a “class’ of types. However, only certain categories and classes are used in the description of the rules of the
language — generally those that have their own particular set of primitive operations (see 3.2.3), or that correspond to a
set of types that are matched by a given kind of generic formal type (see 12.5). The following are examples of
“interesting” language-defined classes. elementary, scalar, discrete, enumeration, character, boolean, integer, signed
integer, modular, real, floating point, fixed point, ordinary fixed point, decimal fixed point, numeric, access, access-to-
object, access-to-subprogram, composite, array, string, (untagged) record, tagged, task, protected, nonlimited. Special
syntax is provided to define types in each of these classes. In addition to these classes, the following are examples of
“interesting” language-defined categories: abstract, incomplete, interface, limited, private, record.

These language-defined categories are organized like this:

all types
elementary
scalar
discrete
enumeration
character
boolean
other enumeration
integer
signed integer
modular integer
rea
floating point
fixed point
ordinary fixed point
decimal fixed point
access
access-to-object
access-to-subprogram
composite
untagged
array
string
other array
record
task
protected
tagged (including interfaces)
nonlimited tagged record
limited tagged
limited tagged record
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synchronized tagged
tagged task
tagged protected

There are other categories, such as “numeric” and “discriminated”, which represent other categorization dimensions, but
do not fit into the above strictly hierarchica picture.

3.2.1 Type Declarations

A type_declaration declares atype and itsfirst subtype.

Syntax
type_declaration ::= full_type_declaration
| incomplete_type_declaration
| private_type_declaration
| private_extension_declaration

full_type_declaration ::=
type defining_identifier [known_discriminant_part] is type_definition;
| task_type_declaration
| protected_type_declaration

type_definition ::=
enumeration_type_definition  |integer_type_definition

| real_type_definition | array_type_definition

| record_type_definition | access_type_definition

| derived_type_definition | interface_type_definition
Legality Rules

A given type shall not have a subcomponent whose type is the given type itself.

Satic Semantics

The defining_identifier of a type_declaration denotes the first subtype of the type. The known_-
discriminant_part, if any, defines the discriminants of the type (see 3.7, “Discriminants’). The remainder
of the type_declaration defines the remaining characteristics of (the view of) the type.

A type defined by a type_declaration is a named type; such a type has one or more hameable subtypes.
Certain other forms of declaration also include type definitions as part of the declaration for an object. The
type defined by such a declaration is anonymous — it has no nameable subtypes. For explanatory
purposes, this International Standard sometimes refers to an anonymous type by a pseudo-name, written in
italics, and uses such pseudo-names at places where the syntax normally requires an identifier. For a
named type whose first subtype is T, this International Standard sometimes refers to the type of T as
simply “thetype T".

A named type that is declared by a full_type_declaration, or an anonymous type that is defined by an
access_definition or as part of declaring an object of the type, is called a full type. The declaration of a
full type also declares the full view of the type. The type_definition, task_definition, protected_definition,
or access_definition that defines a full type is called a full type definition. Types declared by other forms
of type_declaration are not separate types, they are partial or incomplete views of some full type.

The definition of a type implicitly declares certain predefined operators that operate on the type,
according to what classes the type belongs, as specified in 4.5, “Operators and Expression Evaluation”.

The predefined types (for example the types Boolean, Wide Character, Integer, root_integer, and
universal_integer) are the types that are defined in a predefined library package called Standard; this
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package also includes the (implicit) declarations of their predefined operators. The package Standard is
described in A.1.

Dynamic Semantics
The elaboration of a full_type_declaration consists of the elaboration of the full type definition. Each
elaboration of afull type definition creates a distinct type and itsfirst subtype.

Examples
Examples of type definitions:

(Wiite, Red, Yellow, Green, Blue, Brown, Bl ack)
range 1 .. 72
array(1 .. 10) of Integer

Examples of type declarations:

type Color is (Wite, Red, Yellow, Geen, Blue, Brown, Bl ack);
type Colum is range 1 .. 72;
type Table is array(l .. 10) of Integer;

NOTES

3 Each of the above examples declares a named type. The identifier given denotes the first subtype of the type. Other
named subtypes of the type can be declared with subtype_declarations (see 3.2.2). Although names do not directly denote
types, a phrase like “the type Column” is sometimes used in this International Standard to refer to the type of Column,
where Column denotes the first subtype of the type. For an example of the definition of an anonymous type, see the
declaration of the array Color_Tablein 3.3.1; its type is anonymous — it has no namesable subtypes.

3.2.2 Subtype Declarations

A subtype_declaration declares a subtype of some previously declared type, as defined by a
subtype_indication.

Syntax

subtype_declaration ::=
subtype defining_identifier is subtype_indication;

subtype_indication ::= [null_exclusion] subtype_mark [constraint]
subtype_mark ::= subtype_name
constraint ::= scalar_constraint | composite_constraint

scalar_constraint ::=
range_constraint | digits_constraint | delta_constraint

composite_constraint ::=
index_constraint | discriminant_constraint

Name Resolution Rules

A subtype_mark shall resolve to denote a subtype. The type determined by a subtype_mark is the type of
the subtype denoted by the subtype_mark.

Dynamic Semantics
The elaboration of a subtype_declaration consists of the elaboration of the subtype_indication. The
elaboration of a subtype_indication creates a new subtype. If the subtype_indication does not include a
constraint, the new subtype has the same (possibly null) constraint as that denoted by the subtype_mark.
The elaboration of a subtype_indication that includes a constraint proceeds as follows:
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* Theconstraint isfirst elaborated.

e A check is then made that the constraint is compatible with the subtype denoted by the
subtype_mark.

The condition imposed by a constraint is the condition obtained after elaboration of the constraint. The
rules defining compatibility are given for each form of constraint in the appropriate subclause. These rules
are such that if a constraint is compatible with a subtype, then the condition imposed by the constraint
cannot contradict any condition aready imposed by the subtype on its values. The exception
Constraint_Error israised if any check of compatibility fails.

NOTES

4 A scalar_constraint may be applied to a subtype of an appropriate scalar type (see 3.5, 3.5.9, and J.3), even if the
subtype is aready constrained. On the other hand, a composite_constraint may be applied to a composite subtype (or an
access-to-composite subtype) only if the composite subtype is unconstrained (see 3.6.1 and 3.7.1).

Examples

Examples of subtype declarations:
subtype Rainbow is Color range Red .. Bl ue; -- see32l
subtype Red_Blue is Rainbow,
subtype Int is Integer;
subtype Snall _Int is Integer range -10 .. 10;
subtype Up_To K is Colum range 1 .. K -- see3d2l
subt ype Square is Matrix(1 .. 10, 1 .. 10); -- see3b
subtype Mal e is Person(Sex => M; -- see3.101
subtype Binop_Ref is not null Binop_Ptr; -- se3.10

3.2.3 Classification of Operations

Satic Semantics

An operation operates on atype T if it yields a value of type T, if it has an operand whose expected type
(see 8.6) is T, or if it has an access parameter or access result type (see 6.1) designating T. A predefined
operator, or other language-defined operation such as assignment or a membership test, that operates on a
type, is called a predefined operation of the type. The primitive operations of a type are the predefined
operations of the type, plus any user-defined primitive subprograms.

The primitive subprograms of a specific type are defined as follows:
« The predefined operators of the type (see 4.5);
» For aderived type, the inherited (see 3.4) user-defined subprograms;

« For an enumeration type, the enumeration literals (which are considered parameterless functions
—see35.1);

» For a specific type declared immediately within a package_specification, any subprograms (in
addition to the enumeration literals) that are explicitly declared immediately within the same
package_specification and that operate on the type;

e For a nonforma type, any subprograms not covered above that are explicitly declared
immediately within the same declarative region as the type and that override (see 8.3) other
implicitly declared primitive subprograms of the type.

A primitive subprogram whose designator is an operator_symbol is called a primitive operator.
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3.3 Objects and Named Numbers

Objects are created at run time and contain a value of agiven type. An object can be created and initialized
as part of elaborating a declaration, evaluating an allocator, aggregate, or function_call, or passing a
parameter by copy. Prior to reclaiming the storage for an object, it isfinalized if necessary (see 7.6.1).
Static Semantics

All of the following are objects:

« theentity declared by an object_declaration;

« aformal parameter of a subprogram, entry, or generic subprogram;

« ageneric formal object;

* aloop parameter;

¢ achoice parameter of an exception_handler;

e anentry index of an entry_body;

« theresult of dereferencing an access-to-object value (see 4.1);

« the return object created as the result of evaluating a function_call (or the equivalent operator
invocation — see 6.6);

« theresult of evaluating an aggregate;
« acomponent, slice, or view conversion of another object.

An object is either a constant object or a variable object. The value of a constant object cannot be changed
between its initialization and its finalization, whereas the value of a variable object can be changed.
Similarly, aview of an object is either a constant or avariable. All views of a constant object are constant.
A constant view of a variable object cannot be used to modify the value of the variable. The terms constant
and variable by themselves refer to constant and variable views of objects.

The value of an object is read when the value of any part of the object is evaluated, or when the value of
an enclosing object is evaluated. The value of a variable is updated when an assignment is performed to
any part of the variable, or when an assignment is performed to an enclosing object.

Whether a view of an object is constant or variable is determined by the definition of the view. The
following (and no others) represent constants:

« an object declared by an object_declaration with the reserved word constant;

« aformal parameter or generic formal object of modein;

e adiscriminant;

« aloop parameter, choice parameter, or entry index;

* the dereference of an access-to-constant value;

« theresult of evaluating afunction_call or an aggregate;

« aselected_component, indexed_component, slice, or view conversion of a constant.

At the place where a view of an object is defined, a nominal subtype is associated with the view. The
object's actual subtype (that is, its subtype) can be more restrictive than the nominal subtype of the view; it
always is if the nominal subtype is an indefinite subtype. A subtype is an indefinite subtype if it is an
unconstrained array subtype, or if it has unknown discriminants or unconstrained discriminants without
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defaults (see 3.7); otherwise the subtype is a definite subtype (all elementary subtypes are definite
subtypes). A class-wide subtype is defined to have unknown discriminants, and is therefore an indefinite
subtype. An indefinite subtype does not by itself provide enough information to create an object; an
additional constraint or explicit initialization expression is necessary (see 3.3.1). A component cannot
have an indefinite nominal subtype.

A named number provides a name for a numeric value known at compile time. It is declared by a
number_declaration.

NOTES
5 A constant cannot be the target of an assignment operation, nor be passed as an in out or out parameter, between its
initialization and findization, if any.

6 The nominal and actua subtypes of an elementary object are always the same. For a discriminated or array object, if the
nominal subtypeis constrained then so is the actual subtype.

3.3.1 Object Declarations

An object_declaration declares a stand-alone object with a given nominal subtype and, optionaly, an
explicit initial value given by an initialization expression. For an array, task, or protected object, the
object_declaration may include the definition of the (anonymous) type of the object.

Syntax
object_declaration ::=
defining_identifier_list : [aliased] [constant] subtype_indication [:= expression];
| defining_identifier_list : [aliased] [constant] access_definition [:= expression];
| defining_identifier_list : [aliased] [constant] array_type_definition [:= expression];
| single_task_declaration
| single_protected_declaration
defining_identifier_list ::=
defining_identifier {, defining_identifier}

Name Resolution Rules

For an object_declaration with an expression following the compound delimiter :=, the type expected for
the expression is that of the object. Thisexpression is called the initialization expression.

Legality Rules
An object_declaration without the reserved word constant declares a variable object. If it has a
subtype_indication or an array_type_definition that defines an indefinite subtype, then there shall be an
initialization expression.

Satic Semantics

An object_declaration with the reserved word constant declares a constant object. If it has an
initialization expression, then it is called a full constant declaration. Otherwise it is called a deferred
constant declaration. The rules for deferred constant declarations are given in clause 7.4. The rules for full
constant declarations are given in this subclause.

Any declaration that includes a defining_identifier_list with more than one defining_identifier is equivalent
to a series of declarations each containing one defining_identifier from the list, with the rest of the text of
the declaration copied for each declaration in the series, in the same order as the list. The remainder of this
International Standard relies on this equivalence; explanations are given for declarations with a single
defining_identifier.
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The subtype_indication, access_definition, or full type definition of an object_declaration defines the
nominal subtype of the object. The object_declaration declares an object of the type of the nominal
subtype.

A component of an object is said to require late initialization if it has an access discriminant value
constrained by a per-object expression, or if it has an initialization expression that includes a name
denoting the current instance of the type or denoting an access discriminant.

Dynamic Semantics
If a composite object declared by an object_declaration has an unconstrained nominal subtype, then if this
subtype is indefinite or the object is constant the actual subtype of this object is constrained. The
constraint is determined by the bounds or discriminants (if any) of itsinitia value; the object is said to be
constrained by its initial value. When not constrained by its initial value, the actual and nominal subtypes
of the object are the same. If its actual subtype is constrained, the object is called a constrained object.

For an object_declaration without an initialization expression, any initial values for the object or its
subcomponents are determined by the implicit initial values defined for its nominal subtype, as follows:

« Theimplicitinitial value for an access subtype is the null value of the access type.

* Theimplicit initia (and only) value for each discriminant of a constrained discriminated subtype
is defined by the subtype.

e For a (definite) composite subtype, the implicit initial value of each component with a
default_expression is obtained by evaluation of this expression and conversion to the
component's nominal subtype (which might raise Constraint_ Error — see 4.6, “Type
Conversions’), unless the component is a discriminant of a constrained subtype (the previous
case), or is in an excluded variant (see 3.8.1). For each component that does not have a
default_expression, any implicit initial values are those determined by the component's nominal
subtype.

« For aprotected or task subtype, there is an implicit component (an entry queue) corresponding to
each entry, with itsimplicit initial value being an empty queue.

The elaboration of an object_declaration proceeds in the following sequence of steps:

1. The subtype_indication, access_definition, array_type_definition, single_task_declaration, or
single_protected_declaration is first elaborated. This creates the nominal subtype (and the
anonymous type in the last four cases).

2. If the object_declaration includes an initialization expression, the (explicit) initial value is
obtained by evaluating the expression and converting it to the nominal subtype (which might
raise Constraint_Error — see 4.6).

3. The object is created, and, if there is not an initialization expression, the object is initialized by
default. When an object is initialized by default, any per-object constraints (see 3.8) are
elaborated and any implicit initial values for the object or for its subcomponents are obtained as
determined by the nominal subtype. Any initial values (whether explicit or implicit) are assigned
to the object or to the corresponding subcomponents. As described in 5.2 and 7.6, Initialize and
Adjust procedures can be called.

This paragraph was del eted.

For the third step above, evaluations and assignments are performed in an arbitrary order subject to the
following restrictions:

e Assignment to any part of the object is preceded by the evaluation of the value that is to be
assigned.
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2022 * Theevaluation of adefault_expression that includes the name of a discriminant is preceded by
the assignment to that discriminant.

2032 * Theevauation of the default_expression for any component that depends on a discriminant is
preceded by the assignment to that discriminant.

2042 * The assignments to any components, including implicit components, not requiring late
initialization must precede the initial value evaluations for any components requiring late
initialization; if two components both require late initialization, then assignments to parts of the
component occurring earlier in the order of the component declarations must precede the initial
value evaluations of the component occurring later.

21 Thereisno implicit initial value defined for a scalar subtype. In the absence of an explicit initialization, a
newly created scalar object might have a value that does not belong to its subtype (see 13.9.1 and H.1).

NOTES
22 7 Implicit initial values are not defined for an indefinite subtype, because if an object's nominal subtype is indefinite, an
explicit initial valueisrequired.

23 8 As indicated above, a stand-alone object is an object declared by an object_declaration. Similar definitions apply to
“stand-alone constant” and “stand-alone variable.” A subcomponent of an object is not a stand-alone object, nor is an
object that is created by an allocator. An object declared by a loop_parameter_specification, parameter_specification,
entry_index_specification, choice_parameter_specification, or a formal_object_declaration is not caled a stand-alone

object.

24 9 Thetype of astand-alone object cannot be abstract (see 3.9.3).
Examples

25 Example of a multiple object declaration:
26 - - themultiple object declaration
2712 John, Paul : not null Person_Nanme := new Person(Sex => M,; -- se3101
28 - - isequivalent to the two single object declarationsin the order given
20/2 John : not null Person_Nanme := new Person(Sex => M;

Paul : not null Person_Nane := new Person(Sex => M;

30  Examples of variable declarations:

31/2 Count, Sum : Integer;
Si ze : Integer range O .. 10_000 := O;
Sorted . Bool ean : = Fal se;
Col or _Table : array(1 .. Max) of Color;
Option : Bit_Vector(1l .. 10) := (others => True);
Hel |l o : aliased String := "H, world.";
0, ¢ : Float range -1 .. +T¢

32 Examples of constant declarations:

33/2 Limt : constant Integer := 10_000;
Low Limt : constant Integer := Limt/10;
Tol erance : constant Real := Dispersion(l.15);
Hell o_Msg : constant access String := Hell o' Access; -- se3.10.2

3.3.2 Number Declarations
1 A number_declaration declares a named number.
Syntax

2 number_declaration ::=
defining_identifier_list : constant := static_expression;
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Name Resolution Rules
The static_expression given for anumber_declaration is expected to be of any numeric type.

Legality Rules

The static_expression given for a number declaration shall be a static expression, as defined by clause
4.9.

Static Semantics

The named number denotes a value of type universal_integer if the type of the static_expression is an
integer type. The named number denotes a value of type universal_real if the type of the static -
expression isareal type.

The value denoted by the named number is the value of the static_expression, converted to the
corresponding universal type.

Dynamic Semantics
The elaboration of anumber_declaration has no effect.

Examples
Examples of number declarations:
Two_Pi : constant := 2.0*Ada. Nurerics. Pi ; - - areal number (see A.5)
Max ;. constant := 500; - - aninteger number
Max_Line_Size : constant := Max/6; - - theinteger 83
Power _16 . constant := 2**16; - - theinteger 65 536
One, Un, Eins : constant := 1, - - three different names for 1

3.4 Derived Types and Classes

A derived_type_definition defines a derived type (and its first subtype) whose characteristics are derived
from those of a parent type, and possibly from progenitor types.

A class of typesis aset of typesthat is closed under derivation; that is, if the parent or a progenitor type of
aderived type belongs to a class, then so does the derived type. By saying that a particular group of types
forms a class, we are saying that al derivatives of a type in the set inherit the characteristics that define
that set. The more general term category of types is used for a set of types whose defining characteristics
are not necessarily inherited by derivatives; for example, limited, abstract, and interface are all categories
of types, but not classes of types.

Syntax
derived_type_definition ::=
[abstract] [limited] new parent_subtype_indication [[and interface_list] record_extension_part]
Legality Rules

The parent_subtype_indication defines the parent subtype; its type is the parent type. The interface_list
defines the progenitor types (see 3.9.4). A derived type has one parent type and zero or more progenitor
types.

A type shal be completely defined (see 3.11.1) prior to being specified as the parent type in a

derived_type_definition — the full_type_declarations for the parent type and any of its subcomponents
have to precede the derived_type_definition.
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If there is a record_extension_part, the derived type is called a record extension of the parent type. A
record_extension_part shall be provided if and only if the parent type is a tagged type. An interface_list
shall be provided only if the parent type is atagged type.

If the reserved word limited appears in aderived_type_definition, the parent type shall be alimited type.

Satic Semantics

The first subtype of the derived type is unconstrained if a known_discriminant_part is provided in the
declaration of the derived type, or if the parent subtype is unconstrained. Otherwise, the constraint of the
first subtype corresponds to that of the parent subtype in the following sense: it is the same as that of the
parent subtype except that for a range constraint (implicit or explicit), the value of each bound of its range
isreplaced by the corresponding value of the derived type.

The first subtype of the derived type excludes null (see 3.10) if and only if the parent subtype excludes
null.

The characteristics of the derived type are defined as follows:

< |If the parent type or a progenitor type belongs to a class of types, then the derived type also
belongs to that class. The following sets of types, as well as any higher-level sets composed
from them, are classes in this sense, and hence the characteristics defining these classes are
inherited by derived types from their parent or progenitor types. signed integer, modular integer,
ordinary fixed, decimal fixed, floating point, enumeration, boolean, character, access-to-
constant, general access-to-variable, pool-specific access-to-variable, access-to-subprogram,
array, string, non-array composite, nonlimited, untagged record, tagged, task, protected, and
synchronized tagged.

« |If the parent type is an elementary type or an array type, then the set of possible values of the
derived type is a copy of the set of possible values of the parent type. For a scalar type, the base
range of the derived type is the same as that of the parent type.

« |If the parent type is a composite type other than an array type, then the components, protected
subprograms, and entries that are declared for the derived type are as follows:

The discriminants specified by a new known_discriminant_part, if there is one; otherwise,
each discriminant of the parent type (implicitly declared in the same order with the same
specifications) — in the latter case, the discriminants are said to be inherited, or if unknown
in the parent, are also unknown in the derived type;

Each nondiscriminant component, entry, and protected subprogram of the parent type,
implicitly declared in the same order with the same declarations; these components, entries,
and protected subprograms are said to be inherited;

Each component declared in arecord_extension_part, if any.

Declarations of components, protected subprograms, and entries, whether implicit or explicit,
occur immediately within the declarative region of the type, in the order indicated above,
following the parent subtype_indication.

¢ This paragraph was deleted.

« For each predefined operator of the parent type, there is a corresponding predefined operator of
the derived type.

» For each user-defined primitive subprogram (other than a user-defined equality operator — see
below) of the parent type or of a progenitor type that already exists at the place of the
derived_type_definition, there exists a corresponding inherited primitive subprogram of the
derived type with the same defining name. Primitive user-defined equality operators of the
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parent type and any progenitor types are also inherited by the derived type, except when the
derived type is a nonlimited record extension, and the inherited operator would have a profile
that is type conformant with the profile of the corresponding predefined equality operator; in this
case, the user-defined equality operator is not inherited, but is rather incorporated into the
implementation of the predefined equality operator of the record extension (see 4.5.2).

The profile of an inherited subprogram (including an inherited enumeration literal) is obtained
from the profile of the corresponding (user-defined) primitive subprogram of the parent or
progenitor type, after systematic replacement of each subtype of its profile (see 6.1) that is of the
parent or progenitor type with a corresponding subtype of the derived type. For a given subtype
of the parent or progenitor type, the corresponding subtype of the derived type is defined as
follows:

If the declaration of the derived type has neither a known_discriminant_part nor a
record_extension_part, then the corresponding subtype has a constraint that corresponds
(as defined above for the first subtype of the derived type) to that of the given subtype.

If the derived typeis arecord extension, then the corresponding subtype is the first subtype
of the derived type.

If the derived type has a new known_discriminant_part but is not a record extension, then
the corresponding subtype is constrained to those values that when converted to the parent
type belong to the given subtype (see 4.6).

The same forma parameters have default_expressions in the profile of the inherited
subprogram. Any type mismatch due to the systematic replacement of the parent or progenitor
type by the derived type is handled as part of the normal type conversion associated with
parameter passing — see 6.4.1.

If a primitive subprogram of the parent or progenitor type is visible at the place of the
derived_type_definition, then the corresponding inherited subprogram is implicitly declared immediately
after the derived_type_definition. Otherwise, the inherited subprogram isimplicitly declared later or not at
all, asexplained in 7.3.1.

A derived type can aso be defined by a private_extension_declaration (see 7.3) or a formal_derived_-
type_definition (see 12.5.1). Such aderived typeis apartia view of the corresponding full or actual type.

All numeric types are derived types, in that they are implicitly derived from a corresponding root numeric
type (see 3.5.4 and 3.5.6).

Dynamic Semantics
The elaboration of a derived_type_definition creates the derived type and its first subtype, and consists of
the elaboration of the subtype_indication and the record_extension_part, if any. If the subtype_-
indication depends on a discriminant, then only those expressions that do not depend on a discriminant are
evaluated.

For the execution of a call on an inherited subprogram, a call on the corresponding primitive subprogram
of the parent or progenitor type is performed; the normal conversion of each actual parameter to the
subtype of the corresponding formal parameter (see 6.4.1) performs any necessary type conversion as
well. If the result type of the inherited subprogram is the derived type, the result of calling the subprogram
of the parent or progenitor is converted to the derived type, or in the case of a null extension, extended to
the derived type using the equivalent of an extension_aggregate with the original result as the
ancestor_part and null record as the record_component_association_list.
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NOTES
10 Classes are closed under derivation — any class that contains a type also contains its derivatives. Operations available
for agiven class of types are available for the derived typesin that class.

11 Evauating an inherited enumeration literal is equivalent to evaluating the corresponding enumeration literal of the
parent type, and then converting the result to the derived type. This follows from their equivalence to parameterless
functions.

12 A generic subprogram is not a subprogram, and hence cannot be a primitive subprogram and cannot be inherited by a
derived type. On the other hand, an instance of a generic subprogram can be a primitive subprogram, and hence can be
inherited.

13 If the parent type is an access type, then the parent and the derived type share the same storage pool; there is a null
access value for the derived type and it is the implicit initial value for the type. See 3.10.

14 If the parent type is a boolean type, the predefined relational operators of the derived type deliver a result of the
predefined type Boolean (see 4.5.2). If the parent type is an integer type, the right operand of the predefined
exponentiation operator is of the predefined type Integer (see 4.5.6).

15 Any discriminants of the parent type are either al inherited, or completely replaced with a new set of discriminants.

16 For an inherited subprogram, the subtype of a forma parameter of the derived type need not have any value in
common with the first subtype of the derived type.

17 If thereserved word abstract is given in the declaration of atype, the typeis abstract (see 3.9.3).

18 An interface type that has a progenitor type “is derived from” that type. A derived_type_definition, however, never
defines an interface type.

19 Itisillegal for the parent type of aderived_type_definition to be a synchronized tagged type.

Examples
Examples of derived type declarations:
type Local _Coordinate is new Coordinate; - - two different types
type Mdweek is new Day range Tue .. Thu; -- see35.1
type Counter is new Positive; - - samerange as Positive
type Speci al _Key is new Key_Manager . Key; -- see731

- - theinherited subprograms have the following specifications:
-- procedure Get_Key(K : out Special_Key);
-- function "<" (XY : Special_Key) return Boolean;

3.4.1 Derivation Classes
In addition to the various language-defined classes of types, types can be grouped into derivation classes.

Satic Semantics

A derived typeis derived from its parent type directly; it is derived indirectly from any type from which its
parent type is derived. A derived type, interface type, type extension, task type, protected type, or formal
derived type is aso derived from every ancestor of each of its progenitor types, if any. The derivation
class of types for atype T (also called the class rooted at T) is the set consisting of T (the root type of the
class) and al types derived from T (directly or indirectly) plus any associated universal or class-wide types
(defined below).

Every type is either a specific type, a class-wide type, or a universal type. A specific type is one defined
by atype_declaration, aformal_type_declaration, or afull type definition embedded in another construct.
Class-wide and universal types are implicitly defined, to act as representatives for an entire class of types,
asfollows:
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Class-wide types
Class-wide types are defined for (and belong to) each derivation class rooted at a tagged
type (see 3.9). Given a subtype S of a tagged type T, SClass is the subtype_mark for a
corresponding subtype of the tagged class-wide type T'Class. Such types are called “class-
wide” because when a forma parameter is defined to be of a class-wide type T'Class, an
actual parameter of any typein the derivation class rooted at T is acceptable (see 8.6).

The set of values for a class-wide type T'Class is the discriminated union of the set of
values of each specific type in the derivation class rooted at T (the tag acts as the implicit
discriminant — see 3.9). Class-wide types have no primitive subprograms of their own.
However, as explained in 3.9.2, operands of a class-wide type T'Class can be used as part of
adispatching call on a primitive subprogram of the type T. The only components (including
discriminants) of T'Class that are visible are those of T. If Sis afirst subtype, then SClass
isafirst subtype.

Universal types

Universal types are defined for (and belong to) the integer, real, fixed point, and access
classes, and are referred to in this standard as respectively, universal_integer,
universal_real, universal_fixed, and universal_access. These are analogous to class-wide
types for these language-defined elementary classes. As with class-wide types, if a formal
parameter is of a universal type, then an actual parameter of any type in the corresponding
class is acceptable. In addition, a value of a universal type (including an integer or rea
numeric_literal, or the literal null) is “universal” in that it is acceptable where some
particular type in the class is expected (see 8.6).

The set of values of a universa type is the undiscriminated union of the set of values
possible for any definable type in the associated class. Like class-wide types, universa
types have no primitive subprograms of their own. However, their “universality” allows
them to be used as operands with the primitive subprograms of any type in the
corresponding class.

The integer and real numeric classes each have a specific root type in addition to their universal type,
named respectively root_integer and root_real.

A class-wide or universal type is said to cover all of the types in its class. A specific type covers only
itself.

A specific type T2 is defined to be a descendant of atype T1 if T2 is the same as T1, or if T2 is derived
(directly or indirectly) from T1. A class-wide type T2'Class is defined to be a descendant of type T1 if T2
is a descendant of T1. Similarly, the numeric universal types are defined to be descendants of the root
types of their classes. If atype T2 is a descendant of a type T1, then T1 is called an ancestor of T2. An
ultimate ancestor of a type is an ancestor of that type that is not itself a descendant of any other type.
Every untagged type has a unique ultimate ancestor.

An inherited component (including an inherited discriminant) of a derived type is inherited from a given
ancestor of the type if the corresponding component was inherited by each derived type in the chain of
derivations going back to the given ancestor.

NOTES

20 Because operands of a universal type are acceptable to the predefined operators of any type in their class, ambiguity
can result. For universal_integer and universal_real, this potential ambiguity is resolved by giving a preference (see 8.6)
to the predefined operators of the corresponding root types (root_integer and root_real, respectively). Hence, in an
apparently ambiguous expression like

1+4<7

where each of the literals is of type universal_integer, the predefined operators of root_integer will be preferred over
those of other specific integer types, thereby resolving the ambiguity.
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3.5 Scalar Types

Scalar types comprise enumeration types, integer types, and real types. Enumeration types and integer
types are called discrete types; each value of a discrete type has a position number which is an integer
value. Integer types and real types are called numeric types. All scalar types are ordered, that is, all
relational operators are predefined for their values.

Syntax
range_constraint ::= rangerange
range ::= range_attribute_reference
| simple_expression .. simple_expression

A range has a lower bound and an upper bound and specifies a subset of the values of some scalar type
(the type of the range). A range with lower bound L and upper bound R is described by “L .. R". If R is
less than L, then the range is a null range, and specifies an empty set of values. Otherwise, the range
specifies the values of the type from the lower bound to the upper bound, inclusive. A value belongs to a
rangeif it is of the type of the range, and isin the subset of values specified by the range. A value satisfies
arange constraint if it belongs to the associated range. One range is included in ancther if all values that
belong to the first range also belong to the second.

Name Resolution Rules

For a subtype_indication containing a range_constraint, either directly or as part of some other
scalar_constraint, the type of the range shall resolve to that of the type determined by the subtype_mark
of the subtype_indication. For a range of a given type, the simple_expressions of the range (likewise,
the simple_expressions of the equivalent range for a range_attribute_reference) are expected to be of
the type of therange.

Satic Semantics

The base range of a scalar type is the range of finite values of the type that can be represented in every
unconstrained object of the type; it is aso the range supported at a minimum for intermediate values
during the evaluation of expressionsinvolving predefined operators of the type.

A constrained scalar subtype is one to which a range constraint applies. The range of a constrained scalar
subtype is the range associated with the range constraint of the subtype. The range of an unconstrained
scalar subtype is the base range of itstype.

Dynamic Semantics
A range is compatible with a scalar subtype if and only if it is either a null range or each bound of the
range belongs to the range of the subtype. A range_constraint is compatible with a scalar subtype if and
only if itsrange is compatible with the subtype.

The elaboration of arange_constraint consists of the evaluation of the range. The evaluation of arange
determines a lower bound and an upper bound. If simple_expressions are given to specify bounds, the
evaluation of the range evaluates these simple_expressionsin an arbitrary order, and converts them to the
type of the range. If a range_attribute_reference is given, the evaluation of the range consists of the
evaluation of therange_attribute_reference.
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Attributes
For every scalar subtype S, the following attributes are defined:

SFirst SFirst denotes the lower bound of the range of S. The value of this attribute is of the type
of S.

Slast S'Last denotes the upper bound of the range of S. The value of this attribute is of the type of
S.

SRange SRangeisequivaent to therange SFirst .. SLast.

SBase S'Base denotes an unconstrained subtype of the type of S. This unconstrained subtype is

called the base subtype of the type.

SMin SMin denotes a function with the following specification:

function S' M n(Left, Right : S' Base)
return S Base

The function returns the lesser of the values of the two parameters.

SMax SMax denotes a function with the following specification:

function S Max(Left, Right : S' Base)
return S Base

The function returns the greater of the values of the two parameters.

S'Succ S'Succ denotes a function with the following specification:
function S Succ(Arg : S Base)
return S Base

For an enumeration type, the function returns the value whose position number is one more
than that of the value of Arg; Constraint_Error israised if there is no such value of the type.
For an integer type, the function returns the result of adding one to the value of Arg. For a
fixed point type, the function returns the result of adding small to the value of Arg. For a
floating point type, the function returns the machine number (as defined in 3.5.7)
immediately above the value of Arg; Constraint_Error is raised if there is no such machine
number.

SPred SPred denotes a function with the following specification:

function S Pred(Arg : S Base)
return S Base
For an enumeration type, the function returns the value whose position number is one less
than that of the value of Arg; Constraint_Error israised if there is no such value of the type.
For an integer type, the function returns the result of subtracting one from the value of Arg.
For afixed point type, the function returns the result of subtracting small from the value of
Arg. For afloating point type, the function returns the machine number (as defined in 3.5.7)
immediately below the value of Arg; Constraint_Error israised if there is no such machine
number.

SWide_Wide _Image
SWide_Wide_Image denotes a function with the following specification:
function S Wde_Wde_l mage(Arg : S Base)
return Wde_Wde_String

The function returns an image of the value of Arg, that is, a sequence of characters
representing the value in display form. The lower bound of the result is one.

The image of an integer value is the corresponding decimal literal, without underlines,
leading zeros, exponent, or trailing spaces, but with a single leading character that is either
aminus sign or a space.
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The image of an enumeration value is either the corresponding identifier in upper case or
the corresponding character literal (including the two apostrophes); neither leading nor
trailing spaces are included. For a nongraphic character (a value of a character type that
has no enumeration literal associated with it), the result is a corresponding language-
defined name in upper case (for example, the image of the nongraphic character identified
asnul is“NUL” — the quotes are not part of the image).

The image of a floating point value is a decimal real literal best approximating the value
(rounded away from zero if halfway between) with asingle leading character that is either a
minus sign or a space, a single digit (that is nonzero unless the value is zero), a decimal
point, SDigits-1 (see 3.5.8) digits after the decimal point (but one if SDigits is one), an
upper case E, the sign of the exponent (either + or —), and two or more digits (with leading
zeros if necessary) representing the exponent. If SSigned_Zeros is True, then the leading
character isaminus sign for anegatively signed zero.

The image of a fixed point value is a decimal real literal best approximating the value
(rounded away from zero if halfway between) with asingle leading character that is either a
minus sign or a space, one or more digits before the decimal point (with no redundant
leading zeros), adecimal point, and SAft (see 3.5.10) digits after the decimal point.

SWide_ImageS'Wide_I mage denotes a function with the following specification:
function S Wde_l mage(Arg : S' Base)
return Wde_String
The function returns an image of the value of Arg as aWide_String. The lower bound of the
result is one. The image has the same sequence of character as defined for
SWide Wide_Image if al the graphic characters are defined in Wide_Character; otherwise
the sequence of characters is implementation defined (but no shorter than that of
SWide_Wide_Image for the same value of Arg).

Paragraphs 31 through 34 were moved to Wide_Wide Image.

Slmage S'mage denotes a function with the following specification:
function S I mage(Arg : S Base)
return String
The function returns an image of the value of Arg as a String. The lower bound of the result
is one. The image has the same sequence of graphic characters as that defined for
SWide Wide_Image if al the graphic characters are defined in Character; otherwise the
sequence of characters is implementation defined (but no shorter than that of
SWide Wide_Image for the same value of Arg).

SWide Wide Width
SWide Wide Width denotes the maximum length of a Wide Wide String returned by
SWide Wide_Image over al values of the subtype S. It denotes zero for a subtype that has
anull range. Itstypeisuniversal_integer.

SWide Width
SWide_Width denotes the maximum length of a Wide_String returned by SWide_Image
over all values of the subtype S. It denotes zero for a subtype that has a null range. Its type
isuniversal_integer.

SWidth SWidth denotes the maximum length of a String returned by Smage over all values of the
subtype S. It denotes zero for a subtype that has anull range. Itstypeis universal_integer.

SWide Wide Vaue
SWide_Wide_Vaue denotes a function with the following specification:

function S Wde_Wde_Val ue(Arg : Wde_Wde_String)
return S Base
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This function returns a value given an image of the value as a Wide_Wide_String, ignoring
any leading or trailing spaces.

For the evaluation of a call on SWide Wide Value for an enumeration subtype S, if the
sequence of characters of the parameter (ignoring leading and trailing spaces) has the
syntax of an enumeration literal and if it corresponds to a literal of the type of S (or
corresponds to the result of SWide Wide_Image for a nongraphic character of the type),
the result is the corresponding enumeration value; otherwise Constraint_Error is raised.

For the evaluation of a cal on SWide Wide Value for an integer subtype S, if the
sequence of characters of the parameter (ignoring leading and trailing spaces) has the
syntax of an integer literal, with an optional leading sign character (plus or minus for a
signed type; only plus for amodular type), and the corresponding numeric value belongs to
the base range of the type of S, then that value is the result; otherwise Constraint_Error is
raised.

For the evaluation of a call on SWide Wide Value for areal subtype S, if the sequence of
characters of the parameter (ignoring leading and trailing spaces) has the syntax of one of
the following:

e numeric_literal

¢ numeral.[exponent]

e .numeral[exponent]

* base#tbased_numeral.# exponent]
¢ base#.based_numeral#exponent]

with an optional leading sign character (plus or minus), and if the corresponding numeric
value belongs to the base range of the type of S, then that value is the result; otherwise
Constraint_Error is raised. The sign of a zero value is preserved (positive if none has been
specified) if SSigned_Zerosis True.

SWide_Value denotes a function with the following specification:
function S Wde_Val ue(Arg : Wde_String)
return S Base
This function returns a value given an image of the value as a Wide_String, ignoring any
leading or trailing spaces.

For the evaluation of a call on SWide_Value for an enumeration subtype S, if the sequence
of characters of the parameter (ignoring leading and trailing spaces) has the syntax of an
enumeration literal and if it corresponds to aliteral of the type of S (or corresponds to the
result of SWide_Image for a value of the type), the result is the corresponding enumeration
value; otherwise Constraint_Error is raised. For a numeric subtype S, the evaluation of a
cal on SWide Value with Arg of type Wide String is equivaent to a cal on
SWide_Wide_Valuefor acorresponding Arg of type Wide Wide_String.

Paragraphs 44 through 51 were moved to Wide_Wide_Value.

S'Value denotes a function with the following specification:

function S Value(Arg : String)
return S Base

This function returns a value given an image of the value as a String, ignoring any leading
or trailing spaces.

For the evaluation of a call on SVaue for an enumeration subtype S, if the sequence of
characters of the parameter (ignoring leading and trailing spaces) has the syntax of an
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enumeration literal and if it corresponds to a literal of the type of S (or corresponds to the
result of S1mage for avalue of the type), the result is the corresponding enumeration value;
otherwise Constraint_Error is raised. For a numeric subtype S, the evaluation of a call on
SValue with Arg of type String is equivalent to a call on SWide Wide Vaue for a
corresponding Arg of type Wide_Wide_String.

Implementation Permissions

s62  An implementation may extend the Wide Wide Vaue, Wide Vaue, Vaue, Wide Wide Image,
Wide_Image, and Image attributes of a floating point type to support specia values such as infinities and

NaNs.
NOTES
57 21 The evauation of SFirst or SLast never raises an exception. If a scaar subtype S has a nonnull range, SFirst and
SlLast belong to this range. These values can, for example, always be assigned to avariable of subtype S.
58 22 For a subtype of a scaar type, the result delivered by the attributes Succ, Pred, and Value might not belong to the

subtype; similarly, the actual parameters of the attributes Succ, Pred, and Image need not belong to the subtype.

59 23 For any value V (including any nongraphic character) of an enumeration subtype S, SVaue(SImage(V)) equasV, as
do SWide_Value(SWide_Image(V)) and SWide_Wide Vaue(SWide Wide Image(V)). None of these expressions ever
raise Constraint_Error.

Examples
60  Examplesof ranges:
61 -10 .. 10
X.. X+ 1
0.0 .. 2.0*Pi
Red .. Green -- se351
1..0 -- anull range
Tabl e' Range - - arange attribute reference (see 3.6)

62  Examples of range constraints:

63 range -999.0 .. +999.0
range S'First+l .. S'Last-1

3.5.1 Enumeration Types

1 Anenumeration_type_definition defines an enumeration type.

Syntax
2 enumeration_type_definition ::=
(enumeration_literal_specification {, enumeration_literal_specification} )
3 enumeration_literal_specification ::= defining_identifier | defining_character_literal
4 defining_character_literal ::= character_literal
Legality Rules
5  The defining_identifiers and defining_character_literals listed in an enumeration_type_definition shall be
distinct.
Satic Semantics

6  Each enumeration_literal_specification is the explicit declaration of the corresponding enumeration
literal: it declares a parameterless function, whose defining name is the defining_identifier or defining_-
character_literal, and whose result type is the enumeration type.
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Each enumeration literal corresponds to a distinct value of the enumeration type, and to a distinct position
number. The position number of the value of the first listed enumeration literal is zero; the position
number of the value of each subsequent enumeration literal is one more than that of its predecessor in the
list.

The predefined order relations between values of the enumeration type follow the order of corresponding
position numbers.

If the same defining_identifier or defining_character_literal is specified in more than one enumeration_-
type_definition, the corresponding enumeration literals are said to be overloaded. At any place where an
overloaded enumeration literal occurs in the text of a program, the type of the enumeration literal has to be
determinable from the context (see 8.6).

Dynamic Semantics
The elaboration of an enumeration_type_definition creates the enumeration type and its first subtype,
which is constrained to the base range of the type.

When called, the parameterless function associated with an enumeration literal returns the corresponding
value of the enumeration type.

NOTES
24 If an enumeration literal occurs in a context that does not otherwise suffice to determine the type of the literal, then
qualification by the name of the enumeration type is one way to resolve the ambiguity (see 4.7).

Examples

Examples of enumeration types and subtypes:

type Day is (Mn, Tue, Wed, Thu, Fri, Sat, Sun);
type Suit is (dubs, D anonds, Hearts, Spades);
type Gender is (M F);
type Level is (Low, Medium Urgent);
type Color is (Wite, Red, Yellow, Geen, Blue, Brown, Bl ack);
type Light is (Red, Anber, Green); -- RedandGreenareoverloaded
is

type Hexa (A, 'B, 'C, 'D, '"E, "F);

type Mxed is ("A, 'B, '"*, B, None, '?', '%);

subtype Weekday is Day range Mon .. Fri;

subt ype Mj or is Suit range Hearts .. Spades;

subtype Rainbow is Color range Red .. Blue; -- theColor Red, notthe Light

3.5.2 Character Types

Static Semantics

An enumeration type is said to be a character type if at least one of its enumeration literals is a
character_literal.

The predefined type Character is a character type whose values correspond to the 256 code positions of
Row 00 (also known as Latin-1) of the ISO/IEC 10646:2003 Basic Multilingual Plane (BMP). Each of the
graphic characters of Row 00 of the BMP has a corresponding character_literal in Character. Each of the
nongraphic positions of Row 00 (0000-001F and 007F-009F) has a corresponding language-defined name,
which is not usable as an enumeration literal, but which is usable with the attributes Image, Wide_Image,
Wide_Wide_Image, Value, Wide Value, and Wide_Wide Value; these names are given in the definition
of type Character in A.1, “The Package Standard”, but are set initalics.
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The predefined type Wide_Character is a character type whose values correspond to the 65536 code
positions of the ISO/IEC 10646:2003 Basic Multilingual Plane (BMP). Each of the graphic characters of
the BMP has a corresponding character_literal in Wide Character. The first 256 vaues of
Wide_Character have the same character_literal or language-defined name as defined for Character. Each
of the graphic_characters has a corresponding character_literal.

The predefined type Wide Wide Character is a character type whose vaues correspond to the
2147483648 code positions of the ISO/IEC 10646:2003 character set. Each of the graphic_characters has
a corresponding character_literal in  Wide Wide Character. The first 65536 values of
Wide Wide Character have the same character_literal or language-defined name as defined for
Wide_Character.

The characters whose code position is larger than 16#FF# and which are not graphic_characters have
language-defined names which are formed by appending to the string "Hex_" the representation of their
code position in hexadecimal as eight extended digits. As with other language-defined names, these names
are usable only with the attributes (Wide )Wide _Image and (Wide )Wide Value; they are not usable as

enumeration literals.

Implementation Permissions

This paragraph was deleted.

Implementation Advice
This paragraph was deleted.
NOTES

25 The language-defined library package Characters.Latin_1 (see A.3.3) includes the declaration of constants denoting
control characters, lower case characters, and special characters of the predefined type Character.

26 A conventional character set such as EBCDIC can be declared as a character type; the internal codes of the characters
can be specified by an enumeration_representation_clause as explained in clause 13.4.

Examples
Example of a character type:
type Roman_Digit is ('I', 'V, 'X, 'L', 'C, 'D, '"M);
3.5.3 Boolean Types
Static Semantics

There is a predefined enumeration type named Boolean, declared in the visible part of package Standard. It
has the two enumeration literals False and True ordered with the relation False < True. Any descendant of
the predefined type Boolean is called a boolean type.

3.5.4 Integer Types

An integer_type_definition defines an integer type; it defines either a signed integer type, or a modular
integer type. The base range of a signed integer type includes at least the values of the specified range. A
modular type is an integer type with all arithmetic modulo a specified positive modulus; such a type
corresponds to an unsigned type with wrap-around semantics.

Syntax
integer_type_definition ::= signed_integer_type_definition | modular_type_definition
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signed_integer_type_definition ::= range static_simple_expression .. static_simple_expression
modular_type_definition ::= mod static_expression

Name Resolution Rules
Each simple_expression in a signed_integer_type_definition is expected to be of any integer type; they
need not be of the same type. The expression in a modular_type_definition is likewise expected to be of
any integer type.

Legality Rules
The simple_expressions of a signed_integer_type_definition shall be static, and their values shall be in
the range System.Min_Int .. System.Max_lInt.

The expression of amodular_type_definition shall be static, and its value (the modulus) shall be positive,
and shall be no greater than System.Max_Binary_Modulus if a power of 2, or no greater than
System.Max_Nonbinary_Modulusif not.

Static Semantics
The set of values for asigned integer type is the (infinite) set of mathematical integers, though only values
of the base range of the type are fully supported for run-time operations. The set of values for a modular
integer type are the values from 0 to one |ess than the modulus, inclusive.

A signed_integer_type_definition defines an integer type whose base range includes at least the values of
the simple_expressions and is symmetric about zero, excepting possibly an extra negative value. A
signed_integer_type_definition also defines a constrained first subtype of the type, with a range whose
bounds are given by the values of the simple_expressions, converted to the type being defined.

A modular_type_definition defines a modular type whose base range is from zero to one less than the
given modulus. A modular_type_definition also defines a constrained first subtype of the type with a
range that is the same as the base range of the type.

There is a predefined signed integer subtype named Integer, declared in the visible part of package
Standard. It is constrained to the base range of itstype.

Integer has two predefined subtypes, declared in the visible part of package Standard:

subtype Natural is Integer range O .. Integer'Last;
subtype Positive is Integer range 1 .. Integer'Last;

A type defined by an integer_type_definition is implicitly derived from root_integer, an anonymous
predefined (specific) integer type, whose base range is System.Min_Int .. System.Max_Int. However, the
base range of the new type is not inherited from root_integer, but is instead determined by the range or
modulus specified by the integer_type_definition. Integer literals are all of the type universal_integer, the
universal type (see 3.4.1) for the class rooted at root_integer, allowing their use with the operations of any

integer type.
The position number of an integer valueis equal to the value.

For every modular subtype S, the following attributes are defined:

SMod SMod denotes a function with the following specification:

function S Mdd (Arg : universal_integer)
return S Base

This function returns Arg mod SModulus, as avalue of the type of S.
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SModulus  SModulus yields the modulus of the type of S, as a value of the type universal_integer.

Dynamic Semantics
The elaboration of an integer_type_definition creates the integer type and its first subtype.

For a modular type, if the result of the execution of a predefined operator (see 4.5) is outside the base
range of the type, the result is reduced modulo the modulus of the type to a value that is within the base
range of the type.

For a signed integer type, the exception Constraint_Error is raised by the execution of an operation that
cannot deliver the correct result because it is outside the base range of the type. For any integer type,
Constraint_Error israised by the operators /", "rem", and "mod" if the right operand is zero.

Implementation Requirements
In an implementation, the range of Integer shall include the range 2**15+1 .. +2**15-1.

If Long_Integer is predefined for an implementation, then its range shall include the range —2**31+1 ..
+2**31-1.

System.Max_Binary_Modulus shall be at least 2** 16.

Implementation Permissions

For the execution of a predefined operation of a signed integer type, the implementation need not raise
Constraint_Error if the result is outside the base range of the type, so long as the correct result is produced.

An implementation may provide additional predefined signed integer types, declared in the visible part of
Standard, whose first subtypes have names of the form Short_Integer, Long_Integer, Short_Short_Integer,
Long_Long_Integer, etc. Different predefined integer types are allowed to have the same base range.
However, the range of Integer should be no wider than that of Long_Integer. Similarly, the range of
Short_Integer (if provided) should be no wider than Integer. Corresponding recommendations apply to any
other predefined integer types. There need not be a named integer type corresponding to each distinct base
range supported by an implementation. The range of each first subtype should be the base range of its
type.

An implementation may provide nonstandard integer types, descendants of root_integer that are declared
outside of the specification of package Standard, which need not have al the standard characteristics of a
type defined by an integer_type_definition. For example, a nonstandard integer type might have an
asymmetric base range or it might not be allowed as an array or loop index (avery long integer). Any type
descended from a nonstandard integer type is also nonstandard. An implementation may place arbitrary
restrictions on the use of such types; it is implementation defined whether operators that are predefined for
“any integer type” are defined for a particular nonstandard integer type. In any case, such types are not
permitted as explicit_generic_actual_parameters for formal scalar types— see 12.5.2.

For a one's complement machine, the high bound of the base range of a modular type whose modulus is
one less than a power of 2 may be equal to the modulus, rather than one less than the modulus. It is
implementation defined for which powers of 2, if any, this permission is exercised.

For a one's complement machine, implementations may support non-binary modulus values greater than
System.Max_Nonbinary_Modulus. It is implementation defined which specific values greater than
System.Max_Nonbinary_Modulus, if any, are supported.
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Implementation Advice

An implementation should support Long_Integer in addition to Integer if the target machine supports 32-
bit (or longer) arithmetic. No other named integer subtypes are recommended for package Standard.
Instead, appropriate named integer subtypes should be provided in the library package Interfaces (see B.2).

An implementation for a two's complement machine should support modular types with a binary modulus
up to System.Max_Int* 2+2. An implementation should support a nonbinary modulus up to Integer'L ast.

NOTES

27 Integer literals are of the anonymous predefined integer type universal_integer. Other integer types have no literals.
However, the overload resolution rules (see 8.6, “The Context of Overload Resolution”) allow expressions of the type
universal_integer whenever an integer type is expected.

28 The same arithmetic operators are predefined for all signed integer types defined by a signed_integer_type_definition
(see 4.5, “Operators and Expression Evaluation”). For modular types, these same operators are predefined, plus bit-wise
logical operators (and, or, xor, and not). In addition, for the unsigned types declared in the language-defined package
Interfaces (see B.2), functions are defined that provide bit-wise shifting and rotating.

29 Modular types match a generic_formal_parameter_declaration of the form "type T is mod <>;"; signed integer types
match "type T isrange <>;" (see 12.5.2).

Examples
Examples of integer types and subtypes:

type Page_Num is range 1 .. 2_000;
type Line_Size is range 1 .. Max_Line_Size;

subtype Snmal |l _Int is Integer range -10 .. 10;
subtype Colum_Ptr is Line_Size range 1 .. 10;
subtype Buffer_Size is Integer range 0 .. Max;

type Byte is nod 256; -- anunsigned byte
type Hash_Index is nod 97; -- modulusisprime

3.5.5 Operations of Discrete Types

Static Semantics
For every discrete subtype S, the following attributes are defined:
SPos S'Pos denotes a function with the following specification:

function S Pos(Arg : S' Base)
return universal_integer
This function returns the position number of the value of Arg, as a value of type
universal_integer.
Sva SVal denotes a function with the following specification:
function S Val (Arg : universal_integer)
return S Base
This function returns a value of the type of S whose position number equals the value of

Arg. For the evaluation of a call on SVal, if there is no value in the base range of its type
with the given position number, Constraint_Error is raised.

Implementation Advice

For the evaluation of a call on SPos for an enumeration subtype, if the value of the operand does not
correspond to the internal code for any enumeration literal of its type (perhaps due to an uninitialized
variable), then the implementation should raise Program_Error. This is particularly important for
enumeration types with noncontiguous internal codes specified by an enumeration_representation_-
clause.
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NOTES
30 Indexing and loop iteration use values of discrete types.

31 The predefined operations of a discrete type include the assignment operation, qualification, the membership tests, and
the relationa operators; for a boolean type they include the short-circuit control forms and the logica operators; for an
integer type they include type conversion to and from other numeric types, as well as the binary and unary adding
operators — and +, the multiplying operators, the unary operator abs, and the exponentiation operator. The assignment
operation is described in 5.2. The other predefined operations are described in Section 4.

32 Asfor dl types, objects of adiscrete type have Size and Address attributes (see 13.3).

33 For asubtype of adiscrete type, the result delivered by the attribute Va might not belong to the subtype; similarly, the
actual parameter of the attribute Pos need not belong to the subtype. The following relations are satisfied (in the absence
of an exception) by these attributes:

S Val (S Pos(X)) = X
S Pos(S Val (N)) = N
Examples
Examples of attributes of discrete subtypes:
- - For the types and subtypes declared in subclause 3.5.1 the following hold:

-- Color'First = Wite, Col or' Last = Bl ack
-- Rainbow First = Red, Rai nbow Last = Bl ue
-- Color'Succ(Blue) = Rai nbow Succ(Blue) = Brown
-- Color'Pos(Blue) = Rainbow Pos(Blue) =4

-- Color'val(0) = Rai nbow Val (0) = Wite

3.5.6 Real Types

Real types provide approximations to the real numbers, with relative bounds on errors for floating point
types, and with absolute bounds for fixed point types.

Syntax
real_type_definition ::=
floating_point_definition | fixed_point_definition
Satic Semantics

A type defined by a real_type_definition is implicitly derived from root_real, an anonymous predefined
(specific) real type. Hence, al real types, whether floating point or fixed point, are in the derivation class
rooted at root_real.

Red literals are al of the type universal_real, the universal type (see 3.4.1) for the class rooted at
root_real, allowing their use with the operations of any real type. Certain multiplying operators have a
result type of universal_fixed (see 4.5.5), the universal type for the class of fixed point types, allowing the
result of the multiplication or division to be used where any specific fixed point type is expected.

Dynamic Semantics
The elaboration of areal_type_definition consists of the elaboration of the floating_point_definition or the
fixed_point_definition.

Implementation Requirements

An implementation shall perform the run-time evaluation of a use of a predefined operator of root_real
with an accuracy at least as great as that of any floating point type definable by afloating_point_definition.
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Implementation Permissions

For the execution of a predefined operation of a rea type, the implementation need not raise
Constraint_Error if the result is outside the base range of the type, so long as the correct result is produced,
or the Machine_Overflows attribute of the type is False (see G.2).

An implementation may provide nonstandard real types, descendants of root_real that are declared
outside of the specification of package Standard, which need not have all the standard characteristics of a
type defined by areal_type_definition. For example, a nonstandard real type might have an asymmetric or
unsigned base range, or its predefined operations might wrap around or “saturate” rather than overflow
(modular or saturating arithmetic), or it might not conform to the accuracy model (see G.2). Any type
descended from a nonstandard rea type is also nonstandard. An implementation may place arbitrary
restrictions on the use of such types; it is implementation defined whether operators that are predefined for
“any real type” are defined for a particular nonstandard real type. In any case, such types are not permitted
as explicit_generic_actual_parameters for formal scalar types — see 12.5.2.

NOTES

34 As stated, real literals are of the anonymous predefined real type universal_real. Other rea types have no literals.
However, the overload resolution rules (see 8.6) allow expressions of the type universal_real whenever a rea type is
expected.

3.5.7 Floating Point Types

For floating point types, the error bound is specified as a relative precision by giving the required
minimum number of significant decimal digits.

Syntax
floating_point_definition ::=
digits static_expression [real_range_specification]
real_range_specification ::=
range static_simple_expression .. static_simple_expression
Name Resolution Rules

The requested decimal precision, which is the minimum number of significant decimal digits required for
the floating point type, is specified by the value of the expression given after the reserved word digits.
This expression is expected to be of any integer type.

Each simple_expression of areal_range_specification is expected to be of any rea type; the types need
not be the same.

Legality Rules
The requested decimal precision shall be specified by a static expression whose value is positive and no
greater than System.Max_Base Digits. Each simple_expression of a real_range_specification shall also
be static. If the real_range_specification is omitted, the requested decimal precision shall be no greater
than System.Max_Digits.

A floating_point_definition is illegal if the implementation does not support a floating point type that
satisfies the requested decimal precision and range.

Satic Semantics

The set of values for afloating point type is the (infinite) set of rational numbers. The machine numbers of
a floating point type are the values of the type that can be represented exactly in every unconstrained
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variable of the type. The base range (see 3.5) of afloating point type is symmetric around zero, except that
it can include some extra negative values in some implementations.

The base decimal precision of a floating point type is the number of decimal digits of precision
representable in objects of the type. The safe range of afloating point type is that part of its base range for
which the accuracy corresponding to the base decimal precision is preserved by all predefined operations.

A floating_point_definition defines a floating point type whose base decimal precision is no less than the
requested decimal precision. If a real_range_specification is given, the safe range of the floating point
type (and hence, also its base range) includes at least the values of the simple expressions given in the
real_range_specification. If areal_range_specification is not given, the safe (and base) range of the type
includes at least the values of the range —10.0**(4*D) .. +10.0**(4*D) where D is the requested decimal
precision. The safe range might include other values as well. The attributes Safe_First and Sefe_Last give
the actual bounds of the safe range.

A floating_point_definition also defines afirst subtype of the type. If areal_range_specification is given,
then the subtype is constrained to a range whose bounds are given by a conversion of the values of the
simple_expressions of the real_range_specification to the type being defined. Otherwise, the subtype is
unconstrained.

There is a predefined, unconstrained, floating point subtype named Float, declared in the visible part of
package Standard.

Dynamic Semantics
The elaboration of afloating_point_definition creates the floating point type and its first subtype.

Implementation Requirements

In an implementation that supports floating point types with 6 or more digits of precision, the requested
decimal precision for Float shall be at |east 6.

If Long_Float is predefined for an implementation, then its requested decimal precision shall be at least
11.

Implementation Permissions

An implementation is allowed to provide additional predefined floating point types, declared in the visible
part of Standard, whose (unconstrained) first subtypes have names of the form Short_Float, Long_Float,
Short_Short_Float, Long_Long_Float, etc. Different predefined floating point types are alowed to have
the same base decimal precision. However, the precision of Float should be no greater than that of
Long_Float. Similarly, the precision of Short Float (if provided) should be no greater than Float.
Corresponding recommendations apply to any other predefined floating point types. There need not be a
named floating point type corresponding to each distinct base decimal precision supported by an
implementation.

Implementation Advice

An implementation should support Long_Float in addition to Float if the target machine supports 11 or
more digits of precision. No other named floating point subtypes are recommended for package Standard.
Instead, appropriate named floating point subtypes should be provided in the library package Interfaces
(see B.2).

NOTES
35 If a floating point subtype is unconstrained, then assignments to variables of the subtype involve only
Overflow_Checks, never Range_Checks.
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Examples
Examples of floating point types and subtypes:
type Coefficient is digits 10 range -1.0 .. 1.0;

type Real is digits 8;
type Mass is digits 7 range 0.0 .. 1.0E35;

subtype Probability is Real range 0.0 .. 1.0; - - asubtype with a smaller range

3.5.8 Operations of Floating Point Types

Satic Semantics
The following attribute is defined for every floating point subtype S:
SDigits SDigits denotes the requested decimal precision for the subtype S. The value of this

attribute is of the type universal_integer. The requested decimal precision of the base

subtype of afloating point type T is defined to be the largest value of d for which

ceiling(d * 1og(10) / log(T'Machine_Radix)) + g <= T'Model_Mantissa

where g is0if Machine_Radix is a positive power of 10 and 1 otherwise.
NOTES
36 The predefined operations of a floating point type include the assignment operation, qualification, the membership
tests, and explicit conversion to and from other numeric types. They also include the relational operators and the following
predefined arithmetic operators: the binary and unary adding operators — and +, certain multiplying operators, the unary
operator abs, and the exponentiation operator.

37 Asfor al types, objects of afloating point type have Size and Address attributes (see 13.3). Other attributes of floating
point types are defined in A.5.3.

3.5.9 Fixed Point Types

A fixed point type is either an ordinary fixed point type, or a decimal fixed point type. The error bound of
afixed point typeis specified as an absolute value, called the delta of the fixed point type.

Syntax

fixed_point_definition ::= ordinary_fixed_point_definition | decimal_fixed_point_definition
ordinary_fixed_point_definition ::=

delta static_expression real_range_specification
decimal_fixed_point_definition ::=

delta static_expression digits static_expression [real_range_specification]
digits_constraint ::=

digits static_expression [range_constraint]

Name Resolution Rules

For a type defined by a fixed_point_definition, the delta of the type is specified by the value of the
expression given after the reserved word delta; this expression is expected to be of any real type. For a
type defined by a decimal_fixed_point_definition (a decimal fixed point type), the number of significant
decimal digitsfor itsfirst subtype (the digits of the first subtype) is specified by the expression given after
the reserved word digits; this expression is expected to be of any integer type.

Legality Rules
In afixed_point_definition or digits_constraint, the expressions given after the reserved words delta and
digits shall be static; their values shall be positive.
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The set of values of afixed point type comprise the integral multiples of a number called the small of the
type. The machine numbers of afixed point type are the values of the type that can be represented exactly
in every unconstrained variable of the type. For a type defined by an ordinary_fixed_point_definition (an
ordinary fixed point type), the small may be specified by an attribute_definition_clause (see 13.3); if so
specified, it shall be no greater than the delta of the type. If not specified, the small of an ordinary fixed
point type is an implementation-defined power of two less than or equal to the delta.

For a decima fixed point type, the small equas the delta; the delta shall be a power of 10. If a
real_range_specification is given, both bounds of the range shall be in the range «(10**digits-1)*delta ..
+(10**digits-1)* delta.

A fixed_point_definition isillegal if the implementation does not support afixed point type with the given
small and specified range or digits.

For a subtype_indication with a digits_constraint, the subtype_mark shall denote a decimal fixed point
subtype.

Satic Semantics

The base range (see 3.5) of a fixed point type is symmetric around zero, except possibly for an extra
negative value in some implementations.

An ordinary_fixed_point_definition defines an ordinary fixed point type whose base range includes at least
al multiples of small that are between the bounds specified in the real_range_specification. The base
range of the type does not necessarily include the specified bounds themselves. An ordinary_fixed_point_-
definition also defines a constrained first subtype of the type, with each bound of its range given by the
closer to zero of:

« the value of the conversion to the fixed point type of the corresponding expression of the
real_range_specification;

« the corresponding bound of the base range.

A decimal_fixed_point_definition defines a decimal fixed point type whose base range includes at least
the range <(10**digits-1)*delta .. +(10**digits-1)*delta. A decimal_fixed_point_definition also defines a
constrained first subtype of the type. If areal_range_specification is given, the bounds of the first subtype
are given by a conversion of the values of the expressions of the real_range_specification. Otherwise, the
range of the first subtypeis—(10**digits-1)*delta .. +(10**digits-1)*delta.

Dynamic Semantics
The elaboration of afixed_point_definition creates the fixed point type and its first subtype.

For a digits_constraint on a decima fixed point subtype with a given delta, if it does not have a
range_constraint, then it specifies an implicit range |(10** D-1)*delta .. +(10**D-1)*delta, where D is
the value of the expression. A digits_constraint is compatible with a decimal fixed point subtype if the
value of the expression is no greater than the digits of the subtype, and if it specifies (explicitly or
implicitly) arange that is compatible with the subtype.

The elaboration of a digits_constraint consists of the elaboration of the range_constraint, if any. If a
range_constraint is given, a check is made that the bounds of the range are both in the range «(10**D—
1)*delta .. +(10**D-1)*delta, where D is the value of the (static) expression given after the reserved
word digits. If this check fails, Constraint_Error is raised.
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Implementation Requirements

The implementation shall support at least 24 bits of precision (including the sign bit) for fixed point types.

Implementation Permissions

Implementations are permitted to support only smalls that are a power of two. In particular, all decimal
fixed point type declarations can be disallowed. Note however that conformance with the Information
Systems Annex requires support for decimal smalls, and decimal fixed point type declarations with digits
up to at least 18.

NOTES

38 The base range of an ordinary fixed point type need not include the specified bounds themselves so that the range
specification can be given in anatural way, such as:

type Fraction is delta 2.0**(-15) range -1.0 .. 1.0;

With 2's complement hardware, such a type could have a signed 16-bit representation, using 1 bit for the sign and 15 bits
for fraction, resulting in abase range of —1.0 .. 1.0-2.0**(-15).

Examples

Examples of fixed point types and subtypes:

type

type

type

Volt is delta 0.125 range 0.0 .. 255.0;

A pure fraction which requires all the available

space in aword can be declared as the type Fraction:

Fraction is delta SystemFine_Delta range -1.0 .. 1.0;
Fraction'Last = 1.0 — System.Fine_Delta

Money is delta 0.01 digits 15; -- decimal fixed point

subtype Salary is Mney digits 10;

Money'Last = 10.0*13 —0.01, Salary'Last = 10.0+*8 —0.01

3.5.10 Operations of Fixed Point Types

Static Semantics

The following attributes are defined for every fixed point subtype S:

SSmall

SDelta

SFore

SAft

SSmall denotes the small of the type of S. The value of this attribute is of the type
universal_real. Small may be specified for nonderived ordinary fixed point types via an
attribute_definition_clause (see 13.3); the expression of such a clause shall be static.

SDelta denotes the delta of the fixed point subtype S. The value of this attribute is of the
type universal_real.

SFore yields the minimum number of characters needed before the decimal point for the
decimal representation of any value of the subtype S, assuming that the representation does
not include an exponent, but includes a one-character prefix that is either aminus sign or a
space. (This minimum number does not include superfluous zeros or underlines, and is at
least 2.) The value of this attribute is of the type universal_integer.

SAft yields the number of decimal digits needed after the decimal point to accommodate
the delta of the subtype S, unless the delta of the subtype S is greater than 0.1, in which
case the attribute yields the value one. (SAft is the smallest positive integer N for which
(10**N)*SDelta is greater than or equal to one.) The value of this attribute is of the type
universal_integer.

The following additional attributes are defined for every decimal fixed point subtype S:
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SDigits SDigits denotes the digits of the decimal fixed point subtype S, which corresponds to the
number of decimal digits that are representable in objects of the subtype. The value of this
attribute is of the type universal_integer. Its value is determined as follows:

e For a first subtype or a subtype defined by a subtype_indication with a
digits_constraint, the digits is the value of the expression given after the reserved
word digits;

« For a subtype defined by a subtype_indication without a digits_constraint, the

digits of the subtype is the same as that of the subtype denoted by the
subtype_mark in the subtype_indication.

« The digits of a base subtype is the largest integer D such that the range |(10**D—
1)*delta .. +(10**D-1)*deltaisincluded in the base range of the type.

SScale SScale denotes the scale of the subtype S, defined as the value N such that SDelta =
10.0**(—N). The scale indicates the position of the point relative to the rightmost significant
digits of values of subtype S. The value of this attribute is of the type universal_integer.

SRound S'Round denotes a function with the following specification:
function S Round(X : universal_real)
return S' Base
The function returns the value obtained by rounding X (away from O, if X is midway
between two values of the type of S).

NOTES

39 All subtypes of afixed point type will have the same value for the Delta attribute, in the absence of delta_constraints
(see J.3).

40 S'Scale is not aways the same as SAft for a decimal subtype; for example, if SDelta = 1.0 then SAft is 1 while
SScaleisO.

41 The predefined operations of afixed point type include the assignment operation, qualification, the membership tests,
and explicit conversion to and from other numeric types. They also include the relationa operators and the following
predefined arithmetic operators: the binary and unary adding operators — and +, multiplying operators, and the unary
operator abs.

42 As for al types, objects of a fixed point type have Size and Address attributes (see 13.3). Other attributes of fixed
point types are defined in A.5.4.

3.6 Array Types

An array object is a composite object consisting of components which all have the same subtype. The
name for a component of an array uses one or more index values belonging to specified discrete types. The
value of an array object is a composite value consisting of the values of the components.

Syntax
array_type_definition ::=
unconstrained_array_definition | constrained_array_definition

unconstrained_array_definition ::=
array(index_subtype_definition {, index_subtype_definition}) of component_definition

index_subtype_definition ::= subtype_mark range <>

constrained_array_definition ::=
array (discrete_subtype_definition {, discrete_subtype_definition}) of component_definition

discrete_subtype_definition ::= discrete_subtype_indication | range
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component_definition ::=
[aliased] subtype_indication
| [aliased] access_definition

Name Resolution Rules

For a discrete_subtype_definition that is a range, the range shall resolve to be of some specific discrete
type; which discrete type shall be determined without using any context other than the bounds of the range
itself (plus the preference for root_integer — see 8.6).

Legality Rules
Each index_subtype_definition or discrete_subtype_definition in an array_type_definition defines an
index subtype; its type (the index type) shall be discrete.

The subtype defined by the subtype_indication of a component_definition (the component subtype) shall
be a definite subtype.

This paragraph was del eted.

Satic Semantics

An array is characterized by the number of indices (the dimensionality of the array), the type and position
of each index, the lower and upper bounds for each index, and the subtype of the components. The order
of theindicesis significant.

A one-dimensional array has a distinct component for each possible index value. A multidimensional array
has a distinct component for each possible sequence of index values that can be formed by selecting one
value for each index position (in the given order). The possible values for a given index are al the values
between the lower and upper bounds, inclusive; this range of valuesis called the index range. The bounds
of an array are the bounds of its index ranges. The length of a dimension of an array is the number of
values of the index range of the dimension (zero for anull range). The length of aone-dimensiona array is
the length of its only dimension.

An array_type_definition defines an array type and its first subtype. For each object of this array type, the
number of indices, the type and position of each index, and the subtype of the components are as in the
type definition; the values of the lower and upper bounds for each index belong to the corresponding index
subtype of itstype, except for null arrays (see 3.6.1).

An unconstrained_array_definition defines an array type with an unconstrained first subtype. Each
index_subtype_definition defines the corresponding index subtype to be the subtype denoted by the
subtype_mark. The compound delimiter <> (called a box) of an index_subtype_definition stands for an
undefined range (different objects of the type need not have the same bounds).

A constrained_array_definition defines an array type with a constrained first subtype. Each discrete_-
subtype_definition defines the corresponding index subtype, as well as the corresponding index range for
the constrained first subtype. The constraint of the first subtype consists of the bounds of the index ranges.

The discrete subtype defined by a discrete_subtype_definition is either that defined by the subtype_-
indication, or a subtype determined by the range as follows:

« |f the type of the range resolves to root_integer, then the discrete_subtype_definition defines a
subtype of the predefined type Integer with bounds given by a conversion to Integer of the
bounds of therange;

» Otherwise, the discrete_subtype_definition defines a subtype of the type of the range, with the
bounds given by therange.
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The component_definition of an array_type_definition defines the nominal subtype of the components. If
the reserved word aliased appears in the component_definition, then each component of the array is
aliased (see 3.10).

Dynamic Semantics

The elaboration of an array_type_definition creates the array type and its first subtype, and consists of the
elaboration of any discrete_subtype_definitions and the component_definition.

The elaboration of a discrete_subtype_definition that does not contain any per-object expressions creates
the discrete subtype, and consists of the elaboration of the subtype_indication or the evaluation of the
range. The elaboration of a discrete_subtype_definition that contains one or more per-object expressions
is defined in 3.8. The elaboration of a component_definition in an array_type_definition consists of the
elaboration of the subtype_indication or access_definition. The elaboration of any discrete_subtype_-
definitions and the elaboration of the component_definition are performed in an arbitrary order.

NOTES
43 All components of an array have the same subtype. In particular, for an array of components that are one-dimensional
arrays, this means that all components have the same bounds and hence the same length.

44 Each elaboration of an array_type_definition creates a distinct array type. A consequence of this is that each object
whose object_declaration contains an array_type_definition is of its own unique type.
Examples
Examples of type declarations with unconstrained array definitions:

type Vector is array(lnteger range <>) of Real;

type Matrix is array(lnteger range <>, Integer range <>) of Real;
type Bit_Vector is array(lnteger range <>) of Bool ean;

type Ronman is array(Positive range <>) of Roman_Digit; -- see35.2

Examples of type declarations with constrained array definitions:

type Table is array(1 .. 10) of Integer;
type Schedule is array(Day) of Bool ean;
type Line is array(1 .. Max_Line_Size) of Character;

Examples of object declarations with array type definitions:

Gid :array(1 .. 80, 1 .. 100) of Bool ean;

M x : array(Color range Red .. Geen) of Bool ean;

Msg_Tabl e : constant array(Error_Code) of access constant String :=
(Too_Big => new String' ("Result too big"), Too_Small => ...);

Page : array(Positive range <>) of Line := -- anarrayofarrays
(1] 50 =>Line' (1] Line' Last =>"'+"', others =>"'-"), -- 433
2 49 => Line' (1 | Line'Last =>"'|', others =>"' '));

- - Pageis constrained by itsinitial value to (1..50)

3.6.1 Index Constraints and Discrete Ranges
An index_constraint determines the range of possible values for every index of an array subtype, and
thereby the corresponding array bounds.

Yyntax
index_constraint ::= (discrete_range {, discrete_range})

discrete_range ::= discrete_subtype_indication | range
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Name Resolution Rules

The type of adiscrete_range is the type of the subtype defined by the subtype_indication, or the type of
the range. For an index_constraint, each discrete_range shal resolve to be of the type of the
corresponding index.

Legality Rules
An index_constraint shall appear only in a subtype_indication whose subtype_mark denotes either an
unconstrained array subtype, or an unconstrained access subtype whose designated subtype is an
unconstrained array subtype; in either case, the index_constraint shall provide a discrete_range for each
index of the array type.

Static Semantics

A discrete_range defines a range whose bounds are given by the range, or by the range of the subtype
defined by the subtype_indication.

Dynamic Semantics
An index_constraint is compatible with an unconstrained array subtype if and only if the index range
defined by each discrete_range is compatible (see 3.5) with the corresponding index subtype. If any of
the discrete_ranges defines a null range, any array thus constrained is a null array, having no
components. An array value satisfies an index_constraint if at each index position the array value and the
index_constraint have the same index bounds.

The elaboration of an index_constraint consists of the evaluation of the discrete_range(s), in an arbitrary
order. The evaluation of a discrete_range consists of the elaboration of the subtype_indication or the
evaluation of the range.

NOTES
45 The elaboration of a subtype_indication consisting of a subtype_mark followed by an index_constraint checks the
compatibility of the index_constraint with the subtype_mark (see 3.2.2).

46 Even if an array value does not satisfy the index constraint of an array subtype, Constraint_Error is not raised on
conversion to the array subtype, so long as the length of each dimension of the array value and the array subtype match.

See 4.6.
Examples
Examples of array declarations including an index constraint:
Boar d : Matrix(1 .. 8, 1 .. 8); -- se36
Rectangle : Matrix(1 .. 20, 1 .. 30);
I nver se o Matrix(1 .. N, 1 .. N; -- Nneednotbestatic
Filter : Bit_Vector(0 .. 31);

Example of array declaration with a constrained array subtype:
My_Schedul e : Schedul e; -- all arraysof type Schedule have the same bounds

Example of record type with a component that is an array:

type Var_Line(Length : Natural) is
record
Image : String(1l .. Length);
end record,;

Nul | _Line : Var_Line(0); -- Nul_Linelmageisanull array
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3.6.2 Operations of Array Types

Legality Rules
The argument N used in the attribute_designators for the N-th dimension of an array shall be a static
expression of some integer type. The value of N shall be positive (nonzero) and no greater than the
dimensionality of the array.

Satic Semantics

The following attributes are defined for a prefix A that is of an array type (after any implicit dereference),
or denotes a constrained array subtype:

A'First A'First denotes the lower bound of the first index range; its type is the corresponding index
type.

A'First(N) A'First(N) denotes the lower bound of the N-th index range; its type is the corresponding
index type.

A'Last A'Last denotes the upper bound of the first index range; its type is the corresponding index
type.

A'Last(N) A'Last(N) denotes the upper bound of the N-th index range; its type is the corresponding
index type.

A'Range A'Range is equivalent to the range A'First .. A'Last, except that the prefix A is only
evaluated once.

A'Range(N) A'Range(N) is equivalent to the range A'First(N) .. A'Last(N), except that the prefix A is
only evaluated once.

A'Length A'Length denotes the number of values of the first index range (zero for a null range); its
typeis universal_integer.

A'Length(N) A'Length(N) denotes the number of values of the N-th index range (zero for a null range);
itstypeisuniversal_integer.

Implementation Advice

An implementation should normally represent multidimensional arraysin row-major order, consistent with
the notation used for multidimensional array aggregates (see 4.3.3). However, if a pragma
Convention(Fortran, ...) applies to a multidimensional array type, then column-major order should be used
instead (see B.5, “Interfacing with Fortran™).

NOTES

47 The attribute_references A'First and A'First(1l) denote the same value. A similar relation exists for the
attribute_references A'Last, A'Range, and A'Length. The following relation is satisfied (except for a null array) by the
above attributesif the index typeis an integer type:

A Length(N) = A'Last(N) - AFirst(N + 1
48 An array typeislimited if its component typeislimited (see 7.5).
49 The predefined operations of an array type include the membership tests, qualification, and explicit conversion. If the
array type is not limited, they also include assignment and the predefined equality operators. For a one-dimensiona array
type, they include the predefined concatenation operators (if nonlimited) and, if the component type is discrete, the
predefined relational operators; if the component type is boolean, the predefined logical operators are also included.
50 A component of an array can be named with an indexed_component. A value of an array type can be specified with an

array_aggregate. For aone-dimensional array type, aslice of the array can be named; also, string literals are defined if the
component type is a character type.
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Examples

Examples (using arrays declared in the examples of subclause 3.6.1):

-- Filter' First
-- Rectangl e' Last (1)

31 Filter'Length = 32
30

0 Filter'Last
20 Rect angl e' Last (2)

3.6.3 String Types

Satic Semantics

A one-dimensional array type whose component type is a character typeis called astring type.

There are three predefined string types, String, Wide_String, and Wide_Wide_String, each indexed by
values of the predefined subtype Positive; these are declared in the visible part of package Standard:

subtype Positive is Integer range 1 .. Integer'Last;
type String is array(Positive range <>) of Character;

type Wde_String is array(Positive range <>) of Wde_Character;
type Wde_Wde_String is array(Positive range <>) of Wde_Wde_Character;

NOTES

51 String literals (see 2.6 and 4.2) are defined for all string types. The concatenation operator & is predefined for string
types, as for al nonlimited one-dimensional array types. The ordering operators <, <=, >, and >= are predefined for string
types, as for al one-dimensiona discrete array types; these ordering operators correspond to lexicographic order (see
4.5.2).

Examples

Examples of string objects:

Stars : String(1 .. 120) := (1 .. 120 => '"*' );
Questi on . constant String = "How many characters?";
- - Question'First = 1, Question'Last = 20
- - Question’'Length = 20 (the number of
characters)
Ask_Twice : String := Question & Question; - - constrained to (1..40)
Ninety_Six : constant Roman = "XCVI"; -- see3b5.2and3.6

3.7 Discriminants

A composite type (other than an array or interface type) can have discriminants, which parameterize the
type. A known_discriminant_part specifies the discriminants of a composite type. A discriminant of an
object is a component of the object, and is either of a discrete type or an access type. An
unknown_discriminant_part in the declaration of a view of a type specifies that the discriminants of the
type are unknown for the given view; all subtypes of such aview are indefinite subtypes.

55

Syntax
discriminant_part ::= unknown_discriminant_part | known_discriminant_part

unknown_discriminant_part ::= (<>)

known_discriminant_part ::=
(discriminant_specification {; discriminant_specification})

discriminant_specification ::=
defining_identifier_list : [null_exclusion] subtype_mark [:= default_expression]
| defining_identifier_list : access_definition [:= default_expression]

default_expression ::= expression
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Name Resolution Rules

The expected type for the default_expression of a discriminant_specification is that of the corresponding
discriminant.

Legality Rules
A discriminant_part is only permitted in a declaration for a composite type that is not an array or interface
type (this includes generic formal types). A type declared with a known_discriminant_part is called a
discriminated type, asis atype that inherits (known) discriminants.

The subtype of a discriminant may be defined by an optional null_exclusion and a subtype_mark, in
which case the subtype_mark shall denote a discrete or access subtype, or it may be defined by an
access_definition. A discriminant that is defined by an access_definition is called an access discriminant
and is of an anonymous access type.

Default_expressions shall be provided either for all or for none of the discriminants of a known_-
discriminant_part. No default_expressions are permitted in a known_discriminant_part in a declaration
of atagged type or ageneric formal type.

A discriminant_specification for an access discriminant may have a default_expression only in the
declaration for a task or protected type, or for a type that is a descendant of an explicitly limited record
type. In addition to the places where Legality Rules normally apply (see 12.3), this rule applies also in the
private part of an instance of a generic unit.

This paragraph was deleted.

For a type defined by a derived_type_definition, if a known_discriminant_part is provided in its
declaration, then:

« The parent subtype shall be constrained;

« |If the parent type is not atagged type, then each discriminant of the derived type shall be used in
the constraint defining the parent subtype;

e If a discriminant is used in the constraint defining the parent subtype, the subtype of the
discriminant shall be statically compatible (see 4.9.1) with the subtype of the corresponding
parent discriminant.

The type of the default_expression, if any, for an access discriminant shall be convertible to the
anonymous access type of the discriminant (see 4.6).

Satic Semantics

A discriminant_specification declares a discriminant; the subtype_mark denotes its subtype unlessit is an
access discriminant, in which case the discriminant's subtype is the anonymous access-to-variable subtype
defined by the access_definition.

For a type defined by a derived_type_definition, each discriminant of the parent type is either inherited,
constrained to equal some new discriminant of the derived type, or constrained to the value of an
expression. When inherited or constrained to equal some new discriminant, the parent discriminant and the
discriminant of the derived type are said to correspond. Two discriminants also correspond if there is some
common discriminant to which they both correspond. A discriminant corresponds to itself as well. If a
discriminant of a parent type is constrained to a specific value by a derived_type_definition, then that
discriminant is said to be specified by that derived_type_definition.
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A constraint that appears within the definition of a discriminated type depends on a discriminant of the
type if it names the discriminant as a bound or discriminant value. A component_definition depends on a
discriminant if its constraint depends on the discriminant, or on a discriminant that corresponds to it.

A component depends on a discriminant if:
¢ Itscomponent_definition depends on the discriminant; or
¢ |tisdeclared in avariant_part that is governed by the discriminant; or

e It is a component inherited as part of a derived_type_definition, and the constraint of the
parent_subtype_indication depends on the discriminant; or

¢ |tisasubcomponent of acomponent that depends on the discriminant.

Each value of a discriminated type includes a value for each component of the type that does not depend
on adiscriminant; this includes the discriminants themselves. The values of discriminants determine which
other component values are present in the value of the discriminated type.

A type declared with a known_discriminant_part is said to have known discriminants; its first subtype is
unconstrained. A type declared with an unknown_discriminant_part is said to have unknown
discriminants. A type declared without a discriminant_part has no discriminants, unless it is a derived
type; if derived, such atype has the same sort of discriminants (known, unknown, or none) as its parent (or
ancestor) type. A tagged class-wide type also has unknown discriminants. Any subtype of a type with
unknown discriminants is an unconstrained and indefinite subtype (see 3.2 and 3.3).

Dynamic Semantics
For an access discriminant, its access_definition is elaborated when the value of the access discriminant is
defined: by evaluation of its default_expression, by elaboration of a discriminant_constraint, or by an
assignment that initializes the enclosing object.

NOTES

52 If a discriminated type has default_expressions for its discriminants, then unconstrained variables of the type are
permitted, and the values of the discriminants can be changed by an assignment to such a variable. If defaults are not
provided for the discriminants, then all variables of the type are constrained, either by explicit constraint or by their initial
value; the values of the discriminants of such a variable cannot be changed after initialization.

53 The default_expression for a discriminant of a type is evaluated when an object of an unconstrained subtype of the
typeis created.

54 Assignment to a discriminant of an object (after itsinitiaization) is not alowed, since the name of adiscriminant isa
constant; neither assignment_statements nor assignments inherent in passing as an in out or out parameter are allowed.
Note however that the value of a discriminant can be changed by assigning to the enclosing object, presuming it is an
unconstrained variable.

55 A discriminant that is of a named access type is not caled an access discriminant; that term is used only for
discriminants defined by an access_definition.

Examples
Examples of discriminated types:
type Buffer(Size : Buffer_Size := 100) is -- see354
record
Pos . Buffer_Size := 0;

Value : String(l .. Size);
end record;
type Matrix_Rec(Rows, Columms : Integer) is
record
Mat : Matrix(l .. Rows, 1 .. Colums); -- e36
end record;
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type Square(Side : Integer) is new
Matri x_Rec(Rows => Side, Columms => Side);
type Doubl e_Square(Nunber : Integer) is
record

Left : Square(Nunber);
Ri ght : Square(Number);
end record;

task type Worker(Prio : SystemPriority; Buf : access Buffer) is
- - discriminants used to parametenzethe task type (see9.1)
pragma Priority(Prio); --
entry Fill;
entry Drai n;
end Worker;

3.7.1 Discriminant Constraints

A discriminant_constraint specifies the values of the discriminants for a given discriminated type.

Syntax

discriminant_constraint ::=
(discriminant_association {, discriminant_association})

discriminant_association ::=
[discriminant_selector_name {| discriminant_selector_name} =>] expression

A discriminant_association is said to be named if it has one or more discriminant_selector_names;
it is otherwise said to be positional. In a discriminant_constraint, any positional associations shall
precede any named associations.

Name Resolution Rules

Each selector_name of a named discriminant_association shall resolve to denote a discriminant of the
subtype being constrained; the discriminants so named are the associated discriminants of the named
association. For a positional association, the associated discriminant is the one whose discriminant_-
specification occurred in the corresponding position in the known_discriminant_part that defined the
discriminants of the subtype being constrained.

The expected type for the expression in a discriminant_association is that of the associated
discriminant(s).

Legality Rules

A discriminant_constraint is only allowed in a subtype_indication whose subtype_mark denotes either an
unconstrained discriminated subtype, or an unconstrained access subtype whose designated subtype is an
unconstrained discriminated subtype. However, in the case of an access subtype, adiscriminant_constraint
isillegal if the designated type has a partial view that is constrained or, for a general access subtype, has
default_expressions for its discriminants. In addition to the places where Legality Rules normally apply
(see 12.3), these rules apply also in the private part of an instance of a generic unit. In a generic body, this
rule is checked presuming all formal access types of the generic might be genera access types, and all
untagged discriminated formal types of the generic might have default_expressions for their
discriminants.

A named discriminant_association with more than one selector_name is alowed only if the named
discriminants are all of the same type. A discriminant_constraint shall provide exactly one value for each
discriminant of the subtype being constrained.
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The expression associated with an access discriminant shall be of a type convertible to the anonymous
access type.

Dynamic Semantics
A discriminant_constraint is compatible with an unconstrained discriminated subtype if each discriminant
value belongs to the subtype of the corresponding discriminant.

A composite value satisfies a discriminant constraint if and only if each discriminant of the composite
value has the value imposed by the discriminant constraint.

For the elaboration of a discriminant_constraint, the expressions in the discriminant_associations are
evaluated in an arbitrary order and converted to the type of the associated discriminant (which might raise
Constraint_Error — see 4.6); the expression of a named association is evaluated (and converted) once for
each associated discriminant. The result of each evaluation and conversion is the value imposed by the
constraint for the associated discriminant.

NOTES
56 The rules of the language ensure that a discriminant of an object always has a value, either from explicit or implicit
initialization.
Examples
Examples (using types declared above in clause 3.7):
Large . Buffer(200); -- constrained, always 200 characters
- - (explicit discriminant value)
Message : Buffer; - - unconstrained, initially 100 characters
- - (default discriminant value)
Basi s ;. Square(5); - - constrained, always5 by 5
Il'legal : Square; - - illegal, a Square has to be constrained

3.7.2 Operations of Discriminated Types

If a discriminated type has default_expressions for its discriminants, then unconstrained variables of the
type are permitted, and the discriminants of such a variable can be changed by assignment to the variable.
For a formal parameter of such a type, an attribute is provided to determine whether the corresponding
actual parameter is constrained or unconstrained.

Static Semantics

For a prefix A that is of a discriminated type (after any implicit dereference), the following attribute is
defined:

A'Constrained
Yields the value True if A denotes a constant, a value, or a constrained variable, and False
otherwise.

Erroneous Execution
The execution of a construct is erroneous if the construct has a constituent that is a name denoting a
subcomponent that depends on discriminants, and the value of any of these discriminants is changed by
this execution between evaluating the name and the last use (within this execution) of the subcomponent
denoted by the name.
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3.8 Record Types

A record object is a composite object consisting of named components. The value of a record object is a
composite value consisting of the values of the components.

Syntax
record_type_definition ::= [[abstract] tagged] [limited] record_definition
record_definition ::=

record
component_list
end record
| null record
component_list ::=
component_item { component_item}
| {component_item} variant_part
| null;
component_item ::= component_declaration | aspect_clause

component_declaration ::=
defining_identifier_list : component_definition [:= default_expression];

Name Resolution Rules

The expected type for the default_expression, if any, in a component_declaration is the type of the
component.

Legality Rules
This paragraph was deleted.

Each component_declaration declares a component of the record type. Besides components declared by
component_declarations, the components of a record type include any components declared by
discriminant_specifications of the record type declaration. The identifiers of all components of a record
type shall be distinct.

Within atype_declaration, a name that denotes a component, protected subprogram, or entry of the type
isalowed only in the following cases:

e A name that denotes any component, protected subprogram, or entry is allowed within a
representation item that occurs within the declaration of the composite type.

* A name that denotes a noninherited discriminant is allowed within the declaration of the type,
but not within the discriminant_part. If the discriminant is used to define the constraint of a
component, the bounds of an entry family, or the constraint of the parent subtype in a
derived_type_definition then its name shall appear alone as a direct_name (not as part of a
larger expression or expanded name). A discriminant shall not be used to define the constraint of
ascalar component.

If the name of the current instance of atype (see 8.6) is used to define the constraint of a component, then
it shall appear as a direct_name that is the prefix of an attribute_reference whose result is of an access
type, and the attribute_reference shall appear alone.
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Static Semantics

If a record_type_definition includes the reserved word limited, the type is called an explicitly limited
record type.

The component_definition of a component_declaration defines the (nominal) subtype of the component.
If the reserved word aliased appears in the component_definition, then the component is aiased (see
3.10).

If the component_list of a record type is defined by the reserved word null and there are no discriminants,
then the record type has no components and all records of the type are null records. A record_definition of
null record isequivalent to record null; end record.

Dynamic Semantics
The elaboration of a record_type_definition creates the record type and its first subtype, and consists of
the elaboration of the record_definition. The elaboration of a record_definition consists of the elaboration
of itscomponent_list, if any.

The elaboration of acomponent_list consists of the elaboration of the component_items and variant_part,
if any, in the order in which they appear. The elaboration of a component_declaration consists of the
elaboration of the component_definition.

Within the definition of a composite type, if a component_definition or discrete_subtype_definition (see
9.5.2) includes a name that denotes a discriminant of the type, or that is an attribute_reference whose
prefix denotes the current instance of the type, the expression containing the name is called a per-object
expression, and the constraint or range being defined is called a per-object constraint. For the elaboration
of acomponent_definition of a component_declaration or the discrete_subtype_definition of an entry_-
declaration for an entry family (see 9.5.2), if the component subtype is defined by an access_definition or
if the constraint or range of the subtype_indication or discrete_subtype_definition is not a per-object
congtraint, then the access_definition, subtype_indication, or discrete_subtype_definition is elaborated.
On the other hand, if the constraint or range is a per-object constraint, then the elaboration consists of the
evaluation of any included expression that is not part of a per-object expression. Each such expression is
evaluated once unless it is part of a named association in a discriminant constraint, in which case it is
evaluated once for each associated discriminant.

When a per-object constraint is elaborated (as part of creating an object), each per-object expression of the
constraint is evaluated. For other expressions, the values determined during the elaboration of the
component_definition or entry_declaration are used. Any checks associated with the enclosing
subtype_indication or discrete_subtype_definition are performed, including the subtype compatibility
check (see 3.2.2), and the associated subtype is created.

NOTES
57 A component_declaration with several identifiers is equivalent to a sequence of single component_declarations, as
explainedin 3.3.1.

58 The default_expression of arecord component is only evaluated upon the creation of a default-initialized object of the
record type (presuming the object has the component, if it isin avariant_part — see 3.3.1).

59 The subtype defined by acomponent_definition (see 3.6) has to be a definite subtype.
60 If arecord type does not have avariant_part, then the same components are present in all values of the type.

61 A record typeislimited if it has the reserved word limited in its definition, or if any of its components are limited (see
7.5).

62 The predefined operations of a record type include membership tests, quaification, and explicit conversion. If the
record typeis nonlimited, they also include assignment and the predefined equality operators.
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63 A component of a record can be named with a selected_component. A vaue of a record can be specified with a
record_aggregate.

Examples
Examples of record type declarations:
type Date is
record
Day : Integer range 1 .. 31;
Month @ Mont h_Nane;
Year : Integer range O .. 4000,

end record;
type Conplex is

record
Re : Real := 0.0;
Im: Real := 0.0;

end record;

Examples of record variables:

Tonorrow, Yesterday : Date;
A, B, C: Conplex;

- - both components of A, B, and C are implicitly initialized to zero

3.8.1 Variant Parts and Discrete Choices

A record type with a variant_part specifies alternative lists of components. Each variant defines the
components for the value or values of the discriminant covered by its discrete_choice_list.

Syntax
variant_part ::=
case discriminant_direct_name is
variant
{variant}
end casg;
variant ::=
when discrete_choice_list =>
component_list
discrete_choice_list ::= discrete_choice {| discrete_choice}

discrete_choice ::= expression | discrete_range | others

Name Resolution Rules

The discriminant_direct_name shall resolve to denote a discriminant (called the discriminant of the
variant_part) specified in the known_discriminant_part of the full_type_declaration that contains the
variant_part. The expected type for each discrete_choice in avariant is the type of the discriminant of the
variant_part.

Legality Rules
The discriminant of the variant_part shall be of a discrete type.

The expressions and discrete_ranges given as discrete_choices in a variant_part shall be static. The
discrete_choice others shall appear alone in a discrete_choice_list, and such a discrete_choice_list, if it
appears, shall be the last one in the enclosing construct.
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A discrete_choice is defined to cover a value in the following cases:

* A discrete_choice that is an expression covers a value if the value equals the value of the
expression converted to the expected type.

« A discrete_choice that is a discrete_range covers al values (possibly none) that belong to the
range.

« The discrete_choice others covers all values of its expected type that are not covered by
previous discrete_choice_lists of the same construct.

A discrete_choice_list covers avalueif one of its discrete_choices covers the value.

The possible values of the discriminant of avariant_part shall be covered as follows:

e |If the discriminant is of a static constrained scalar subtype, then each non-others discrete_-
choice shall cover only values in that subtype, and each value of that subtype shall be covered
by some discrete_choice (either explicitly or by others);

e |If the type of the discriminant is a descendant of a generic forma scalar type then the
variant_part shall have an other s discrete_choice;

« Otherwise, each value of the base range of the type of the discriminant shall be covered (either
explicitly or by others).

Two distinct discrete_choices of avariant_part shall not cover the same value.

Static Semantics
If the component_list of avariant is specified by null, the variant has no components.

The discriminant of a variant_part is said to govern the variant_part and its variants. In addition, the
discriminant of a derived type governs a variant_part and its variants if it corresponds (see 3.7) to the
discriminant of the variant_part.

Dynamic Semantics
A record value contains the values of the components of a particular variant only if the value of the
discriminant governing the variant is covered by the discrete_choice_list of the variant. This rule applies
in turn to any further variant that is, itself, included in the component_list of the given variant.

The elaboration of a variant_part consists of the elaboration of the component_list of each variant in the
order in which they appear.

Examples
Example of record type with a variant part:

type Device is (Printer, Disk, Drum;
type State is (Open, C osed);

type Peripheral (Unit : Device := Disk) is
record
Status : State;
case Unit is
when Printer =>

Line_Count : Integer range 1 .. Page_Size;
when ot hers =>
Cyl i nder : Cylinder_I ndex;
Track . Track_Nunber;
end case;
end record;
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Examples of record subtypes:
subtype Drum Unit is Peripheral (Drunm;
subtype Disk_Unit is Peripheral (D sk);

Examples of constrained record variables:

Witer : Peripheral (Unit => Printer);
Archive : Disk_Unit;

3.9 Tagged Types and Type Extensions

Tagged types and type extensions support object-oriented programming, based on inheritance with
extension and run-time polymorphism via dispatching operations.

Satic Semantics

A record type or private type that has the reserved word tagged in its declaration is called a tagged type.
In addition, an interface type is a tagged type, asis atask or protected type derived from an interface (see
3.9.4). When deriving from a tagged type, as for any derived type, additional primitive subprograms may
be defined, and inherited primitive subprograms may be overridden. The derived type is called an
extension of its ancestor types, or simply atype extension.

Every type extension is also a tagged type, and is a record extension or a private extension of some other
tagged type, or a non-interface synchronized tagged type (see 3.9.4). A record extension is defined by a
derived_type_definition with a record_extension_part (see 3.9.1), which may include the definition of
additional components. A private extension, which is a partia view of a record extension or of a
synchronized tagged type, can be declared in the visible part of a package (see 7.3) or in a generic formal
part (see 12.5.1).

An object of atagged type has an associated (run-time) tag that identifies the specific tagged type used to
create the object originaly. The tag of an operand of a class-wide tagged type T'Class controls which
subprogram body is to be executed when a primitive subprogram of type T is applied to the operand (see
3.9.2); using atag to control which body to execute is called dispatching.

The tag of a specific tagged type identifies the full_type_declaration of the type, and for a type extension,
is sufficient to uniquely identify the type among all descendants of the same ancestor. If adeclaration for a
tagged type occurs within a generic_package_declaration, then the corresponding type declarations in
distinct instances of the generic package are associated with distinct tags. For atagged type that is local to
a generic package body and with all of its ancestors (if any) also local to the generic body, the language
does not specify whether repeated instantiations of the generic body result in distinct tags.

The following language-defined library package exists:

package Ada.Tags is
pragne Preel abor at e( Tags) ;
type Tag is private;
pragnme Preel aborable_lInitialization(Tag);

No_Tag : constant Tag;

function Expanded_Name(T : Tag) return String;

functi on Wde_Expanded_Nanme(T : Tag) return Wde_String;

functi on Wde_W de_Expanded_Name(T : Tag) return Wde_Wde_String;
function External _Tag(T : Tag) return String;

function Internal _Tag(External : String) return Tag;

function Descendant _Tag(External : String; Ancestor : Tag) return Tag;
function |s_Descendant _At_Sane_Level (Descendant, Ancestor : Tag)
return Bool ean;
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function Parent_Tag (T : Tag) return Tag;

type Tag_Array is array (Positive range <>) of Tag;
function Interface_Ancestor_Tags (T : Tag) return Tag_Array;
Tag_Error : exception;

private
... -- not specified by the language
end Ada. Tags;

No_Tag isthe default initial value of type Tag.

The function Wide_Wide_Expanded_Name returns the full expanded name of the first subtype of the
specific type identified by the tag, in upper case, starting with a root library unit. The result is
implementation defined if the type is declared within an unnamed block_statement.

The function Expanded_Name (respectively, Wide Expanded_Name) returns the same sequence of
graphic characters as that defined for Wide Wide Expanded_Name, if al the graphic characters are
defined in Character (respectively, Wide Character); otherwise, the sequence of characters is
implementation defined, but no shorter than that returned by Wide Wide_Expanded_Name for the same
value of the argument.

The function External_Tag returns a string to be used in an external representation for the given tag. The
call External_Tag(STag) is equivaent to the attribute_reference SExternal_Tag (see 13.3).

The  string returned by the functions Expanded Name, Wide_Expanded_Name,
Wide_Wide_Expanded_Name, and External_Tag has lower bound 1.

The function Internal_Tag returns a tag that corresponds to the given external tag, or raises Tag_Error if
the given string is not the external tag for any specific type of the partition. Tag_Error is also raised if the
specific typeidentified isalibrary-level type whose tag has not yet been created (see 13.14).

The function Descendant_Tag returns the (internal) tag for the type that corresponds to the given external
tag and is both a descendant of the type identified by the Ancestor tag and has the same accessibility level
asthe identified ancestor. Tag_Error israised if External is not the external tag for such atype. Tag_Error
isalso raised if the specific typeidentified is alibrary-level type whose tag has not yet been created.

The function |s_Descendant_At_Same _Level returns True if the Descendant tag identifies a type that is
both a descendant of the type identified by Ancestor and at the same accessibility level. If not, it returns
False.

The function Parent_Tag returns the tag of the parent type of the type whose tag is T. If the type does not
have a parent type (that is, it was not declared by aderived_type_declaration), then No_Tag is returned.

The function Interface_Ancestor_Tags returns an array containing the tag of each interface ancestor type
of the type whose tag is T, other than T itself. The lower bound of the returned array is 1, and the order of
the returned tags is unspecified. Each tag appears in the result exactly once. If the type whosetag is T has
no interface ancestors, anull array is returned.

For every subtype S of atagged type T (specific or class-wide), the following attributes are defined:

SClass SClass denotes a subtype of the classwide type (called T'Class in this Internationa
Standard) for the class rooted at T (or if S aready denotes a class-wide subtype, then
SClassisthe sameas S).

SClass is unconstrained. However, if S is constrained, then the values of SClass are only
those that when converted to the type T belong to S.
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STag STag denotes the tag of the type T (or if T is class-wide, the tag of the root type of the
corresponding class). The value of thisattribute is of type Tag.

Given aprefix X that is of a class-wide tagged type (after any implicit dereference), the following attribute
is defined:

X'Tag X'Tag denotes the tag of X. The value of this attribute is of type Tag.

The following language-defined generic function exists:

generic
type T (<>) is abstract tagged limted private;
type Paranmeters (<>) is linited private;
with function Constructor (Parans : not null access Paraneters)
return T is abstract;
functi on Ada. Tags. Generi c_Di spat chi ng_Const ruct or
(The_Tag : Tag;
Parans : not null access Paraneters) return T C ass;
pragnma Preel abor at e(Generi c_Di spat chi ng_Constructor);
pragma Convention(lntrinsic, Generic_Dispatching_Constructor);
Tags.Generic_Dispatching_Constructor provides a mechanism to create an object of an appropriate type
from just a tag vaue. The function Constructor is expected to create the object given a reference to an

object of type Parameters.

Dynamic Semantics
The tag associated with an object of atagged type is determined as follows:
e The tag of a stand-alone object, a component, or an aggregate of a specific tagged type T
identifies T.
« The tag of an object created by an allocator for an access type with a specific designated tagged
type T, identifies T.
» Thetag of an object of a class-wide tagged type isthat of itsinitialization expression.
* The tag of the result returned by a function whose result type is a specific tagged type T
identifies T.
« The tag of the result returned by a function with a class-wide result type is that of the return
object.
The tag is preserved by type conversion and by parameter passing. The tag of a value is the tag of the
associated object (see 6.2).

Tag Error is raised by a cal of Descendant Tag, Expanded Name, Externa_Tag,
Interface_Ancestor_Tag, Is Descendant_At_Same _Level, or Parent_Tag if any tag passed isNo_Tag.

An instance of Tags.Generic_Dispatching_Constructor raises Tag_Error if The Tag does not represent a
concrete descendant of T or if the innermost master (see 7.6.1) of this descendant is not also a master of
the instance. Otherwise, it dispatches to the primitive function denoted by the formal Constructor for the
type identified by The_Tag, passing Params, and returns the result. Any exception raised by the functionis
propagated.

Erroneous Execution
If an internal tag provided to an instance of Tags.Generic_Dispatching_Constructor or to any subprogram
declared in package Tags identifies either a type that is not library-level and whose tag has not been
created (see 13.14), or a type that does not exist in the partition at the time of the call, then execution is
€rroneous.
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Implementation Permissions

The implementation of Internal_Tag and Descendant_Tag may raise Tag_Error if no specific type
corresponding to the string External passed as a parameter exists in the partition at the time the function is
caled, or if there is no such type whose innermost master is a master of the point of the function call.

Implementation Advice
Internal_Tag should return the tag of a type whose innermost master is the master of the point of the
function call.

NOTES
64 A type declared with the reserved word tagged should normally be declared in a package_specification, so that new
primitive subprograms can be declared for it.

65 Once an object has been created, its tag never changes.

66 Class-wide types are defined to have unknown discriminants (see 3.7). This means that objects of a class-wide type
have to be explicitly initialized (whether created by an object_declaration or an allocator), and that aggregates have to be
explicitly qualified with a specific type when their expected typeis class-wide.

This paragraph was deleted.
67 The capability provided by Tags.Generic_Dispatching_Constructor is sometimes known as afactory.

Examples
Examples of tagged record types:

type Point is tagged
record
X, Y: Real := 0.0;
end record;

type Expression is tagged null record;
- - Components will be added by each extension

3.9.1 Type Extensions

Every type extension is a tagged type, and is a record extension or a private extension of some other
tagged type, or a non-interface synchronized tagged type..

Syntax
record_extension_part ::= with record_definition

Legality Rules
The parent type of arecord extension shall not be a class-wide type nor shal it be a synchronized tagged
type (see 3.9.4). If the parent type or any progenitor is nonlimited, then each of the components of the
record_extension_part shall be nonlimited. In addition to the places where Legality Rules normally apply
(see 12.3), these rules apply also in the private part of an instance of a generic unit.

Within the body of a generic unit, or the body of any of its descendant library units, atagged type shall not
be declared as a descendant of aformal type declared within the formal part of the generic unit.

Static Semantics

A record extension is a null extension if its declaration has no known_discriminant_part and its
record_extension_part includes no component_declarations.

Dynamic Semantics
The elaboration of arecord_extension_part consists of the elaboration of the record_definition.
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NOTES
68 The term “type extension” refers to a type as awhole. The term “extension part” refers to the piece of text that defines
the additional components (if any) the type extension has relative to its specified ancestor type.

69 When an extension is declared immediately within a body, primitive subprograms are inherited and are overridable,
but new primitive subprograms cannot be added.

70 A name that denotes a component (including a discriminant) of the parent type is not alowed within the
record_extension_part. Similarly, a name that denotes a component defined within the record_extension_part is not
allowed within the record_extension_part. It is permissible to use a name that denotes a discriminant of the record
extension, providing there is a new known_discriminant_part in the enclosing type declaration. (The full ruleis given in
38)

71 Each visible component of arecord extension has to have a unique name, whether the component is (visibly) inherited
from the parent type or declared in the record_extension_part (see 8.3).
Examples
Examples of record extensions (of types defined above in 3.9):
type Painted_Point is new Point with

record
Paint : Color := Wite;
end record;
- - Components X and Y are inherited
Oigin : constant Painted_Point := (X | Y => 0.0, Paint => Bl ack);
type Literal is new Expression with
record - - aleafinan Expression tree
Val ue : Real;
end record;
type Expr_Ptr is access all Expression' d ass;
-- se3.10
type Binary_QOperation is new Expression with
record - - aninternal nodein an Expression tree
Left, Right : Expr_Ptr;
end record;

type Addition is new Binary_Operation with null record;
type Subtraction is new Binary_Qperation with null record;
- - No additional components needed for these extensions

Tree : Expr_Ptr := - - Atreerepresentation of “ 5.0 + (13.0-7.0)"
new Addi tion' (
Left => new Literal'(Value => 5.0),
Ri ght => new Subtraction'(
Left => new Literal'(Value => 13.0),
Right => new Literal'(Value => 7.0)));

3.9.2 Dispatching Operations of Tagged Types

The primitive subprograms of atagged type, the subprograms declared by formal_abstract_subprogram_-
declarations, and the stream attributes of a specific tagged type that are available (see 13.13.2) at the end
of the declaration list where the type is declared are called dispatching operations. A dispatching operation
can be called using a statically determined controlling tag, in which case the body to be executed is
determined at compile time. Alternatively, the controlling tag can be dynamically determined, in which
case the call dispatches to a body that is determined at run time; such a call is termed a dispatching call.
As explained below, the properties of the operands and the context of a particular call on a dispatching
operation determine how the controlling tag is determined, and hence whether or not the call is a
dispatching call. Run-time polymorphism is achieved when a dispatching operation is called by a
dispatching call.
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Static Semantics

A call on a dispatching operation is a call whose name or prefix denotes the declaration of a dispatching
operation. A controlling operand in a call on a dispatching operation of a tagged type T is one whose
corresponding formal parameter is of type T or is of an anonymous access type with designated type T; the
corresponding formal parameter is caled a controlling formal parameter. If the controlling formal
parameter is an access parameter, the controlling operand is the object designated by the actual parameter,
rather than the actual parameter itself. If the call isto a (primitive) function with result type T, then the call
has a controlling result — the context of the call can control the dispatching. Similarly, if the call isto a
function with access result type designating T, then the call has a controlling access result, and the context
can similarly control dispatching.

A name or expression of a tagged type is either statically tagged, dynamically tagged, or tag
indeterminate, according to whether, when used as a controlling operand, the tag that controls dispatching
is determined statically by the operand's (specific) type, dynamically by its tag at run time, or from
context. A qualified_expression or parenthesized expression is statically, dynamically, or indeterminately
tagged according to its operand. For other kinds of names and expressions, thisis determined as follows:

« The name or expression is statically tagged if it is of a specific tagged type and, if it is a call
with a controlling result or controlling access result, it has at least one statically tagged
controlling operand;

« The name or expression is dynamically tagged if it is of a class-wide type, or it isacal with a
controlling result or controlling access result and at least one dynamically tagged controlling
operand;

e Thename or expression is tag indeterminate if it is a call with a controlling result or controlling
access result, all of whose controlling operands (if any) are tag indeterminate.

A type_conversion is statically or dynamically tagged according to whether the type determined by the
subtype_mark is specific or class-wide, respectively. For an object that is designated by an expression
whose expected type is an anonymous access-to-specific tagged type, the object is dynamically tagged if
the expression, ignoring enclosing parentheses, is of the form X'Access, where X is of a class-wide type,
or is of the form new T'(...), where T denotes a class-wide subtype. Otherwise, the object is statically or
dynamically tagged according to whether the designated type of the type of the expression is specific or
class-wide, respectively.

Legality Rules

A call on adispatching operation shall not have both dynamically tagged and statically tagged controlling
operands.

If the expected type for an expression or name is some specific tagged type, then the expression or name
shall not be dynamically tagged unless it is a controlling operand in a call on a dispatching operation.
Similarly, if the expected type for an expression is an anonymous access-to-specific tagged type, then the
object designated by the expression shall not be dynamically tagged unless it is a controlling operand in a
call on a dispatching operation.

In the declaration of a dispatching operation of a tagged type, everywhere a subtype of the tagged type
appears as a subtype of the profile (see 6.1), it shall statically match the first subtype of the tagged type. If
the dispatching operation overrides an inherited subprogram, it shall be subtype conformant with the
inherited subprogram. The convention of an inherited dispatching operation is the convention of the
corresponding primitive operation of the parent or progenitor type. The default convention of a dispatching
operation that overrides an inherited primitive operation is the convention of the inherited operation; if the
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operation overrides multiple inherited operations, then they shal all have the same convention. An
explicitly declared dispatching operation shall not be of convention Intrinsic.

The default_expression for a controlling formal parameter of a dispatching operation shall be tag indeter-
minate.

If a dispatching operation is defined by a subprogram_renaming_declaration or the instantiation of a
generic subprogram, any access parameter of the renamed subprogram or the generic subprogram that
corresponds to a controlling access parameter of the dispatching operation, shall have a subtype that
excludes null.

A given subprogram shall not be a dispatching operation of two or more distinct tagged types.

The explicit declaration of a primitive subprogram of a tagged type shall occur before the type is frozen
(see 13.14). For example, new dispatching operations cannot be added after objects or values of the type
exist, nor after deriving a record extension from it, nor after a body.

Dynamic Semantics

For the execution of a call on a dispatching operation of a type T, the controlling tag value determines
which subprogram body is executed. The controlling tag value is defined as follows:

« If one or more controlling operands are statically tagged, then the controlling tag value is
statically determined to be the tag of T.

« |If one or more controlling operands are dynamically tagged, then the controlling tag value is not
statically determined, but is rather determined by the tags of the controlling operands. If there is
more than one dynamically tagged controlling operand, a check is made that they all have the
same tag. If this check fails, Constraint_Error is raised unless the cal is a function_call whose
name denotes the declaration of an equality operator (predefined or user defined) that returns
Boolean, in which case the result of the cal is defined to indicate inequality, and no
subprogram_body is executed. This check is performed prior to evauating any tag-
indeterminate controlling operands.

« If al of the controlling operands (if any) are tag-indeterminate, then:
If the call has a controlling result or controlling access result and is itself, or designates, a
(possibly parenthesized or qualified) controlling operand of an enclosing cal on a

dispatching operation of a descendant of type T, then its controlling tag value is determined
by the controlling tag value of this enclosing call;

If the call has a controlling result or controlling access result and (possibly parenthesized,
qualified, or dereferenced) is the expression of an assignment_statement whose target is
of aclass-wide type, then its controlling tag value is determined by the target;

Otherwise, the controlling tag value is statically determined to be the tag of type T.

For the execution of acall on a dispatching operation, the action performed is determined by the properties
of the corresponding dispatching operation of the specific type identified by the controlling tag value. If
the corresponding operation is explicitly declared for this type, even if the declaration occurs in a private
part, then the action comprises an invocation of the explicit body for the operation. If the corresponding
operation isimplicitly declared for thistype:
 if the operation is implemented by an entry or protected subprogram (see 9.1 and 9.4), then the
action comprises a call on this entry or protected subprogram, with the target object being given

by the first actual parameter of the call, and the actual parameters of the entry or protected
subprogram being given by the remaining actual parameters of the call, if any;

« otherwise, the action is the same as the action for the corresponding operation of the parent type.
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NOTES

72 The body to be executed for a cal on a dispatching operation is determined by the tag; it does not matter whether that
tag is determined statically or dynamically, and it does not matter whether the subprogram's declaration is visible at the
place of thecall.

73 This subclause covers cals on dispatching subprograms of a tagged type. Rules for tagged type membership tests are
described in 4.5.2. Controlling tag determination for an assignment_statement is described in 5.2.

74 A dispatching call can dispatch to abody whose declaration is not visible at the place of the call.

75 A cal through an access-to-subprogram value is never a dispatching call, even if the access value designates a
dispatching operation. Similarly a call whose prefix denotes a subprogram_renaming_declaration cannot be a dispatching
call unlessthe renaming itself is the declaration of a primitive subprogram.

3.9.3 Abstract Types and Subprograms

An abstract type is atagged type intended for use as an ancestor of other types, but which is not allowed to
have objects of its own. An abstract subprogram is a subprogram that has no body, but is intended to be
overridden at some point when inherited. Because objects of an abstract type cannot be created, a
dispatching call to an abstract subprogram always dispatches to some overriding body.

Syntax
abstract_subprogram_declaration ::=
[overriding_indicator]
subprogram_specification is abstract;
Static Semantics

Interface types (see 3.9.4) are abstract types. In addition, atagged type that has the reserved word abstr act
in its declaration is an abstract type. The class-wide type (see 3.4.1) rooted at an abstract type is not itself
an abstract type.

Legality Rules
Only atagged type shall have the reserved word abstract in its declaration.

A subprogram declared by an abstract_subprogram_declaration or a formal_abstract_subprogram_-
declaration (see 12.6) is an abstract subprogram. If it is a primitive subprogram of atagged type, then the
tagged type shall be abstract.

If a type has an implicitly declared primitive subprogram that is inherited or is the predefined equality
operator, and the corresponding primitive subprogram of the parent or ancestor type is abstract or is a
function with a controlling access result, or if atype other than a null extension inherits a function with a
controlling result, then:

« |f thetypeisabstract or untagged, the implicitly declared subprogram is abstract.

« Otherwise, the subprogram shall be overridden with a nonabstract subprogram or, in the case of
a private extension inheriting a function with a controlling result, have a full type that is a null
extension; for atype declared in the visible part of a package, the overriding may be either in the
visible or the private part. Such a subprogram is said to require overriding. However, if the type
is a generic formal type, the subprogram need not be overridden for the formal type itself; a
nonabstract version will necessarily be provided by the actual type.

A cdl on an abstract subprogram shall be a dispatching call; nondispatching calls to an abstract
subprogram are not allowed.
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The type of an aggregate, or of an object created by an object_declaration or an allocator, or a generic
formal object of mode in, shall not be abstract. The type of the target of an assignment operation (see 5.2)
shall not be abstract. The type of a component shall not be abstract. If the result type of a function is
abstract, then the function shall be abstract.

If apartial view is not abstract, the corresponding full view shall not be abstract. If ageneric formal typeis
abstract, then for each primitive subprogram of the formal that is not abstract, the corresponding primitive
subprogram of the actual shall not be abstract.

For an abstract type declared in avisible part, an abstract primitive subprogram shall not be declared in the
private part, unless it is overriding an abstract subprogram implicitly declared in the visible part. For a
tagged type declared in avisible part, a primitive function with a controlling result shall not be declared in
the private part, unlessit is overriding a function implicitly declared in the visible part.

A generic actual subprogram shall not be an abstract subprogram unless the generic formal subprogram is
declared by a formal_abstract_subprogram_declaration. The prefix of an attribute_reference for the
Access, Unchecked_Access, or Address attributes shall not denote an abstract subprogram.

Dynamic Semantics
The elaboration of an abstract_subprogram_declaration has no effect.

NOTES
76 Abstractness is not inherited; to declare an abstract type, the reserved word abstract has to be used in the declaration
of the type extension.

77 A class-widetypeis never abstract. Even if aclassisrooted at an abstract type, the class-wide type for the class is not
abstract, and an object of the class-wide type can be created; the tag of such an object will identify some nonabstract type
in the class.

Examples
Example of an abstract type representing a set of natural numbers:

package Sets is
subtype El enment_Type is Natural;
type Set is abstract tagged null record;
function Enpty return Set is abstract;
function Union(Left, Right : Set) return Set is abstract;
function Intersection(Left, Right : Set) return Set is abstract;
function Unit_Set (El enent : Elenment_Type) return Set is abstract;
procedure Take(El enment : out El enent_Type;
From: in out Set) is abstract;
end Sets;

NOTES

78 Notes on the example: Given the above abstract type, one could then derive various (nonabstract) extensions of the
type, representing alternative implementations of a set. One might use a bit vector, but impose an upper bound on the
largest element representable, while another might use a hash table, trading off space for flexibility.

3.9.4 Interface Types

An interface type is an abstract tagged type that provides a restricted form of multiple inheritance. A
tagged type, task type, or protected type may have one or more interface types as ancestors.

Syntax
interface_type_definition ::=
[limited | task | protected | synchronized] interface [and interface_list]

interface_list ::= interface_subtype_mark {and interface_subtype_mark}
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Static Semantics

An interface type (also caled an interface) is a specific abstract tagged type that is defined by an
interface_type_definition.

An interface with the reserved word limited, task, protected, or synchronized in its definition is termed,
respectively, a limited interface, a task interface, a protected interface, or a synchronized interface. In
addition, all task and protected interfaces are synchronized interfaces, and all synchronized interfaces are
limited interfaces.

A task or protected type derived from an interface is a tagged type. Such a tagged type is caled a
synchronized tagged type, as are synchronized interfaces and private extensions whose declaration
includes the reserved word synchronized.

A task interface is an abstract task type. A protected interface is an abstract protected type.
An interface type has no components.

An interface_subtype_mark in an interface_list names a progenitor subtype; its type is the progenitor
type. An interface type inherits user-defined primitive subprograms from each progenitor type in the same
way that a derived type inherits user-defined primitive subprograms from its progenitor types (see 3.4).

Legality Rules

All user-defined primitive subprograms of an interface type shall be abstract subprograms or null
procedures.

The type of a subtype named in an interface_list shall be an interface type.
A type derived from a nonlimited interface shall be nonlimited.

An interface derived from atask interface shall include the reserved word task in its definition; any other
type derived from atask interface shall be a private extension or a task type declared by atask declaration
(see9.1).

An interface derived from a protected interface shall include the reserved word protected in its definition;
any other type derived from a protected interface shall be a private extension or a protected type declared
by a protected declaration (see 9.4).

An interface derived from a synchronized interface shall include one of the reserved words task,
protected, or synchronized in its definition; any other type derived from a synchronized interface shall be
a private extension, a task type declared by atask declaration, or a protected type declared by a protected
declaration.

No type shall be derived from both atask interface and a protected interface.

In addition to the places where Legality Rules normally apply (see 12.3), these rules apply aso in the
private part of an instance of a generic unit.

Dynamic Semantics
The elaboration of an interface_type_definition has no effect.

NOTES

79 Nonlimited interface types have predefined nonabstract equality operators. These may be overridden with user-defined
abstract equality operators. Such operators will then reguire an explicit overriding for any nonabstract descendant of the
interface.
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Examples
Example of a limited interface and a synchronized interface extending it:

type Queue is limted interface;
procedure Append(Q : in out Queue; Person : in Person_Nane) is abstract;
procedure Renpve_First(Q :in out Queue;
Person : out Person_Nane) is abstract;
function Cur_Count(Q : in Queue) return Natural is abstract;
function Max_Count (Q : in Queue) return Natural is abstract;
- - See3.10.1 for Person_Name.

Queue_Error : exception;
- - Append raises Queue_Error if Count(Q) = Max_Count(Q)
- - Remove_First raises Queue_Error if Count(Q) = 0

type Synchroni zed_Queue is synchroni zed interface and Queue; -- see9.11
procedure Append_Wait(Q : in out Synchronized_Queue;

Person : in Person_Nane) is abstract;
procedure Renpve_First_Wait(Q : in out Synchronized_Queue;

Person : out Person_Nane) is abstract;

procedure Transfer(From

in out Queue' d ass;
To :in out Queue' d ass;
Nunber in Natural := 1) is
Person : Person_Nane;

begi n
for I in 1..Nunber | oop
Renove_First(From Person);
Append(To, Person);
end | oop;
end Transfer;
This defines a Queue interface defining a queue of people. (A similar design could be created to define
any kind of queue simply by replacing Person_Name by an appropriate type.) The Queue interface has
four dispatching operations, Append, Remove First, Cur_Count, and Max_Count. The body of a class-
wide operation, Transfer is aso shown. Every non-abstract extension of Queue must provide
implementations for at least its four dispatching operations, as they are abstract. Any object of a type
derived from Queue may be passed to Transfer as either the From or the To operand. The two operands
need not be of the same typein any given call.

The Synchronized_Queue interface inherits the four dispatching operations from Queue and adds two
additional dispatching operations, which wait if necessary rather than raising the Queue_Error exception.
This synchronized interface may only be implemented by a task or protected type, and as such ensures
safe concurrent access.

Example use of the interface:

type Fast_Food_Queue is new Queue with record ...;

procedure Append(Q : in out Fast_Food_Queue; Person : in Person_Nane);
procedure Renove_First(Q : in out Fast_Food_Queue; Person : in Person_Nane);
function Cur_Count(Q : in Fast_Food_Queue) return Natural;

function Max_Count(Q : in Fast_Food_Queue) return Natural;

Cashi er, Counter : Fast_Food_Queue;

- - Add George (see 3.10.1) to the cashier's queue:

Append (Cashier, George);

- - After payment, move George to the sandwich counter queue:
Transfer (Cashier, Counter);
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An interface such as Queue can be used directly as the parent of a new type (as shown here), or can be
used as a progenitor when a type is derived. In either case, the primitive operations of the interface are
inherited. For Queue, the implementation of the four inherited routines must be provided. Inside the call of
Transfer, calls will dispatch to the implementations of Append and Remove First for type
Fast Food Queue.

Example of a task interface:

type Serial _Device is task interface; -- see9l
procedure Read (Dev : in Serial _Device; C: out Character) is abstract;
procedure Wite(Dev : in Serial_Device; C: in Character) is abstract;

The Serial_Device interface has two dispatching operations which are intended to be implemented by task
entries (see 9.1).

3.10 Access Types

A vaue of an access type (an access value) provides indirect access to the object or subprogram it
designates. Depending on its type, an access value can designate either subprograms, objects created by
allocators (see 4.8), or more generally aliased objects of an appropriate type.

Syntax
access_type_definition ::=
[null_exclusion] access_to_object_definition
| [null_exclusion] access_to_subprogram_definition
access_to_object_definition ::=
access [general_access_modifier] subtype_indication
general_access_maodifier ::= all | constant
access_to_subprogram_definition ::=
access [protected] procedure parameter_profile
| access [protected] function parameter_and_result_profile

null_exclusion ::= not null
access_definition ::=
[null_exclusion] access [constant] subtype_mark

| [null_exclusion] access [protected] procedur e parameter_profile
| [null_exclusion] access [protected] function parameter_and_result_profile

Static Semantics

There are two kinds of access types, access-to-object types, whose values designate objects, and access-to-
subprogram types, whose values designate subprograms. Associated with an access-to-object type is a
storage pool; several access types may share the same storage pool. All descendants of an access type
share the same storage pool. A storage pool is an area of storage used to hold dynamically allocated
objects (called pool elements) created by allocators; storage pools are described further in 13.11, “ Storage
Management”.

Access-to-object types are further subdivided into pool-specific access types, whose values can designate
only the elements of their associated storage pool, and general access types, whose values can designate
the elements of any storage pool, as well as aliased objects created by declarations rather than allocators,
and aliased subcomponents of other objects.
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A view of an object is defined to be aliased if it is defined by an object_declaration or component_-
definition with the reserved word aliased, or by arenaming of an aliased view. In addition, the dereference
of an access-to-object value denotes an aliased view, as does a view conversion (see 4.6) of an aliased
view. The current instance of a limited tagged type, a protected type, a task type, or a type that has the
reserved word limited in its full definition is aso defined to be aliased. Finally, a formal parameter or
generic formal object of a tagged type is defined to be aliased. Aliased views are the ones that can be
designated by an access value.

An access_to_object_definition defines an access-to-object type and its first subtype; the subtype_-
indication defines the designated subtype of the access type. If a general_access_maodifier appears, then
the access type is a general access type. If the modifier is the reserved word constant, then the type is an
access-to-constant type; a designated object cannot be updated through a value of such a type. If the
modifier is the reserved word all, then the type is an access-to-variable type; a designated object can be
both read and updated through a value of such a type. If no general_access_modifier appears in the
access_to_object_definition, the access type is a pool-specific access-to-variable type.

An access_to_subprogram_definition defines an access-to-subprogram type and its first subtype; the
parameter_profile or parameter_and_result_profile defines the designated profile of the access type.
There is a calling convention associated with the designated profile; only subprograms with this calling
convention can be designated by values of the access type. By default, the calling convention is
“protected” if the reserved word protected appears, and “Ada’ otherwise. See Annex B for how to
override this default.

An access_definition defines an anonymous general access type or an anonymous access-to-subprogram
type. For a genera access type, the subtype_mark denotes its designated subtype; if the general_-
access_modifier constant appears, the type is an access-to-constant type; otherwise it is an access-to-
variable type. For an access-to-subprogram type, the parameter_profile or parameter_and_result_profile
denotes its designated profile.

For each access type, there is a null access value designating no entity at all, which can be obtained by
(implicitly) converting the literal null to the access type. The null value of an access type is the default
initial value of the type. Non-null values of an access-to-object type are obtained by evaluating an
allocator, which returns an access value designating a newly created object (see 3.10.2), or in the case of a
general access-to-object type, evaluating an attribute_reference for the Access or Unchecked Access
attribute of an aliased view of an object. Non-null values of an access-to-subprogram type are obtained by
evaluating an attribute_reference for the Access attribute of a non-intrinsic subprogram..

A null_exclusion in a construct specifies that the null value does not belong to the access subtype defined
by the construct, that is, the access subtype excludes null. In addition, the anonymous access subtype
defined by the access_definition for a controlling access parameter (see 3.9.2) excludes null. Finaly, for a
subtype_indication without a null_exclusion, the subtype denoted by the subtype_indication excludes null
if and only if the subtype denoted by the subtype_mark in the subtype_indication excludes null.

All subtypes of an access-to-subprogram type are constrained. The first subtype of a type defined by an
access_definition or an access_to_object_definition is unconstrained if the designated subtype is an
unconstrained array or discriminated subtype; otherwise it is constrained.

Legality Rules

If a subtype_indication, discriminant_specification, parameter_specification, parameter_and_result_-
profile, object_renaming_declaration, or formal_object_declaration has a null_exclusion, the subtype_-
mark in that construct shall denote an access subtype that does not exclude null.
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Dynamic Semantics
A composite_constraint is compatible with an unconstrained access subtype if it is compatible with the
designated subtype. A null_exclusion is compatible with any access subtype that does not exclude null. An
access value satisfies a composite_constraint of an access subtype if it equals the null value of its type or
if it designates an object whose value satisfies the constraint. An access value satisfies an exclusion of the
null valueif it does not equal the null value of its type.

The elaboration of an access_type_definition creates the access type and its first subtype. For an access-
to-object type, this elaboration includes the elaboration of the subtype_indication, which creates the
designated subtype.

The elaboration of an access_definition creates an anonymous access type.

NOTES
80 Accessvauesarecaled “pointers’ or “references’ in some other languages.

81 Each access-to-object type has an associated storage pool; several access types can share the same pool. An object can
be created in the storage pool of an access type by an allocator (see 4.8) for the access type. A storage pool (roughly)
corresponds to what some other languages call a“heap.” See 13.11 for a discussion of pools.

82 Only index_constraints and discriminant_constraints can be applied to access types (see 3.6.1 and 3.7.1).

Examples

Examples of access-to-object types:

type Peripheral Ref is not null access Peripheral; -- see381
type Binop_Ptr is access all Binary_Operation' d ass;
- - general access-to-class-wide, see 3.9.1

Example of an access subtype:
subtype Drum Ref is Peripheral _Ref(Drum; -- see381

Example of an access-to-subprogram type:

type Message_Procedure is access procedure (M: in String := "Error!");
procedure Default _Message Procedure(M: in String);
G ve_Message : Message_Procedure : = Defaul t _Message_Procedure' Access;

|'o'r'ocedure G her _Procedure(M: in String);

G i/e_Message .= Ot her_Procedure' Access;
a Ve_Message(“ File not found."); -- call withparameter (.all isoptional)
G ve_Message. al | ; - - call with no parameters

3.10.1 Incomplete Type Declarations

There are no particular limitations on the designated type of an access type. In particular, the type of a
component of the designated type can be another access type, or even the same access type. This permits
mutually dependent and recursive access types. An incomplete_type_declaration can be used to introduce
a type to be used as a designated type, while deferring its full definition to a subsequent
full_type_declaration.

Syntax
incomplete_type_declaration ::= type defining_identifier [discriminant_part] [is tagged];
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Satic Semantics

An incomplete_type_declaration declares an incomplete view of a type and its first subtype; the first
subtype is unconstrained if a discriminant_part appears. If the incomplete_type_declaration includes the
reserved word tagged, it declares a tagged incomplete view. An incomplete view of a type is a limited
view of the type (see 7.5).

Given an access type A whose designated type T is an incomplete view, a dereference of avalue of type A
also has thisincomplete view except when:

it occurs within the immediate scope of the completion of T, or

it occurs within the scope of anonlimited_with_clause that mentions a library package in whose
visible part the completion of T is declared.

In these cases, the dereference has the full view of T.

Similarly, if a subtype_mark denotes a subtype_declaration defining a subtype of an incomplete view T,
the subtype_mark denotes an incomplete view except under the same two circumstances given above, in
which case it denotes the full view of T.

Legality Rules

An incomplete_type_declaration requires a completion, which shall be a full_type_declaration. If the
incomplete_type_declaration occurs immediately within either the visible part of a package_-
specification or a declarative_part, then the full_type_declaration shall occur later and immediately
within this visible part or declarative_part. If the incomplete_type_declaration occursimmediately within
the private part of a given package_specification, then the full_type_declaration shall occur later and
immediately within either the private part itself, or the declarative_part of the corresponding package_-
body.

If an incomplete_type_declaration includes the reserved word tagged, then a full_type_declaration that
completes it shall declare a tagged type. If an incomplete_type_declaration has a known_discriminant_-
part, then a full_type_declaration that completes it shall have a fully conforming (explicit) known_-
discriminant_part (see 6.3.1). If an incomplete_type_declaration has no discriminant_part (or an
unknown_discriminant_part), then a corresponding full_type_declaration is nevertheless allowed to have
discriminants, either explicitly, or inherited via derivation.

A name that denotes an incomplete view of atype may be used as follows:

« as the subtype_mark in the subtype_indication of an access_to_object_definition; the only
form of constraint allowed in this subtype_indication is a discriminant_constraint;

e as the subtype_mark in the subtype_indication of a subtype_declaration; the subtype_-
indication shall not have anull_exclusion or a constraint;

e asthesubtype_mark in an access_definition.
If such aname denotes a tagged incomplete view, it may aso be used:
« asthe subtype_mark defining the subtype of a parameter in aformal_part;

« asthe prefix of an attribute_reference whose attribute_designator is Class; such an attribute_-
reference is restricted to the uses allowed here; it denotes a tagged incomplete view.

If such aname occurs within the declaration list containing the completion of the incomplete view, it may
also be used:

e as the subtype_mark defining the subtype of a parameter or result of an access_to_-
subprogram_definition.
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If any of the above uses occurs as part of the declaration of a primitive subprogram of the incomplete
view, and the declaration occurs immediately within the private part of a package, then the completion of
the incomplete view shall also occur immediately within the private part; it shall not be deferred to the
package body.

No other uses of aname that denotes an incomplete view of atype are allowed.

A prefix that denotes an object shall not be of an incomplete view.

Static Semantics
This paragraph was del eted.

Dynamic Semantics
The elaboration of anincomplete_type_declaration has no effect.
NOTES
83 Within a declarative_part, an incomplete_type_declaration and a corresponding full_type_declaration cannot be

separated by an intervening body. This is because a type has to be completely defined before it is frozen, and a body
freezes all types declared prior to it in the same declarative_part (see 13.14).

Examples
Example of a recursive type:
type Cell; -- incompletetype declaration
type Link is access Cell;
type Cell is
record
Val ue : Integer;
Succ . Link;
Pred . Link;
end record,
Head : Link :=newCell' (0, null, null);
Next : Link = Head. Succ;
Examples of mutually dependent access types:
type Person(<>); - - incomplete type declaration
type Car is tagged; -- incompletetypedeclaration
type Person_Nane is access Person;
type Car_Nane is access all Car'd ass;
type Car is tagged
record
Nunmber : | nteger;
Owner . Person_Nane;
end record;
type Person(Sex : Gender) is
record
Narme o String(1l .. 20);
Birth . Date;
Age : Integer range 0 .. 130;
Vehicle : Car_Nang;
case Sex is
when M => Wfe . Person_Nane(Sex => F);
when F => Husband : Person_Nanme(Sex => M;
end case;
end record,
My_Car, Your_Car, Next_Car : Car_Nanme := new Car; -- see4d8
George : Person_Nanme := new Person(M;

Geoi"g.e. Vehicle := Your_Car;
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3.10.2 Operations of Access Types

The attribute Access is used to create access values designating aliased objects and non-intrinsic
subprograms. The “accessibility” rules prevent dangling references (in the absence of uses of certain
unchecked features — see Section 13).

Name Resolution Rules

For an attribute_reference with attribute_designator Access (or Unchecked Access — see 13.10), the
expected type shall be a single access type A such that:

« Aisan access-to-object type with designated type D and the type of the prefix is D'Class or is
covered by D, or

e Alis an access-to-subprogram type whose designated profile is type conformant with that of the
prefix.

The prefix of such an attribute_reference is never interpreted as an implicit_dereference or a
parameterless function_call (see 4.1.4). The designated type or profile of the expected type of the
attribute_reference is the expected type or profile for the prefix.

Satic Semantics

The accessibility rules, which prevent dangling references, are written in terms of accessibility levels,
which reflect the run-time nesting of masters. As explained in 7.6.1, a master is the execution of a certain
construct, such as a subprogram_body. An accessibility level is deeper than another if it is more deeply
nested at run time. For example, an object declared local to a called subprogram has a deeper accessibility
level than an object declared local to the calling subprogram. The accessibility rules for access types
require that the accessibility level of an object designated by an access value be no deeper than that of the
access type. This ensures that the object will live at least as long as the access type, which in turn ensures
that the access value cannot later designate an object that no longer exists. The Unchecked_Access
attribute may be used to circumvent the accessibility rules.

A given accessibility level is said to be statically deeper than another if the given level is known at
compile time (as defined below) to be deeper than the other for al possible executions. In most cases,
accessibility is enforced at compile time by Legality Rules. Run-time accessibility checks are also used,
since the Legality Rules do not cover certain cases involving access parameters and generic packages.

Each master, and each entity and view created by it, has an accessibility level:

e The accessibility level of a given master is deeper than that of each dynamically enclosing
master, and deeper than that of each master upon which the task executing the given master
directly depends (see 9.3).

* An entity or view defined by a declaration and created as part of its elaboration has the same
accessihility level as the innermost master of the declaration except in the cases of renaming and
derived access types described below. A parameter of a master has the same accessibility level
as the master.

« The accessihility level of aview of an object or subprogram defined by arenaming_declaration
isthe same as that of the renamed view.

* The accessihility level of aview conversion, qualified_expression, or parenthesized expression,
is the same as that of the operand.

* The accessibility level of an aggregate or the result of a function call (or equivalent use of an
operator) that is used (in its entirety) to directly initialize part of an object is that of the object
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being initialized. In other contexts, the accessibility level of an aggregate or the result of a
function call isthat of theinnermost master that evaluates the aggregate or function call.

« Within a return statement, the accessibility level of the return object is that of the execution of 10.1/2
the return statement. If the return statement completes normally by returning from the function,
then prior to leaving the function, the accessibility level of the return object changesto be alevel
determined by the point of call, as does the level of any coextensions (see below) of the return

object.
* The accessibility level of aderived access type is the same as that of its ultimate ancestor. 11
e The accessibility level of the anonymous access type defined by an access_definition of an 11.1/2

object_renaming_declaration is the same as that of the renamed view.

e The accessibility level of the anonymous access type of an access discriminant in the 1212
subtype_indication or qualified_expression of an allocator, or in the expression or return_-
subtype_indication of areturn statement is determined as follows:

« If the value of the access discriminant is determined by a discriminant_association in a 12.1/2
subtype_indication, the accessibility level of the object or subprogram designated by the
associated value (or library level if the valueis null);

« |If the value of the access discriminant is determined by a record_component_association 12.2/2
in an aggregate, the accessibility level of the object or subprogram designated by the
associated value (or library level if the valueis null);

« In other cases, where the value of the access discriminant is determined by an object with 12312
an unconstrained nominal subtype, the accessibility level of the object.

e The accessibility level of the anonymous access type of an access discriminant in any other 12.4/2
context is that of the enclosing object.

¢ The accessibility level of the anonymous access type of an access parameter specifying an 1312
access-to-object type is the same as that of the view designated by the actual.

¢ The accessibility level of the anonymous access type of an access parameter specifying an 13.1/2
access-to-subprogram type is deeper than that of any master; al such anonymous access types
have this same level.

« The accessihility level of an object created by an allocator is the same as that of the access type, 1412
except for an allocator of an anonymous access type that defines the value of an access
parameter or an access discriminant. For an allocator defining the value of an access parameter,
the accessibility level is that of the innermost master of the call. For one defining an access
discriminant, the accessibility level is determined as follows:

. for an allocator used to define the constraint in a subtype_declaration, the level of the 14.1/2
subtype_declaration;

. for an allocator used to define the constraint in a component_definition, the level of the 14.2/2
enclosing type;

- for an allocator used to define the discriminant of an object, the level of the object. 14.312

In this last case, the allocated object is said to be a coextension of the object whose discriminant 14.4/2

designates it, as well as of any object of which the discriminated object is itself a coextension or
subcomponent. All coextensions of an object are finalized when the object is finalized (see
7.6.1).

* The accessibility level of a view of an object or subprogram denoted by a dereference of an 15
access value is the same as that of the access type.
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The accessibility level of a component, protected subprogram, or entry of (a view of) a

composite object is the same as that of (the view of) the composite object.

In the above rules, the operand of a view conversion, parenthesized expression or qualified_expression is
considered to be used in a context if the view conversion, parenthesized expression or
qualified_expression itself is used in that context.

One accessibility level is defined to be statically deeper than another in the following cases:

For a master that is statically nested within another master, the accessibility level of the inner
master is statically deeper than that of the outer master.

The accessibility level of the anonymous access type of an access parameter specifying an
access-to-subprogram type is statically deeper than that of any master; all such anonymous
access types have this same level.

The statically deeper relationship does not apply to the accessibility level of the anonymous type
of an access parameter specifying an access-to-object type; that is, such an accessibility level is
not considered to be statically deeper, nor statically shallower, than any other.

For determining whether one level is statically deeper than another when within a generic
package body, the generic package is presumed to be instantiated at the same level as where it
was declared; run-time checks are needed in the case of more deeply nested instantiations.

For determining whether one level is statically deeper than another when within the declarative
region of atype_declaration, the current instance of the type is presumed to be an object created
at adeeper level than that of the type.

The accessibility level of al library unitsis called the library level; alibrary-level declaration or entity is
one whose accessibility level isthelibrary level.

The following attribute is defined for a prefix X that denotes an aliased view of an object:

X'Access

X'Access yields an access value that designates the object denoted by X. The type of

X'Access is an access-to-object type, as determined by the expected type. The expected
type shall be a general access type. X shall denote an aliased view of an object, including
possibly the current instance (see 8.6) of a limited type within its definition, or a formal
parameter or generic formal object of atagged type. The view denoted by the prefix X shall
satisfy the following additional requirements, presuming the expected type for X'Access is

the general access type A with designated type D:

« If Aisan access-to-variable type, then the view shall be a variable; on the other
hand, if A is an access-to-constant type, the view may be either a constant or a
variable.

« Theview shall not be a subcomponent that depends on discriminants of avariable
whose nominal subtype is unconstrained, unless this subtype is indefinite, or the
variable is constrained by itsinitial value.

« |If Aisanamed accesstype and D is atagged type, then the type of the view shall
be covered by D; if A is anonymous and D is tagged, then the type of the view
shall be either D'Class or atype covered by D; if D is untagged, then the type of
the view shall be D, and either:

» the designated subtype of A shall statically match the nominal subtype of the
view; or

» D shal be discriminated in its full view and unconstrained in any partial
view, and the designated subtype of A shall be unconstrained.
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¢ The accessihility level of the view shall not be statically deeper than that of the
access type A. In addition to the places where Legality Rules normally apply (see
12.3), thisrule applies also in the private part of an instance of a generic unit.

A check is made that the accessibility level of X isnot deeper than that of the access type A.
If this check fails, Program_Error is raised.

If the nominal subtype of X does not statically match the designated subtype of A, a view
conversion of X to the designated subtype is evaluated (which might raise Constraint_Error
— see 4.6) and the value of X'Access designates that view.

The following attribute is defined for a prefix P that denotes a subprogram:

P'Access P'Access yields an access value that designates the subprogram denoted by P. The type of

P'Access is an access-to-subprogram type (S), as determined by the expected type. The
accessibility level of P shall not be statically deeper than that of S. In addition to the places
where Legality Rules normally apply (see 12.3), this rule applies also in the private part of
an instance of a generic unit. The profile of P shal be subtype-conformant with the
designated profile of S, and shall not be Intrinsic. If the subprogram denoted by P is
declared within a generic unit, and the expression P'Access occurs within the body of that
generic unit or within the body of a generic unit declared within the declarative region of
the generic unit, then the ultimate ancestor of Sshall be either a non-formal type declared
within the generic unit or an anonymous access type of an access parameter.

NOTES

84 The Unchecked Access attribute yields the same result as the Access attribute for objects, but has fewer restrictions
(see 13.10). There are other predefined operations that yield access values: an allocator can be used to create an object,
and return an access value that designates it (see 4.8); evaluating the literal null yields a null access value that designates
no entity at all (see4.2).

85 The predefined operations of an access type aso include the assignment operation, qualification, and membership
tests. Explicit conversion is allowed between general access types with matching designated subtypes; explicit conversion
is allowed between access-to-subprogram types with subtype conformant profiles (see 4.6). Named access types have
predefined equality operators; anonymous access types do not, but they can use the predefined equality operators for
universal_access (see 4.5.2).

86 The object or subprogram designated by an access value can be named with a dereference, either an explicit_-
dereference or an implicit_dereference. See 4.1.

87 A call through the dereference of an access-to-subprogram value is never a dispatching call.

88 The Access attribute for subprograms and parameters of an anonymous access-to-subprogram type may together be
used to implement “downward closures’ — that is, to pass a more-nested subprogram as a parameter to a less-nested
subprogram, as might be appropriate for an iterator abstraction or numerical integration. Downward closures can aso be
implemented using generic formal subprograms (see 12.6). Note that Unchecked_Access is not allowed for subprograms.

89 Note that using an access-to-class-wide tagged type with a dispatching operation is a potentially more structured
alternative to using an access-to-subprogram type.

90 An implementation may consider two access-to-subprogram values to be unequal, even though they designate the
same subprogram. This might be because one points directly to the subprogram, while the other points to a specia
prologue that performs an Elaboration_Check and then jumps to the subprogram. See 4.5.2.

Examples
Example of use of the Access attribute:
Martha : Person_Nanme := new Person(F); -- s2e3.10.1
Cars carray (1..2) of aliased Car;

83

Mar t ha. Vehicl e : = Car s(1)' Access;
George. Vehicle : = Cars(2)' Access;
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3.11 Declarative Parts

A declarative_part contains declarative_items (possibly none).

Syntax
declarative_part ::= {declarative_item}

declarative_item ::=
basic_declarative_item | body

basic_declarative_item ::=
basic_declaration | aspect_clause | use_clause
body ::= proper_body | body_stub
proper_body ::=
subprogram_body | package_body | task_body | protected_body

Satic Semantics
Thelist of declarative_items of a declarative_part is called the declaration list of the declarative_part.

Dynamic Semantics

The elaboration of a declarative_part consists of the elaboration of the declarative_items, if any, in the
order in which they are given in the declarative_part.

An elaborable construct is in the elaborated state after the normal completion of its elaboration. Prior to
that, it is not yet elaborated.

For a construct that attempts to use a body, a check (Elaboration_Check) is performed, as follows:

« For acall to a (non-protected) subprogram that has an explicit body, a check is made that the
body is already elaborated. This check and the evaluations of any actual parameters of the call
are donein an arbitrary order.

« For acall to a protected operation of a protected type (that has a body — no check is performed
if a pragma Import applies to the protected type), a check is made that the protected_body is
aready elaborated. This check and the evaluations of any actual parameters of the call are done
in an arbitrary order.

e For the activation of a task, a check is made by the activator that the task_body is aready
elaborated. If two or more tasks are being activated together (see 9.2), as the result of the
elaboration of a declarative_part or the initiaization for the object created by an allocator, this
check isdone for all of them before activating any of them.

» For the instantiation of a generic unit that has a body, a check is made that this body is aready
elaborated. This check and the evaluation of any explicit_generic_actual_parameters of the
instantiation are done in an arbitrary order.

The exception Program_Error israised if any of these checksfails.

3.11.1 Completions of Declarations

Declarations sometimes come in two parts. A declaration that requires a second part is said to require
completion. The second part is called the completion of the declaration (and of the entity declared), and is
either another declaration, a body, or a pragma. A body is a body, an entry_body, or a renaming-as-body
(see 8.5.4).
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Name Resolution Rules

A construct that can be a completion isinterpreted as the completion of a prior declaration only if:

The declaration and the completion occur immediately within the same declarative region;

The defining name or defining_program_unit_name in the completion is the same as in the
declaration, or in the case of apragma, the pragma applies to the declaration;

If the declaration is overloadable, then the completion either has a type-conformant profile, or is
apragma.

Legality Rules

An implicit declaration shall not have a completion. For any explicit declaration that is specified to require
completion, there shall be a corresponding explicit completion.

At most one completion is allowed for a given declaration. Additional reguirements on completions appear
where each kind of completion is defined.

A typeis completely defined at a place that is after its full type definition (if it has one) and after all of its
subcomponent types are completely defined. A type shall be completely defined before it is frozen (see
13.14 and 7.3).

85

NOTES

91 Completions arein principle alowed for any kind of explicit declaration. However, for some kinds of declaration, the
only allowed completion is a pragma Import, and implementations are not required to support pragma Import for every
kind of entity.

92 There are rules that prevent premature uses of declarations that have a corresponding completion. The
Elaboration_Checks of 3.11 prevent such uses at run time for subprograms, protected operations, tasks, and generic units.
The rules of 13.14, “Freezing Rules’ prevent, at compile time, premature uses of other entities such as private types and
deferred constants.
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Section 4: Names and Expressions

The rules applicable to the different forms of name and expression, and to their evaluation, are given in
this section.

4.1 Names

Names can denote declared entities, whether declared explicitly or implicitly (see 3.1). Names can also
denote objects or subprograms designated by access values, the results of type_conversions or
function_calls;, subcomponents and slices of objects and values; protected subprograms, single entries,
entry families, and entries in families of entries. Finally, names can denote attributes of any of the
foregoing.

Syntax
name ::=
direct_name | explicit_dereference
| indexed_component | slice
| selected_component | attribute_reference
| type_conversion | function_call
| character_literal

direct_name ::= identifier | operator_symbol
prefix ::= name | implicit_dereference
explicit_dereference ::= name.all
implicit_dereference ::= name
Certain forms of name (indexed_components, selected_components, slices, and attribute_references)

include a prefix that is either itself a name that denotes some related entity, or an implicit_dereference of
an access value that designates some related entity.

Name Resolution Rules

The name in a dereference (either an implicit_dereference or an explicit_dereference) is expected to be
of any accesstype.

Static Semantics
If the type of the name in a dereference is some access-to-object type T, then the dereference denotes a
view of an object, the nominal subtype of the view being the designated subtype of T.

If the type of the name in a dereference is some access-to-subprogram type S then the dereference
denotes a view of a subprogram, the profile of the view being the designated profile of S

Dynamic Semantics

The evaluation of a name determines the entity denoted by the name. This evaluation has no other effect
for aname that isadirect_name or acharacter_literal.

The evaluation of aname that has a prefix includes the evaluation of the prefix. The evaluation of a prefix
consists of the evaluation of the name or the implicit_dereference. The prefix denotes the entity denoted
by the name or the implicit_dereference.
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The evaluation of a dereference consists of the evaluation of the name and the determination of the object
or subprogram that is designated by the value of the name. A check is made that the value of the name is
not the null access value. Constraint_Error is raised if this check fails. The dereference denotes the object
or subprogram designated by the value of the name.

Examples
Examples of direct names:
Pi -- the direct name of a number (see 3.3.2)
Limt  --thedirect name of a constant (see 3.3.1)
Count  --thedirect name of a scalar variable (see 3.3.1)
Board --thedirect name of an array variable (see 3.6.1)
Matri x --thedirect name of a type (see 3.6)
Random -- the direct name of a function (see 6.1)
Error  --thedirect name of an exception (see 11.1)
Examples of dereferences:
Next _Car. al | - - explicit dereference denoting the object designated by
- - theaccessvariable Next_Car (see 3.10.1)
Next _Car. Oaner -- selected component with implicit dereference;

- - sameas Next_Car.all.Owner

4.1.1 Indexed Components

An indexed_component denotes either a component of an array or an entry in afamily of entries.

Syntax
indexed_component ::= prefix(expression {, expression})

Name Resolution Rules

The prefix of an indexed_component with a given number of expressions shall resolve to denote an array
(after any implicit dereference) with the corresponding number of index positions, or shall resolve to
denote an entry family of atask or protected object (in which case there shall be only one expression).

The expected type for each expression is the corresponding index type.

Satic Semantics
When the prefix denotes an array, the indexed_component denotes the component of the array with the
specified index valueg(s). The nominal subtype of the indexed_component is the component subtype of the
array type.
When the prefix denotes an entry family, the indexed_component denotes the individual entry of the entry
family with the specified index value.

Dynamic Semantics
For the evaluation of an indexed_component, the prefix and the expressions are evaluated in an arbitrary
order. The value of each expression is converted to the corresponding index type. A check is made that
each index value belongs to the corresponding index range of the array or entry family denoted by the
prefix. Constraint_Error israised if this check fails.
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Examples
Examples of indexed components:
My_Schedul e( Sat) - - acomponent of a one-dimensional array (see3.6.1)
Page( 10) - - acomponent of a one-dimensional array (see 3.6)
Board(M J + 1) - - acomponent of a two-dimensional array (see 3.6.1)
Page( 10) (20) - - acomponent of a component (see 3.6)
Request ( Medi um - - anentryinafamily of entries (see9.1)
Next _Frame(L)(M N) -- acomponent of afunction call (see6.1)

NOTES

1 Notes on the examples: Distinct notations are used for components of multidimensional arrays (such as Board) and
arrays of arrays (such as Page). The components of an array of arrays are arrays and can therefore be indexed. Thus
Page(10)(20) denotes the 20th component of Page(10). In the last example Next_Frame(L) is a function call returning an
access value that designates a two-dimensional array.

4.1.2 Slices

A slice denotes a one-dimensional array formed by a sequence of consecutive components of a one-
dimensional array. A slice of avariableisavariable; aslice of aconstant is a constant; aslice of avalueis
avalue.

Syntax
slice ::= prefix(discrete_range)
Name Resolution Rules

The prefix of aslice shall resolve to denote a one-dimensional array (after any implicit dereference).

The expected type for the discrete_range of aslice isthe index type of the array type.

Static Semantics
A slice denotes a one-dimensional array formed by the sequence of consecutive components of the array
denoted by the prefix, corresponding to the range of values of the index given by the discrete_range.

The type of the slice is that of the prefix. Its bounds are those defined by the discrete_range.

Dynamic Semantics
For the evaluation of a slice, the prefix and the discrete_range are evaluated in an arbitrary order. If the
slice is not a null slice (a slice where the discrete_range is a null range), then a check is made that the
bounds of the discrete_range belong to the index range of the array denoted by the prefix.
Constraint_Error israised if this check fails.

NOTES
2 A slice is not permitted as the prefix of an Access attribute_reference, even if the components or the array as a whole
are aliased. See 3.10.2.

3 For aone-dimensiona array A, the slice A(N .. N) denotes an array that has only one component; its type is the type of
A. On the other hand, A(N) denotes a component of the array A and has the corresponding component type.
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Examples
Examples of slices:

Stars(1 .. 15) - - adliceof 15 characters (see 3.6.3)
Page(10 .. 10 + Size) -- adliceof 1+ Szecomponents (see3.6)

Page(L) (A .. B) - - adliceof thearray Page(L) (see 3.6)

Stars(1 .. 0) -- anull slice (see3.6.3)
My_Schedul e(Weekday) -- bounds given by subtype (see3.6.1and 3.5.1)
Stars(5 .. 15)(K) - - sameas Sars(K) (see 3.6.3)

-- providedthat Kisin5.. 15

4.1.3 Selected Components

Selected_components are used to denote components (including discriminants), entries, entry families,
and protected subprograms; they are also used as expanded names as described below.

Syntax
selected_component ::= prefix . selector_name

selector_name ::= identifier | character_literal | operator_symbol

Name Resolution Rules

A selected_component is caled an expanded name if, according to the visibility rules, at least one
possible interpretation of its prefix denotes a package or an enclosing named construct (directly, not
through a subprogram_renaming_declaration or generic_renaming_declaration).

A selected_component that is not an expanded name shall resolve to denote one of the following:
e A component (including a discriminant):

The prefix shall resolve to denote an object or value of some non-array composite type (after any
implicit dereference). The selector_name shall resolve to denote a discriminant_specification of
the type, or, unless the type is a protected type, a component_declaration of the type. The
selected_component denotes the corresponding component of the object or value.

« A single entry, an entry family, or a protected subprogram:

The prefix shall resolve to dencte an object or value of some task or protected type (after any
implicit dereference). The selector_name shall resolve to denote an entry_declaration or
subprogram_declaration occurring (implicitly or explicitly) within the visible part of that type.
The selected_component denotes the corresponding entry, entry family, or protected
subprogram.

* A view of a subprogram whose first formal parameter is of a tagged type or is an access
parameter whose designated type is tagged:

The prefix (after any implicit dereference) shall resolve to denote an object or value of a specific
tagged type T or class-wide type T'Class. The selector_name shall resolve to denote aview of a
subprogram declared immediately within the declarative region in which an ancestor of the type
T is declared. The first forma parameter of the subprogram shall be of type T, or a class-wide
type that covers T, or an access parameter designating one of these types. The designator of the
subprogram shall not be the same as that of a component of the tagged type visible at the point
of the selected_component. The selected_component denotes a view of this subprogram that
omits the first formal parameter. This view is called a prefixed view of the subprogram, and the
prefix of the selected_component (after any implicit dereference) is called the prefix of the
prefixed view.

An expanded name shall resolve to denote a declaration that occurs immediately within a named
declarative region, as follows:
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« The prefix shall resolve to denote either a package (including the current instance of a generic
package, or arename of a package), or an enclosing named construct.

e The selector_name shall resolve to denote a declaration that occurs immediately within the
declarative region of the package or enclosing construct (the declaration shall be visible at the
place of the expanded name — see 8.3). The expanded name denotes that declaration.

« |f the prefix does not denote a package, then it shall be adirect_name or an expanded name, and
it shall resolve to denote a program unit (other than a package), the current instance of atype, a
block_statement, a loop_statement, or an accept_statement (in the case of an accept_-
statement or entry_body, no family index is allowed); the expanded name shall occur within the
declarative region of this construct. Further, if this construct is a callable construct and the prefix
denotes more than one such enclosing callable construct, then the expanded name is ambiguous,
independently of the selector_name.

Legality Rules
For a subprogram whose first parameter is an access parameter, the prefix of any prefixed view shall
denote an aliased view of an object.

For a subprogram whose first parameter is of mode in out or out, or of an anonymous access-to-variable
type, the prefix of any prefixed view shall denote a variable.

Dynamic Semantics
The evaluation of aselected_component includes the evaluation of the prefix.
For a selected_component that denotes a component of a variant, a check is made that the values of the

discriminants are such that the value or object denoted by the prefix has this component. The exception
Constraint_Error israised if this check fails.

Examples
Examples of selected components:
Tonor r ow. Mont h - - arecord component (see 3.8)
Next _Car . Onner - - arecord component (see3.10.1)
Next _Car . Oaner . Age -- arecord component (see3.10.1)
- - theprevioustwo linesinvolve implicit dereferences
Witer.Unit - - arecord component (a discriminant) (see3.8.1)
M n_Cel | (H). Val ue -- arecord component of the result (see 6.1)
- - of thefunction call Min_Cell(H)
Cashi er. Append - - aprefixed view of a procedure (see3.9.4)
Control . Sei ze - - anentry of a protected object (see9.4)
Pool (K). Wite - - anentry of the task Pool (K) (see9.4)
Examples of expanded names:
Key_Manager. " <" - - anoperator of thevisible part of a package (see7.3.1)
Dot _Product. Sum - - avariable declared in a function body (see6.1)
Buf f er . Pool - - avariable declared in a protected unit (see 9.11)
Buf f er . Read - - anentry of a protected unit (see9.11)
Swap. Tenp - - avariable declared in a block statement (see5.6)
St andar d. Bool ean - - the name of a predefined type (seeAl)
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4.1.4 Attributes

An attribute is a characteristic of an entity that can be queried via an attribute_reference or a range_-
attribute_reference.

Syntax
attribute_reference ::= prefix'attribute_designator
attribute_designator ::=

identifier[(static_expression)]
| Access | Delta | Digits

range_attribute_reference ::= prefix'range_attribute_designator
range_attribute_designator ::= Range[(static_expression)]

Name Resolution Rules

In an attribute_reference, if the attribute_designator is for an attribute defined for (at least some) objects
of an access type, then the prefix is never interpreted as an implicit_dereference; otherwise (and for al
range_attribute_references), if the type of the name within the prefix is of an access type, the prefix is
interpreted as an implicit_dereference. Similarly, if the attribute_designator is for an attribute defined for
(at least some) functions, then the prefix is never interpreted as a parameterless function_call; otherwise
(and for all range_attribute_references), if the prefix consists of a name that denotes a function, it is
interpreted as a parameterless function_call.

The expression, if any, in an attribute_designator or range_attribute_designator is expected to be of any
integer type.

Legality Rules
The expression, if any, in an attribute_designator or range_attribute_designator shall be static.

Satic Semantics
An attribute_reference denotes a value, an object, a subprogram, or some other kind of program entity.
A range_attribute_reference X'Range(N) is equivalent to the range X'First(N) .. X'Last(N), except that

the prefix is only evaluated once. Similarly, X'Range is equivalent to X'First .. X'Last, except that the
prefix is only evaluated once.

Dynamic Semantics

The evaluation of an attribute_reference (or range_attribute_reference) consists of the evaluation of the
prefix.

Implementation Permissions
An implementation may provide implementation-defined attributes; the identifier for an implementation-
defined attribute shall differ from those of the language-defined attributes unless supplied for compatibility
with a previous edition of this International Standard.

NOTES
4 Attributes are defined throughout this International Standard, and are summarized in Annex K.

5 In general, the name in a prefix of an attribute_reference (or arange_attribute_reference) has to be resolved without
using any context. However, in the case of the Access attribute, the expected type for the attribute_reference hasto be a
single access type, and the resolution of the name can use the fact that the type of the object or the profile of the callable
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entity denoted by the prefix has to match the designated type or be type conformant with the designated profile of the

access type.
Examples
Examples of attributes:

Col or' Fi rst - - minimum value of the enumeration type Color (see 3.5.1)
Rai nbow Base' Fi rst -- sameasColor'First (see3.5.1)
Real 'Digits - - precision of the type Real (see3.5.7)
Boar d' Last (2) - - upper bound of the second dimension of Board (see 3.6.1)
Boar d' Range( 1) - - index range of thefirst dimension of Board (see3.6.1)
Pool (K)' Termi nat ed -- Trueif task Pool(K) isterminated (see9.1)
Date' Si ze - - number of bits for records of type Date (see 3.8)
Message' Addr ess - - address of the record variable Message (see3.7.2)

4.2 Literals

A literal represents a value literally, that is, by means of notation suited to its kind. A literal is either a
numeric_literal, acharacter_literal, the literal null, or astring_literal.

Name Resolution Rules
This paragraph was del eted.
For a name that consists of a character_literal, either its expected type shall be a single character type, in
which case it is interpreted as a parameterless function_call that yields the corresponding value of the
character type, or its expected profile shall correspond to a parameterless function with a character result
type, in which case it is interpreted as the name of the corresponding parameterless function declared as

part of the character type's definition (see 3.5.1). In either case, the character_literal denotes the
enumeration_literal_specification.

The expected type for a primary that is astring_literal shall be a single string type.

Legality Rules
A character_literal that is aname shall correspond to adefining_character_literal of the expected type, or
of the result type of the expected profile.

For each character of a string_literal with a given expected string type, there shall be a corresponding
defining_character_literal of the component type of the expected string type.

This paragraph was deleted.

Static Semantics

An integer literal is of type universal_integer. A red litera is of type universal_real. The literal null is of
type universal_access.

Dynamic Semantics
The evauation of a numeric literal, or the literal null, yields the represented value.
The evaluation of a string_literal that is a primary yields an array value containing the value of each
character of the sequence of characters of the string_literal, as defined in 2.6. The bounds of this array

value are determined according to the rules for positional_array_aggregates (see 4.3.3), except that for a
null string literal, the upper bound is the predecessor of the lower bound.
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For the evaluation of a string_literal of type T, a check is made that the value of each character of the
string_literal belongs to the component subtype of T. For the evaluation of a null string literal, a check is
made that its lower bound is greater than the lower bound of the base range of the index type. The
exception Constraint_Error israised if either of these checksfails.

NOTES
6 Enumeration literals that are identifiers rather than character_literals follow the normal rules for identifiers when used in
aname (see 4.1 and 4.1.3). Character_literals used as selector_names follow the normal rules for expanded names (see

4.1.3).
Examples

Examples of literals:

3. 14159 26536 -- areal literal

1 345 - - aninteger literal

A - - acharacter literal

"Sonme Text" -- astringliteral
4.3 Aggregates

An aggregate combines component values into a composite value of an array type, record type, or record
extension.

Syntax
aggregate ::= record_aggregate | extension_aggregate | array_aggregate

Name Resolution Rules

The expected type for an aggregate shall be asingle array type, record type, or record extension.

Legality Rules
An aggregate shall not be of a class-wide type.

Dynamic Semantics
For the evaluation of an aggregate, an anonymous object is created and values for the components or
ancestor part are obtained (as described in the subsequent subclause for each kind of the aggregate) and
assigned into the corresponding components or ancestor part of the anonymous object. Obtaining the
values and the assignments occur in an arbitrary order. The value of the aggregate is the value of this
object.

If an aggregate is of atagged type, a check is made that its value belongs to the first subtype of the type.
Constraint_Error israised if this check fails.

4.3.1 Record Aggregates

In arecord_aggregate, a value is specified for each component of the record or record extension value,
using either anamed or a positional association.

Syntax
record_aggregate ::= (record_component_association_list)

record_component_association_list ::=
record_component_association {, record_component_association}
| null record
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record_component_association ::=

[component_choice_list =>] expression

| component_choice_list => <>
component_choice_list ::=

component_selector_name {| component_selector_name}

| others
A record_component_association is a named component association if it hasa
component_choice_list; otherwise, it is a positional component association. Any positional
component associations shall precede any named component associations. If there is a named
association with acomponent_choice_list of others, it shall come last.
In the record_component_association_list for arecord_aggregate, if thereis only one association,
it shall be a named association.

Name Resolution Rules

The expected type for arecord_aggregate shall be a single record type or record extension.

For the record_component_association_list of a record_aggregate, all components of the composite
value defined by the aggregate are needed; for the association list of an extension_aggregate, only those
components not determined by the ancestor expression or subtype are needed (see 4.3.2). Each selector_-
name in a record_component_association shall denote a needed component (including possibly a
discriminant).

The expected type for the expression of a record_component_association is the type of the associated
component(s); the associated component(s) are as follows:
e For a positional association, the component (including possibly a discriminant) in the
corresponding relative position (in the declarative region of the type), counting only the needed
components;

e For a named association with one or more component_selector_names, the named
component(s);

« For a named association with the reserved word others, all needed components that are not
associated with some previous association.

Legality Rules
If the type of arecord_aggregate is a record extension, then it shall be a descendant of a record type,
through one or more record extensions (and no private extensions).

If there are no components needed in a given record_component_association_list, then the reserved
words null record shall appear rather than alist of record_component_associations.

Each record_component_association other than an others choice with a <> shall have at least one
associated component, and each needed component shall be associated with exactly one record_-
component_association. If a record_component_association with an expression has two or more
associated components, all of them shall be of the same type.

If the components of a variant_part are needed, then the value of a discriminant that governs the
variant_part shall be given by a static expression.

A record_component_association for a discriminant without a default_expression shall have an
expression rather than <>.
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Dynamic Semantics

The evaluation of arecord_aggregate consists of the evaluation of the record_component_association_-
list.

For the evaluation of a record_component_association_list, any per-object constraints (see 3.8) for
components specified in the association list are elaborated and any expressions are evaluated and
converted to the subtype of the associated component. Any constraint elaborations and expression
evaluations (and conversions) occur in an arbitrary order, except that the expression for a discriminant is
evaluated (and converted) prior to the elaboration of any per-object constraint that depends on it, which in
turn occurs prior to the evaluation and conversion of the expression for the component with the per-object
constraint.

For a record_component_association with an expression, the expression defines the vaue for the
associated component(s). For a record_component_association with <>, if the component_declaration
has a default_expression, that default_expression defines the value for the associated component(s);
otherwise, the associated component(s) are initialized by default as for a stand-alone object of the
component subtype (see 3.3.1).

The expression of a record_component_association is evaluated (and converted) once for each
associated component.

NOTES

7 For arecord_aggregate with positional associations, expressions specifying discriminant values appear first since the
known_discriminant_part is given first in the declaration of the type; they have to be in the same order as in the
known_discriminant_part.

Examples

Example of a record aggregate with positional associations:
(4, July, 1776) -- se38

Examples of record aggregates with named associations:

(Day => 4, Month => July, Year => 1776)
(Month => July, Day => 4, Year => 1776)

(Disk, Cosed, Track => 5, Cylinder => 12) -- see381
(Unit => Disk, Status => Closed, Cylinder => 9, Track => 1)

Examples of component associations with several choices:

(Value => 0, Succ|Pred => new Cell"' (0, null, null)) -- see3101
- - Theallocator is evaluated twice: Succ and Pred designate different cells
(Val ue => 0, Succ|Pred => <>) -- see310.1

- - Succ and Pred will be set to null

Examples of record aggregates for tagged types (see 3.9 and 3.9.1):

Expression' (null record)
Literal'(Value => 0.0)
Pai nted_Point' (0.0, Pi/2.0, Paint => Red)
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4.3.2 Extension Aggregates

An extension_aggregate specifies a value for a type that is a record extension by specifying a value or
subtype for an ancestor of the type, followed by associations for any components not determined by the
ancestor_part.

Syntax
extension_aggregate ::=
(ancestor_part with record_component_association_list)

ancestor_part ::= expression | subtype_mark

Name Resolution Rules

The expected type for an extension_aggregate shall be a single type that is a record extension. If the
ancestor_part is an expression, it is expected to be of any tagged type.

Legality Rules
If the ancestor_part is a subtype_mark, it shall denote a specific tagged subtype. If the ancestor_part is
an expression, it shal not be dynamically tagged. The type of the extension_aggregate shall be derived
from the type of the ancestor_part, through one or more record extensions (and no private extensions).

Satic Semantics

For the record_component_association_list of an extension_aggregate, the only components needed are
those of the composite value defined by the aggregate that are not inherited from the type of the
ancestor_part, plus any inherited discriminants if the ancestor_part is a subtype_mark that denotes an
unconstrained subtype.

Dynamic Semantics
For the evaluation of an extension_aggregate, the record_component_association_list is evaluated. If
the ancestor_part is an expression, it is aso evaluated; if the ancestor_part is a subtype_mark, the
components of the value of the aggregate not given by the record_component_association_list are
initialized by default as for an object of the ancestor type. Any implicit initializations or evaluations are
performed in an arbitrary order, except that the expression for a discriminant is evaluated prior to any
other evaluation or initialization that depends on it.

If the type of the ancestor_part has discriminants that are not inherited by the type of the
extension_aggregate, then, unless the ancestor_part is a subtype_mark that denotes an unconstrained
subtype, a check is made that each discriminant of the ancestor has the value specified for a corresponding
discriminant, either in the record_component_association_list, or in the derived_type_definition for
some ancestor of the type of the extension_aggregate. Constraint_Error israised if this check fails.

NOTES

8 If al components of the value of the extension_aggregate are determined by the ancestor_part, then the record_-
component_association_list is required to be simply null record.

9 If the ancestor_part is a subtype_mark, then its type can be abstract. If its type is controlled, then as the last step of
evaluating the aggregate, the Initialize procedure of the ancestor type is called, unless the Initialize procedure is abstract
(see 7.6).
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Examples
Examples of extension aggregates (for types defined in 3.9.1):
Pai nt ed_Poi nt' (Point with Red)
(Point' (P) with Paint => Bl ack)

(Expression with Left => 1.2, Right => 3.4)
Addi tion' (Binop with null record)
- - presuming Binop is of type Binary_Operation

4.3.3 Array Aggregates

In an array_aggregate, a value is specified for each component of an array, either positionally or by its
index. For a positional_array_aggregate, the components are given in increasing-index order, with a final
others, if any, representing any remaining components. For a named_array_aggregate, the components
areidentified by the values covered by the discrete_choices.

Syntax
array_aggregate ::=
positional_array_aggregate | named_array_aggregate
positional_array_aggregate ::=
(expression, expression {, expression})
| (expression {, expression}, others => expression)
| (expression {, expression}, others => <>)
named_array_aggregate ::=
(array_component_association {, array_component_association})
array_component_association ::=
discrete_choice_list => expression
| discrete_choice_list => <>

An n-dimensional array_aggregate is one that is written as n levels of nested array_aggregates (or at the
bottom level, equivalent string_literals). For the multidimensional case (n >= 2) the array_aggregates (or
equivalent string_literals) at the n—1 lower levels are called subaggregates of the enclosing n-dimensional
array_aggregate. The expressions of the bottom level subaggregates (or of the array_aggregate itself if
one-dimensional) are caled the array component expressions of the enclosing n-dimensiona
array_aggregate.

Name Resolution Rules
The expected type for an array_aggregate (that is not a subaggregate) shall be a single array type. The

component type of this array type is the expected type for each array component expression of the
array_aggregate.

The expected type for each discrete_choice in any discrete_choice_list of a named_array_aggregate is
the type of the corresponding index; the corresponding index for an array_aggregate that is not a
subaggregate is the first index of its type; for an (n—-m)-dimensional subaggregate within an
array_aggregate of an n-dimensional type, the corresponding index is the index in position m+1.

Legality Rules
An array_aggregate of an n-dimensional array type shall be written as an n-dimensional
array_aggregate.

An others choice is alowed for an array_aggregate only if an applicable index constraint applies to the
array_aggregate. An applicable index constraint is a constraint provided by certain contexts where an
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array_aggregate is permitted that can be used to determine the bounds of the array value specified by the
aggregate. Each of the following contexts (and none other) defines an applicable index constraint:

« For an explicit_actual_parameter, an explicit_generic_actual_parameter, the expression of a 11/2
return statement, the initialization expression in an object_declaration, or a default_expression
(for a parameter or a component), when the nomina subtype of the corresponding formal
parameter, generic formal parameter, function return object, object, or component is a
constrained array subtype, the applicable index constraint is the constraint of the subtype;

* For the expression of an assignment_statement where the name denotes an array variable, the 12
applicable index constraint is the constraint of the array variable;

« For the operand of a qualified_expression whose subtype_mark denotes a constrained array 13
subtype, the applicable index constraint is the constraint of the subtype;

e For a component expression in an aggregate, if the component's nomina subtype is a 14
constrained array subtype, the applicable index constraint is the constraint of the subtype;

* For a parenthesized expression, the applicable index constraint is that, if any, defined for the 15
expression.

The applicable index constraint applies to an array_aggregate that appearsin such a context, aswell asto 16
any subaggregates thereof. In the case of an explicit_actual_parameter (or default_expression) for a call
on ageneric formal subprogram, no applicable index constraint is defined.

The discrete_choice_list of an array_component_association is allowed to have adiscrete_choice thatis 17
a nonstatic expression or that is a discrete_range that defines a nonstatic or null range, only if it is the
single discrete_choice of its discrete_choice_list, and there is only one array_component_association in

the array_aggregate.

In anamed_array_aggregate with more than one discrete_choice, no two discrete_choices are allowed 18
to cover the same value (see 3.8.1); if there is no others choice, the discrete_choices taken together shall
exactly cover a contiguous sequence of values of the corresponding index type.

A bottom level subaggregate of a multidimensional array_aggregate of agiven array typeisallowedtobe 19
a string_literal only if the component type of the array type is a character type; each character of such a
string_literal shall correspond to adefining_character_literal of the component type.

Static Semantics

A subaggregate that is a string_literal is equivalent to one that is a positional_array_aggregate of the 20
same length, with each expression being the character_literal for the corresponding character of the
string_literal.

Dynamic Semantics
The evaluation of an array_aggregate of agiven array type proceeds in two steps: 21

1. Any discrete_choices of this aggregate and of its subaggregates are evaluated in an arbitrary 22
order, and converted to the corresponding index type;

2. The array component expressions of the aggregate are evaluated in an arbitrary order and their 23
values are converted to the component subtype of the array type; an array component expression
is evaluated once for each associated component.

Each expression in an array_component_association defines the value for the associated component(s). 23.1/2
For an array_component_association with <>, the associated component(s) are initialized by default as
for a stand-alone object of the component subtype (see 3.3.1).
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24  The bounds of the index range of an array_aggregate (including a subaggregate) are determined as
follows:

25 < For an array_aggregate with an others choice, the bounds are those of the corresponding index
range from the applicable index constraint;

26 « For a positional_array_aggregate (or equivalent string_literal) without an others choice, the
lower bound is that of the corresponding index range in the applicable index constraint, if
defined, or that of the corresponding index subtype, if not; in either case, the upper bound is
determined from the lower bound and the number of expressions (or the length of the
string_literal);

27 e For a named_array_aggregate without an others choice, the bounds are determined by the
smallest and largest index values covered by any discrete_choice_list.

28 For an array_aggregate, a check is made that the index range defined by its bounds is compatible with the
corresponding index subtype.

29  For an array_aggregate with an others choice, a check is made that no expression is specified for an
index value outside the bounds determined by the applicable index constraint.

30 For a multidimensional array_aggregate, a check is made that all subaggregates that correspond to the
same index have the same bounds.

31 Theexception Constraint_Error israised if any of the above checks fail.

NOTES

3212 10 In an array_aggregate, positional notation may only be used with two or more expressions; a single expression in
parentheses is interpreted as a parenthesized expression. A named_array_aggregate, such as (1 => X), may be used to
specify an array with a single component.

Examples

33 Examples of array aggregates with positional associations:
34 (7, 9, 5,1, 3, 2, 4, 8, 6, 0)

Table' (5, 8, 4, 1, others => 0) -- se36

35 Examples of array aggregates with named associations:

36 (.. 5=>(1.. 8 =>0.0)) - - two-dimensional
(1 .. N=>new Cell) -- Nnewcells, inparticular for N= 0
37 Table' (2 | 4| 10 => 1, others => 0)
Schedul e' (Mon .. Fri => True, others => False) -- se36
Schedul e' (Wd | Sun => Fal se, others => True)
Vector' (1 => 2.5) - - single-component vector

38 Examples of two-dimensional array aggregates:
39 - - Three aggregates for the same value of subtype Matrix(1..2,1..3) (see 3.6):

40 ((1.1, 1.2, 1.3), (2.1, 2.2, 2.3))
(1 =>(1.121, 1.2, 1.3), 2 => (2.1, 2.2, 2.3))
(1 =>(1=>11, 2=>1.2, 3=>13), 2=>(1=>21 2=>22, 3=>2.3))

41 Examples of aggregates asinitial values:

42 A: Table := (7, 9, 5, 1, 3, 2, 4, 8, 6, 0); -- A(1)=7, A(10)=0

B: Table := (2| 4| 10 => 1, others => 0); -- B(1)=0, B(10)=1

C: constant Matrix := (1 .. 5=>(1.. 8 =>0.0)); -- ClLast(1)=5, CLast(2)=8
43 D: Bit_Vector(M.. N) := (M.. N=> True); -- se3.6

E: Bit_Vector(M.. N) := (others => True);

F: String(l .. 1) := (1 =>"F); -- aonecomponentaggregate: sameas"F"
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provided by an enclosing record aggregate:

Buffer' (Size => 50, Pos => 1, Value => String' ('x', others => <>))

4.4 Expressions

An expression is a formula that defines the computation or retrieval of a value. In this International
Standard, the term “expression” refers to a construct of the syntactic category expression or of any of the

other five syntactic categories defined below.

Syntax
expression ::=
relation {and relation} |relation {and then relation}
| relation {or relation} | relation {or else relation}

| relation {xor relation}

relation ::=
simple_expression [relational_operator simple_expression]
| simple_expression [not] in range
| simple_expression [not] in subtype_mark

simple_expression ::= [unary_adding_operator] term { binary_adding_operator term}
term ::= factor { multiplying_operator factor}
factor ::= primary [** primary] | abs primary | not primary

primary ::=
numeric_literal | null | string_literal | aggregate
| name | qualified_expression | allocator | (expression)

Name Resolution Rules

A name used as a primary shall resolve to denote an object or avalue.

Static Semantics

Each expression has atype; it specifies the computation or retrieval of avalue of that type.

Dynamic Semantics

The value of aprimary that is aname denoting an object is the value of the object.

For the evaluation of a primary that is a name denoting an object of an unconstrained numeric subtype, if
the value of the object is outside the base range of its type, the implementation may either raise

Implementation Permissions

Constraint_Error or return the value of the object.

101
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Examples

Examples of primaries:

4.0 - - real literal

Pi - - named number

(1 .. 10 => 0) - - array aggregate

Sum -- variable

I nt eger' Last - - attribute

Si ne( X) - - function call

Col or' (Bl ue) - - qualified expression

Real ( MN) - - conversion

(Line_Count + 10) -- parenthesized expression
Examples of expressions:

Vol ume - - primary

not Destroyed - - factor

2*Li ne_Count -- term

-4.0 - - simple expression

-4.0 + A - - simple expression

B**2 - 4. 0*A*C - - simple expression

R*Si n( 6) * Cos( o) - - simple expression

Password(1 .. 3) = "Bw" - - relation

Count in Small _Int - - relation

Count not in Small _Int - - relation

Index = 0 or ItemHt - - expression

(Cold and Sunny) or Vrm - - expression (parentheses are required)

A**(B**C) - - expression (parentheses are required)

4.5 Operators and Expression Evaluation

The language defines the following six categories of operators (given in order of increasing precedence).
The corresponding operator_symbols, and only those, can be used as designators in declarations of
functions for user-defined operators. See 6.6, “ Overloading of Operators”.

Syntax

logical_operator ::= and |or |xor
relational_operator ::= = /=< |<=]|>]|>=
binary_adding_operator ::= + |- 1&
unary_adding_operator ::= + |-
multiplying_operator ::= * |/ |mod|rem
highest_precedence_operator ::= ** | abs| not

Satic Semantics

For a sequence of operators of the same precedence level, the operators are associated with their operands
in textual order from left to right. Parentheses can be used to impose specific associations.

For each form of type definition, certain of the above operators are predefined; that is, they are implicitly
declared immediately after the type definition. For each such implicit operator declaration, the parameters
are called Left and Right for binary operators; the single parameter is called Right for unary operators. An
expression of the form X op Y, where op is a binary operator, is equivalent to a function_call of the form
"op"(X, Y). An expression of the form op Y, where op is a unary operator, is equivalent to afunction_call
of the form "op"(Y). The predefined operators and their effects are described in subclauses 4.5.1 through
45.6.
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Dynamic Semantics
The predefined operations on integer types either yield the mathematically correct result or raise the
exception Constraint_Error. For implementations that support the Numerics Annex, the predefined
operations on real types yield results whose accuracy is defined in Annex G, or raise the exception
Constraint_Error.

Implementation Requirements

The implementation of a predefined operator that delivers a result of an integer or fixed point type may
raise Constraint_Error only if the result is outside the base range of the result type.

The implementation of a predefined operator that delivers a result of a floating point type may raise
Constraint_Error only if the result is outside the safe range of the result type.

Implementation Permissions

For a sequence of predefined operators of the same precedence level (and in the absence of parentheses
imposing a specific association), an implementation may impose any association of the operators with
operands so long as the result produced is an allowed result for the left-to-right association, but ignoring
the potential for failure of language-defined checks in either the left-to-right or chosen order of
association.

NOTES
11 The two operands of an expression of the form X op Y, where op is a binary operator, are evaluated in an arbitrary
order, as for any function_call (see 6.4).

Examples
Examples of precedence:
not Sunny or Warm - - sameas (not Sunny) or Warm
X>4.0and Y > 0.0 -- sameas(X>4.0)and(Y> 0.0
-4, 0*A¥*2 -- sameas—(4.0* (A**2))
abs(1 + A + B -- sameas(abs(1+ A)+B
Y**(-3) - - parentheses are necessary
Al B* C -- sameas (A/B)*C
A+ (B+ O - - evaluate B + C beforeadding it to A

4.5.1 Logical Operators and Short-circuit Control Forms

Name Resolution Rules

An expression consisting of two relations connected by and then or or else (a short-circuit control form)
shall resolve to be of some boolean type; the expected type for both relations is that same bool ean type.

Static Semantics
The following logical operators are predefined for every boolean type T, for every modular type T, and for
every one-dimensional array type T whose component type is a boolean type:

function "and"(Left, Right : T) return T
function "or" (Left, Right : T) return T
function "xor"(Left, Right : T) return T

For boolean types, the predefined logical operators and, or, and xor perform the conventional operations
of conjunction, inclusive digjunction, and exclusive digunction, respectively.

For modular types, the predefined logical operators are defined on a bit-by-bit basis, using the binary
representation of the value of the operands to yield a binary representation for the result, where zero
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represents False and one represents True. If this result is outside the base range of the type, a final
subtraction by the modulusis performed to bring the result into the base range of the type.

The logical operators on arrays are performed on a component-by-component basis on matching
components (as for equality — see 4.5.2), using the predefined logical operator for the component type.
The bounds of the resulting array are those of the left operand.

Dynamic Semantics
The short-circuit control forms and then and or else deliver the same result as the corresponding

predefined and and or operators for boolean types, except that the left operand is always evaluated first,
and the right operand is not evaluated if the value of the |eft operand determines the resullt.

For the logical operators on arrays, a check is made that for each component of the left operand thereis a
matching component of the right operand, and vice versa. Also, a check is made that each component of
the result belongs to the component subtype. The exception Constraint_Error is raised if either of the
above checksfails.

NOTES
12 The conventiona meaning of the logica operatorsis given by the following truth table:
A B (A and B) (A or B) (A xor B)
True True True True False
True False False True True
False True False True True
False False False False False
Examples
Examples of logical operators:
Sunny or Warm
Filter(1 .. 10) and Filter(15 .. 24) -- see36.1

Examples of short-circuit control forms:

Next _Car.Oaner /= null and then Next_Car.Omner.Age > 25 -- se3101
N =0 or else A(N = Ht_Value

4.5.2 Relational Operators and Membership Tests

The equality operators = (equals) and /= (not equals) are predefined for nonlimited types. The other
relational_operators are the ordering operators < (less than), <= (less than or equal), > (greater than), and
>= (greater than or egual). The ordering operators are predefined for scalar types, and for discrete array
types, that is, one-dimensional array types whose components are of a discrete type.

A membership test, using in or not in, determines whether or not a value belongs to a given subtype or
range, or has a tag that identifies a type that is covered by a given type. Membership tests are allowed for
all types.

Name Resolution Rules

The tested type of a membership test is the type of the range or the type determined by the subtype_mark.
If the tested type is tagged, then the simple_expression shall resolve to be of a type that is convertible
(see 4.6) to the tested type; if untagged, the expected type for the simple_expression is the tested type.
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Legality Rules
For a membership test, if the simple_expression is of atagged class-wide type, then the tested type shall
be (visibly) tagged.

Static Semantics
The result type of amembership test is the predefined type Boolean.

The equality operators are predefined for every specific type T that is not limited, and not an anonymous
access type, with the following specifications:
function "=" (Left, Right : T) return Bool ean
function "/="(Left, Right : T) return Bool ean
The following additional equality operators for the universal_access type are declared in package Standard
for use with anonymous access types:
function "=" (Left, Right : universal _access) return Bool ean
function "/="(Left, Right : universal_access) return Bool ean
The ordering operators are predefined for every specific scalar type T, and for every discrete array type T,
with the following specifications:
function "<" (Left, Right
function "<="(Left, Right

function ">" (Left, Right
function ">="(Left, Right

return Bool ean
return Bool ean
return Bool ean
return Bool ean

Jddad

Name Resolution Rules

At least one of the operands of an equality operator for universal_access shall be of a specific anonymous
access type. Unless the predefined equality operator is identified using an expanded name with prefix
denoting the package Standard, neither operand shall be of an access-to-object type whose designated type
isD or D'Class, where D has a user-defined primitive equality operator such that:

e itsresult typeis Boolean;
e itisdeclared immediately within the same declaration list as D; and
e &t least one of its operandsis an access parameter with designated type D.

Legality Rules
At least one of the operands of the equality operators for universal_access shal be of type

universal_access, or both shall be of access-to-object types, or both shall be of access-to-subprogram
types. Further:

« When both are of access-to-object types, the designated types shall be the same or one shall
cover the other, and if the designated types are elementary or array types, then the designated
subtypes shall statically match;

¢ When both are of access-to-subprogram types, the designated profiles shall be subtype
conformant.

Dynamic Semantics
For discrete types, the predefined relational operators are defined in terms of corresponding mathematical
operations on the position numbers of the values of the operands.

For rea types, the predefined relational operators are defined in terms of the corresponding mathematical
operations on the values of the operands, subject to the accuracy of the type.

105 10 November 2006 Relational Operators and Membership Tests 4.5.2

7.112

7.212

9.1/2

9.2/2

9.3/2

9.4/2

9.5/2

9.6/2

9.7/2

10

11



12

13

14

15

16

17

18

19

20

21

22

23

24

24.1/1

25

26

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Two access-to-object values are equal if they designate the same object, or if both are equal to the null
value of the access type.

Two access-to-subprogram values are equal if they are the result of the same evaluation of an Access
attribute_reference, or if both are equal to the null value of the access type. Two access-to-subprogram
values are unequal if they designate different subprograms. It is unspecified whether two access values
that designate the same subprogram but are the result of distinct evaluations of Access
attribute_references are equal or unequal.

For atype extension, predefined equality is defined in terms of the primitive (possibly user-defined) equals
operator of the parent type and of any tagged components of the extension part, and predefined equality
for any other components not inherited from the parent type.

For a private type, if its full type is tagged, predefined equality is defined in terms of the primitive equals
operator of the full type; if the full type is untagged, predefined equality for the private type is that of its
full type.

For other composite types, the predefined equality operators (and certain other predefined operations on
composite types — see 4.5.1 and 4.6) are defined in terms of the corresponding operation on matching
components, defined as follows:

» For two composite objects or values of the same non-array type, matching components are those
that correspond to the same component_declaration or discriminant_specification;

» For two one-dimensional arrays of the same type, matching components are those (if any) whose
index values match in the following sense: the lower bounds of the index ranges are defined to
match, and the successors of matching indices are defined to match;

« For two multidimensional arrays of the same type, matching components are those whose index
values match in successive index positions.

The analogous definitions apply if the types of the two objects or values are convertible, rather than being
the same.

Given the above definition of matching components, the result of the predefined equals operator for
composite types (other than for those composite types covered earlier) is defined as follows:

 |f there are no components, the result is defined to be True;
 |f there are unmatched components, the result is defined to be False;

» Otherwise, the result is defined in terms of the primitive equals operator for any matching tagged
components, and the predefined equals for any matching untagged components.

For any composite type, the order in which "=" is called for components is unspecified. Furthermore, if the
result can be determined before calling "=" on some components, it is unspecified whether "=" is called on
those components.

For a discrete array type, the predefined ordering operators correspond to lexicographic order using the
predefined order relation of the component type: A null array is lexicographically less than any array
having at least one component. In the case of nonnull arrays, the left operand is lexicographically less than
the right operand if the first component of the left operand is less than that of the right; otherwise the left
operand is lexicographically less than the right operand only if their first components are equal and the tail
of the left operand is lexicographically less than that of the right (the tail consists of the remaining
components beyond the first and can be null).
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For the evaluation of a membership test, the simple_expression and therange (if any) areevaluated inan 27
arbitrary order.

A membership test using in yields the result Trueiif: 28
* Thetested typeis scalar, and the value of the simple_expression belongs to the given range, or 29
the range of the named subtype; or
« Thetested typeis not scalar, and the value of the simple_expression satisfies any constraints of 3002
the named subtype, and:
. if the type of the simple_expression is class-wide, the value has a tag that identifies a type 30.1/2
covered by the tested type;
- if the tested type is an access type and the named subtype excludes null, the value of the 30.2/2
simple_expression is not null.
Otherwise the test yields the result False. 31

A membership test using not in gives the complementary result to the corresponding membership test 32
usingin.

Implementation Requirements

For al nonlimited types declared in language-defined packages, the "=" and "/=" operators of the type 32.11
shall behave asiif they were the predefined equality operators for the purposes of the equality of composite
types and generic formal types.

NOTES
This paragraph was del eted. 33/2

13 If a composite type has components that depend on discriminants, two values of this type have matching components 34
if and only if their discriminants are equal. Two nonnull arrays have matching components if and only if the length of
each dimension is the same for both.

Examples
Examples of expressionsinvolving relational operators and membership tests: 35
XI=Y 36
"t< "A" and "A' < "Aa" -- True 37
"pAa" < "B and "A" < "A " -- True
My_Car = null - - trueif My_Car has been set to null (see 3.10.1) 38
My_Car = Your _Car - - trueif we both share the same car
My_Car.all = Your_Car.all - - trueif thetwo carsareidentical
Nnot in1 .. 10 - - range membership test 39
Today in Mn .. Fri - - range membership test
Today in Weekday - - subtype membership test (see 3.5.1)
Archive in Disk_Unit - - subtype membership test (see 3.8.1)
Tree.all in Addition' Cass -- classmembership test (see3.9.1)
4.5.3 Binary Adding Operators
Static Semantics

The binary adding operators + (addition) and — (subtraction) are predefined for every specific numeric 1
type T with their conventional meaning. They have the following specifications:

function "+"(Left, Right : T) return T 2
function "-"(Left, Right : T) return T
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The concatenation operators & are predefined for every nonlimited, one-dimensional array type T with
component type C. They have the following specifications:

function "&"'(Left : T, Right : T) return T
function "&"'(Left : T, Right : C) return T
function "& (Left : C, Right : T) return T
function "& "' (Left : C; Right : C) return T

Dynamic Semantics
For the evaluation of a concatenation with result type T, if both operands are of type T, the result of the
concatenation is a one-dimensional array whose length is the sum of the lengths of its operands, and whose
components comprise the components of the left operand followed by the components of the right
operand. If the left operand is a null array, the result of the concatenation is the right operand. Otherwise,
the lower bound of the result is determined as follows:

« If the ultimate ancestor of the array type was defined by a constrained_array_definition, then
the lower bound of the result isthat of the index subtype;

« |If the ultimate ancestor of the array type was defined by an unconstrained_array_definition,
then the lower bound of the result isthat of the left operand.

The upper bound is determined by the lower bound and the length. A check is made that the upper bound
of the result of the concatenation belongs to the range of the index subtype, unless the result isanull array.
Constraint_Error israised if this check fails.

If either operand is of the component type C, the result of the concatenation is given by the above rules,
using in place of such an operand an array having this operand as its only component (converted to the
component subtype) and having the lower bound of the index subtype of the array type asits lower bound.

The result of a concatenation is defined in terms of an assignment to an anonymous object, as for any
function call (see 6.5).

NOTES
14 Asfor al predefined operators on modular types, the binary adding operators + and — on modular types include a final
reduction modulo the modulus if the result is outside the base range of the type.

Examples
Examples of expressions involving binary adding operators:
Z + 0.1 -- Zhastobeof areal type
"A" & "BCD' -- concatenation of two string literals
"A & "BCD' -- concatenation of a character literal and a string literal
A& A - - concatenation of two character literals
4.5.4 Unary Adding Operators
Static Semantics

The unary adding operators + (identity) and — (negation) are predefined for every specific numeric type T
with their conventional meaning. They have the following specifications:

function "+"(Right : T) return T
function "-"(Right : T) return T

NOTES

15 For modular integer types, the unary adding operator —, when given a nonzero operand, returns the result of
subtracting the value of the operand from the modulus; for a zero operand, the result is zero.
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4.5.5 Multiplying Operators

Static Semantics
The multiplying operators * (multiplication), / (division), mod (modulus), and rem (remainder) are
predefined for every specific integer type T:

function "*" (Left, Right : T) return T
function "/" (Left, Right : T) return T
function "nod"(Left, Right : T) return T
function "rem'(Left, Right : T) return T

Signed integer multiplication has its conventional meaning.

Signed integer division and remainder are defined by the relation:

A= (AB)*B + (A remB)
where (A rem B) has the sign of A and an absolute value less than the absolute value of B. Signed integer
division satisfies the identity:

(-A/B=-(AB) = A(-B)

The signed integer modulus operator is defined such that the result of A mod B has the sign of B and an
absolute value less than the absolute value of B; in addition, for some signed integer value N, this result
satisfies the relation:

A= B*N + (A nod B)

The multiplying operators on modular types are defined in terms of the corresponding signed integer
operators, followed by a reduction modulo the modulus if the result is outside the base range of the type
(which is only possible for the "*" operator).

Multiplication and division operators are predefined for every specific floating point type T:

function "*"(Left, Right : T) return T
function "/"(Left, Right : T) return T

The following multiplication and division operators, with an operand of the predefined type Integer, are
predefined for every specific fixed point type T:

function "*"(Left : T, Right : Integer) return T
function "*"(Left : Integer; Right : T) return T
function "/"(Left : T, Right : Integer) return T

All of the above multiplying operators are usable with an operand of an appropriate universal numeric
type. The following additional multiplying operators for root_real are predefined, and are usable when
both operands are of an appropriate universal or root numeric type, and the result is allowed to be of type
root_real, asin anumber_declaration:

function "*"(Left, Right : rootreal) return root real
function "/"(Left, Right : rootreal) return root real

function "*"(Left : root_real; Right : root_integer) return root real
function "*"(Left : root_integer; Right : root_real) return root_real
function "/"(Left : root_real; Ri ght : root_integer) return root real

Multiplication and division between any two fixed point types are provided by the following two
predefined operators:

function "*"(Left, Right : universal_fixed) return universal_fixed
function "/"(Left, Right : universal_fixed) return universal_fixed
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Name Resolution Rules

The above two fixed-fixed multiplying operators shall not be used in a context where the expected type for
the result is itself universal_fixed — the context has to identify some other numeric type to which the
result is to be converted, either explicitly or implicitly. Unless the predefined universal operator is
identified using an expanded name with prefix denoting the package Standard, an explicit conversion is
required on the result when using the above fixed-fixed multiplication operator if either operand is of a
type having a user-defined primitive multiplication operator such that:

» itisdeclared immediately within the same declaration list as the type; and
« both of itsformal parameters are of afixed-point type.

A corresponding requirement applies to the universal fixed-fixed division operator.

Legality Rules
This paragraph was deleted.

Dynamic Semantics
The multiplication and division operators for rea types have their conventional meaning. For floating
point types, the accuracy of the result is determined by the precision of the result type. For decimal fixed
point types, the result is truncated toward zero if the mathematical result is between two multiples of the
small of the specific result type (possibly determined by context); for ordinary fixed point types, if the
mathematical result is between two multiples of the small, it is unspecified which of the two is the result.

The exception Constraint_Error is raised by integer division, rem, and mod if the right operand is zero.
Similarly, for areal type T with TMachine_Overflows True, division by zero raises Constraint_Error.

NOTES
16 For positive A and B, A/B is the quotient and A rem B is the remainder when A is divided by B. The following
relations are satisfied by the rem operator:
A rem(-B) = AremB
(-A) rem B -(A remB)

17 For any signed integer K, the following identity holds:

AmdB = (A+ K'B) nod B
The relations between signed integer division, remainder, and modulus are illustrated by the following table:
A B AB AremB Anod B A B AB AremB AnodB
10 5 2 0 0 -10 5 -2 0 0
11 5 2 1 1 -11 5 -2 -1 4
12 5 2 2 2 -12 5 -2 -2 3
13 5 2 3 3 -13 5 -2 -3 2
14 5 2 4 4 -14 5 -2 -4 1
A B AB AremB Anod B A B AB AremB AnodB
10 -5 -2 0 0 -10 -5 2 0 0
11 -5 -2 1 -4 -11 -5 2 -1 -1
12 -5 -2 2 -3 -12 -5 2 -2 -2
13 -5 -2 3 -2 -13 -5 2 -3 -3
14 -5 -2 4 -1 -14 -5 2 -4 -4
Examples
Examples of expressions involving multiplying operators:
I : Integer := 1,
J : Integer := 2;
K : Integer := 3;
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X : Real :=1.0; --  see357

Y : Real := 2.0;

F : Fraction := 0.25; --  se359

G: Fraction := 0.5;

Expression Value Result Type

1*J 2 sameas| and J, that is, Integer

K/J 1 same asK and J, that is, Integer

K mod J 1 same asK and J, that is, Integer

XIY 0.5 sameas X and Y, that is, Real

F/2 0.125 same asF, that is, Fraction

3*F 0.75 sameasF, that is, Fraction

0.75*G 0.375 universal_fixed, implicitly convertible
to any fixed point type

Fraction(F*G) 0.125 Fraction, as stated by the conversion

Real(J)*Y 4.0 Real, the type of both operands after

conversion of J

4.5.6 Highest Precedence Operators

Static Semantics

The highest precedence unary operator abs (absolute value) is predefined for every specific numeric type
T, with the following specification:

function "abs"(Right : T) return T

The highest precedence unary operator not (logical negation) is predefined for every boolean type T, every
modular type T, and for every one-dimensional array type T whose components are of a boolean type, with
the following specification:

function "not"(Right : T) return T

The result of the operator not for a modular type is defined as the difference between the high bound of
the base range of the type and the value of the operand. For a binary modulus, this corresponds to a bit-
wise complement of the binary representation of the value of the operand.

The operator not that applies to a one-dimensional array of boolean components yields a one-dimensional
boolean array with the same bounds; each component of the result is obtained by logical negation of the
corresponding component of the operand (that is, the component that has the same index value). A check
is made that each component of the result belongs to the component subtype; the exception
Constraint_Error israised if this check fails.

The highest precedence exponentiation operator ** is predefined for every specific integer type T with the
following specification:

function "**"(Left : T, Right : Natural) return T
Exponentiation is also predefined for every specific floating point type as well as root_real, with the
following specification (where T isroot_real or the floating point type):

function "**"(Left : T, Right : Integer'Base) return T
The right operand of an exponentiation is the exponent. The expression X**N with the value of the
exponent N positive is equivalent to the expression X*X*...X (with N—1 multiplications) except that the
multiplications are associated in an arbitrary order. With N equal to zero, the result is one. With the value
of N negative (only defined for a floating point operand), the result is the reciproca of the result using the
absolute value of N as the exponent.
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Implementation Permissions

The implementation of exponentiation for the case of a negative exponent is alowed to raise
Congtraint_Error if the intermediate result of the repeated multiplications is outside the safe range of the
type, even though the fina result (after taking the reciprocal) would not be. (The best machine
approximation to the final result in this case would generally be 0.0.)

NOTES
18 Asimplied by the specification given above for exponentiation of an integer type, a check is made that the exponent is
not negative. Constraint_Error israised if this check fails.

4.6 Type Conversions

Explicit type conversions, both value conversions and view conversions, are alowed between closely
related types as defined below. This clause aso defines rules for value and view conversions to a
particular subtype of atype, both explicit ones and those implicit in other constructs.

Syntax
type_conversion ::=
subtype_mark(expression)
| subtype_mark(name)

The target subtype of atype_conversion is the subtype denoted by the subtype_mark. The operand of a
type_conversion isthe expression or name within the parentheses; its typeis the operand type.

One type is convertible to a second type if a type_conversion with the first type as operand type and the
second type as target type is legal according to the rules of this clause. Two types are convertible if each is
convertible to the other.

A type_conversion whose operand is the name of an object is called a view conversion if both its target
type and operand type are tagged, or if it appearsin a call as an actual parameter of mode out or in out;
other type_conversions are called value conversions.

Name Resolution Rules

The operand of atype_conversion is expected to be of any type.

The operand of a view conversion is interpreted only as a name; the operand of a value conversion is
interpreted as an expression.

Legality Rules
In aview conversion for an untagged type, the target type shall be convertible (back) to the operand type.

Paragraphs 9 through 20 were reorganized and moved below.

If there is atype that is an ancestor of both the target type and the operand type, or both types are class-
wide types, then at least one of the following rules shall apply:

» Thetarget type shall be untagged; or
« The operand type shall be covered by or descended from the target type; or
* The operand type shall be a class-wide type that covers the target type; or

« The operand and target types shall both be class-wide types and the specific type associated with
at least one of them shall be an interface type.
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If there is no type that is the ancestor of both the target type and the operand type, and they are not both 2412
class-wide types, one of the following rules shall apply:

o |f thetarget type is a numeric type, then the operand type shall be a numeric type. 24.1/2
« |f thetarget typeisan array type, then the operand type shall be an array type. Further: 24.212
The types shall have the same dimensionality; 24.32
Corresponding index types shall be convertible; 24.412
The component subtypes shall statically match; 24.5/2
If the component types are anonymous access types, then the accessibility level of the 24.6/2
operand type shall not be statically deeper than that of the target type;
Neither the target type nor the operand type shall be limited; 24712
If the target type of a view conversion has aliased components, then so shall the operand 24.8/2
type; and
The operand type of a view conversion shal not have a tagged, private, or volatile 24.9/2
subcomponent.
e |f thetarget typeisuniversal_access, then the operand type shall be an access type. 24.10/2
e |f the target type is a general access-to-object type, then the operand type shall be universal_- 24.11/2
access or an access-to-object type. Further, if the operand type is not universal_access:
If the target type is an access-to-variable type, then the operand type shall be an access-to- 24.12/2
variable type;
If the target designated type is tagged, then the operand designated type shall be convertible 24.13/2
to the target designated type;
If the target designated type is not tagged, then the designated types shall be the same, and 24.1412
either:
the designated subtypes shall statically match; or 24.15/2
the designated type shall be discriminated in its full view and unconstrained in any 24.16/2

partial view, and one of the designated subtypes shall be unconstrained;

The accessibility level of the operand type shall not be statically deeper than that of the 241712
target type. In addition to the places where Legality Rules normally apply (see 12.3), this
rule applies also in the private part of an instance of a generic unit.

e |If the target type is a pool-specific access-to-object type, then the operand type shall be 24.18/12
universal_access.
« |f the target type is an access-to-subprogram type, then the operand type shall be universal_- 24.19/2
access or an access-to-subprogram type. Further, if the operand type is not universal_access:
The designated profiles shall be subtype-conformant. 24.20/2
The accessibility level of the operand type shall not be statically deeper than that of the 242172

target type. In addition to the places where Legality Rules normally apply (see 12.3), this

rule applies also in the private part of an instance of a generic unit. If the operand type is

declared within a generic body, the target type shall be declared within the generic body.
Static Semantics

A type_conversion that is a value conversion denotes the value that is the result of converting thevalueof 25
the operand to the target subtype.
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A type_conversion that is a view conversion denotes a view of the object denoted by the operand. This
view is a variable of the target type if the operand denotes a variable; otherwise it is a constant of the
target type.

The nominal subtype of atype_conversion isits target subtype.

Dynamic Semantics
For the evaluation of atype_conversion that is a value conversion, the operand is evaluated, and then the
value of the operand is converted to a corresponding value of the target type, if any. If there is no value of
the target type that corresponds to the operand value, Constraint_Error is raised; this can only happen on
conversion to a modular type, and only when the operand value is outside the base range of the modular
type. Additiona rules follow:

e Numeric Type Conversion

If the target and the operand types are both integer types, then the result is the value of the
target type that corresponds to the same mathematical integer as the operand.

If the target type is a decimal fixed point type, then the result is truncated (toward 0) if the
value of the operand is not a multiple of the small of the target type.

If the target type is some other real type, then the result is within the accuracy of the target
type (see G.2, “Numeric Performance Requirements’, for implementations that support the
Numerics Annex).

If the target type is an integer type and the operand type is real, the result is rounded to the
nearest integer (away from zero if exactly halfway between two integers).

e Enumeration Type Conversion

The result is the value of the target type with the same position number as that of the
operand value.

e Array Type Conversion

If the target subtype is a constrained array subtype, then a check is made that the length of
each dimension of the value of the operand equals the length of the corresponding
dimension of the target subtype. The bounds of the result are those of the target subtype.

If the target subtype is an unconstrained array subtype, then the bounds of the result are
obtained by converting each bound of the value of the operand to the corresponding index
type of the target type. For each nonnull index range, a check is made that the bounds of the
range belong to the corresponding index subtype.

In either array case, the value of each component of the result is that of the matching
component of the operand value (see 4.5.2).

If the component types of the array types are anonymous access types, then a check is made
that the accessibility level of the operand typeis not deeper than that of the target type.

» Composite (Non-Array) Type Conversion

The value of each nondiscriminant component of the result is that of the matching
component of the operand value.

The tag of the result is that of the operand. If the operand type is class-wide, a check is
made that the tag of the operand identifies a (specific) type that is covered by or descended
from the target type.

For each discriminant of the target type that corresponds to a discriminant of the operand
type, its value is that of the corresponding discriminant of the operand vaue; if it
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corresponds to more than one discriminant of the operand type, a check is made that all
these discriminants are equal in the operand value.

« For each discriminant of the target type that corresponds to a discriminant that is specified
by the derived_type_definition for some ancestor of the operand type (or if class-wide,
some ancestor of the specific type identified by the tag of the operand), its value in the
result isthat specified by the derived_type_definition.

« For each discriminant of the operand type that corresponds to a discriminant that is
specified by the derived_type_definition for some ancestor of the target type, a check is
made that in the operand value it equal s the value specified for it.

« For each discriminant of the result, a check is made that its value belongs to its subtype.
Access Type Conversion

« For an access-to-object type, a check is made that the accessibility level of the operand type
is not deeper than that of the target type.

« |If the operand value is null, the result of the conversion is the null value of the target type.

« |If the operand value is not null, then the result designates the same object (or subprogram)
as is designated by the operand value, but viewed as being of the target designated subtype
(or profile); any checks associated with evaluating a conversion to the target designated
subtype are performed.

valueisnot null.

For the evaluation of a view conversion, the operand name is evaluated, and a new view of the object
denoted by the operand is created, whose type is the target type; if the target type is composite, checks are

performed as above for a value conversion.

The properties of this new view are asfollows:

If an Accessibility_Check fails, Program_Error is raised. Any other check associated with a conversion

If the target type is composite, the bounds or discriminants (if any) of the view are as defined
above for avalue conversion; each nondiscriminant component of the view denotes the matching
component of the operand object; the subtype of the view is constrained if either the target
subtype or the operand object is constrained, or if the target subtype is indefinite, or if the
operand type is a descendant of the target type and has discriminants that were not inherited
from the target type;

If the target type is tagged, then an assignment to the view assigns to the corresponding part of
the object denoted by the operand; otherwise, an assignment to the view assigns to the object,
after converting the assigned value to the subtype of the object (which might raise
Constraint_Error);

Reading the value of the view yields the result of converting the value of the operand object to
the target subtype (which might raise Constraint_Error), except if the object is of an access type
and the view conversion is passed as an out parameter; in this latter case, the value of the
operand object is used to initialize the formal parameter without checking against any constraint
of the target subtype (see 6.4.1).

raises Constraint_Error if it fails.

Conversion to atype is the same as conversion to an unconstrained subtype of the type.
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NOTES

19 In addition to explicit type_conversions, type conversions are performed implicitly in situations where the expected
type and the actual type of a construct differ, asis permitted by the type resolution rules (see 8.6). For example, an integer
literal is of the type universal_integer, and isimplicitly converted when assigned to atarget of some specific integer type.
Similarly, an actual parameter of a specific tagged type is implicitly converted when the corresponding formal parameter
is of aclass-wide type.

Even when the expected and actua types are the same, implicit subtype conversions are performed to adjust the array
bounds (if any) of an operand to match the desired target subtype, or to raise Constraint_Error if the (possibly adjusted)
value does not satisfy the constraints of the target subtype.

20 A ramification of the overload resolution rules is that the operand of an (explicit) type_conversion cannot be an
allocator, an aggregate, a string_literal, a character_literal, or an attribute_reference for an Access or Unchecked_Access
attribute. Similarly, such an expression enclosed by parentheses is not alowed. A qualified_expression (see 4.7) can be
used instead of such atype_conversion.

21 The constraint of the target subtype has no effect for a type_conversion of an elementary type passed as an out
parameter. Hence, it is recommended that the first subtype be specified as the target to minimize confusion (a similar
recommendation applies to renaming and generic formal in out objects).

Examples

Examples of numeric type conversion:

Real (2*J) -- valueis converted to floating point

I nteger(1.6) -- valueis?2

Integer(-0.4) -- valueisO
Example of conversion between derived types:

type A Formis new B_Form

X : A Form

Y : B_Form

X := AForm(Y);

Y := B_Form(X); -- thereverseconversion

Examples of conversions between array types:

type Sequence is array (lnteger range <>) of Integer;
subtype Dozen is Sequence(1l .. 12);
Ledger : array(1 .. 100) of Integer;

Sequence( Ledger) -- bounds are those of Ledger
Sequence(Ledger (31 .. 42)) -- boundsare31and 42
Dozen(Ledger (31 .. 42)) -- bounds are those of Dozen

4.7 Qualified Expressions

A qualified_expression is used to state explicitly the type, and to verify the subtype, of an operand that is

either an expression or an aggregate.

Syntax
qualified_expression ::=
subtype_mark'(expression) | subtype_mark'aggregate

Name Resolution Rules

The operand (the expression or aggregate) shall resolve to be of the type determined by the subtype_-

mark, or auniversal type that coversit.
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Dynamic Semantics
The evaluation of a qualified_expression evaluates the operand (and if of a universal type, converts it to
the type determined by the subtype_mark) and checks that its value belongs to the subtype denoted by the
subtype_mark. The exception Constraint_Error israised if this check fails.
NOTES
22 When a given context does not uniquely identify an expected type, a qualified_expression can be used to do so. In

particular, if an overloaded name or aggregate is passed to an overloaded subprogram, it might be necessary to qualify
the operand to resolve its type.

Examples
Examples of disambiguating expressions using qualification:

type Mask is (Fix, Dec, Exp, Signif);
type Code is (Fix, Oda, Dec, Tnz, Sub);

Print (Mask'(Dec)); -- Decisof type Mask

Print (Code' (Dec)); -- DecisoftypeCode

for J in Code' (Fix) .. Code' (Dec) loop ... --qualification needed for either Fix or Dec
for J in Code range Fix .. Dec loop ... -- qualification unnecessary

for J in Code' (Fix) .. Dec loop ... -- qualification unnecessary for Dec

Dozen' (1| 3| 5| 7 => 2, others => 0) --seed6

4.8 Allocators

The evaluation of an allocator creates an object and yields an access value that designates the object.

Syntax

allocator ::=
new subtype_indication | new qualified_expression

Name Resolution Rules

The expected type for an allocator shall be a single access-to-object type with designated type D such that
either D covers the type determined by the subtype_mark of the subtype_indication or qualified_-
expression, or the expected type is anonymous and the determined type is D'Class.

Legality Rules
Aninitialized allocator is an allocator with a qualified_expression. An uninitialized allocator is one with a
subtype_indication. In the subtype_indication of an uninitialized allocator, a constraint is permitted only
if the subtype_mark denotes an unconstrained composite subtype; if there is no constraint, then the
subtype_mark shall denote a definite subtype.

If the type of the allocator is an access-to-constant type, the allocator shall be an initialized allocator.

If the designated type of the type of the allocator is class-wide, the accessibility level of the type
determined by the subtype_indication or qualified_expression shall not be statically deeper than that of
the type of the allocator.

If the designated subtype of the type of the allocator has one or more unconstrained access discriminants,
then the accessibility level of the anonymous access type of each access discriminant, as determined by the
subtype_indication or qualified_expression of the allocator, shall not be statically deeper than that of the
type of the allocator (see 3.10.2).

117 10 November 2006 Qualified Expressions 4.7

10

3/1

5/2

5.1/2

5.212



5.3/2

6/2

72

9/2

10/2

10.1/2

10.2/2

10.3/2

11

11.1/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

An allocator shall not be of an access type for which the Storage Size has been specified by a static
expression with value zero or is defined by the language to be zero. In addition to the places where
Legality Rules normally apply (see 12.3), this rule applies also in the private part of an instance of a
generic unit. This rule does not apply in the body of a generic unit or within a body declared within the
declarative region of a generic unit, if the type of the allocator is a descendant of a formal access type
declared within the formal part of the generic unit.

Satic Semantics

If the designated type of the type of the allocator is elementary, then the subtype of the created object is
the designated subtype. If the designated type is composite, then the subtype of the created object is the
designated subtype when the designated subtype is constrained or there is a partia view of the designated
type that is constrained; otherwise, the created object is constrained by its initial value (even if the
designated subtype is unconstrained with defaults).

Dynamic Semantics
For the evaluation of an initialized allocator, the evaluation of the qualified_expression is performed first.
An object of the designated type is created and the value of the qualified_expression is converted to the
designated subtype and assigned to the object.

For the evaluation of an uninitialized allocator, the elaboration of the subtype_indication is performed
first. Then:

« If the designated type is elementary, an object of the designated subtype is created and any
implicit initial value is assigned;

« |f the designated type is composite, an object of the designated type is created with tag, if any,
determined by the subtype_mark of the subtype_indication. This object is then initialized by
default (see 3.3.1) using the subtype_indication to determine its nominal subtype. A check is
made that the value of the object belongs to the designated subtype. Constraint_Error is raised if
this check fails. This check and the initialization of the object are performed in an arbitrary
order.

For any allocator, if the designated type of the type of the allocator is class-wide, then a check is made
that the accessibility level of the type determined by the subtype_indication, or by the tag of the value of
the qualified_expression, is not deeper than that of the type of the allocator. If the designated subtype of
the allocator has one or more unconstrained access discriminants, then a check is made that the
accessibility level of the anonymous access type of each access discriminant is not deeper than that of the
type of the allocator. Program_Error israised if either such check fails.

If the object to be created by an allocator has a controlled or protected part, and the finalization of the
collection of the type of the allocator (see 7.6.1) has started, Program_Error is raised.

If the object to be created by an allocator contains any tasks, and the master of the type of the allocator is
completed, and all of the dependent tasks of the master are terminated (see 9.3), then Program_Error is
raised.

If the created object contains any tasks, they are activated (see 9.2). Finally, an access value that
designates the created object is returned.

Bounded (Run-Time) Errors

It is a bounded error if the finalization of the collection of the type (see 7.6.1) of the allocator has started.
If the error is detected, Program_Error israised. Otherwise, the allocation proceeds normally.
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NOTES
23 Allocators cannot create objects of an abstract type. See 3.9.3.

24 If any part of the created object is controlled, the initialization includes calls on corresponding Initialize or Adjust
procedures. See 7.6.

25 As explained in 13.11, “Storage Management”, the storage for an object alocated by an allocator comes from a
storage pool (possibly user defined). The exception Storage Error is raised by an allocator if there is not enough storage.
Instances of Unchecked_Deallocation may be used to explicitly reclaim storage.

26 Implementations are permitted, but not required, to provide garbage collection (see 13.11.3).

Examples

Examples of allocators:
new Cel ' (0, null, null) -- initialized explicitly, see 3.10.1
new Cel |l' (Value => 0, Succ => null, Pred => null) --initialized explicitly
new Cel | -- not initialized
new Matrix(1 .. 10, 1 .. 20) -- the bounds only are given
new Matrix' (1 .. 10 => (1 .. 20 => 0.0)) -- initialized explicitly
new Buf f er (100) -- the discriminant only is given
new Buffer' (Size => 80, Pos => 0, Value => (1 .. 80 => "'A")) --initialized explicitly
Expr_Ptr' (new Literal) -- allocator for access-to-class-wide type, see 3.9.1
Expr_Ptr' (new Literal' (Expression with 3.5)) -- initialized explicitly

4.9 Static Expressions and Static Subtypes

Certain expressions of a scalar or string type are defined to be static. Similarly, certain discrete ranges are
defined to be static, and certain scalar and string subtypes are defined to be static subtypes. Satic means
determinable at compile time, using the declared properties or values of the program entities.

A static expression isa scalar or string expression that is one of the following:

119

anumeric_literal;
astring_literal of a static string subtype;
aname that denotes the declaration of a named number or a static constant;

a function_call whose function_name or function_prefix statically denotes a static function, and
whose actual parameters, if any (whether given explicitly or by default), are al static
expressions,

an attribute_reference that denotes a scalar value, and whose prefix denotes a static scalar
subtype;

an attribute_reference whose prefix statically denotes a statically constrained array object or
array subtype, and whose attribute_designator is First, Last, or Length, with an optional
dimension;

atype_conversion whose subtype_mark denotes a static scalar subtype, and whose operand is a
static expression;

a qualified_expression whose subtype_mark denotes a static (scalar or string) subtype, and
whose operand is a static expression;

a membership test whose simple_expression is a static expression, and whose range is a static
range or whose subtype_mark denotes a static (scalar or string) subtype;

a short-circuit control form both of whose relations are static expressions;

a static expression enclosed in parentheses.
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A name statically denotes an entity if it denotes the entity and:

« Itisadirect_name, expanded name, or character_literal, and it denotes a declaration other than
arenaming_declaration; or

« lItisanattribute_reference whose prefix statically denotes some entity; or
|t denotes arenaming_declaration with aname that statically denotes the renamed entity.
A static function is one of the following:

» a predefined operator whose parameter and result types are all scalar types none of which are
descendants of formal scalar types,

« apredefined concatenation operator whose result type is a string type;
e anenumeration litera;

« alanguage-defined attribute that is a function, if the prefix denotes a static scalar subtype, and if
the parameter and result types are scalar.

In any case, ageneric formal subprogram is not a static function.

A static constant is a constant view declared by a full constant declaration or an object_renaming_-
declaration with a static nominal subtype, having a value defined by a static scalar expression or by a
static string expression whose value has a length not exceeding the maximum length of a string_literal in
the implementation.

A dtatic range is a range whose bounds are static expressions, or a range_attribute_reference that is
equivalent to such arange. A static discrete_range is one that is a static range or is a subtype_indication
that defines a static scalar subtype. The base range of a scalar type is a static range, unless the type is a
descendant of aformal scalar type.

A static subtype is either a static scalar subtype or a static string subtype. A static scalar subtype is an
unconstrained scalar subtype whose type is not a descendant of a formal type, or a constrained scalar
subtype formed by imposing a compatible static constraint on a static scalar subtype. A static string
subtype is an unconstrained string subtype whose index subtype and component subtype are static, or a
constrained string subtype formed by imposing a compatible static constraint on a static string subtype. In
any case, the subtype of a generic formal object of mode in out, and the result subtype of a generic formal
function, are not static.

The different kinds of static constraint are defined as follows:
e A null constraint is always static;
e A scalar congtraint is static if it has no range_constraint, or one with a static range;

* An index congtraint is static if each discrete_range is static, and each index subtype of the
corresponding array typeis static;

e A discriminant constraint is static if each expression of the constraint is static, and the subtype
of each discriminant is static.

In any case, the constraint of the first subtype of a scalar formal typeis neither static nor null.

A subtype is statically constrained if it is constrained, and its constraint is static. An object is statically
constrained if itsnominal subtypeis statically constrained, or if it is a static string constant.
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Legality Rules
A static expression is evaluated at compile time except when it is part of the right operand of a static short- 33

circuit control form whose value is determined by its left operand. This evaluation is performed exactly,
without performing Overflow_Checks. For a static expression that is eval uated:

e The expression isillega if its evaluation fails a language-defined check other than Overflow_- 34
Check.
e |f the expression is not part of alarger static expression and the expression is expected to be of a 3502

single specific type, then its value shall be within the base range of its expected type. Otherwise,
the value may be arbitrarily large or small.

e |f the expression is of type universal_real and its expected type is a decimal fixed point type, 36/2
then its value shall be a multiple of the small of the decimal type. This restriction does not apply
if the expected type is a descendant of aformal scalar type (or a corresponding actual typein an
instance).

In addition to the places where Legality Rules normally apply (see 12.3), the above restrictions also apply 372
in the private part of an instance of a generic unit.

Implementation Requirements

For area static expression that is not part of alarger static expression, and whose expected typeisnot a 382
descendant of a formal type, the implementation shall round or truncate the value (according to the
Machine_Rounds attribute of the expected type) to the nearest machine number of the expected type; if the
value is exactly half-way between two machine numbers, the rounding performed is implementation-
defined. If the expected type is a descendant of a formal type, or if the static expression appears in the

body of an instance of a generic unit and the corresponding expression is nonstatic in the corresponding
generic body, then no special rounding or truncating is required — normal accuracy rules apply (see
Annex G).

Implementation Advice
For area static expression that is not part of alarger static expression, and whose expected typeisnot a 3s.1/2
descendant of aformal type, the rounding should be the same as the default rounding for the target system.

NOTES
27 An expression can be static even if it occursin a context where staticness is not required. 39

28 A dtatic (or run-time) type_conversion from areal type to an integer type performs rounding. If the operand valueis 40
exactly half-way between two integers, the rounding is performed away from zero.

Examples
Examples of static expressions: 41
1+ 1 -2 42
abs(-10)*3 --30
Kilo : constant := 1000; 43
Mega : constant := Kilo*Kil o; --1 000_000

Long : constant Fl oat' Di gi ts*2;

Hal f _Pi : constant := Pi/2; --see3.32 a4
Deg_To_Rad : constant := Half_Pi/90;
Rad_To_Deg : constant := 1.0/ Deg_To_Rad; --equivalentto 1.0/((3.14159 26536/2)/90)
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4.9.1 Statically Matching Constraints and Subtypes

Satic Semantics
A constraint statically matches another constraint if:

* both are null constraints;
» both are static and have equal corresponding bounds or discriminant values;

« both are nonstatic and result from the same elaboration of a constraint of a subtype_indication
or the same evaluation of arange of adiscrete_subtype_definition; or

¢ both are nonstatic and come from the same formal_type_declaration.

A subtype statically matches another subtype of the same type if they have statically matching constraints,
and, for access subtypes, either both or neither exclude null. Two anonymous access-to-object subtypes
statically match if their designated subtypes statically match, and either both or neither exclude null, and
either both or neither are access-to-constant. Two anonymous access-to-subprogram subtypes statically
match if their designated profiles are subtype conformant, and either both or neither exclude null.

Two ranges of the same type statically match if both result from the same evaluation of arange, or if both
are static and have equal corresponding bounds.

A constraint is statically compatible with a scalar subtype if it statically matches the constraint of the
subtype, or if both are static and the constraint is compatible with the subtype. A constraint is statically
compatible with an access or composite subtype if it statically matches the constraint of the subtype, or if
the subtype is unconstrained. One subtype is statically compatible with a second subtype if the constraint
of thefirst is statically compatible with the second subtype.
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Section 5: Statements

A statement defines an action to be performed upon its execution.

This section describes the general rules applicable to all statements. Some statements are discussed in
later sections: Procedure_call_statements and return statements are described in 6, “Subprograms’.
Entry_call_statements, requeue_statements, delay_statements, accept_statements, select_statements,
and abort_statements are described in 9, “Tasks and Synchronization”. Raise_statements are described
in 11, “Exceptions’, and code_statements in 13. The remaining forms of statements are presented in this
section.

5.1 Simple and Compound Statements - Sequences of Statements

A statement is either simple or compound. A simple_statement encloses no other statement. A
compound_statement can enclose simple_statements and other compound_statements.

Syntax
sequence_of_statements ::= statement { statement}

statement ::=
{label} simple_statement | {label} compound_statement

simple_statement ::= null_statement

| assignment_statement | exit_statement

| goto_statement | procedure_call_statement
| simple_return_statement | entry_call_statement

| requeue_statement | delay_statement

| abort_statement | raise_statement

| code_statement
compound_statement ::=

if_statement | case_statement
| loop_statement | block_statement
| extended_return_statement
| accept_statement | select_statement

null_statement ::= null;

label ::= <<label_statement_identifier>>

statement_identifier ::= direct_name

The direct_name of astatement_identifier shall be an identifier (not an operator_symbol).

Name Resolution Rules

The direct_name of a statement_identifier shall resolve to denote its corresponding implicit declaration
(see below).

Legality Rules
Digtinct identifiers shall be used for al statement_identifiers that appear in the same body, including inner
block_statements but excluding inner program units.
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Satic Semantics

For each statement_identifier, there is an implicit declaration (with the specified identifier) at the end of
the declarative_part of the innermost block_statement or body that encloses the statement_identifier. The
implicit declarations occur in the same order as the statement_identifiers occur in the source text. If a
usage name denotes such an implicit declaration, the entity it denotes is the label, loop_statement, or
block_statement with the given statement_identifier.

Dynamic Semantics
The execution of anull_statement has no effect.

A transfer of control is the run-time action of an exit_statement, return statement, goto_statement, or
requeue_statement, selection of a terminate_alternative, raising of an exception, or an abort, which
causes the next action performed to be one other than what would normally be expected from the other
rules of the language. As explained in 7.6.1, a transfer of control can cause the execution of constructs to
be completed and then left, which may trigger finalization.

The execution of a sequence_of_statements consists of the execution of the individual statements in
succession until the sequence_ is completed.
NOTES
1 A statement_identifier that appears immediately within the declarative region of a named loop_statement or an
accept_statement is neverthelessimplicitly declared immediately within the declarative region of the innermost enclosing
body or block_statement; in other words, the expanded name for a named statement is not affected by whether the

statement occurs inside or outside a named loop or an accept_statement — only nesting within block_statements is
relevant to the form of its expanded name.

Examples
Examples of labeled statements:
<<Here>> <<l ci>> <<Aqui >> <<H er>> nul | ;
<<After>> X := 1;

5.2 Assignment Statements

An assignment_statement replaces the current value of a variable with the result of evaluating an
expression.

Syntax
assignment_statement ::=
variable_name := expression;

The execution of an assignment_statement includes the evaluation of the expression and the assignment
of the value of the expression into the target. An assignment operation (as opposed to an assignment_-
statement) is performed in other contexts as well, including object initialization and by-copy parameter
passing. Thetarget of an assignment operation is the view of the object to which avalue is being assigned;
the target of an assignment_statement is the variable denoted by the variable_name.

Name Resolution Rules

The variable_name of an assignment_statement is expected to be of any type. The expected type for the
expression isthe type of the target.
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Legality Rules
The target denoted by the variable_name shall be a variable of a nonlimited type.

If the target is of atagged class-wide type T'Class, then the expression shall either be dynamically tagged,
or of type T and tag-indeterminate (see 3.9.2).

Dynamic Semantics
For the execution of an assignment_statement, the variable_name and the expression are first evaluated
in an arbitrary order.
When the type of the target is class-wide:

e |If the expression is tag-indeterminate (see 3.9.2), then the controlling tag value for the
expression isthe tag of the target;

« Otherwise (the expression is dynamically tagged), a check is made that the tag of the value of
the expression is the same as that of the target; if this check fails, Constraint_Error is raised.

The value of the expression is converted to the subtype of the target. The conversion might raise an
exception (see 4.6).

In cases involving controlled types, the target is finalized, and an anonymous object might be used as an
intermediate in the assignment, as described in 7.6.1, “Completion and Finalization”. In any case, the
converted value of the expression is then assigned to the target, which consists of the following two steps:
* Thevalue of the target becomes the converted value.
e |f any part of thetarget is controlled, its value is adjusted as explained in clause 7.6.

NOTES
2 Thetag of an object never changes; in particular, an assignment_statement does not change the tag of the target.

This paragraph was deleted.

Examples

Examples of assignment statements:

Val ue : = Max_Val ue - 1,

Shade : = Bl ue;

Next _Frane(F)(M N := 2.5; -- seedll

U := Dot _Product(V, W; -- see6.3

Witer := (Status => Open, Unit => Printer, Line_Count => 60); -- see38.1

Next _Car.all := (72074, null); -- see3101
Examples involving scalar subtype conversions:

I, J: Integer range 1 .. 10 := 5;

K : Integer range 1 .. 20 := 15;

I :=J; -- identical ranges

K :=J; -- compatibleranges

J := K -- will raise Constraint_Error if K> 10

Examples involving array subtype conversions:
A: String(l .. 31);
B: String(3 .. 33);

A := B; -- samenumber of components
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A(l .. 9) = "tar sauce";
A(4 .. 12) := A(1 .. 9); -- A(l..12) = "tartar sauce"
NOTES

3 Notes on the examples: Assignment_statements are alowed even in the case of overlapping slices of the same array,
because the variable_name and expression are both evaluated before copying the value into the variable. In the above
example, an implementation yielding A(1 .. 12) = "tartartartar" would be incorrect.

5.3 If Statements

An if_statement selects for execution at most one of the enclosed sequences_of_statements, depending
on the (truth) value of one or more corresponding conditions.

Syntax
if statement ::=
if condition then
sequence_of_statements
{esif condition then
sequence_of_statements}
[else
sequence_of_statements]
end if;
condition ::= boolean_expression

Name Resolution Rules

A condition is expected to be of any boolean type.

Dynamic Semantics
For the execution of an if_statement, the condition specified after if, and any conditions specified after
elsif, are evaluated in succession (treating afinal else as elsif True then), until one evaluates to True or al
conditions are evaluated and yield False. If a condition evaluates to True, then the corresponding
sequence_of_statements is executed; otherwise none of them is executed.

Examples
Examples of if statements:
if Month = Decenber and Day = 31 then

Month : = January;

Day =1,

Year = Year + 1;
end if;

i f Line_Too_Short then
rai se Layout_FError;
el sif Line_Full then
New_Li ne;
Put(ltem;
el se
Put(ltem;
end if;

if My_Car.Oaner.Vehicle /= My_Car then -- see3101
Report ("Incorrect data");
end if;
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5.4 Case Statements

A case_statement selects for execution one of a number of aternative sequences_of_statements; the
chosen alternative is defined by the value of an expression.

Syntax

case_statement ::=
case expression is
case_statement_alternative
{case_statement_alternative}
end case;
case_statement_alternative ::=
when discrete_choice_list =>
sequence_of_statements

Name Resolution Rules

The expression is expected to be of any discrete type. The expected type for each discrete_choice is the
type of the expression.

Legality Rules
The expressions and discrete_ranges given as discrete_choices of a case_statement shall be static. A
discrete_choice others, if present, shall appear alone and in the last discrete_choice_list.
The possible values of the expression shall be covered as follows:

¢ |f the expression is aname (including atype_conversion or afunction_call) having a static and
constrained nominal subtype, or is a qualified_expression whose subtype_mark denotes a static
and constrained scalar subtype, then each non-other s discrete_choice shall cover only valuesin
that subtype, and each value of that subtype shall be covered by some discrete_choice (either
explicitly or by others).

« If the type of the expression is root_integer, universal_integer, or a descendant of a formal
scalar type, then the case_statement shall have an other sdiscrete_choice.

¢ Otherwise, each value of the base range of the type of the expression shall be covered (either
explicitly or by others).

Two distinct discrete_choices of acase_statement shall not cover the same value.

Dynamic Semantics
For the execution of acase_statement the expression isfirst evaluated.

If the value of the expression is covered by the discrete_choice_list of some case_statement_-
alternative, then the sequence_of_statements of the _alternative is executed.

Otherwise (the value is not covered by any discrete_choice_list, perhaps due to being outside the base
range), Constraint_Error is raised.

NOTES
4 The execution of a case_statement chooses one and only one aternative. Qualification of the expression of a
case_statement by a static subtype can often be used to limit the number of choices that need be given explicitly.
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Examples
Examples of case statements:

case Sensor is
when El evation => Record_El evati on(Sensor _Val ue) ;

when Azi nut h => Record_Azimuth (Sensor_Val ue);
when Di stance => Record_Di stance (Sensor_Val ue);
when ot hers => null;
end case;
case Today is
when Mon => Conpute_lnitial_Bal ance;
when Fri => Conput e_C osi ng_Bal ance;
when Tue .. Thu=> Cenerate_Report(Today);
when Sat .. Sun=> null;
end case;
case Bin_Nunmber(Count) is
when 1 => Update_Bin(1);
when 2 => Update_Bin(2);
when 3 | 4=>
Enpty_Bin(1);
Empty_Bin(2);
when ot hers => raise Error;
end case;

5.5 Loop Statements

A loop_statement includes a sequence_of_statements that is to be executed repeatedly, zero or more
times.

Syntax
loop_statement ::=
[loop_statement_identifier:]
[iteration_scheme] loop
sequence_of_statements
end loop [loop_identifier];
iteration_scheme ::= while condition
| for loop_parameter_specification
loop_parameter_specification ::=
defining_identifier in [rever se] discrete_subtype_definition
If aloop_statement has aloop_statement_identifier, then the identifier shall be repeated after the
end loop; otherwise, there shall not be an identifier after the end loop.

Satic Semantics

A loop_parameter_specification declares a loop parameter, which is an object whose subtype is that
defined by the discrete_subtype_definition.

Dynamic Semantics
For the execution of aloop_statement, the sequence_of_statements is executed repeatedly, zero or more

times, until the loop_statement is complete. The loop_statement is complete when a transfer of control
occurs that transfers control out of the loop, or, in the case of an iteration_scheme, as specified below.

For the execution of a loop_statement with a while iteration_scheme, the condition is evaluated before
each execution of the sequence_of_statements; if the value of the condition is True, the sequence_of_-
statements is executed; if False, the execution of the loop_statement is complete.
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For the execution of aloop_statement with afor iteration_scheme, the loop_parameter_specification is
first elaborated. This elaboration creates the loop parameter and elaborates the discrete_subtype_-
definition. If the discrete_subtype_definition defines a subtype with a null range, the execution of the
loop_statement is complete. Otherwise, the sequence_of_statements is executed once for each value of
the discrete subtype defined by the discrete_subtype_definition (or until the loop is left as a consequence

of atransfer of control). Prior to each such iteration, the corresponding value of the discrete subtype is

assigned to the loop parameter. These values are assigned in increasing order unless the reserved word

reverseis present, in which case the values are assigned in decreasing order.

NOTES

5 A loop parameter is a constant; it cannot be updated within the sequence_of_statements of the loop (see 3.3).

6 An object_declaration should not be given for aloop parameter, since the loop parameter is automatically declared by

the loop_parameter_specification. The scope of a loop parameter extends from the loop_parameter_specification to the
end of the loop_statement, and the visibility rules are such that a loop parameter is only visible within the

sequence_of_statements of the loop.

7 The discrete_subtype_definition of a for loop is elaborated just once. Use of the reserved word rever se does not alter
the discrete subtype defined, so that the following iteration_schemes are not equivalent; the first has anull range.

for Jinreversel .. 0
for JinoO .. 1

Examples
Example of a loop statement without an iteration scheme:
| oop
Get (Current _Character);
exit when Current_Character = '*';
end | oop;

Example of a loop statement with a while iteration scheme:

while Bid(N).Price < Cut_Of.Price |oop
Record_Bi d(Bi d(N). Price);
N:= N+ 1;

end | oop;

Example of a loop statement with a for iteration scheme:

for J in Buffer'Range | oop - - works even with a null range
if Buffer(J) /= Space then
Put (Buffer(J));
end if;
end | oop;

Example of a loop statement with a name:

Sumrat i on:
whil e Next /= Head | oop -- s2e3.10.1
Sum := Sum + Next. Val ue;
Next := Next. Succ;

end | oop Summati on;

129 10 November 2006

Loop Statements 5.5

10

11

12

13

14

15

16

17

18

19

20

21



ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

5.6 Block Statements

A Dblock_statement encloses a handled_sequence_of statements optionaly preceded by a
declarative_part.

Syntax
block statement ::=
[block_statement_identifier:]
[declare
declarative_part]
begin
handled_sequence_of statements
end [block_identifier];

If ablock_statement has ablock_statement_identifier, then the identifier shall be repeated after the
end; otherwise, there shall not be an identifier after the end.
Satic Semantics
A block_statement that has no explicit declarative_part has an implicit empty declarative_part.

Dynamic Semantics

The execution of a block_statement consists of the elaboration of its declarative_part followed by the
execution of its handled_sequence_of_statements.

Examples
Example of a block statement with a local variable:
Swap:

decl are

Tenp : Integer;
begi n

Tenmp :=V; V:=U U:= Tenp;
end Swap;

5.7 Exit Statements

An exit_statement is used to complete the execution of an enclosing loop_statement; the completion is
conditional if the exit_statement includes a condition.

Syntax
exit_statement ::=
exit [loop_name] [when condition];

Name Resolution Rules
Theloop_name, if any, in an exit_statement shall resolve to denote aloop_statement.

Legality Rules
Each exit_statement applies to a loop_statement; this is the loop_statement being exited. An exit_-
statement with a name is only allowed within the loop_statement denoted by the name, and applies to
that loop_statement. An exit_statement without a name is only allowed within a loop_statement, and
applies to the innermost enclosing one. An exit_statement that appliesto a given loop_statement shall not
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appear within a body or accept_statement, if this construct is itself enclosed by the given
loop_statement.

Dynamic Semantics
For the execution of an exit_statement, the condition, if present, is first evaluated. If the value of the
condition is True, or if there is no condition, atransfer of control is done to complete the loop_statement.
If the value of the condition is False, no transfer of control takes place.

NOTES
8 Severa nested loops can be exited by an exit_statement that names the outer loop.

Examples
Examples of loops with exit statements:

for Nin 1 .. Max_Numltens |oop
Get _New_ | ten(New_ I temn);
Merge_ItemNew Item Storage File);
exit when New_ Item = Terminal _Item

end | oop;
Mai n_Cycl e:
| oop

- - initial statements
exit Main_Cycle when Found;
- - final statements

end | oop Main_Cycle;

5.8 Goto Statements

A goto_statement specifies an explicit transfer of control from this statement to a target statement with a
given label.

Syntax
goto_statement ::= goto label_name;

Name Resolution Rules

The label_name shall resolve to denote a label; the statement with that label is the target statement.

Legality Rules
The innermost sequence_of_statements that encloses the target statement shall also enclose the
goto_statement. Furthermore, if a goto_statement is enclosed by an accept_statement or a body, then
the target statement shall not be outside this enclosing construct.

Dynamic Semantics
The execution of a goto_statement transfers control to the target statement, completing the execution of
any compound_statement that encloses the goto_statement but does not enclose the target.

NOTES

9 The above rules allow transfer of control to a statement of an enclosing sequence_of_statements but not the reverse.
Similarly, they prohibit transfers of control such as between aternatives of a case_statement, if_statement, or
select_statement; between exception_handlers; or from an exception_handler of a handled_sequence_of statements
back to its sequence_of_statements.
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Examples
Example of a loop containing a goto statement:

<<Sort >>
for I in1l.. N1 1oop
if A(l) > A(l1+1) then
Exchange(A(l), A(lI+1));
goto Sort;
end if;
end | oop;

5.8 Goto Statements
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Section 6: Subprograms

A subprogram is a program unit or intrinsic operation whose execution is invoked by a subprogram call. 1
There are two forms of subprogram: procedures and functions. A procedure call is a statement; afunction

cal is an expression and returns a value. The definition of a subprogram can be given in two parts. a
subprogram declaration defining its interface, and a subprogram_body defining its execution. Operators

and enumeration literals are functions.

A callable entity is a subprogram or entry (see Section 9). A callable entity isinvoked by acall; thatis,a 2
subprogram call or entry call. A callable construct is a construct that defines the action of a call upon a
callable entity: asubprogram_body, entry_body, or accept_statement.

6.1 Subprogram Declarations

A subprogram_declaration declares a procedure or function. 1

Syntax

subprogram_declaration ::= 2/2

[overriding_indicator]

subprogram_specification;
This paragraph was del eted. 3/2
subprogram_specification ::= 42

procedure_specification

| function_specification

procedure_specification ::= procedur e defining_program_unit_name parameter_profile 4112
function_specification ::= function defining_designator parameter_and_result_profile 4.212
designator ::= [parent_unit_name . ]identifier | operator_symbol 5
defining_designator ::= defining_program_unit_name | defining_operator_symbol 6
defining_program_unit_name ::= [parent_unit_name . ]defining_identifier 7
The optional parent_unit_name isonly allowed for library units (see 10.1.1). 8
operator_symbol ::= string_literal 9
The sequence of charactersin an operator_symbol shall form areserved word, a delimiter, or 1072

compound delimiter that corresponds to an operator belonging to one of the six categories of
operators defined in clause 4.5.

defining_operator_symbol ::= operator_symbol 11
parameter_profile ::= [formal_part] 12
parameter_and_result_profile ::= 13/2

[formal_part] return [null_exclusion] subtype_mark
| [formal_part] return access_definition

formal_part ::= 14
(parameter_specification {; parameter_specification})

parameter_specification ::= 15/2
defining_identifier_list : mode [null_exclusion] subtype_mark [:= default_expression]
| defining_identifier_list : access_definition [:= default_expression]

mode ::=[in] | in out | out 16

133 10 November 2006 Subprograms 6



17

18

19

20/2

21

22

23/2

24/2

25

26

2712

27.1/2

28/2

28.1/2

28.2/2

29

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Name Resolution Rules
A formal parameter is an object directly visible within a subprogram_body that represents the actual
parameter passed to the subprogram in a cal; it is declared by a parameter_specification. For a formal
parameter, the expected type for its default_expression, if any, isthat of the formal parameter.

Legality Rules
The parameter mode of a formal parameter conveys the direction of information transfer with the actua
parameter: in, in out, or out. Mode in is the default, and is the mode of a parameter defined by an
access_definition. The formal parameters of afunction, if any, shall have the modein.

A default_expression isonly allowed in a parameter_specification for aformal parameter of modein.

A subprogram_declaration or a generic_subprogram_declaration requires a completion: a body, a
renaming_declaration (see 8.5), or a pragma Import (see B.1). A completion is not allowed for an
abstract_subprogram_declaration (see 3.9.3) or anull_procedure_declaration (see 6.7).

A name that denotes aformal parameter is not allowed within the formal_part in which it is declared, nor
within the formal_part of a corresponding body or accept_statement.

Static Semantics
The profile of (aview of) a callable entity is either a parameter_profile or parameter_and_result_profile;
it embodies information about the interface to that entity — for example, the profile includes information
about parameters passed to the callable entity. All callable entities have a profile — enumeration literals,
other subprograms, and entries. An access-to-subprogram type has a designated profile. Associated with a
profileis acalling convention. A subprogram_declaration declares a procedure or afunction, as indicated
by the initial reserved word, with name and profile as given by its specification.

The nominal subtype of aformal parameter is the subtype determined by the optional null_exclusion and
the subtype_mark, or defined by the access_definition, in the parameter_specification. The nominal
subtype of a function result is the subtype determined by the optional null_exclusion and the
subtype_mark, or defined by the access_definition, in the parameter_and_result_profile.

An access parameter isaformal in parameter specified by an access_definition. An accessresult typeisa
function result type specified by an access_definition. An access parameter or result type is of an
anonymous access type (see 3.10). Access parameters of an access-to-object type allow dispatching calls
to be controlled by access values. Access parameters of an access-to-subprogram type permit calls to
subprograms passed as parameters irrespective of their accessibility level.

The subtypes of a profile are:
« For any non-access parameters, the nominal subtype of the parameter.

« For any access parameters of an access-to-object type, the designated subtype of the parameter
type.

« For any access parameters of an access-to-subprogram type, the subtypes of the profile of the
parameter type.

« For any non-access result, the nominal subtype of the function result.
« For any access result type of an access-to-object type, the designated subtype of the result type.

» For any access result type of an access-to-subprogram type, the subtypes of the profile of the
result type.

The types of a profile are the types of those subtypes.
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A subprogram declared by an abstract_subprogram_declaration is abstract; a subprogram declared by a
subprogram_declaration is not. See 3.9.3, “Abstract Types and Subprograms’. Similarly, a procedure
defined by a null_procedure_declaration is a null procedure; a procedure declared by a
subprogram_declaration is not. See 6.7, “Null Procedures’.

An overriding_indicator is used to indicate whether overriding is intended. See 8.3.1, “Overriding
Indicators’.

Dynamic Semantics
The elaboration of asubprogram_declaration has no effect.

NOTES
1 A parameter_specification with several identifiers is equivalent to a sequence of single parameter_specifications, as
explainedin 3.3.

2 Abstract subprograms do not have bodies, and cannot be used in a nondispatching call (see 3.9.3, “Abstract Types and
Subprograms’).

3 The evaluation of default_expressions is caused by certain calls, as described in 6.4.1. They are not evaluated during
the elaboration of the subprogram declaration.

4 Subprograms can be called recursively and can be called concurrently from multiple tasks.

Examples
Examples of subprogram declarations:

procedure Traverse_Tree;
procedure Increment (X : in out Integer);
procedure Right_Indent(Margin : out Line_Size); -- see3b54
procedure Switch(From To : in out Link); -- see310.1
functi on Random return Probability; -- see3b57
function Mn_Cell (X : Link) return Cell; -- see310.1
function Next_Frame(K : Positive) return Franeg; -- see3.10
function Dot_Product(Left, Right : Vector) return Real; -- see3.6
function "*"(Left, Right : Mtrix) return Matrix; -- see3b

Examples of in parameters with default expressions:

procedure Print_Header(Pages : in Natural;
Header : in Line = (1 .. Line'Last =>"' "); -- see36
Center : in Boolean := True);

6.2 Formal Parameter Modes

A parameter_specification declares aformal parameter of modein, in out, or out.

Satic Semantics

A parameter is passed either by copy or by reference. When a parameter is passed by copy, the formal
parameter denotes a separate object from the actual parameter, and any information transfer between the
two occurs only before and after executing the subprogram. When a parameter is passed by reference, the
formal parameter denotes (a view of) the object denoted by the actual parameter; reads and updates of the
formal parameter directly reference the actual parameter object.

A typeisaby-copy typeif it isan elementary type, or if it is adescendant of a private type whose full type
isaby-copy type. A parameter of a by-copy typeis passed by copy.
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A typeisaby-reference typeif it is a descendant of one of the following:
* atagged type;
» atask or protected type;
« anonprivate type with the reserved word limited in its declaration;
« acomposite type with a subcomponent of a by-reference type;
« aprivate type whose full typeis a by-reference type.

A parameter of a by-reference type is passed by reference. Each value of a by-reference type has an
associated object. For a parenthesized expression, qualified_expression, or type_conversion, this object is
the one associated with the operand.

For parameters of other types, it is unspecified whether the parameter is passed by copy or by reference.

Bounded (Run-Time) Errors

If one name denotes a part of a formal parameter, and a second name denotes a part of a distinct formal
parameter or an object that is not part of aformal parameter, then the two names are considered distinct
access paths. If an object is of a type for which the parameter passing mechanism is not specified, then it
is a bounded error to assign to the object via one access path, and then read the value of the object via a
distinct access path, unless the first access path denotes a part of aformal parameter that no longer exists
at the point of the second access (due to leaving the corresponding callable construct). The possible
consequences are that Program_Error is raised, or the newly assigned value is read, or some old value of
the object is read.

NOTES
5 A formal parameter of modein isaconstant view (see 3.3); it cannot be updated within the subprogram_body.

6.3 Subprogram Bodies

A subprogram_body specifies the execution of a subprogram.

Syntax
subprogram_body ::=

[overriding_indicator]
subprogram_specification is

declarative_part
begin

handled_sequence_of_statements
end [designator];

If adesignator appears at the end of a subprogram_body, it shall repeat the defining_designator of
the subprogram_specification.

Legality Rules
In contrast to other bodies, a subprogram_body need not be the completion of a previous declaration, in
which case the body declares the subprogram. If the body is a completion, it shall be the completion of a
subprogram_declaration or generic_subprogram_declaration. The profile of a subprogram_body that
completes a declaration shall conform fully to that of the declaration.
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Static Semantics

A subprogram_body is considered a declaration. It can either complete a previous declaration, or itself be
theinitial declaration of the subprogram.

Dynamic Semantics

The elaboration of a non-generic subprogram_body has no other effect than to establish that the
subprogram can from then on be called without failing the Elaboration_Check.

The execution of a subprogram_body is invoked by a subprogram call. For this execution the
declarative_part is elaborated, and the handled_sequence_of_statements is then executed.

Examples
Example of procedure body:
procedure Push(E : in Elenment_Type; S : in out Stack) is
begin
if S.Index = S. Size then
rai se Stack_Overfl ow,
el se
S.Index := S.Index + 1;
S. Space(S. I ndex) := E;
end if;
end Push;
Example of a function body:
function Dot_Product(Left, Right : Vector) return Real is
Sum: Real := 0.0;
begi n

Check(Left' First = Right' First and Left'Last = Right'Last);
for J in Left'Range | oop
Sum := Sum + Left(J)*Right(J);
end | oop;
return Sum
end Dot _Product;

6.3.1 Conformance Rules

When subprogram profiles are given in more than one place, they are required to conform in one of four
ways: type conformance, mode conformance, subtype conformance, or full conformance.

Satic Semantics

As explained in B.1, “Interfacing Pragmas’, a convention can be specified for an entity. Unless this
International Standard states otherwise, the default convention of an entity is Ada. For a callable entity or
access-to-subprogram type, the convention is called the calling convention. The following conventions are
defined by the language:

¢ The default caling convention for any subprogram not listed below is Ada. A pragma
Convention, Import, or Export may be used to override the default calling convention (see B.1).

e The Intrinsic calling convention represents subprograms that are “built in” to the compiler. The
default calling convention is Intrinsic for the following:

« anenumeration literal;
« a"/=" operator declared implicitly due to the declaration of "=" (see 6.6);

« any other implicitly declared subprogram unless it is a dispatching operation of a tagged
type;
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- aninherited subprogram of a generic formal tagged type with unknown discriminants;
« an attribute that is a subprogram;
« asubprogram declared immediately within a protected_body;
- any prefixed view of a subprogram (see 4.1.3).
The Access attribute is not allowed for Intrinsic subprograms.

* The default calling convention is protected for a protected subprogram, and for an access-to-
subprogram type with the reserved word protected in its definition.

« Thedefault calling convention is entry for an entry.

e The caling convention for an anonymous access-to-subprogram parameter or anonymous
access-to-subprogram result is protected if the reserved word protected appears in its definition
and otherwise is the convention of the subprogram that contains the parameter.

« If not specified above as Intrinsic, the calling convention for any inherited or overriding
dispatching operation of a tagged type is that of the corresponding subprogram of the parent
type. The default calling convention for a new dispatching operation of a tagged type is the
convention of the type.

Of these four conventions, only Ada and Intrinsic are allowed as a convention_identifier in a pragma
Convention, Import, or Export.

Two profiles are type conformant if they have the same number of parameters, and both have a result if
either does, and corresponding parameter and result types are the same, or, for access parameters or access
results, corresponding designated types are the same, or corresponding designated profiles are type
conformant.

Two profiles are mode conformant if they are type-conformant, and corresponding parameters have
identical modes, and, for access parameters or access result types, the designated subtypes statically
match, or the designated profiles are subtype conformant.

Two profiles are subtype conformant if they are mode-conformant, corresponding subtypes of the profile
statically match, and the associated calling conventions are the same. The profile of a generic formal
subprogram is not subtype-conformant with any other profile.

Two profiles are fully conformant if they are subtype-conformant, and corresponding parameters have the
same names and have default_expressions that are fully conformant with one another.

Two expressions are fully conformant if, after replacing each use of an operator with the equivalent
function_call:

« each congtituent construct of one corresponds to an instance of the same syntactic category in
the other, except that an expanded name may correspond to a direct_name (or character_literal)
or to adifferent expanded name in the other; and

« each direct_name, character_literal, and selector_name that is not part of the prefix of an
expanded name in one denotes the same declaration as the corresponding direct_name,
character_literal, or selector_name in the other; and

« each attribute_designator in one must be the same as the corresponding attribute_designator in
the other; and

» each primary that isaliteral in one has the same value as the corresponding literal in the other.
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Two known_discriminant_parts are fully conformant if they have the same number of discriminants, and
discriminants in the same positions have the same names, statically matching subtypes, and
default_expressions that are fully conformant with one another.

Two discrete_subtype_definitions are fully conformant if they are both subtype_indications or are both
ranges, the subtype_marks (if any) denote the same subtype, and the corresponding simple_expressions
of theranges (if any) fully conform.

The prefixed view profile of a subprogram is the profile obtained by omitting the first parameter of that
subprogram. There is no prefixed view profile for a parameterless subprogram. For the purposes of
defining subtype and mode conformance, the convention of a prefixed view profile is considered to match
that of either an entry or a protected operation.

Implementation Permissions

An implementation may declare an operator declared in alanguage-defined library unit to beintrinsic.

6.3.2 Inline Expansion of Subprograms
Subprograms may be expanded in line at the call site.

Syntax
The form of apragma Inline, which is a program unit pragma (see 10.1.5), is as follows:
pragma Inline(name {, name});

Legality Rules
The pragma shall apply to one or more callable entities or generic subprograms.

Satic Semantics

If apragma Inline applies to a callable entity, this indicates that inline expansion is desired for al callsto
that entity. If a pragma Inline applies to a generic subprogram, this indicates that inline expansion is
desired for all callsto al instances of that generic subprogram.

Implementation Permissions

For each call, an implementation is free to follow or to ignore the recommendation expressed by the
pragma.

An implementation may alow a pragma Inline that has an argument which is a direct_name denoting a
subprogram_body of the same declarative_part.

NOTES
6 The name in apragma Inline can denote more than one entity in the case of overloading. Such a pragma appliesto al
of the denoted entities.
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6.4 Subprogram Calls

A subprogram call is either aprocedure_call_statement or a function_call; it invokes the execution of the
subprogram_body. The call specifies the association of the actual parameters, if any, with forma
parameters of the subprogram.

Syntax
procedure_call_statement ::=
procedure_name;
| procedure _prefix actual_parameter_part;
function_call ::=
function_name
| function_prefix actual_parameter_part

actual_parameter_part ::=
(parameter_association {, parameter_association})

parameter_association ::=
[formal_parameter_selector_name =>] explicit_actual_parameter

explicit_actual_parameter ::= expression | variable_name

A parameter_association is named or positional according to whether or not the formal_parameter_-
selector_name is specified. Any positional associations shall precede any named associations.
Named associations are not allowed if the prefix in a subprogram call is an attribute_reference.

Name Resolution Rules

The name or prefix given in a procedure_call_statement shall resolve to denote a callable entity that is a
procedure, or an entry renamed as (viewed as) a procedure. The name or prefix given in a function_call
shall resolve to denote a callable entity that is afunction. The name or prefix shall not resolve to denote an
abstract subprogram unlessit is also a dispatching subprogram. When there is an actual_parameter_part,
the prefix can be an implicit_dereference of an access-to-subprogram value.

A subprogram call shall contain at most one association for each formal parameter. Each formal parameter
without an association shall have a default_expression (in the profile of the view denoted by the name or
prefix). This rule is an overloading rule (see 8.6).

Dynamic Semantics
For the execution of a subprogram call, the name or prefix of the cal is evaluated, and each parameter_-
association is evaluated (see 6.4.1). If adefault_expression isused, an implicit parameter_association is
assumed for this rule. These evaluations are done in an arbitrary order. The subprogram_body is then
executed, or acall on an entry or protected subprogram is performed (see 3.9.2). Findly, if the subprogram
completes normally, then after it is left, any necessary assigning back of formal to actual parameters
occurs (see 6.4.1).

If the name or prefix of a subprogram call denotes a prefixed view (see 4.1.3), the subprogram call is
equivalent to a call on the underlying subprogram, with the first actual parameter being provided by the
prefix of the prefixed view (or the Access attribute of this prefix if the first formal parameter is an access
parameter), and the remaining actual parameters given by the actual_parameter_part, if any.

The exception Program_Error is raised at the point of a function_call if the function completes normally
without executing areturn statement.
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A function_call denotes a constant, as defined in 6.5; the nominal subtype of the constant is given by the 1212
nominal subtype of the function result.

Examples
Examples of procedure calls: 13
Traverse_Tree; -- seeb.l 14
Print_Header (128, Title, True); -- seeb.l
Switch(From => X, To => Next); -- seeb.l 15
Print _Header (128, Header => Title, Center => True); -- seeb.l
Print _Header (Header => Title, Center => True, Pages => 128); -- seeb6.l
Examples of function calls: 16
Dot _Product (U, V) -- seeb.land 6.3 17
C ock -- €96
F.all - - presuming F is of an access-to-subprogram type — see 3.10
Examples of procedures with default expressions: 18
procedure Activate(Process : in Process_Nang; 19
After : in Process_Nanme := No_Process;
Wai t in Duration := 0.0;
Prior in Bool ean : = Fal se);
procedure Pair(Left, Right : in Person_Name := new Person); -- see310.1 20
Examples of their calls: 21
Activate(X); 22

Activate(X, After =>Y)
Activate(X, Wit => 60.0, Prior => True);
Activate(X, Y, 10.0, False);

Pair; 23
Pai r(Left => new Person, Right => new Person);
NOTES
7 If a default_expression is used for two or more parameters in a multiple parameter_specification, the default_- 24
expression is evauated once for each omitted parameter. Hence in the above examples, the two cals of Pair are
equivalent.
Examples

Examples of overloaded subprograms: 25
procedure Put(X : in Integer); 26
procedure Put(X : in String);
procedure Set(Tint :in Color); 27
procedure Set(Signal : in Light);

Examples of their calls: 28
Put (28); 29
Put ("no possi bl e anmbiguity here");
Set (Ti nt => Red); 30

Set (Signal => Red);
Set (Col or' (Red));

- - Set(Red) would be ambiguous since Red may 31
- - denote a value either of type Color or of type Light
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6.4.1 Parameter Associations

A parameter association defines the association between an actual parameter and aformal parameter.

Name Resolution Rules

The formal_parameter_selector_name of a parameter_association shall resolve to denote a parameter_-
specification of the view being called.

The actual parameter is either the explicit_actual_parameter given in a parameter_association for a
given forma parameter, or the corresponding default_expression if no parameter_association is given
for the formal parameter. The expected type for an actual parameter is the type of the corresponding
formal parameter.

If the mode is in, the actual is interpreted as an expression; otherwise, the actual is interpreted only as a
name, if possible.

Legality Rules
If the modeisin out or out, the actual shall be aname that denotes a variable.

The type of the actual parameter associated with an access parameter shall be convertible (see 4.6) to its
anonymous access type.

Dynamic Semantics
For the evaluation of aparameter_association:
e Theactual parameter isfirst evaluated.

e For an access parameter, the access_definition is elaborated, which creates the anonymous
access type.

e For a parameter (of any mode) that is passed by reference (see 6.2), a view conversion of the
actual parameter to the nominal subtype of the formal parameter is evaluated, and the formal
parameter denotes that conversion.

e For anin or in out parameter that is passed by copy (see 6.2), the forma parameter object is
created, and the value of the actual parameter is converted to the nominal subtype of the formal
parameter and assigned to the formal.

« For an out parameter that is passed by copy, the formal parameter object is created, and:
« For an access type, the formal parameter is initiadlized from the value of the actual,
without a constraint check;

» For a composite type with discriminants or that has implicit initial values for any
subcomponents (see 3.3.1), the behavior isasfor anin out parameter passed by copy.

e For any other type, the forma parameter is uninitialized. If composite, a view
conversion of the actual parameter to the nominal subtype of the formal is evaluated
(which might raise Constraint_Error), and the actual subtype of the formal is that of
the view conversion. If elementary, the actual subtype of the formal is given by its
nominal subtype.

A formal parameter of mode in out or out with discriminantsis constrained if either its nominal subtype or
the actual parameter is constrained.

6.4.1 Parameter Associations 10 November 2006 142



ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

After normal completion and leaving of a subprogram, for each in out or out parameter that is passed by
copy, the value of the formal parameter is converted to the subtype of the variable given as the actual
parameter and assigned to it. These conversions and assignments occur in an arbitrary order.

6.5 Return Statements

A simple_return_statement or extended_return_statement (collectively called a return statement) is
used to complete the execution of the innermost enclosing subprogram_body, entry_body, or accept_-
statement.

Syntax
simple_return_statement ::= return [expression];

extended_return_statement ::=
return defining_identifier : [aliased] return_subtype_indication [:= expression] [do
handled_sequence_of_statements
end return];

return_subtype_indication ::= subtype_indication | access_definition

Name Resolution Rules

The result subtype of a function is the subtype denoted by the subtype_mark, or defined by the
access_definition, after the reserved word return in the profile of the function. The expected type for the
expression, if any, of a simple_return_statement is the result type of the corresponding function. The
expected type for the expression of an extended_return_statement is that of the return_subtype_-
indication.

Legality Rules
A return statement shall be within a callable construct, and it applies to the innermost callable construct or
extended_return_statement that contains it. A return statement shall not be within a body that is within
the construct to which the return statement applies.

A function body shall contain at least one return statement that applies to the function body, unless the
function contains code_statements. A simple_return_statement shall include an expression if and only
if it applies to afunction body. An extended_return_statement shall apply to afunction body.

For an extended_return_statement that applies to a function body:

e |If the result subtype of the function is defined by a subtype_mark, the return_subtype_-
indication shall be a subtype_indication. The type of the subtype_indication shall be the result
type of the function. If the result subtype of the function is constrained, then the subtype defined
by the subtype_indication shall also be constrained and shall statically match this result subtype.
If the result subtype of the function is unconstrained, then the subtype defined by the
subtype_indication shall be a definite subtype, or there shall be an expression.

e |If the result subtype of the function is defined by an access_definition, the return_subtype_-
indication shall be an access_definition. The subtype defined by the access_definition shall
statically match the result subtype of the function. The accessibility level of this anonymous
access subtype isthat of the result subtype.

For any return statement that applies to a function body:
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« |If the result subtype of the function is limited, then the expression of the return statement (if
any) shall be an aggregate, a function call (or equivalent use of an operator), or a
qualified_expression or parenthesized expression whose operand is one of these.

« If the result subtype of the function is class-wide, the accessibility level of the type of the
expression of the return statement shall not be statically deeper than that of the master that
elaborated the function body. If the result subtype has one or more unconstrained access
discriminants, the accessibility level of the anonymous access type of each access discriminant,
as determined by the expression of the simple_return_statement or the return_subtype_-
indication, shall not be statically deeper than that of the master that elaborated the function body.

Satic Semantics

Within an extended_return_statement, the return object is declared with the given defining_identifier,
with the nominal subtype defined by the return_subtype_indication.

Dynamic Semantics
For the execution of an extended_return_statement, the subtype_indication or access_definition is
elaborated. This creates the nominal subtype of the return object. If there is an expression, it is evaluated
and converted to the nominal subtype (which might raise Constraint_Error — see 4.6); the return object is
created and the converted value is assigned to the return object. Otherwise, the return object is created and
initialized by default as for a stand-alone object of its nominal subtype (see 3.3.1). If the nominal subtype
isindefinite, the return object is constrained by itsinitial value.

For the execution of a simple_return_statement, the expression (if any) is first evaluated, converted to
the result subtype, and then is assigned to the anonymous return object.

If the return object has any parts that are tasks, the activation of those tasks does not occur until after the
function returns (see 9.2).

If the result type of a function is a specific tagged type, the tag of the return object is that of the result
type. If the result type is class-wide, the tag of the return object is that of the value of the expression. A
check is made that the accessibility level of the type identified by the tag of the result is not deeper than
that of the master that elaborated the function body. If this check fails, Program_Error is raised.

Paragraphs 9 through 20 were del eted.

If the result subtype of a function has one or more unconstrained access discriminants, a check is made
that the accessibility level of the anonymous access type of each access discriminant, as determined by the
expression or the return_subtype_indication of the function, is not deeper than that of the master that
elaborated the function body. If this check fails, Program_Error is raised.

For the execution of an extended_return_statement, the handled_sequence_of_statements is executed.
Within this handled_sequence_of_statements, the execution of a simple_return_statement that applies
to the extended_return_statement causes a transfer of control that completes the extended_return_-
statement. Upon completion of a return statement that applies to a callable construct, a transfer of control
is performed which compl etes the execution of the callable construct, and returns to the caller.

In the case of afunction, the function_call denotes a constant view of the return object.

Implementation Permissions

If the result subtype of afunction is unconstrained, and a call on the function is used to provide the initial
value of an object with a constrained nominal subtype, Constraint_Error may be raised at the point of the
call (after abandoning the execution of the function body) if, while elaborating the return_subtype_-
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indication or evaluating the expression of a return statement that applies to the function body, it is
determined that the value of the result will violate the constraint of the subtype of this object.

Examples
Examples of return statements:
return; - - inaprocedure body, entry_body,
- - accept_statement, or extended_return_statement
return Key_Val ue(Last _I ndex); - - inafunction body
return Node : Cell do - - inafunction body, see 3.10.1 for Cell

Node. Val ue : = Resul t;
Node. Succ : = Next _Node;
end return;

6.5.1 Pragma No_Return

A pragma No_Return indicates that a procedure cannot return normally; it may propagate an exception or
loop forever.

Syntax
The form of apragma No_Return, which is a representation pragma (see 13.1), is as follows:
pragma No_Return(procedure_local_name{, procedure_local_name});

Legality Rules

Each procedure_local_name shall denote one or more procedures or generic procedures; the denoted
entities are non-returning. The procedure_local_name shall not denote a null procedure nor an instance of
ageneric unit.

A return statement shall not apply to a non-returning procedure or generic procedure.

A procedure shall be non-returning if it overrides a dispatching non-returning procedure. In addition to the
places where Legality Rules normally apply (see 12.3), this rule applies also in the private part of an
instance of a generic unit.

If a renaming-as-body completes a non-returning procedure declaration, then the renamed procedure shall
be non-returning.

Static Semantics

If a generic procedure is non-returning, then so are its instances. If a procedure declared within a generic
unit is non-returning, then so are the corresponding copies of that procedure in instances.

Dynamic Semantics
If the body of a non-returning procedure completes normally, Program_Error is raised at the point of the
call.

Examples

procedure Fail (Msg : String); -- raisesFatal_Error exception
pragnma No_Return(Fail);
- - Inform compiler and reader that procedure never returns normally
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6.6 Overloading of Operators

An operator is a function whose designator is an operator_symbol. Operators, like other functions, may
be overloaded.

Name Resolution Rules

Each use of a unary or binary operator is equivalent to a function_call with function_prefix being the
corresponding operator_symbol, and with (respectively) one or two positional actual parameters being the
operand(s) of the operator (in order).

Legality Rules
The subprogram_specification of a unary or binary operator shall have one or two parameters,
respectively. A generic function instantiation whose designator is an operator_symbol is only allowed if
the specification of the generic function has the corresponding number of parameters.

Default_expressions are not alowed for the parameters of an operator (whether the operator is declared
with an explicit subprogram_specification or by a generic_instantiation).
An explicit declaration of "/=" shall not have aresult type of the predefined type Boolean.

Satic Semantics
A declaration of "=" whose result type is Boolean implicitly declares a declaration of "/=" that gives the
complementary result.

NOTES
8 The operators "+" and "—" are both unary and binary operators, and hence may be overloaded with both one- and two-
parameter functions.
Examples
Examples of user-defined operators:

function "+" (Left, Right : Matrix) return Matrix;
function "+" (Left, Right : Vector) return Vector;

- - assuming that A, B, and C are of the type Vector
- - thefollowing two statements are equivalent:

A :
A
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6.7 Null Procedures

A null_procedure_declaration provides a shorthand to declare a procedure with an empty body.

A null_procedure_declaration declares a null
null

Syntax
null_procedure_declaration ::=
[overriding_indicator]
procedure_specification isnull;
Satic Semantics

procedure_declaration.

Dynamic Semantics

procedure. A completion is not allowed for a

The execution of anull procedure isinvoked by a subprogram call. For the execution of a subprogram call
on anull procedure, the execution of the subprogram_body has no effect.

The elaboration of anull_procedure_declaration has no effect.

147

Examples

procedure Sinplify(Expr : in out Expression) is null; -- see39
- - By default, Smplify does nothing, but it may be overridden in extensions of Expression
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Section 7: Packages

Packages are program units that allow the specification of groups of logically related entities. Typicaly, a
package contains the declaration of a type (often a private type or private extension) along with the
declarations of primitive subprograms of the type, which can be called from outside the package, while
their inner workings remain hidden from outside users.

7.1 Package Specifications and Declarations

A package is generally provided in two parts: a package_specification and a package_body. Every
package has a package_specification, but not all packages have apackage_body.

Syntax
package_declaration ::= package_specification;,
package_specification ::=
package defining_program_unit_name is
{basic_declarative_item}
[private
{basic_declarative_item}]
end [[parent_unit_name.]identifier]
If an identifier or parent_unit_name.identifier appears at the end of a package_specification, then
this sequence of lexical elements shall repeat the defining_program_unit_name.

Legality Rules
A package_declaration or generic_package_declaration requires a completion (abody) if it contains any
basic_declarative_item that requires a completion, but whose completion is not in its
package_specification.

Static Semantics

The first list of basic_declarative_items of a package_specification of a package other than a generic
formal package is called the visible part of the package. The optional list of basic_declarative_items after
the reserved word private (of any package_specification) is called the private part of the package. If the
reserved word private does not appear, the package has an implicit empty private part. Each list of
basic_declarative_items of a package_specification forms a declaration list of the package.

An entity declared in the private part of a package is visible only within the declarative region of the
package itself (including any child units — see 10.1.1). In contrast, expanded names dencting entities
declared in the visible part can be used even outside the package; furthermore, direct visibility of such
entities can be achieved by means of use_clauses (see 4.1.3 and 8.4).

Dynamic Semantics
The elaboration of a package_declaration consists of the elaboration of its basic_declarative_itemsin the
given order.

NOTES
1 Thevisible part of a package contains all the information that another program unit is able to know about the package.

2 If a declaration occurs immediately within the specification of a package, and the declaration has a corresponding
completion that is a body, then that body has to occur immediately within the body of the package.
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Examples
Example of a package declaration:
package Rational _Nunbers is

type Rational is
record
Nurer at or . Integer;
Denomi nator : Positive;
end record;

function "="(X, Y : Rational) return Bool ean;

function "/" (X, Y : Integer) return Rational; -- toconstructarational number
function "+" (X, Y : Rational) return Rational;

function "-" (X, Y : Rational) return Rational;

Y :
function "*" (X, Y : Rational) return Rational;
function "/" (X, Y : Rational) return Rational;
end Rational _Nunbers;
There are also many examples of package declarations in the predefined language environment (see Annex
A).

7.2 Package Bodies

In contrast to the entities declared in the visible part of a package, the entities declared in the
package_body are visible only within the package_body itself. As a consequence, a package with a
package_body can be used for the construction of a group of related subprograms in which the logical
operations available to clients are clearly isolated from the internal entities.

Syntax
package_body ::=
package body defining_program_unit_name is
declarative_part
[begin
handled_sequence_of_statements]
end [[parent_unit_name.]identifier];

If an identifier or parent_unit_name.identifier appears at the end of a package_body, then this
sequence of lexical elements shall repeat the defining_program_unit_name.

Legality Rules
A package_body shall be the completion of a previous package_declaration or generic_package_-
declaration. A library package_declaration or library generic_package_declaration shall not have a
body unless it requires a body; pragma Elaborate Body can be used to require a library_unit_declaration
to have abody (see 10.2.1) if it would not otherwise require one.

Satic Semantics

In any package_body without statements there is an implicit null_statement. For any package_-
declaration without an explicit completion, there is an implicit package_body containing a single
null_statement. For a noninstance, nonlibrary package, this body occurs at the end of the declarative_part
of the innermost enclosing program unit or block_statement; if there are severa such packages, the order
of the implicit package_bodies is unspecified. (For an instance, the implicit package_body occurs at the
place of the instantiation (see 12.3). For a library package, the place is partially determined by the
elaboration dependences (see Section 10).)
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Dynamic Semantics

For the elaboration of a nongeneric package_body, its declarative_part is first elaborated, and its
handled_sequence_of_statements is then executed.

NOTES

3 A variable declared in the body of a package is only visible within this body and, consequently, its value can only be
changed within the package_body. In the absence of local tasks, the value of such a variable remains unchanged between
calls issued from outside the package to subprograms declared in the visible part. The properties of such a variable are
similar to those of a*“static” variable of C.

4 The elaboration of the body of a subprogram explicitly declared in the visible part of a package is caused by the
elaboration of the body of the package. Hence a call of such a subprogram by an outside program unit raises the exception
Program_Error if the call takes place before the elaboration of the package_body (see 3.11).

Examples
Example of a package body (see 7.1):
package body Rational _Nunbers is
procedure Sane_Denoninator (X, Y : in out Rational) is

begin
- - reduces X and Y to the same denominator:

end’ Sén‘e_Denom’ nat or ;

function "="(X, Y : Rational) return Boolean is
U: Rational := X
V : Rational :=Y;

begi n

Sanme_Denoni nator (U, V);
return U Nunerator = V.Nunerator;

end "=";
function "/" (X Y : Integer) return Rational is
begi n
if Y>O0 then
return (Nunerator => X, Denom nator =>Y);
el se
return (Nunerator => -X, Denominator => -Y);
end if;
end "/";
function "+" (X, Y : Rational) return Rational is . end "+";
function "-" (X, Y : Rational) return Rational is . end "-";
function "*" (X, Y : Rational) return Rational is . end "*";
function "/" (X, Y : Rational) return Rational is . end "/";
end Rational _Nunbers;

7.3 Private Types and Private Extensions

The declaration (in the visible part of a package) of atype as a private type or private extension serves to
separate the characteristics that can be used directly by outside program units (that is, the logical
properties) from other characteristics whose direct use is confined to the package (the details of the
definition of the type itself). See 3.9.1 for an overview of type extensions.

Syntax

private_type_declaration ::=
type defining_identifier [discriminant_part] is[[abstract] tagged] [limited] private;
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private_extension_declaration ::=
type defining_identifier [discriminant_part] is
[abstract] [limited | synchronized] new ancestor_subtype_indication
[and interface_list] with private;

Legality Rules
A private_type_declaration or private_extension_declaration declares a partial view of the type; such a
declaration is alowed only as a declarative_item of the visible part of a package, and it requires a
completion, which shall be a full_type_declaration that occurs as a declarative_item of the private part of
the package. The view of the type declared by the full_type_declaration is called the full view. A generic
formal private type or a generic formal private extension is also a partial view.

A type shall be completely defined before it is frozen (see 3.11.1 and 13.14). Thus, neither the declaration
of avariable of apartial view of atype, nor the creation by an allocator of an object of the partial view are
alowed before the full declaration of the type. Similarly, before the full declaration, the name of the
partial view cannot be used in ageneric_instantiation or in arepresentation item.

A private typeis limited if its declaration includes the reserved word limited; a private extension is limited
if its ancestor type is a limited type that is not an interface type, or if the reserved word limited or
synchronized appears in its definition. If the partial view is nonlimited, then the full view shall be
nonlimited. If atagged partial view is limited, then the full view shall be limited. On the other hand, if an
untagged partial view islimited, the full view may be limited or nonlimited.

If the partial view is tagged, then the full view shall be tagged. On the other hand, if the partial view is
untagged, then the full view may be tagged or untagged. In the case where the partial view is untagged and
the full view is tagged, no derivatives of the partial view are allowed within the immediate scope of the
partial view; derivatives of the full view are allowed.

If afull type has apartial view that is tagged, then:

« the partia view shall be a synchronized tagged type (see 3.9.4) if and only if the full typeisa
synchronized tagged type;

» the partial view shall be a descendant of an interface type (see 3.9.4) if and only if the full type
is adescendant of the interface type.

The ancestor subtype of a private_extension_declaration is the subtype defined by the ancestor_-
subtype_indication; the ancestor type shall be a specific tagged type. The full view of a private extension
shall be derived (directly or indirectly) from the ancestor type. In addition to the places where Legality
Rules normally apply (see 12.3), the requirement that the ancestor be specific applies also in the private
part of an instance of a generic unit.

If the reserved word limited appears in a private_extension_declaration, the ancestor type shal be a
limited type. If the reserved word synchronized appears in a private_extension_declaration, the ancestor
type shall be alimited interface.

If the declaration of a partial view includes a known_discriminant_part, then the full_type_declaration
shall have a fully conforming (explicit) known_discriminant_part (see 6.3.1, “Conformance Rules’). The
ancestor subtype may be unconstrained; the parent subtype of the full view is required to be constrained
(see 3.7).

If a private extension inherits known discriminants from the ancestor subtype, then the full view shall also
inherit its discriminants from the ancestor subtype, and the parent subtype of the full view shall be
constrained if and only if the ancestor subtype is constrained.
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If the full_type_declaration for a private extension is defined by a derived_type_definition, then the
reserved word limited shall appear in the full_type_declaration if and only if it also appears in the
private_extension_declaration.

If a partial view has unknown discriminants, then the full_type_declaration may define a definite or an
indefinite subtype, with or without discriminants.

If apartia view has neither known nor unknown discriminants, then the full_type_declaration shall define
adefinite subtype.

If the ancestor subtype of a private extension has constrained discriminants, then the parent subtype of the
full view shall impose a statically matching constraint on those discriminants.

Static Semantics

A private_type_declaration declares a private type and its first subtype. Similarly, a private_extension_-
declaration declares a private extension and its first subtype.

A declaration of a partial view and the corresponding full_type_declaration define two views of a single
type. The declaration of a partial view together with the visible part define the operations that are available
to outside program units; the declaration of the full view together with the private part define other
operations whose direct use is possible only within the declarative region of the package itself. Moreover,
within the scope of the declaration of the full view, the characteristics of the type are determined by the
full view; in particular, within its scope, the full view determines the classes that include the type, which
components, entries, and protected subprograms are visible, what attributes and other predefined
operations are allowed, and whether the first subtype is static. See 7.3.1.

A private extension inherits components (including discriminants unless there is a new discriminant_part
specified) and user-defined primitive subprograms from its ancestor type and its progenitor types (if any),
in the same way that a record extension inherits components and user-defined primitive subprograms from
its parent type and its progenitor types (see 3.4).

Dynamic Semantics
The elaboration of a private_type_declaration creates a partial view of a type. The elaboration of a
private_extension_declaration elaborates the ancestor_subtype_indication, and creates a partial view of a

type.

NOTES
5 The partial view of atype as declared by a private_type_declaration is defined to be a composite view (in 3.2). Thefull
view of the type might or might not be composite. A private extension is also composite, asisitsfull view.

6 Declaring a private type with an unknown_discriminant_part is away of preventing clients from creating uninitialized
objects of the type; they are then forced to initialize each object by calling some operation declared in the visible part of
the package.

7 The ancestor type specified in a private_extension_declaration and the parent type specified in the corresponding
declaration of arecord extension given in the private part need not be the same. If the ancestor type is not an interface
type, the parent type of the full view can be any descendant of the ancestor type. In this case, for a primitive subprogram
that is inherited from the ancestor type and not overridden, the formal parameter names and default expressions (if any)
come from the corresponding primitive subprogram of the specified ancestor type, while the body comes from the
corresponding primitive subprogram of the parent type of the full view. See 3.9.2.

8 If the ancestor type specified in a private_extension_declaration is an interface type, the parent type can be any type so
long as the full view is a descendant of the ancestor type. The progenitor types specified in a
private_extension_declaration and the progenitor types specified in the corresponding declaration of a record extension
given in the private part need not be the same — the only requirement is that the private extension and the record
extension be descended from the same set of interfaces.
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Examples
Examples of private type declarations:

type Key is private;
type File_Name is linited private;

Example of a private extension declaration:
type List is new Ada. Finalization.Controlled with private;

7.3.1 Private Operations

For a type declared in the visible part of a package or generic package, certain operations on the type do
not become visible until later in the package — either in the private part or the body. Such private
operations are available only inside the declarative region of the package or generic package.

Satic Semantics

The predefined operators that exist for a given type are determined by the classes to which the type
belongs. For example, an integer type has a predefined "+" operator. In most cases, the predefined
operators of atype are declared immediately after the definition of the type; the exceptions are explained
below. Inherited subprograms are also implicitly declared immediately after the definition of the type,
except as stated below.

For a composite type, the characteristics (see 7.3) of the type are determined in part by the characteristics
of its component types. At the place where the composite type is declared, the only characteristics of
component types used are those characteristics visible at that place. If later immediately within the
declarative region in which the composite type is declared additional characteristics become visible for a
component type, then any corresponding characteristics become visible for the composite type. Any
additional predefined operators areimplicitly declared at that place.

The corresponding rule applies to a type defined by a derived_type_definition, if there is a place
immediately within the declarative region in which the type is declared where additional characteristics of
its parent type become visible.

For example, an array type whose component type is limited private becomes nonlimited if the full view of
the component type is nonlimited and visible at some later place immediately within the declarative region
in which the array type is declared. In such a case, the predefined "=" operator isimplicitly declared at that
place, and assignment is allowed after that place.

Inherited primitive subprograms follow a different rule. For a derived_type_definition, each inherited
primitive subprogram is implicitly declared at the earliest place, if any, immediately within the declarative
region in which the type_declaration occurs, but after the type_declaration, where the corresponding
declaration from the parent is visible. If there is no such place, then the inherited subprogram is not
declared at al. An inherited subprogram that is not declared at all cannot be named in acall and cannot be
overridden, but for atagged type, it is possible to dispatch to it.

For a private_extension_declaration, each inherited subprogram is declared immediately after the
private_extension_declaration if the corresponding declaration from the ancestor is visible at that place.
Otherwise, the inherited subprogram is not declared for the private extension, though it might be for the
full type.

The Class attribute is defined for tagged subtypes in 3.9. In addition, for every subtype S of an untagged
private type whose full view is tagged, the following attribute is defined:
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SClass Denotes the class-wide subtype corresponding to the full view of S. This attribute is

allowed only from the beginning of the private part in which the full view is declared, until
the declaration of the full view. After the full view, the Class attribute of the full view can
be used.

NOTES

9 Because apartia view and afull view are two different views of one and the same type, outside of the defining package
the characteristics of the type are those defined by the visible part. Within these outside program units the type is just a
private type or private extension, and any language rule that applies only to another class of types does not apply. The fact
that the full declaration might implement a private type with a type of a particular class (for example, as an array type) is
relevant only within the declarative region of the package itself including any child units.

The consequences of this actual implementation are, however, valid everywhere. For example: any default initialization of
components takes place; the attribute Size provides the size of the full view; finalization is still done for controlled
components of the full view; task dependence rules still apply to components that are task objects.

10 Partia views provide initiaization, membership tests, selected components for the selection of discriminants and
inherited components, qualification, and explicit conversion. Nonlimited partial views aso alow use of
assignment_statements.

11 For asubtype S of apartial view, SSize is defined (see 13.3). For an object A of a partial view, the attributes A'Size
and A'Address are defined (see 13.3). The Position, First_Bit, and Last_Bit attributes are also defined for discriminants
and inherited components.

Examples

Example of a type with private operations:

155

package Key_Manager is
type Key is private;
Nul | _Key : constant Key; -- adeferredconstant declaration (see 7.4)
procedure Get_Key(K : out Key);
function "<" (X, Y : Key) return Bool ean;
private
type Key is new Natural;
Nul | _Key : constant Key := Key'First;
end Key_Manager ;
package body Key_Manager is
Last _Key : Key := Null_Key;
procedure Get_Key(K : out Key) is
begin
Last _Key := Last_Key + 1;
K : = Last _Key;
end Get _Key;
function "<" (X, Y : Key) return Boolean is
begi n
return Natural (X) < Natural (Y);
end "<";
end Key_Manager ;
NOTES
12 Notes on the example: Outside of the package Key_Manager, the operations available for objects of type Key include
assignment, the comparison for equality or inequality, the procedure Get_Key and the operator "<"; they do not include
other relational operators such as">=", or arithmetic operators.

The explicitly declared operator "<" hides the predefined operator "<" implicitly declared by the full_type_declaration.
Within the body of the function, an explicit conversion of X and Y to the subtype Natural is necessary to invoke the "<"
operator of the parent type. Alternatively, the result of the function could be written as not (X >=Y), since the operator
">=" js not redefined.

The value of the variable Last_Key, declared in the package body, remains unchanged between calls of the procedure
Get_Key. (See also the NOTES of 7.2.)

10 November 2006 Private Operations 7.3.1

10

11

12/2

13

14

15

16

17

18

19

20



5/2

6/2

712

7.112

9/2

10

11

12

13
14

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

7.4 Deferred Constants

Deferred constant declarations may be used to declare constants in the visible part of a package, but with
the value of the constant given in the private part. They may also be used to declare constants imported
from other languages (see Annex B).

Legality Rules
A deferred constant declaration is an object_declaration with the reserved word constant but no
initialization expression. The constant declared by a deferred constant declaration is called a deferred
constant. A deferred constant declaration requires a completion, which shall be a full constant declaration
(called the full declaration of the deferred constant), or apragma Import (see Annex B).

A deferred constant declaration that is completed by a full constant declaration shall occur immediately
within the visible part of a package_specification. For this case, the following additional rules apply to
the corresponding full declaration:

e Thefull declaration shall occur immediately within the private part of the same package;

* The deferred and full constants shall have the same type, or shal have statically matching
anonymous access subtypes;

e If the deferred constant declaration includes a subtype_indication that defines a constrained
subtype, then the subtype defined by the subtype_indication in the full declaration shall match it
statically. On the other hand, if the subtype of the deferred constant is unconstrained, then the
full declaration is still allowed to impose a constraint. The constant itself will be constrained,
like all constants;

* |f the deferred constant declaration includes the reserved word aliased, then the full declaration
shall aso;

» If the subtype of the deferred constant declaration excludes null, the subtype of the full
declaration shall also exclude null.

A deferred constant declaration that is completed by a pragma Import need not appear in the visible part
of apackage_specification, and has no full constant declaration.

The completion of adeferred constant declaration shall occur before the constant is frozen (see 13.14).

Dynamic Semantics
The elaboration of a deferred constant declaration elaborates the subtype_indication or (only allowed in
the case of an imported constant) the array_type_definition.

NOTES
13 The full constant declaration for a deferred constant that is of a given private type or private extension is not alowed
before the corresponding full_type_declaration. This is a consequence of the freezing rules for types (see 13.14).

Examples
Examples of deferred constant declarations:

Nul | _Key : constant Key; -- see731

CPU_ldentifier : constant String(1..8);
pragnma | nport (Assenbler, CPU Identifier, Link_Name => "CPU ID");
-- seeB.1
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7.5 Limited Types

A limited type is (a view of) a type for which copying (such as for an assignment_statement) is not
allowed. A nonlimited type is a (view of &) type for which copying is allowed.

Legality Rules
If a tagged record type has any limited components, then the reserved word limited shall appear in its

record_type_definition. If the reserved word limited appears in the definition of a
derived_type_definition, its parent type and any progenitor interfaces shall be limited.

In the following contexts, an expression of a limited type is not permitted unless it is an aggregate, a
function_call, or a parenthesized expression or qualified_expression whose operand is permitted by this
rule:

« theinitialization expression of an object_declaration (see 3.3.1)

» thedefault_expression of acomponent_declaration (see 3.8)

» the expression of arecord_component_association (see 4.3.1)

« theexpression for an ancestor_part of an extension_aggregate (see 4.3.2)

e an expression of a positional_array_aggregate or the expression of an
array_component_association (see 4.3.3)

« thequalified_expression of an initialized allocator (see 4.8)
« theexpression of areturn statement (see 6.5)

« thedefault_expression or actual parameter for aformal object of modein (see 12.4)

Static Semantics
A typeislimited if it is one of the following:
« atypewith the reserved word limited, synchronized, task, or protected in its definition;
e This paragraph was deleted.
e acomposite type with alimited component;
¢ aderived type whose parent is limited and is not an interface.

Otherwise, the type is nonlimited.

There are no predefined equality operators for alimited type.

Implementation Requirements

For an aggregate of alimited type used to initialize an object as allowed above, the implementation shall
not create a separate anonymous object for the aggregate. For a function_call of atype with a part that is
of atask, protected, or explicitly limited record type that is used to initialize an object as allowed above,
the implementation shall not create a separate return object (see 6.5) for the function_call. The aggregate
or function_call shall be constructed directly in the new object.

NOTES

14 While it is alowed to write initiaizations of limited objects, such initializations never copy a limited object. The
source of such an assignment operation must be an aggregate or function_call, and such aggregates and function_calls
must be built directly in the target object.

Paragraphs 10 through 15 were deleted.
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15 Asillustrated in 7.3.1, an untagged limited type can become nonlimited under certain circumstances.

Examples
Example of a package with a limited type:

package | O Package is
type File_Name is linmted private;

procedure Open (F : in out File_Nane);
procedure Close(F : in out File_Nane);
procedure Read (F : in File_Nane; Item: out Integer);
procedure Wite(F : in File_Nane; Item: in Integer);
private
type File_Nane is
limted record
Internal _Nane : Integer := 0;
end record;
end | O_Package;

package body 1O Package is

Limt : constant := 200;

type File_Descriptor is record ... end record,

Directory : array (1 .. Limt) of File_Descriptor;

procedure Open (F : in out File_Nane) is ... end;

procedure Close(F : in out File_Name) is end;

procedure Read (F : in File_Nane; Item: out Integer) is ... end;
procedure Wite(F : in File_Nane; Item: in Integer) is ... end,

begi n

end | b_Package;

NOTES

16 Notes on the example: In the example above, an outside subprogram making use of 10_Package may obtain a file
name by calling Open and later use it in calls to Read and Write. Thus, outside the package, a file name obtained from
Open acts as a kind of password; its internal properties (such as containing a numeric value) are not known and no other
operations (such as addition or comparison of internal names) can be performed on afile name. Most importantly, clients
of the package cannot make copies of objects of type File_Name.

This example is characteristic of any case where complete control over the operations of atypeis desired. Such packages
serve adual purpose. They prevent a user from making use of the interna structure of the type. They aso implement the
notion of an encapsulated data type where the only operations on the type are those given in the package specification.

The fact that the full view of File_ Name is explicitly declared limited means that parameter passing will aways be by
reference and function results will always be built directly in the result object (see 6.2 and 6.5).

7.6 User-Defined Assignment and Finalization

Three kinds of actions are fundamental to the manipulation of objects: initidization, finalization, and
assignment. Every object isinitialized, either explicitly or by default, after being created (for example, by
an object_declaration or allocator). Every object is finalized before being destroyed (for example, by
leaving a subprogram_body containing an object_declaration, or by a cal to an instance of
Unchecked Deallocation). An assignment operation is used as part of assignment_statements, explicit
initialization, parameter passing, and other operations.

Default definitions for these three fundamental operations are provided by the language, but a controlled
type gives the user additional control over parts of these operations. In particular, the user can define, for a
controlled type, an Initialize procedure which is invoked immediately after the normal default
initialization of a controlled object, a Finalize procedure which is invoked immediately before finalization
of any of the components of a controlled object, and an Adjust procedure which isinvoked as the last step
of an assignment to a (nonlimited) controlled object.
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Static Semantics
The following language-defined library package exists:

package Ada. Finalization is
pragnma Preel aborat e(Finalization);
pragna Renote_Types(Finalization);

type Controlled is abstract tagged private;
pragma Preel aborable_Initialization(Controlled);

procedure Initialize (Cbject : in out Controlled) is null;
procedure Adj ust (oject : in out Controlled) is null;
procedure Finalize (oject : in out Controlled) is null;

type Linmted_Controlled is abstract tagged linited private;
pragma Preel aborable_lInitialization(Limted_Controlled);

procedure Initialize (Qbject : in out Limted Controlled) is null;
procedure Finalize (oject : inout Limted Controlled) is null;
private

... -- not specified by the language
end Ada. Finalization;
A controlled type is a descendant of Controlled or Limited_Controlled. The predefined "=" operator of
type Controlled aways returns True, since this operator is incorporated into the implementation of the
predefined equality operator of types derived from Controlled, as explained in 4.5.2. The type
Limited_Controlled is like Controlled, except that it is limited and it lacks the primitive subprogram
Adjust.

A typeis said to need finalization if:
e itisacontrolled type, atask type or a protected type; or
¢ it has acomponent that needs finalization; or
e itisalimited type that has an access discriminant whose designated type needs finalization; or
« itisone of anumber of language-defined types that are explicitly defined to need finalization.

Dynamic Semantics
During the elaboration or evaluation of a construct that causes an object to be initialized by default, for
every controlled subcomponent of the object that is not assigned an initial value (as defined in 3.3.1),
Initidlize is called on that subcomponent. Similarly, if the object that isinitialized by default as awhole is
controlled, Initialize is called on the object.

For an extension_aggregate whose ancestor_part is a subtype_mark denoting a controlled subtype, the
Initialize procedure of the ancestor typeis called, unless that Initialize procedure is abstract.

Initialize and other initialization operations are done in an arbitrary order, except as follows. Initiaize is
applied to an object after initialization of its subcomponents, if any (including both implicit initialization
and Initialize calls). If an object has a component with an access discriminant constrained by a per-object
expression, Initialize is applied to this component after any components that do not have such
discriminants. For an object with several components with such a discriminant, Initialize is applied to them
in order of their component_declarations. For an allocator, any task activations follow al calls on
Initialize.

When atarget object with any controlled parts is assigned a value, either when created or in a subsegquent
assignment_statement, the assignment operation proceeds as follows:
« Thevalue of the target becomes the assigned value.

* Thevalue of the target is adjusted.
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To adjust the value of a (nonlimited) composite object, the values of the components of the object are first
adjusted in an arbitrary order, and then, if the object is controlled, Adjust is called. Adjusting the value of
an elementary object has no effect, nor does adjusting the value of a composite object with no controlled
parts.

For an assignment_statement, after the name and expression have been evaluated, and any conversion
(including constraint checking) has been done, an anonymous object is created, and the value is assigned
into it; that is, the assignment operation is applied. (Assignment includes value adjustment.) The target of
the assignment_statement is then finalized. The value of the anonymous object is then assigned into the
target of the assignment_statement. Finally, the anonymous object is finalized. As explained below, the
implementation may eliminate the intermediate anonymous object, so this description subsumes the one
givenin 5.2, “Assignment Statements”.

Implementation Requirements

For an aggregate of a controlled type whose value is assigned, other than by an assignment_statement,
the implementation shall not create a separate anonymous object for the aggregate. The aggregate value
shall be constructed directly in the target of the assignment operation and Adjust is not called on the target
object.

Implementation Permissions
An implementation is alowed to relax the above rules (for nonlimited controlled types) in the following
ways.

e For an assignment_statement that assigns to an object the value of that same object, the
implementation need not do anything.

e For an assignment_statement for a noncontrolled type, the implementation may finalize and
assign each component of the variable separately (rather than finalizing the entire variable and
assigning the entire new value) unless a discriminant of the variable is changed by the
assignment.

e For an aggregate or function call whose value is assigned into a target object, the
implementation need not create a separate anonymous object if it can safely create the value of
the aggregate or function call directly in the target object. Similarly, for an assignment_-
statement, the implementation need not create an anonymous object if the value being assigned
is the result of evaluating a name denoting an object (the source object) whose storage cannot
overlap with the target. If the source object might overlap with the target object, then the
implementation can avoid the need for an intermediary anonymous object by exercising one of
the above permissions and perform the assignment one component at a time (for an overlapping
array assignment), or not at all (for an assignment where the target and the source of the
assignment are the same object).

Furthermore, an implementation is permitted to omit implicit Initialize, Adjust, and Finalize calls and
associated assignment operations on an object of a nonlimited controlled type provided that:

« any omitted Initialize call is not acall on auser-defined Initialize procedure, and

« any usage of the value of the object after the implicit Initialize or Adjust call and before any
subsequent Finalize call on the object does not change the external effect of the program, and

« after the omission of such calls and operations, any execution of the program that executes an
Initialize or Adjust call on an object or initializes an object by an aggregate will aso later
execute a Finalize call on the object and will always do so prior to assigning a new value to the
object, and

» the assignment operations associated with omitted Adjust calls are also omitted.
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This permission applies to Adjust and Finalize calls even if the implicit calls have additional external
effects.

7.6.1 Completion and Finalization

This subclause defines completion and leaving of the execution of constructs and entities. A master is the
execution of a construct that includes finalization of local objects after it is complete (and after waiting for
any local tasks — see 9.3), but before leaving. Other constructs and entities are left immediately upon
completion.

Dynamic Semantics
The execution of a construct or entity is complete when the end of that execution has been reached, or
when a transfer of control (see 5.1) causes it to be abandoned. Completion due to reaching the end of
execution, or due to the transfer of control of an exit_statement, return statement, goto_statement, or
requeue_statement or of the selection of a terminate_alternative is normal completion. Completion is
abnormal otherwise — when control is transferred out of a construct due to abort or the raising of an
exception.

After execution of a construct or entity is complete, it is left, meaning that execution continues with the
next action, as defined for the execution that is taking place. Leaving an execution happens immediately
after its completion, except in the case of a master: the execution of a body other than a package_body;
the execution of a statement; or the evaluation of an expression, function_call, or range that is not part of
an enclosing expression, function_call, range, or simple_statement other than a simple_return_-
statement. A master isfinalized after it is complete, and before it is left.

For the finalization of a master, dependent tasks are first awaited, as explained in 9.3. Then each object
whose accessibility level is the same as that of the master is finalized if the object was successfully
initialized and still exists. These actions are performed whether the master is left by reaching the last
statement or via a transfer of control. When a transfer of control causes completion of an execution, each
included master isfinalized in order, from innermost outward.

For the finalization of an object:
e |f the object is of an elementary type, finalization has no effect;
« |f the object is of a controlled type, the Finalize procedureis called;
e |f the object is of a protected type, the actions defined in 9.4 are performed;

e |If the object is of a composite type, then after performing the above actions, if any, every
component of the object is finalized in an arbitrary order, except as follows: if the object has a
component with an access discriminant constrained by a per-object expression, this component
is finalized before any components that do not have such discriminants; for an object with
several components with such a discriminant, they are finalized in the reverse of the order of
their component_declarations;

« |If the object has coextensions (see 3.10.2), each coextension is finalized after the object whose
access discriminant designatesiit.

Immediately before an instance of Unchecked Deallocation reclaims the storage of an object, the object is
finalized. If an instance of Unchecked_Deallocation is never applied to an object created by an allocator,
the object will still exist when the corresponding master completes, and it will be finalized then.

The order in which the finalization of a master performs finalization of objects is as follows: Objects
created by declarations in the master are finalized in the reverse order of their creation. For objects that
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were created by allocators for an access type whose ultimate ancestor is declared in the master, thisruleis
applied as though each such object that still exists had been created in an arbitrary order at the first
freezing point (see 13.14) of the ultimate ancestor type; the finalization of these objects is called the
finalization of the collection. After the finalization of a master is complete, the objects finalized as part of
its finalization cease to exist, as do any types and subtypes defined and created within the master.

The target of an assignment_statement is finalized before copying in the new value, as explained in 7.6.

The master of an object is the master enclosing its creation whose accessibility level (see 3.10.2) is equal
to that of the object.

In the case of an expression that is a master, finalization of any (anonymous) objects occurs as the final
part of evaluation of the expression.

Bounded (Run-Time) Errors

It is abounded error for acall on Finalize or Adjust that occurs as part of object finalization or assignment
to propagate an exception. The possible consequences depend on what action invoked the Finalize or
Adjust operation:

» For a Finalize invoked as part of an assignment_statement, Program_Error is raised at that
point.

e For an Adjust invoked as part of assignment operations other than those invoked as part of an
assignment_statement, other adjustments due to be performed might or might not be
performed, and then Program_Error is raised. During its propagation, finalization might or might
not be applied to objects whose Adjust failed. For an Adjust invoked as part of an
assignment_statement, any other adjustments due to be performed are performed, and then
Program_Error israised.

e For aFinaize invoked as part of a call on an instance of Unchecked Deallocation, any other
finalizations due to be performed are performed, and then Program_Error is raised.

» For aFinalize invoked as part of the finalization of the anonymous object created by a function
cal or aggregate, any other finalizations due to be performed are performed, and then
Program_Error israised.

« For a Finalize invoked due to reaching the end of the execution of a master, any other
finalizations associated with the master are performed, and Program_Error is raised immediately
after leaving the master.

e For a Finalize invoked by the transfer of control of an exit_statement, return statement,
goto_statement, or requeue_statement, Program Error is raised no earlier than after the
finalization of the master being finalized when the exception occurred, and no later than the
point where normal execution would have continued. Any other finalizations due to be
performed up to that point are performed before raising Program_Error.

e For a Finalize invoked by a transfer of control that is due to raising an exception, any other
finalizations due to be performed for the same master are performed; Program_Error is raised
immediately after leaving the master.

e For a Finalize invoked by a transfer of control due to an abort or selection of a terminate
aternative, the exception isignored; any other finalizations due to be performed are performed.

NOTES

17 The rules of Section 10 imply that immediately prior to partition termination, Finalize operations are applied to
library-level controlled objects (including those created by allocators of library-level access types, except those already
finalized). This occurs after waiting for library-level tasks to terminate.
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18 A constant is only constant between itsinitialization and finalization. Both initialization and finalization are allowed to
change the value of a constant.

19 Abort is deferred during certain operations related to controlled types, as explained in 9.8. Those rules prevent an
abort from causing a controlled object to be left in an ill-defined state.

20 The Finaize procedure is called upon findization of a controlled object, even if Finalize was caled earlier, either
explicitly or as part of an assignment; hence, if a controlled type is visibly controlled (implying that its Finalize primitive
is directly calable), or is nonlimited (implying that assignment is alowed), its Finaize procedure should be designed to
have noiill effect if it is applied a second time to the same object.
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Section 8: Visibility Rules

The rules defining the scope of declarations and the rules defining which identifiers, character_literals,
and operator_symbols are visible at (or from) various places in the text of the program are described in
this section. The formulation of these rules uses the notion of a declarative region.

As explained in Section 3, a declaration declares a view of an entity and associates a defining name with
that view. The view comprises an identification of the viewed entity, and possibly additional properties. A
usage name denotes a declaration. It also denotes the view declared by that declaration, and denotes the
entity of that view. Thus, two different usage names might denote two different views of the same entity;
in this case they denote the same entity.

8.1 Declarative Region

Satic Semantics

For each of the following constructs, there is a portion of the program text called its declarative region,
within which nested declarations can occur:

« any declaration, other than that of an enumeration type, that is not a completion of a previous
declaration;

¢ ablock_statement;

¢ aloop_statement;

e anextended_return_statement;
e anaccept_statement;

e anexception_handler.

The declarative region includes the text of the construct together with additional text determined
(recursively), asfollows:

e |f adeclarationisincluded, soisitscompletion, if any.

e If the declaration of a library unit (including Standard — see 10.1.1) is included, so are the
declarations of any child units (and their completions, by the previous rule). The child
declarations occur after the declaration.

e |f abody_stub isincluded, so isthe corresponding subunit.

« |If atype_declaration is included, then so is a corresponding record_representation_clause, if
any.

The declarative region of a declaration is also called the declarative region of any view or entity declared
by the declaration.

A declaration occurs immediately within a declarative region if this region is the innermost declarative
region that encloses the declaration (the immediately enclosing declarative region), not counting the
declarative region (if any) associated with the declaration itself.

A declaration is local to a declarative region if the declaration occurs immediately within the declarative
region. An entity islocal to a declarative region if the entity is declared by a declaration that is local to the
declarative region.
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A declaration is global to a declarative region if the declaration occurs immediately within another
declarative region that encloses the declarative region. An entity is global to a declarative region if the
entity is declared by a declaration that is global to the declarative region.

NOTES

1 The children of a parent library unit are inside the parent's declarative region, even though they do not occur inside the
parent's declaration or body. This implies that one can use (for example) "P.Q" to refer to a child of P whose defining
nameis Q, and that after "use P;" Q can refer (directly) to that child.

2 As explained above and in 10.1.1, “Compilation Units - Library Units’, al library units are descendants of Standard,
and so are contained in the declarative region of Standard. They are not inside the declaration or body of Standard, but
they areinside its declarative region.

3 For a declarative region that comes in multiple parts, the text of the declarative region does not contain any text that
might appear between the parts. Thus, when a portion of a declarative region is said to extend from one place to another in
the declarative region, the portion does not contain any text that might appear between the parts of the declarative region.

8.2 Scope of Declarations

For each declaration, the language rules define a certain portion of the program text called the scope of the
declaration. The scope of a declaration is also called the scope of any view or entity declared by the
declaration. Within the scope of an entity, and only there, there are places where it is legal to refer to the
declared entity. These places are defined by the rules of visibility and overloading.

Satic Semantics

The immediate scope of a declaration is a portion of the declarative region immediately enclosing the
declaration. The immediate scope starts at the beginning of the declaration, except in the case of an
overloadable declaration, in which case the immediate scope starts just after the place where the profile of
the callable entity is determined (which is at the end of the _specification for the callable entity, or at the
end of the generic_instantiation if an instance). The immediate scope extends to the end of the declarative
region, with the following exceptions:

* Theimmediate scope of alibrary_item includes only its semantic dependents.

* The immediate scope of a declaration in the private part of a library unit does not include the
visible part of any public descendant of that library unit.

The visible part of (a view of) an entity is a portion of the text of its declaration containing declarations
that are visible from outside. The private part of (a view of) an entity that has a visible part contains all
declarations within the declaration of (the view of) the entity, except those in the visible part; these are not
visible from outside. Visible and private parts are defined only for these kinds of entities: callable entities,
other program units, and composite types.

* Thevisble part of aview of acallable entity isits profile.

e The visible part of a composite type other than a task or protected type consists of the
declarations of all components declared (explicitly or implicitly) within the type_declaration.

« The visible part of a generic unit includes the generic_formal_part. For a generic package, it
also includes the first list of basic_declarative_items of the package_specification. For a
generic subprogram, it also includes the profile.

« The visible part of a package, task unit, or protected unit consists of declarations in the program
unit's declaration other than those following the reserved word private, if any; see 7.1 and 12.7
for packages, 9.1 for task units, and 9.4 for protected units.
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The scope of a declaration always contains the immediate scope of the declaration. In addition, for a given
declaration that occurs immediately within the visible part of an outer declaration, or isa public child of an
outer declaration, the scope of the given declaration extends to the end of the scope of the outer
declaration, except that the scope of alibrary_item includes only its semantic dependents.

The scope of an attribute_definition_clause is identical to the scope of a declaration that would occur at
the point of the attribute_definition_clause.

The immediate scope of a declaration is also the immediate scope of the entity or view declared by the
declaration. Similarly, the scope of a declaration is also the scope of the entity or view declared by the
declaration.

NOTES

4 There are notations for denoting visible declarations that are not directly visible. For example, parameter_-
specifications are in the visible part of a subprogram_declaration so that they can be used in named-notation calls
appearing outside the called subprogram. For another example, declarations of the visible part of a package can be denoted
by expanded names appearing outside the package, and can be made directly visible by ause_clause.

8.3 Visibility

The visibility rules, given below, determine which declarations are visible and directly visible at each
place within a program. The visibility rules apply to both explicit and implicit declarations.

Static Semantics

A declaration is defined to be directly visible at places where a name consisting of only an identifier or
operator_symbol is sufficient to denote the declaration; that is, no selected_component notation or
specia context (such as preceding => in a hamed association) is necessary to denote the declaration. A
declaration is defined to be visible wherever it is directly visible, as well as at other places where some
name (such as aselected_component) can denote the declaration.

The syntactic category direct_name is used to indicate contexts where direct visibility is required. The
syntactic category selector_name is used to indicate contexts where visibility, but not direct visibility, is
required.

There are two kinds of direct visibility: immediate visibility and use-visibility. A declaration is
immediately visible at a place if it is directly visible because the place is within its immediate scope. A
declaration is use-visible if it is directly visible because of a use_clause (see 8.4). Both conditions can
apply.

A declaration can be hidden, either from direct visibility, or from al visibility, within certain parts of its
scope. Where hidden from all visibility, it is not visible at al (neither using a direct_name nor a
selector_name). Where hidden from direct visibility, only direct visibility is lost; visibility using a
selector_name is still possible.

Two or more declarations are overloaded if they al have the same defining name and there is a place
where they are al directly visible.

The declarations of callable entities (including enumeration literals) are overloadable, meaning that
overloading is allowed for them.

Two declarations are homographs if they have the same defining name, and, if both are overloadable, their
profiles are type conformant. An inner declaration hides any outer homograph from direct visibility.
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Two homographs are not generally allowed immediately within the same declarative region unless one
overrides the other (see Legality Rules below). The only declarations that are overridable are the implicit
declarations for predefined operators and inherited primitive subprograms. A declaration overrides another
homograph that occurs immediately within the same declarative region in the following cases:

A declaration that is not overridable overrides one that is overridable, regardless of which
declaration occurs first;

Theimplicit declaration of an inherited operator overrides that of a predefined operator;

An implicit declaration of an inherited subprogram overrides a previous implicit declaration of
an inherited subprogram.

If two or more homographs are implicitly declared at the same place:

- If at least one is a subprogram that is neither a null procedure nor an abstract subprogram,
and does not require overriding (see 3.9.3), then they override those that are null
procedures, abstract subprograms, or require overriding. If more than one such homograph
remains that is not thus overridden, then they are all hidden from al visibility.

« Otherwise (all are null procedures, abstract subprograms, or require overriding), then any
null procedure overrides all abstract subprograms and all subprograms that require
overriding; if more than one such homograph remains that is not thus overridden, then if
they are al fully conformant with one another, one is chosen arbitrarily; if not, they are all
hidden from all visibility.

For an implicit declaration of a primitive subprogram in a generic unit, there is a copy of this
declaration in an instance. However, a whole new set of primitive subprograms is implicitly
declared for each type declared within the visible part of the instance. These new declarations
occur immediately after the type declaration, and override the copied ones. The copied ones can
be called only from within the instance; the new ones can be caled only from outside the
instance, although for tagged types, the body of a hew one can be executed by a call to an old
one.

A declaration is visible within its scope, except where hidden from all visibility, as follows:

An overridden declaration is hidden from all visibility within the scope of the overriding
declaration.

A declaration is hidden from all visibility until the end of the declaration, except:

- For arecord type or record extension, the declaration is hidden from all visibility only until
the reserved word record;

. For a package_declaration, generic_package_declaration, or subprogram_body, the
declaration is hidden from al visibility only until the reserved word is of the declaration;

» For atask declaration or protected declaration, the declaration is hidden from all visibility
only until the reserved word with of the declaration if there is one, or the reserved word is
of the declaration if thereis no with.

If the completion of a declaration is a declaration, then within the scope of the completion, the
first declaration is hidden from all visibility. Similarly, a discriminant_specification or
parameter_specification is hidden within the scope of a corresponding discriminant_-
specification or parameter_specification of a corresponding completion, or of a corresponding
accept_statement.

The declaration of alibrary unit (including alibrary_unit_renaming_declaration) is hidden from
al vishility at places outside its declarative region that are not within the scope of a
nonlimited_with_clause that mentions it. The limited view of a library package is hidden from
al visibility at places that are not within the scope of a limited_with_clause that mentionsiit; in
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addition, the limited view is hidden from all visibility within the declarative region of the
package, as well as within the scope of any nonlimited_with_clause that mentions the package.
Where the declaration of the limited view of a package is visible, any name that denotes the
package denotes the limited view, including those provided by a package renaming.

¢ For each declaration or renaming of a generic unit as a child of some parent generic package,
there is a corresponding declaration nested immediately within each instance of the parent. Such
a nested declaration is hidden from all visibility except at places that are within the scope of a
with_clause that mentions the child.

A declaration with a defining_identifier or defining_operator_symbol is immediately visible (and hence
directly visible) within its immediate scope except where hidden from direct visibility, as follows:

¢ A declaration is hidden from direct visibility within the immediate scope of a homograph of the
declaration, if the homograph occurs within an inner declarative region;

e A declaration is aso hidden from direct visibility where hidden from all visibility.

An attribute_definition_clause is visible everywhere within its scope.

Name Resolution Rules

A direct_name shall resolve to denote a directly visible declaration whose defining name is the same as
the direct_name. A selector_name shall resolve to denote a visible declaration whose defining name is
the same as the selector_name.

These rules on visihility and direct visibility do not apply in a context_clause, a parent_unit_name, or a
pragma that appears at the place of a compilation_unit. For those contexts, see the rules in 10.1.6,
“Environment-Level Visibility Rules’.

Legality Rules
A non-overridable declaration is illegal if there is a homograph occurring immediately within the same
declarative region that is visible at the place of the declaration, and is not hidden from all visibility by the
non-overridable declaration. In addition, a type extension is illegal if somewhere within its immediate
scope it has two visible components with the same name. Similarly, the context_clause for a compilation
unit isillegal if it mentions (in a with_clause) some library unit, and there is a homograph of the library
unit that is visible at the place of the compilation unit, and the homograph and the mentioned library unit
are both declared immediately within the same declarative region. These rules also apply to dispatching
operations declared in the visible part of an instance of a generic unit. However, they do not apply to other
overloadable declarations in an instance; such declarations may have type conformant profiles in the
instance, so long as the corresponding declarations in the generic were not type conformant.
NOTES

5 Visibility for compilation units follows from the definition of the environment in 10.1.4, except that it is necessary to
apply awith_clause to obtain visibility to alibrary_unit_declaration or library_unit_renaming_declaration.

6 In addition to the visibility rules given above, the meaning of the occurrence of adirect_name or selector_name at a
given placein the text can depend on the overloading rules (see 8.6).

7 Not al contexts where an identifier, character_literal, or operator_symbol are alowed require visibility of a
corresponding declaration. Contexts where visibility is not required are identified by using one of these three syntactic
categories directly in asyntax rule, rather than using direct_name or selector_name.
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8.3.1 Overriding Indicators

An overriding_indicator is used to declare that an operation is intended to override (or not override) an
inherited operation.

Syntax
overriding_indicator ::= [not] overriding

Legality Rules
If an abstract_subprogram_declaration, null_procedure_declaration, subprogram_body, subprogram_-
body_stub, subprogram_renaming_declaration, generic_instantiation of a subprogram, or
subprogram_declaration other than a protected subprogram has an overriding_indicator, then:

» the operation shall be a primitive operation for some type;

« if the overriding_indicator is overriding, then the operation shall override a homograph at the
place of the declaration or body;

e if the overriding_indicator is not overriding, then the operation shall not override any
homograph (at any place).
In addition to the places where Legality Rules normally apply, these rules also apply in the private part of
an instance of a generic unit.
NOTES
8 Rules for overriding_indicators of task and protected entries and of protected subprograms are found in 9.5.2 and 9.4,
respectively.
Examples
The use of overriding_indicators allows the detection of errors at compile-time that otherwise might not be
detected at all. For instance, we might declare a security queue derived from the Queue interface of 3.9.4
as.
type Security_Queue is new Queue with record ...;
overriding

procedure Append(Q : in out Security_Queue; Person : in Person_Nane);
overriding
procedure Renpve_First(Q : in out Security_Queue; Person : in Person_Nane);

overriding
function Cur_Count(Q : in Security_Queue) return Natural

overriding
function Max_Count(Q : in Security_Queue) return Natural;

not overriding

procedure Arrest(Q : in out Security_Queue; Person : in Person_Nane);
The first four subprogram declarations guarantee that these subprograms will override the four
subprograms inherited from the Queue interface. A misspelling in one of these subprograms will be
detected by the implementation. Conversely, the declaration of Arrest guarantees that this is a new
operation.
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8.4 Use Clauses

A use_package_clause achieves direct visibility of declarations that appear in the visible part of a
package; ause_type_clause achieves direct visibility of the primitive operators of atype.

Syntax
use_clause ::= use_package_clause | use_type_clause
use_package_clause ::= use package name {, package name};
use_type_clause ::= use type subtype_mark {, subtype_mark};

Legality Rules
A package name of ause_package_clause shall denote a nonlimited view of a package.

Static Semantics
For each use_clause, there is a certain region of text called the scope of the use_clause. For a
use_clause within a context_clause of alibrary_unit_declaration or library_unit_renaming_declaration,
the scope is the entire declarative region of the declaration. For ause_clause within acontext_clause of a
body, the scope is the entire body and any subunits (including multiply nested subunits). The scope does
not include context_clauses themselves.

For a use_clause immediately within a declarative region, the scope is the portion of the declarative
region starting just after the use_clause and extending to the end of the declarative region. However, the
scope of ause_clause in the private part of a library unit does not include the visible part of any public
descendant of that library unit.

A package is named in ause_package_clause if it is denoted by a package name of that clause. A type
isnamed in ause_type_clause if it is determined by a subtype_mark of that clause.

For each package named in a use_package_clause whose scope encloses a place, each declaration that
occurs immediately within the declarative region of the package is potentially use-visible at this place if
the declaration is visible at this place. For each type T or T'Class named in a use_type_clause whose
scope encloses a place, the declaration of each primitive operator of type T is potentially use-visible at this
placeif its declaration isvisible at this place.

A declaration isuse-visibleif it is potentially use-visible, except in these naming-conflict cases:

e A potentially use-visible declaration is not use-visible if the place considered is within the
immediate scope of a homograph of the declaration.

« Potentially use-visible declarations that have the same identifier are not use-visible unless each
of them is an overloadable declaration.

Dynamic Semantics
The elaboration of ause_clause has no effect.

Examples
Example of a use clause in a context clause:
wi th Ada. Cal endar; use Ada;
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Example of a use type clause:

use type Rational _Nunmbers.Rational; -- see7.1
Two_Thirds: Rational _Nunbers. Rational := 2/3;

8.5 Renaming Declarations

A renaming_declaration declares another name for an entity, such as an object, exception, package,
subprogram, entry, or generic unit. Alternatively, a subprogram_renaming_declaration can be the
completion of aprevious subprogram_declaration.

Syntax
renaming_declaration ::=
object_renaming_declaration
| exception_renaming_declaration
| package_renaming_declaration
| subprogram_renaming_declaration
| generic_renaming_declaration

Dynamic Semantics
The elaboration of a renaming_declaration evaluates the name that follows the reserved word renames
and thereby determines the view and entity denoted by this name (the renamed view and renamed entity).
A name that denotes the renaming_declaration denotes (a new view of) the renamed entity.
NOTES

9 Renaming may be used to resolve name conflicts and to act as a shorthand. Renaming with a different identifier or
operator_symbol does not hide the old name; the new name and the old name need not be visible at the same places.

10 A task or protected object that is declared by an explicit object_declaration can be renamed as an object. However, a
single task or protected object cannot be renamed since the corresponding type is anonymous (meaning it has no nameable
subtypes). For similar reasons, an object of an anonymous array or access type cannot be renamed.

11 A subtype defined without any additional constraint can be used to achieve the effect of renaming another subtype
(including atask or protected subtype) asin

subtype Mode is Ada. Text _| O Fil e_Mode;

8.5.1 Object Renaming Declarations

An object_renaming_declaration is used to rename an object.

Syntax

object_renaming_declaration ::=
defining_identifier : [null_exclusion] subtype_mark renames object_name;
| defining_identifier : access_definition renames object_name;

Name Resolution Rules

The type of the object_name shall resolve to the type determined by the subtype_mark, or in the case
where the type is defined by an access_definition, to an anonymous access type. If the anonymous access
typeis an access-to-object type, the type of the object_name shall have the same designated type as that of
the access_definition. If the anonymous access type is an access-to-subprogram type, the type of the
object_name shall have a designated profile that is type conformant with that of the access_definition.

Legality Rules
The renamed entity shall be an object.
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In the case where the type is defined by an access_definition, the type of the renamed object and the type
defined by the access_definition:

« shall both be access-to-object types with statically matching designated subtypes and with both
or neither being access-to-constant types; or

« shall both be access-to-subprogram types with subtype conformant designated profiles.

For an object_renaming_declaration with a null_exclusion or an access_definition that has a
null_exclusion:

e if the object name denotes a generic forma object of a generic unit G, and the
object_renaming_declaration occurs within the body of G or within the body of a generic unit
declared within the declarative region of G, then the declaration of the formal object of G shall
have a null_exclusion;

« otherwise, the subtype of the object name shall exclude null. In addition to the places where
Legality Rules normally apply (see 12.3), this rule applies also in the private part of an instance
of ageneric unit.

The renamed entity shall not be a subcomponent that depends on discriminants of a variable whose
nominal subtype is unconstrained, unless this subtype is indefinite, or the variable is constrained by its
initial value. A slice of an array shall not be renamed if this restriction disallows renaming of the array. In
addition to the places where Legality Rules normally apply, these rules apply also in the private part of an
instance of a generic unit. These rules also apply for a renaming that appears in the body of a generic unit,
with the additional requirement that even if the nominal subtype of the variable is indefinite, its type shall
not be a descendant of an untagged generic formal derived type.

Static Semantics

An object_renaming_declaration declares a new view of the renamed object whose properties are
identical to those of the renamed view. Thus, the properties of the renamed object are not affected by the
renaming_declaration. In particular, its value and whether or not it is a constant are unaffected; similarly,
the null exclusion or constraints that apply to an object are not affected by renaming (any constraint
implied by the subtype_mark or access_definition of the object_renaming_declaration isignored).

Examples
Example of renaming an object:
decl are
L : Person renanes Leftnost_Person; -- see3.10.1
begi n

L. Age := L.Age + 1;
end;

8.5.2 Exception Renaming Declarations

An exception_renaming_declaration is used to rename an exception.

yntax
exception_renaming_declaration ::= defining_identifier : exception renames exception_name;

Legality Rules
The renamed entity shall be an exception.
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Satic Semantics
4 Anexception_renaming_declaration declares a new view of the renamed exception.

Examples
5  Example of renaming an exception:
6 EOF : exception renames Ada.| O Exceptions. End_Error; --seeAl3

8.5.3 Package Renaming Declarations

1 A package_renaming_declaration is used to rename a package.

Syntax
2 package_renaming_declaration ::=
package defining_program_unit_name renames package_name;
Legality Rules
3 Therenamed entity shall be a package.

312 If the package name of a package_renaming_declaration denotes a limited view of a package P, then a
name that denotes the package_renaming_declaration shall occur only within the immediate scope of the
renaming or the scope of a with_clause that mentions the package P or, if P is a nested package, the
innermost library package enclosing P.

Satic Semantics
4 A package_renaming_declaration declares anew view of the renamed package.

4172 At places where the declaration of the limited view of the renamed package is visible, aname that denotes
the package_renaming_declaration denotes alimited view of the package (see 10.1.1).

Examples
5  Example of renaming a package:
6 package TM renanes Tabl e_Manager;

8.5.4 Subprogram Renaming Declarations

1 A subprogram_renaming_declaration can serve as the completion of a subprogram_declaration; such a
renaming_declaration is called a renaming-as-body. A subprogram_renaming_declaration that is not a
completion is caled a renaming-as-declaration, and is used to rename a subprogram (possibly an
enumeration literal) or an entry.

Syntax

212 subprogram_renaming_declaration ::=
[overriding_indicator]
subprogram_specification renames callable_entity_name;

Name Resolution Rules

3 Theexpected profile for the callable_entity name is the profile given in the subprogram_specification.
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Legality Rules
The profile of a renaming-as-declaration shall be mode-conformant with that of the renamed callable
entity.

For a parameter or result subtype of the subprogram_specification that has an explicit null_exclusion:

« if the callable_entity name denotes a generic formal subprogram of a generic unit G, and the
subprogram_renaming_declaration occurs within the body of a generic unit G or within the
body of a generic unit declared within the declarative region of the generic unit G, then the
corresponding parameter or result subtype of the formal subprogram of G shal have a
null_exclusion;

¢ otherwise, the subtype of the corresponding parameter or result type of the renamed callable
entity shall exclude null. In addition to the places where Legality Rules normally apply (see
12.3), thisrule applies also in the private part of an instance of a generic unit.

The profile of a renaming-as-body shall conform fully to that of the declaration it completes. If the
renaming-as-body completes that declaration before the subprogram it declares is frozen, the profile shall
be mode-conformant with that of the renamed callable entity and the subprogram it declares takes its
convention from the renamed subprogram; otherwise, the profile shall be subtype-conformant with that of
the renamed callable entity and the convention of the renamed subprogram shall not be Intrinsic. A
renaming-as-body isillegal if the declaration occurs before the subprogram whose declaration it completes
is frozen, and the renaming renames the subprogram itself, through one or more subprogram renaming
declarations, none of whose subprograms has been frozen.

The callable_entity name of a renaming shall not denote a subprogram that requires overriding (see
3.9.3).

The callable_entity_name of arenaming-as-body shall not denote an abstract subprogram.

A name that denotes a formal parameter of the subprogram_specification is not allowed within the
callable_entity name.

Static Semantics

A renaming-as-declaration declares a new view of the renamed entity. The profile of this new view takes
its subtypes, parameter modes, and calling convention from the original profile of the callable entity, while
taking the formal parameter names and default_expressions from the profile given in the
subprogram_renaming_declaration. The new view is a function or procedure, never an entry.

Dynamic Semantics
For a call to a subprogram whose body is given as a renaming-as-body, the execution of the renaming-as-
body is equivalent to the execution of a subprogram_body that ssimply calls the renamed subprogram with
itsformal parameters as the actual parameters and, if it isafunction, returns the value of the call.

For a call on arenaming of a dispatching subprogram that is overridden, if the overriding occurred before
the renaming, then the body executed is that of the overriding declaration, even if the overriding
declaration is not visible at the place of the renaming; otherwise, the inherited or predefined subprogram is
called.

Bounded (Run-Time) Errors

If a subprogram directly or indirectly renames itself, then it is a bounded error to call that subprogram.
Possible consequences are that Program_Error or Storage_Error is raised, or that the call results in infinite
recursion.
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NOTES

12 A procedure can only be renamed as a procedure. A function whose defining_designator is either an identifier or an
operator_symbol can be renamed with either an identifier or an operator_symbol; for renaming as an operator, the
subprogram specification given in the renaming_declaration is subject to the rules given in 6.6 for operator declarations.
Enumeration literals can be renamed as functions; similarly, attribute_references that denote functions (such as references
to Succ and Pred) can be renamed as functions. An entry can only be renamed as a procedure; the new name is only
allowed to appear in contexts that alow a procedure name. An entry of a family can be renamed, but an entry family
cannot be renamed as awhole.

13 The operators of the root numeric types cannot be renamed because the types in the profile are anonymous, so the
corresponding specifications cannot be written; the same holds for certain attributes, such as Pos.

14 Calls with the new name of arenamed entry are procedure_call_statements and are not allowed at places where the
syntax requires an entry_call_statement in conditional_ and timed_entry_calls, nor in an asynchronous_select; similarly,
the Count attribute is not available for the new name.

15 The primitiveness of a renaming-as-declaration is determined by its profile, and by where it occurs, as for any
declaration of (a view of) a subprogram; primitiveness is not determined by the renamed view. In order to perform a
dispatching call, the subprogram name has to denote a primitive subprogram, not a non-primitive renaming of a primitive
subprogram.

Examples
Examples of subprogram renaming declarations:
procedure My_Wite(C: in Character) renanmes Pool (K). Wite; -- see4d.l3
function Real _Plus(Left, Right : Real ) return Real renanes "+";
function Int_Plus (Left, Right : Integer) return Integer renanes "+";
function Rouge return Col or renames Red; -- see35.1

functi on Rot return Col or renanes Red;
function Rosso return Col or renanmes Rouge;

function Next(X : Color) return Color renames Col or' Succ; -- see35.1

Example of a subprogram renaming declaration with new parameter names:
function "*" (X, Y : Vector) return Real renames Dot_Product; -- see6.1

Example of a subprogram renaming declaration with a new default expression:

function Mnimum(L : Link := Head) return Cell renames Mn_Cell; -- see6.1

8.5.5 Generic Renaming Declarations

A generic_renaming_declaration is used to rename a generic unit.

Syntax
generic_renaming_declaration ::=
generic package defining_program_unit_name renames generic_package name;
| generic procedure defining_program_unit_name renames generic_procedure_name;
| generic function defining_program_unit_name renames generic_function_name;
Legality Rules

The renamed entity shall be a generic unit of the corresponding kind.

Satic Semantics
A generic_renaming_declaration declares a new view of the renamed generic unit.
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NOTES

16 Although the properties of the new view are the same as those of the renamed view, the place where the
generic_renaming_declaration occurs may affect the legality of subsequent renamings and instantiations that denote the
generic_renaming_declaration, in particular if the renamed generic unit isalibrary unit (see 10.1.1).

Examples

Example of renaming a generic unit:
generi c package Enum | O renanes Ada. Text_| O Enuneration_|I G  --seeA.10.10

8.6 The Context of Overload Resolution

Because declarations can be overloaded, it is possible for an occurrence of a usage name to have more than
one possible interpretation; in most cases, ambiguity is disallowed. This clause describes how the possible
interpretations resolve to the actual interpretation.

Certain rules of the language (the Name Resolution Rules) are considered “overloading rules’. If a
possible interpretation violates an overloading rule, it is assumed not to be the intended interpretation;
some other possible interpretation is assumed to be the actual interpretation. On the other hand, violations
of non-overloading rules do not affect which interpretation is chosen; instead, they cause the construct to
beillegal. To be legal, there usually has to be exactly one acceptable interpretation of a construct that is a
“complete context”, not counting any nested complete contexts.

The syntax rules of the language and the visibility rules given in 8.3 determine the possible interpretations.
Most type checking rules (rules that require a particular type, or a particular class of types, for example)
are overloading rules. Various rules for the matching of formal and actual parameters are overloading
rules.

Name Resolution Rules

Overload resolution is applied separately to each complete context, not counting inner complete contexts.
Each of the following constructs is a complete context:

¢ A context_item.

« A declarative_item or declaration.

* A statement.

* A pragma_argument_association.

¢ Theexpression of acase_statement.

An (overdl) interpretation of a complete context embodies its meaning, and includes the following
information about the constituents of the complete context, not including constituents of inner complete
contexts:

« for each constituent of the complete context, to which syntactic categories it belongs, and by
which syntax rules; and

« for each usage name, which declaration it denotes (and, therefore, which view and which entity
it denotes); and

e for a complete context that is a declarative_item, whether or not it is a completion of a
declaration, and (if so) which declaration it completes.

A possible interpretation is one that obeys the syntax rules and the visibility rules. An acceptable
interpretation is a possible interpretation that obeys the overloading rules, that is, those rules that specify
an expected type or expected profile, or specify how a construct shall resolve or be interpreted.
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The interpretation of a constituent of a complete context is determined from the overall interpretation of
the complete context as a whole. Thus, for example, “interpreted as a function_call,” means that the
construct's interpretation says that it belongs to the syntactic category function_call.

Each occurrence of a usage name denotes the declaration determined by its interpretation. It also denotes
the view declared by its denoted declaration, except in the following cases:

« |If a usage name appears within the declarative region of a type_declaration and denotes that
same type_declaration, then it denotes the current instance of the type (rather than the type
itself); the current instance of atype is the object or value of the type that is associated with the
execution that evaluates the usage name. This rule does not apply if the usage name appears
within the subtype_mark of an access_definition for an access-to-object type, or within the
subtype of a parameter or result of an access-to-subprogram type.

« |If ausage name appears within the declarative region of a generic_declaration (but not within
its generic_formal_part) and it denotes that same generic_declaration, then it denotes the
current instance of the generic unit (rather than the generic unit itself). See also 12.3.

A usage name that denotes a view also denotes the entity of that view.

The expected type for a given expression, name, or other construct determines, according to the type
resolution rules given below, the types considered for the construct during overload resolution. The type
resolution rules provide support for class-wide programming, universal literals, dispatching operations,
and anonymous access types:

« |If aconstruct is expected to be of any type in a class of types, or of the universal or class-wide

type for a class, then the type of the construct shall resolve to a type in that class or to a
universal type that covers the class.

« If the expected type for a construct is a specific type T, then the type of the construct shall
resolve either to T, or:
+ toTClass, or
» toauniversal typethat coversT; or

- when T is a specific anonymous access-to-object type (see 3.10) with designated type D, to
an access-to-object type whose designated type is D'Class or is covered by D; or

- when T is an anonymous access-to-subprogram type (see 3.10), to an access-to-subprogram
type whose designated profile is type-conformant with that of T.

In certain contexts, such asin asubprogram_renaming_declaration, the Name Resolution Rules define an
expected profile for a given name; in such cases, the name shall resolve to the name of a callable entity
whose profileis type conformant with the expected profile.

Legality Rules
When a construct is one that requires that its expected type be a single type in a given class, the type of the
construct shall be determinable solely from the context in which the construct appears, excluding the
construct itself, but using the requirement that it be in the given class. Furthermore, the context shall not
be one that expects any type in some class that contains types of the given class; in particular, the
construct shall not be the operand of atype_conversion.

A complete context shall have at least one acceptable interpretation; if there is exactly one, then that oneis
chosen.

There is a preference for the primitive operators (and ranges) of the root numeric types root_integer and
root_real. In particular, if two acceptable interpretations of a constituent of a complete context differ only
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in that oneis for a primitive operator (or range) of the type root_integer or root_real, and the other is not,
the interpretation using the primitive operator (or range) of the root numeric typeis preferred.

For a complete context, if there is exactly one overall acceptable interpretation where each constituent's
interpretation is the same as or preferred (in the above sense) over those in all other overall acceptable
interpretations, then that one overall acceptable interpretation is chosen. Otherwise, the complete context
isambiguous.

A complete context other than a pragma_argument_association shall not be ambiguous.

A complete context that is a pragma_argument_association is alowed to be ambiguous (unless otherwise
specified for the particular pragma), but only if every acceptable interpretation of the pragma argument is
as aname that statically denotes a callable entity. Such aname denotes all of the declarations determined
by itsinterpretations, and al of the views declared by these declarations.

NOTES

17 If a usage name has only one acceptable interpretation, then it denotes the corresponding entity. However, this does
not mean that the usage name is necessarily legal since other requirements exist which are not considered for overload
resolution; for example, the fact that an expression is static, whether an object is constant, mode and subtype conformance
rules, freezing rules, order of elaboration, and so on.

Similarly, subtypes are not considered for overload resolution (the violation of a constraint does not make a program
illegal but raises an exception during program execution).
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Section 9: Tasks and Synchronization

The execution of an Ada program consists of the execution of one or more tasks. Each task represents a
separate thread of control that proceeds independently and concurrently between the points where it
interacts with other tasks. The various forms of task interaction are described in this section, and include;

« the activation and termination of atask;

« acall on aprotected subprogram of a protected object, providing exclusive read-write access, or
concurrent read-only access to shared data;

e acal on an entry, either of another task, allowing for synchronous communication with that
task, or of a protected object, allowing for asynchronous communication with one or more other
tasks using that same protected object;

* atimed operation, including a simple delay statement, a timed entry call or accept, or a timed
asynchronous select statement (see next item);

e an asynchronous transfer of control as part of an asynchronous select statement, where a task
stops what it is doing and begins execution at a different point in response to the completion of
an entry call or the expiration of adelay;

« an abort statement, allowing one task to cause the termination of another task.

In addition, tasks can communicate indirectly by reading and updating (unprotected) shared variables,
presuming the accessis properly synchronized through some other kind of task interaction.

Static Semantics

The properties of a task are defined by a corresponding task declaration and task_body, which together
define a program unit called atask unit.

Dynamic Semantics
Over time, tasks proceed through various states. A task is initially inactive; upon activation, and prior to

its termination it is either blocked (as part of some task interaction) or ready to run. While ready, a task
competes for the available execution resources that it requiresto run.

NOTES

1 Concurrent task execution may be implemented on multicomputers, multiprocessors, or with interleaved execution on a
single physical processor. On the other hand, whenever an implementation can determine that the required semantic
effects can be achieved when parts of the execution of a given task are performed by different physical processors acting
in parallel, it may choose to perform them in this way.

9.1 Task Units and Task Objects

A task unit is declared by a task declaration, which has a corresponding task_body. A task declaration
may be atask_type_declaration, in which case it declares a named task type; alternatively, it may be a
single_task_declaration, in which case it defines an anonymous task type, as well as declaring a named
task object of that type.

Syntax
task_type_declaration ::=
task type defining_identifier [known_discriminant_part] [is
[new interface_list with]
task_definition];
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single_task_declaration ::=
task defining_identifier [is
[new interface_list with]
task_definition];
task_definition ::=
{task_item}
[ private
{task_item}]
end [task_identifier]
task_item ::= entry_declaration | aspect_clause
task_body ::=
task body defining_identifier is
declarative_part
begin
handled_sequence_of_statements
end [task_identifier];
If atask_identifier appears at the end of atask_definition or task_body, it shall repeat the
defining_identifier.

Legality Rules
This paragraph was deleted.

Satic Semantics

A task_definition defines a task type and its first subtype. The first list of task_items of a task_definition,
together with the known_discriminant_part, if any, is called the visible part of the task unit. The optional
list of task_items after the reserved word private is called the private part of the task unit.

For atask declaration without atask_definition, atask_definition without task_itemsis assumed.

For a task declaration with an interface_list, the task type inherits user-defined primitive subprograms
from each progenitor type (see 3.9.4), in the same way that a derived type inherits user-defined primitive
subprograms from its progenitor types (see 3.4). If the first parameter of a primitive inherited subprogram
is of the task type or an access parameter designating the task type, and there is an entry_declaration for a
single entry with the same identifier within the task declaration, whose profile is type conformant with the
prefixed view profile of the inherited subprogram, the inherited subprogram is said to be implemented by
the conforming task entry.

Legality Rules

A task declaration requires a completion, which shall be a task_body, and every task_body shall be the
completion of some task declaration.

Each interface subtype_mark of an interface_list appearing within a task declaration shall denote a
limited interface type that is not a protected interface.

The prefixed view profile of an explicitly declared primitive subprogram of atagged task type shall not be
type conformant with any entry of the task type, if the first parameter of the subprogram is of the task type
or is an access parameter designating the task type.

For each primitive subprogram inherited by the type declared by a task declaration, at most one of the
following shall apply:
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« the inherited subprogram is overridden with a primitive subprogram of the task type, in which
case the overriding subprogram shall be subtype conformant with the inherited subprogram and
not abstract; or

¢ the inherited subprogram is implemented by a single entry of the task type; in which case its
prefixed view profile shall be subtype conformant with that of the task entry.

If neither applies, the inherited subprogram shall be a null procedure. In addition to the places where
Legality Rules normally apply (see 12.3), these rules also apply in the private part of an instance of a
generic unit.

Dynamic Semantics
The elaboration of a task declaration elaborates the task_definition. The elaboration of a single_task_-
declaration also creates an object of an (anonymous) task type.

The elaboration of a task_definition creates the task type and its first subtype; it aso includes the
elaboration of the entry_declarationsin the given order.

As part of the initialization of atask object, any aspect_clauses and any per-object constraints associated
with entry_declarations of the corresponding task_definition are elaborated in the given order.

The elaboration of atask_body has no effect other than to establish that tasks of the type can from then on
be activated without failing the Elaboration_Check.

The execution of atask_body isinvoked by the activation of atask of the corresponding type (see 9.2).

The content of atask object of agiven task type includes:
« Thevalues of the discriminants of the task object, if any;
« Anentry queue for each entry of the task object;
« A representation of the state of the associated task.

NOTES

2 Other than in an access_definition, the name of a task unit within the declaration or body of the task unit denotes the
current instance of the unit (see 8.6), rather than the first subtype of the corresponding task type (and thus the name cannot
be used as a subtype_mark).

3 The notation of aselected_component can be used to denote a discriminant of atask (see 4.1.3). Within atask unit, the
name of adiscriminant of the task type denotes the corresponding discriminant of the current instance of the unit.

4 A task type is a limited type (see 7.5), and hence precludes use of assignment_statements and predefined equality
operators. If an application needs to store and exchange task identities, it can do so by defining an access type designating
the corresponding task objects and by using access values for identification purposes. Assignment is available for such an
access type as for any access type. Alternatively, if the implementation supports the Systems Programming Annex, the
Identity attribute can be used for task identification (see C.7.1).

Examples
Examples of declarations of task types:

task type Server is
entry Next_Work_Iltem(W : in Wrk_ltem;
entry Shut _Down;

end Server;

task type Keyboard_Driver(ID : Keyboard ID := New ID) is
new Serial _Device with --see394
entry Read (C: out Character);
entry Wite(C: in Character);
end Keyboard_Driver;
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Examples of declarations of single tasks:

task Controller is
entry Request(Level)(D: Itenm); -- afamilyofentries
end Controller;

task Parser is
entry Next_Lexeme(L : in Lexical _El enent);
entry Next _Action(A : out Parser_Action);

end;
task User; -- hasnoentries
Examples of task objects:
Agent . Server;
Tel etype : Keyboard_Driver(TTY_ID);
Pool :array(1 .. 10) of Keyboard_Driver;

Example of access type designating task objects:

type Keyboard is access Keyboard_Driver;
Term nal : Keyboard := new Keyboard_Driver(Term.|ID);

9.2 Task Execution - Task Activation

Dynamic Semantics
The execution of atask of agiven task type consists of the execution of the corresponding task_body. The
initial part of this execution is called the activation of the task; it consists of the elaboration of the
declarative_part of the task_body. Should an exception be propagated by the elaboration of its
declarative_part, the activation of the task is defined to have failed, and it becomes a completed task.

A task object (which represents one task) can be a part of a stand-alone object, of an object created by an
allocator, or of an anonymous object of a limited type, or a coextension of one of these. All tasks that are
part or coextensions of any of the stand-alone objects created by the elaboration of object_declarations (or
generic_associations of formal objects of mode in) of a single declarative region are activated together.
All tasks that are part or coextensions of a single object that is not a stand-alone object are activated
together.

For the tasks of a given declarative region, the activations are initiated within the context of the handled_-
sequence_of_statements (and its associated exception_handlers if any — see 11.2), just prior to
executing the statements of the handled_sequence_of_statements. For a package without an explicit
body or an explicit handled_sequence_of_statements, an implicit body or an implicit null_statement is
assumed, as defined in 7.2.

For tasks that are part or coextensions of a single object that is not a stand-alone object, activations are
initiated after completing any initialization of the outermost object enclosing these tasks, prior to
performing any other operation on the outermost object. In particular, for tasks that are part or
coextensions of the object created by the evaluation of an allocator, the activations are initiated as the last
step of evaluating the allocator, prior to returning the new access value. For tasks that are part or
coextensions of an object that is the result of a function call, the activations are not initiated until after the
function returns.

The task that created the new tasks and initiated their activations (the activator) is blocked until all of
these activations complete (successfully or not). Once al of these activations are complete, if the
activation of any of the tasks has failed (due to the propagation of an exception), Tasking_Error is raised
in the activator, at the place at which it initiated the activations. Otherwise, the activator proceeds with its
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execution normally. Any tasks that are aborted prior to completing their activation are ignored when
determining whether to raise Tasking_Error.

Should the task that created the new tasks never reach the point where it would initiate the activations (due
to an abort or the raising of an exception), the newly created tasks become terminated and are never
activated.

NOTES

5 An entry of atask can be called before the task has been activated.

6 If several tasks are activated together, the execution of any of these tasks need not await the end of the activation of the
other tasks.

7 A task can become completed during its activation either because of an exception or because it is aborted (see 9.8).

Examples
Example of task activation:
procedure P is
A, B : Server; - - elaborate thetask objects A, B
C . Server; - - elaborate the task object C
begi n

- - thetasks A, B, C are activated together before the first statement

endi o

9.3 Task Dependence - Termination of Tasks

Dynamic Semantics
Each task (other than an environment task — see 10.2) depends on one or more masters (see 7.6.1), as
follows:
« |f thetask is created by the evaluation of an allocator for a given access type, it depends on each

master that includes the elaboration of the declaration of the ultimate ancestor of the given
access type.

« |f thetask is created by the elaboration of an object_declaration, it depends on each master that
includes this elaboration.

e Otherwise, the task depends on the master of the outermost object of which it is a part (as
determined by the accessibility level of that object — see 3.10.2 and 7.6.1), as well as on any
master whose execution includes that of the master of the outermost object.

Furthermore, if a task depends on a given master, it is defined to depend on the task that executes the
master, and (recursively) on any master of that task.

A task is said to be completed when the execution of its corresponding task_body is completed. A task is
said to be terminated when any finalization of the task_body has been performed (see 7.6.1). The first step
of finalizing a master (including a task_body) is to wait for the termination of any tasks dependent on the
master. The task executing the master is blocked until all the dependents have terminated. Any remaining
finalization is then performed and the master is left.

Completion of atask (and the corresponding task_body) can occur when the task is blocked at a select_-
statement with an open terminate_alternative (see 9.7.1); the open terminate_alternative is selected if
and only if the following conditions are satisfied:

¢ The task depends on some completed master; and
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« Each task that depends on the master considered is either already terminated or similarly blocked

at aselect_statement with an open terminate_alternative.

When both conditions are satisfied, the task considered becomes completed, together with all tasks that
depend on the master considered that are not yet completed.

NOTES

8 The full view of alimited private type can be a task type, or can have subcomponents of a task type. Creation of an
object of such atype creates dependences according to the full type.

9 Anobject_renaming_declaration defines anew view of an existing entity and hence creates no further dependence.

10 The rules given for the collective completion of a group of tasks al blocked on select_statements with open
terminate_alternatives ensure that the collective completion can occur only when there are no remaining active tasks that
could call one of the tasks being collectively completed.

11 If two or more tasks are blocked on select_statements with open terminate_alternatives, and become completed
collectively, their finalization actions proceed concurrently.

12 The completion of atask can occur due to any of the following:

« theraising of an exception during the elaboration of the declarative_part of the corresponding task_body;
« the completion of the handled_sequence_of_statements of the corresponding task_body;

« theselection of an open terminate_alternative of aselect_statement in the corresponding task_body;

e theabort of the task.

Example of task dependence:

decl are
type G obal is access Server;
A, B : Server;

Examples

-- see9l

G : dobal;
begi n
- - activation of Aand B
decl are
type Local is access Server;
X : dobal := new Server; -- activationof X.all
L : Local = new Server; -- activationofL.all
C : Server;
begi n
- - activationof C
G := X, -- bothG and X designate the same task object
end; -- awaittermination of C and L.all (but not X.all)
end; -- awaittermination of A, B, and G.all

9.3 Task Dependence - Termination of Tasks
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9.4 Protected Units and Protected Objects

A protected object provides coordinated access to shared data, through calls on its visible protected
operations, which can be protected subprograms or protected entries. A protected unit is declared by a
protected declaration, which has a corresponding protected_body. A protected declaration may be a
protected_type_declaration, in which case it declares a named protected type; aternatively, it may be a
single_protected_declaration, in which case it defines an anonymous protected type, as well as declaring
anamed protected object of that type.

Syntax
protected_type_declaration ::=
protected type defining_identifier [known_discriminant_part] is
[new interface_list with]
protected_definition;

single_protected_declaration ::=
protected defining_identifier is
[new interface_list with]
protected_definition;

protected_definition ::=
{ protected_operation_declaration }
[ private
{ protected_element_declaration } ]
end [protected_identifier]

protected_operation_declaration ::= subprogram_declaration
| entry_declaration
| aspect_clause
protected_element_declaration ::= protected_operation_declaration
| component_declaration
protected_body ::=
protected body defining_identifier is
{ protected_operation_item }
end [protected_identifier];
protected_operation_item ::= subprogram_declaration
| subprogram_body
| entry_body
| aspect_clause

If aprotected_identifier appears at the end of a protected_definition or protected_body, it shall
repeat the defining_identifier.

Legality Rules
This paragraph was del eted.

Satic Semantics
A protected_definition defines a protected type and its first subtype. The list of protected_operation_-
declarations of a protected_definition, together with the known_discriminant_part, if any, is called the

visible part of the protected unit. The optional list of protected_element_declarations after the reserved
word privateis caled the private part of the protected unit.
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For a protected declaration with an interface_list, the protected type inherits user-defined primitive
subprograms from each progenitor type (see 3.9.4), in the same way that a derived type inherits user-
defined primitive subprograms from its progenitor types (see 3.4). If the first parameter of a primitive
inherited subprogram is of the protected type or an access parameter designating the protected type, and
there is a protected_operation_declaration for a protected subprogram or single entry with the same
identifier within the protected declaration, whose profile is type conformant with the prefixed view profile
of the inherited subprogram, the inherited subprogram is said to be implemented by the conforming
protected subprogram or entry.

Legality Rules
A protected declaration requires a completion, which shall be a protected_body, and every protected_-
body shall be the completion of some protected declaration.

Each interface _subtype_mark of an interface_list appearing within a protected declaration shall denote a
limited interface type that is not atask interface.

The prefixed view profile of an explicitly declared primitive subprogram of a tagged protected type shall
not be type conformant with any protected operation of the protected type, if the first parameter of the
subprogram is of the protected type or is an access parameter designating the protected type.

For each primitive subprogram inherited by the type declared by a protected declaration, at most one of
the following shall apply:
 the inherited subprogram is overridden with a primitive subprogram of the protected type, in
which case the overriding subprogram shall be subtype conformant with the inherited
subprogram and not abstract; or

« the inherited subprogram is implemented by a protected subprogram or single entry of the
protected type, in which case its prefixed view profile shall be subtype conformant with that of
the protected subprogram or entry.

If neither applies, the inherited subprogram shall be a null procedure. In addition to the places where
Legality Rules normally apply (see 12.3), these rules also apply in the private part of an instance of a
generic unit.

If an inherited subprogram isimplemented by a protected procedure or an entry, then the first parameter of
the inherited subprogram shall be of mode out or in out, or an access-to-variable parameter.
If a protected subprogram declaration has an overriding_indicator, then at the point of the declaration:

« if the overriding_indicator is overriding, then the subprogram shall implement an inherited
subprogram;

« if the overriding_indicator is not overriding, then the subprogram shall not implement any
inherited subprogram.

In addition to the places where Legality Rules normally apply (see 12.3), these rules also apply in the
private part of an instance of a generic unit.
Dynamic Semantics

The elaboration of a protected declaration elaborates the protected_definition. The elaboration of a
single_protected_declaration also creates an object of an (anonymous) protected type.

The elaboration of a protected_definition creates the protected type and its first subtype; it aso includes
the elaboration of the component_declarations and protected_operation_declarations in the given order.
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As part of the initialization of a protected object, any per-object constraints (see 3.8) are elaborated. 14

The elaboration of a protected_body has no other effect than to establish that protected operations of the 15
type can from then on be called without failing the Elaboration_Check.

The content of an object of a given protected type includes: 16

* The values of the components of the protected object, including (implicitly) an entry queue for 17
each entry declared for the protected object;

« A representation of the state of the execution resource associated with the protected object (one 18

such resource is associated with each protected object).

The execution resource associated with a protected object has to be acquired to read or update any 19
components of the protected object; it can be acquired (as part of a protected action — see 9.5.1) either for
concurrent read-only access, or for exclusive read-write access.

As the first step of the finalization of a protected object, each call remaining on any entry queue of the 20
object is removed from its queue and Program_Error is raised at the place of the corresponding entry_-
call_statement.

Bounded (Run-Time) Errors

It isabounded error to call an entry or subprogram of a protected object after that object isfinalized. If the 20.172
error is detected, Program_Error is raised. Otherwise, the call proceeds normally, which may leave a task
queued forever.

NOTES

13 Within the declaration or body of a protected unit other than in an access_definition, the name of the protected unit 212
denotes the current instance of the unit (see 8.6), rather than the first subtype of the corresponding protected type (and

thus the name cannot be used as a subtype_mark).

14 A selected_component can be used to denote a discriminant of a protected object (see 4.1.3). Within a protected unit, 22
the name of adiscriminant of the protected type denotes the corresponding discriminant of the current instance of the unit.

15 A protected type is a limited type (see 7.5), and hence precludes use of assignment_statements and predefined  23/2
equality operators.

16 The bodies of the protected operations given in the protected_body define the actions that take place upon callstothe 24
protected operations.

17 Thedeclarationsin the private part are only visible within the private part and the body of the protected unit. 25
Examples
Example of declaration of protected type and corresponding body: 26
protected type Resource is 27
entry Sei ze;
procedure Rel ease;
private
Busy : Bool ean : = Fal se;
end Resource;
protected body Resource is 28
entry Seize when not Busy is
begi n
Busy := True;
end Sel ze;
procedure Rel ease is 29
begi n
Busy : = Fal se;

end Rel ease;
end Resource;
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Example of a single protected declaration and corresponding body:

protected Shared_Array is
- - Index, Item, and Item_Array are global types

functi on Conponent (N: in Index) return Item

procedure Set_Conmponent(N : in Index; E: in Ilten;
private

Table : ItemArray(lndex) := (others => Null_ltem;

end Shared_Array;

protected body Shared_Array is
function Conmponent(N : in Index) return Itemis
begi n
return Tabl e(N);
end Conponent;

procedure Set_Conponent(N : in Index; E: inltem is
begi n
Table(N) := E;
end Set_Conponent;
end Shared_Array;

Examples of protected objects:
Control : Resource;
Fl ags :array(1l .. 100) of Resource;

9.5 Intertask Communication

The primary means for intertask communication is provided by calls on entries and protected
subprograms. Calls on protected subprograms allow coordinated access to shared data objects. Entry calls
alow for blocking the caler until a given condition is satisfied (namely, that the corresponding entry is
open — see 9.5.3), and then communicating data or control information directly with another task or
indirectly via a shared protected object.

Satic Semantics

Any call on an entry or on a protected subprogram identifies a target object for the operation, which is
either atask (for an entry call) or a protected object (for an entry call or a protected subprogram call). The
target object is considered an implicit parameter to the operation, and is determined by the operation name
(or prefix) used in the call on the operation, as follows:

« |f itisadirect_name or expanded name that denotes the declaration (or body) of the operation,
then the target object is implicitly specified to be the current instance of the task or protected
unit immediately enclosing the operation; such acall is defined to be an internal call;

« |If it is aselected_component that is not an expanded name, then the target object is explicitly
specified to be the task or protected object denoted by the prefix of the name; such a cal is
defined to be an external call;

« |If the name or prefix is a dereference (implicit or explicit) of an access-to-protected-subprogram
value, then the target object is determined by the prefix of the Access attribute_reference that
produced the access value originally, and the call is defined to be an external call;

« |If the name or prefix denotes a subprogram_renaming_declaration, then the target object is as
determined by the name of the renamed entity.

A corresponding definition of target object applies to a requeue_statement (see 9.5.4), with a
corresponding distinction between an internal requeue and an external requeue.
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Legality Rules

The view of the target protected object associated with a call of a protected procedure or entry shall be a
variable.

Dynamic Semantics
Within the body of a protected operation, the current instance (see 8.6) of the immediately enclosing
protected unit is determined by the target object specified (implicitly or explicitly) in the call (or requeue)
on the protected operation.

Any call on a protected procedure or entry of a target protected object is defined to be an update to the
object, asis arequeue on such an entry.

9.5.1 Protected Subprograms and Protected Actions

A protected subprogram is a subprogram declared immediately within a protected_definition. Protected
procedures provide exclusive read-write access to the data of a protected object; protected functions
provide concurrent read-only access to the data.

Static Semantics

Within the body of a protected function (or a function declared immediately within a protected_body), the
current instance of the enclosing protected unit is defined to be a constant (that is, its subcomponents may
be read but not updated). Within the body of a protected procedure (or a procedure declared immediately
within a protected_body), and within an entry_body, the current instance is defined to be a variable
(updating is permitted).

Dynamic Semantics
For the execution of a call on a protected subprogram, the evaluation of the name or prefix and of the
parameter associations, and any assigning back of in out or out parameters, proceeds as for a normal
subprogram call (see 6.4). If the call isaninternal call (see 9.5), the body of the subprogram is executed as
for anormal subprogram call. If the call is an external call, then the body of the subprogram is executed as
part of a new protected action on the target protected object; the protected action completes after the body
of the subprogram is executed. A protected action can also be started by an entry call (see 9.5.3).

A new protected action is not started on a protected object while another protected action on the same
protected object is underway, unless both actions are the result of a call on a protected function. This rule
isexpressible in terms of the execution resource associated with the protected object:

« Sarting a protected action on a protected object corresponds to acquiring the execution resource
associated with the protected object, either for concurrent read-only access if the protected
actionisfor acall on a protected function, or for exclusive read-write access otherwise;

« Completing the protected action corresponds to releasing the associated execution resource.

After performing an operation on a protected object other than a call on a protected function, but prior to
completing the associated protected action, the entry queues (if any) of the protected object are serviced
(see 9.5.3).

Bounded (Run-Time) Errors

During a protected action, it is a bounded error to invoke an operation that is potentially blocking. The
following are defined to be potentially blocking operations:

¢ aselect_statement;
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an accept_statement;

an entry_call_statement;
adelay_statement;

an abort_statement;

task creation or activation;

an externa call on a protected subprogram (or an external requeue) with the same target object
asthat of the protected action;

acall on a subprogram whose body contains a potentially blocking operation.

If the bounded error is detected, Program_Error is raised. If not detected, the bounded error might result in
deadlock or a (nested) protected action on the same target object.

Certain language-defined subprograms are potentially blocking. In particular, the subprograms of the
language-defined input-output packages that manipulate files (implicitly or explicitly) are potentially
blocking. Other potentially blocking subprograms are identified where they are defined. When not
specified as potentially blocking, alanguage-defined subprogram is nonblocking.

NOTES

18 If two tasks both try to start a protected action on a protected object, and at most one is calling a protected function,
then only one of the tasks can proceed. Although the other task cannot proceed, it is not considered blocked, and it might
be consuming processing resources while it awaits its turn. There is no language-defined ordering or queuing presumed
for tasks competing to start a protected action — on a multiprocessor such tasks might use busy-waiting; for
monoprocessor considerations, see D.3, “Priority Ceiling Locking”.

19 The body of a protected unit may contain declarations and bodies for local subprograms. These are not visible outside
the protected unit.

20 The body of a protected function can contain internal calls on other protected functions, but not protected procedures,
because the current instance is a constant. On the other hand, the body of a protected procedure can contain internal calls
on both protected functions and procedures.

21 From within a protected action, an internal call on a protected subprogram, or an externa cal on a protected
subprogram with a different target object is not considered a potentially blocking operation.

22 The pragma Detect_Blocking may be used to ensure that all executions of potentialy blocking operations during a
protected action raise Program_Error. See H.5.

Examples

Examples of protected subprogram calls (see 9.4):

Shared_Array. Set _Conponent (N, E);
E : = Shared_Array. Component (M ;
Control . Rel ease;

9.5.2 Entries and Accept Statements

Entry_declarations, with the corresponding entry_bodies or accept_statements, are used to define
potentially queued operations on tasks and protected objects.

Syntax
entry_declaration ::=
[overriding_indicator]
entry defining_identifier [(discrete_subtype_definition)] parameter_profile;
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accept_statement ::=
accept entry_direct_name [(entry_index)] parameter_profile [do
handled_sequence_of statements
end [entry_identifier]];

entry_index ::= expression
entry_body ::=
entry defining_identifier entry_body_formal_part entry_barrier is
declarative_part

begin
handled_sequence_of_statements
end [entry_identifier];
entry_body_formal_part ::= [(entry_index_specification)] parameter_profile
entry_barrier ::= when condition
entry_index_specification ::= for defining_identifier in discrete_subtype_definition

If an entry_identifier appears at the end of an accept_statement, it shall repeat the entry_direct_-
name. If an entry_identifier appears at the end of an entry_body, it shall repeat the defining_-
identifier.

An entry_declaration is allowed only in a protected or task declaration.

An overriding_indicator is not allowed in an entry_declaration that includes a
discrete_subtype_definition.

Name Resolution Rules

In an accept_statement, the expected profile for the entry_direct_name is that of the entry_declaration;
the expected type for an entry_index is that of the subtype defined by the discrete_subtype_definition of
the corresponding entry_declaration.

Within the handled_sequence_of_statements of an accept_statement, if a selected_component has a
prefix that denotes the corresponding entry_declaration, then the entity denoted by the prefix is the
accept_statement, and the selected_component is interpreted as an expanded name (see 4.1.3); the
selector_name of the selected_component has to be the identifier for some formal parameter of the
accept_statement.

Legality Rules
An entry_declaration in a task declaration shall not contain a specification for an access parameter (see
3.10).
If an entry_declaration has an overriding_indicator, then at the point of the declaration:
e if the overriding_indicator is overriding, then the entry shall implement an inherited
subprogram;
« if the overriding_indicator is not overriding, then the entry shall not implement any inherited
subprogram.
In addition to the places where Legality Rules normally apply (see 12.3), these rules also apply in the
private part of an instance of a generic unit.

For an accept_statement, the innermost enclosing body shall be atask_body, and the entry_direct_name
shall denote an entry_declaration in the corresponding task declaration; the profile of the accept_-
statement shall conform fully to that of the corresponding entry_declaration. An accept_statement shall
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have a parenthesized entry_index if and only if the corresponding entry_declaration has a discrete_-
subtype_definition.

An accept_statement shall not be within another accept_statement that corresponds to the same entry_-
declaration, nor within an asynchronous_select inner to the enclosing task_body.

An entry_declaration of a protected unit requires a completion, which shall be an entry_body, and every
entry_body shall be the completion of an entry_declaration of a protected unit. The profile of the entry_-
body shall conform fully to that of the corresponding declaration.

An entry_body_formal_part shall have an entry_index_specification if and only if the corresponding
entry_declaration has a discrete_subtype_definition. In this case, the discrete_subtype_definitions of the
entry_declaration and the entry_index_specification shall fully conform to one another (see 6.3.1).

A name that denotes a formal parameter of an entry_body is not alowed within the entry_barrier of the
entry_body.

Satic Semantics

The parameter modes defined for parameters in the parameter_profile of an entry_declaration are the
same as for a subprogram_declaration and have the same meaning (see 6.2).

An entry_declaration with a discrete_subtype_definition (see 3.6) declares a family of distinct entries
having the same profile, with one such entry for each value of the entry index subtype defined by the
discrete_subtype_definition. A name for an entry of a family takes the form of an indexed_component,
where the prefix denotes the entry_declaration for the family, and the index value identifies the entry
within the family. The term single entry is used to refer to any entry other than an entry of an entry family.

In the entry_body for an entry family, the entry_index_specification declares a named constant whose
subtype is the entry index subtype defined by the corresponding entry_declaration; the value of the named
entry index identifies which entry of the family was called.

Dynamic Semantics
The elaboration of an entry_declaration for an entry family consists of the elaboration of the discrete_-

subtype_definition, as described in 3.8. The elaboration of an entry_declaration for a single entry has no
effect.

The actions to be performed when an entry is caled are specified by the corresponding accept_-
statements (if any) for an entry of a task unit, and by the corresponding entry_body for an entry of a
protected unit.

For the execution of an accept_statement, the entry_index, if any, isfirst evaluated and converted to the
entry index subtype; this index value identifies which entry of the family is to be accepted. Further
execution of the accept_statement is then blocked until a caller of the corresponding entry is selected (see
9.5.3), whereupon the handled_sequence_of_statements, if any, of the accept_statement is executed,
with the formal parameters associated with the corresponding actual parameters of the selected entry call.
Upon completion of the handled_sequence_of_statements, the accept_statement completes and is left.
When an exception is propagated from the handled_sequence_of_statements of an accept_statement,
the same exception is also raised by the execution of the corresponding entry_call_statement.

The above interaction between a calling task and an accepting task is called a rendezvous. After a
rendezvous, the two tasks continue their execution independently.
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An entry_body is executed when the condition of the entry_barrier evaluates to True and a caller of the
corresponding single entry, or entry of the corresponding entry family, has been selected (see 9.5.3). For
the execution of the entry_body, the declarative_part of the entry_body is elaborated, and the handled_-
sequence_of_statements of the body is executed, as for the execution of a subprogram_body. The value
of the named entry index, if any, is determined by the value of the entry index specified in the entry_name
of the selected entry call (or intermediate requeue_statement — see 9.5.4).

NOTES
23 A task entry has corresponding accept_statements (zero or more), whereas a protected entry has a corresponding
entry_body (exactly one).

24 A consequence of the rule regarding the allowed placements of accept_statements is that a task can execute
accept_statements only for its own entries.

25 A return statement (see 6.5) or a requeue_statement (see 9.5.4) may be used to complete the execution of an
accept_statement or an entry_body.

26 The condition in the entry_barrier may reference anything visible except the formal parameters of the entry. This
includes the entry index (if any), the components (including discriminants) of the protected object, the Count attribute of
an entry of that protected object, and data global to the protected unit.

The restriction against referencing the formal parameters within an entry_barrier ensures that all calls of the same entry
see the same barrier value. If it is necessary to look at the parameters of an entry call before deciding whether to handle it,
the entry_barrier can be “when True” and the caller can be requeued (on some private entry) when its parameters indicate
that it cannot be handled immediately.

Examples
Examples of entry declarations:
entry Read(V : out lten);
entry Seize;
entry Request(Level)(D: Iten); -- afamilyofentries

Examples of accept statements:

accept Shut _Down;

accept Read(V : out Item do
V := Local _Item
end Read;

accept Request(Low)(D : Item do

end i?équest ;

9.5.3 Entry Calls

An entry_call_statement (an entry call) can appear in various contexts. A simple entry cal is a stand-
alone statement that represents an unconditional call on an entry of a target task or a protected object.
Entry calls can also appear as part of select_statements (see 9.7).

Syntax
entry_call_statement ::= entry_name [actual_parameter_part];

Name Resolution Rules

The entry name given in an entry_call_statement shall resolve to denote an entry. The rules for
parameter associations are the same as for subprogram calls (see 6.4 and 6.4.1).
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Satic Semantics

The entry_name of an entry_call_statement specifies (explicitly or implicitly) the target object of the call,
the entry or entry family, and the entry index, if any (see 9.5).

Dynamic Semantics
Under certain circumstances (detailed below), an entry of a task or protected object is checked to see
whether it is open or closed:
* Anentry of atask is open if the task is blocked on an accept_statement that corresponds to the

entry (see 9.5.2), or on a selective_accept (see 9.7.1) with an open accept_alternative that
corresponds to the entry; otherwise it is closed.

e An entry of aprotected object is open if the condition of the entry_barrier of the corresponding
entry_body evaluates to True; otherwise it is closed. If the evaluation of the condition
propagates an exception, the exception Program_Error is propagated to all current callers of al
entries of the protected object.

For the execution of an entry_call_statement, evaluation of the name and of the parameter associationsis
as for asubprogram call (see 6.4). The entry call isthen issued: For acall on an entry of a protected object,
anew protected action is started on the object (see 9.5.1). The named entry is checked to seeif it is open;
if open, the entry call is said to be selected immediately, and the execution of the call proceeds as follows:

e For a cal on an open entry of a task, the accepting task becomes ready and continues the
execution of the corresponding accept_statement (see 9.5.2).

» For acall on an open entry of a protected object, the corresponding entry_body is executed (see
9.5.2) as part of the protected action.

If the accept_statement or entry_body completes other than by a requeue (see 9.5.4), return is made to
the caller (after servicing the entry queues — see below); any necessary assigning back of formal to actual
parameters occurs, as for a subprogram call (see 6.4.1); such assignments take place outside of any
protected action.

If the named entry is closed, the entry call is added to an entry queue (as part of the protected action, for a
call on a protected entry), and the call remains queued until it is selected or cancelled; there is a separate
(logical) entry queue for each entry of a given task or protected object (including each entry of an entry
family).

When a queued call is selected, it is removed from its entry queue. Selecting a queued call from a
particular entry queue is caled servicing the entry queue. An entry with queued calls can be serviced
under the following circumstances:

* When the associated task reaches a corresponding accept_statement, or a selective_accept
with a corresponding open accept_alternative;

« |If after performing, as part of a protected action on the associated protected object, an operation
on the object other than a call on a protected function, the entry is checked and found to be open.

If there is at least one call on a queue corresponding to an open entry, then one such cal is selected
according to the entry queuing policy in effect (see below), and the corresponding accept_statement or
entry_body is executed as above for an entry call that is selected immediately.

The entry queuing policy controls selection among queued calls both for task and protected entry queues.
The default entry queuing policy is to select calls on a given entry queue in order of arrival. If calls from
two or more queues are simultaneously eligible for selection, the default entry queuing policy does not
specify which queue is serviced first. Other entry queuing policies can be specified by pragmas (see D.4).
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For a protected object, the above servicing of entry queues continues until there are no open entries with
queued calls, at which point the protected action completes.

For an entry call that is added to a queue, and that is not the triggering_statement of an asynchronous_-
select (see 9.7.4), the calling task is blocked until the call is cancelled, or the call is selected and a
corresponding accept_statement or entry_body completes without requeuing. In addition, the calling task
is blocked during arendezvous.

An attempt can be made to cancel an entry call upon an abort (see 9.8) and as part of certain forms of
select_statement (see 9.7.2, 9.7.3, and 9.7.4). The cancellation does not take place until a point (if any)
when the call is on some entry queue, and not protected from cancellation as part of a requeue (see 9.5.4);
at such a paint, the call is removed from the entry queue and the call completes due to the cancellation.
The cancellation of a call on an entry of a protected object is a protected action, and as such cannot take
place while any other protected action is occurring on the protected object. Like any protected action, it
includes servicing of the entry queues (in case some entry barrier depends on a Count attribute).

A call on an entry of atask that has already completed its execution raises the exception Tasking_Error at
the point of the call; similarly, this exception is raised at the point of the call if the called task completes
its execution or becomes abnormal before accepting the call or completing the rendezvous (see 9.8). This
applies equally to asimple entry call and to an entry call as part of aselect_statement.

Implementation Permissions

An implementation may perform the sequence of steps of a protected action using any thread of control; it
need not be that of the task that started the protected action. If an entry_body completes without
regueuing, then the corresponding calling task may be made ready without waiting for the entire protected
action to complete.

When the entry of a protected object is checked to see whether it is open, the implementation need not
reevaluate the condition of the corresponding entry_barrier if no variable or attribute referenced by the
condition (directly or indirectly) has been altered by the execution (or cancellation) of a protected
procedure or entry call on the object since the condition was last evaluated.

An implementation may evaluate the conditions of al entry_barriers of a given protected object any time
any entry of the object is checked to seeif it is open.

When an attempt is made to cancel an entry call, the implementation need not make the attempt using the
thread of control of the task (or interrupt) that initiated the cancellation; in particular, it may use the thread
of control of the caller itself to attempt the cancellation, even if this might allow the entry call to be
selected in the interim.

NOTES
27 If an exception is raised during the execution of an entry_body, it is propagated to the corresponding caller (see 11.4).

28 For acall on aprotected entry, the entry is checked to see if it is open prior to queuing the call, and again thereafter if
its Count attribute (see 9.9) is referenced in some entry barrier.

29 In addition to simple entry calls, the language permits timed, conditional, and asynchronous entry calls (see 9.7.2,
9.7.3, and see 9.7.4).

30 The condition of an entry_barrier is alowed to be evaluated by an implementation more often than strictly necessary,
even if the evaluation might have side effects. On the other hand, an implementation need not reevaluate the condition if
nothing it references was updated by an intervening protected action on the protected object, even if the condition
references some global variable that might have been updated by an action performed from outside of a protected action.
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Examples
Examples of entry calls:
Agent . Shut _Down; -- see9l
Par ser . Next _Lexene(E); -- see9l
Pool (5) . Read( Next _Char); -- see9l
Controll er. RRequest (Low) (Sone_ltem; -- see9.l
Fl ags(3) . Sei ze; -- see94

9.5.4 Requeue Statements

A requeue_statement can be used to complete an accept_statement or entry_body, while redirecting the
corresponding entry call to a new (or the same) entry queue. Such a requeue can be performed with or
without allowing an intermediate cancellation of the call, due to an abort or the expiration of a delay.

Syntax
requeue_statement ::= regueue entry_name [with abort];

Name Resolution Rules

The entry_name of arequeue_statement shall resolve to denote an entry (the target entry) that either has
no parameters, or that has a profile that is type conformant (see 6.3.1) with the profile of the innermost
enclosing entry_body or accept_statement.

Legality Rules
A requeue_statement shall be within a calable construct that is either an entry body or an
accept_statement, and this construct shall be the innermost enclosing body or callable construct.

If the target entry has parameters, then its profile shall be subtype conformant with the profile of the
innermost enclosing callable construct.

In arequeue_statement of an accept_statement of some task unit, either the target object shall be a part
of aformal parameter of the accept_statement, or the accessibility level of the target object shall not be
equal to or staticaly deeper than any enclosing accept_statement of the task unit. In a requeue_-
statement of an entry_body of some protected unit, either the target object shall be a part of a formal
parameter of the entry_body, or the accessibility level of the target object shall not be statically deeper
than that of the entry_declaration.

Dynamic Semantics
The execution of a requeue_statement proceeds by first evaluating the entry_name, including the prefix
identifying the target task or protected object and the expression identifying the entry within an entry
family, if any. The entry_body or accept_statement enclosing the requeue_statement is then completed,
finalized, and left (see 7.6.1).

For the execution of a requeue on an entry of atarget task, after leaving the enclosing callable construct,
the named entry is checked to see if it is open and the requeued call is either selected immediately or
queued, asfor anormal entry call (see 9.5.3).

For the execution of arequeue on an entry of atarget protected object, after leaving the enclosing callable
construct:

« if the requeue is an internal requeue (that is, the requeue is back on an entry of the same
protected object — see 9.5), the call is added to the queue of the named entry and the ongoing
protected action continues (see 9.5.1);
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« if therequeueis an external requeue (that is, the target protected object is not implicitly the same
as the current object — see 9.5), a protected action is started on the target object and proceeds as
for anormal entry call (see 9.5.3).

If the new entry named in the requeue_statement has formal parameters, then during the execution of the
accept_statement or entry_body corresponding to the new entry, the formal parameters denote the same
objects as did the corresponding formal parameters of the callable construct completed by the requeue. In
any case, no parameters are specified in arequeue_statement; any parameter passing isimplicit.

If the requeue_statement includes the reserved words with abort (it is a requeue-with-abort), then:

« if the original entry call has been aborted (see 9.8), then the requeue acts as an abort completion
point for the call, and the call is cancelled and no requeue is performed;

e if the origina entry call was timed (or conditional), then the original expiration time is the
expiration time for the requeued call.

If the reserved words with abort do not appear, then the call remains protected against cancellation while
queued as the result of the requeue_statement.

NOTES
31 A requeue is permitted from a single entry to an entry of an entry family, or vice-versa. The entry index, if any, plays
no part in the subtype conformance check between the profiles of the two entries; an entry index is part of the entry_name
for an entry of afamily.
Examples
Examples of requeue statements:

requeue Request (Medium with abort;
- - requeue on a member of an entry family of the current task, see 9.1

requeue Fl ags(l). Sei ze;
- - requeue on an entry of an array component, see 9.4

9.6 Delay Statements, Duration, and Time

A delay_statement is used to block further execution until a specified expiration time is reached. The
expiration time can be specified either as a particular point in time (in a delay_until_statement), or in
seconds from the current time (in a delay_relative_statement). The language-defined package Calendar
provides definitions for a type Time and associated operations, including a function Clock that returns the
current time.

Syntax
delay_statement ::= delay_until_statement | delay_relative_statement
delay_until_statement ::= delay until delay_expression;
delay_relative_statement ::= delay delay_expression;

Name Resolution Rules

The expected type for the delay_expression in a delay_relative_statement is the predefined type
Duration. The delay_expression in adelay_until_statement is expected to be of any nonlimited type.

Legality Rules
There can be multiple time bases, each with a corresponding clock, and a corresponding time type. The
type of the delay_expression in a delay_until_statement shall be a time type — either the type Time
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defined in the language-defined package Calendar (see below), or some other implementation-defined time

type (see D.8).

Satic Semantics

There is a predefined fixed point type named Duration, declared in the visible part of package Standard; a
value of type Duration is used to represent the length of an interval of time, expressed in seconds. The type
Duration is not specific to a particular time base, but can be used with any time base.

A value of the type Time in package Calendar, or of some other implementation-defined time type,
represents atime as reported by a corresponding clock.

The following language-defined library package exists:

package Ada. Cal endar is
type Tine is private;

subt ype Year _Nunber
subt ype Mont h_Nunber
subt ype Day_Nunber
subt ype Day_Duration

function Cock return

function Year (Date :
function Month (Date :
functi on Day (Date :
function Seconds(Date :

procedure Split (Date

s Integer range 1901 .. 2399;
s Integer range 1 .. 12;

s Integer range 1 .. 31,
s Duration range 0.0 .. 86_400.0;

Ti me;
Ti me) return Year_Nunber;
Time) return Mont h_Nunber;

Ti me) return Day_Nunber;
Tinme) return Day_Duration;

in Tine;

Year out Year _Nunber;

Mont h out Mont h_Nunber;

Day out Day_Nunber;

Seconds : out Day_Duration);
function Time_OF (Year Year _Nunber ;

Mont h Mont h_Nunber ;

Day Day_Nunber;

Seconds : Day_Duration := 0.0)

return Tinme;

function "+" (Left : Time; Ri ght
Duration; R ght
function "-" (Left : Ting; Ri ght
(Left : Tineg; Right : Time) return Duration;

function "+" (Left

function "-"

Duration) return Tine;
Tinme) return Tine;
Duration) return Tine;

function "<" (Left, Right : Tinme) return Bool ean;
function "<="(Left, Right : Tinme) return Bool ean;
function ">" (Left, Right : Tinme) return Bool ean;

function ">="(Left, R ght
exception;

Time_Error
private

Ti me) return Bool ean;

- - not specified by the language

end' Ada. Cal endar ;

For the execution of a delay statement, the delay expression is first evaluated. For

Dynamic Semantics

a

delay_until_statement, the expiration time for the delay is the value of the delay_expression, in the time
base associated with the type of the expression. For a delay_relative_statement, the expiration time is
defined as the current time, in the time base associated with relative delays, plus the value of the
delay_expression converted to the type Duration, and then rounded up to the next clock tick. The time

base associated with relative delaysis as defined in D.9, “Delay Accuracy” or isimplementation defined.

9.6 Delay Statements, Duration, and Time
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The task executing a delay_statement is blocked until the expiration time is reached, at which point it
becomes ready again. If the expiration time has aready passed, the task is not blocked.

If an attempt is made to cancel the delay_statement (as part of an asynchronous_select or abort — see
9.7.4 and 9.8), the _statement is cancelled if the expiration time has not yet passed, thereby completing
the delay_statement.

The time base associated with the type Time of package Calendar is implementation defined. The function
Clock of package Calendar returns a value representing the current time for this time base. The
implementation-defined value of the named number System.Tick (see 13.7) is an approximation of the
length of the real-time interval during which the value of Calendar.Clock remains constant.

The functions Year, Month, Day, and Seconds return the corresponding values for a given value of the
type Time, as appropriate to an implementation-defined time zone; the procedure Split returns all four
corresponding values. Conversely, the function Time_Of combines a year number, a month number, a day
number, and a duration, into a value of type Time. The operators "+" and "—" for addition and subtraction
of times and durations, and the relational operators for times, have the conventional meaning.

If Time_Of is called with a seconds value of 86_400.0, the value returned is equal to the value of Time_Of
for the next day with a seconds value of 0.0. The value returned by the function Seconds or through the
Seconds parameter of the procedure Split is aways less than 86_400.0.

The exception Time_Error israised by the function Time_Of if the actual parameters do not form a proper
date. This exception is aso raised by the operators "+" and "—" if the result is not representable in the type
Time or Duration, as appropriate. This exception is also raised by the functions Year, Month, Day, and
Seconds and the procedure Split if the year number of the given date is outside of the range of the subtype
Year_Number.

Implementation Requirements

The implementation of the type Duration shall alow representation of time intervals (both positive and
negative) up to at least 86400 seconds (one day); Duration'Small shall not be greater than twenty
milliseconds. The implementation of the type Time shall alow representation of al dates with year
numbers in the range of Year_Number; it may allow representation of other dates as well (both earlier and
later).

Implementation Permissions
An implementation may define additional time types (see D.8).
An implementation may raise Time_Error if the value of a delay_expression in a delay_until_statement
of aselect_statement represents a time more than 90 days past the current time. The actual limit, if any, is
implementation-defined.
Implementation Advice

Whenever possible in an implementation, the value of Duration'Small should be no greater than 100
microseconds.

The time base for delay_relative_statements should be monotonic; it need not be the same time base as
used for Calendar.Clock.

NOTES
32 A delay_relative_statement with anegative value of the delay_expression is equivalent to one with azero value.
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33 A delay_statement may be executed by the environment task; consequently delay_statements may be executed as
part of the elaboration of alibrary_item or the execution of the main subprogram. Such statements delay the environment
task (see 10.2).

34 A delay_statement is an abort completion point and a potentially blocking operation, even if the task is not actually
blocked.

35 There is no necessary relationship between System.Tick (the resolution of the clock of package Calendar) and

Duration'Small (the small of type Duration).
36 Additional requirements associated with delay_statements are given in D.9, “Delay Accuracy”.

Examples
Example of a relative delay statement:
delay 3.0; -- delay3.0seconds

Example of a periodic task:

decl are

use Ada. Cal endar;

Next _Tinme : Tinme := Cock + Period,

- - Periodisaglobal constant of type Duration

begi n

| oop - - repeated every Period seconds

delay until Next _Tine;

... -- performsomeactions

Next _Tinme := Next_Time + Period,
end | oop;
end;

9.6.1 Formatting, Time Zones, and other operations for Time

Satic Semantics
The following language-defined library packages exist:

package Ada. Cal endar. Ti ne_Zones is

- - Time zone manipulation:

type Tine_Ofset is range -28*60 .. 28*60;

Unknown_Zone_Error : exception;

function UTC Tine_Ofset (Date : Tine := Cock) return Time_Ofset;
end Ada. Cal endar . Ti me_Zones;

package Ada. Cal endar. Arithmetic is
- - Arithmetic on days:
type Day_Count is range
- 366* (1+Year _Nunber' Last - Year_Number' First)
ééG*(1+Year_Nunber' Last - Year_Nunber' First);
subtype Leap_Seconds_Count is Integer range -2047 .. 2047,

procedure Difference (Left, Right : in Tine;
Days : out Day_Count;
Seconds : out Duration;
Leap_Seconds : out Leap_Seconds_Count);

function "+" (Left : Time; Right : Day_Count) return Tine;
function "+" (Left : Day_Count; Right : Tinme) return Tine;
function "-" (Left : Time; Right : Day_Count) return Tine;
function "-" (Left, Right : Time) return Day_Count;

9.6 Delay Statements, Duration, and Time 10 November 2006
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end Ada. Cal endar. Arithnetic;

wi t h Ada. Cal endar. Ti ne_Zones;
package Ada. Cal endar. Formatting

- - Day of the week:
type Day_Nanme is (Mnday, Tu
Fri day, Saturday, Sunday
functi on Day_of Week (Date :
- - Hours:Minutes: Seconds access:
subt ype Hour _Nunber
subtype M nute_Nunber
subt ype Second_Nunber
subt ype Second_Durati on
function Year (Date :
Ti me_Zo
retu
function Month (Date :
Ti me_Zo
retu
functi on Day (Date :
Ti me_Zo
retu
function Hour (Date :
Ti ne_Zo
retu
function M nute (Date :
Ti me_Zo
retu
function Second (Date :
retu
function Sub_Second (Date :
retu
function Seconds_Of (Hour
M nute :
Second :
Sub_Sec

return Day_Durati on;
procedure Split (Seconds
Hour

M nut e
Second

Sub_Second 5

function Time_O (Year
Mont h
Day
Hour
M nute
Second

Sub_Second

Leap_Secon
Ti me_Zone
re

function Time_O (Year
Mont h
Day
Seconds
Leap_Secon
Ti me_Zone
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is
esday, Wednesday, Thursday,
)i
Time) return Day_Nang;
is Natural range 0 .. 23;
is Natural range O .. 59;
is Natural range O .. 59;
is Day_Duration range 0.0 .. 1.0;
Ti me;
ne Ti me_Zones. Time_Ofset := 0)
rn Year _Nunber;
Ti ne;
ne Ti me_Zones. Time_Offset := 0)
rn Mont h_Nunber;
Ti me;
ne Time_Zones. Time_Ofset : = 0)
rn Day_Nunber;
Ti ne;
ne Ti me_Zones. Time_Offset := 0)
rn Hour _Nunber;
Ti me;
ne : Time_Zones.Time_Ofset := 0)
rn M nute_Nunber;
Ti ne)
rn Second_Nunber;
Ti ne)
rn Second_Durati on;
Hour _Nunber ;
M nut e_Nunber ;
Second_Nunber := 0;
ond : Second_Duration := 0.0)
in Day_Duration;
out Hour _Nunber;
out M nut e_Nunber;
out Second_Number ;
out Second_Duration);
Year _Nurber ;
Mont h_Nunber ;
Day_Nunber ;
Hour _Nunber ;
M nut e_Nunber ;
Second_Nunber ;
Second_Duration := 0.0;
d: Bool ean : = Fal se;
: Time_Zones. Time_Offset := 0)
turn Ting;
Year _Nunber ;
Mont h_Nunber ;
Day_Nunber ;
. Day_Duration := 0.0;
d: Bool ean : = Fal se;
. Time_Zones. Time_Of fset := 0)

return Tine;
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procedure Split (Date
Year
Mont h
Day
Hour
M nut e
Second :
Sub_Second :
Ti me_Zone

procedure Split (Date
Year
Mont h
Day
Hour
M nut e
Second :
Sub_Second :
Leap_Second:
Ti me_Zone

procedure Split (Date
Year
Mont h
Day
Seconds :
Leap_Second:
Ti me_Zone

- - Smpleimage and value:
function Image (Date : Tine;

I ncl ude_Ti me_Fraction : Bool ean :

Ti me_Zone : Tine_Zones. Time_Ofset
function Value (Date : String;

Ti me_Zone : Tine_Zones. Time_Ofset
function I mage (El apsed_Tine : Duration;

I ncl ude_Ti me_Fraction : Bool ean :

function Value (El apsed_Tine :
end Ada. Cal endar . Formatti ng;

in Tine;

out
out
out
out
out
out
out

Year _Nunber ;

Mont h_Nunber ;

Day_Nunber ;
Hour _Nunber ;

M nut e_Nunber ;
Second_Nunber;
Second_Dur ati on;

in Tine_Zones. Time_Of set

in Tine;

out
out
out
out
out
out
out
out

in Tine_Zones. Time_Of set

Year _Nunber ;

Mont h_Nunber ;

Day_Nunber;
Hour _Nunber ;

M nut e_Nunber ;
Second_Nunber;
Second_Dur ati on;

Bool ean;

in Tine;

out
out
out
out
out

in Tinme_Zones. Time_Of set

String)

Year _Nunber ;

Mont h_Nunber ;

Day_Nunber ;

Day_Durati on;

Bool ean;

0);

0);

0);

Fal se;
:= 0) return String;

= 0) return Tineg;

Fal se) return String;
return Duration;

Type Time_Offset represents the number of minutes difference between the implementation-defined time

zone used by Calendar and another time zone.
function UTC Tine_Ofset (Date :

Ti me

:= Cock) return Tinme_Of fset;

Returns, as a number of minutes, the difference between the implementation-defined time zone
of Calendar, and UTC time, at the time Date. If the time zone of the Calendar implementation is
unknown, then Unknown_Zone_Error israised.

procedure Difference (Left, R ght

in Tine;

Days : out Déy_Oount;

Seconds : out Duration;

Leap_Seconds :
Returns the difference between Left and Right. Days is the number of days of difference,
Seconds is the remainder seconds of difference excluding leap seconds, and Leap_Seconds is the
number of leap seconds. If Left < Right, then Seconds <= 0.0, Days <= 0, and Leap_Seconds <=
0. Otherwise, all values are nonnegative. The absolute value of Seconds is always less than
86_400.0. For the returned values, if Days = 0O, then Seconds + Duration(Leap_Seconds) =

Calendar."—" (Left, Right).

out Leap_Seconds_Count);

9.6.1 Formatting, Time Zones, and other operations for Time
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function "+" (Left : Time; Right : Day_Count) return Timne;
function "+" (Left : Day_Count; Right : Tinme) return Tine;

Adds a number of daysto atime value. Time_Error israised if the result is not representable as a
value of type Time.

function "-" (Left : Time; R ght : Day_Count) return Timne;
Subtracts a number of days from a time value. Time Error is raised if the result is not
representable as a value of type Time.

function "-" (Left, Right : Time) return Day_Count;
Subtracts two time values, and returns the number of days between them. Thisis the same value
that Difference would return in Days.

function Day_of _Week (Date : Tinme) return Day_Nane;
Returns the day of the week for Time. This is based on the Year, Month, and Day values of
Time.

function Year (Date : Tine;
Time_Zone : Tinme_Zones. Time_Ofset := 0)
return Year _Nunber;

Returns the year for Date, as appropriate for the specified time zone offset.

function Month (Date : Tine,;
Time_Zone : Tine_Zones.Time_Ofset := 0)
return Mont h_Nunber;

Returns the month for Date, as appropriate for the specified time zone offset.

functi on Day (Date : Tine;
Tinme_Zone : Tine_Zones. Time_Ofset := 0)
return Day_Nunber;

Returns the day number for Date, as appropriate for the specified time zone offset.

function Hour (Date : Tine;
Tinme_Zone : Tine_Zones.Time_Ofset := 0)
return Hour_Nunber;

Returns the hour for Date, as appropriate for the specified time zone offset.

function M nute (Date : Tine;
Time_Zone : Tinme_Zones. Time_Ofset := 0)
return M nut e_Nunber;

Returns the minute within the hour for Date, as appropriate for the specified time zone offset.

function Second (Date : Tine)
return Second_Nunber ;

Returns the second within the hour and minute for Date.

function Sub_Second (Date : Tine)
return Second_Durati on;

Returns the fraction of second for Date (this has the same accuracy as Day_Duration). The value
returned is aways less than 1.0.
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6712 function Seconds_Of (Hour : Hour _Nunber;
M nute : M nute_Nunber;
Second : Second_Nunber := 0;
Sub_Second : Second_Duration := 0.0)
return Day_Duration;
68/2 Returns a Day_Duration value for the combination of the given Hour, Minute, Second, and
Sub_Second. This value can be used in Caendar.Time Of as well as the argument to
Calendar."+" and Calendar."-". If Seconds Of is called with a Sub_Second value of 1.0, the
value returned is equal to the value of Seconds_Of for the next second with a Sub_Second value

of 0.0.
69/2 procedure Split (Seconds : in Day_Duration;
Hour : out Hour_Nunber;
M nut e : out M nute_Nunber;
Second : out Second_Nunber;
Sub_Second : out Second_Duration);
70/2 Splits Seconds into Hour, Minute, Second and Sub_Second in such a way that the resulting

values al belong to their respective subtypes. The value returned in the Sub_Second parameter
isawayslessthan 1.0.

7112 function Time_OF (Year : Year _Nunber;
Mont h : Mont h_Nunber;
Day : Day_Nunber;
Hour : Hour _Nunber;
M nute : M nut e_Nunber;
Second : Second_Nunber;
Sub_Second : Second_Duration := 0.0;
Leap_Second: Bool ean : = Fal se;
Time_Zone : Tine_Zones. Time_Ofset := 0)

return Tine;

7212 If Leap_Second is False, returns a Time built from the date and time values, relative to the
specified time zone offset. If Leap_Second is True, returns the Time that represents the time
within the leap second that is one second later than the time specified by the other parameters.
Time_Error is raised if the parameters do not form a proper date or time. If Time_Of is called
with a Sub_Second value of 1.0, the value returned is equal to the value of Time_Of for the next
second with a Sub_Second value of 0.0.

7312 function Time_OF (Year : Year _Nunber ;
Mont h : Mont h_Nunber;
Day : Day_Nunber;
Seconds : Day_Duration := 0.0;
Leap_Second: Bool ean : = Fal se;
Time_Zone : Tinme_Zones.Time_Ofset := 0)
return Tine;
7412 If Leap_Second is False, returns a Time built from the date and time values, relative to the

specified time zone offset. If Leap_Second is True, returns the Time that represents the time
within the leap second that is one second later than the time specified by the other parameters.
Time_Error is raised if the parameters do not form a proper date or time. If Time_Of is called
with a Seconds value of 86_400.0, the value returned is equal to the value of Time _Of for the
next day with a Seconds value of 0.0.
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procedure Split (Date in Tine; 75/2
Year : out Year_Nunber;
Mont h : out Mbdnt h_Nunber;
Day : out Day_Nunber;
Hour . out Hour _Nunber;
M nute : out M nute_Nunber;
Second : out Second_Nunber;

Sub_Second : out Second_Duration;

Leap_Second: out Bool ean;

Tine_Zone : in Time_Zones.Tine_Ofset := 0);
If Date does not represent atime within aleap second, splits Date into its constituent parts (Year, 762
Month, Day, Hour, Minute, Second, Sub_Second), relative to the specified time zone offset, and
sets Leap_Second to False. If Date represents a time within a leap second, set the constituent
parts to values corresponding to atime one second earlier than that given by Date, relative to the
specified time zone offset, and sets Leap_Seconds to True. The value returned in the
Sub_Second parameter is always less than 1.0.

procedure Split (Date in Tine; 7712
Year : out Year_Nunber;
Mont h : out Mont h_Nunber;
Day . out Day_Nunber;
Hour : out Hour_Nunber;
M nute : out M nute_Nunber;
Second : out Second_Nunber;
Sub_Second : out Second_Duration;
Tine_Zone : in Time_Zones.Tine_Ofset := 0);

Splits Date into its congtituent parts (Year, Month, Day, Hour, Minute, Second, Sub_Second), 7si2
relative to the specified time zone offset. The value returned in the Sub_Second parameter is
alwayslessthan 1.0.

procedure Split (Date in Tine; 7912
Year : out Year_Nunber;
Mont h : out Mbdnt h_Nunber;
Day : out Day_Nunber;
Seconds . out Day_Duration;
Leap_Second: out Bool ean;
Time_Zone : in Time_Zones. Time_Ofset := 0);

If Date does not represent atime within aleap second, splits Date into its constituent parts (Year, sor2
Month, Day, Seconds), relative to the specified time zone offset, and sets Leap Second to False.
If Date represents a time within a leap second, set the constituent parts to values corresponding
to a time one second earlier than that given by Date, relative to the specified time zone offset,
and sets Leap_Seconds to True. The value returned in the Seconds parameter is always less than

86_400.0.
function Image (Date : Tineg; 81/2
Include_Time_Fraction : Bool ean : = Fal se;
Tinme_Zone : Tine_Zones. Time_Ofset := 0) return String;

Returns a string form of the Date relative to the given Time_Zone. The format is "Year-Month- 822
Day Hour:Minute:Second", where the Y ear is a 4-digit value, and all others are 2-digit values, of

the functions defined in Calendar and Calendar.Formatting, including a leading zero, if needed.

The separators between the values are a minus, another minus, a colon, and a single space
between the Day and Hour. If Include Time Fraction is True, the integer part of
Sub_Seconds* 100 is suffixed to the string as a point followed by a 2-digit value.
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function Value (Date : String;
Time_Zone : Tine_Zones.Time_Ofset := 0) return Tine;
Returns a Time value for the image given as Date, relative to the given time zone.
Constraint_Error is raised if the string is not formatted as described for Image, or the function
cannot interpret the given string asa Time value.

function I mage (El apsed_Tine : Duration;
I nclude_Ti me_Fraction : Boolean := False) return String;

Returns a string form of the Elapsed_Time. The format is "Hour:Minute:Second", where all
values are 2-digit values, including a leading zero, if needed. The separators between the values
are colons. If Include_Time_Fraction is True, the integer part of Sub_Seconds* 100 is suffixed to
the string as a point followed by a 2-digit value. If Elapsed_Time < 0.0, the result is Image (abs
Elapsed Time, Include _Time Fraction) prefixed with a minus sign. If abs Elapsed_Time
represents 100 hours or more, the result isimplementation-defined.

function Value (El apsed_Tine : String) return Duration;

Returns a Duration value for the image given as Elapsed_Time. Constraint_Error is raised if the
string is not formatted as described for Image, or the function cannot interpret the given string as
aDuration value.

Implementation Advice

An implementation should support leap seconds if the target system supports them. If leap seconds are not
supported, Difference should return zero for Leap_Seconds, Split should return False for Leap_Second,
and Time_Of should raise Time_Error if Leap_Second is True.

NOTES

37 The implementation-defined time zone of package Caendar may, but need not, be the loca time zone.
UTC_Time_Offset aways returns the difference relative to the implementation-defined time zone of package Calendar. If
UTC_Time_Offset does not raise Unknown_Zone Error, UTC time can be safely calculated (within the accuracy of the
underlying time-base).

38 Cadling Split on the results of subtracting Duration(UTC_Time_Offset*60) from Clock provides the components
(hours, minutes, and so on) of the UTC time. In the United States, for example, UTC_Time_Offset will generally be
negative.

9.7 Select Statements

There are four forms of the select_statement. One form provides a selective wait for one or more
select_alternatives. Two provide timed and conditional entry calls. The fourth provides asynchronous
transfer of control.

Syntax
select_statement ::=
selective_accept
| timed_entry_call
| conditional_entry_call
| asynchronous_select
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Examples
Example of a select statement:

sel ect

accept Driver_Awake_Signal ;
or

del ay 30. 0* Seconds;

St op_The_Trai n;
end sel ect;

9.7.1 Selective Accept

This form of the select_statement alows a combination of waiting for, and selecting from, one or more
aternatives. The selection may depend on conditions associated with each dternative of the
selective_accept.

Syntax

selective_accept ::=
select
[guard]
select_alternative
{or
[guard]
select_alternative }
[ else
sequence_of_statements ]
end select;
guard ::= when condition =>

select_alternative ::=
accept_alternative
| delay_alternative
| terminate_alternative

accept_alternative ::=
accept_statement [sequence_of_statements]

delay_alternative ::=
delay_statement [sequence_of_statements]

terminate_alternative ::= terminate;
A selective_accept shall contain at least one accept_alternative. In addition, it can contain:
e aterminate_alternative (only one); or
e oneor moredelay_alternatives; or
e an elsepart (the reserved word el se followed by asequence_of_statements).
These three possibilities are mutually exclusive.
Legality Rules
If a selective_accept contains more than one delay_alternative, then all shall be delay_relative_-
statements, or al shall be delay_until_statements for the same time type.
Dynamic Semantics

A select_alternative is said to be open if it is not immediately preceded by a guard, or if the condition of
itsguard evaluatesto True. It is said to be closed otherwise.
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For the execution of a selective_accept, any guard conditions are evaluated; open alternatives are thus
determined. For an open delay_alternative, the delay_expression is also evaluated. Similarly, for an open
accept_alternative for an entry of a family, the entry_index is also evaluated. These evaluations are
performed in an arbitrary order, except that a delay_expression or entry_index is not evaluated until after
evaluating the corresponding condition, if any. Selection and execution of one open alternative, or of the
else part, then completes the execution of the selective_accept; the rules for this selection are described
below.

Open accept_alternatives are first considered. Selection of one such alternative takes place immediately if
the corresponding entry already has queued calls. If severa alternatives can thus be selected, one of them
is selected according to the entry queuing policy in effect (see 9.5.3 and D.4). When such an aternativeis
selected, the selected call is removed from its entry queue and the handled_sequence_of_statements (if
any) of the corresponding accept_statement is executed; after the rendezvous completes any subsequent
sequence_of_statements of the aternative is executed. If no selection is immediately possible (in the
above sense) and there is no else part, the task blocks until an open aternative can be selected.

Selection of the other forms of aternative or of an else part is performed as follows:

« An open delay_alternative is selected when its expiration time is reached if no accept_-
alternative or other delay_alternative can be selected prior to the expiration time. If several
delay_alternatives have this same expiration time, one of them is selected according to the
queuing policy in effect (see D.4); the default queuing policy chooses arbitrarily among the
delay_alternatives whose expiration time has passed.

* The else part is selected and its sequence_of_statements is executed if no accept_alternative
can immediately be selected; in particular, if all aternatives are closed.

* An open terminate_alternative is selected if the conditions stated at the end of clause 9.3 are
satisfied.
The exception Program_Error israised if all alternatives are closed and there is no else part.

NOTES
39 A selective_accept is allowed to have several open delay_alternatives. A selective_accept is allowed to have severa
open accept_alternatives for the same entry.

Examples
Example of a task body with a selective accept:

task body Server is
Current_Work_lItem: Work ltem

begi n
| oop
sel ect
accept Next _Work Item(W : in Wrk_Item) do
Current_Work Item:= W;
end;
Process_Work_ltem(Current_Work_ltem;
or
accept Shut _Down;
exit; - - Premature shut down requested
or
term nate; -- Normal shutdown at end of scope
end sel ect;
end | oop;
end Server;

9.7.1 Selective Accept 10 November 2006 210



ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

9.7.2 Timed Entry Calls

A timed_entry_call issues an entry call that is cancelled if the call (or a requeue-with-abort of the cal) is
not selected before the expiration time is reached. A procedure call may appear rather than an entry call
for cases where the procedure might be implemented by an entry.

Syntax
timed_entry_call ::=
select
entry_call_alternative
or
delay_alternative
end select;

entry_call_alternative ::=
procedure_or_entry_call [sequence_of statements]

procedure_or_entry_call ::=
procedure_call_statement | entry_call_statement

Legality Rules
If a procedure_call_statement is used for a procedure_or_entry call, the procedure name or
procedure_prefix of the procedure_call_statement shall statically denote an entry renamed as a procedure
or (a view of) a primitive subprogram of a limited interface whose first parameter is a controlling
parameter (see 3.9.2).

Static Semantics

If a procedure_call_statement is used for a procedure_or_entry_call, and the procedure is implemented
by an entry, then the procedure name, or procedure prefix and possibly the first parameter of the
procedure_call_statement, determine the target object of the call and the entry to be called.

Dynamic Semantics

For the execution of atimed_entry_call, the entry_name, procedure_name, or procedure prefix, and any
actual parameters are evaluated, as for a simple entry cal (see 9.5.3) or procedure cal (see 6.4). The
expiration time (see 9.6) for the call is determined by evauating the delay expression of the
delay_alternative. If the call is an entry call or a call on a procedure implemented by an entry, the entry
cal is then issued. Otherwise, the call proceeds as described in 6.4 for a procedure call, followed by the
sequence_of_statements of the entry call_alternative; the sequence_of statements of the delay_-
alternative isignored.

If the call is queued (including due to a requeue-with-abort), and not selected before the expiration time is
reached, an attempt to cancel the call is made. If the call completes due to the cancellation, the optional
sequence_of_statements of the delay_alternative is executed; if the entry call completes normally, the
optional sequence_of_statements of the entry_call_alternative is executed.
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Examples
Example of a timed entry call:

sel ect

Control |l er. Request (Medi unm) (Sone_lten);
or

del ay 45. 0;

- - controller too busy, try something else
end sel ect;

9.7.3 Conditional Entry Calls

A conditional_entry_call issues an entry call that is then cancelled if it is not selected immediately (or if a
requeue-with-abort of the call is not selected immediately). A procedure call may appear rather than an
entry call for cases where the procedure might be implemented by an entry.

Syntax
conditional_entry_call ::=
select
entry_call_alternative
else
sequence_of_statements
end select;

Dynamic Semantics
The execution of a conditional_entry_call is defined to be equivalent to the execution of atimed_entry_-

call with a delay_alternative specifying an immediate expiration time and the same sequence_of_-
statements as given after the reserved word else.

NOTES

40 A conditional_entry_call may briefly increase the Count attribute of the entry, even if the conditiona call is not
selected.

Examples
Example of a conditional entry call:

procedure Spin(R : in Resource) is
begi n
| oop
sel ect
R Sei ze;
return;
el se
null; -- busywaiting
end sel ect;
end | oop;
end;
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9.7.4 Asynchronous Transfer of Control

An asynchronous select_statement provides asynchronous transfer of control upon completion of an entry
call or the expiration of adelay.

Syntax
asynchronous_select ::=
select
triggering_alternative
then abort
abortable_part
end select;

triggering_alternative ::= triggering_statement [sequence_of_statements]
triggering_statement ::= procedure_or_entry_call | delay_statement
abortable_part ::= sequence_of_statements

Dynamic Semantics

For the execution of an asynchronous_select whose triggering_statement is a procedure_or_entry_call,
the entry_name, procedure_name, or procedure prefix, and actual parameters are evaluated as for a
simple entry call (see 9.5.3) or procedure call (see 6.4). If the call is an entry call or acall on a procedure
implemented by an entry, the entry call isissued. If the entry call is queued (or requeued-with-abort), then
the abortable_part is executed. If the entry call is selected immediately, and never requeued-with-abort,
then the abortable_part is never started. If the call is on a procedure that is not implemented by an entry,
the call proceeds as described in 6.4, followed by the sequence_of statements of the triggering_-
alternative; the abortable_part is never started.

For the execution of an asynchronous_select whose triggering_statement is a delay_statement, the
delay_expression is evaluated and the expiration time is determined, as for a normal delay_statement. If
the expiration time has not already passed, the abortable_part is executed.

If the abortable_part completes and is left prior to completion of the triggering_statement, an attempt to
cancel the triggering_statement is made. If the attempt to cancel succeeds (see 9.5.3 and 9.6), the
asynchronous_select is complete.

If the triggering_statement completes other than due to cancellation, the abortable_part is aborted (if
started but not yet completed — see 9.8). If the triggering_statement completes normally, the optional
sequence_of_statements of the triggering_alternative is executed after the abortable_part is left.

Examples
Example of a main command loop for a command interpreter:

| oop
sel ect
Term nal . Wai t _For _I nterrupt;
Put _Line("Interrupted");
then abort
- - Thiswill be abandoned upon terminal interrupt
Put _Line("->");
Get _Li ne( Command, Last);
Process Corrmand(CorTmand(l Last));
end sel ect;
end | oop;
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Example of a time-limited calculation:

sel ect

del ay 5.0;

Put _Li ne("Cal cul ati on does not converge");
t hen abort

- - Thiscalculation should finish in 5.0 seconds,

- - ifnot, it isassumed to diverge.

Horri bl y_Conpl i cated_Recursive_Function(X, Y);
end sel ect;

9.8 Abort of a Task - Abort of a Sequence of Statements

An abort_statement causes one or more tasks to become abnormal, thus preventing any further interaction
with such tasks. The completion of the triggering_statement of an asynchronous_select causes a
sequence_of_statements to be aborted.

Syntax
abort_statement ::= abort task_name {, task_name};

Name Resolution Rules

Each task_name is expected to be of any task type; they need not all be of the same task type.

Dynamic Semantics

For the execution of an abort_statement, the given task_names are evaluated in an arbitrary order. Each
named task is then aborted, which consists of making the task abnormal and aborting the execution of the
corresponding task_body, unlessit is already completed.

When the execution of a construct is aborted (including that of a task_body or of a sequence_of_-
statements), the execution of every construct included within the aborted execution is also aborted, except
for executions included within the execution of an abort-deferred operation; the execution of an abort-
deferred operation continues to completion without being affected by the abort; the following are the
abort-deferred operations:

e aprotected action;

« waiting for an entry call to complete (after having initiated the attempt to cancel it — see
below);

« waiting for the termination of dependent tasks;

« the execution of an Initialize procedure as the last step of the default initialization of a controlled
object;

« theexecution of aFinalize procedure as part of the finalization of a controlled object;
e an assignment operation to an object with a controlled part.
The last three of these are discussed further in 7.6.

When amaster is aborted, all tasks that depend on that master are aborted.

The order in which tasks become abnormal as the result of an abort_statement or the abort of a
sequence_of_statements is not specified by the language.

If the execution of an entry call is aborted, an immediate attempt is made to cancel the entry call (see
9.5.3). If the execution of a construct is aborted at a time when the execution is blocked, other than for an
entry call, at a point that is outside the execution of an abort-deferred operation, then the execution of the
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construct completes immediately. For an abort due to an abort_statement, these immediate effects occur
before the execution of the abort_statement completes. Other than for these immediate cases, the
execution of a construct that is aborted does not necessarily complete before the abort_statement
completes. However, the execution of the aborted construct completes no later than its next abort
completion point (if any) that occurs outside of an abort-deferred operation; the following are abort
completion points for an execution:

« the point where the execution initiates the activation of another task;
+ theend of the activation of atask;

« the start or end of the execution of an entry call, accept_statement, delay_ statement, or
abort_statement;

¢ the start of the execution of a select_statement, or of the sequence_of statements of an
exception_handler.

Bounded (Run-Time) Errors

An attempt to execute an asynchronous_select as part of the execution of an abort-deferred operation isa
bounded error. Similarly, an attempt to create a task that depends on a master that is included entirely
within the execution of an abort-deferred operation is a bounded error. In both cases, Program_Error is
raised if the error is detected by the implementation; otherwise the operations proceed as they would
outside an abort-deferred operation, except that an abort of the abortable_part or the created task might or
might not have an effect.

Erroneous Execution

If an assignment operation completes prematurely due to an abort, the assignment is said to be disrupted;
the target of the assignment or its parts can become abnormal, and certain subsequent uses of the object
can be erroneous, as explained in 13.9.1.

NOTES
41 An abort_statement should be used only in situations requiring unconditional termination.

42 A task isallowed to abort any task it can name, including itself.
43 Additional requirements associated with abort are given in D.6, “ Preemptive Abort”.

9.9 Task and Entry Attributes

Dynamic Semantics
For aprefix T that is of atask type (after any implicit dereference), the following attributes are defined:

T'Cdlable  Yieldsthe value True when the task denoted by T is callable, and False otherwise; atask is
callable unless it is completed or abnormal. The value of this attribute is of the predefined
type Boolean.

T'Terminated Yieldsthe value Trueif the task denoted by T is terminated, and False otherwise. The value
of this attribute is of the predefined type Boolean.

For a prefix E that denotes an entry of a task or protected unit, the following attribute is defined. This
attribute is only allowed within the body of the task or protected unit, but excluding, in the case of an entry
of atask unit, within any program unit that is, itself, inner to the body of the task unit.

E'Count Yields the number of calls presently queued on the entry E of the current instance of the
unit. The value of this attribute is of the type universal_integer.
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NOTES
44 For the Count attribute, the entry can be either a single entry or an entry of a family. The name of the entry or entry
family can be either adirect_name or an expanded name.

45 Within task units, algorithms interrogating the attribute E'Count should take precautions to alow for the increase of
the value of this attribute for incoming entry calls, and its decrease, for example with timed_entry_calls. Also, a
conditional_entry_call may briefly increase this value, even if the conditional call is not accepted.

46 Within protected units, algorithms interrogating the attribute E'Count in the entry_barrier for the entry E should take
precautions to allow for the evaluation of the condition of the barrier both before and after queuing agiven caller.

9.10 Shared Variables

Satic Semantics

If two different objects, including nonoverlapping parts of the same object, are independently addressable,
they can be manipulated concurrently by two different tasks without synchronization. Normally, any two
nonoverlapping objects are independently addressable. However, if packing, record layout, or
Component_Size is specified for a given composite object, then it is implementation defined whether or
not two nonoverlapping parts of that composite object are independently addressable.

Dynamic Semantics
Separate tasks normally proceed independently and concurrently with one ancther. However, task
interactions can be used to synchronize the actions of two or more tasks to allow, for example, meaningful
communication by the direct updating and reading of variables shared between the tasks. The actions of
two different tasks are synchronized in this sense when an action of one task signals an action of the other
task; an action Al is defined to signa an action A2 under the following circumstances:

e If Aland A2 are part of the execution of the same task, and the language rules require A1 to be
performed before A2;

« If Al isthe action of an activator that initiates the activation of a task, and A2 is part of the
execution of the task that is activated,

e If Alis part of the activation of a task, and A2 is the action of waiting for completion of the
activation;

» If Alispart of the execution of atask, and A2 is the action of waiting for the termination of the
task;

e If Al is the termination of a task T, and A2 is either the evaluation of the expression
T'Terminated or a call to Ada.Task_Identification.Is_Terminated with an actual parameter that
identifies T (see C.7.1);

« If Alisthe action of issuing an entry call, and A2 is part of the corresponding execution of the
appropriate entry_body or accept_statement.

e If Alis part of the execution of an accept_statement or entry_body, and A2 is the action of
returning from the corresponding entry call;

« If Alispart of the execution of a protected procedure body or entry_body for a given protected
object, and A2 is part of alater execution of an entry_body for the same protected object;

» If Al signals some action that in turn signals A2.
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Erroneous Execution

Given an action of assigning to an object, and an action of reading or updating a part of the same object (or
of aneighboring object if the two are not independently addressable), then the execution of the actionsis
erroneous unless the actions are sequential. Two actions are sequential if one of the following is true:

« One action signals the other;
« Both actions occur as part of the execution of the same task;

« Both actions occur as part of protected actions on the same protected object, and at most one of
the actionsis part of a call on a protected function of the protected object.

A pragma Atomic or Atomic_Components may also be used to ensure that certain reads and updates are
sequential — see C.6.

9.11 Example of Tasking and Synchronization

Examples

The following example defines a buffer protected object to smooth variations between the speed of output
of a producing task and the speed of input of some consuming task. For instance, the producing task might
have the following structure:

task Producer;

task body Producer is
Person : Person_Nane; -- see3.10.1
begi n
| oop
... -- simulatearrival of the next customer
Buf f er. Append_Wai t (Person);
exit when Person = null;
end | oop;
end Producer;

and the consuming task might have the following structure:
task Consurner;

task body Consuner is
Person : Person_Nane;
begi n
| oop
Buf f er. Renove_Fi rst Wit (Person);
exit when Person = null;
... -- sSimulate serving a customer
end | oop;
end Consuner;

The buffer object contains an internal array of person names managed in a round-robin fashion. The array
has two indices, an In_Index denoting the index for the next input person name and an Out_Index denoting
the index for the next output person name.

The Buffer is defined as an extension of the Synchronized_Queue interface (see 3.9.4), and as such
promises to implement the abstraction defined by that interface. By doing so, the Buffer can be passed to
the Transfer class-wide operation defined for objects of atype covered by Queue'Class.
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812 protected Buffer is new Synchroni zed_Queue with -- see394
entry Append_Wait(Person : in Person_Nane);
entry Renmove_First_Wit(Person : out Person_Nane);
function Cur_Count return Natural;
function Max_Count return Natural;

procedure Append(Person : in Person_Nane);
procedure Renpve_First(Person : out Person_Nane);
private
Pool : Person_Nane_Array(1l .. 100);
Count : Natural := 0;
In_lI ndex, Qut_Index : Positive := 1;
end Buffer;
92 protected body Buffer is

entry Append_Wiit (Person : in Person_Nane)
when Count < Pool'Length is

begi n
Append( Person);

end Append_Wait;

9.1/2 procedure Append(Person : in Person_Nane) is
begi n
if Count = Pool'Length then
rai se Queue_Error with "Buffer Full"; -- seell3
end if;
Pool (I n_I ndex) := Person;
I n_I ndex ;= (In_lndex nod Pool'Length) + 1,
Count ;= Count + 1;
end Append;
10/2 entry Renove_First_Wait(Person : out Person_Nane)
when Count > 0 is
begi n

Renpve_Fi rst (Person);
end Renove First_Wit;

11/2 procedure Renove_First(Person : out Person_Nane) is
begi n
if Count = 0 then
rai se Queue_Error with "Buffer Enpty"; -- seell3
end if;
Per son Pool (CQut _I ndex) ;

Qut _Index := (Qut_Index nbd Pool'Length) + 1;
Count ;= Count - 1,
end Renpve_First;
1212 function Cur_Count return Natural is
begi n

return Buffer. Count;
end Cur_Count;

13/2 function Max_Count return Natural is
begi n
return Pool ' Lengt h;
end Max_Count;
end Buffer;
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Section 10: Program Structure and Compilation Issues

The overall structure of programs and the facilities for separate compilation are described in this section. A
program is a set of partitions, each of which may execute in a separate address space, possibly on a
Separate computer.

As explained below, a partition is constructed from library units. Syntactically, the declaration of alibrary
unit is a library_item, as is the body of a library unit. An implementation may support a concept of a
program library (or simply, a “library”), which contains library_items and their subunits. Library units
may be organized into a hierarchy of children, grandchildren, and so on.

This section has two clauses. 10.1, “Separate Compilation” discusses compile-time issues related to
separate compilation. 10.2, “Program Execution” discusses issues related to what is traditionally known as
“link time” and “run time” — building and executing partitions.

10.1 Separate Compilation

A program unit is either a package, a task unit, a protected unit, a protected entry, a generic unit, or an
explicitly declared subprogram other than an enumeration literal. Certain kinds of program units can be
separately compiled. Alternatively, they can appear physically nested within other program units.

The text of a program can be submitted to the compiler in one or more compilations. Each compilation isa
succession of compilation_units. A compilation_unit contains either the declaration, the body, or a
renaming of a program unit. The representation for acompilation isimplementation-defined.

A library unit is a separately compiled program unit, and is always a package, subprogram, or generic unit.
Library units may have other (logically nested) library units as children, and may have other program units
physically nested within them. A root library unit, together with its children and grandchildren and so on,
form a subsystem.

Implementation Permissions

An implementation may impose implementation-defined restrictions on compilations that contain multiple
compilation_units.

10.1.1 Compilation Units - Library Units

A library_item is a compilation unit that is the declaration, body, or renaming of a library unit. Each
library unit (except Standard) has a parent unit, which is a library package or generic library package. A
library unit is a child of its parent unit. The root library units are the children of the predefined library
package Standard.

Syntax
compilation ::= { compilation_unit}
compilation_unit ::=

context_clause library_item
| context_clause subunit

library_item ::= [private] library_unit_declaration
| library_unit_body
| [private] library_unit_renaming_declaration
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library_unit_declaration ::=
subprogram_declaration | package_declaration
| generic_declaration | generic_instantiation

library_unit_renaming_declaration ::=
package_renaming_declaration

| generic_renaming_declaration

| subprogram_renaming_declaration

library_unit_body ::= subprogram_body | package_body
parent_unit_name ::= name

An overriding_indicator is not allowed in a subprogram_declaration, generic_instantiation, or
subprogram_renaming_declaration that declares alibrary unit.

A library unit is a program unit that is declared by a library_item. When a program unit is a library unit,
the prefix “library” is used to refer to it (or “generic library” if generic), as well as to its declaration and
body, as in “library procedure”, “library package_body”, or “generic library package’. The term
compilation unit is used to refer to a compilation_unit. When the meaning is clear from context, theterm is
also used to refer to the library_item of a compilation_unit or to the proper_body of a subunit (that is, the
compilation_unit without the context_clause and the separ ate (parent_unit_name)).

The parent declaration of alibrary_item (and of the library unit) is the declaration denoted by the parent_-
unit_name, if any, of the defining_program_unit_name of the library_item. If there is no parent_-
unit_name, the parent declaration is the declaration of Standard, the library_item is a root library_item,
and the library unit (renaming) is a root library unit (renaming). The declaration and body of Standard
itself have no parent declaration. The parent unit of a library_item or library unit is the library unit
declared by its parent declaration.

The children of a library unit occur immediately within the declarative region of the declaration of the
library unit. The ancestors of alibrary unit are itself, its parent, its parent's parent, and so on. (Standard is
an ancestor of every library unit.) The descendant relation is the inverse of the ancestor relation.

A library_unit_declaration or a library_unit_renaming_declaration is private if the declaration is
immediately preceded by the reserved word private; it is otherwise public. A library unit is private or
public according to its declaration. The public descendants of alibrary unit are the library unit itself, and
the public descendants of its public children. Its other descendants are private descendants.

For each library package_declaration in the environment, there is an implicit declaration of alimited view
of that library package. The limited view of a package contains:

» For each nested package_declaration, a declaration of the limited view of that package, with the
same defining_program_unit_name.

e For each type_declaration in the visible part, an incomplete view of the type; if the
type_declaration is tagged, then the view is atagged incomplete view.

The limited view of a library package_declaration is private if that library package_declaration is
immediately preceded by the reserved word private.

There is no syntax for declaring limited views of packages, because they are always implicit. The implicit
declaration of a limited view of a library package is not the declaration of a library unit (the library
package_declaration is); nonetheless, it is alibrary_item. The implicit declaration of the limited view of a
library package forms an (implicit) compilation unit whose context_clause is empty.

A library package_declaration is the completion of the declaration of its limited view.
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Legality Rules
The parent unit of alibrary_item shall be alibrary package or generic library package.

If adefining_program_unit_name of a given declaration or body has a parent_unit_name, then the given
declaration or body shall be alibrary_item. The body of a program unit shall be alibrary_item if and only
if the declaration of the program unit is a library_item. In alibrary_unit_renaming_declaration, the (old)
name shall denote alibrary_item.

A parent_unit_name (which can be used within a defining_program_unit_name of alibrary_item and in
the separate clause of a subunit), and each of its prefixes, shall not denote a renaming_declaration. On
the other hand, a name that denotes a library_unit_renaming_declaration is alowed in a
nonlimited_with_clause and other places where the name of alibrary unit is allowed.

If alibrary package is an instance of a generic package, then every child of the library package shall either
beitself an instance or be arenaming of alibrary unit.

A child of a generic library package shall either be itself a generic unit or be a renaming of some other
child of the same generic unit. The renaming of a child of a generic package shall occur only within the
declarative region of the generic package.

A child of a parent generic package shall be instantiated or renamed only within the declarative region of
the parent generic.

For each child C of some parent generic package P, there is a corresponding declaration C nested
immediately within each instance of P. For the purposes of this rule, if a child C itself has a child D, each
corresponding declaration for C has a corresponding child D. The corresponding declaration for a child
within an instance is visible only within the scope of a with_clause that mentions the (original) child
generic unit.

A library subprogram shall not override a primitive subprogram.

The defining name of afunction that is a compilation unit shall not be an operator_symbol.

Satic Semantics

A subprogram_renaming_declaration that is a library_unit_renaming_declaration is a renaming-as-
declaration, not a renaming-as-body.

There are two kinds of dependences among compilation units:

e The semantic dependences (see below) are the ones needed to check the compile-time rules
across compilation unit boundaries; a compilation unit depends semantically on the other
compilation units needed to determine its legality. The visibility rules are based on the semantic
dependences.

« The elaboration dependences (see 10.2) determine the order of elaboration of library_items.

A library_item depends semantically upon its parent declaration. A subunit depends semantically upon its
parent body. A library_unit_body depends semantically upon the corresponding library_unit_declaration,
if any. The declaration of the limited view of alibrary package depends semantically upon the declaration
of the limited view of its parent. The declaration of a library package depends semantically upon the
declaration of its limited view. A compilation unit depends semantically upon each library_item mentioned
in a with_clause of the compilation unit. In addition, if a given compilation unit contains an
attribute_reference of atype defined in another compilation unit, then the given compilation unit depends
semantically upon the other compilation unit. The semantic dependence relationship istransitive.
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Dynamic Semantics
The elaboration of the declaration of the limited view of a package has no effect.

NOTES
1 A simple program may consist of a single compilation unit. A compilation need not have any compilation units; for
example, itstext can consist of pragmas.

2 The designator of alibrary function cannot be an operator_symbol, but a nonlibrary renaming_declaration is allowed
to rename a library function as an operator. Within a partition, two library subprograms are required to have distinct
names and hence cannot overload each other. However, renaming_declarations are alowed to define overloaded names
for such subprograms, and a locally declared subprogram is alowed to overload a library subprogram. The expanded
name Standard.L can be used to denote a root library unit L (unless the declaration of Standard is hidden) since root
library unit declarations occur immediately within the declarative region of package Standard.

Examples
Examples of library units:

package Rational _Nunbers.1Ois -- publicchildof Rational_Numbers, see 7.1
procedure Put(R : in Rational);
procedure Get(R : out Rational);

end Rational _Nunbers.|1Q

private procedure Rational _Numbers. Reduce(R : in out Rational);
- - private child of Rational_Numbers
with Rational _Nunbers. Reduce; - - refer to a private child

package body Rational _Nunbers is

end Rational _Nunbers;
with Rational _Nunbers.| O use Rational _Nunbers;

with Ada. Text _i o; -- seeA10
procedure Main is - - aroot library procedure
R : Rational;
begi n
R :=5/3; - - construct a rational number, see 7.1
Ada. Text _|1 O Put ("The answer is: ");
IO Put(R);
Ada. Text _| O New_Li ne;
end Mai n;

with Rational _Nunmbers. 1O
package Rational _| O renanes Rational _Nunbers.|Q
- - alibrary unit renaming declaration

Each of the above library_items can be submitted to the compiler separately.

10.1.2 Context Clauses - With Clauses

A context_clause is used to specify the library_items whose names are needed within a compilation unit.

Syntax
context_clause ::= { context_item}
context_item ::= with_clause | use_clause
with_clause ::= limited_with_clause | nonlimited_with_clause
limited_with_clause ::= limited [private] with library_unit_name {, library_unit_name};
nonlimited_with_clause ::= [private] with library_unit_name {, library_unit_name};
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Name Resolution Rules

The scope of a with_clause that appears on a library_unit_declaration or library_unit_renaming_-
declaration consists of the entire declarative region of the declaration, which includes all children and
subunits. The scope of a with_clause that appears on a body consists of the body, which includes al
subunits.

A library_item (and the corresponding library unit) is named in a with_clause if it is denoted by a
library_unit_name in the with_clause. A library_item (and the corresponding library unit) is mentioned in
awith_clause if it isnamed in the with_clause or if it is denoted by a prefix in the with_clause.

Outside its own declarative region, the declaration or renaming of alibrary unit can be visible only within
the scope of awith_clause that mentions it. The visibility of the declaration or renaming of a library unit
otherwise follows from its placement in the environment.

Legality Rules
If awith_clause of a given compilation_unit mentions a private child of some library unit, then the given
compilation_unit shall be one of:

» thedeclaration, body, or subunit of a private descendant of that library unit;

« the body or subunit of a public descendant of that library unit, but not a subprogram body acting
as a subprogram declaration (see 10.1.4); or

¢ the declaration of a public descendant of that library unit, in which case the with_clause shall
include the reserved word private.

A name denoting a library item that is visible only due to being mentioned in one or more with_clauses
that include the reserved word private shall appear only within:

e aprivate part;

< abody, but not within the subprogram_specification of alibrary subprogram body;

* aprivate descendant of the unit on which one of these with_clauses appear; or

e apragmawithin a context clause.
A library_item mentioned in a limited_with_clause shall be the implicit declaration of the limited view of
alibrary package, not the declaration of a subprogram, generic unit, generic instance, or arenaming.

A limited_with_clause shall not appear on a library_unit_body, subunit, or library_unit_renaming_-
declaration.

A limited_with_clause that names alibrary package shall not appear:
« inthe context_clause for the explicit declaration of the named library package;

« in the same context_clause as, or within the scope of, a nonlimited_with_clause that mentions
the same library package; or

* in the same context_clause as, or within the scope of, a use_clause that names an entity
declared within the declarative region of the library package.

NOTES

3 A library_item mentioned in a nonlimited_with_clause of a compilation unit is visible within the compilation unit and
hence acts just like an ordinary declaration. Thus, within a compilation unit that mentions its declaration, the name of a
library package can be given in use_clauses and can be used to form expanded names, a library subprogram can be
caled, and instances of a generic library unit can be declared. If a child of a parent generic package is mentioned in a
nonlimited_with_clause, then the corresponding declaration nested within each visible instance is visible within the
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compilation unit. Similarly, alibrary_item mentioned in a limited_with_clause of a compilation unit is visible within the
compilation unit and thus can be used to form expanded names.

Examples
package Ofice is
end Ofice;

with Ada. Strings. Unbounded;
package O fice.Locations is

type Location is new Ada. Strings. Unbounded. Unbounded_Stri ng;
end Ofice.Locations;

limted with Ofice.Departnents; -- typesareincomplete
private with O fice.Locations; - - onlyvisiblein private part
package O fice. Enpl oyees is

type Enployee is private;

function Dept _OF (Enp : Enpl oyee) return access Departnents. Departnent;
procedure Assign_Dept(Emp : in out Enployee;
Dept : access Departnents. Departnent);

private
type Enpl oyee is
record
Dept : access Departnents. Departnment;
Loc : Locations. Location;

end .récord;
end O fice. Enpl oyees;

limted with Ofice. Enpl oyees;
package O fice.Departnments is
type Departnment is private;

functi on Manager _Of (Dept : Departnent) return access Enpl oyees. Enpl oyee;
procedure Assign_Manager(Dept : in out Departnent;
Myr : access Enpl oyees. Enpl oyee);

end Office. Depart nents;

The limited_with_clause may be used to support mutually dependent abstractions that are split across
multiple packages. In this case, an employee is assigned to a department, and a department has a manager
who is an employee. If a with_clause with the reserved word private appears on one library unit and
mentions a second library unit, it provides visibility to the second library unit, but restricts that visibility to
the private part and body of the first unit. The compiler checks that no use is made of the second unit in
the visible part of the first unit.

10.1.3 Subunits of Compilation Units

Subunits are like child units, with these (important) differences: subunits support the separate compilation
of bodies only (not declarations); the parent contains a body_stub to indicate the existence and place of
each of its subunits; declarations appearing in the parent's body can be visible within the subunits.

Syntax
body_stub ::=
subprogram_body_stub | package_body_stub | task_body_stub | protected_body_stub

subprogram_body_stub ::=
[overriding_indicator]
subprogram_specification is separ ate;

package_body_stub ::= package body defining_identifier is separ ate;
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task_body_stub ::=task body defining_identifier is separ ate;
protected_body_stub ::= protected body defining_identifier is separ ate;
subunit ::= separ ate (parent_unit_name) proper_body

Legality Rules
The parent body of a subunit is the body of the program unit denoted by its parent_unit_name. The term
subunit is used to refer to a subunit and also to the proper_body of a subunit. The subunits of a program
unit include any subunit that names that program unit as its parent, as well as any subunit that names such
asubunit asits parent (recursively).

The parent body of a subunit shall be present in the current environment, and shall contain a corresponding
body_stub with the same defining_identifier as the subunit.

A package_body stub shal be the completion of a package_declaration or generic_package_-
declaration; atask_body_stub shall be the completion of atask declaration; a protected_body_stub shall
be the compl etion of a protected declaration.

In contrast, a subprogram_body_stub need not be the completion of a previous declaration, in which case
the _stub declares the subprogram. If the _stub is a completion, it shall be the completion of a
subprogram_declaration or generic_subprogram_declaration. The profile of a subprogram_body_stub
that completes a declaration shall conform fully to that of the declaration.

A subunit that corresponds to a body_stub shall be of the same kind (package_, subprogram_, task_, or
protected_) asthe body_stub. The profile of asubprogram_body subunit shall be fully conformant to that
of the corresponding body_stub.

A body_stub shall appear immediately within the declarative_part of a compilation unit body. This rule
does not apply within an instance of a generic unit.

The defining_identifiers of al body_stubs that appear immediately within a particular declarative_part
shall be distinct.

Post-Compilation Rules
For each body_stub, there shall be a subunit containing the corresponding proper_body.

NOTES
4 Therulesin 10.1.4, “The Compilation Process’ say that a body_stub is equivalent to the corresponding proper_body.
Thisimplies:
« Visibility within a subunit is the visibility that would be obtained at the place of the corresponding body_stub
(within the parent body) if the context_clause of the subunit were appended to that of the parent body.

* Theéeffect of the elaboration of abody_stub is to elaborate the subunit.

Examples
The package Parent is first written without subunits:

package Parent is
procedure | nner;
end Parent;

with Ada. Text _I G
package body Parent is

Variable : String := "Hello, there.";
procedure Inner is
begin
Ada. Text _| O Put _Li ne(Vari abl e);
end | nner;
end Parent;
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The body of procedure Inner may be turned into a subunit by rewriting the package body as follows (with
the declaration of Parent remaining the same):

package body Parent is

Variable : String := "Hello, there.";
procedure Inner is separate,;
end Parent;

with Ada. Text _I G
separ at e( Parent)
procedure Inner is
begi n
Ada. Text _|1 O Put _Li ne(Vari abl e);
end | nner;

10.1.4 The Compilation Process

Each compilation unit submitted to the compiler is compiled in the context of an environment
declarative_part (or simply, an environment), which is a conceptual declarative_part that forms the
outermost declarative region of the context of any compilation. At run time, an environment forms the
declarative_part of the body of the environment task of a partition (see 10.2, “Program Execution”).

The declarative_items of the environment are library_items appearing in an order such that there are no
forward semantic dependences. Each included subunit occurs in place of the corresponding stub. The
visibility rules apply asif the environment were the outermost declarative region, except that with_clauses
are needed to make declarations of library units visible (see 10.1.2).

The mechanisms for creating an environment and for adding and replacing compilation units within an
environment are implementation defined. The mechanisms for adding a compilation unit mentioned in a
limited_with_clause to an environment are implementation defined.

Name Resolution Rules

If alibrary_unit_body that is a subprogram_body is submitted to the compiler, it is interpreted only as a
completion if alibrary_unit_declaration with the same defining_program_unit_name aready existsin the
environment for a subprogram other than an instance of a generic subprogram or for a generic subprogram
(even if the profile of the body is not type conformant with that of the declaration); otherwise the
subprogram_body is interpreted as both the declaration and body of alibrary subprogram.

Legality Rules
When a compilation unit is compiled, all compilation units upon which it depends semantically shall
already exist in the environment; the set of these compilation units shall be consistent in the sense that the
new compilation unit shall not semantically depend (directly or indirectly) on two different versions of the
same compilation unit, nor on an earlier version of itself.

Implementation Permissions

The implementation may require that a compilation unit be legal before it can be mentioned in a
limited_with_clause or it can be inserted into the environment.

When a compilation unit that declares or renames a library unit is added to the environment, the
implementation may remove from the environment any preexisting library_item or subunit with the same
full expanded name. When a compilation unit that is a subunit or the body of alibrary unit is added to the
environment, the implementation may remove from the environment any preexisting version of the same
compilation unit. When a compilation unit that contains a body_stub is added to the environment, the
implementation may remove any preexisting library_item or subunit with the same full expanded name as
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the body_stub. When a given compilation unit is removed from the environment, the implementation may
also remove any compilation unit that depends semantically upon the given one. If the given compilation
unit contains the body of a subprogram to which a pragma Inline applies, the implementation may also
remove any compilation unit containing a call to that subprogram.

NOTES
5 The rules of the language are enforced across compilation and compilation unit boundaries, just as they are enforced 8
within a single compilation unit.

6 Animplementation may support aconcept of alibrary, which containslibrary_items. If multiple libraries are supported, 9
the implementation has to define how a single environment is constructed when a compilation unit is submitted to the
compiler. Naming conflicts between different libraries might be resolved by treating each library as the root of a hierarchy

of child library units.

7 A compilation unit containing an instantiation of a separately compiled generic unit does not semantically depend on 10
the body of the generic unit. Therefore, replacing the generic body in the environment does not result in the removal of the
compilation unit containing the instantiation.

10.1.5 Pragmas and Program Units

This subclause discusses pragmas related to program units, library units, and compilations. 1

Name Resolution Rules

Certain pragmas are defined to be program unit pragmas. A name given as the argument of a program 2
unit pragma shall resolve to denote the declarations or renamings of one or more program units that occur
immediately within the declarative region or compilation in which the pragma immediately occurs, or it
shall resolve to denote the declaration of the immediately enclosing program unit (if any); the pragma
applies to the denoted program unit(s). If there are no names given as arguments, the pragma applies to

the immediately enclosing program unit.

Legality Rules
A program unit pragma shall appear in one of these places: 3
« At the place of a compilation_unit, in which case the pragma shall immediately follow in the 4

same compilation (except for other pragmas) alibrary_unit_declaration that is a subprogram_-
declaration, generic_subprogram_declaration, or generic_instantiation, and the pragma shall
have an argument that is a name denoting that declaration.

« Immediately within the visible part of a program unit and before any nested declaration (but not 5/1
within a generic forma part), in which case the argument, if any, shall be a direct_name that
denotes the immediately enclosing program unit declaration.

* At the place of a declaration other than the first, of a declarative_part or program unit 6
declaration, in which case the pragma shall have an argument, which shall be a direct_name
that denotes one or more of the following (and nothing else): a subprogram_declaration, a
generic_subprogram_declaration, or a generic_instantiation, of the same declarative_part or
program unit declaration.

Certain program unit pragmas are defined to be library unit pragmas. The name, if any, in alibrary unit 7
pragma shall denote the declaration of alibrary unit.

Static Semantics

A library unit pragma that appliesto a generic unit does not apply to itsinstances, unless a specific rulefor 7.1
the pragma specifies the contrary.
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Post-Compilation Rules

Certain pragmas are defined to be configuration pragmas, they shall appear before the first
compilation_unit of a compilation. They are generally used to select a partition-wide or system-wide
option. The pragma appliesto all compilation_units appearing in the compilation, unless there are none, in
which caseit applies to all future compilation_units compiled into the same environment.

Implementation Permissions

An implementation may require that configuration pragmas that select partition-wide or system-wide
options be compiled when the environment contains no library_items other than those of the predefined
environment. In this case, the implementation shall still accept configuration pragmas in individual
compilations that confirm the initially selected partition-wide or system-wide options.

Implementation Advice

When applied to a generic unit, a program unit pragma that is not a library unit pragma should apply to
each instance of the generic unit for which there is not an overriding pragma applied directly to the
instance.

10.1.6 Environment-Level Visibility Rules

The normal visibility rules do not apply within a parent_unit_name or a context_clause, nor within a
pragma that appears at the place of a compilation unit. The special visibility rules for those contexts are
given here.

Satic Semantics

Within the parent_unit_name a the beginning of an explicit library_item, and within a
nonlimited_with_clause, the only declarations that are visible are those that are explicit library_items of
the environment, and the only declarations that are directly visible are those that are explicit root
library_items of the environment. Within a limited_with_clause, the only declarations that are visible are
those that are the implicit declaration of the limited view of alibrary package of the environment, and the
only declarations that are directly visible are those that are the implicit declaration of the limited view of a
root library package.

Within a use_clause or pragma that is within a context_clause, each library_item mentioned in a
previous with_clause of the same context_clause is visible, and each root library_item so mentioned is
directly visible. In addition, within such a use_clause, if a given declaration is visible or directly visible,
each declaration that occurs immediately within the given declaration's visible part is also visible. No
other declarations are visible or directly visible.

Within the parent_unit_name of a subunit, library_items are visible as they are in the parent_unit_name
of alibrary_item; in addition, the declaration corresponding to each body_stub in the environment is also
visible.

Within a pragma that appears at the place of a compilation unit, the immediately preceding library_item
and each of its ancestorsisvisible. The ancestor root library_item is directly visible.

Notwithstanding the rules of 4.1.3, an expanded hame in awith_clause, a pragma in a context_clause, or
a pragma that appears at the place of a compilation unit may consist of a prefix that denotes a generic
package and a selector_name that denotes a child of that generic package. (The child is necessarily a
generic unit; see 10.1.1.)
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10.2 Program Execution

An Ada program consists of a set of partitions, which can execute in parallel with one another, possibly in
a separate address space, and possibly on a separate computer.

Post-Compilation Rules

A partition is a program or part of a program that can be invoked from outside the Ada implementation.
For example, on many systems, a partition might be an executable file generated by the system linker. The
user can explicitly assign library units to a partition. The assignment is done in an implementation-defined
manner. The compilation units included in a partition are those of the explicitly assigned library units, as
well as other compilation units needed by those library units. The compilation units needed by a given
compilation unit are determined as follows (unless specified otherwise via an implementation-defined
pragma, or by some other implementation-defined means):

« A compilation unit needs itself;

e If a compilation unit is needed, then so are any compilation units upon which it depends
semanticaly;

e If alibrary_unit_declaration is needed, then so is any corresponding library_unit_body;
e |f acompilation unit with stubsis needed, then so are any corresponding subunits;

e If the (implicit) declaration of the limited view of a library package is needed, then so is the
explicit declaration of the library package.

The user can optionally designate (in an implementation-defined manner) one subprogram as the main
subprogram for the partition. A main subprogram, if specified, shall be a subprogram.

Each partition has an anonymous environment task, which is an implicit outermost task whose execution
elaborates the library_items of the environment declarative_part, and then calls the main subprogram, if
thereisone. A partition's execution isthat of its tasks.

The order of elaboration of library units is determined primarily by the elaboration dependences. Thereis
an elaboration dependence of a given library_item upon another if the given library_item or any of its
subunits depends semantically on the other library_item. In addition, if a given library_item or any of its
subunits has a pragma Elaborate or Elaborate All that names another library unit, then there is an
elaboration dependence of the given library_item upon the body of the other library unit, and, for
Elaborate_All only, upon each library_item needed by the declaration of the other library unit.

The environment task for a partition has the following structure:
t ask Environment_Task;

task body Environment_Task is
(1) -- Theenvironment declarative_part
- - (that is, the sequence of library_items) goes here.
begi n
... (2) -- Call themain subprogram, if thereisone.

end Environment_Task;
The environment declarative_part at (1) is a sequence of declarative_items consisting of copies of the
library_items included in the partition. The order of elaboration of library_items is the order in which they
appear in the environment declarative_part:

¢ The order of all included library items is such that there are no forward elaboration
dependences.
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e Any included library_unit_declaration to which a pragma Elaborate Body applies is
immediately followed by itslibrary_unit_body, if included.

« All library_items declared pure occur before any that are not declared pure.
» All preelaborated library_items occur before any that are not preelaborated.

There shall be a total order of the library_items that obeys the above rules. The order is otherwise
implementation defined.

The full expanded names of the library units and subunits included in a given partition shall be distinct.

The sequence_of_statements of the environment task (see (2) above) consists of either:

e A cal to the main subprogram, if the partition has one. If the main subprogram has parameters,
they are passed; where the actuals come from is implementation defined. What happens to the
result of amain function is also implementation defined.

or:
e A null_statement, if there is no main subprogram.

The mechanisms for building and running partitions are implementation defined. These might be
combined into one operation, as, for example, in dynamic linking, or “load-and-go” systems.

Dynamic Semantics
The execution of a program consists of the execution of a set of partitions. Further details are
implementation defined. The execution of a partition starts with the execution of its environment task,
ends when the environment task terminates, and includes the executions of all tasks of the partition. The
execution of the (implicit) task_body of the environment task acts as a master for al other tasks created as
part of the execution of the partition. When the environment task completes (normally or abnormally), it
waits for the termination of all such tasks, and then finalizes any remaining objects of the partition.

Bounded (Run-Time) Errors

Once the environment task has awaited the termination of al other tasks of the partition, any further
attempt to create a task (during finalization) is a bounded error, and may result in the raising of
Program_Error either upon creation or activation of the task. If such atask is activated, it is not specified
whether the task is awaited prior to termination of the environment task.

Implementation Requirements

The implementation shall ensure that al compilation units included in a partition are consistent with one
another, and are legal according to the rules of the language.

Implementation Permissions
The kind of partition described in this clause is known as an active partition. An implementation is
allowed to support other kinds of partitions, with implementation-defined semantics.

An implementation may restrict the kinds of subprograms it supports as main subprograms. However, an
implementation is required to support al main subprograms that are public parameterless library
procedures.

If the environment task compl etes abnormally, the implementation may abort any dependent tasks.

NOTES
8 An implementation may provide inter-partition communication mechanism(s) via special packages and pragmas.
Standard pragmeas for distribution and methods for specifying inter-partition communication are defined in Annex E,
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“Distributed Systems”. If no such mechanisms are provided, then each partition isisolated from all others, and behaves as
aprogram in and of itself.

9 Partitions are not required to run in separate address spaces. For example, an implementation might support dynamic
linking via the partition concept.

10 An order of elaboration of library_items that is consistent with the partial ordering defined above does not always
ensure that each library_unit_body is elaborated before any other compilation unit whose elaboration necessitates that the
library_unit_body be aready elaborated. (In particular, thereis no requirement that the body of alibrary unit be elaborated
as soon as possible after the library_unit_declaration is elaborated, unless the pragmas in subclause 10.2.1 are used.)

11 A partition (active or otherwise) need not have a main subprogram. In such a case, al the work done by the partition
would be done by elaboration of various library_items, and by tasks created by that elaboration. Passive partitions, which
cannot have main subprograms, are defined in Annex E, “Distributed Systems”.

10.2.1 Elaboration Control

This subclause defines pragmas that help control the elaboration order of library_items.

Syntax
The form of apragma Preelaborate is as follows:
pragma Preelaborate(library_unit_name)];
A pragma Preelaborate isalibrary unit pragma.
The form of apragma Preelaborable Initialization is as follows:
pragma Preelaborable_Initialization(direct_name);
Legality Rules
An elaborable construct is preelaborable unless its elaboration performs any of the following actions:
¢ The execution of astatement other than a null_statement.
« A call to asubprogram other than a static function.

e Theevauation of aprimary that is a name of an object, unless the name is a static expression,
or statically denotes a discriminant of an enclosing type.

¢ The creation of an object (including a component) of a type that does not have preelaborable
initialization. Similarly, the evaluation of an extension_aggregate with an ancestor subtype_-
mark denoting a subtype of such atype.

A generic body is preelaborable only if elaboration of a corresponding instance body would not perform
any such actions, presuming that:

¢ the actual for each formal private type (or extension) declared within the formal part of the
generic unit is a private type (or extension) that does not have preelaborable initialization;

« theactua for each formal typeis nonstatic;
e theactua for each formal object is nonstatic; and
« theactual for each formal subprogram is a user-defined subprogram.

If apragma Preelaborate (or pragma Pure — see below) appliesto alibrary unit, then it is preelaborated.
If alibrary unit is preelaborated, then its declaration, if any, and body, if any, are elaborated prior to all
non-preelaborated library_items of the partition. The declaration and body of a preelaborated library unit,
and all subunits that are elaborated as part of elaborating the library unit, shall be preelaborable. In
addition to the places where Legality Rules normally apply (see 12.3), this rule applies also in the private
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part of an instance of a generic unit. In addition, all compilation units of a preelaborated library unit shall
depend semantically only on compilation units of other preelaborated library units.

The following rules specify which entities have preelaborable initialization:

e« The partial view of a private type or private extension, a protected type without
entry_declarations, a generic formal private type, or a generic forma derived type, have
preelaborable initialization if and only if the pragma Preelaborable Initiaization has been
applied to them. A protected type with entry_declarations or atask type never has preelaborable
initialization.

e A component (including a discriminant) of a record or protected type has preelaborable
initialization if its declaration includes a default_expression whose execution does not perform
any actions prohibited in preelaborable constructs as described above, or if its declaration does
not include a default expression and its type has preelaborabl e initialization.

* A derived type has preelaborable initialization if its parent type has preelaborable initialization
and (in the case of a derived record extension) if the non-inherited components all have
preelaborable initialization. However, a user-defined controlled type with an overriding Initialize
procedure does not have preelaborable initialization.

* A view of atype has preelaborable initidization if it is an elementary type, an array type whose
component type has preelaborable initialization, a record type whose components al have
preelaborable initiaization, or an interface type.

A pragma Preelaborable_Initialization specifies that a type has preelaborable initialization. This pragma
shall appear in the visible part of a package or generic package.

If the pragma appears in the first list of basic_declarative_items of a package_specification, then the
direct_name shall denote the first subtype of a private type, private extension, or protected type that is not
an interface type and is without entry_declarations, and the type shall be declared immediately within the
same package as the pragma. If the pragma is applied to a private type or a private extension, the full
view of the type shall have preelaborable initialization. If the pragma is applied to a protected type, each
component of the protected type shall have preelaborable initialization. In addition to the places where
Legality Rules normally apply, these rules apply also in the private part of an instance of a generic unit.

If the pragma appears in a generic_formal_part, then the direct_name shall denote a generic formal
private type or a generic formal derived type declared in the same generic_formal_part as the pragma. In
ageneric_instantiation the corresponding actual type shall have preelaborable initialization.

Implementation Advice
In an implementation, a type declared in a preelaborated package should have the same representation in
every elaboration of a given version of the package, whether the elaborations occur in distinct executions
of the same program, or in executions of distinct programs or partitions that include the given version.

Syntax
The form of apragma Pureisasfollows:
pragma Pure[(library_unit_name)];
A pragma Pureisalibrary unit pragma.
Satic Semantics

A pure library_item is a preelaborable library_item whose elaboration does not perform any of the
following actions:

* the elaboration of avariable declaration;
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« the evauation of an allocator of an access-to-variable type; for the purposes of this rule, the
partia view of atype is presumed to have non-visible components whose default initialization
evaluates such an allocator;

« the elaboration of the declaration of a named access-to-variable type unless the Storage Size of
the type has been specified by a static expression with value zero or is defined by the language
to be zero;

« the elaboration of the declaration of a named access-to-constant type for which the Storage_Size
has been specified by an expression other than a static expression with value zero.

The Storage_Size for an anonymous access-to-variable type declared at library level in alibrary unit that
is declared pure is defined to be zero.

Legality Rules
This paragraph was del eted.

A pragma Pure is used to declare that alibrary unit is pure. If apragma Pure appliesto alibrary unit, then
its compilation units shall be pure, and they shall depend semantically only on compilation units of other
library units that are declared pure. Furthermore, the full view of any partial view declared in the visible
part of the library unit that has any available stream attributes shall support external streaming (see
13.13.2).

Implementation Permissions

If alibrary unit is declared pure, then the implementation is permitted to omit a call on a library-level
subprogram of the library unit if the results are not needed after the call. In addition, the implementation
may omit a call on such a subprogram and simply reuse the results produced by an earlier call on the same
subprogram, provided that none of the parameters nor any object accessible via access values from the
parameters are of a limited type, and the addresses and values of all by-reference actual parameters, the
values of al by-copy-in actual parameters, and the values of all objects accessible via access values from
the parameters, are the same as they were at the earlier call. This permission applies even if the
subprogram produces other side effects when called.

Syntax
The form of apragma Elaborate, Elaborate_All, or Elaborate_Body is as follows:
pragma Elaborate(library_unit_name{, library_unit_name});
pragma Elaborate_All(library_unit_name{, library_unit_name});
pragma Elaborate Body[(library_unit_name)];
A pragma Elaborate or Elaborate All isonly allowed within a context_clause.
A pragma Elaborate Body isalibrary unit pragma.

Legality Rules
If apragma Elaborate_Body applies to a declaration, then the declaration requires a completion (a body).
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The library_unit_name of a pragma Elaborate or Elaborate All shall denote a nonlimited view of a 25.12

library unit.

Static Semantics

A pragma Elaborate specifies that the body of the named library unit is elaborated before the current
library_item. A pragma Elaborate All specifies that each library_item that is needed by the named library
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unit declaration is elaborated before the current library_item. A pragma Elaborate Body specifies that the
body of the library unit is elaborated immediately after its declaration.

NOTES
27 12 A preelaborated library unit is allowed to have non-preelaborable children.
28 13 A library unit that is declared pureis allowed to have impure children.
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Section 11: Exceptions

This section defines the facilities for dealing with errors or other exceptional situations that arise during
program execution. An exception represents a kind of exceptional situation; an occurrence of such a
situation (at run time) is called an exception occurrence. To raise an exception is to abandon normal
program execution so as to draw attention to the fact that the corresponding situation has arisen.
Performing some actions in response to the arising of an exception is called handling the exception.

An exception_declaration declares a name for an exception. An exception is raised initially either by a
raise_statement or by the failure of alanguage-defined check. When an exception arises, control can be
transferred to a user-provided exception_handler at the end of a handled_sequence_of_statements, or it
can be propagated to a dynamically enclosing execution.

11.1 Exception Declarations

An exception_declaration declares a name for an exception.

Syntax
exception_declaration ::= defining_identifier_list : exception;

Static Semantics

Each single exception_declaration declares a name for a different exception. If a generic unit includes an
exception_declaration, the exception_declarations implicitly generated by different instantiations of the
generic unit refer to distinct exceptions (but al have the same defining_identifier). The particular
exception denoted by an exception name is determined at compilation time and is the same regardless of
how many times the exception_declaration is elaborated.

The predefined exceptions are the ones declared in the declaration of package Standard: Constraint_Error,
Program_Error, Storage_Error, and Tasking_Error; one of them is raised when a language-defined check
fails.

Dynamic Semantics
The elaboration of an exception_declaration has no effect.

The execution of any construct raises Storage_Error if there is insufficient storage for that execution. The
amount of storage needed for the execution of constructs is unspecified.

Examples
Examples of user-defined exception declarations:

Si ngul ar : exception;
Error . exception;
Overflow, Underflow : exception;

11.2 Exception Handlers

The response to one or more exceptions is specified by an exception_handler.
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Syntax
handled_sequence_of_statements ::=
sequence_of_statements
[exception
exception_handler
{exception_handler}]
exception_handler ::=
when [choice_parameter_specification:] exception_choice {| exception_choice} =>
sequence_of_statements
choice_parameter_specification ::= defining_identifier

exception_choice ::= exception_name | others

Legality Rules

A choice with an exception_name covers the named exception. A choice with other s covers all exceptions
not named by previous choices of the same handled_sequence_of_statements. Two choices in different
exception_handlers of the same handled_sequence_of_statements shall not cover the same exception.

A choice with othersis alowed only for the last handler of a handled_sequence_of_statements and as
the only choice of that handler.

An exception_name of a choice shall not denote an exception declared in a generic formal package.

Static Semantics
A choice_parameter_specification declares a choice parameter, which is a constant object of type
Exception_Occurrence (see 11.4.1). During the handling of an exception occurrence, the choice parameter,
if any, of the handler represents the exception occurrence that is being handled.

Dynamic Semantics
The execution of a handled_sequence_of_statements consists of the execution of the sequence_of_-
statements. The optional handlers are used to handle any exceptions that are propagated by the
sequence_of_statements.

Examples
Example of an exception handler:
begi n
pen(File, In_File, "input.txt"); -- seeA8.2
exception
when E : Nanme_Error =>
Put (" Cannot open input file : ");
Put _Li ne( Exception_Message(E)); -- seelldl
raise;

end;

11.3 Raise Statements

A raise_statement raises an exception.
Syntax

raise_statement ::=raise;
| raise exception_name [with string_expression];
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Legality Rules
The name, if any, in a raise_statement shal denote an exception. A raise_statement with no

exception_name (that is, are-raise statement) shall be within a handler, but not within a body enclosed by
that handler.

Name Resolution Rules

The expression, if any, in araise_statement, is expected to be of type String.

Dynamic Semantics
To raise an exception is to raise a new occurrence of that exception, as explained in 11.4. For the
execution of a raise_statement with an exception_name, the named exception is raised. If a
string_expression is present, the expression is evaluated and its value is associated with the exception
occurrence. For the execution of a re-raise statement, the exception occurrence that caused transfer of
control to the innermost enclosing handler is raised again.

Examples
Examples of raise statements:
rai se Ada.| O _Exceptions. Nanme_Error; -- seeAl13
rai se Queue_Error with "Buffer Full"; -- see9.11
rai se; - - re-raisethe current exception

11.4 Exception Handling

When an exception occurrence is raised, normal program execution is abandoned and control is transferred
to an applicable exception_handler, if any. To handle an exception occurrence is to respond to the
exceptional event. To propagate an exception occurrence is to raise it again in another context; that is, to
fail to respond to the exceptional event in the present context.

Dynamic Semantics
Within a given task, if the execution of construct a is defined by this International Standard to consist (in
part) of the execution of construct b, then while b is executing, the execution of a is said to dynamically
enclose the execution of b. The innermost dynamically enclosing execution of a given execution is the
dynamically enclosing execution that started most recently.

When an exception occurrence is raised by the execution of a given construct, the rest of the execution of
that construct is abandoned; that is, any portions of the execution that have not yet taken place are not
performed. The construct is first completed, and then left, as explained in 7.6.1. Then:

« |If the construct is atask_body, the exception does not propagate further;

¢ |If the construct is the sequence_of_statements of a handled_sequence_of_statements that
has a handler with a choice covering the exception, the occurrence is handled by that handler;

e Otherwise, the occurrence is propagated to the innermost dynamically enclosing execution,
which means that the occurrence israised again in that context.

When an occurrence is handled by a given handler, the choice_parameter_specification, if any, is first
elaborated, which creates the choice parameter and initializes it to the occurrence. Then, the
sequence_of_statements of the handler is executed; this execution replaces the abandoned portion of the
execution of the sequence_of_statements.
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NOTES
8 1 Note that exceptions raised in a declarative_part of a body are not handled by the handlers of the handled_-
sequence_of_statements of that body.

11.4.1 The Package Exceptions

Satic Semantics
1 Thefollowing language-defined library package exists:

212 wi th Ada. Streans;
package Ada. Exceptions is
pragma Preel abor at e( Exceptions);
type Exception_ld is private;
pragma Preel aborable_Initialization(Exception_ld);
Null _Id : constant Exception_ld;
function Exception_Nane(ld : Exception_ld) return String;
function Wde_Exception_Narme(ld : Exception_ld) return Wde_String;
function Wde_Wde_Exception_Nane(ld : Exception_ld)
return Wde_Wde_String;

32 type Exception_Cccurrence is linmted private;
pragma Preel aborable_lnitialization(Exception_GCccurrence);
type Exception_OCccurrence_Access is access all Exception_Cccurrence;
Nul | _Cccurrence : constant Exception_QCccurrence;

a2 procedure Rai se_Exception(E : in Exception_ld;
Message : in String :="");
pragma No_Ret ur n( Rai se_Excepti on);
functi on Exception_Message(X : Exception_Cccurrence) return String;
procedure Rerai se_Cccurrence(X : in Exception_Cccurrence);

5/2 function Exception_ldentity(X : Exception_Qccurrence)
return Exception_|d;

function Exception_Nane(X : Exception_Cccurrence) return String;
- - Same as Exception_Name(Exception_|dentity(X)).

functi on Wde_Exception_Name(X : Exception_Qccurrence)
return Wde_String;
- - Same as Wide_Exception_Name(Exception | Identlty(X))

function Wde_Wde_Exception_Nanme(X : Exception_Cccurrence)
return Wde_Wde_String;
- - Same as Wide_Wide_Exception_Name(Exception_|dentity(X)).

function Exception_Information(X : Exception_Cccurrence) return String;

6/2 procedure Save_Occurrence(Target : out Exception_Cccurrence;
Source : in Exception_Cccurrence);

function Save_Occurrence(Source : Exception_Cccurrence)
return Exception_QCccurrence_Access;

6.1/2 procedure Read_Exception_GCccurrence
(Stream: not null access Ada. Streans. Root _Stream Type' d ass;
Item : out Exception_Cccurrence);

procedure Wite_ Exception_OCccurrence
(Stream: not null access Ada. Streans. Root _Stream Type' d ass;
Item : in Exception_Qccurrence);

6.2/2 for Exception_Cccurrence' Read use Read_Excepti on_QCccurrence;
for Exception_Qccurrence' Wite use Wite_Exception_ Occurrence

6.3/2 private
- - not specified by the language
end Ada. Excepti ons;

7 Each distinct exception is represented by a distinct value of type Exception_ld. Null_ld does not represent
any exception, and is the default initial value of type Exception_ld. Each occurrence of an exception is
represented by a value of type Exception_Occurrence. Null_Occurrence does not represent any exception
occurrence, and is the default initial value of type Exception_Occurrence.
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For a prefix E that denotes an exception, the following attribute is defined:

E'ldentity E'ldentity returns the unique identity of the exception. The type of this attribute is
Exception_Id.

Raise_Exception raises a new occurrence of the identified exception.

Exception_Message returns the message associated with the given Exception_Occurrence. For an
occurrence raised by a call to Raise Exception, the message is the Message parameter passed to
Raise Exception. For the occurrence raised by a raise_statement with an exception_name and a
string_expression, the message is the string_expression. For the occurrence raised by araise_statement
with an exception_name but without a string_expression, the message is a string giving implementation-
defined information about the exception occurrence. In all cases, Exception_Message returns a string with
lower bound 1.

Reraise_Occurrence reraises the specified exception occurrence.
Exception_|dentity returns the identity of the exception of the occurrence.

The Wide_Wide_Exception_Name functions return the full expanded name of the exception, in upper
case, starting with aroot library unit. For an exception declared immediately within package Standard, the
defining_identifier is returned. The result is implementation defined if the exception is declared within an
unnamed block_statement.

The Exception_Name functions (respectively, Wide Exception_Name) return the same sequence of
graphic characters as that defined for Wide Wide Exception_Name, if all the graphic characters are
defined in Character (respectively, Wide Character); otherwise, the sequence of characters is
implementation defined, but no shorter than that returned by Wide Wide Exception_Name for the same
value of the argument.

The string returned by the Exception_Name, Wide_Exception_Name, and Wide_Wide_Exception_Name
functions has lower bound 1.

Exception_Information returns implementation-defined information about the exception occurrence. The
returned string has lower bound 1.

Reraise_Occurrence has no effect in the case of Null_Occurrence. Raise_Exception and Exception_Name
raise Constraint_Error for a Null_ld. Exception_Message, Exception_Name, and Exception_Information
raise Constraint_Error for a Null_Occurrence. Exception_ldentity applied to Null_Occurrence returns
Null_Id.

The Save_Occurrence procedure copies the Source to the Target. The Save_Occurrence function uses an
allocator of type Exception_Occurrence_Access to create a new object, copies the Source to this new
object, and returns an access value designating this new object; the result may be deallocated using an
instance of Unchecked Deallocation.

Write_Exception_Occurrence writes a representation of an exception occurrence to a stream;
Read Exception_Occurrence reconstructs an exception occurrence from a stream (including one written in
adifferent partition).

Implementation Requirements

This paragraph was del eted.
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Implementation Permissions

An implementation of Exception_Name in a space-constrained environment may return the defining_-
identifier instead of the full expanded name.

The string returned by Exception_Message may be truncated (to no less than 200 characters) by the
Save Occurrence procedure (not the function), the Reraise Occurrence procedure, and the re-raise
statement.

Implementation Advice

Exception_Message (by default) and Exception_Information should produce information useful for
debugging. Exception_Message should be short (about one line), whereas Exception_Information can be
long. Exception_Message should not include the Exception_Name. Exception_Information should include
both the Exception_Name and the Exception_Message.

11.4.2 Pragmas Assert and Assertion_Policy

Pragma Assert is used to assert the truth of a Boolean expression at any point within a sequence of
declarations or statements. Pragma Assertion_Policy is used to control whether such assertions are to be
ignored by the implementation, checked at run-time, or handled in some implementati on-defined manner.

Syntax
The form of apragma Assert is as follows:
pragma Assert([Check =>] boolean_expression[, [Message =>] string_expression]);
A pragma Assert is allowed at the place where adeclarative_item or a statement is allowed.
The form of apragma Assertion_Policy is asfollows:
pragma Assertion_Policy(policy_identifier);
A pragma Assertion_Policy is a configuration pragma.

Name Resolution Rules

The expected type for the boolean_expression of apragma Assert is any boolean type. The expected type
for the string_expression of apragma Assert is type String.

Legality Rules

The policy_identifier of a pragma Assertion_Policy shall be either Check, Ignore, or an implementation-
defined identifier.

Satic Semantics
A pragma Assertion_Policy is a configuration pragma that specifies the assertion policy in effect for the

compilation units to which it applies. Different policies may apply to different compilation units within the
same partition. The default assertion policy is implementation-defined.

The following language-defined library package exists:

package Ada. Assertions is
pragma Pure(Assertions);

Assertion_Error : exception;

procedure Assert(Check : in Bool ean);
procedure Assert(Check : in Boolean; Message : in String);

end Ada. Assertions;
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A compilation unit containing a pragma Assert has a semantic dependence on the Assertions library unit.

The assertion policy that applies to a generic unit also appliesto al itsinstances.

Dynamic Semantics
An assertion policy specifies how a pragma Assert is interpreted by the implementation. If the assertion
policy is Ignore at the point of a pragma Assert, the pragma is ignored. If the assertion policy is Check at
the point of a pragma Assert, the elaboration of the pragma consists of evaluating the boolean expression,
and if the result is False, evaluating the Message argument, if any, and raising the exception
Assertions.Assertion_Error, with amessage if the Message argument is provided.

Calling the procedure Assertions.Assert without a Message parameter is equivalent to:

if Check = Fal se then
rai se Ada. Assertions. Assertion_Error;
end if;
Calling the procedure Assertions.Assert with a Message parameter is equivalent to:

if Check = Fal se then
rai se Ada. Assertions. Assertion_Error wi th Message;
end if;

The procedures Assertions.Assert have these effects independently of the assertion policy in effect.

Implementation Permissions

Assertion_Error may be declared by renaming an implementation-defined exception from another
package.

Implementations may define their own assertion policies.

NOTES
2 Normally, the boolean expression in a pragma Assert should not call functions that have significant side-effects when
the result of the expression is True, so that the particular assertion policy in effect will not affect normal operation of the
program.

11.4.3 Example of Exception Handling

Examples
Exception handling may be used to separate the detection of an error from the response to that error:

package File_Systemis
type File_Handle is limted private;

Fi | e_Not _Found : exception;
procedure Open(F : in out File_Handle; Name : String);
- - raisesFile_Not_Found if named file does not exist

End_Of _File : exception;
procedure Read(F : in out File_Handle; Data : out Data_Type);
- - raisesEnd_Of_Fileif thefileisnot open

end Fil e_System
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package body File_Systemis
procedure Open(F : in out File_Handle; Name : String) is
begi n
if File_Exists(Name) then

el se

raise File_Not_Found with "File not found: " & Name & ".";
end if;
end Open;
procedure Read(F : in out File_Handle; Data : out Data_Type) is
begi n
if F.Current_Position <= F.Last_Position then
else
raise End_Of _File;
end if;
end Read;

end File_System

with Ada. Text _I G
with Ada. Excepti ons;
with File_System use File_System

use Ada;
procedure Main is
begi n
... -- call operationsin File_System
exception

when End_ O _File =>
Cl ose(Sonme_File);
when Not _Found_Error : File_Not_Found =>
Text _I O Put _Li ne( Excepti ons. Excepti on_Message( Not _Found_Error));
when The_Error : others =>
Text _| O Put _Li ne("Unknown error:");
if Verbosity_Desired then
| Text _I O Put _Li ne( Excepti ons. Excepti on_I nformati on(The_Error));
el se
Text _| O Put _Li ne( Excepti ons. Excepti on_Nane(The_Error));
Text _| O Put _Li ne( Excepti ons. Excepti on_Message(The_Error));
end if;
raise;
end Min;

In the above example, the File_System package contains information about detecting certain exceptional
situations, but it does not specify how to handle those situations. Procedure Main specifies how to handle

them; other clients of File_System might have different handlers, even though the exceptional situations
arise from the same basic causes.

11.5 Suppressing Checks

Checking pragmas give instructions to an implementation on handling language-defined checks. A
pragma Suppress gives permission to an implementation to omit certain language-defined checks, while a
pragma Unsuppress revokes the permission to omit checks..

A language-defined check (or simply, a “check”) is one of the situations defined by this International
Standard that requires a check to be made at run time to determine whether some condition is true. A
check fails when the condition being checked is false, causing an exception to be raised.
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Syntax
The forms of checking pragmas are as follows:
pragma Suppress(identifier);
pragma Unsuppress(identifier);

A checking pragmais allowed only immediately within a declarative_part, immediately within a
package_specification, or as a configuration pragma.

Legality Rules
The identifier shall be the name of a check.

This paragraph was del eted.

Static Semantics

A checking pragma applies to the named check in a specific region, and applies to all entities in that
region. A checking pragma given in a declarative_part or immediately within a package_specification
applies from the place of the pragma to the end of the innermost enclosing declarative region. The region
for a checking pragma given as a configuration pragma is the declarative region for the entire compilation
unit (or units) to which it applies.

If a checking pragma applies to a generic instantiation, then the checking pragma also applies to the
instance. If a checking pragma appliesto a call to a subprogram that has a pragma Inline applied to it, then
the checking pragma also applies to the inlined subprogram body.

A pragma Suppress gives permission to an implementation to omit the named check (or every check in the
case of All_Checks) for any entities to which it applies. If permission has been given to suppress a given
check, the check is said to be suppressed.

A pragma Unsuppress revokes the permission to omit the named check (or every check in the case of
All_Checks) given by any pragma Suppress that applies at the point of the pragma Unsuppress. The
permission is revoked for the region to which the pragma Unsuppress applies. If there is no such
permission at the point of a pragma Unsuppress, then the pragma has no effect. A later pragma Suppress
can renew the permission.

The following are the language-defined checks:

« The following checks correspond to situations in which the exception Constraint_Error is raised
upon failure.

Access_Check
When evaluating a dereference (explicit or implicit), check that the value of the name
is not null. When converting to a subtype that excludes null, check that the converted
valueisnot null.

Discriminant_Check
Check that the discriminants of a composite value have the values imposed by a
discriminant constraint. Also, when accessing a record component, check that it exists
for the current discriminant values.

Division_Check

Check that the second operand is not zero for the operations/, rem and mod.
Index_Check

Check that the bounds of an array value are equal to the corresponding bounds of an

index constraint. Also, when accessing a component of an array object, check for each
dimension that the given index value belongs to the range defined by the bounds of the
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array object. Also, when accessing a slice of an array object, check that the given
discrete range is compatible with the range defined by the bounds of the array object.

15 Length_Check
Check that two arrays have matching components, in the case of array subtype
conversions, and logical operators for arrays of boolean components.

16 Overflow_Check
Check that a scalar value is within the base range of its type, in cases where the
implementation chooses to raise an exception instead of returning the correct
mathematical result.

17 Range_Check
Check that a scalar value satisfies a range constraint. Also, for the elaboration of a
subtype_indication, check that the constraint (if present) is compatible with the
subtype denoted by the subtype_mark. Also, for an aggregate, check that an index or
discriminant value belongs to the corresponding subtype. Also, check that when the
result of an operation yields an array, the value of each component belongs to the
component subtype.

18 Tag_Check
Check that operand tagsin a dispatching call are all equal. Check for the correct tag on
tagged type conversions, for an assignment_statement, and when returning a tagged
limited object from afunction.

19 « The following checks correspond to situations in which the exception Program_Error is raised

upon failure.
19.1/2 Accessibility_Check

Check the accessibility level of an entity or view.

19.2/2 Allocation_Check
For an allocator, check that the master of any tasks to be created by the allocator is not
yet completed or some dependents have not yet terminated, and that the finalization of
the collection has not started.

20 Elaboration_Check
When a subprogram or protected entry is called, atask activation is accomplished, or a
generic instantiation is elaborated, check that the body of the corresponding unit has

already been elaborated.
21/2 This paragraph was deleted.
22 » The following check corresponds to situations in which the exception Storage Error is raised
upon failure.
23 Storage_Check

Check that evaluation of an allocator does not require more space than is available for
a storage pool. Check that the space available for a task or subprogram has not been

exceeded.
24 » Thefollowing check correspondsto all situationsin which any predefined exception is raised.
25 All_Checks

Represents the union of all checks; suppressing All_Checks suppresses all checks.

Erroneous Execution

26 |If agiven check has been suppressed, and the corresponding error situation occurs, the execution of the
program is erroneous.
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Implementation Permissions

An implementation is allowed to place restrictions on checking pragmas, subject only to the requirement
that pragma Unsuppress shall allow any check names supported by pragma Suppress. An implementation
is alowed to add additional check names, with implementation-defined semantics. When Overflow_Check
has been suppressed, an implementation may also suppress an unspecified subset of the Range Checks.

An implementation may support an additional parameter on pragma Unsuppress similar to the one
allowed for pragma Suppress (see J.10). The meaning of such a parameter is implementation-defined.

Implementation Advice
The implementation should minimize the code executed for checks that have been suppressed.

NOTES
3 There is no guarantee that a suppressed check is actually removed; hence a pragma Suppress should be used only for
efficiency reasons.

4 It is possible to give both a pragma Suppress and Unsuppress for the same check immediately within the same
declarative_part. In that case, the last pragma given determines whether or not the check is suppressed. Similarly, it is
possible to resuppress a check which has been unsuppressed by giving apragma Suppressin an inner declarative region.

Examples
Examples of suppressing and unsuppressing checks:

pragma Suppr ess( | ndex_Check) ;
pragma Unsuppress(Over fl ow_Check);

11.6 Exceptions and Optimization

This clause gives permission to the implementation to perform certain “optimizations’ that do not
necessarily preserve the canonical semantics.

Dynamic Semantics
The rest of this International Standard (outside this clause) defines the canonical semantics of the

language. The canonical semantics of a given (legal) program determines a set of possible externa effects
that can result from the execution of the program with given inputs.

As explained in 1.1.3, “Conformity of an Implementation with the Standard”, the external effect of a
program is defined in terms of its interactions with its external environment. Hence, the implementation
can perform any internal actions whatsoever, in any order or in parallel, so long as the external effect of
the execution of the program is one that is alowed by the canonical semantics, or by the rules of this
clause.

Implementation Permissions

The following additional permissions are granted to the implementation:

« An implementation need not always raise an exception when a language-defined check fails.
Instead, the operation that failed the check can simply yield an undefined result. The exception
need be raised by the implementation only if, in the absence of raising it, the value of this
undefined result would have some effect on the external interactions of the program. In
determining this, the implementation shall not presume that an undefined result has a value that
belongs to its subtype, nor even to the base range of its type, if scalar. Having removed the raise
of the exception, the canonical semantics will in genera allow the implementation to omit the
code for the check, and some or al of the operation itself.
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« |If an exception is raised due to the failure of a language-defined check, then upon reaching the
corresponding exception_handler (or the termination of the task, if none), the externa
interactions that have occurred need reflect only that the exception was raised somewhere within
the execution of the sequence_of_statements with the handler (or the task_body), possibly
earlier (or later if the interactions are independent of the result of the checked operation) than
that defined by the canonical semantics, but not within the execution of some abort-deferred
operation or independent subprogram that does not dynamically enclose the execution of the
construct whose check failed. An independent subprogram is one that is defined outside the
library unit containing the construct whose check failed, and has no Inline pragma applied to it.
Any assignment that occurred outside of such abort-deferred operations or independent
subprograms can be disrupted by the raising of the exception, causing the object or its parts to
become abnormal, and certain subsequent uses of the object to be erroneous, as explained in
139.1.

NOTES
5 The permissions granted by this clause can have an effect on the semantics of a program only if the program fails a
language-defined check.
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Section 12: Generic Units

A generic unit is a program unit that is either a generic subprogram or a generic package. A generic unit is
a template, which can be parameterized, and from which corresponding (nongeneric) subprograms or
packages can be obtained. The resulting program units are said to be instances of the original generic unit.

A generic unit is declared by a generic_declaration. This form of declaration has a generic_formal_part
declaring any generic forma parameters. An instance of a generic unit is obtained as the result of a
generic_instantiation with appropriate generic actual parameters for the generic formal parameters. An
instance of a generic subprogram is a subprogram. An instance of a generic package is a package.

Generic units are templates. As templates they do not have the properties that are specific to their
nongeneric counterparts. For example, a generic subprogram can be instantiated but it cannot be called. In
contrast, an instance of a generic subprogram is a (nongeneric) subprogram; hence, this instance can be
called but it cannot be used to produce further instances.

12.1 Generic Declarations

A generic_declaration declares a generic unit, which is either a generic subprogram or a generic package.
A generic_declaration includes a generic_formal_part declaring any generic formal parameters. A
generic formal parameter can be an object; aternatively (unlike a parameter of a subprogram), it can be a
type, a subprogram, or a package.

Syntax
generic_declaration ::= generic_subprogram_declaration | generic_package_declaration

generic_subprogram_declaration ::=
generic_formal_part subprogram_specification;

generic_package_declaration ::=
generic_formal_part package_specification;

generic_formal_part ::= generic { generic_formal_parameter_declaration | use_clause}

generic_formal_parameter_declaration ::=
formal_object_declaration

| formal_type_declaration

| formal_subprogram_declaration

| formal_package_declaration
The only form of subtype_indication alowed within ageneric_formal_part is a subtype_mark (that
is, the subtype_indication shall not include an explicit constraint). The defining name of a generic
subprogram shall be an identifier (not an operator_symbol).

Static Semantics
A generic_declaration declares a generic unit — a generic package, generic procedure, or generic
function, as appropriate.

An entity isageneric formal entity if it is declared by ageneric_formal_parameter_declaration. “ Generic
formal,” or simply “formal,” is used as a prefix in referring to objects, subtypes (and types), functions,
procedures and packages, that are generic formal entities, as well as to their respective declarations.
Examples: “generic formal procedure” or a*“formal integer type declaration.”
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Dynamic Semantics

The elaboration of ageneric_declaration has no effect.

NOTES
1 Outside a generic unit a name that denotes the generic_declaration denotes the generic unit. In contrast, within the
declarative region of the generic unit, aname that denotes the generic_declaration denotes the current instance.

2 Within a generic subprogram_body, the name of this program unit acts as the name of a subprogram. Hence this name
can be overloaded, and it can appear in a recursive cal of the current instance. For the same reason, this name cannot
appear after the reserved word new in a (recursive) generic_instantiation.

3 A default_expression or default_name appearing in a generic_formal_part is not evaluated during elaboration of the
generic_formal_part; instead, it is evaluated when used. (The usual visibility rules apply to any name used in a default:
the denoted declaration therefore has to be visible at the place of the expression.)

Examples
Examples of generic formal parts:
generic - - parameterless
generic
Size : Natural; -- formal object
generic
Length : Integer := 200; - - formal object with a default expression
Area : Integer := Length*Length; -- formal objectwith adefault expression
generic
type Item is private; - - formal type
type Index is (<>); - - formal type
type Row is array(lndex range <>) of Item -- formal type
wth function "<"(X, Y : Item return Bool ean; - - formal subprogram

Examples of generic declarations declaring generic subprograms Exchange and Squaring:

generic
type Elemis private;
procedure Exchange(U, V : in out Elen;

generic
type Itemis private;
with function "*"(U, V: Iten) return Itemis <>;

function Squaring(X : ltem) return ltem

Example of a generic declaration declaring a generic package:

generic
type Item is private;
type Vector is array (Positive range <>) of Item
with function Sum(X, Y : Iten) return Item
package On_Vectors is
function Sum (A, B : Vector) return Vector;
function Sigma(A : Vector) return Item
Length_Error : exception;
end On_Vectors;
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12.2 Generic Bodies

The body of a generic unit (a generic body) is a template for the instance bodies. The syntax of a generic
body isidentical to that of a nongeneric body.

Dynamic Semantics
The elaboration of a generic body has no other effect than to establish that the generic unit can from then
on be instantiated without failing the Elaboration_Check. If the generic body is a child of a generic
package, then its elaboration establishes that each corresponding declaration nested in an instance of the
parent (see 10.1.1) can from then on be instantiated without failing the Elaboration_Check.

NOTES
4 The syntax of generic subprograms implies that a generic subprogram body is aways the completion of a declaration.

Examples
Example of a generic procedure body:

procedure Exchange(U, V : in out Elem) is --seel2l
T : Elem -- thegenericformal type

begi n
T:=U

\A

uU:
V=T,
end Exchange;

Example of a generic function body:

function Squaring(X : lItem) return ltemis -- seel2l
begi n

return X*X; -- theformal operator "*"
end Squari ng;

Example of a generic package body:
package body On_Vectors is -- seel2l

function Sum(A, B : Vector) return Vector is
Result : Vector (A Range); -- theformal type Vector
Bi as : constant Integer := B First - A First;
begi n
if A Length /= B Length then
rai se Length_Error;
end if;

for Nin A Range | oop
Resul t (N) := Sunm(A(N), B(N + Bias)); -- theformal function Sum
end | oop;
return Result;
end Sum

function Signma(A : Vector) return Itemis
Total : Item:= A(A First); -- theformal typeltem

begi n
for Nin AFirst + 1 .. A Last |oop

Total := Sum(Total, A(N)); -- theformal function Sum

end | oop;
return Total;

end Signg;

end On_Vectors;
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12.3 Generic Instantiation

An instance of ageneric unit is declared by ageneric_instantiation.

Syntax
generic_instantiation ::=
package defining_program_unit_name is
new generic_package name [generic_actual_part];
| [overriding_indicator]
procedur e defining_program_unit_name is
new generic_procedure_name [generic_actual_part];
| [overriding_indicator]
function defining_designator is
new generic_function_name [generic_actual_part];

generic_actual_part ::=

(generic_association {, generic_association})
generic_association ::=

[generic_formal_parameter_selector_name =>] explicit_generic_actual_parameter
explicit_generic_actual_parameter ::= expression | variable_name

| subprogram_name | entry_name | subtype_mark
| package_instance_name

A generic_association is named or positional according to whether or not the generic_formal_-
parameter_selector_name is specified. Any positional associations shall precede any named
associations.

The generic actual parameter is either the explicit_generic_actual_parameter given in a generic_-
association for each formal, or the corresponding default_expression or default_name if no generic_-
association is given for the formal. When the meaning is clear from context, the term “generic actual,” or
simply “actual,” is used as a synonym for “generic actual parameter” and also for the view denoted by one,
or the value of one.

Legality Rules
In a generic_instantiation for a particular kind of program unit (package, procedure, or function), the

name shall denote a generic unit of the corresponding kind (generic package, generic procedure, or
generic function, respectively).

The generic_formal_parameter_selector_name of a generic_association shall denote a
generic_formal_parameter_declaration of the generic unit being instantiated. If two or more formal
subprograms have the same defining name, then named associations are not allowed for the corresponding
actuals.

A generic_instantiation shall contain at most one generic_association for each formal. Each formal
without an association shall have adefault_expression or subprogram_default.

In ageneric unit Legality Rules are enforced at compile time of the generic_declaration and generic body,
given the properties of the formals. In the visible part and formal part of an instance, Legality Rules are
enforced at compile time of the generic_instantiation, given the properties of the actuals. In other parts of
an instance, Legality Rules are not enforced; this rule does not apply when a given rule explicitly specifies
otherwise.
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Static Semantics

A generic_instantiation declares an instance; it is equivalent to the instance declaration (a package_-
declaration or subprogram_declaration) immediately followed by the instance body, both at the place of
the instantiation.

The instance is a copy of the text of the template. Each use of aformal parameter becomes (in the copy) a
use of the actual, as explained below. An instance of a generic package is a package, that of a generic
procedure is a procedure, and that of a generic function is afunction.

The interpretation of each construct within a generic declaration or body is determined using the
overloading rules when that generic declaration or body is compiled. In an instance, the interpretation of
each (copied) construct is the same, except in the case of a name that denotes the generic_declaration or
some declaration within the generic unit; the corresponding name in the instance then denotes the
corresponding copy of the denoted declaration. The overloading rules do not apply in the instance.

In an instance, a generic_formal_parameter_declaration declares a view whose properties are identical to
those of the actual, except as specified in 12.4, “Forma Objects’ and 12.6, “Forma Subprograms’.
Similarly, for a declaration within a generic_formal_parameter_declaration, the corresponding
declaration in an instance declares a view whose properties are identical to the corresponding declaration
within the declaration of the actual.

Implicit declarations are also copied, and a name that denotes an implicit declaration in the generic
denotes the corresponding copy in the instance. However, for a type declared within the visible part of the
generic, awhole new set of primitive subprograms is implicitly declared for use outside the instance, and
may differ from the copied set if the properties of the type in some way depend on the properties of some
actual type specified in the instantiation. For example, if the type in the generic is derived from a formal
private type, then in the instance the type will inherit subprograms from the corresponding actual type.

These new implicit declarations occur immediately after the type declaration in the instance, and override
the copied ones. The copied ones can be called only from within the instance; the new ones can be called
only from outside the instance, although for tagged types, the body of a new one can be executed by acall
to an old one.

In the visible part of an instance, an explicit declaration overrides an implicit declaration if they are
homographs, as described in 8.3. On the other hand, an explicit declaration in the private part of an
instance overrides an implicit declaration in the instance, only if the corresponding explicit declaration in
the generic overrides a corresponding implicit declaration in the generic. Corresponding rules apply to the
other kinds of overriding described in 8.3.

Post-Compilation Rules

Recursive generic instantiation is not allowed in the following sense: if a given generic unit includes an
instantiation of a second generic unit, then the instance generated by this instantiation shall not include an
instance of the first generic unit (whether this instance is generated directly, or indirectly by intermediate
instantiations).

Dynamic Semantics
For the elaboration of a generic_instantiation, each generic_association is first evaluated. If a default is
used, an implicit generic_association is assumed for this rule. These evaluations are done in an arbitrary
order, except that the evaluation for a default actual takes place after the evaluation for another actua if
the default includes a name that denotes the other one. Finally, the instance declaration and body are
elaborated.
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For the evaluation of a generic_association the generic actual parameter is evaluated. Additional actions
are performed in the case of aformal object of modein (see 12.4).

NOTES
5 If aformal typeis not tagged, then the typeis treated as an untagged type within the generic body. Deriving from such a
type in a generic body is permitted; the new type does not get a new tag value, even if the actua is tagged. Overriding
operations for such a derived type cannot be dispatched to from outside the instance.
Examples
Examples of generic instantiations (see 12.1):
procedure Swap i s new Exchange(El em => | nteger);

procedure Swap i s new Exchange(Character); - - Swapisoverloaded
function Square is new Squaring(lnteger); - - "*" of Integer used by default
function Square is new Squaring(ltem=> Matrix, "*" => Matrix_Product);
function Square is new Squaring(Matrix, Mtrix_Product); -- sameasprevious

package | nt_Vectors is new On_Vectors(Integer, Table, "+");

Examples of uses of instantiated units:

Swap(A, B);
A := Square(A);

T: Table(l .. 5) := (10, 20, 30, 40, 50);

N : Integer := Int_Vectors.Sigma(T); -- 150 (seel12.2,“Generic Bodies’ for the body of
Sgma)

use I nt_Vectors;

M: Integer := Sigma(T); -- 150

12.4 Formal Objects

A generic formal object can be used to pass avalue or variable to a generic unit.

Syntax

formal_object_declaration ::=
defining_identifier_list : mode [null_exclusion] subtype_mark [:= default_expression];
defining_identifier_list : mode access_definition [:= default_expression];

Name Resolution Rules
The expected type for the default_expression, if any, of aformal object is the type of the formal object.

For ageneric formal object of mode in, the expected type for the actua is the type of the formal.

For a generic formal object of mode in out, the type of the actual shall resolve to the type determined by
the subtype_mark, or for aformal_object_declaration with an access_definition, to a specific anonymous
access type. If the anonymous access type is an access-to-object type, the type of the actua shall have the
same designated type as that of the access_definition. If the anonymous access type is an access-to-
subprogram type, the type of the actual shall have a designated profile which is type conformant with that
of the access_definition. .

Legality Rules
If a generic formal object has a default_expression, then the mode shall be in (either explicitly or by
default); otherwise, its mode shall be either in or in out.

For a generic formal object of mode in, the actual shall be an expression. For a generic formal object of
mode in out, the actual shall be aname that denotes a variable for which renaming is allowed (see 8.5.1).
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In the case where the type of the formal is defined by an access_definition, the type of the actual and the
type of the formal:

« shall both be access-to-object types with statically matching designated subtypes and with both
or neither being access-to-constant types; or

« shall both be access-to-subprogram types with subtype conformant designated profiles.

For aformal_object_declaration with anull_exclusion or an access_definition that has a null_exclusion:

« if the actual matching the formal_object_declaration denotes the generic forma object of
another generic unit G, and the instantiation containing the actual occurs within the body of G or
within the body of a generic unit declared within the declarative region of G, then the
declaration of the formal object of G shall have anull_exclusion;

« otherwise, the subtype of the actual matching the formal_object_declaration shall exclude null.
In addition to the places where Legality Rules normally apply (see 12.3), thisrule applies also in
the private part of an instance of a generic unit.

Static Semantics

A formal_object_declaration declares a generic formal object. The default mode isin. For aformal object
of mode in, the nominal subtype is the one denoted by the subtype_mark or access_definition in the
declaration of the formal. For a formal object of mode in out, its type is determined by the subtype_mark
or access_definition in the declaration; its nominal subtype is nonstatic, even if the subtype_mark
denotes a static subtype; for a composite type, its nominal subtype is unconstrained if the first subtype of
the type is unconstrained, even if the subtype_mark denotes a constrained subtype.

In an instance, a formal_object_declaration of mode in is a full constant declaration and declares a new
stand-alone constant object whose initidlization expression is the actua, whereas a
formal_object_declaration of mode in out declares a view whose properties are identical to those of the
actual.

Dynamic Semantics
For the evaluation of a generic_association for a formal object of mode in, a constant object is created,
the value of the actual parameter is converted to the nominal subtype of the formal object, and assigned to
the object, including any value adjustment — see 7.6.
NOTES
6 The constraints that apply to a generic formal object of mode in out are those of the corresponding generic actua

parameter (not those implied by the subtype_mark that appears in the formal_object_declaration). Therefore, to avoid
confusion, it is recommended that the name of afirst subtype be used for the declaration of such aformal object.
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12.5 Formal Types

A generic forma subtype can be used to pass to a generic unit a subtype whose type is in a certain
category of types.

Syntax

formal_type_declaration ::=

type defining_identifier[discriminant_part] isformal_type_definition;
formal_type_definition ::=

formal_private_type_definition

| formal_derived_type_definition

| formal_discrete_type_definition

| formal_signed_integer_type_definition

| formal_modular_type_definition

| formal_floating_point_definition

| formal_ordinary_fixed_point_definition

| formal_decimal_fixed_point_definition

| formal_array_type_definition

| formal_access_type_definition

| formal_interface_type_definition

Legality Rules
For ageneric formal subtype, the actual shall be a subtype_mark; it denotes the (generic) actual subtype.

Satic Semantics

A formal_type_declaration declares a (generic) formal type, and its first subtype, the (generic) formal
subtype.

The form of a formal_type_definition determines a category (of types) to which the formal type belongs.
For aformal_private_type_definition the reserved words tagged and limited indicate the category of types
(see 12.5.1). For a formal_derived_type_definition the category of types is the derivation class rooted at
the ancestor type. For other formal types, the name of the syntactic category indicates the category of
types, aformal_discrete_type_definition defines a discrete type, and so on.

Legality Rules
The actual type shall be in the category determined for the formal.

Satic Semantics

The formal type also belongs to each category that contains the determined category. The primitive
subprograms of the type are as for any type in the determined category. For a formal type other than a
formal derived type, these are the predefined operators of the type. For an elementary formal type, the
predefined operators are implicitly declared immediately after the declaration of the formal type. For a
composite formal type, the predefined operators are implicitly declared either immediately after the
declaration of the formal type, or later immediately within the declarative region in which the type is
declared according to the rules of 7.3.1. In an instance, the copy of such an implicit declaration declares a
view of the predefined operator of the actual type, even if this operator has been overridden for the actual
type. The rules specific to formal derived types are givenin 12.5.1.
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NOTES
7 Generic formal types, like al types, are not named. Instead, a name can denote a generic formal subtype. Within a
generic unit, ageneric formal type is considered as being distinct from all other (formal or nonformal) types.

8 A discriminant_part is alowed only for certain kinds of types, and therefore only for certain kinds of generic formal
types. See 3.7.

Examples
Examples of generic formal types:

type Itemis private;
type Buffer(Length : Natural) is limted private,;

type Enum is (<>);

type Int is range <>;
type Angle is delta <>;
type Mass is digits <>;

type Table is array (Enum of Item

Example of a generic formal part declaring a formal integer type:

generic
type Rank is range <>;
First : Rank := Rank'First;
Second : Rank := First + 1; -- theoperator "+" of the type Rank

12.5.1 Formal Private and Derived Types

In its most general form, the category determined for a forma private type is all types, but it can be
restricted to only nonlimited types or to only tagged types. The category determined for a formal derived
type isthe derivation class rooted at the ancestor type.

Syntax
formal_private_type_definition ::= [[abstract] tagged] [limited] private

formal_derived_type_definition ::=
[abstract] [limited | synchronized] new subtype_mark [[and interface_list]with private]

Legality Rules
If a generic forma type declaration has a known_discriminant_part, then it shall not include a
default_expression for adiscriminant.

The ancestor subtype of a formal derived type is the subtype denoted by the subtype_mark of the
formal_derived_type_definition. For a formal derived type declaration, the reserved words with private
shall appear if and only if the ancestor type is a tagged type; in this case the formal derived type is a
private extension of the ancestor type and the ancestor shall not be a class-wide type. Similarly, an
interface_list or the optional reserved words abstract or synchronized shall appear only if the ancestor
type is a tagged type. The reserved word limited or synchronized shall appear only if the ancestor type
and any progenitor types are limited types. The reserved word synchronized shall appear (rather than
limited) if the ancestor type or any of the progenitor types are synchronized interfaces.

The actual type for a formal derived type shall be a descendant of the ancestor type and every progenitor
of the formal type. If the reserved word synchronized appears in the declaration of the formal derived
type, the actual type shall be a synchronized tagged type.

If the formal subtype is definite, then the actual subtype shall also be definite.

For a generic formal derived type with no discriminant_part:
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e |If the ancestor subtype is constrained, the actual subtype shall be constrained, and shall be
statically compatible with the ancestor;

« |If the ancestor subtype is an unconstrained access or composite subtype, the actual subtype shall
be unconstrained.

» |If the ancestor subtype is an unconstrained discriminated subtype, then the actual shall have the
same number of discriminants, and each discriminant of the actual shall correspond to a
discriminant of the ancestor, in the sense of 3.7.

« |f the ancestor subtype is an access subtype, the actual subtype shall exclude null if and only if
the ancestor subtype excludes null.

The declaration of aformal derived type shall not have a known_discriminant_part. For a generic formal
private type with a known_discriminant_part:

* Theactua type shall be atype with the same number of discriminants.
» The actual subtype shall be unconstrained.

* The subtype of each discriminant of the actual type shall statically match the subtype of the
corresponding discriminant of the formal type.

For a generic formal type with an unknown_discriminant_part, the actual may, but need not, have
discriminants, and may be definite or indefinite.

Static Semantics
The category determined for aformal private typeis asfollows:

Type Definition Determined Category

limited private the category of al types

private the category of all nonlimited types
tagged limited private the category of all tagged types

tagged private the category of all nonlimited tagged types

The presence of the reserved word abstract determines whether the actual type may be abstract.

A formal private or derived type is a private or derived type, respectively. A formal derived tagged typeis
aprivate extension. A formal private or derived type is abstract if the reserved word abstract appearsin its
declaration.

If the ancestor type is a composite type that is not an array type, the formal type inherits components from
the ancestor type (including discriminants if a new discriminant_part is not specified), as for a derived
type defined by aderived_type_definition (see 3.4 and 7.3.1).

For aformal derived type, the predefined operators and inherited user-defined subprograms are determined
by the ancestor type and any progenitor types, and are implicitly declared at the earliest place, if any,
immediately within the declarative region in which the formal type is declared, where the corresponding
primitive subprogram of the ancestor or progenitor is visible (see 7.3.1). In an instance, the copy of such
an implicit declaration declares a view of the corresponding primitive subprogram of the ancestor or
progenitor of the formal derived type, even if this primitive has been overridden for the actual type. When
the ancestor or progenitor of the formal derived type is itself a formal type, the copy of the implicit
declaration declares aview of the corresponding copied operation of the ancestor or progenitor. In the case
of aformal private extension, however, the tag of the formal type is that of the actual type, so if thetagin
acdl is statically determined to be that of the formal type, the body executed will be that corresponding to
the actual type.
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For a prefix Sthat denotes aformal indefinite subtype, the following attribute is defined: 22/1

SDefinite SDefinite yields True if the actual subtype corresponding to S is definite; otherwise it 23
yields False. The value of this attribute is of the predefined type Boolean.

Dynamic Semantics
In the case where aformal type is tagged with unknown discriminants, and the actual type is a class-wide 23.172
type T'Class:

« For the purposes of defining the primitive operations of the formal type, each of the primitive 23.212
operations of the actual type is considered to be a subprogram (with an intrinsic calling
convention — see 6.3.1) whose body consists of a dispatching call upon the corresponding
operation of T, with its formal parameters as the actual parameters. If it is a function, the result
of the dispatching call is returned.

« |f the corresponding operation of T has no controlling formal parameters, then the controlling tag 23.32
value is determined by the context of the call, according to the rules for tag-indeterminate calls
(see 3.9.2 and 5.2). In the case where the tag would be statically determined to be that of the
formal type, the call raises Program_Error. If such a function is renamed, any call on the
renaming raises Program_Etrror.

NOTES
9 In accordance with the general rule that the actual type shall belong to the category determined for the formal (see 12.5,  24/2
“Formal Types’):

e If theformal typeis nonlimited, then so shall be the actual; 25
« For aformal derived type, the actual shall bein the class rooted at the ancestor subtype. 26
10 The actua type can be abstract only if the formal typeis abstract (see 3.9.3). 27

11 If the forma has a discriminant_part, the actual can be either definite or indefinite. Otherwise, the actual has to be 28
definite.

12.5.2 Formal Scalar Types

A formal scalar type is one defined by any of the formal_type_definitions in this subclause. The category 12
determined for a formal scalar type is the category of al discrete, signed integer, modular, floating point,
ordinary fixed point, or decimal types.

Syntax
formal_discrete_type_definition ::= (<>) 2
formal_signed_integer_type_definition ::= range <> 3
formal_modular_type_definition ::= mod <> 4
formal_floating_point_definition ::= digits <> 5
formal_ordinary_fixed_point_definition ::= delta <> 6
formal_decimal_fixed_point_definition ::= delta <> digits <> 7
Legality Rules
The actual type for aformal scalar type shall not be a nonstandard numeric type. 8

NOTES
12 The actual type shall be in the class of types implied by the syntactic category of the formal type definition (see 12.5, 9
“Formal Types’). For example, the actual for aformal_modular_type_definition shall be amodular type.
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12.5.3 Formal Array Types
The category determined for aformal array typeisthe category of all array types.

Syntax
formal_array_type_definition ::= array_type_definition
Legality Rules
The only form of discrete_subtype_definition that is allowed within the declaration of a generic formal
(constrained) array subtypeis asubtype_mark.
For aformal array subtype, the actual subtype shall satisfy the following conditions:

« The formal array type and the actua array type shall have the same dimensionality; the formal
subtype and the actual subtype shall be either both constrained or both unconstrained.

e For each index position, the index types shall be the same, and the index subtypes (if
unconstrained), or the index ranges (if constrained), shall statically match (see 4.9.1).

» The component subtypes of the formal and actual array types shall statically match.
» If theformal type has aliased components, then so shall the actual.
Examples

Example of formal array types:
- - given the generic package

generic
type Item is private;
type Index is (<>);
type Vector is array (lndex range <>) of ltem
type Table is array (Index) of Item
package P is
end’ P
- - and the types
type Mx is array (Color range <>) of Bool ean;

type Option is array (Color) of Bool ean;
- - then Mix can match Vector and Option can match Table

package Ris new P(Item => Bool ean, |ndex => Col or,
Vector => M, Tabl e => Option);

- - Note that Mix cannot match Table and Option cannot match Vector
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12.5.4 Formal Access Types

The category determined for aformal access type isthe category of all access types. 112
Syntax
formal_access_type_definition ::= access_type_definition 2
Legality Rules

For a formal access-to-object type, the designated subtypes of the formal and actual types shall statically 3
match.

If and only if the general_access_maodifier constant applies to the formal, the actual shall be an access- 42
to-constant type. If the general_access_modifier all applies to the formal, then the actua shall be a
general access-to-variable type (see 3.10). If and only if the formal subtype excludes null, the actual
subtype shall exclude null.

For a formal access-to-subprogram subtype, the designated profiles of the formal and the actual shall be s
mode-conformant, and the calling convention of the actual shall be protected if and only if that of the
formal is protected.

Examples
Example of formal access types: 6
- - theformal types of the generic package 7
generic 8
type Node is private;
type Link is access Node;
package P is
end’ P
- - can be matched by the actual types 9
type Car; 10
type Car_Nane is access Car;
type Car is 11
record
Pred, Succ : Car_Naneg;
Nunber . Li cense_Nunber;
Onner . Person;
end record;
- - inthefollowing generic instantiation 12
package R is new P(Node => Car, Link => Car_Nane); 13
12.5.5 Formal Interface Types
The category determined for aformal interface type isthe category of all interface types. 172
Syntax
formal_interface_type_definition ::= interface_type_definition 2/2
Legality Rules
The actual type shall be a descendant of every progenitor of the formal type. 32
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The actual type shall be alimited, task, protected, or synchronized interface if and only if the formal type
is also, respectively, alimited, task, protected, or synchronized interface.

Examples
type Root_Work_Itemis tagged private;

generic

type Managed_Task is task interface;

type Wrk_Item(<>) is new Root_Work Itemwith private;
package Server_Manager is

task type Server is new Managed_Task w th

entry Start(Data : in out Work_ltenm;

end Server;

end Server_Manager ;

This generic allows an application to establish a standard interface that all tasks need to implement so they
can be managed appropriately by an application-specific scheduler.

12.6 Formal Subprograms

Formal subprograms can be used to pass callable entities to a generic unit.

Syntax
formal_subprogram_declaration ::= formal_concrete_subprogram_declaration
| formal_abstract_subprogram_declaration

formal_concrete_subprogram_declaration ::=
with subprogram_specification [is subprogram_default];

formal_abstract_subprogram_declaration ::=
with subprogram_specification is abstract [subprogram_default];

subprogram_default ::= default_name | <> | null
default_name ::= name
A subprogram_default of null shall not be specified for aformal function or for a
formal_abstract_subprogram_declaration.
Name Resolution Rules
The expected profile for the default_name, if any, isthat of the formal subprogram.

For ageneric formal subprogram, the expected profile for the actual isthat of the formal subprogram.

Legality Rules
The profiles of the formal and any named default shall be mode-conformant.

The profiles of the formal and actual shall be mode-conformant.

For a parameter or result subtype of aformal_subprogram_declaration that has an explicit null_exclusion:

« if the actual matching the formal_subprogram_declaration denotes a generic formal object of
another generic unit G, and the instantiation containing the actual that occurs within the body of
ageneric unit G or within the body of a generic unit declared within the declarative region of the
generic unit G, then the corresponding parameter or result type of the formal subprogram of G
shall have anull_exclusion;

« otherwise, the subtype of the corresponding parameter or result type of the actual matching the
formal_subprogram_declaration shall exclude null. In addition to the places where Legality
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Rules normally apply (see 12.3), this rule applies also in the private part of an instance of a
generic unit.

If aformal parameter of a formal_abstract_subprogram_declaration is of a specific tagged type T or of
an anonymous access type designating a specific tagged type T, T is called a controlling type of the
formal_abstract_subprogram_declaration. Similarly, if the result of a formal_abstract_subprogram_-
declaration for a function is of a specific tagged type T or of an anonymous access type designating a
specific tagged type T, T is called a controlling type of the formal_abstract_subprogram_declaration. A
formal_abstract_subprogram_declaration shall have exactly one controlling type.

The actual subprogram for aformal_abstract_subprogram_declaration shall be a dispatching operation of
the controlling type or of the actual type corresponding to the controlling type.

Static Semantics

A formal_subprogram_declaration declares a generic forma subprogram. The types of the formal
parameters and result, if any, of the formal subprogram are those determined by the subtype_marks given
in the formal_subprogram_declaration; however, independent of the particular subtypes that are denoted
by the subtype_marks, the nominal subtypes of the formal parameters and result, if any, are defined to be
nonstatic, and unconstrained if of an array type (no applicable index constraint is provided in acall on a
formal subprogram). In an instance, a formal_subprogram_declaration declares a view of the actual. The
profile of this view takes its subtypes and calling convention from the original profile of the actual entity,
while taking the formal parameter names and default_expressions from the profile given in the formal_-
subprogram_declaration. The view is a function or procedure, never an entry.

If a generic unit has a subprogram_default specified by a box, and the corresponding actual parameter is
omitted, then it is equivalent to an explicit actual parameter that is a usage hame identical to the defining
name of the formal.

If a generic unit has a subprogram_default specified by the reserved word null, and the corresponding
actual parameter is omitted, then it is equivalent to an explicit actual parameter that is a null procedure
having the profile given in the formal_subprogram_declaration.

The subprogram declared by a formal_abstract_subprogram_declaration with a controlling type T is a
dispatching operation of type T.

NOTES

13 The matching rules for formal subprograms state requirements that are similar to those applying to
subprogram_renaming_declarations (see 8.5.4). In particular, the name of a parameter of the formal subprogram need not
be the same as that of the corresponding parameter of the actual subprogram; similarly, for these parameters,
default_expressions need not correspond.

14 The constraints that apply to a parameter of a formal subprogram are those of the corresponding formal parameter of
the matching actua subprogram (not those implied by the corresponding subtype_mark in the _specification of the formal
subprogram). A similar remark applies to the result of a function. Therefore, to avoid confusion, it is recommended that
the name of afirst subtype be used in any declaration of aformal subprogram.

15 The subtype specified for aformal parameter of a generic formal subprogram can be any visible subtype, including a
generic formal subtype of the same generic_formal_part.

16 A formal subprogram is matched by an attribute of atype if the attribute is a function with a matching specification.
An enumeration literal of agiven type matches a parameterless formal function whose result type is the given type.

17 A default_name denotes an entity that is visible or directly visible at the place of the generic_declaration; abox used
as adefault is equivalent to a name that denotes an entity that is directly visible at the place of the _instantiation.

18 The actual subprogram cannot be abstract unless the forma subprogram is a formal_abstract_subprogram_-
declaration (see 3.9.3).
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16.1/2 19 The subprogram declared by a formal_abstract_subprogram_declaration is an abstract subprogram. All cals on a
subprogram declared by aformal_abstract_subprogram_declaration must be dispatching calls. See 3.9.3.
16.2/2 20 A null procedure as a subprogram default has convention Intrinsic (see 6.3.1).
Examples

17 Examples of generic formal subprograms:
18/2 with function "+"(X, Y : Iten) return Itemis <>;

with function Image(X : Enunm) return String is Enum | nage;
with procedure Update is Default_Update;
with procedure Pre_Action(X : in Item) is null; -- defaultstonoaction
with procedure Wite(S : not null access Root_Stream Type' d ass;
Desc : Descriptor)
is abstract Descriptor'Wite; -- seel3.132
- - Dispatching operation on Descriptor with default
19 - - given the generic procedure declaration
20 generic
with procedure Action (X : in ltem;
procedure Iterate(Seq : in |Item Sequence);
21 - - and the procedure
22 procedure Put _ltem(X : in Item;
23 - - thefollowing instantiation is possible
24 procedure Put_List is new lterate(Action => Put_Ilten);

12.7 Formal Packages

1 Formal packages can be used to pass packages to a generic unit. The formal_package_declaration
declares that the formal package is an instance of a given generic package. Upon instantiation, the actual
package has to be an instance of that generic package.

Syntax

2 formal_package_declaration ::=
with package defining_identifier is new generic_package name formal_package_actual_part;

312 formal_package_actual_part ::=
([others=>] <>)
| [generic_actual_part]
| (formal_package_association {, formal_package_association} [, others=> <>])

3.1/2 formal_package_association ::=
generic_association
| generic_formal_parameter_selector_name => <>

3.212 Any positional formal_package_associations shall precede any named
formal_package_associations.
Legality Rules
4  The generic_package name shall denote a generic package (the template for the formal package); the
formal package is an instance of the template.

412 A formal_package_actual_part shall contain at most one formal_package_association for each formal
parameter. If the formal_package_actual_part does not include “others => <>", each forma parameter
without an association shall have adefault_expression or subprogram_default.
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The actual shall be an instance of the template. If the formal_package_actual_part is (<>) or (others =>
<>), then the actual may be any instance of the template; otherwise, certain of the actual parameters of the
actual instance shall match the corresponding actual parameters of the formal package, determined as
follows:

« If the formal_package_actual_part includes generic_associations as well as associations with
<>, then only the actual parameters specified explicitly with generic_associations are required
to match;

e Otherwise, all actual parameters shall match, whether any actual parameter is given explicitly or
by default.

The rules for matching of actual parameters between the actual instance and the formal package are as
follows:

« For aforma object of mode in, the actuals match if they are static expressions with the same
value, or if they statically denote the same constant, or if they are both the literal null.

« For aformal subtype, the actuals match if they denote statically matching subtypes.
« For other kinds of formals, the actuals match if they statically denote the same entity.

For the purposes of matching, any actual parameter that is the name of a formal object of mode in is
replaced by the formal object's actual expression (recursively).

Static Semantics
A formal_package_declaration declares a generic formal package.

The visible part of a formal package includes the first list of basic_declarative_items of the package_-
specification. In addition, for each actual parameter that is not required to match, a copy of the declaration
of the corresponding formal parameter of the template isincluded in the visible part of the formal package.
If the copied declaration is for a formal type, copies of the implicit declarations of the primitive
subprograms of the formal type are also included in the visible part of the formal package.

For the purposes of matching, if the actual instance A isitself aformal package, then the actual parameters
of A are those specified explicitly or implicitly in the formal_package_actual_part for A, plus, for those
not specified, the copies of the formal parameters of the template included in the visible part of A.

Examples
Example of a generic package with formal package parameters:

wi th Ada. Contai ners. Ordered_Maps; -- seeA.18.6
generic

wi th package Mapping_1l is new Ada. Cont ai ners. Ordered_Maps(<>);

wi th package Mapping_2 is new Ada. Cont ai ners. Ordered_Maps

(Key_Type => Mappi ng_1. El enent _Type,
others => <>);

package Ordered_Join is

- - Providea"join" between two mappings

subtype Key_Type is Mapping_1. Key_Type;
subtype El ement _Type i s Mappi ng_2. El ement _Type;
function Lookup(Key : Key_Type) return El ement_Type;

end Order ed_Join;
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Example of an instantiation of a package with formal packages:

wi t h Ada. Cont ai ners. Or der ed_Maps;
package Synbol Package is

type String_ldis ...

type Synbol _Info is ...

package String_Table is new Ada. Cont ai ners. Order ed_Maps
(Key_Type => String,
El ement _Type => String_Id);
package Synbol _Table is new Ada. Cont ai ners. Order ed_Maps
(Key_Type => String_ld,
El ement _Type => Synbol _I nfo);
package String_Info is new Ordered_Joi n(Mapping_1 => String_Tabl e,
Mappi ng_2 => Synbol _Tabl e);
Appl e_Info : constant Synbol _Info := String_Info.Lookup("Apple");
end Synbol _Package;

12.8 Example of a Generic Package

The following example provides a possible formulation of stacks by means of a generic package. The size
of each stack and the type of the stack elements are provided as generic formal parameters.

Examples
This paragraph was deleted.

generic
Size : Positive;
type Itemis private;
package Stack is
procedure Push(E : in Iten);
procedure Pop (E : out Item;
Overflow, Underflow : exception;
end Stack;

package body Stack is

type Table is array (Positive range <>) of Item
Space : Table(1l .. Size);

Index : Natural := 0;
procedure Push(E : in Iten) is
begi n

if Index >= Size then
rai se Overflow,

end if;

I ndex := Index + 1;

Space(l ndex) := E;
end Push;
procedure Pop(E : out Iten) is
begi n

if Index = 0 then
rai se Underfl ow

end if;
E : = Space(l ndex);
Index := Index - 1;
end Pop;
end Stack;
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Instances of this generic package can be obtained as follows:

package Stack_Int is new Stack(Size => 200, Item => |nteger);
package Stack_Bool is new Stack(100, Bool ean);

Thereafter, the procedures of the instantiated packages can be called as follows:

Stack_Int. Push(N);
St ack_Bool . Push( True) ;

Alternatively, a generic formulation of the type Stack can be given as follows (package body omitted):

generic
type Itemis private;

package On_Stacks is
type Stack(Size : Positive) is limted private;
procedure Push(S : in out Stack; E: in Iten);
procedure Pop (S : in out Stack; E: out ltem;
Overflow, Underflow : exception;

private
type Table is array (Positive range <>) of Item
type Stack(Size : Positive) is

record
Space : Table(1l .. Size);
Index : Natural := 0;
end record;

end On_St acks;

In order to use such a package, an instance has to be created and thereafter stacks of the corresponding

type can be declared:

decl are
package Stack_Real is new On_Stacks(Real); use Stack_Real ;
S : Stack(100);

begi n

Push(S, 2.54);

end;
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Section 13: Representation Issues

This section describes features for querying and controlling certain aspects of entities and for interfacing
to hardware.

13.1 Operational and Representation Items

Representation and operational items can be used to specify aspects of entities. Two kinds of aspects of
entities can be specified: aspects of representation and operational aspects. Representation items specify
how the types and other entities of the language are to be mapped onto the underlying machine.
Operational items specify other properties of entities.

There are six kinds of representation items. attribute_definition_clauses for representation attributes,
enumeration_representation_clauses, record_representation_clauses, at_clauses, component_clauses,
and representation pragmas. They can be provided to give more efficient representation or to interface
with features that are outside the domain of the language (for example, periphera hardware).

An operational itemis an attribute_definition_clause for an operationa attribute.

An operational item or a representation item applies to an entity identified by a local_name, which
denotes an entity declared local to the current declarative region, or a library unit declared immediately
preceding a representation pragmain acompilation.

Syntax

aspect_clause ::= attribute_definition_clause

| enumeration_representation_clause

| record_representation_clause

| at_clause
local_name ::= direct_name

| direct_name'attribute_designator

| library_unit_name
A representation pragmais alowed only at places where an aspect_clause or compilation_unit is
allowed.

Name Resolution Rules

In an operational item or representation item, if the local_name is a direct_name, then it shall resolve to
denote a declaration (or, in the case of a pragma, one or more declarations) that occurs immediately within
the same declarative region as the item. If the local_name has an attribute_designator, then it shall
resolve to denote an implementation-defined component (see 13.5.1) or a classwide type implicitly
declared immediately within the same declarative region as the item. A local_name that is a
library_unit_name (only permitted in a representation pragma) shall resolve to denote the library_item
that immediately precedes (except for other pragmas) the representation pragma.

Legality Rules
The local_name of an aspect_clause or representation pragma shall statically denote an entity (or, in the
case of a pragma, one or more entities) declared immediately preceding it in a compilation, or within the
same declarative_part, package_specification, task_definition, protected_definition, or record_definition
as the representation or operational item. If a local_name denotes a local callable entity, it may do so
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through a local subprogram_renaming_declaration (as a way to resolve ambiguity in the presence of
overloading); otherwise, the local_name shall not denote arenaming_declaration.

The representation of an object consists of a certain number of bits (the size of the object). For an object of
an elementary type, these are the bits that are normally read or updated by the machine code when loading,
storing, or operating-on the value of the object. For an object of a composite type, these are the bits
reserved for this object, and include bits occupied by subcomponents of the object. If the size of an object
is greater than that of its subtype, the additional bits are padding bits. For an elementary object, these
padding bits are normally read and updated along with the others. For a composite object, padding bits
might not be read or updated in any given composite operation, depending on the implementation.

A representation item directly specifies an aspect of representation of the entity denoted by the
local_name, except in the case of a type-related representation item, whose local_name shall denote a
first subtype, and which directly specifies an aspect of the subtype'stype. A representation item that names
a subtype is either subtype-specific (Size and Alignment clauses) or type-related (all others). Subtype-
specific aspects may differ for different subtypes of the same type.

An operational item directly specifies an operational aspect of the type of the subtype denoted by the
local_name. The local_name of an operational item shall denote afirst subtype. An operational item that
names a subtype is type-related.

A representation item that directly specifies an aspect of a subtype or type shall appear after the type is
completely defined (see 3.11.1), and before the subtype or type is frozen (see 13.14). If a representation
item is given that directly specifies an aspect of an entity, then it isillegal to give another representation
item that directly specifies the same aspect of the entity.

An operational item that directly specifies an aspect of a type shall appear before the type is frozen (see
13.14). If an operational item is given that directly specifies an aspect of a type, then it isillega to give
another operational item that directly specifies the same aspect of the type.

For an untagged derived type, no type-related representation items are allowed if the parent type is a by-
reference type, or has any user-defined primitive subprograms.

Operational and representation aspects of a generic formal parameter are the same as those of the actual.
Operational and representation aspects are the same for al views of atype. A type-related representation
item is not allowed for a descendant of a generic formal untagged type.

A representation item that specifies the Size for a given subtype, or the size or storage place for an object
(including a component) of a given subtype, shall allow for enough storage space to accommodate any
value of the subtype.

A representation or operational item that is not supported by the implementation is illegal, or raises an
exception at run time.

A type_declaration is illegal if it has one or more progenitors, and a representation item applies to an
ancestor, and this representation item conflicts with the representation of some other ancestor. The cases
that cause conflicts are implementation defined.

Satic Semantics
If two subtypes statically match, then their subtype-specific aspects (Size and Alignment) are the same.

A derived type inherits each type-related aspect of representation of its parent type that was directly
specified before the declaration of the derived type, or (in the case where the parent is derived) that was
inherited by the parent type from the grandparent type. A derived subtype inherits each subtype-specific
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aspect of representation of its parent subtype that was directly specified before the declaration of the
derived type, or (in the case where the parent is derived) that was inherited by the parent subtype from the
grandparent subtype, but only if the parent subtype statically matches the first subtype of the parent type.
An inherited aspect of representation is overridden by a subsequent representation item that specifies the
same aspect of the type or subtype.

In contrast, whether operational aspects are inherited by an untagged derived type depends on each
specific aspect. Operational aspects are never inherited for a tagged type. When operational aspects are
inherited by an untagged derived type, aspects that were directly specified by operational items that are
visible at the point of the derived type declaration, or (in the case where the parent is derived) that were
inherited by the parent type from the grandparent type are inherited. An inherited operational aspect is
overridden by a subsequent operational item that specifies the same aspect of the type.

When an aspect that is a subprogram is inherited, the derived type inherits the aspect in the same way that
aderived type inherits a user-defined primitive subprogram from its parent (see 3.4).

Each aspect of representation of an entity is asfollows:

« | the aspect is specified for the entity, meaning that it is either directly specified or inherited,
then that aspect of the entity is as specified, except in the case of Storage_Size, which specifiesa
minimum.

e |If an aspect of representation of an entity is not specified, it is chosen by default in an
unspecified manner.

If an operational aspect is specified for an entity (meaning that it is either directly specified or inherited),
then that aspect of the entity is as specified. Otherwise, the aspect of the entity has the default value for
that aspect.

A representation item that specifies an aspect of representation that would have been chosen in the absence
of the representation item is said to be confirming.

Dynamic Semantics
For the elaboration of an aspect_clause, any evaluable constructs within it are eval uated.

Implementation Permissions
An implementation may interpret aspects of representation in an implementation-defined manner. An
implementation may place implementation-defined restrictions on representation items. A recommended
level of support is specified for representation items and related features in each subclause. These
recommendations are changed to requirements for implementations that support the Systems Programming
Annex (see C.2, “Required Representation Support”).

Implementation Advice
The recommended level of support for al representation itemsis qualified as follows:
« A confirming representation item should be supported.

e An implementation need not support representation items containing nonstatic expressions,
except that an implementation should support a representation item for a given entity if each
nonstatic expression in the representation item is a name that statically denotes a constant
declared before the entity.

« An implementation need not support a specification for the Size for a given composite subtype,
nor the size or storage place for an object (including a component) of a given composite subtype,
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unless the constraints on the subtype and its composite subcomponents (if any) are al static
constraints.

« An implementation need not support a nonconfirming representation item if it could cause an
aliased object or an object of a by-reference type to be allocated at a nonaddressable location or,
when the alignment attribute of the subtype of such an object is nonzero, at an address that is not
an integral multiple of that alignment.

< An implementation need not support a nonconfirming representation item if it could cause an
aliased object of an elementary type to have a size other than that which would have been
chosen by default.

« An implementation need not support a nonconfirming representation item if it could cause an
aliased object of a composite type, or an object whose type is by-reference, to have a size
smaller than that which would have been chosen by defaullt.

« An implementation need not support a nonconfirming subtype-specific representation item
specifying an aspect of representation of an indefinite or abstract subtype.

For purposes of these rules, the determination of whether a representation item applied to a type could
cause an object to have some property is based solely on the properties of the type itself, not on any
available information about how the type is used. In particular, it presumes that minimally aligned objects
of thistype might be declared at some point.

13.2 Pragma Pack

A pragma Pack specifies that storage minimization should be the main criterion when selecting the
representation of a composite type.

Syntax
The form of apragma Pack is as follows:
pragma Pack(first_subtype local_name);

Legality Rules
Thefirst_subtype_local_name of apragma Pack shall denote a composite subtype.

Satic Semantics

A pragma Pack specifies the packing aspect of representation; the type (or the extension part) is said to be
packed. For a type extension, the parent part is packed as for the parent type, and a pragma Pack causes
packing only of the extension part.

Implementation Advice

If atypeis packed, then the implementation should try to minimize storage allocated to objects of the type,
possibly at the expense of speed of accessing components, subject to reasonable complexity in addressing
calculations.

If a packed type has a component that is not of a by-reference type and has no aiased part, then such a
component need not be aligned according to the Alignment of its subtype; in particular it need not be
allocated on a storage element boundary .

The recommended level of support for pragma Pack is:

» For a packed record type, the components should be packed as tightly as possible subject to the
Sizes of the component subtypes, and subject to any record_representation_clause that applies
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to the type; the implementation may, but need not, reorder components or cross aligned word
boundaries to improve the packing. A component whose Size is greater than the word size may
be allocated an integral number of words.

« For a packed array type, if the component subtype's Size is less than or equal to the word size,
and Component_Size is not specified for the type, Component_Size should be less than or equal
to the Size of the component subtype, rounded up to the nearest factor of the word size.

13.3 Operational and Representation Attributes

The values of certain implementation-dependent characteristics can be obtained by interrogating
appropriate operational or representation attributes. Some of these attributes are specifiable via an
attribute_definition_clause.

Syntax
attribute_definition_clause ::=

for local_name'attribute_designator use expression;
| for local_name'attribute_designator use name;

Name Resolution Rules

For an attribute_definition_clause that specifies an attribute that denotes a value, the form with an
expression shall be used. Otherwise, the form with aname shall be used.

For an attribute_definition_clause that specifies an attribute that denotes a value or an object, the expected
type for the expression or name is that of the attribute. For an attribute_definition_clause that specifies an
attribute that denotes a subprogram, the expected profile for the name is the profile required for the
attribute. For an attribute_definition_clause that specifies an attribute that denotes some other kind of
entity, the name shall resolve to denote an entity of the appropriate kind.

Legality Rules
An attribute_designator is allowed in an attribute_definition_clause only if this International Standard
explicitly allows it, or for an implementation-defined attribute if the implementation alows it. Each
specifiable attribute constitutes an operational aspect or aspect of representation.

For an attribute_definition_clause that specifies an attribute that denotes a subprogram, the profile shall be
mode conformant with the one required for the attribute, and the convention shall be Ada. Additional
regquirements are defined for particular attributes.

Static Semantics

A Sze clause is an attribute_definition_clause whose attribute_designator is Size. Similar definitions
apply to the other specifiable attributes.

A storage element is an addressable element of storage in the machine. A word is the largest amount of
storage that can be conveniently and efficiently manipulated by the hardware, given the implementation’s
run-time model. A word consists of an integral number of storage elements.

A machine scalar is an amount of storage that can be conveniently and efficiently loaded, stored, or
operated upon by the hardware. Machine scalars consist of an integral number of storage elements. The set
of machine scalars is implementation defined, but must include at least the storage element and the word.
Machine scalars are used to interpret component_clauses when the nondefault bit ordering applies.
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The following representation attributes are defined: Address, Alignment, Size, Storage Size, and
Component_Size.
For aprefix X that denotes an object, program unit, or label:

X'Address  Denotes the address of the first of the storage elements allocated to X. For a program unit or
label, this value refers to the machine code associated with the corresponding body or
statement. The value of this attribute is of type System.Address.

Address may be specified for stand-alone objects and for program units via an
attribute_definition_clause.
Erroneous Execution

If an Address is specified, it is the programmer's responsibility to ensure that the address is valid;
otherwise, program execution is erroneous.

Implementation Advice

For an array X, X'Address should point at the first component of the array, and not at the array bounds.
The recommended level of support for the Address attribute is:

e X'Address should produce a useful result if X is an object that is aliased or of a by-reference
type, or is an entity whose Address has been specified.

e Animplementation should support Address clauses for imported subprograms.
¢ This paragraph was deleted.

« |If the Address of an object is specified, or it is imported or exported, then the implementation
should not perform optimizations based on assumptions of no aliases.

NOTES
1 The specification of alink name in a pragma Export (see B.1) for a subprogram or object is an aternative to explicit
specification of its link-time address, alowing alink-time directive to place the subprogram or object within memory.

2 Therules for the Size attribute imply, for an aliased object X, that if X'Size = Storage_Unit, then X'Address points at a
storage element containing all of the bits of X, and only the bits of X.

Satic Semantics
For aprefix X that denotes an object:

X'Alignment The vaue of this attribute is of type universal_integer, and nonnegative; zero means that
the object is not necessarily aligned on a storage element boundary. If X'Alignment is not
zero, then X is aligned on a storage unit boundary and X'Address is an integral multiple of
X'Alignment (that is, the Address modulo the Alignment is zero).

This paragraph was deleted.

Alignment may be specified for stand-alone objects via an attribute_definition_clause; the
expression of such a clause shall be static, and its value nonnegative.

This paragraph was deleted.
For every subtype S:
SAlignment The value of this attribute is of type universal_integer, and nonnegative.

For an object X of subtype S, if SAlignment is not zero, then X'Alignment is a nonzero
integral multiple of SAlignment unless specified otherwise by a representation item.

Alignment may be specified for first subtypes via an attribute_definition_clause; the
expression of such a clause shall be static, and its value nonnegative.
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Erroneous Execution
Program execution is erroneous if an Address clause is given that conflicts with the Alignment.

For an object that is not allocated under control of the implementation, execution is erroneous if the object
isnot aligned according to its Alignment.

Implementation Advice
The recommended level of support for the Alignment attribute for subtypesis:
« An implementation should support an Alignment clause for a discrete type, fixed point type,

record type, or array type, specifying an Alignment value that is zero or a power of two, subject
to the following:

« Animplementation need not support an Alignment clause for a signed integer type specifying an
Alignment greater than the largest Alignment value that is ever chosen by default by the
implementation for any signed integer type. A corresponding limitation may be imposed for
modular integer types, fixed point types, enumeration types, record types, and array types.

* An implementation need not support a nonconfirming Alignment clause which could enable the
creation of an object of an elementary type which cannot be easily loaded and stored by
available machine instructions.

« Animplementation need not support an Alignment specified for a derived tagged type which is
not a multiple of the Alignment of the parent type. An implementation need not support a
nonconfirming Alignment specified for a derived untagged by-reference type.

The recommended level of support for the Alignment attribute for objectsis:
* This paragraph was deleted.

e For stand-alone library-level objects of statically constrained subtypes, the implementation
should support al Alignments supported by the target linker. For example, page alignment is
likely to be supported for such objects, but not for subtypes.

« For other objects, an implementation should at least support the alignments supported for their
subtype, subject to the following:

« An implementation need not support Alignments specified for objects of a by-reference type or
for objects of types containing aliased subcomponents if the specified Alignment is not a
multiple of the Alignment of the subtype of the object.

NOTES
3 Alignment is a subtype-specific attribute.

This paragraph was deleted.

4 A component_clause, Component_Size clause, or apragma Pack can override a specified Alignment.

Static Semantics
For aprefix X that denotes an object:

X'Size Denotes the size in bits of the representation of the object. The value of this attribute is of
the type universal_integer.

Size may be specified for stand-alone objects via an attribute_definition_clause; the
expression of such a clause shall be static and its value nonnegative.

Implementation Advice
The size of an array object should not include its bounds.
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The recommended level of support for the Size attribute of objectsis the same as for subtypes (see below),
except that only a confirming Size clause need be supported for an aliased elementary object.

* This paragraph was deleted.

Satic Semantics
For every subtype S:
SSize If Sis definite, denotes the size (in bits) that the implementation would choose for the
following objects of subtype S:
» A record component of subtype S when the record type is packed.

e The formal parameter of an instance of Unchecked_Conversion that converts
from subtype S to some other subtype.

If Sisindefinite, the meaning is implementation defined. The value of this attribute is of
the type universal_integer. The Size of an object is at least as large as that of its subtype,
unless the object's Size is determined by a Size clause, a component_clause, or a
Component_Size clause. Size may be specified for first subtypes via an attribute_-
definition_clause; the expression of such a clause shall be static and its value nonnegative.

Implementation Requirements

In an implementation, Boolean'Size shall be 1.

Implementation Advice

If the Size of a subtype allows for efficient independent addressability (see 9.10) on the target architecture,
then the Size of the following objects of the subtype should equal the Size of the subtype:

« Aliased objects (including components).

» Unaliased components, unless the Size of the component is determined by a component_clause
or Component_Size clause.

A Size clause on a composite subtype should not affect the internal layout of components.

The recommended level of support for the Size attribute of subtypesis:

» The Size (if not specified) of a static discrete or fixed point subtype should be the number of bits
needed to represent each value belonging to the subtype using an unbiased representation,
leaving space for a sign hit only if the subtype contains negative values. If such a subtype is a
first subtype, then an implementation should support a specified Size for it that reflects this
representation.

« For a subtype implemented with levels of indirection, the Size should include the size of the
pointers, but not the size of what they point at.

« An implementation should support a Size clause for a discrete type, fixed point type, record
type, or array type, subject to the following:

An implementation need not support a Size clause for a signed integer type specifying a
Size greater than that of the largest signed integer type supported by the implementation in
the absence of a size clause (that is, when the size is chosen by default). A corresponding
limitation may be imposed for modular integer types, fixed point types, enumeration types,
record types, and array types.

A nonconfirming size clause for the first subtype of a derived untagged by-reference type
need not be supported.
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NOTES
5 Sizeisasubtype-specific attribute.

6 A component_clause or Component_Size clause can override a specified Size. A pragma Pack cannot.

Static Semantics

For aprefix T that denotes atask object (after any implicit dereference):

T'Storage_Size
Denotes the number of storage elements reserved for the task. The value of this attribute is
of the type universal_integer. The Storage_Size includes the size of the task's stack, if any.
The language does not specify whether or not it includes other storage associated with the
task (such as the “task control block” used by some implementations.) If a pragma
Storage_Size is given, the value of the Storage_Size attribute is at least the value specified
in the pragma.

A pragma Storage_Size specifies the amount of storage to be reserved for the execution of atask.

Syntax
The form of apragma Storage _Sizeisasfollows:
pragma Storage_Size(expression);
A pragma Storage_Sizeis alowed only immediately within atask_definition.

Name Resolution Rules

The expression of apragma Storage Size is expected to be of any integer type.

Dynamic Semantics
A pragma Storage Size is elaborated when an object of the type defined by the immediately enclosing
task_definition is created. For the elaboration of a pragma Storage Size, the expression is evaluated; the
Storage_Size attribute of the newly created task object is at least the value of the expression.

At the point of task object creation, or upon task activation, Storage Error is raised if there is insufficient
free storage to accommodate the requested Storage_Size.

Static Semantics
For a prefix X that denotes an array subtype or array object (after any implicit dereference):
X'Component_Size
Denotes the size in bits of components of the type of X. The value of this attribute is of type
universal_integer.

Component_Size may be specified for array types via an attribute_definition_clause; the
expression of such a clause shall be static, and its value nonnegative.

Implementation Advice
The recommended level of support for the Component_Size attributeis:

* An implementation need not support specified Component_Sizes that are less than the Size of
the component subtype.

« An implementation should support specified Component_Sizes that are factors and multiples of
the word size. For such Component_Sizes, the array should contain no gaps between
components. For other Component_Sizes (if supported), the array should contain no gaps
between components when packing is also specified; the implementation should forbid this
combination in cases where it cannot support a no-gaps representation.
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Satic Semantics
The following operational attribute is defined: External_Tag.

For every subtype S of atagged type T (specific or class-wide):

SExternal_Tag
SExternal_Tag denotes an external string representation for STag; it is of the predefined
type String. External_Tag may be specified for a specific tagged type via an
attribute_definition_clause; the expression of such a clause shal be static. The default
external tag representation is implementation defined. See 3.9.2 and 13.13.2. The value of
External_Tag is never inherited; the default value is always used unless a new value is
directly specified for atype.

Implementation Requirements

In an implementation, the default external tag for each specific tagged type declared in a partition shall be
distinct, so long as the type is declared outside an instance of a generic body. If the compilation unit in
which a given tagged type is declared, and all compilation units on which it semantically depends, are the
same in two different partitions, then the external tag for the type shall be the same in the two partitions.
What it means for a compilation unit to be the same in two different partitions is implementation defined.
At aminimum, if the compilation unit is not recompiled between building the two different partitions that
include it, the compilation unit is considered the same in the two partitions.

NOTES

7 The following language-defined attributes are specifiable, at least for some of the kinds of entities to which they apply:
Address, Alignment, Bit_Order, Component_Size, External_Tag, Input, Machine_Radix, Output, Read, Size, Small,
Storage_Pool, Storage_Size, Stream_Size, and Write.

8 It follows from the general rulesin 13.1 that if one writes “for X'Size use Y;” then the X'Size attribute_reference will
return Y (assuming the implementation allows the Size clause). The sameistrue for all of the specifiable attributes except
Storage_Size.

Examples
Examples of attribute definition clauses:

Byte : constant := 8;
Page : constant := 2**12;

type Mediumis range 0 .. 65_000;

for Medium Size use 2*Byte;

for Medium Alignment use 2;

Devi ce_Regi ster : Medium

for Device_Register'Size use Mediuni Size;

for Device_Register' Address use

System St orage_El ement s. To_Addr ess( 16#FFFF_0020#) ;

type Short is delta 0.01 range -100.0 .. 100.0;
for Short'Size use 15;

for Car_Name' Storage_Si ze use -- specify access type's storage pool size
2000*((Car' Si ze/ System Storage_Unit) +1); -- approximately 2000 cars

function My_I nput(Stream: not null access
Ada. Streans. Root _Stream Type' C ass)

return T;
for T Input use My_Input; -- seel3.132

NOTES
9 Notes on the examples: In the Size clause for Short, fifteen bits is the minimum necessary, since the type definition
requires Short'Small <= 2**(-7).
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13.4 Enumeration Representation Clauses

An enumeration_representation_clause specifies the internal codes for enumeration literals.

Syntax
enumeration_representation_clause ::=
for first_subtype local_name use enumeration_aggregate;

enumeration_aggregate ::= array_aggregate

Name Resolution Rules
The enumeration_aggregate shall be written as a one-dimensional array_aggregate, for which the index
subtype is the unconstrained subtype of the enumeration type, and each component expression is expected
to be of any integer type.

Legality Rules
The first_subtype local_name of an enumeration_representation_clause shall denote an enumeration
subtype.

Each component of the array_aggregate shall be given by an expression rather than a <>. The
expressions given in the array_aggregate shall be static, and shall specify distinct integer codes for each
value of the enumeration type; the associated integer codes shall satisfy the predefined ordering relation of
the type.

Static Semantics

An enumeration_representation_clause specifies the coding aspect of representation. The coding
consists of the internal code for each enumeration literal, that is, the integral value used internaly to
represent each literal.

Implementation Requirements

For nonboolean enumeration types, if the coding is not specified for the type, then for each value of the
type, the internal code shall be equal to its position number.

Implementation Advice
The recommended level of support for enumeration_representation_clausesis:
¢ An implementation should support at least the interna codes in the range

System.Min_Int..System.Max_Int. An implementation need not support enumeration_-
representation_clauses for boolean types.

NOTES

10 Unchecked_Conversion may be used to query the internal codes used for an enumeration type. The attributes of the
type, such as Succ, Pred, and Pos, are unaffected by the enumeration_representation_clause. For example, Pos aways
returns the position number, not the internal integer code that might have been specified in an
enumeration_representation_clause}.

Examples
Example of an enumeration representation clause:

type Mx_Code is (ADD, SUB, MJL, LDA, STA, STZ2);

for M x_Code use
(ADD => 1, SUB => 2, MJL => 3, LDA => 8, STA => 24, STZ =>33);
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13.5 Record Layout

The (record) layout aspect of representation consists of the storage places for some or al components, that
is, storage place attributes of the components. The layout can be specified with arecord_representation_-
clause.

13.5.1 Record Representation Clauses

A record_representation_clause specifies the storage representation of records and record extensions,
that is, the order, position, and size of components (including discriminants, if any).

Syntax
record_representation_clause ::=
for first_subtype local_name use
record [mod_clause]
{component_clause}
end record;

component_clause ::=
component_local_name at position range first_bit .. last_bit;

position ::= static_expression
first_bit ::= static_simple_expression
last_bit ::= static_simple_expression
Name Resolution Rules

Each position, first_bit, and last_bit is expected to be of any integer type.

Legality Rules
The first_subtype local_name of arecord_representation_clause shall denote a specific record or record
extension subtype.

If the component_local_name isadirect_name, the local_name shall denote a component of the type. For
a record extension, the component shall not be inherited, and shall not be a discriminant that corresponds
to a discriminant of the parent type. If the component_local_name has an attribute_designator, the
direct_name of the local_name shall denote either the declaration of the type or a component of the type,
and the attribute_designator shall denote an implementation-defined implicit component of the type.

The position, first_bit, and last_bit shall be static expressions. The value of position and first_bit shall be
nonnegative. The value of last_bit shall be no less than first_bit — 1.
If the nondefault bit ordering applies to the type, then either:

 thevalue of last_bit shall be less than the size of the largest machine scalar; or

« the value of first_bit shall be zero and the value of last_bit + 1 shall be a multiple of
System.Storage_Unit.

At most one component_clause is alowed for each component of the type, including for each
discriminant (component_clauses may be given for some, al, or none of the components). Storage places
within a component_list shall not overlap, unless they are for components in distinct variants of the same
variant_part.
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A name that denotes a component of atype is not allowed within arecord_representation_clause for the
type, except as the component_local_name of acomponent_clause.

Static Semantics
A record_representation_clause (without the mod_clause) specifies the layout.

If the default bit ordering applies to the type, the position, first_bit, and last_bit of each
component_clause directly specify the position and size of the corresponding component.

If the nondefault bit ordering appliesto the type then the layout is determined as follows:

« the component_clauses for which the value of last_bit is greater than or equal to the size of the
largest machine scalar directly specify the position and size of the corresponding component;

e for other component_clauses, all of the components having the same value of position are
considered to be part of a single machine scalar, located at that position; this machine scalar has
a size which is the smallest machine scalar size larger than the largest last_bit for all
component_clauses at that position; the first_bit and last_bit of each component_clause are
then interpreted as bit offsets in this machine scalar.

A record_representation_clause for a record extension does not override the layout of the parent part; if
the layout was specified for the parent type, it is inherited by the record extension.

Implementation Permissions

An implementation may generate implementation-defined components (for example, one containing the
offset of another component). An implementation may generate names that denote such implementation-
defined components; such names shall be implementation-defined attribute_references. An implemen-
tation may allow such implementation-defined names to be used in record_representation_clauses. An
implementation can restrict such component_clausesin any manner it sees fit.

If arecord_representation_clause is given for an untagged derived type, the storage place attributes for
all of the components of the derived type may differ from those of the corresponding components of the
parent type, even for components whose storage place is not specified explicitly in the record_-
representation_clause.

Implementation Advice
The recommended level of support for record_representation_clausesis:

« An implementation should support machine scalars that correspond to all of the integer, floating
point, and address formats supported by the machine.

« An implementation should support storage places that can be extracted with a load, mask, shift
sequence of machine code, and set with a load, shift, mask, store sequence, given the available
machine instructions and run-time model.

« A storage place should be supported if its size is equal to the Size of the component subtype, and
it starts and ends on a boundary that obeys the Alignment of the component subtype.

« For a component with a subtype whose Size is less than the word size, any storage place that
does not cross an aligned word boundary should be supported.

« An implementation may reserve a storage place for the tag field of atagged type, and disallow
other components from overlapping that place.

« An implementation need not support a component_clause for a component of an extension part
if the storage place is not after the storage places of all components of the parent type, whether
or not those storage places had been specified.
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NOTES

11 If no component_clause is given for a component, then the choice of the storage place for the component is left to the
implementation. |If component_clauses are given for al components, the record_representation_clause completely

specifies the representation of the type and will be obeyed exactly by the implementation.

Examples

Example of specifying the layout of a record type:

Wrd : constant := 4;

type State is (AM
type Mode is (Fix,
type Byte_Mask is array
type State_Mask is array
type Mode_Mask is array
type Program Status_Word is

record

Syst em Mask

Pr ot ecti on_Key
Machi ne_St at e

I nterrupt_Cause
Ilc

Cc

Pr ogr am Mask

| nst _Addr ess

WP); o
Dec, Exp, Signif);
(0..7) of Boolean;

(State) of Bool ean;
(Mode) of Bool ean;

Byt e_Mask;

Integer range 0 .. 3;
St at e_Mask;

I nterruption_Code;
Integer range 0 .. 3;
Integer range 0 .. 3;
Mode_Mask;

Addr ess;

- - storage element is byte, 4 bytes per word

end record;

for Program Status_Word use
record
Syst em Mask at 0*Word range 0 .. 7,
Pr ot ecti on_Key at 0*Word range 10 .. 11; -- bits8,9 unused
Machi ne_St at e at 0*Word range 12 .. 15;
Interrupt_Cause at 0*Word range 16 .. 31,
Ilc at 1*Word range 0 1; -- secondword
Cc at 1*Word range 2 3;
Pr ogr am Mask at 1*Word range 4 7;
I nst _Addr ess at 1*Word range 8 31;
end record;
for Program Status_Wrd' Size use 8*System Storage_Unit;
for Program Status_Word' Ali gnnent use 8;
NOTES

12 Note on the example: The record_representation_clause defines the record layout. The Size clause guarantees that (at
least) eight storage elements are used for objects of the type. The Alignment clause guarantees that aliased, imported, or
exported objects of the type will have addresses divisible by eight.

13.5.2 Storage Place Attributes

Satic Semantics
For acomponent C of acomposite, non-array object R, the storage place attributes are defined:
R.C'Position If the nondefault bit ordering applies to the composite type, and if a component_clause
specifies the placement of C, denotes the value given for the position of the
component_clause; otherwise, denotes the same value as R.C'Address — R'Address. The
value of this attribute is of the type universal_integer.

R.CFirst_Bit
If the nondefault bit ordering applies to the composite type, and if a component_clause
specifies the placement of C, denotes the value given for the first_bit of the
component_clause; otherwise, denotes the offset, from the start of the first of the storage
elements occupied by C, of the first bit occupied by C. This offset is measured in bits. The
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first bit of a storage element is numbered zero. The value of this attribute is of the type
universal_integer.
R.C'Last_Bit

If the nondefault bit ordering applies to the composite type, and if a component_clause
specifies the placement of C, denotes the value given for the last_bit of the
component_clause; otherwise, denotes the offset, from the start of the first of the storage
elements occupied by C, of the last bit occupied by C. This offset is measured in bits. The
value of this attribute is of the type universal_integer.

Implementation Advice

If a component is represented using some form of pointer (such as an offset) to the actual data of the
component, and this data is contiguous with the rest of the object, then the storage place attributes should
reflect the place of the actual data, not the pointer. If a component is allocated discontiguously from the
rest of the object, then awarning should be generated upon reference to one of its storage place attributes.

13.5.3 Bit Ordering
The Bit_Order attribute specifies the interpretation of the storage place attributes.

Static Semantics

A bit ordering is a method of interpreting the meaning of the storage place attributes. High_Order_First
(known in the vernacular as “big endian”) means that the first bit of a storage element (bit 0) is the most
significant bit (interpreting the sequence of bits that represent a component as an unsigned integer value).
Low_Order_First (known in the vernacular as “little endian”) means the opposite: the first bit is the least
significant.

For every specific record subtype S, the following attribute is defined:

SBit_Order Denotes the bit ordering for the type of S. The value of this attribute is of type

System.Bit_Order. Bit_Order may be specified for specific record types via an
attribute_definition_clause; the expression of such a clause shall be static.

If Word_Size = Storage Unit, the default bit ordering is implementation defined. If Word_Size >
Storage_Unit, the default bit ordering is the same as the ordering of storage elements in a word, when
interpreted as an integer.

The storage place attributes of a component of a type are interpreted according to the bit ordering of the
type.

Implementation Advice
The recommended level of support for the nondefault bit ordering is:

¢ The implementation should support the nondefault bit ordering in addition to the default bit
ordering.

NOTES
13 Bit_Order clauses make it possible to write record_representation_clauses that can be ported between machines
having different bit ordering. They do not guarantee transparent exchange of data between such machines.
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13.6 Change of Representation

A type_conversion (see 4.6) can be used to convert between two different representations of the same
array or record. To convert an array from one representation to another, two array types need to be
declared with matching component subtypes, and convertible index types. If one type has packing
specified and the other does not, then explicit conversion can be used to pack or unpack an array.

To convert a record from one representation to another, two record types with a common ancestor type
need to be declared, with no inherited subprograms. Distinct representations can then be specified for the
record types, and explicit conversion between the types can be used to effect a change in representation.

Examples
Example of change of representation:

- - Packed Descriptor and Descriptor are two different types
- - withidentical characteristics, apart fromtheir
- - representation

type Descriptor is
record
- - components of a descriptor
end record,

type Packed_Descriptor is new Descriptor;

for Packed_Descriptor use
record
- - component clauses for some or for all components
end record;

-- Change of representation can now be accomplished by explicit type conversions:
D : Descriptor;

P : Packed_Descri ptor;
P : = Packed_Descriptor(D); -- packD
D : = Descriptor(P); - - unpack P
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13.7 The Package System

For each implementation there is a library package called System which includes the definitions of certain
configuration-dependent characteristics.

Static Semantics
The following language-defined library package exists:

package Systemis
pragnma Pure(Systen);

type Nane is implementation-defined-enumeration-type;

System Nanme : constant Nane : = implementation-defined;

- - System-Dependent Named Numbers:

M n_I nt : constant := root_integer' First;
Max_| nt : constant := root_integer' Last;
Max_Bi nary_Mbodul us ;. constant : = implementation-defined;
Max_Nonbi nary_Mdul us : constant := implementation-defined;
Max_Base_Digits . constant := root_real' Digits;
Max_Digits : constant := implementation-defined;
Max_Mant i ssa : constant := implementation-defined;
Fine Delta : constant := implementation-defined;
Ti ck : constant := implementation-defined;

- - Sorage-related Declarations:

type Address is implementation-defined;
Nul | _Address : constant Address;

Storage_Unit : constant := implementation-defined;
Word_Si ze : constant := implementation-defined * St orage_Unit;
Menory_Size : constant := implementation-defined;

- - Address Comparison:

function "<" (Left, Right : Address) return Bool ean;

function "<="(Left, Right : Address) return Bool ean;

function ">" (Left, Right : Address) return Bool ean;

function ">="(Left, Right : Addr ess) return Bool ean;

function "=" (Left, Right Addr ess) return Bool ean;
-- functi on "/=" (Left, R ght : Address) return Bool ean;

"/=""isimplicitly defined
pr agnma Convention(Intrinsic, "<"
... -- andsoonfor all Ianguagedeflned wbprograrrslnthls package

- - Other System-Dependent Declarations:
type Bit_Oder is (High_ Oder_First, Low Order_First);
Default _Bit_Order : constant Bit_Order := implementation-defined;

- - Priority-related declarations (see D.1):

subtype Any_Priority is Integer range implementation-defined;

subtype Priority is Any_Priority range Any_Priority' First
implementati on-defined;

subtype Interrupt_Priority is Any_Priority range Priority'Last+1 ..
Any_Priority' Last;

Default_Priority : constant Priority :=
(Priority'First + Priority' Last)/2;

private
- - not specified by the language
end’ %/stem

Name is an enumeration subtype. Values of type Name are the names of alternative machine configura-
tions handled by the implementation. System_Name represents the current machine configuration.
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The named numbers Fine Delta and Tick are of the type universal_real; the others are of the type
universal_integer.

The meanings of the named numbers are:

Min_Int The smallest (most negative) value alowed for the expressions of a signed_integer_type_-
definition.

Max_Int The largest (most positive) value alowed for the expressions of a signed_integer_type_-
definition.

Max_Binary_Modulus
A power of two such that it, and all lesser positive powers of two, are alowed as the
modulus of amodular_type_definition.

Max_Nonbinary_Modulus
A value such that it, and al lesser positive integers, are alowed as the modulus of a
modular_type_definition.
Max_Base Digits
The largest value allowed for the requested decimal precision in afloating_point_definition.
Max_Digits The largest value allowed for the requested decimal precision in afloating_point_definition

that has no real_range_specification. Max_Digits is less than or equa to
Max_Base Digits.

Max_Mantissa
The largest possible number of binary digits in the mantissa of machine numbers of a user-
defined ordinary fixed point type. (The mantissais defined in Annex G.)

Fine Delta  The smallest delta allowed in an ordinary_fixed_point_definition that has the real_range_-
specification range—1.0 .. 1.0.

Tick A period in seconds approximating the real time interval during which the value of
Calendar.Clock remains constant.

Storage_Unit
The number of bits per storage element.

Word_Size  The number of bits per word.

Memory_Size An implementation-defined value that is intended to reflect the memory size of the
configuration in storage elements.

Address is a definite, nonlimited type with preelaborable initialization (see 10.2.1). Address represents
machine addresses capable of addressing individual storage elements. Null_Address is an address that is
distinct from the address of any object or program unit.

Default_Bit_Order shall be a static constant. See 13.5.3 for an explanation of Bit Order and
Default_Bit Order.

Implementation Permissions

An implementation may add additional implementation-defined declarations to package System and its
children. However, it is usually better for the implementation to provide additional functionality via
implementation-defined children of System.

Implementation Advice

Address should be a private type.
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NOTES
14 There are also some language-defined child packages of System defined el sewhere.

13.7.1 The Package System.Storage_Elements

Static Semantics
The following language-defined library package exists:

package System Storage_El enents is
pragnma Pure( Storage_El ements);

type Storage_Ofset is range implementation-defined;
subtype Storage_Count is Storage Offset range 0..Storage O fset' Last;

type Storage_El ement is nod implementation-defined;
for Storage_El ement' Size use Storage_Unit;
type Storage_Array is array
(Storage_Offset range <>) of aliased Storage_El ement;
for Storage_Array' Conponent _Si ze use Storage_Unit;

- - Address Arithmetic:

function "+"(Left : Address; Right : Storage O fset)
return Address;

function "+"(Left : Storage_Ofset; R ght : Address)
return Address;

function "-"(Left : Address; Right : Storage O fset)
return Address;

function "-"(Left, Right : Address)
return Storage_ O fset;

function "nod"(Left : Address; Right : Storage_Ofset)
return Storage O fset;

- - Conversion to/fromintegers:

type Integer_Address is implementation-defined;
function To_Address(Val ue : |nteger_Address) return Address;
function To_Il nteger(Value : Address) return | nteger_Address;

pr agrra Convention(Intrinsic, "+"
...and so on for all language-defi ned subprograms declared in this package.
end Syst em St orage_El enent s;

Storage_Element represents a storage element. Storage Offset represents an offset in storage elements.
Storage_Count represents a number of storage elements. Storage Array represents a contiguous sequence
of storage elements.

Integer_Address is a (signed or modular) integer subtype. To_Address and To_Integer convert back and
forth between this type and Address.

Implementation Requirements

Storage Offset'Last shall be greater than or equal to Integer'Last or the largest possible storage offset,
whichever is smaller. Storage_Offset'First shall be <= (-Storage_Offset'Last).

Implementation Permissions

This paragraph was del eted.

Implementation Advice

Operations in System and its children should reflect the target environment semantics as closely as is
reasonable. For example, on most machines, it makes sense for address arithmetic to “wrap around.”
Operations that do not make sense should raise Program_Error.
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13.7.2 The Package System.Address_To_Access_Conversions

Satic Semantics
The following language-defined generic library package exists:

generic
type hject(<>) is limted private

package System Address_To_Access_Conversions is
pragnme Preel abor at e( Addr ess_To_Access_Conver si ons) ;

type bject_Pointer is access all Object;
function To_Pointer(Value : Address) return Qbject_Pointer;
function To_Address(Value : Object_Pointer) return Address;

pragma Convention(Intrinsic, To_Pointer);
pragnma Convention(lntrinsic, To_Address);
end System Address_To_Access_Conver si ons;

The To_Pointer and To_Address subprograms convert back and forth between values of types
Object_Pointer and Address. To_Pointer(X'Address) is equal to X'Unchecked Access for any X that
alows Unchecked Access. To_Pointer(Null_Address) returns null. For other addresses, the behavior is
unspecified. To_Address(null) returns Null_Address. To_Address(Y), where Y /= null, returns
Y .all'Address.

Implementation Permissions

An implementation may place restrictions on instantiations of Address To_Access_Conversions.

13.8 Machine Code Insertions

A machine code insertion can be achieved by a call to a subprogram whose sequence_of_statements
contains code_statements.

Syntax
code_statement ::= qualified_expression;

A code_statement is only alowed in the handled_sequence_of_statements of a subprogram_-
body. If asubprogram_body contains any code_statements, then within this subprogram_body the
only allowed form of statement isacode_statement (labeled or not), the only allowed declarative_-
items are use_clauses, and no exception_handler is allowed (comments and pragmas are allowed
as usual).

Name Resolution Rules

The qualified_expression is expected to be of any type.

Legality Rules
The qualified_expression shall be of atype declared in package System.Machine_Code.

A code_statement shall appear only within the scope of a with_clause that mentions package
System.Machine_Code.

Satic Semantics

The contents of the library package System.Machine_Code (if provided) are implementation defined. The
meaning of code_statements is implementation defined. Typically, each qualified_expression represents
amachine instruction or assembly directive.

13.7.2 The Package System.Address To_Access Conversions 10 November 2006 286



ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Implementation Permissions
An implementation may place restrictions on code_statements. An implementation is not required to
provide package System.Machine_Code.
NOTES

15 An implementation may provide implementation-defined pragmas specifying register conventions and calling
conventions.

16 Machine code functions are exempt from the rule that a return statement is required. In fact, return statements are
forbidden, since only code_statements are allowed.

17 Intrinsic subprograms (see 6.3.1, “Conformance Rules’) can also be used to achieve machine code insertions. Interface
to assembly language can be achieved using the featuresin Annex B, “Interface to Other Languages’.

Examples
Example of a code statement:

M : Mask;
procedure Set_Mask; pragnma |nline(Set_Mask);

procedure Set_Mask is

use System Machi ne_Code; -- assume*“with System.Machine_Code;” appears somewhere above
begi n

S| _Format' (Code => SSM B => M Base_Reg, D => M Disp);

- - Base_Reg and Disp are implementation-defined attributes
end Set _Mask;

13.9 Unchecked Type Conversions

An unchecked type conversion can be achieved by a call to an instance of the generic function
Unchecked_Conversion.

Static Semantics
The following language-defined generic library function exists:
generic
type Source(<>) is limted private;
type Target(<>) is linmted private;
function Ada. Unchecked_Conversion(S : Source) return Target;

pragma Convention(lntrinsic, Ada.Unchecked_Conversion);
pragnma Pur e( Ada. Unchecked_Conversi on);

Dynamic Semantics
The size of the formal parameter S in an instance of Unchecked Conversion is that of its subtype. Thisis
the actual subtype passed to Source, except when the actual is an unconstrained composite subtype, in
which case the subtype is constrained by the bounds or discriminants of the value of the actual expression
passed to S.

If al of the following are true, the effect of an unchecked conversion is to return the value of an object of
the target subtype whose representation is the same as that of the source object S:

e SSize=Target'Size.

¢ SAlignment = Target'Alignment.

« Thetarget subtype isnot an unconstrained composite subtype.

« Sand the target subtype both have a contiguous representation.

« Therepresentation of Sisarepresentation of an object of the target subtype.
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Otherwise, if the result type is scalar, the result of the function is implementation defined, and can have an
invalid representation (see 13.9.1). If the result type is nonscalar, the effect is implementation defined; in
particular, the result can be abnormal (see 13.9.1).

Implementation Permissions

An implementation may return the result of an unchecked conversion by reference, if the Source type is
not a by-copy type. In this case, the result of the unchecked conversion represents simply a different (read-
only) view of the operand of the conversion.

An implementation may place restrictions on Unchecked_Conversion.

Implementation Advice

Since the Size of an array object generally does not include its bounds, the bounds should not be part of
the converted data.

The implementation should not generate unnecessary run-time checks to ensure that the representation of
Sis a representation of the target type. It should take advantage of the permission to return by reference
when possible. Restrictions on unchecked conversions should be avoided unless required by the target
environment.

The recommended level of support for unchecked conversionsis:

« Unchecked conversions should be supported and should be reversible in the cases where this
clause defines the result. To enable meaningful use of unchecked conversion, a contiguous
representation should be used for elementary subtypes, for statically constrained array subtypes
whose component subtype is one of the subtypes described in this paragraph, and for record
subtypes without discriminants whose component subtypes are described in this paragraph.

13.9.1 Data Validity

Certain actions that can potentially lead to erroneous execution are not directly erroneous, but instead can
cause objects to become abnormal. Subsequent uses of abnormal objects can be erroneous.

A scalar object can have an invalid representation, which means that the object's representation does not
represent any value of the object's subtype. The primary cause of invalid representations is uninitialized
variables.

Abnormal objects and invalid representations are explained in this subclause.

Dynamic Semantics
When an object is first created, and any explicit or default initializations have been performed, the object
and al of its parts are in the normal state. Subsequent operations generally leave them normal. However,
an object or part of an object can become abnormal in the following ways:

e An assignment to the object is disrupted due to an abort (see 9.8) or due to the failure of a
language-defined check (see 11.6).

* The object is not scalar, and is passed to an in out or out parameter of an imported procedure,
the Read procedure of an instance of Sequential_|O, Direct IO, or Storage |0, or the stream
attribute T'Read, if after return from the procedure the representation of the parameter does not
represent a value of the parameter's subtype.

« The object is the return object of a function cal of a nonscalar type, and the function is an
imported function, an instance of Unchecked_Conversion, or the stream attribute T'Input, if after
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return from the function the representation of the return object does not represent a value of the
function's subtype.

For an imported object, it is the programmer's responsibility to ensure that the object remains in a normal
state.

Whether or not an object actually becomes abnormal in these cases is not specified. An abnormal object
becomes normal again upon successful completion of an assignment to the object as awhole.

Erroneous Execution

It is erroneous to evaluate a primary that is a name denoting an abnormal object, or to evaluate a prefix
that denotes an abnormal object.

Bounded (Run-Time) Errors

If the representation of a scalar object does not represent a value of the object's subtype (perhaps because
the object was not initialized), the object is said to have an invalid representation. It is a bounded error to
evaluate the value of such an object. If the error is detected, either Constraint_Error or Program_Error is
raised. Otherwise, execution continues using the invalid representation. The rules of the language outside
this subclause assume that al objects have valid representations. The semantics of operations on invalid
representations are as follows:

« |f the representation of the object represents a value of the object's type, the value of the typeis
used.

« |f the representation of the object does not represent a value of the object's type, the semantics of
operations on such representations is implementation-defined, but does not by itself lead to
erroneous or unpredictable execution, or to other objects becoming abnormal.

Erroneous Execution

A call to an imported function or an instance of Unchecked_Conversion is erroneous if the result is scalar,
the result object has an invalid representation, and the result is used other than as the expression of an
assignment_statement or an object_declaration, or as the prefix of a Valid attribute. If such a result
object is used as the source of an assignment, and the assigned value is an invalid representation for the
target of the assignment, then any use of the target object prior to a further assignment to the target object,
other than as the prefix of aValid attribute reference, is erroneous.

The dereference of an access value is erroneous if it does not designate an object of an appropriate type or
a subprogram with an appropriate profile, if it designates a nonexistent object, or if it is an access-to-
variable value that designates a constant object. Such an access value can exist, for example, because of
Unchecked Deallocation, Unchecked Access, or Unchecked Conversion.

NOTES
18 Objects can become abnormal due to other kinds of actions that directly update the object's representation; such
actions are generally considered directly erroneous, however.

13.9.2 The Valid Attribute

The Valid attribute can be used to check the validity of data produced by unchecked conversion, input,
interface to foreign languages, and the like.

Static Semantics

For a prefix X that denotes a scalar object (after any implicit dereference), the following attribute is
defined:
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X'Vaid Yields True if and only if the object denoted by X is normal and has a valid representation.
The value of this attribute is of the predefined type Boolean.

NOTES
19 Invalid data can be created in the following cases (not counting erroneous or unpredictable execution):
e anuninitialized scalar object,
* theresult of an unchecked conversion,
e input,
» interface to another language (including machine code),
» aborting an assignment,
» disrupting an assignment due to the failure of alanguage-defined check (see 11.6), and
» useof an object whose Address has been specified.
20 X'validis not considered to be aread of X; hence, it isnot an error to check the validity of invalid data.
21 The Valid attribute may be used to check the result of calling an instance of Unchecked_Conversion (or any other

operation that can return invalid values). However, an exception handler should also be provided because implementations
are permitted to raise Constraint_Error or Program_Error if they detect the use of an invalid representation (see 13.9.1).

13.10 Unchecked Access Value Creation

The attribute Unchecked Accessis used to create access values in an unsafe manner — the programmer is
responsible for preventing “dangling references.”

Satic Semantics
The following attribute is defined for a prefix X that denotes an aliased view of an object:

X'Unchecked_Access

All rules and semantics that apply to X'Access (see 3.10.2) apply aso to
X'Unchecked Access, except that, for the purposes of accessibility rules and checks, it isas
if X were declared immediately within alibrary package.

NOTES

22 This attribute is provided to support the situation where a local object is to be inserted into a global linked data

structure, when the programmer knows that it will always be removed from the data structure prior to exiting the object's

scope. The Access attribute would beillegal in this case (see 3.10.2, “ Operations of Access Types’).

23 Thereisno Unchecked Access attribute for subprograms.

13.11 Storage Management

Each access-to-object type has an associated storage pool. The storage alocated by an allocator comes
from the pool; instances of Unchecked Deallocation return storage to the pool. Severa access types can
share the same pool.

A storage pool isavariable of atypein the class rooted at Root_Storage Pool, which is an abstract limited
controlled type. By default, the implementation chooses a standard storage pool for each access-to-object
type. The user may define new pool types, and may override the choice of pool for an access-to-object
type by specifying Storage Pool for the type.

Legality Rules
If Storage_Pool is specified for a given access type, Storage_Size shall not be specified for it.
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Static Semantics
The following language-defined library package exists:

wi th Ada. Finalization;
with System Storage_ El ement S;
package System Storage_Pools is
pragma Preel abor at e( Syst em St or age_Pool s) ;

type Root_Storage Pool is
abstract new Ada. Finalization.Linmted_Controlled with private;
pragnma Preel aborable_lnitialization(Root_Storage_Pool);

procedure All ocate(

Pool : in out Root_Storage_Pool;

St orage_Address : out Address;

Size_In_Storage_El ements : in Storage_El enents. St orage_Count;

Alignment : in Storage_El enents. Storage_Count) is abstract;
procedure Deal | ocat e(

Pool : in out Root_Storage_Pool;

Storage_Address : in Address;

Size_In_Storage_El ements : in Storage_El ements. St orage_Count;

Alignment : in Storage_El enents. Storage_Count) is abstract;
function Storage_Si ze(Pool : Root_Storage_Pool)

return Storage_El enents. Storage_Count is abstract;
private

.. -- not specified by the language
end Syst em St or age_Pool s;
A storage pool type (or pool type) is a descendant of Root_Storage Pool. The elements of a storage pool
are the objects allocated in the pool by allocators.

For every access-to-object subtype S, the following representation attributes are defined:

S'Storage_Pool
Denotes the storage pool of the type of S. The type of this attribute is Root_Storage -
Pool'Class.

SStorage_Size
Yields the result of calling Storage Size(SStorage Pool), which is intended to be a

measure of the number of storage elements reserved for the pool. The type of this attribute
isuniversal_integer.

Storage _Size or Storage Pool may be specified for a non-derived access-to-object type via an attribute_-
definition_clause; the name in a Storage_Pool clause shall denote a variable.

An allocator of type T allocates storage from T's storage pool. If the storage pool is a user-defined object,
then the storage is alocated by calling Allocate, passing T'Storage Pool as the Pool parameter. The
Size In_Storage_Elements parameter indicates the number of storage elements to be allocated, and is no
more than D'Max_Size In_Storage Elements, where D is the designated subtype. The Alignment
parameter is D'Alignment. The result returned in the Storage Address parameter is used by the allocator
as the address of the allocated storage, which is a contiguous block of memory of Size In_Storage -
Elements storage elements. Any exception propagated by Allocate is propagated by the allocator.

If Storage Pool is not specified for a type defined by an access_to_object_definition, then the
implementation chooses a standard storage pool for it in an implementation-defined manner. In this case,
the exception Storage Error is raised by an allocator if there is not enough storage. It is implementation
defined whether or not the implementation provides user-accessible names for the standard pool type(s).

If Storage_Size is specified for an access type, then the Storage _Size of this pool is at least that requested,
and the storage for the pool is reclaimed when the master containing the declaration of the access type is

291 10 November 2006 Storage Management 13.11

6/2

10

11

12/2

13

14

15

16

17

18



19

20

21

22

23

24

25/2

25.1/2

25.2/2

25.3/2

26

27

28
29
30

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

left. If the implementation cannot satisfy the request, Storage Error is raised at the point of the attribute_-
definition_clause. If neither Storage Pool nor Storage Size are specified, then the meaning of
Storage_Size isimplementation defined.

If Storage Pool is specified for an access type, then the specified pool is used.

The effect of calling Allocate and Deallocate for a standard storage pool directly (rather than implicitly via
an allocator or an instance of Unchecked Deallocation) is unspecified.

Erroneous Execution

If Storage Pool is specified for an access type, then if Allocate can satisfy the request, it should allocate a
contiguous block of memory, and return the address of the first storage element in Storage_Address. The
block should contain Size In_Storage Elements storage elements, and should be aligned according to
Alignment. The allocated storage should not be used for any other purpose while the pool element remains
in existence. If the request cannot be satisfied, then Allocate should propagate an exception (such as
Storage_Error). If Allocate behavesin any other manner, then the program execution is erroneous.

Documentation Requirements

An implementation shall document the set of values that a user-defined Allocate procedure needs to accept
for the Alignment parameter. An implementation shall document how the standard storage pool is chosen,
and how storage is allocated by standard storage pools.

Implementation Advice

An implementation should document any cases in which it dynamically allocates heap storage for a
purpose other than the evaluation of an allocator.

A default (implementation-provided) storage pool for an access-to-constant type should not have overhead
to support deallocation of individual objects.

The storage pool used for an allocator of an anonymous access type should be determined as follows:

< If the allocator is defining a coextension (see 3.10.2) of an object being created by an outer
allocator, then the storage pool used for the outer allocator should also be used for the
coextension;

» For other access discriminants and access parameters, the storage pool should be created at the
point of the allocator, and be reclaimed when the allocated object becomes inaccessible;

* Otherwise, a default storage pool should be created at the point where the anonymous access
typeis elaborated; such a storage pool need not support deallocation of individual objects.

NOTES

24 A user-defined storage pool type can be obtained by extending the Root_Storage Pool type, and overriding the
primitive subprograms Allocate, Deallocate, and Storage Size. A user-defined storage pool can then be obtained by
declaring an object of the type extension. The user can override Initialize and Finalize if there is any need for non-trivial
initialization and finalization for a user-defined pool type. For example, Finalize might reclaim blocks of storage that are
allocated separately from the pool object itself.

25 The writer of the user-defined allocation and deallocation procedures, and users of allocators for the associated access
type, are responsible for dealing with any interactions with tasking. In particular:

» If theallocators are used in different tasks, they require mutua exclusion.

» If they are used inside protected objects, they cannot block.

e If they are used by interrupt handlers (see C.3, “Interrupt Support”), the mutual exclusion mechanism has to
work properly in that context.
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26 The primitives Allocate, Dedllocate, and Storage_Size are declared as abstract (see 3.9.3), and therefore they have to
be overridden when a new (non-abstract) storage pool type is declared.

Examples
To associate an access type with a storage pool object, the user first declares a pool object of some type
derived from Root_Storage Pool. Then, the user defines its Storage Pool éttribute, as follows:
Pool _Cbj ect : Sone_Storage_Pool _Type;

type T is access Designated;
for T Storage_Pool use Pool _bject;

Another access type may be added to an existing storage pool, via
for T2'Storage_Pool use T Storage_Pool;

The semantics of thisisimplementation defined for a standard storage pool.

As usual, a derivative of Root_Storage Pool may define additional operations. For example, presuming
that Mark_Release Pool_Type has two additional operations, Mark and Release, the following is a
possible use:
type Mark_Rel ease_Pool _Type
(Pool _Size : Storage_El enents. Storage_Count;

Bl ock_Si ze : Storage_El enents. Storage_Count)
is new Root _Storage_Pool with private;

MR _Pool : Mark_Rel ease_Pool _Type (Pool _Size => 2000,
Bl ock_Si ze => 100);

type Acc is access ...;
for Acc' Storage_Pool use MR _Pool ;

Mar k( MR_Pool ) ;
... -- Allocate objectsusing “ new Designated(...)" .
Rel ease( MR_Pool ); -- Reclaimthe storage.

13.11.1 The Max_Size_In_Storage_ Elements Attribute
The Max_Size In_Storage Elements attribute is useful in writing user-defined pool types.

Static Semantics
For every subtype S, the following attribute is defined:

SMax_Size In_Storage Elements
Denotes the maximum value for Size In_Storage Elements that could be requested by the
implementation via Allocate for an access type whose designated subtype is S. For a type
with access discriminants, if the implementation allocates space for a coextension in the
same pool as that of the object having the access discriminant, then this accounts for any
calls on Allocate that could be performed to provide space for such coextensions. The value
of thisattribute is of type universal_integer.
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13.11.2 Unchecked Storage Deallocation

Unchecked storage deallocation of an object designated by a value of an access type is achieved by a call
to an instance of the generic procedure Unchecked Deallocation.

Satic Semantics
The following language-defined generic library procedure exists:

generic

type hject(<>) is limted private;

type Nane is access bject;
procedure Ada. Unchecked_Deal | ocation(X : in out Nane);
pragma Convention(lntrinsic, Ada.Unchecked_Deall ocation);
pragnme Preel abor at e( Ada. Unchecked_Deal | ocati on);

Dynamic Semantics
Given an instance of Unchecked_Deallocation declared as follows:

procedure Free is
new Ada. Unchecked_Deal | ocati on(
object_subtype name, access to_variable subtype name) ;

Procedure Free has the following effect:
1. After executing Freg(X), the value of X isnull.

2. Freg(X), when X isalready equal to null, has no effect.

3. Free(X), when X is not equa to null first performs finalization of the object designated by X
(and any coextensions of the object — see 3.10.2), as described in 7.6.1. It then deallocates the
storage occupied by the object designated by X (and any coextensions). If the storage pool is a
user-defined object, then the storage is deallocated by calling Deadllocate, passing access to -
variable_subtype name'Storage Pool as the Pool parameter. Storage Address is the value
returned in the Storage Address parameter of the corresponding Allocate call. Size In -
Storage Elements and Alignment are the same values passed to the corresponding Allocate call.
There is one exception: if the object being freed contains tasks, the object might not be
deallocated.

After Freg(X), the object designated by X, and any subcomponents (and coextensions) thereof, no longer
exist; their storage can be reused for other purposes.

Bounded (Run-Time) Errors
It is abounded error to free a discriminated, unterminated task object. The possible consequences are:
* No exception israised.
« Program_Error or Tasking_Error is raised at the point of the deallocation.

» Program_Error or Tasking_Error is raised in the task the next time it references any of the
discriminants.

In the first two cases, the storage for the discriminants (and for any enclosing object if it is designated by
an access discriminant of the task) is not reclaimed prior to task termination.

Erroneous Execution

Evauating a name that denotes a nonexistent object is erroneous. The execution of a call to an instance of
Unchecked Deallocation is erroneous if the object was created other than by an allocator for an access
type whose pool is Name'Storage_Pool.
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Implementation Advice
For a standard storage pool, Free should actually reclaim the storage.

NOTES
27 Therules herethat refer to Free gpply to any instance of Unchecked_Deallocation.

28 Unchecked Deadllocation cannot be instantiated for an access-to-constant type. Thisisimplied by the rules of 12.5.4.

13.11.3 Pragma Controlled

Pragma Controlled is used to prevent any automatic reclamation of storage (garbage collection) for the
objects created by allocators of a given accesstype.

Syntax
The form of apragma Controlled is as follows:
pragma Controlled(first_subtype local_name);

Legality Rules
Thefirst_subtype _local_name of apragma Controlled shall denote a non-derived access subtype.

Static Semantics
A pragma Controlled is a representation pragma that specifies the controlled aspect of representation.

Garbage collection is a process that automatically reclaims storage, or moves objects to a different
address, while the objects still exist.

If a pragma Controlled is specified for an access type with a standard storage pool, then garbage
collection is not performed for objectsin that pool.

Implementation Permissions

An implementation need not support garbage collection, in which case, a pragma Controlled has no effect.

13.12 Pragma Restrictions

A pragma Restrictions expresses the user's intent to abide by certain restrictions. This may facilitate the
construction of simpler run-time environments.

Syntax
The form of apragma Restrictionsis as follows:
pragma Restrictions(restriction{, restriction});

restriction ::= restriction_identifier
| restriction_parameter _identifier => restriction_parameter_argument

restriction_parameter_argument ::= name | expression

Name Resolution Rules

Unless otherwise specified for a particular restriction, the expression is expected to be of any integer type.

Legality Rules
Unless otherwise specified for a particular restriction, the expression shall be static, and its value shall be
nonnegative.
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Satic Semantics
The set of restrictions is implementation defined.

Post-Compilation Rules

A pragma Restrictions is a configuration pragma; unless otherwise specified for a particular restriction, a
partition shall obey the restriction if a pragma Restrictions applies to any compilation unit included in the
partition.

For the purpose of checking whether a partition contains constructs that violate any restriction (unless
specified otherwise for a particular restriction):

* Generic instances are logically expanded at the point of instantiation;

» If an object of atype is declared or alocated and not explicitly initialized, then all expressions
appearing in the definition for the type and any of its ancestors are presumed to be used;

e A default_expression for aformal parameter or a generic formal object is considered to be used
if and only if the corresponding actual parameter is not provided in agiven cal or instantiation.

Implementation Permissions

An implementation may place limitations on the values of the expression that are supported, and
limitations on the supported combinations of restrictions. The consequences of violating such limitations
are implementation defined.

An implementation is permitted to omit restriction checks for code that is recognized at compile timeto be
unreachable and for which no code is generated.

Whenever enforcement of a restriction is not required prior to execution, an implementation may
nevertheless enforce the restriction prior to execution of a partition to which the restriction applies,
provided that every execution of the partition would violate the restriction.

NOTES
29 Redtrictions intended to facilitate the construction of efficient tasking run-time systems are defined in D.7. Restrictions
intended for use when constructing high integrity systems are defined in H.4.

30 Animplementation has to enforce the restrictions in cases where enforcement is required, even if it chooses not to take
advantage of the restrictionsin terms of efficiency.

13.12.1 Language-Defined Restrictions

Satic Semantics

The following restriction_identifiers are language-defined (additional restrictions are defined in the
Specialized Needs Annexes):

No_Implementation_Attributes
There are no implementation-defined attributes. This restriction applies only to the current
compilation or environment, not the entire partition.

No_Implementation_Pragmas
There are no implementation-defined pragmas or pragma arguments. This restriction
applies only to the current compilation or environment, not the entire partition.

No_Obsolescent_Features
There is no use of language features defined in Annex J. It is implementation-defined if
uses of the renamings of J.1 are detected by this restriction. This restriction applies only to
the current compilation or environment, not the entire partition.
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Thefollowing restriction_parameter_identifier is language defined:

No_Dependence
Specifies alibrary unit on which there are no semantic dependences.

Legality Rules
The restriction_parameter_argument of a No_Dependence restriction shall be a name; the name shall

have the form of a full expanded name of a library unit, but need not denote a unit present in the
environment.

Post-Compilation Rules

No compilation unit included in the partition shall depend semantically on the library unit identified by the
name.

13.13 Streams

A stream is a sequence of elements comprising values from possibly different types and alowing
sequential  access to these values. A stream type is a type in the class whose root type is
Streams.Root_Stream_Type. A stream type may be implemented in various ways, such as an external
sequential file, an internal buffer, or a network channel.

13.13.1 The Package Streams

Static Semantics

The abstract type Root_Stream_Type is the root type of the class of stream types. The types in this class
represent different kinds of streams. A new stream type is defined by extending the root type (or some
other stream type), overriding the Read and Write operations, and optionally defining additional primitive
subprograms, according to the requirements of the particular kind of stream. The predefined stream-
oriented attributes like T'Read and T'Write make dispatching calls on the Read and Write procedures of
the Root_Stream_Type. (User-defined T'Read and T'Write attributes can also make such calls, or can call
the Read and Write attributes of other types.)

package Ada. Streans is
pragma Pure(Streans);

type Root_Stream Type is abstract tagged limted private;
pragnma Preel aborable_Initialization(Root_Stream Type);

type Stream El ement is nod implementation-defined;
type Stream El ement _Offset is range implementation-defined;
subtype Stream El enent _Count is
Stream El enent _Off set range 0..Stream El enrent _Of f set' Last;
type Stream El ement _Array is
array(Stream El enent _Of fset range <>) of aliased Stream El ement;

procedure Read(
Stream: in out Root_Stream Type;
Item : out Stream El enent _Array;
Last : out Stream El ement_Offset) is abstract;

procedure Wite(
Stream: in out Root_Stream Type;
Item : in StreamEl enment_Array) is abstract;

private
... -- not specified by the language
end Ada. Streans;
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The Read operation transfers stream elements from the specified stream to fill the array Item. Elements are
transferred until Item'Length elements have been transferred, or until the end of the stream is reached. If
any elements are transferred, the index of the last stream element transferred is returned in Last.
Otherwise, Item'First - 1 is returned in Last. Last is less than Item'Last only if the end of the stream is
reached.

The Write operation appends Item to the specified stream.

Implementation Permissions
If Stream_Element'Size is not a multiple of System.Storage Unit, then the components of Stream_ -
Element_Array need not be aiased.

NOTES
31 SeeA.12.1, “The Package Streams.Stream 10" for an example of extending type Root_Stream_Type.

32 If theend of stream has been reached, and Item'First is Stream_Element_Offset'First, Read will raise Constraint_Error.

13.13.2 Stream-Oriented Attributes

The operational attributes Write, Read, Output, and Input convert values to a stream of elements and
reconstruct values from a stream.

Satic Semantics
For every subtype S of an elementary type T, the following representation attribute is defined:

SStream_Size
Denotes the number of bits occupied in a stream by items of subtype S. Hence, the number
of stream elements required per item of elementary type T is:
T Stream Si ze / Ada. Streans. Stream El ement' Si ze
The value of this attribute is of type universal_integer and is a multiple of
Stream_Element'Size.

Stream_Size may be specified for first subtypes via an attribute_definition_clause; the
expression of such a clause shall be static, nonnegative, and a multiple of
Stream_Element'Size.

Implementation Advice
If not specified, the value of Stream_Size for an elementary type should be the number of bits that
corresponds to the minimum number of stream elements required by the first subtype of the type, rounded
up to the nearest factor or multiple of the word size that is also a multiple of the stream element size.

The recommended level of support for the Stream_Size attributeis:

* A Stream_Size clause should be supported for a discrete or fixed point type T if the specified
Stream_Sizeisamultiple of Stream_Element'Size and is no less than the size of the first subtype
of T, and no greater than the size of the largest type of the same elementary class (signed integer,
modular integer, enumeration, ordinary fixed point, or decimal fixed point).
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Satic Semantics

For every subtype S of a specific type T, the following attributes are defined. 2
SWrite SWrite denotes a procedure with the following specification: 3
procedure S'Wite( 412

Sream : not null access Ada. Streans. Root _Stream Type' d ass;

Item: in T)

SWrite writes the value of Itemto Stream. 5
SRead S'Read denotes a procedure with the following specification: 6
procedure S' Read( 712

Sream : not null access Ada. Streans. Root _Stream Type' C ass;
Item : out T)

SRead reads the value of Item from Sream. 8

For an untagged derived type, the Write (resp. Read) attribute is inherited according to the rules givenin  s.12
13.1if the attribute is available for the parent type at the point where T is declared. For a tagged derived
type, these attributes are not inherited, but rather the default implementations are used.

The default implementations of the Write and Read attributes, where available, execute as follows: 8.2/2

For elementary types, Read reads (and Write writes) the number of stream elements implied by the o
Stream_Size for the type T, the representation of those stream elements is implementation defined. For
composite types, the Write or Read attribute for each component is called in canonical order, which is last
dimension varying fastest for an array, and positional aggregate order for a record. Bounds are not
included in the stream if T is an array type. If T is adiscriminated type, discriminants are included only if
they have defaults. If T is atagged type, the tag is not included. For type extensions, the Write or Read
attribute for the parent type is called, followed by the Write or Read attribute of each component of the
extension part, in canonical order. For a limited type extension, if the attribute of the parent type or any
progenitor type of T is available anywhere within the immediate scope of T, and the attribute of the parent
type or the type of any of the extension components is not available at the freezing point of T, then the
attribute of T shall be directly specified.

Congtraint_Error is raised by the predefined Write attribute if the value of the elementary item is outside  9.12
the range of values representable using Stream_Size bits. For a signed integer type, an enumeration type,

or afixed point type, the range is unsigned only if the integer code for the lower bound of the first subtype

is nonnegative, and a (symmetric) signed range that covers al values of the first subtype would require

more than Stream_Size bits; otherwise the range is signed.

For every subtype SClass of a class-wide type T'Class: 10
SClassWrite 11
SClassWrite denotes a procedure with the following specification:
procedure S Cass' Wite( 12/2
Sream : not null access Ada. Streans. Root _Stream Type' d ass;
Item : in T Cass)

Dispatches to the subprogram denoted by the Write attribute of the specific type identified 13
by the tag of Item.
SClassRead SClassRead denotes a procedure with the following specification: 14

procedure S' C ass' Read( 15/2
Sream : not null access Ada. Streans. Root _Stream Type' d ass;
Item : out T C ass)
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Dispatches to the subprogram denoted by the Read attribute of the specific type identified
by the tag of Item.

Implementation Advice

This paragraph was deleted.

Satic Semantics
For every subtype S of a specific type T, the following attributes are defined.

SOutput S'Output denotes a procedure with the following specification:

procedure S Qut put (
Sream : not null access Ada. Streans. Root _Stream Type' d ass;

Iltem: in T)
SOutput writes the value of Item to Sream, including any bounds or discriminants.

Slnput S'nput denotes a function with the following specification:

function S'Input(
Sream : not null access Ada. Streans. Root _Stream Type' d ass)
return T
Slnput reads and returns one value from Stream, using any bounds or discriminants written
by a corresponding S'Output to determine how much to read.

For an untagged derived type, the Output (resp. Input) attribute is inherited according to the rules given in
13.1 if the attribute is available for the parent type at the point where T is declared. For a tagged derived
type, these attributes are not inherited, but rather the default implementations are used.

The default implementations of the Output and Input attributes, where available, execute as follows:

e If Tisan array type, SOutput first writes the bounds, and Slnput first reads the bounds. If T has
discriminants without defaults, SOutput first writes the discriminants (using SWrite for each),
and S'nput first reads the discriminants (using SRead for each).

e SOutput then calls SWrite to write the value of Item to the stream. Snput then creates an object
(with the bounds or discriminants, if any, taken from the stream), passes it to SRead, and returns
the value of the object. Normal default initialization and finalization take place for this object
(see3.3.1, 7.6, and 7.6.1).

If Tisan abstract type, then Slnput is an abstract function.

For every subtype SClass of aclass-wide type T'Class:

SClassOutput
SClassOutput denotes a procedure with the following specification:
procedure S C ass' Qut put (
Sream : not null access Ada. Streans. Root _Stream Type' d ass;
Item : in T d ass)
First writes the external tag of Item to Stream (by calling String'Output(Stream, Tags.-
External_Tag(ltemTag)) — see 3.9) and then dispatches to the subprogram denoted by the
Output attribute of the specific type identified by the tag. Tag_Error is raised if the tag of
Item identifies atype declared at an accessibility level deeper than that of S.

SClassInput
SClassInput denotes a function with the following specification:

function S dass' | nput (
Sream : not null access Ada. Streans. Root _Stream Type' d ass)
return T Cl ass
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First reads the external tag from Stream and determines the corresponding interna tag (by
calling Tags.Descendant_Tag(String'Input(Stream), STag) which might raise Tag_Error —
see 3.9) and then dispatches to the subprogram denoted by the Input attribute of the specific
type identified by the internal tag; returns that result. If the specific type identified by the
internal tag is not covered by T'Class or is abstract, Constraint_Error is raised.

In the default implementation of Read and Input for a composite type, for each scalar component that is a
discriminant or whose component_declaration includes a default_expression, a check is made that the
value returned by Read for the component belongs to its subtype. Constraint_Error is raised if this check
fails. For other scalar components, no check is made. For each component that is of an access type, if the
implementation can detect that the value returned by Read for the component is not a value of its subtype,
Congtraint_Error is raised. If the value is not a value of its subtype and this error is not detected, the
component has an abnormal value, and erroneous execution can result (see 13.9.1). In the default
implementation of Read for a composite type with defaulted discriminants, if the actual parameter of Read
is constrained, a check is made that the discriminants read from the stream are equal to those of the actual
parameter. Constraint_Error israised if this check fails.

It is unspecified at which point and in which order these checks are performed. In particular, if
Constraint_Error is raised due to the failure of one of these checks, it is unspecified how many stream
elements have been read from the stream.

In the default implementation of Read and Input for atype, End_Error is raised if the end of the stream is
reached before the reading of avalue of the type is completed.

The stream-oriented attributes may be specified for any type via an attribute_definition_clause. The
subprogram name given in such a clause shall not denote an abstract subprogram. Furthermore, if a
stream-oriented attribute is specified for an interface type by an attribute_definition_clause, the
subprogram name given in the clause shall statically denote a null procedure.

A stream-oriented attribute for a subtype of a specific type T is available at places where one of the
following conditionsistrue:

¢ Tisnonlimited.

e The attribute_designator is Read (resp. Write) and T is a limited record extension, and the
attribute Read (resp. Write) is available for the parent type of T and for the types of al of the
extension components.

« Tisalimited untagged derived type, and the attribute was inherited for the type.

« The attribute_designator is Input (resp. Output), and T is alimited type, and the attribute Read
(resp. Write) isavailable for T.

e The attribute has been specified via an attribute_definition_clause, and the
attribute_definition_clause isvisible.

A stream-oriented attribute for a subtype of a class-wide type T'Class is available at places where one of
the following conditionsis true:

¢ Tisnonlimited;

e the attribute has been specified via an attribute_definition_clause, and the
attribute_definition_clause isvisible; or

« the corresponding attribute of T is available, provided that if T has a partia view, the
corresponding attribute is available at the end of the visible part where T is declared.
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An attribute_reference for one of the stream-oriented attributesisillegal unless the attribute is available at
the place of the attribute_reference. Furthermore, an attribute_reference for T'Input isillegal if T is an
abstract type.

In the parameter_and_result_profiles for the stream-oriented attributes, the subtype of the Item parameter
is the base subtype of T if T isascalar type, and the first subtype otherwise. The same rule applies to the
result of the Input attribute.

For an attribute_definition_clause specifying one of these attributes, the subtype of the Item parameter
shall be the base subtype if scalar, and the first subtype otherwise. The same rule applies to the result of
the Input function.

A typeis said to support external streaming if Read and Write attributes are provided for sending values
of such a type between active partitions, with Write marshalling the representation, and Read
unmarshalling the representation. A limited type supports external streaming only if it has available Read
and Write attributes. A type with a part that is of an access type supports external streaming only if that
access type or the type of some part that includes the access type component, has Read and Write
attributes that have been specified via an attribute_definition_clause, and that attribute_definition_clause
isvisible. An anonymous access type does not support external streaming. All other types support external
streaming.

Erroneous Execution

If the internal tag returned by Descendant_Tag to T'ClassInput identifies a type that is not library-level
and whose tag has not been created, or does not exist in the partition at the time of the call, execution is
€rroneous.

Implementation Requirements

For every subtype Sof alanguage-defined nonlimited specific type T, the output generated by SOutput or
SWrite shall be readable by Slinput or SRead, respectively. This rule applies across partitions if the
implementation conforms to the Distributed Systems Annex.

If Constraint_Error is raised during a call to Read because of failure of one the above checks, the
implementation must ensure that the discriminants of the actual parameter of Read are not modified.

Implementation Permissions

The number of calls performed by the predefined implementation of the stream-oriented attributes on the
Read and Write operations of the stream type is unspecified. An implementation may take advantage of
this permission to perform internal buffering. However, al the calls on the Read and Write operations of
the stream type needed to implement an explicit invocation of a stream-oriented attribute must take place
before this invocation returns. An explicit invocation is one appearing explicitly in the program text,
possibly through a generic instantiation (see 12.3).

NOTES

33 For a definite subtype S of atype T, only T'Write and T'Read are needed to pass an arbitrary vaue of the subtype

through a stream. For an indefinite subtype S of atype T, T'Output and T'Input will normally be needed, since T'Write and
T'Read do not pass bounds, discriminants, or tags.

34 User-specified attributes of SClass are not inherited by other class-wide types descended from S.
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Examples
Example of user-defined Write attribute:

procedure My_Wite(
Stream: not null access Ada. Streans. Root_Stream Type'  ass;
Iltem : M_Integer'Base);

for M/_Integer' Wite use y_Wite;

13.14 Freezing Rules

This clause defines a place in the program text where each declared entity becomes “frozen.” A use of an
entity, such as a reference to it by name, or (for atype) an expression of the type, causes freezing of the
entity in some contexts, as described below. The Legality Rules forbid certain kinds of uses of an entity in
the region of text whereit is frozen.

The freezing of an entity occurs at one or more places (freezing points) in the program text where the
representation for the entity has to be fully determined. Each entity is frozen from its first freezing point to
the end of the program text (given the ordering of compilation units defined in 10.1.4).

The end of a declarative_part, protected_body, or a declaration of a library package or generic library
package, causes freezing of each entity declared within it, except for incomplete types. A noninstance
body other than a renames-as-body causes freezing of each entity declared before it within the same
declarative_part.

A construct that (explicitly or implicitly) references an entity can cause the freezing of the entity, as
defined by subsequent paragraphs. At the place where a construct causes freezing, each name,
expression, implicit_dereference, or range within the construct causes freezing:

e The occurrence of a generic_instantiation causes freezing; also, if a parameter of the
instantiation is defaulted, the default_expression or default_name for that parameter causes
freezing.

* The occurrence of an object_declaration that has no corresponding completion causes freezing.

* The declaration of arecord extension causes freezing of the parent subtype.

« The declaration of arecord extension, interface type, task unit, or protected unit causes freezing
of any progenitor types specified in the declaration.

A dtatic expression causes freezing where it occurs. An object name or nonstatic expression causes
freezing where it occurs, unless the name or expression is part of a default_expression, a default_name,

or a per-object expression of a component's constraint, in which case, the freezing occurs later as part of
another construct.

An implicit call freezes the same entities that would be frozen by an explicit call. Thisis true even if the
implicit call isremoved viaimplementation permissions.

If an expression is implicitly converted to a type or subtype T, then at the place where the expression
causes freezing, T is frozen.
The following rules define which entities are frozen at the place where a construct causes freezing:

« At the place where an expression causes freezing, the type of the expression is frozen, unless the
expression is an enumeration literal used as a discrete_choice of the array_aggregate of an
enumeration_representation_clause.
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1 » At the place where aname causes freezing, the entity denoted by the name is frozen, unless the
name is a prefix of an expanded name; at the place where an object name causes freezing, the
nominal subtype associated with the name is frozen.

11211 * Atthe place where an implicit_dereference causes freezing, the nominal subtype associated with
the implicit_dereference isfrozen.

12 » At the place where arange causes freezing, the type of the range is frozen.

13 » At the place where an allocator causes freezing, the designated subtype of its type is frozen. If
the type of the allocator is a derived type, then all ancestor types are also frozen.

14 » At the place where a callable entity is frozen, each subtype of its profile is frozen. If the callable
entity is a member of an entry family, the index subtype of the family is frozen. At the place
where a function call causes freezing, if a parameter of the call is defaulted, the default_-
expression for that parameter causes freezing.

15 » At the place where a subtypeisfrozen, itstypeis frozen. At the place where atype is frozen, any
expressions or names within the full type definition cause freezing; the first subtype, and any
component subtypes, index subtypes, and parent subtype of the type are frozen as well. For a
specific tagged type, the corresponding class-wide type is frozen as well. For a class-wide type,
the corresponding specific type is frozen as well.

1512 * At the place where a specific tagged type is frozen, the primitive subprograms of the type are

frozen.
Legality Rules
16 The explicit declaration of a primitive subprogram of a tagged type shall occur before the type is frozen
(see3.9.2).

17 A type shall be completely defined before it isfrozen (see 3.11.1 and 7.3).
18 The completion of adeferred constant declaration shall occur before the constant is frozen (see 7.4).

191 An operational or representation item that directly specifies an aspect of an entity shall appear before the
entity isfrozen (see 13.1).

Dynamic Semantics
202 Thetag (see 3.9) of atagged type T is created at the point where T is frozen.
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Annex A
(normative)
Predefined Language Environment

This Annex contains the specifications of library units that shall be provided by every implementation.
There are three root library units: Ada, Interfaces, and System; other library units are children of these:

Standard — A.1 Standard (...continued)
Ada—A.2 Ada (...continued)

Assertions— 11.4.2
Asynchronous_Task_Control — D.11
Calendar — 9.6
Arithmetic — 9.6.1
Formatting — 9.6.1
Time _Zones— 9.6.1
Characters— A.3.1
Conversions— A.3.4
Handling— A.3.2
Latin 1—A.33
Command_Line— A.15
Complex_Text_I0— G.1.3
Containers— A.18.1
Doubly_Linked Lists— A.18.3
Generic_Array_Sort — A.18.16
Generic_Constrained_Array_Sort
—A.18.16
Hashed_Maps— A.18.5
Hashed_Sets— A.18.8
Indefinite_Doubly_Linked_Lists
—A.1811
Indefinite_ Hashed_Maps — A.18.12
Indefinite_Hashed_Sets— A.18.14
Indefinite_Ordered_Maps — A.18.13
Indefinite_Ordered Sets— A.18.15
Indefinite_Vectors— A.18.10
Ordered_Maps— A.18.6
Ordered_Sets— A.18.9
Vectors— A.18.2
Decimal — F.2
Direct |I0—A.8.4
Directories— A.16
Information — A.16
Dispatching— D.2.1
EDF—D.2.6
Round_Robin— D.2.5
Dynamic_Priorities— D.5

10 November 2006

Environment_Variables— A.17
Exceptions— 11.4.1
Execution_Time— D.14
Group_Budgets — D.14.2
Timers— D.14.1
Finalization — 7.6
Float_Text 10— A.10.9
Float_Wide Text IO0—A.11
Float Wide Wide Text 10— A.11
Integer_Text_ 10— A.10.8
Integer_Wide Text IO —A.11
Integer_Wide Wide_Text |10 —A.11
Interrupts — C.3.2
Names— C.3.2
10_Exceptions— A.13
Numerics— A.5
Complex_Arrays— G.3.2
Complex_Elementary_Functions — G.1.2
Complex_Types— G.1.1
Discrete_ Random — A.5.2
Elementary_Functions— A.5.1
Float_Random — A.5.2
Generic_Complex_Arrays— G.3.2
Generic_Complex_Elementary_Functions
—G.12
Generic_Complex_Types— G.1.1
Generic_Elementary_Functions— A.5.1
Generic_Real_Arrays— G.3.1
Real_Arrays— G.3.1
Rea_Time—D.8
Timing_Events— D.15
Sequential_|IO— A.8.1
Storage IO—A.9
Streams — 13.13.1
Stream 10— A.12.1
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Standard (...continued)
Ada (...continued)

Standard (...continued)
Ada(...continued)

Strings— A.4.1 Text I0—A.10.1
Bounded — A .4.4 Bounded |0 — A.10.11
Hash— A.4.9 Complex_10—G.1.3
Fixed— A.4.3 Editing— F.3.3
Hash— A.4.9 Text_Streams— A.12.2
Hash— A.4.9 Unbounded |0 — A.10.12
Maps— A.4.2 Unchecked_Conversion — 13.9

Constants — A.4.6
Unbounded — A.4.5
Hash— A.4.9
Wide_Bounded — A.4.7
Wide Hash— A .4.7
Wide_Fixed — A.4.7
Wide Hash— A .4.7
Wide Hash— A .47
Wide Maps— A.4.7
Wide_Constants — A.4.7
Wide_Unbounded — A.4.7
Wide Hash— A .4.7
Wide Wide Bounded — A.4.8
Wide Wide Hash—A.4.8
Wide Wide Fixed — A.4.8
Wide_Wide Hash— A.4.8
Wide Wide Hash—A.4.8

Unchecked Deallocation — 13.11.2
Wide_Characters— A.3.1
Wide_Text 10— A.11

Complex_10—G.1.4

Editing— F.3.4

Text_Streams— A.12.3

Wide Bounded 10— A.11

Wide_Unbounded 10— A.11
Wide Wide Characters— A.3.1
Wide_Wide Text_IO—A.11

Complex_10— G.1.5

Editing— F.3.5

Text_Streams — A.12.4

Wide_Wide Bounded IO — A.11

Wide_Wide_Unbounded 10 — A.11

Interfaces— B.2

ide Wi C—B3
it With Conctmts.— A48 Pointers — B.3.2
— — e Strings— B.3.1
Wide Wide Unbounded — A.4.8 comoL - Ba
Wide Wide Hash— A.4.8 Eorton B o

Synchronous_Task_Control — D.10

Tags— 3.9 System — 13.7
Generic_Dispatching_Constructor — 3.9 Address To_Access Conversions— 13.7.2

Task_Attributes— C.7.2 Machine_Code — 13.8

Task_ldentification— C.7.1 RPC —ES5

Task_Termination — C.7.3 Storage_Elements — 13.7.1
Storage_Pools— 13.11

Implementation Requirements

The implementation shall ensure that each language-defined subprogram is reentrant in the sense that
concurrent calls on the same subprogram perform as specified, so long as al parameters that could be
passed by reference denote nonoverlapping objects.

Implementation Permissions

The implementation may restrict the replacement of language-defined compilation units. The
implementation may restrict children of language-defined library units (other than Standard).
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A.1 The Package Standard

This clause outlines the specification of the package Standard containing all predefined identifiers in the

language. The corresponding package body is not specified by the language.

The operators that are predefined for the types declared in the package Standard are given in comments
since they are implicitly declared. Italics are used for pseudo-names of anonymous types (such as

root_real) and for undefined information (such as implementation-defined).

309

package Standard is

pragnma Pur e( St andard);
type Bool ean is (Fal se,
- - The predefined relational operators for thlstype are asfollows:

-- functi
-- functi
-- functi
-- functi
-- functi
-- functi

on
on
on
on
on
on

w_n
v="
wn
[
" >||
f>="

(Left,
(Left,
(Left,
(Left,
(Left,
(Left,

Static Semantics
Thelibrary package Standard has the following declaration:

True);

Ri ght Bool ean' Base)
Ri ght Bool ean' Base)
Ri ght Bool ean' Base)
Ri ght Bool ean' Base)
Ri ght Bool ean' Base)
Ri ght Bool ean' Base)

- - The predefined logical operators and the predeﬂ ned logical
- - negation operator are as follows:

-- function
-- function
-- function

-- function

"and"
"or"
“xor"

"not "

(Left,
(Left,
(Left,

(Ri ght

Ri ght Bool ean' Base)
Ri ght Bool ean' Base)
Ri ght Bool ean' Base)

Bool ean' Base)

- - Theinteger typeroot_integer and the
- - corresponding universal type universal_integer are predefined.

type Integer is range implementation-defined;
subt ype Natural

-- function "="
-- function "/=
-- function "<"
-- function "<=
-- function ">"
-- function ">=
-- function "+"
-- function "-"
-- function "abs
-- function "+"
-- function "-"
-- function "*"
-- function "/"
-- function "rent
-- function "nmod"
-- function "**"
10 November 2006

is Integer range O ..
subtype Positive is Integer range 1 ..

- - The predefined operators for type Integer are as follows:

(Left,
(Left,
(Left,
(Left,
(Left,
(Left,

(Ri ght
(Ri ght
(Ri ght

(Left,
(Left,
(Left,
(Left,
(Left,
(Left,

(Left

return I nteger’

| nt eger’
I nt eger’

Ri ght I nt eger' Base) return Bool ean;

Ri ght I nt eger' Base) return Bool ean;

Ri ght I nteger' Base) return Bool ean;

Ri ght I nt eger' Base) return Bool ean;

Ri ght I nt eger' Base) return Bool ean;

Ri ght : Integer' Base) return Bool ean;

I nteger' Base) return |nteger' Base;

I nteger' Base) return |Integer' Base;

I nteger' Base) return |nteger' Base;
Right : Integer'Base) return |nteger' Base;
Ri ght I nteger' Base) return |nteger' Base;
Ri ght I nteger' Base) return |nteger' Base;
Ri ght I nteger' Base) return |Integer' Base;
Ri ght I nteger' Base) return |nteger' Base;
Right : Integer'Base) return |nteger' Base;

I nt eger' Base; Ri ght Nat ur al )

Base;

return
return
return
return
return
return

return
return
return

Last;
Last;

Bool ean;
Bool ean;
Bool ean;
Bool ean;
Bool ean;
Bool ean;

Bool ean' Base;
Bool ean' Base;
Bool ean' Base;

return Bool ean' Base,;
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The specification of each operator for the type

root_integer, or for any additional predefined integer

type, is obtained by replacing Integer by the name of the type
in the specification of the corresponding operator of the type
Integer. The right operand of the exponentiation operator
remains as subtype Natural.

The floating point typeroot_real and the
corresponding universal type universal_real are predefined.

type Float is digits implementation-defined;
- - The predefined operators for thistype are as follows:

function "=" (Left, Right : Float) return Bool ean;
function "/=" (Left, Right : Float) return Bool ean;
function "<" (Left, Right : Float) return Bool ean;
function "<=" (Left, Right : Float) return Bool ean;
function ">" (Left, Right : Float) return Bool ean;
function ">=" (Left, Right : Float) return Bool ean;
function "+" (Right : Float) return Float;

function "-" (Right : Float) return Float;

function "abs" (Right : Float) return Float;
function "+" (Left, Right : Float) return Float;

function "-" (Left, Right : Float) return Float;
function "*" (Left, Right : Float) return Float;
function "/" (Left, Right : Float) return Float;
function "**" (Left : Float; Right : Integer'Base) return Float;

The specification of each operator for the type root_real, or for
any additional predefined floating point type, is obtained by
replacing Float by the name of the type in the specification of the
corresponding operator of the type Float.

In addition, the following operators are predefined for the root
numeric types:

function "*" (Left : root_integer; R ght : root_real)

return root_real;

function "*" (Left : root_real; Ri ght : root_integer)

return root_real;

function "/" (Left : root_real; Ri ght : root_integer)

return root_real;

- - Thetype universal_fixed is predefined.
- - The only multiplying operators defined between
- - fixed point types are

function "*" (Left : universal_fixed, R ght : universal_fixed)

return universal_fixed;

function "/" (Left : universal_fixed, R ght : universal_fixed)

return universal_fixed;

- - Thetype universal_access is predefined.
- - The following equality operators are predefined:

function "= K
function "/=" (Left, Right: universal_access) return Bool ean;

(Left, Right: universal_access) return Bool ean;

A.1 The Package Standard 10 November 2006
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- - The declaration of type Character is based on the standard 1SO 8859-1 character set. 35/2

- - Thereare no character literals corresponding to the positions for control characters.
- - They areindicated in italicsin this definition. See 3.5.2.

type Character is

(nul, soh, stx, etx, eot, enq, ack, bel, --0(16#00#) .. 7 (16#07#)
bs, ht, If, wt, ff, cr, S0, s, - - 8(16#084#) .. 15 (16#0F#)
dle, dcl, dc2, dc3, dc4, nak, syn, eth, - - 16 (16#10#) .. 23 (16#17#)
can, em, sub, esc, fs, gs, rs, us, - - 24 (16#18#) .. 31 (16#1F#)
AP I < "$, %, &, ', --32(16#20#) .. 39 (16#27#)
), e, T, tet, ottt - - 40 (16#28H) .. 47 (16H2FH)
‘g, 1, 2t '3, 4, '5', "6, 7', --48(16#30#) .. 55 (16#37#)
"8, 9, i, ot <ot >t - - 56 (16#38H) .. 63 (16#3FH)
'@, 'A, 'B, 'C, ‘D, 'E, '"F, "G, --64(16#40#) .. 71 (16#474)
H, ‘1Y, 'J, 'K, L', "M, "N, 'O, --72(16#484) . 79 (16#4FH)
P, Q, 'R, S, ™, 'u, 'V, W, --80(16#504) .. 87 (16#57#)
X,y T, AL, Nt - - 88(16#58H) .. 95 (16#5FH)
Tty 'a', ‘b, e, 'd, e, f', 'g', --96(16#60#) .. 103 (164#67#)
“ht,ootit, i, Tk, 1, 'm, , 0", --104(16#68#) .. 111 (16#6F#)
"p', 'q, 'r', 's', tt,otut, V', W, - - 112 (16#70#) .. 119 (16#77#)
X, oy, oz, {n, 1ty Y, t~, del, -- 120 (16#78H) .. 127 (16HTFH)
reserved_128, reserved_129, bph,  nbh, - - 128 (16#80#) .. 131 (16#83#)
reserved_132, nel, ssa, esa, - - 132 (16#84#) .. 135 (16#87#)
hts, htj, vts, pld, plu, ri, ss2, ss3, - - 136 (16#88#) .. 143 (16#8F#)
dcs, pul, pu2, @ ss cch, mw, pa, epa, - - 144 (16#90#) .. 151 (16#97#)
SOS, reserved_153, ci, cs, - - 152 (16#98#) .. 155 (16#9BH)
&, 0sC, pm, apc, - - 156 (16#9CH) .. 159 (16#9F#)
Sy, e, e tat, ¥t T8 - - 160 (16#AOH) .. 167 (16#ATH)
e, A L, et T ®, T, - - 168 (16#A8H) .. 175 (16#AF#)
rer, otk a2 orery tLootut, T, ', -- 176 (16#BO#) .. 183 (16#B7H)
L U Vi, 'Y, ¥, ¢, --184(16#B8H).. 191 (16#BF#)
AL A A TR AL, A, CE, "G, --192(16#CO#) .. 199 (164CTH)
E, 'E, 'E, 'E, Tyttt 1, - - 200 (16#C8H) .. 207 (16#CF#H)
g, 'N, 'O, 'O, g, 'O, "0, 'x, --208(16#D0#) ..215(16#D7#)
g, u, 'uv, U, g, 'Y, 'pP, 'R, --216(16#D8#) .. 223 (164DF#)
'a, &, a, a, A, ‘&', '@, '¢', --224(16HEOH) .. 231 (16HETH)
e, é', e, 'e', i, i, T, 'T', --232(16#E8H#) .. 239 (16HEFH)
'e', 'A', 'o', '6', ‘e, '6', '6', '"=+', --240(16#F0#) .. 247 (164#FT#)
‘g, 'u, A, O, 'y, b, V') - - 248 (16#F8H) .. 255 (16#FF#)
- - The predefined operators for the type Character are the same as for 36

- - any enumeration type.

- - The declaration of type Wide_Character is based on the standard | SO/IEC 10646:2003 BMP character 36.1/2
- - set. Thefirst 256 positions have the same contents as type Character. See 3.5.2.

type Wde_Character is (nul, soh ... Hex OO00FFFE, Hex 0000FFFF) ;
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- - The declaration of type Wide_Wide_Character is based on the full
- - 1SO/IEC 10646: 2003 character set. The first 65536 positions have the
- - same contents as type Wide_Character. See 3.5.2.

type Wde_Wde_Character is (nul, soh ... Hex 7FFFFFFE, Hex 7FFFFFFF);
for Wde_Wde_Character'Si ze use 32;
package ASCIl is ... end ASClI|; - - Obsolescent; seeJ.5

- - Predefined string types:

type String is array(Positive range <>) of Character;
pragma Pack(String);

- - The predefined operators for thistype are as follows:

-- function "=" (Left, Right: String) return Bool ean;
-- function "/=" (Left, Right: String) return Bool ean;
-- function "<" (Left, Right: String) return Bool ean;
-- function "<=" (Left, Right: String) return Bool ean;
-- function ">" (Left, Right: String) return Bool ean;
-- function ">=" (Left, Right: String) return Bool ean;

-- function "&" (Left: String; Ri ght: String) return String;
-- function "&" (Left: Character; R ght: String) return String;
-- function "&" (Left: String; Ri ght: Character) return String;

-- function "&" (Left: Character; Right: Character) return String;

type Wde_String is array(Positive range <>) of Wde_Character;
pragma Pack(Wde_String);

- - The predefined operators for this type correspond to those for Sring.

type Wde_Wde_String is array (Positive range <>)
of Wde_Wde_Character;
pragma Pack (Wde_Wde_String);

- - The predefined operators for this type correspond to those for Sring.
type Duration is delta implementation-defined r ange implementation-defined;
- - The predefined operators for the type Duration are the same as for

- - any fixed point type.
- - The predefined exceptions:
Constraint_Error: exception;
Program Error ;. exception;
St orage_Error : exception;
Taski ng_Error : exception;

end Standard;
Standard has no private part.

In each of the types Character, Wide_Character, and Wide Wide_Character, the character literals for the
space character (position 32) and the non-breaking space character (position 160) correspond to different
values. Unless indicated otherwise, each occurrence of the character literal ' ' in this International Standard
refers to the space character. Similarly, the character literals for hyphen (position 45) and soft hyphen
(position 173) correspond to different values. Unless indicated otherwise, each occurrence of the character
literal '— in this International Standard refers to the hyphen character.

Dynamic Semantics
Elaboration of the body of Standard has no effect.

Implementation Permissions

An implementation may provide additional predefined integer types and additional predefined floating
point types. Not all of these types need have names.
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Implementation Advice

If an implementation provides additional named predefined integer types, then the names should end with
“Integer” asin “Long_Integer”. If an implementation provides additional named predefined floating point
types, then the names should end with “Float” asin “Long_Float”.

NOTES

1 Certain aspects of the predefined entities cannot be completely described in the language itself. For example, although
the enumeration type Boolean can be written showing the two enumeration literals False and True, the short-circuit
control forms cannot be expressed in the language.

2 Asexplained in 8.1, “Declarative Region” and 10.1.4, “The Compilation Process’, the declarative region of the package
Standard encloses every library unit and consequently the main subprogram; the declaration of every library unit is
assumed to occur within this declarative region. Library_items are assumed to be ordered in such a way that there are no
forward semantic dependences. However, as explained in 8.3, “Visibility”, the only library units that are visible within a
given compilation unit are the library units named by all with_clauses that apply to the given unit, and moreover, within
the declarative region of agiven library unit, that library unit itself.

3 If dl block_statements of a program are named, then the name of each program unit can always be written as an
expanded name starting with Standard (unless Standard is itself hidden). The name of a library unit cannot be a
homograph of aname (such as Integer) that is already declared in Standard.

4 The exception Standard.Numeric_Error is defined in J.6.

A.2 The Package Ada

Static Semantics

The following language-defined library package exists:

package Ada is
pragma Pur e( Ada) ;
end Ada;

Ada serves as the parent of most of the other language-defined library units; its declaration is empty
(except for the pragma Pure).

Legality Rules

In the standard mode, it isillegal to compile achild of package Ada.

A.3 Character Handling

This clause presents the packages related to character processing: an empty pure package Characters and
child packages Characters.Handling and Characters.Latin 1. The package Characters.Handling provides
classification and conversion functions for Character data, and some simple functions for dealing with
Wide_Character and Wide Wide _Character data. The child package Characters.Latin_1 declares a set of
constants initialized to values of type Character.

313
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A.3.1 The Packages Characters, Wide_Characters, and
Wide_Wide_Characters

Satic Semantics

Thelibrary package Characters has the following declaration:

package Ada. Characters is
pragna Pure(Characters);
end Ada. Characters;

Thelibrary package Wide_Characters has the following declaration:

package Ada. Wde_Characters is
pragma Pure(W de_Characters);
end Ada. W de_Characters;

Thelibrary package Wide_Wide_Characters has the following declaration:

package Ada. Wde_Wde_Characters is
pragma Pure(W de_Wde_Characters);
end Ada. Wde_W de_Characters;

Wide_Wide_Character or

Implementation Advice
If an implementation chooses to provide implementation-defined operations on Wide _Character or
Wide_String (such as case mapping, classification, collating and sorting, etc.) it should do so by providing
child units of Wide_Characters. Similarly if it chooses to provide implementation-defined operations on

Wide_Wide_Characters.

Wide_Wide_String

A.3.2 The Package Characters.Handling

Satic Semantics

Thelibrary package Characters.Handling has the following declaration:

wi t h Ada. Characters. Conversi ons;
package Ada. Characters.Handling is
pragna Pure(Handl i ng);

- - Character classification functions

functi
functi
functi
functi
functi
functi
functi
functi

on
on
on
on
on
on
on
on

functi
functi
functi

on
on
on

I's_Control

I s_Graphic
Is_Letter

I s_Lower

I s_Upper

I s_Basic
Is_Digit
Is_Decimal _Digit

renames |s

| s_Hexadeci mal _Di gi t
I s_Al phanuneric
| s_Speci al

- - Conversion functions for Character and String

function
function
function

functi
functi
functi

on
on
on

To_Lower (ltem: i
To_Upper (ltem: i
To_Basic (ltem: i

To_Lower (ltem: i
To_Upper (ltem: i

n
n
n
n
n

To_Basic (ltem: in

A.3.1 The Packages Characters, Wide_Characters, and Wide_Wide_Characters

(Item: in Character) return Bool ean;
(Item: in Character) return Bool ean;
(Item: in Character) return Bool ean;
(Item: in Character) return Bool ean;
(Item: in Character) return Bool ean;
(Item: in Character) return Bool ean;
(Item: in Character) return Bool ean;
(Item: in Character) return Bool ean
_Digit;
(Item: in Character) return Bool ean;
(Item: in Character) return Bool ean;
(Item: in Character) return Bool ean;
Character) return Character;
Character) return Character;
Character) return Character;
String) return String;
String) return String;
String) return String;
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- - Classifications of and conversions between Character and 1SO 646
subtype | SO 646 is

Character range Character'Val (0) .. Character' Val (127);
function Is_I SO 646 (ltem: in Character) return Bool ean;
function Is_I SO 646 (ltem: in String) return Bool ean;
function To_I SO 646 (ltem : in Character;

Substitute : in ISO 646 :="' ')

return | SO _646;
function To_I SO 646 (Item :in String;

Substitute : in ISO 646 :="' ")

return String;

- - ThefunctionsIs_Character, Is_String, To_Character, To_String, To_Wide_Character,
- - and To_Wide_String are obsolescent; see J.14.

Paragraphs 14 through 18 were deleted.
end Ada. Characters. Handl i ng;
In the description below for each function that returns a Boolean result, the effect is described in terms of

the conditions under which the value True is returned. If these conditions are not met, then the function
returns False.

Each of the following classification functions has a formal Character parameter, Item, and returns a
Boolean result.

Is Control ~ True if Item is a control character. A control character is a character whose position isin
one of theranges 0..31 or 127..159.

Is Graphic  Trueif Item is a graphic character. A graphic character is a character whose position isin
one of the ranges 32..126 or 160..255.

Is Letter Trueif Itemisaletter. A letter is acharacter that isin one of the ranges'A"..'Z' or 'd..'z', or
whose position isin one of the ranges 192..214, 216..246, or 248..255.

Is Lower True if Item is a lower-case letter. A lower-case letter is a character that is in the range
'a..'z', or whose position isin one of the ranges 223..246 or 248..255.

Is Upper True if Item is an upper-case letter. An upper-case letter is a character that is in the range
'A'..'Z' or whose position isin one of the ranges 192..214 or 216.. 222.

Is Basic Trueif Itemis abasic letter. A basic letter is a character that is in one of the ranges 'A'..'Z'
and 'd..'z, or that is one of the following: '/, ‘&, 'D','d, 'P, 'p', or 'B.

Is Digit Trueif Item isadecimal digit. A decimal digit isacharacter in therange'0'..'9".

Is_Decimal_Digit

A renaming of Is _Digit.

Is_Hexadecimal_Digit
True if Item is a hexadecimal digit. A hexadecimal digit is a character that is either a
decimal digit or that isin one of theranges'A' .. 'F or 'a .. 'f".

Is_Alphanumeric
True if Item is an aphanumeric character. An alphanumeric character is a character that is
either aletter or adecimal digit.

Is_Specia True if Item is a specia graphic character. A special graphic character is a graphic
character that is not alphanumeric.

Each of the names To_Lower, To_Upper, and To_Basic refers to two functions: one that converts from
Character to Character, and the other that converts from String to String. The result of each Character-to-
Character function is described below, in terms of the conversion applied to Item, its formal Character
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parameter. The result of each String-to-String conversion is obtained by applying to each element of the
function's String parameter the corresponding Character-to-Character conversion; the result is the null
String if the value of the formal parameter isthe null String. The lower bound of the result String is 1.

To_Lower

To_Upper

To Basic

Returns the corresponding lower-case value for Item if Is Upper(ltem), and returns Item
otherwise.

Returns the corresponding upper-case value for Item if Is_Lower(ltem) and Item has an
upper-case form, and returns Item otherwise. The lower case letters '3 and 'y* do not have
upper case forms.

Returns the letter corresponding to Item but with no diacritical mark, if Item is a letter but
not a basic letter; returns Item otherwise.

The following set of functions test for membership in the 1SO 646 character range, or convert between 1SO
646 and Character.

Is ISO_646

Is 1SO_646

To_ISO_646

To_ISO_646

The function whose formal parameter, Item, is of type Character returns True if Item isin
the subtype |SO_646.

The function whose forma parameter, Item, is of type String returns True if
Is ISO_646(Item(l)) is Truefor each | in Item'Range.

The function whose first formal parameter, Item, is of type Character returns Item if
Is ISO_646(Item), and returns the Substitute |SO_646 character otherwise.

The function whose first formal parameter, Item, is of type String returns the String whose
Range is 1..Item'Length and each of whose elements is given by To ISO_646 of the
corresponding element in Item.

Paragraphs 42 through 48 were deleted.

Implementation Advice

This paragraph was deleted.

NOTES

5 A basic letter is aletter without adiacritical mark.

6 Except for the hexadecimal digits, basic letters, and 1SO_646 characters, the categories identified in the classification
functions form a strict hierarchy:

— Control characters
— Graphic characters

— Alphanumeric characters
— Letters
— Upper-case letters
— Lower-case letters
— Decimal digits
— Special graphic characters
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A.3.3 The Package Characters.Latin_1
The package Characters.Latin_1 declares constants for charactersin 1SO 8859-1.

Static Semantics
Thelibrary package Characters.Latin_1 has the following declaration:

package Ada. Characters.Latin_1 is
pragma Pure(lLatin_1);

- - Control characters:

NUL : constant Character := Character' Val (0);
SCH . constant Character := Character'Val (1);
STX . constant Character := Character'Val (2);
ETX . constant Character := Character' Val (3);
EOCT : constant Character := Character'Val (4);
ENQ . constant Character := Character'Val (5);
ACK . constant Character := Character' Val (6);
BEL . constant Character := Character'Val (7);
BS : constant Character := Character' Val (8);
HT . constant Character := Character'Val (9);
LF : constant Character := Character' Val (10);
VT : constant Character := Character'Val (11);
FF . constant Character := Character'Val (12);
CR : constant Character := Character'Val (13);
SO . constant Character := Character'Val (14);
Sl : constant Character := Character'Val (15);
DLE : constant Character := Character'Val (16);
DC1 . constant Character := Character' Val (17);
DC2 : constant Character := Character'Val (18);
DC3 . constant Character := Character'Val (19);
DC4 : constant Character := Character' Val (20);
NAK . constant Character := Character' Val (21);
SYN : constant Character := Character'Val (22);
ETB . constant Character := Character' Val (23);
CAN : constant Character := Character'Val (24);
EM : constant Character := Character'Val (25);
SUB : constant Character := Character' Val (26);
ESC . constant Character := Character'Val (27);
FS : constant Character := Character'Val (28);
GS : constant Character := Character'Val (29);
RS : constant Character := Character' Val (30);
us . constant Character := Character'Val (31);

- - 1S0 646 graphic characters:
Space . constant Character :="' '; -- Character'Val(32)
Excl amat i on . constant Character :="'!"; -- Character'Val(33)
Quot ati on : constant Character :="'"'; -- Character'Val(34)
Nunber _Si gn : constant Character :='#'; -- Character'Val(35)
Dol | ar _Si gn . constant Character :="'$'; -- Character'Val(36)
Per cent _Si gn : constant Character :='9%,; -- Character'Val(37)
Anper sand : constant Character :="'& ; -- Character'Val(38)
Apost r ophe : constant Character :="'''; -- Character'Val(39)
Left_Parenthesis . constant Character := "'('; -- Character'Val(40)
Ri ght _Par ent hesi s : constant Character :="')"'; -- Character'Val(41)
Ast eri sk : constant Character :='*'; -- Character'Val(42)
Pl us_Sign : constant Character :="'+'; -- Character'Val(43)
Coma . constant Character :="',"'; -- Character'Val(44)
Hyphen . constant Character :="'-' - Character'Val(45)
M nus_Si gn : Character renanes Hyp en;
Ful | _Stop : constant Character :="'.'; -- Character'Val(46)
Sol i dus . constant Character :="'/"'; -- Character'Val(47)
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- - Decimal digits'0' though '9" are at positions 48 through 57

Col on : constant Character - - Character'Val(58)
Seni col on : constant Character - - Character'Val(59)
Less_Than_Si gn : constant Character - - Character'Val(60)
Equal s_Si gn : constant Character - - Character'Val(61)
Great er_Than_Si gn . constant Character - - Character'Val(62)
Question : constant Character - - Character'Val(63)
Commer ci al _At : constant Character - - Character'Val(64)
- - Letters'A' through 'Z' are at positions 65 through 90
Left _Square_Bracket : constant Character := '['; -- Character'Val(9l)
Reverse_Sol i dus : constant Character := '\'; -- Character'Val(92)
Ri ght _Squar e_Bracket : constant Character "1'; - - Character'Val(93)
Circunfl ex . constant Character :='"'; -- Character'Val(94)
Low_Li ne : constant Character :="'_"'; -- Character'Val(95)
Grave : constant Character :="'""'; -- Character'Val(96)
LC A : constant Character := 'a'; -- Character'Val(97)
LC B : constant Character "b'; -- Character'Val(98)
LC C : constant Character 'c'; -- Character'Val(99)
LC D : constant Character 'd'; -- Character'Val(100)
LC E : constant Character ‘e'; -- Character'Val(101)
LC F : constant Character "f'; -- Character'Val(102)
LC G : constant Character 'g'; -- Character'Val(103)
LC H : constant Character "h'; -- Character'Val(104)
LC | : constant Character "i'; -- Character'Val(105)
LCJ : constant Character "j';  -- Character'Val(106)
LC K : constant Character "k'; -- Character'Val(107)
LC L : constant Character "1'; -- Character'Val(108)
LC M : constant Character ‘m; -- Character'Val(109)
LC N . constant Character :='n'; -- Character'Val(110)
LC O : constant Character := '0'; -- Character'Val(111)
LC P : constant Character :='p'; -- Character'Val(112)
LC Q : constant Character :="'qQ'; -- Character'Val(113)
LC R : constant Character :='r'; -- Character'Val(114)
LC S . constant Character :="'s'; -- Character'Val(115)
LC T : constant Character :='t'; -- Character'Val(116)
LC U : constant Character := 'u'; -- Character'Val(117)
LC V : constant Character 'v'; -- Character'Val(118)
LC W : constant Character "W ; -- Character'Val(119)
LC X : constant Character 'x';  -- Character'Val(120)
LCY : constant Character :="'y'; -- Character'Val(121)
LC Z : constant Character :='Zz'; -- Character'Val(122)
Left _Curly_Bracket : constant Character := '{'; -- Character'Val(123)
Vertical _Line . constant Character :="'|"'; -- Character'Val(124)
Ri ght _Curly_Bracket : constant Character }';  -- Character'Val(125)
Til de : constant Character :="'~'; -- Character'Val(126)
DEL : constant Character := Character' Val (127);

- - 1S0 6429 control characters:
| S4 : Character renanmes FS;
I S3 : Character renanmes GS;
| S2 : Character renanes RS;
| S1 : Character renanes US;
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Reserved_128 . constant Character := Character' Val (128);
Reserved_129 . constant Character := Character' Val (129);
BPH : constant Character := Character' Val (130);
NBH : constant Character := Character'Val (131);
Reserved_132 . constant Character := Character' Val (132);
NEL . constant Character := Character' Val (133);
SSA : constant Character := Character'Val (134);
ESA : constant Character := Character' Val (135);
HTS . constant Character := Character' Val (136);
HTJ . constant Character := Character' Val (137);
VTS : constant Character := Character' Val (138);
PLD : constant Character := Character' Val (139);
PLU . constant Character := Character' Val (140);
Rl . constant Character := Character' Val (141);
SS2 : constant Character := Character' Val (142);
SS3 : constant Character := Character'Val (143);
DCs : constant Character := Character' Val (144);
PUL . constant Character := Character' Val (145);
PU2 . constant Character := Character' Val (146);
STS : constant Character := Character' Val (147);
CCH : constant Character := Character' Val (148);
MV . constant Character := Character' Val (149);
SPA . constant Character := Character' Val (150);
EPA . constant Character := Character'Val (151);
SCS : constant Character := Character' Val (152);
Reserved_153 : constant Character := Character' Val (153);

. constant Character := Character' Val (154);
Csl . constant Character := Character' Val (155);
ST : constant Character := Character' Val (156);
osc : constant Character := Character' Val (157);
PM . constant Character := Character' Val (158);
APC . constant Character := Character' Val (159);

- - Other graphic characters:
- - Character positions 160 (16#A0#) .. 175 (16#AF#)

No_Br eak_Space constant Character :="' "'; --Character'Val(160)
NBSP . Character renanes No_Br eak _Space;

I nverted_Excl amati on . constant Character :="'j'; --Character'Val(161)
Cent _Si gn . constant Character := '¢'; --Character'Val(162)
Pound_Si gn : constant Character :="'£'; --Character'Val(163)
Currency_Sign : constant Character := '&g'; --Character'Val(164)
Yen_Si gn . constant Character " ¥'; - - Character'Val(165)
Br oken_Bar . constant Character :="']"'; --Character'Val(166)
Section_Sign . constant Character := '8'; --Character'Val(167)
Di aeresis : constant Character :="'"'; --Character'Val(168)
Copyri ght _Sign . constant Character :='®© ; --Character'Val(169)
Fem ni ne_Ordi nal _I ndicator : constant Character := '2"'; --Character'Val(170)
Left _Angl e_Quotation . constant Character := '«'; --Character'Val(171)
Not _Si gn : constant Character '='; - - Character'val(172)
Sof t _Hyphen . constant Character '-'; --Character'Val(173)
Regi stered_Trade_Mark_Sign : constant Character :="'® ; --Character'Val(174)
Macron . constant Character :="'""'; --Character'Val(175)

319 10 November 2006 The Package Characters.Latin 1 A.3.3



ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

- - Character positions 176 (16#B0#) .. 191 (16#BF#)

Degree_Si gn constant Character :="'°"'; --Character'Val(176)
Ri ng_Above Char act er renanes Degree Si gn;

Pl us_M nus_Si gn constant Character := '#z'; --Character'Val(177)
Super scri pt _Two constant Character := '2'; --Character'Val(178)
Superscript_Three constant Character := '3'; --Character'Val(179)
Acut e constant Character :="'""' ;- Character'Val (180)
M cro_Sign constant Character := 'p'; --Character'Val(181)
Pi | crow_Si gn constant Character :='9"'; --Character'Val(182)
Par agr aph_Si gn Char act er renanes P| I crow_Sign;

M ddl e_Dot constant Character :="'.'; --Character'Val(183)
Cedilla constant Character := "' '; --Character'Val(184)
Super scri pt _One . constant Character :='1"'; --Character'Val(185)
Mascul i ne_Ordinal _I ndi cator: constant Character := '°'; --Character'Val(186)
Ri ght _Angl e_Quot ati on : constant Character := '»'; --Character'Val(187)
Fraction_One_Quarter constant Character := '%v; --Character'Val(188)
Fraction_One_Hal f constant Character := '%; --Character'Val(189)
Fraction_Three_Quarters constant Character := "%, --Character'Val(190)
I nvert ed_Question constant Character :="'¢'; --Character'Val(191)

- - Character positions 192 (16#C0#) .. 207 (16#CF#) .
UC A G ave constant Character :="'A'; --Character'Val(192)
UC A Acute constant Character :="'A"; --Character'Val(193)
UC_A G rcunfl ex constant Character :="'A'; --Character'Val(194)
UC A Tilde constant Character :="'A'; --Character'Val(195)
UC_ A Diaeresis constant Character :="'A'"; --Character'Val(196)
UC_A_Ri ng constant Character :="'A; --Character'Val(197)
UC_AE_Di pht hong constant Character :="'ZA; --Character'Val(198)
UC C Cedilla constant Character :="'C ; --Character'Val(199)
UC E G ave constant Character :="'E'; --Character'Val(200)
UC E_Acute constant Character :='E'; --Character'Val(201)
UC_E_Gircunfl ex constant Character :="'E'; --Character'Val(202)
UC E Diaeresis constant Character :='E; --Character'Val(203)
UC | _Grave constant Character := ']"'; --Character'Val(204)
UC | _Acute constant Character :="']"'; --Character'Val(205)
UC | _Gircunfl ex constant Character :="'|"'; --Character'Val(206)
UC | _Di aeresis constant Character :="'|"'; --Character'Val(207)
- - Character positions 208 (16#D0#) .. 223 (16#DF#)
UC I cel andic_Eth constant Character :='B ; --Character'Val(208)
UC N Tilde constant Character :="'N; --Character'Val(209)
UC O Grave constant Character := 'O ; --Character'Val(210)
UC_O Acute constant Character :='Q ; --Character'Val(211)
UC O Circunflex constant Character :="'Q ; --Character'Val(212)
UC O Tilde constant Character :="'Q; --Character'Val(213)
UC_O_D| aeresis constant Character := 'O ; --Character'Val(214)
Mul tiplication_Sign constant Character := 'x"'; --Character'Val(215)
UC O oli que_Stroke constant Character := '@ ; --Character'Val(216)
UC U G ave constant Character :="'U; --Character'Val(217)
UC_U_Acut constant Character :="'U; --Character'Val(218)
UC_ U G rcunfl ex constant Character :='U; --Character'Val(219)
UC U Diaeresis constant Character :='U ; --Character'Val(220)
UC Y Acute constant Character :='Y'; --Character'Val(221)
UC I cel andi c_Thorn constant Character :='P'; --Character'Val(222)
LC German_Sharp_S constant Character := 'R'; --Character'Val(223)
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- - Character positions 224 (16#E0#)

- - Character positions 240 (16#F0#)

LC_A Gave
LC A Acute
LC A Gircunflex
LC A Tilde
LC A Diaeresis
LC A Ring
LC_AE_Di pht hong
LC C Cedilla
LC_E Grave
LC E Acute
LC E Gircunflex
LC E Diaeresis
LC | _Grave

LC | _Acute

LC | _Gircunflex
LC | _Diaeresis

LC Icelandic_Eth
LC N Til de

LC O G ave

LC O Acute

LC O Gircunfl ex
LC O Tilde

LC O Diaeresis

Di vi si on_Si gn
LC O bl i que_Stroke
LC U G ave

LC U Acute

LC U Gircunfl ex
LC U Diaeresis

LC Y_Acute

LC I cel andi c_Thorn
LC Y Diaeresis

end Ada. Characters. Latin_1;
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.. 255 (16HFF#):

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

.. 239 (164EF#):

const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant

const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant

Character := "a'; --Character'Val(224)
Character :="4'; --Character'Val(225)
Character := 'a'; --Character'Val(226)
Character := '&'; --Character'Val(227)
Character := '&'; --Character'Val(228)
Character :="'&'; --Character'Val(229)
Character := 'a&; --Character'Vval(230)
Char act er ¢'; - - Character'Val(231)
Character := 'ge'; --Character'Val(232)
Character := 'é'; --Character'Val(233)
Character := '@'; --Character'Val(234)
Character := '&'; --Character'Val(235)
Character :='"i'; --Character'Val(236)
Character :="i'; --Character'Val(237)
Character : T'; --Character'Val(238)
Character := 'i'; --Character'Val(239)
Char act er d'; - - Character'Val(240)
Char act er A'; - - Character'Val(241)
Char act er 0'; - - Character'Val(242)
Char act er 6'; - - Character'Val(243)
Char act er 6'; - - Character'Val(244)
Char act er 8'; - - Character'Val(245)
Char act er 6'; - - Character'Val(246)
Character : +'; - - Character'Val(247)
Character :="g'; --Character'Val(248)
Character := 'U'; --Character'Val(249)
Character := '0'; --Character'Val(250)
Char act er 0'; - - Character'Val(251)
Char act er 0'; --Character'Val(252)
Char act er y'; -- Character'Val(253)
Char act er p'; --Character'Val(254)
Char act er y'; - - Character'Val(255)

Implementation Permissions

An implementation may provide additional packages as children of Ada.Characters, to declare names for

The Package Characters.Latin 1 A.3.3
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A.3.4 The Package Characters.Conversions

Satic Semantics
Thelibrary package Characters.Conversions has the following declaration:

package Ada. Characters. Conversions is
pragma Pur e( Conversi ons);

function Is_Character (ltem: in Wde_Character) return Bool ean;
function Is_String (Item: in Wde_String) return Bool ean;
function Is_Character (ltem: in Wde_Wde_Character) return Bool ean;
function I's_String (Item: in Wde_Wde_String) return Bool ean;
function Is_Wde_Character (ltem: in Wde_Wde_Character)

return Bool ean;
function Is_Wde_String (Item: in Wde_Wde_String)
return Bool ean;

function To_Wde_Character (ltem: in Character) return Wde_Character;
function To_Wde_String (ltem: in String) return Wde_String;
function To_Wde_Wde_Character (Item: in Character)

return Wde_Wde_Character;
function To_ Wde Wde_String (Item: in String)

return Wde_Wde_String;
function To_Wde Wde_Character (Item: in Wde_Character)

return Wde_Wde_Character;
function To_ Wde Wde_String (Item: in Wde_String)

return Wde_Wde_String;

function To_Character (ltem :in Wde Character

Substitute : in Character :="
return Character;
function To_String (Item :in Wde_String;
Substitute : in Character :="' ")
return String;
function To_Character (ltem: in Wde_Wde_ Character
Substitute : in Character :="' ')
return Character;
function To_String (Item: in Wde_Wde Str|ng,
Substitute : in Character := ")

return String;

function To_Wde_Character (ltem: in Wde_W de_Character;
Substitute : in Wde_Character :="
return Wde_Character;
function To_Wde_String (ltem: in Wde_Wde_String;
Substitute : in Wde_Character :="' ")

return Wde_String;
end Ada. Charact ers. Conver si ons;

The functions in package Characters.Conversions test Wide Wide Character or Wide_Character values
for membership in Wide Character or Character, or convert between corresponding characters of
Wide_Wide_Character, Wide_Character, and Character.

function Is_Character (ltem: in Wde_Character) return Bool ean;
Returns True if Wide_Character'Pos(Item) <= Character'Pos(Character'L ast).

function Is_Character (ltem: in Wde_Wde_Character) return Bool ean;
Returns True if Wide_Wide_Character'Pos(Item) <= Character'Pos(Character'Last).

function Is_Wde_Character (ltem: in Wde_Wde_Character) return Bool ean;
Returns True if Wide_Wide_Character'Pos(Item) <= Wide_Character'Pos(Wide_Character'Last).
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function Is_String (ltem: in Wde_String) return Bool ean;
function Is_String (ltem: in Wde_Wde_String) return Bool ean;

Returns Trueif Is_Character(Item(l)) is True for each | in Item'Range.

function Is_Wde_String (Item: in Wde_Wde_String) return Bool ean;
Returns True if Is_ Wide_Character(Item(l)) is True for each | in Item'Range.

function To_Character (ltem: W de_Char acter;

in
Substitute : in Character := ') return Character;
function To_Character (ltem: in Wde_Wde_Character;
Substitute : in Character :="' ") return Character;

Returns the Character corresponding to Item if Is_Character(Iltem), and returns the Substitute
Character otherwise.

function To_Wde_Character (ltem: in Character) return Wde_Character;
Returns the Wide_Character X such that Character'Pos(Item) = Wide_Character'Pos (X).
function To_Wde_Character (ltem: in Wde_Wde_Character;

Substitute : in Wde_Character :="
return Wde_Character;

Returns the Wide_Character corresponding to Item if Is Wide Character(ltem), and returns the
Substitute Wide_Character otherwise.

function To_Wde_Wde_Character (ltem: in Character)
return Wde_W de_Character;

Returns  the  Wide Wide Character X such  that  Character'Pos(Item)
Wide_Wide_Character'Pos (X).

function To_Wde Wde_Character (ltem: in Wde_Character)
return Wde_W de_Character;

Returns the Wide Wide Character X such that Wide Character'Pos(Item)
Wide_Wide_Character'Pos (X).

function To_String (ltem: in Wde_String;

Substitute : in Character :="' ") return String;
function To_String (ltem: in Wde_Wde_String;

Substitute : in Character :="' ") return String;

Returns the String whose range is 1..Item'Length and each of whose elements is given by
To_Character of the corresponding element in Item.

function To_Wde_String (Item: in String) return Wde_String;
Returns the Wide_String whose range is 1..Item’'Length and each of whose elements is given by
To_Wide_Character of the corresponding element in Item.

function To_Wde_String (Item: in Wde_Wde_String;
Substitute : in Wde_Character :="
return Wde_String;
Returns the Wide_String whose range is 1..1tem'Length and each of whose elements is given by
To_Wide Character of the corresponding element in Item with the given Substitute
Wide_Character.
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function To_Wde_Wde_String (Item: in String) return Wde_Wde_String;
in

function To Wde_Wde_String (ltem:
return Wde_Wde_String;

W de_String)

Returns the Wide_Wide_String whose range is 1..Item'Length and each of whose elements is

given by To_Wide Wide_Character of the corresponding element in Item.

A.4 String Handling

This clause presents the specifications of the package Strings and several child packages, which provide
facilities for dealing with string data. Fixed-length, bounded-length, and unbounded-length strings are
supported, for String, Wide_String, and Wide_Wide_String. The string-handling subprograms include
searches for pattern strings and for characters in program-specified sets, trandation (via a character-to-
character mapping), and transformation (replacing, inserting, overwriting, and deleting of substrings).

A.4.1 The Package Strings

The package Strings provides declarations common to the string handling packages.

Static Semantics
Thelibrary package Strings has the following declaration:

package Ada. Strings is
pragma Pure(Strings);

Space : constant Character
W de_Space : constant W de_Character :
W de_W de_Space : constant W de_W de_Char acter =y

Length_Error, Pattern_Error, Index_Error, Translation_Error :

type Alignment is (Left, Right, Center);

type Truncation is (Left, Right, Error);

type Menbership is (Inside, Qutside);

type Direction is (Forward, Backward);

type TrimEnd is (Left, Right, Both);
end Ada. Strings;

A.4.2 The Package Strings.Maps

exception;

The package Strings.Maps defines the types, operations, and other entities needed for character sets and

character-to-character mappings.

Static Semantics
Thelibrary package Strings.Maps has the following declaration:

package Ada. Strings.Maps is
pragma Pur e( Maps);

- - Representation for a set of character values:
type Character_Set is private;
pragma Preel aborabl e_Initialization(Character_Set);

Nul | _Set : constant Character_Set;

type Character_Range is
record
Low : Character;
Hi gh : Character;
end record;
- - Represents Character range Low..High
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type Character_Ranges is array (Positive range <>) of Character_Range;

function To_Set (Ranges : in Character_Ranges)return Character_Set;
function To_Set ( Span : in Character_Range)return Character_Set;
function To_Ranges ( Set : in Character_Set) return Character_Ranges;
function "=" (Left, Right : in Character_Set) return Bool ean;
function "not" (Right : in Character_Set) return Character_Set;
function "and" (Left, Right : in Character_Set) return Character_Set;
function "or" (Left, Right : in Character_Set) return Character_Set;
function "xor" (Left, Right : in Character_Set) return Character_Set;
function "-" (Left, Right : in Character_Set) return Character_Set;
function Is_In (El enent in Character;
Set in Character_Set)
return Bool ean;
function |s_Subset (El enments : in Character_Set;
Set : in Character_Set)
return Bool ean;
function "<=" (Left : in Character_Set;
Right : in Character_Set)

return Bool ean renanmes |s_Subset;

- - Alternative representation for a set of character values:
subt ype Character_Sequence is String;

function To_Set (Sequence : in Character_Sequence)return Character_Set;
function To_Set (Singleton : in Character) return Character_Set;
function To_Sequence (Set : in Character_Set) return Character_Sequence;

- - Representation for a character to character mapping:
type Character_Mapping is private;
pragma Preel aborable Initializati on( Char act er _Mappi ng) ;

function Val ue (Map : in Character_Mapping;
El ement : in Character)
return Character;

Identity : constant Character_Mapping;

function To_Mapping (From To : in Character_Sequence)
return Character_Mppi ng;

function To_Domain (Map : in Character_Mppi ng)
return Character_Sequence;

function To_Range (Map : in Character_Mapping)
return Character_Sequence;

type Character_Mappi ng_Function is
access function (From: in Character) return Character;

private
- - not specified by the language
end Ada. Stri ngs. Maps;

An object of type Character_Set represents a set of characters.
Null_Set represents the set containing no characters.
An object Obj of type Character_Range represents the set of charactersin the range Obj.Low .. Obj.High.

An object Obj of type Character_Ranges represents the union of the sets corresponding to Obj(l) for | in
Obj'Range.
function To_Set (Ranges : in Character_Ranges) return Character_Set;

If RangesLength=0 then Null_Set is returned; otherwise the returned value represents the set
corresponding to Ranges.
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function To_Set (Span : in Character_Range) return Character_Set;
The returned value represents the set containing each character in Span.
function To_Ranges (Set : in Character_Set) return Character_Ranges;
If Set = Null_Set then an empty Character_Ranges array is returned; otherwise the shortest array
of contiguous ranges of Character valuesin Set, in increasing order of Low, isreturned.
function "=" (Left, Right : in Character_Set) return Bool ean;
The function "=" returns True if Left and Right represent identical sets, and False otherwise.

Each of the logical operators "not", "and”, "or", and "xor" returns a Character_Set value that represents
the set obtained by applying the corresponding operation to the set(s) represented by the parameter(s) of
the operator. "—"(Left, Right) is equivalent to "and"(Left, "not"(Right)).

function Is_In (Element : in Character;
Set : in Character_Set);
return Bool ean;

Is_Inreturns True if Element isin Set, and False otherwise.

function |Is_Subset (Elements : in Character_Set;
Set : in Character_Set)
return Bool ean;

Is _Subset returns True if Elementsis a subset of Set, and False otherwise.

subt ype Character_Sequence is String;
The Character_Sequence subtype is used to portray a set of character values and also to identify
the domain and range of a character mapping.

function To_Set (Sequence : in Character_Sequence) return Character_Set;

function To_Set (Singleton : in Character) return Character_Set;

Sequence portrays the set of character values that it explicitly contains (ignoring duplicates).
Singleton portrays the set comprising a single Character. Each of the To_Set functions returns a
Character_Set value that represents the set portrayed by Sequence or Singleton.

function To_Sequence (Set : in Character_Set) return Character_Sequence;
The function To_Sequence returns a Character_Sequence val ue containing each of the characters
in the set represented by Set, in ascending order with no duplicates.

type Character_Mapping is private;
An object of type Character_Mapping represents a Character-to-Character mapping.

function Val ue (Map : in Character_Mapping;
El ement : in Character)
return Character;
The function Value returns the Character value to which Element maps with respect to the
mapping represented by Map.

A character C matches a pattern character P with respect to a given Character_Mapping value Map if
Vaue(Map, C) = P. A string S matches a pattern string P with respect to a given Character_Mapping if
their lengths are the same and if each character in S matches its corresponding character in the pattern
string P.

A.4.2 The Package Strings.Maps 10 November 2006 326



ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

String handling subprograms that deal with character mappings have parameters whose type is
Character_Mapping.

Identity : constant Character_Mapping;
Identity maps each Character to itself.

function To_Mapping (From To : in Character_Sequence)
return Character_Mappi ng;

To_Mapping produces a Character_Mapping such that each element of From maps to the
corresponding element of To, and each other character maps to itself. If From'Length /=
To'Length, or if some character is repeated in From, then Translation_Error is propagated.

function To_Domain (Map : in Character_Mpping) return Character_Sequence;

To_Domain returns the shortest Character_Sequence value D such that each character not in D
maps to itself, and such that the charactersin D are in ascending order. The lower bound of D is
1

function To_Range (Map : in Character_Mpping) return Character_Sequence;

To_Range returns the Character_Sequence value R, such that if D = To_Domain(Map), then R
has the same bounds as D, and D(l) mapsto R(l) for each | in D'Range.

An object F of type Character_Mapping_Function maps a Character value C to the Character value
F.all(C), which is said to match C with respect to mapping function F.

NOTES
7 Character_Mapping and Character_Mapping_Function are used both for character equivalence mappings in the search
subprograms (such as for case insensitivity) and as transformational mappings in the Translate subprograms.

8 To_Domain(ldentity) and To_Range(ldentity) each returns the null string.

Examples
To_Mapping("ABCD", "ZZAB") returns a Character_Mapping that maps ‘A’ and '‘B' to 'Z', 'C' to 'A’, 'D' to
'B', and each other Character to itself.

A.4.3 Fixed-Length String Handling

The language-defined package Strings.Fixed provides string-handling subprograms for fixed-length
strings; that is, for values of type Standard.String. Several of these subprograms are procedures that
modify the contents of a String that is passed as an out or an in out parameter; each has additional
parametersto control the effect when the logical length of the result differs from the parameter's length.

For each function that returns a String, the lower bound of the returned valueis 1.

The basic model embodied in the package is that a fixed-length string comprises significant characters and
possibly padding (with space characters) on either or both ends. When a shorter string is copied to alonger
string, padding is inserted, and when a longer string is copied to a shorter one, padding is stripped. The
Move procedure in Strings.Fixed, which takes a String as an out parameter, alows the programmer to
control these effects. Similar control is provided by the string transformation procedures.
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Satic Semantics
4 Thelibrary package Strings.Fixed has the following declaration:
5 with Ada. Strings. Maps;
package Ada. Strings.Fixed is
pragnma Preel abor at e( Fi xed) ;
6 - - "Copy" procedure for strings of possibly different lengths
7 procedure Move (Source : in String;
Target : out String;
Dr op :in Truncation := Error;
Justify : in Alignnment = Left;
Pad :in Character = Space);
8 - - Search subprograms
8.1/2 function I ndex (Source in String;
Pattern : in String;
From : in Positive;
Goi ng : in Direction := Forward,
Mapping : in Maps. Character_MNapping : = Maps.ldentity)
return Natural;
8.2/2 function Index (Source : in String;
Pattern : in String;
From : in Positive;
Goi ng :in Direction := Forward,
Mappi ng : in Maps. Character_Mappi ng_Functi on)
return Natural;
9 function I ndex (Source in String;
Pattern in String;
Goi ng in Direction := Forward;
Mappi ng i n Maps. Char act er _Mappi ng
1= Maps. ldentity)
return Natural;
10 function I ndex (Source in String;
Pattern in String;
Goi ng in Direction := Forward;
Mappi ng i n Maps. Char act er _Mappi ng_Functi on)
return Natural;
10.1/2 function I ndex (Source in String;
Set in Maps. Character_Set;
From :in Positive;
Test in Menbership : = Inside;
Goi ng in Direction := Forward)
return Natural;
11 function Index (Source : in String;
Set : in Maps. Character_Set;
Test :in Menbership := Inside;
Goi ng in Direction := Forward)
return Natural;
11.1/2 function I ndex_Non_Blank (Source : in String;
From : in Positive;
Goi ng in Direction := Forward)
return Natural;
12 function I ndex_Non_Blank (Source : in String;
Goi ng in Direction := Forward)
return Natural;
13 functi on Count (Source in String;
Pattern : in String;
Mapping : in Maps. Character_Mappi ng

;= Maps. ldentity)
return Natural;
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function Count (Source in String;
Pattern : in String;
Mapping : in

return Natural;

function Count (Source String;
Set

j e

return Natural;

procedure Find_Token (Source : in String;
Set : in Maps. Charact
Test : in Menbership;
First : out Positive;
Last : out Natural);

- - Sring transation subprograms

function Translate (Source : in String;
Mappi ng : in Mps. Characte
return String;
procedure Translate (Source : in out String;
Mappi ng : in Mps. Charact
function Translate (Source : in String;

Mappi ng : in Mps. Characte
return String;

procedure Translate (Source : in out String;
Mappi ng : in Mps. Charact

- - Sring transformation subprograms

Maps. Char act er _Mappi ng_Functi on)

Maps. Char act er _Set )

er_Set;

r _Mappi ng)

er _Mappi ng);

r_Mappi ng_Functi on)

er _Mappi ng_Function);

function Replace_Slice (Source in String;
Low :in Positive;
H gh in Natural ;
By in String)
return String;
procedure Replace_Slice (Source in out String;
Low in Positive;
H gh in Natural ;
By :in String;
Dr op :in Truncation := Error;
Justify : in Alignment := Left;
Pad : in Character = Space);
function Insert (Source in String;
Bef ore :in Positive;
New Item: in String)
return String;
procedure Insert (Source in out String;
Bef ore :in Positive;
New_ Item: in String;
Dr op in Truncation := Error);
function Overwite (Source :in String;
Position : in Positive,;
New_ Item: in String)
return String;
procedure Overwrite (Source :in out String;
Position : in Positive;
New_ |tem: in String;
Dr op :in Truncation := Right);
function Del ete (Source in String;
From : in Positive;
Through : in Natural)

return String;
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procedure Del ete (Source in out String;
From : in Positive;
Through : in Natural;
Justify : in Alignment := Left;
Pad : in Character := Space);
- - Sring selector subprograms
function Trim (Source : in String;
Si de in TrimEnd)
return String;
procedure Trim (Source in out String;
Si de in TrimEnd;
Justify : in Alignment := Left;
Pad : in Character := Space);
function Trim (Source : in String;
Left in Maps. Character_Set;
Ri ght in Maps. Character_Set)

return String;

procedure Trim (Source in out String;
Left in Maps. Character_Set;
Ri ght : in Maps. Character_Set;
Justify : in Alignment := Strings.Left;
Pad : in Character := Space);
function Head (Source : in String;
Count in Natural;
Pad in Character := Space)
return String;
procedure Head (Source in out String;
Count in Natural;
Justify : in Alignment := Left;
Pad : in Character := Space);
function Tail (Source : in String;
Count in Natural;
Pad in Character := Space)
return String;
procedure Tail (Source in out String;
Count in Natural;
Justify : in Alignment := Left;
Pad : in Character := Space);
- - Sring constructor functions
function "*" (Left : in Natural;
Right : in Character) return String;
function "*" (Left in Natural;
Ri ght in String) return String;

end Ada. Strings. Fi xed;

The effects of the above subprograms are as follows.

procedure Move (Source in String;
Target : out String;
Dr op :in Truncation := Error;
Justify : in Alignnent := Left;
Pad : in Character = Space);

The Move procedure copies characters from Source to Target. If Source has the same length as
Target, then the effect isto assign Source to Target. If Source is shorter than Target then:

« If Justify=Left, then Source is copied into the first Source'Length characters of Target.

e If Justify=Right, then Source is copied into the last Source'Length characters of
Target.
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e |If Justify=Center, then Source is copied into the middle Source'Length characters of
Target. In this case, if the difference in length between Target and Source is odd, then
the extra Pad character is on the right.

« Padis copied to each Target character not otherwise assigned.
If Source islonger than Target, then the effect is based on Drop.

« |f Drop=Left, then the rightmost Target'Length characters of Source are copied into

Target.

« |f Drop=Right, then the leftmost Target'Length characters of Source are copied into

Target.

« |f Drop=Error, then the effect depends on the value of the Justify parameter and aso
on whether any characters in Source other than Pad would fail to be copied:

. If Justify=Left, and if each of the rightmost Source'Length-Target'Length
characters in Source is Pad, then the leftmost Target'Length characters of Source

are copied to Target.

. If Justify=Right, and if each of the leftmost Source'Length-Target'Length
charactersin Source is Pad, then the rightmost Target'L ength characters of Source

are copied to Target.

« Otherwise, Length_Error is propagated.

function I ndex (Source

Pattern :

From
Goi ng

Mappi ng

return Natural;

function I ndex (Source

Patternf

From
Goi ng

Mappi ng

return Natural;

5SS 333535

53535355

String;

String;

Posi ti ve;

Direction := Forward;

Maps. Char act er _Mappi ng : = Maps. I dentity)

String;

String;

Posi tive;

Direction := Forward;

Maps. Char act er _Mappi ng_Functi on)

Each Index function searches, starting from From, for a slice of Source, with length

Pattern'Length, that matches Pattern with respect to Mapping; the parameter Going indicates the

direction of the lookup. If From is not in Source'Range, then Index_Error is propagated. If Going
= Forward, then Index returns the smallest index | which is greater than or equal to From such

that the slice of Source starting at | matches Pattern. If Going = Backward, then Index returns the

largest index | such that the slice of Source starting at | matches Pattern and has an upper bound
less than or equal to From. If there is no such dlice, then O is returned. If Pattern is the null string,

then Pattern_Error is propagated.
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function I ndex (Source in String;
Pattern : in String;
Goi ng :in Direction := Forward,
Mappi ng i n Maps. Char act er _Mappi ng

:= Maps.ldentity)
return Natural;

function I ndex (Source in String;
Pattern in String;
Goi ng in Direction := Forward;
Mappi ng i n Maps. Charact er _Mappi ng_Functi on)

return Natural;
If Going = Forward, returns

I ndex (Source, Pattern, Source'First, Forward, Mapping);
otherwise returns

I ndex (Source, Pattern, Source'last, Backward, Mapping);

function I ndex (Source in String;
Set in Maps. Character_Set;
From : in Positive;
Test in Menbership : = Inside;
Goi ng in Direction := Forward)

return Natural;

Index searches for the first or last occurrence of any of a set of characters (when Test=Inside), or
any of the complement of a set of characters (when Test=Outside). If From is not in
Source'Range, then Index_Error is propagated. Otherwise, it returns the smallest index | >=
From (if Going=Forward) or the largest index | <= From (if Going=Backward) such that
Source(l) satisfies the Test condition with respect to Set; it returns O if there is no such Character

in Source.
function Index (Source : in String;
Set : in Maps. Character_Set;
Test in Menbership := Inside;
Goi ng in Direction = For war d)

return Natural;
If Going = Forward, returns

I ndex (Source, Set, Source'First, Test, Forward);
otherwise returns

I ndex (Source, Set, Source'last, Test, Backward);

function I ndex_Non_Blank (Source : in String;
From : in Positive;
Goi ng in Direction := Forward)

return Natural;
Returns Index (Source, Maps.To_Set(Space), From, Outside, Going);

function I ndex_Non_Bl ank (Source :
Goi ng

String;

in
in Direction := Forward)
return Natural;

Returns Index(Source, Maps.To_Set(Space), Outside, Going)
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function Count (Source
Pattern
Mappi ng

return Natural;

function Count (Source
Pattern
Mappi ng

return Natural;

Returns the maximum number of nonoverlapping slices of Source that match Pattern with
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in String;
in String;

in Maps. Char act er _Mappi ng

;= Maps. ldentity)

in String;
in String;

in Maps. Char act er _Mappi ng_Functi on)

respect to Mapping. If Pattern is the null string then Pattern_Error is propagated.

function Count (Source
Set
return Natural;

in String;

in Maps. Character_Set)

Returns the number of occurrences in Source of charactersthat arein Set.

procedure Find_Token (Source : in String;
Set : in Maps. Character_Set;

Test : in Menber shi p;
First : out Positive;
Last : out Natural);

Find_Token returns in First and Last the indices of the beginning and end of the first slice of
Source al of whose elements satisfy the Test condition, and such that the elements (if any)
immediately before and after the slice do not satisfy the Test condition. If no such dlice exists,
then the value returned for Last is zero, and the value returned for First is Source'First; however,
if Source'First is not in Positive then Constraint_Error is raised.

function Translate (Source : in String;
Mappi ng : in Maps. Charact er _Mappi ng)
return String;
function Translate (Source : in String;
Mappi ng :

return String;

i n Maps. Char act er _Mappi ng_Functi on)

Returns the string S whose length is Source'Length and such that (1) is the character to which
Mapping maps the corresponding element of Source, for | in 1..Source'Length.

procedure Translate (Source : in out String;
Mappi ng :

procedure Translate (Source : in out String;
Mappi ng :

Equivalent to Source := Translate(Source, Mapping).

function Replace_Slice (Source

return String;

in String;
Low :in Positive;
Hi gh in Natural;
By in String)

i n Maps. Char act er _Mappi ng);

in Maps. Charact er _Mappi ng_Function);

If Low > Source'Last+1, or High < Source'First—1, then Index_Error is propagated. Otherwise:

e If High >= Low, then the returned string comprises Source(Source'First..Low-1) & By
& Source(High+1..Source'Last), but with lower bound 1.

e If High < Low,
New_ltem=>By).
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75 procedure Repl ace_Slice (Source in out String;
ow in Positive;
Hi gh :in Natural;
By :in String;
Dr op : in Truncation := Error;
Justify in Alignment := Left;
Pad in Character = Space);
76 Equivalent to Move(Replace_Slice(Source, Low, High, By), Source, Drop, Justify, Pad).
77 function Insert (Source :in String;
Bef ore : in Positive;
New_ Item: in String)
return String;
78 Propagates Index_Error if Before is not in Source'First .. Source'Last+1; otherwise returns
Source(Source'First..Before-1) & New_ltem & Source(Before..Source'Last), but with lower
bound 1.
79 procedure Insert (Source :in out String;
Bef ore :in Positive;
New Item: in String;
Dr op : in Truncation := Error);
80 Equivalent to Move(Insert(Source, Before, New_ltem), Source, Drop).
81 function Overwite (Source :in String;
Position : in Positive;
New Item: in String)
return String;
82 Propagates Index_Error if Position is not in Source'First .. Source'Last+1; otherwise returns the

string obtained from Source by consecutively replacing characters starting at Position with
corresponding characters from New_Item. If the end of Source is reached before the characters
in New_Item are exhausted, the remaining characters from New_ltem are appended to the string.

83 procedure Overwrite (Source in out String;
Position : in Positive;
New_ Item: in String;
Dr op in Truncation := Right);
84 Equivalent to Move(Overwrite(Source, Position, New_Item), Source, Drop).
85 function Delete (Source : in String;
From :in Positive;

Through : in Natural)
return String;

86/1 If From <= Through, the returned string is Replace_Slice(Source, From, Through, ""), otherwise
it is Source with lower bound 1.
87 procedure Del ete (Source in out String;
From :in Positive;
Through : in Natural;
Justify : in Alignment := Left;
Pad : in Character := Space);
88 Equivalent to Move(Delete(Source, From, Through), Source, Justify => Justify, Pad => Pad).
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function Trim (Source : in String;
Si de :in TrimEnd)
return String;
Returns the string obtained by removing from Source al leading Space characters (if Side =
Left), al trailing Space characters (if Side = Right), or all leading and trailing Space characters
(if Side = Both).

procedure Tri m ( Source in out String;
Si de :in TrimEnd;
Justify : in Alignment := Left;
Pad : in Character := Space);

Equivalent to Move(Trim(Source, Side), Source, Justify=>Justify, Pad=>Pad).

function Trim (Source : in String;

Left : in Maps. Character_Set;
Ri ght in Maps. Character_Set)
return String;

Returns the string obtained by removing from Source all leading characters in Left and all
trailing charactersin Right.

procedure Tri m ( Source in out String;
Left in Maps. Character_Set;
Ri ght : in Maps. Character_Set;
Justify : in Alignment := Strings.Left;
Pad : in Character := Space);

Equivalent to Move(Trim(Source, Left, Right), Source, Justify => Justify, Pad=>Pad).

function Head (Source : in String;
Count : in Natural;
Pad in Character := Space)

return String;

Returns a string of length Count. If Count <= Source'Length, the string comprises the first Count
characters of Source. Otherwise its contents are Source concatenated with Count—Source'Length

Pad characters.
procedure Head (Source in out String;
Count :in Natural;
Justify : in Alignment := Left;
Pad : in Character := Space);

Equivalent to Move(Head(Source, Count, Pad), Source, Drop=>Error, Justify=>Justify,
Pad=>Pad).

function Tail (Source : in String;
Count : in Natural;
Pad in Character := Space)

return String;

Returns a string of length Count. If Count <= Source'Length, the string comprises the last Count
characters of Source. Otherwise its contents are Count-Source'Length Pad characters

concatenated with Source.
procedure Tail (Source in out String;
Count :in Natural;
Justify : in Alignment := Left;
Pad : in Character := Space);

Equivalent to Move(Tail(Source, Count, Pad), Source, Drop=>Error, Justify=>Justify,
Pad=>Pad).
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105 function "*" (Left : in Natural;
Right : in Character) return String;
function "*" (Left : in Natural;
Right : in String) return String;
106/1 These functions replicate a character or string a specified number of times. The first function

returns a string whose length is Left and each of whose elements is Right. The second function
returns a string whose length is Left* Right'Length and whose value is the null string if Left =0
and otherwiseis (Left—1)*Right & Right with lower bound 1.

NOTES

107 9 In the Index and Count functions taking Pattern and Mapping parameters, the actual String parameter passed to Pattern
should comprise characters occurring as target characters of the mapping. Otherwise the pattern will not match.

108 10 In the Insert subprograms, inserting at the end of a string is obtained by passing Source'Last+1 as the Before
parameter.

109 11 If a null Character_Mapping_Function is passed to any of the string handling subprograms, Constraint_Error is
propagated.

A.4.4 Bounded-Length String Handling

1 Thelanguage-defined package Strings.Bounded provides a generic package each of whose instances yields
a private type Bounded_String and a set of operations. An object of a particular Bounded_String type
represents a String whose low bound is 1 and whose length can vary conceptually between O and a
maximum size established at the generic instantiation. The subprograms for fixed-length string handling
are either overloaded directly for Bounded_String, or are modified as needed to reflect the variability in
length. Additionally, since the Bounded_String type is private, appropriate constructor and selector
operations are provided.

Satic Semantics
2 Thelibrary package Strings.Bounded has the following declaration:
3 with Ada. Strings. Maps;
package Ada. Strings. Bounded is
pragnma Preel abor at e( Bounded) ;
4 generic
Max : Positive; - - Maximum length of a Bounded_String

package Generic_Bounded_Length is

5 Max_Length : constant Positive := Mx;
6 type Bounded_String is private;
7 Nul | _Bounded_String : constant Bounded_String;
8 subtype Length_Range is Natural range 0 .. Max_Length;
9 function Length (Source : in Bounded_String) return Length_Range;
10 - - Conversion, Concatenation, and Selection functions
11 function To_Bounded_String (Source : in String;
Dr op :in Truncation := Error)
return Bounded_String;
12 function To_String (Source : in Bounded_String) return String;
12.1/2 procedure Set_Bounded_String
(Target : out Bounded_Stri ng;
Source : in String;
Dr op in Truncation := Error);

A.4.3 Fixed-Length String Handling 10 November 2006 336



337

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

function Append (Left, Right

Dr op
return Bounded_String;
function Append (Left : in
Right : in
Drop : in

return Bounded_Stri ng;
function Append (Left : in
Right : i
Drop : in
return Bounded_Stri ng;
function Append (Left : in
Right : i

in
Drop : in

return Bounded_Stri ng;
function Append (Left : in
Right : in
Drop : in

return Bounded_String;

procedure Append (Source
New | tem :
Dr op

procedure Append (Source
New_ | tem :
Dr op

procedure Append (Source
New | tem :
Dr op

function "&" (Left, Right
return Bounded_Stri ng;

function "&" (Left
return Bounded_String;

function "&" (Left in Stri
return Bounded_Stri ng;

function "&" (Left
return Bounded_Stri ng;

function "&" (Left
return Bounded_Stri ng;

function El ement (Source : i
Index : i
return Character;

in Bounded_String; Right

in Bounded_String; Right

in Bounded_String;
in Truncation := Error)

Bounded_stri ng;

String;

Truncation := Error)
String;

Bounded_Stri ng;
Truncation := Error)

Bounded_Stri ng;

Char act er;
Truncation := Error)
Char acter;
Bounded_Stri ng;
Truncation := Error)

out Bounded_Stri ng;
Bounded_Stri ng;
Truncation := Error);

n
n
n
n out Bounded_Stri ng;

in String;
n Truncation := Error);
n
n
n

out Bounded_Stri ng;
Char act er;
Truncation := Error);

in Bounded_String)
in String)
ng; Right in Bounded_String)

in Character)

in Character; R ght : in Bounded_String)

n Bounded_Stri ng;
n Positive)

procedure Replace_El ement (Source :

in out Bounded_String;
in Positive;
in Character);

Bounded_Stri ng;

I ndex
By :
function Slice (Source : in
Low :in Positive;
Hi gh in Natural)

return String;
function Bounded_Slice

(Source : in Bounded_String;
Low :in Positive;
Hi gh :in Natural)

return Bounded_Stri ng;
procedure Bounded_Slice

(Source : in Bounded_Stri ng;
Tar get out Bounded_Stri ng;
Low cin Posi tive;
Hi gh in Nat ural);
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29 function "=" (Left,
function "=" (Left
return Bool ean;
30 function "=" (Left
return Bool ean;
31 function "<" (Left,
32 function "<" (Left
return Bool ean;
33 function "<" (Left
return Bool ean;
34 function "<=" (Left,
35 function "<=" (Left
return Bool ean;
36 function "<=" (Left
return Bool ean;
37 function ">" (Left,
38 function ">" (Left
return Bool ean;
39 function ">" (Left
return Bool ean;
40 function ">=" (Left,
41 function ">=" (Left
return Bool ean;
a2 function ">=" (Left
return Bool ean;
4312 - - Search subprograms
43.1/2 function I ndex (Source
Pattern :
From :
Goi ng :
Mappi ng :
return Natural;
43.212 function Index (Source :
Pattern :
From :
Goi ng :
Mappi ng :
return Natural;
44 function I ndex (Source
Pattern
Goi ng
Mappi ng
return Natural;
45 function I ndex (Source
Pattern
Goi ng
Mappi ng
return Natural;
45.1/2 function I ndex (Source
Set
From
Test
Goi ng

return Natural;

A.4.4 Bounded-Length String Handling

Ri ght
in Bounded_String; Right

Ri ght
in Bounded_String;

Ri ght
i n Bounded_String; Right

Ri ght
in Bounded_String;

Ri ght
i n Bounded_String; Right

in String;

in String;

in String;

in String;

return Bool ean;
in String)

i n Bounded_String)

Ri ght i n Bounded_Stri ng)

return Bool ean;
in String)

in Bounded_String)
Ri ght
Ri ght i n Bounded_String)

return Bool ean;
in String)

i n Bounded_String)

Ri ght i n Bounded_Stri ng)

return Bool ean;
in String)

in Bounded_String)
Ri ght
Ri ght i n Bounded_String)

return Bool ean;
in String)

i n Bounded_String)

in String; Right i n Bounded_Stri ng)
i n Bounded_String;
in String;
in Positive;
in Direction := Forward,
in Maps. Character_Mapping := Maps.ldentity)
i n Bounded_String;
in String;
in Positive;
in Direction := Forward,
i n Maps. Char act er _Mappi ng_Functi on)
i n Bounded_String;
in String;
in Direction := Forward,
i n Maps. Char act er _Mappi ng
1= Maps.ldentity)
i n Bounded_Stri ng;
in String;
in Direction := Forward;
i n Maps. Char act er _Mappi ng_Functi on)
i n Bounded_Stri ng;
in Maps. Character_Set;
in Positive;
in Menbership : = Inside;
in Direction := Forward)
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function I ndex (Source :
Set :
Test
Goi ng
return Natural;
function I ndex_Non_Bl ank

return Natural;
function | ndex_Non_BI ank

return Natural;

function Count (Source
Pattern
Mappi ng

return Natural;

function Count (Source
Pattern
Mappi ng

return Natural;

function Count (Source
Set
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(Source :
From
Goi ng

(Source : in
Going : in Direction

Bounded_Stri ng;

n
n
n

)
=
®
o
24
o
]
I

ps. Char act er _Set ;
nmbershi p : = Inside;
i ;= Forward)

in Bounded_String;
in Positive;
in Direction := Forward)

Bounded_Stri ng;
:= Forward)

Bounded_Stri ng;
String;
Maps. Char act er _Mappi ng

:= Maps. | dentity)

Bounded_Stri ng;
String;
Maps. Char act er _Mappi ng_Functi on)

Bounded_Stri ng;
Maps. Char act er _Set)

return Natural;

procedure Find_Token (Source : in Bounded_String;

Set : in Maps. Character_Set;
Test in Menber shi p;
First out Positive;

Last
- - Sring translation subprograms

function Transl ate (Source
Mappi ng :
return Bounded_Stri ng;

procedure Transl ate (Source

out Natural);

in Bounded_String;
i n Maps. Char act er _Mappi ng)

in out Bounded_String;

Mappi ng : in Maps. Character_Mappi ng) ;
function Translate (Source : in Bounded_String;
Mappi ng : in Mps. Character _Mappi ng_Functi on)

return Bounded_Stri ng;

procedure Transl ate (Source
Mappi ng :
- - String transformation subprograms

in out Bounded_String;
in Maps. Charact er _Mappi ng_Function);

function Replace_Slice (Source in Bounded_String;
ow :in Positive;
Hi gh :in Natural;
By :in String;
Dr op in Truncation := Error)
return Bounded_Stri ng;
procedure Replace_Slice (Source in out Bounded_Stri ng;
Low in Positive;
Hi gh in Natural;
By in String;
Dr op in Truncation := Error);
function Insert (Source : in Bounded_String;
Bef ore in Positive;
New Item: in String;
Dr op :in Truncation := Error)

return Bounded_Stri ng;
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procedure Insert (Source in out Bounded_String;
Bef ore : in Positive;
New_Item: in String;
Dr op in Truncation := Error);
function Overwite (Source i n Bounded_String;
Posi tion in Positive;
New_|tem in String;
Dr op in Truncation := Error)
return Bounded_String;
procedure Overwrite (Source in out Bounded_String;
Posi tion in Positive;
New_|tem in String;
Dr op in Truncation := Error);
function Delete (Source i n Bounded_Stri ng;
From :in Positive;
Through : in Natural)
return Bounded_String;
procedure Del ete (Source in out Bounded_String;
From in Positive;
Through : in Natural);
- - Sring selector subprograms
function Trim (Source : in Bounded_String;
Si de in TrimEnd)
return Bounded_String;
procedure Trim (Source : in out Bounded_String;
Si de in TrimEnd);
function Trim (Source : in Bounded_String;
Left : in Maps. Character_Set;
Right : in Mps. Character_Set)
return Bounded_Stri ng;
procedure Trim (Source : in out Bounded_String;
Left : in Maps. Character_Set;
Ri ght in Maps. Character_Set);
function Head (Source : in Bounded_String;
Count : in Natural;
Pad : in Character = Space;
Dr op :in Truncation := Error)
return Bounded_String;
procedure Head (Source : in out Bounded_String;
Count in Natural;
Pad in Character = Space;
Dr op in Truncation := Error);
function Tail (Source : in Bounded_String;
Count : in Natural;
Pad : in Character = Space;
Dr op :in Truncation := Error)
return Bounded_String;
procedure Tail (Source : in out Bounded_String;
Count in Natural;
Pad in Character = Space;
Dr op in Truncation := Error);
- - String constructor subprograms
function "*" (Left in Natural;
Ri ght in Character)
return Bounded_String;
function "*" (Left in Natural;
Ri ght in String)
return Bounded_Stri ng;
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function "*" (Left : in Natural; 77
Ri ght : in Bounded_String)
return Bounded_String;
function Replicate (Count : in Natural; 78
tem : in Character;
Drop : in Truncation := Error)
return Bounded_Stri ng;
function Replicate (Count : in Natural; 79
Item : in String;
Drop : in Truncation := Error)
return Bounded_Stri ng;
function Replicate (Count : in Natural; 80
Item : in Bounded_String;
Drop : in Truncation := Error)

return Bounded_Stri ng;

private 81
... -- not specified by the language
end Generic_Bounded_Lengt h;

end Ada. Strings. Bounded; 82

Null_Bounded_String represents the null string. If an object of type Bounded_String is not otherwise 83
initialized, it will beinitialized to the same value as Null_Bounded_String.

function Length (Source : in Bounded_String) return Length_Range; 84

The Length function returns the length of the string represented by Source. 85

function To_Bounded_String (Source : in String; 86
Dr op : in Truncation := Error)

return Bounded_String;

If Source'Length <= Max_Length then this function returns a Bounded_String that represents  s7
Source. Otherwise the effect depends on the value of Drop:

« |f Drop=Léft, then the result is a Bounded_String that represents the string comprising 88
the rightmost Max_L ength characters of Source.
e |f Drop=Right, then the result is a Bounded String that represents the string 89
comprising the leftmost Max_L ength characters of Source.
e |f Drop=Error, then Strings.Length_Error is propagated. %
function To_String (Source : in Bounded_String) return String; 91

To_String returns the String value with lower bound 1 represented by Source. If B isa o2
Bounded_String, then B = To_Bounded_String(To_String(B)).

procedure Set_Bounded_Stri ng 92.1/2
(Target : out Bounded_Stri ng;
Source : in String;
Dr op cin Truncation := Error);
Equivalent to Target := To_Bounded_String (Source, Drop); 92.2/2

Each of the Append functions returns a Bounded_String obtained by concatenating the string or character 93
given or represented by one of the parameters, with the string or character given or represented by the
other parameter, and applying To_Bounded String to the concatenation result string, with Drop as
provided to the Append function.

Each of the procedures Append(Source, New_ltem, Drop) has the same effect as the corresponding 94
assignment Source := Append(Source, New_ltem, Drop).
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o5  Each of the "&" functions has the same effect as the corresponding Append function, with Error as the
Drop parameter.

96 function El ement (Source : in Bounded_String;
Index : in Positive)
return Character;
97 Returns the character at position Index in the string represented by Source; propagates
Index_Error if Index > Length(Source).
98 procedure Repl ace_El ement (Source : in out Bounded_String;
Index : in Positive;
By : in Character);
99 Updates Source such that the character at position Index in the string represented by Source is
By; propagates Index_Error if Index > Length(Source).
100 function Slice (Source : in Bounded_String;
Low :in Positive;
Hi gh :in Natural)

return String;

101/1 Returns the dlice at positions Low through High in the string represented by Source; propagates
Index_Error if Low > Length(Source)+1 or High > Length(Source). The bounds of the returned
string are Low and High..

101.1/2 function Bounded_Slice
(Source : in Bounded_String;
Low :in Positive;
Hi gh :in Natural)
return Bounded_String;
101.2/2 Returns the slice at positions Low through High in the string represented by Source as a bounded

string; propagates Index_Error if Low > Length(Source)+1 or High > Length(Source).

101.3/2 procedure Bounded_Slice
(Source : in Bounded_Stri ng;
Target :  out Bounded_String;

i Posi ti ve;
i Natural);

n
n
101.4/2 Equivalent to Target := Bounded_Slice (Source, Low, High);

102 Each of the functions "=", "<", ">", "<=", and ">=" returns the same result as the corresponding String
operation applied to the String values given or represented by the two parameters.

103 Each of the search subprograms (Index, Index_Non_Blank, Count, Find_Token) has the same effect as the
corresponding subprogram in Strings.Fixed applied to the string represented by the Bounded_String
parameter.

104 Each of the Translate subprograms, when applied to a Bounded_String, has an analogous effect to the
corresponding subprogram in Strings.Fixed. For the Translate function, the translation is applied to the
string represented by the Bounded_String parameter, and the result is converted (via To_Bounded_String)
to aBounded_String. For the Trandlate procedure, the string represented by the Bounded_String parameter
after the trandation is given by the Trandate function for fixed-length strings applied to the string
represented by the original value of the parameter.

10511 Each of the transformation subprograms (Replace_Slice, Insert, Overwrite, Delete), selector subprograms
(Trim, Head, Tail), and constructor functions ("*") has an effect based on its corresponding subprogram in
Strings.Fixed, and Replicate is based on Fixed."*". In the case of a function, the corresponding fixed-
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length string subprogram is applied to the string represented by the Bounded String parameter.
To_Bounded String is applied the result string, with Drop (or Error in the case of
Generic_Bounded_Length."*") determining the effect when the string length exceeds Max_L ength. In the
case of a procedure, the corresponding function in Strings.Bounded.Generic_Bounded_L ength is applied,
with the result assigned into the Source parameter.

Implementation Advice

Bounded string objects should not be implemented by implicit pointers and dynamic allocation. 106

A.4.5 Unbounded-Length String Handling

The language-defined package Strings.Unbounded provides a private type Unbounded_String and aset of 1
operations. An object of type Unbounded_String represents a String whose low bound is 1 and whose
length can vary conceptually between O and Natural'Last. The subprograms for fixed-length string
handling are either overloaded directly for Unbounded_String, or are modified as needed to reflect the
flexibility in length. Since the Unbounded_String type is private, relevant constructor and selector
operations are provided.

Static Semantics
The library package Strings.Unbounded has the following declaration: 2

with Ada. Strings. Maps; 3
package Ada. Strings. Unbounded is
pragnma Preel abor at e( Unbounded) ;

type Unbounded_String is private; a2
pragma Preel aborabl e_Initialization(Unbounded_String);
Nul | _Unbounded_String : constant Unbounded_Stri ng; 5
function Length (Source : in Unbounded_String) return Natural; 6
type String_Access is access all String; 7
procedure Free (X : in out String_Access);
- - Conversion, Concatenation, and Selection functions 8
function To_Unbounded_String (Source : in String) 9
return Unbounded_Stri ng;
function To_Unbounded_String (Length : in Natural) 10
return Unbounded_Stri ng;
function To_String (Source : in Unbounded_String) return String; 11
procedure Set_Unbounded_String 11.1/2
(Target : out Unbounded_Stri ng;
Source : in String);
procedure Append (Source : in out Unbounded_String; 12
New_|tem: in Unbounded_String);
procedure Append (Source : in out Unbounded_String; 13
New_ Item: in String);
procedure Append (Source : in out Unbounded_String; 14
New |tem: in Character);
function "&" (Left, Right : in Unbounded_String) 15
return Unbounded_String;
function "&" (Left : in Unbounded_String; Right : in String) 16
return Unbounded_String;
function "&" (Left : in String; Right : in Unbounded_String) 17

return Unbounded_Stri ng;
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Ri ght

Ri ght in Character)

i n Unbounded_Stri ng)

i n Unbounded_Stri ng;

in out Unbounded_String;
in Positive;
in Character);

Unbounded_Stri ng;

18 function "&" (Left i n Unbounded_Stri ng;
return Unbounded_Stri ng;
19 function "&" (Left in Character;
return Unbounded_Stri ng;
20 function El ement (Source :
I ndex in Positive)
return Character;
21 procedure Repl ace_El ement (Source :
I ndex
By :
22 function Slice (Source : in
Low in Positive;
Hi gh in Natural)

return String;

22.1/2 function Unbounded_Slice
(Source : in Unbounded_String;
Low in Positive;
Hi gh in Natural)
return Unbounded_Stri ng;
22212 procedure Unbounded_Slice
(Source : in Unbounded_St ri ng;
Tar get out Unbounded_Stri ng;
Low in Posi ti ve;
Hi gh in Natural);
23 function "=" (Left, Right i n Unbounded_String) return Bool ean;
24 function "=" (Left i n Unbounded_String; R ght in String)
return Bool ean;
25 function "=" (Left in String; Right i n Unbounded_Stri ng)
return Bool ean;
26 function "<" (Left, Right i n Unbounded_String) return Bool ean;
27 function "<" (Left in Unbounded_String; Right in String)
return Bool ean;
28 function "<" (Left in String; Right i n Unbounded_Stri ng)
return Bool ean;
29 function "<=" (Left, Right i n Unbounded_String) return Bool ean;
30 function "<=" (Left i n Unbounded_String; R ght in String)
return Bool ean;
31 function "<=" (Left in String; Right i n Unbounded_Stri ng)
return Bool ean;
32 function ">" (Left, Right i n Unbounded_String) return Bool ean;
33 function ">" (Left in Unbounded_String; Right in String)
return Bool ean;
34 function ">" (Left in String; Right i n Unbounded_Stri ng)
return Bool ean;
35 function ">=" (Left, Right i n Unbounded_String) return Bool ean;
36 function ">=" (Left i n Unbounded_String; R ght in String)
return Bool ean;
37 function ">=" (Left in String; Right i n Unbounded_String)
return Bool ean;
38 - - Search subprograms
38.1/2 function Index (Source i n Unbounded_Stri ng;
Pattern : in String;
From in Positive;
Goi ng in Direction := Forward;
Mappi ng : in Maps. Character_Mapping := Maps.ldentity)

return Natural;

A.4.5 Unbounded-Length String Handling
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function | ndex (Source i n Unbounded_Stri ng;
Pattern : in String;
From : in Positive;
Goi ng : in Direction := Forward;
Mappi ng : in Mps. Charact er _Mappi ng_Functi on)
return Natural;
function I ndex (Source in Unbounded_Stri ng;
Pattern in String;
Goi ng in Direction := Forward;
Mappi ng in Maps. Char act er _Mappi ng
:= Maps. ldentity)
return Natural;
function I ndex (Source in Unbounded_Stri ng;
Pattern : in String;
Goi ng :in Direction := Forward;
Mappi ng : in Maps. Character_Mppi ng_Functi on)
return Natural;
function I ndex (Source in Unbounded_Stri ng;
Set : in Maps. Character_Set;
From :in Positive;
Test : in Menbership := Inside;
Goi ng : in Direction := Forward)
return Natural;
function Index (Source : in Unbounded_String;
Set : in Maps. Character_Set;
Test in Menbership : = Inside;
Goi ng in Direction = Forward) return Natural;
function I ndex_Non_Bl ank (Source : in Unbounded_Stri ng;
From in Positive;
Goi ng in Direction := Forward)
return Natural;
function I ndex_Non_Bl ank (Source : in Unbounded_Stri ng;
Goi ng in Direction := Forward)
return Natural;
function Count (Source : in Unbounded_Stri ng;
Pattern : in String;
Mapping : in Maps. Character_Mppi ng
;= Maps. ldentity)
return Natural;
function Count (Source : in Unbounded_Stri ng;
Pattern : in String;
Mappi ng : in Maps. Character_Mppi ng_Functi on)
return Natural;
function Count (Source : in Unbounded_Stri ng;
Set : in Maps. Character_Set)

return Natural;

procedure Find_Token (Source :

Set
Test
First
Last

- - String trang ation subprograms
function Transl ate (Source

Mappi ng :

return Unbounded_Stri ng;
procedure Transl ate (Source

Mappi ng

function Transl ate (Source

Mappi ng :

return Unbounded_Stri ng;
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i n Unbounded_Stri ng;
in Maps. Charact er _Set ;
in Menber shi p;

out Positive;

out Natural);

n Unbounded_Stri ng;
n Maps. Char act er _Mappi ng)

in out Unbounded_String;
in Maps. Char act er _Mappi ng) ;

in Unbounded_Stri ng;
i n Maps. Char act er _Mappi ng_Functi on)
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procedure Transl ate (Source

Mappi ng :
- - String transformation subprograms
function Replace_Slice (Sourc
Low
Hi gh
By
return Unbounded_Stri ng;
procedure Replace_Slice (Sour
Low
Hi gh
By
function Insert (Source i
Before i
New | tem: i

return Unbounded_Stri ng;

procedure Insert (Source
Bef ore
New_|tem :

function Overwite (Source
Posi tion
New_ | tem

return Unbounded_String;

procedure Overwrite (Source

ce Manual

in out Unbounded_String;
i n Maps. Char act er _Mappi ng_Function);

e Unbounded_Stri ng;

Posi tive;

53335

ce : in out Unbounded_String;
:in Positive;
in Natural ;
in String);

n Unbounded_Stri ng;
n Positive,;
n String)

in out Unbounded_String;
in Positive;
in String);
i n Unbounded_Stri ng;
in Positive;
in String)

in out Unbounded_String;

Posi tion in Positive;
New_ | tem in String);
function Delete (Source i n Unbounded_Stri ng;
From in Positive;
Through : in Natural)

return Unbounded_Stri

procedure Del ete (Source
From
Thr oug

function Trim (Source :
Si de
return Unbounded_Stri

procedure Trim (Source :
Si de
function Trim (Source :
Left
Ri ght
return Unbounded_Stri
procedure Trim (Source :
Left
Ri ght
function Head (Source :
Count
Pad :
return Unbounded_Stri

procedure Head (Source :
Count
Pad

(Source :
Count
Pad :
return Unbounded_Stri

procedure Tail (Source :
Count
Pad

function Tail
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ng;
in out Unbounded_String;
in Positive;

h : in Natural);

i n Unbounded_Stri ng;
in TrimEnd)

ng;

n out Unbounded_Stri ng;
n Trim End);

n Unbounded_Stri ng;

n Maps. Charact er_Set;
n Maps. Charact er_Set)
9
i
i
i

n
n
9
i
i

i
i
i
ng;

n out Unbounded_Stri ng;
n Maps. Character_Set;

n Maps. Character_Set);

Unbounded_Stri ng;
Nat ur al ;

i
i
i
n

n
n

n Character := Space)

g,

in out Unbounded_Stri ng;
in Natural ;

in Character := Space);
i n Unbounded_Stri ng;

in Natural;

i ;= Space)
ng;

n
n
n Character
9
i
i
i

n out Unbounded_Stri ng;
n Natural;
n Character := Space);
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function "*" (Left : in Natural;
Right : in Character)
return Unbounded_Stri ng;
function "*" (Left : in Natural;

Right : in String)
return Unbounded_String;

function "*" (Left : in Natural;
Ri ght : in Unbounded_String)
return Unbounded_Stri ng;

private
... -- not specified by the language
end Ada. Strings. Unbounded;

The type Unbounded_String needs finalization (see 7.6).

Null_Unbounded_String represents the null String. If an object of type Unbounded_String is not otherwise
initialized, it will beinitialized to the same value as Null_Unbounded_String.

The function Length returns the length of the String represented by Source.

The type String_Access provides a (non-private) access type for explicit processing of unbounded-length
strings. The procedure Free performs an unchecked deall ocation of an object of type String_Access.

The function To_Unbounded_String(Source : in String) returns an Unbounded_String that represents
Source. The function To_Unbounded_String(Length : in Natural) returns an Unbounded_String that
represents an uninitialized String whose length is Length.

The function To_String returns the String with lower bound 1 represented by Source. To_String and
To_Unbounded_String are related as follows:

e |If SisaString, then To_String(To_Unbounded_String(S)) = S.

e If Uisan Unbounded_String, then To_Unbounded_String(To_String(U)) = U.
The procedure Set_Unbounded_String sets Target to an Unbounded_String that represents Source.

For each of the Append procedures, the resulting string represented by the Source parameter is given by
the concatenation of the original value of Source and the value of New_Item.

Each of the "&" functions returns an Unbounded_String obtained by concatenating the string or character
given or represented by one of the parameters, with the string or character given or represented by the
other parameter, and applying To_Unbounded_String to the concatenation result string.

The Element, Replace Element, and Slice subprograms have the same effect as the corresponding
bounded-length string subprograms.

The function Unbounded_Slice returns the slice at positions Low through High in the string represented by
Source as an Unbounded_String. The procedure Unbounded_Slice sets Target to the Unbounded_String
representing the slice at positions Low through High in the string represented by Source. Both routines
propagate Index_Error if Low > Length(Source)+1 or High > Length(Source).

Each of the functions "=", "<", ">", "<=", and ">=" returns the same result as the corresponding String
operation applied to the String values given or represented by Left and Right.

Each of the search subprograms (Index, Index_Non_Blank, Count, Find_Token) has the same effect as the
corresponding subprogram in Strings.Fixed applied to the string represented by the Unbounded_String
parameter.
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The Trandate function has an analogous effect to the corresponding subprogram in Strings.Fixed. The
trandation is applied to the string represented by the Unbounded_String parameter, and the result is
converted (via To_Unbounded_String) to an Unbounded_String.

Each of the transformation functions (Replace_Slice, Insert, Overwrite, Delete), selector functions (Trim,
Head, Tail), and constructor functions ("*") is likewise analogous to its corresponding subprogram in
Strings.Fixed. For each of the subprograms, the corresponding fixed-length string subprogram is applied to
the string represented by the Unbounded_String parameter, and To_Unbounded_String is applied the
result string.

For each of the procedures Translate, Replace_Slice, Insert, Overwrite, Delete, Trim, Head, and Tail, the
resulting string represented by the Source parameter is given by the corresponding function for fixed-
length strings applied to the string represented by Source's original value.

Implementation Requirements
No storage associated with an Unbounded_String object shall be lost upon assignment or scope exit.

A.4.6 String-Handling Sets and Mappings

The language-defined package Strings.Maps.Constants declares Character Set and Character_Mapping
constants corresponding to classification and conversion functions in package Characters.Handling.

Satic Semantics
Thelibrary package Strings.Maps.Constants has the following declaration:

package Ada. Strings. Maps. Constants is
pragma Pure(Constants);

Control _Set : constant Character_Set;

Graphi c_Set : constant Character_Set;

Letter_Set : constant Character_Set;

Lower _Set : constant Character_Set;

Upper _Set : constant Character_Set;

Basi c_Set : constant Character_Set;

Deci mal _Di git _Set : constant Character_Set;

Hexadeci mal _Digit_Set : constant Character_Set;

Al phanuneri c_Set : constant Character_Set;

Speci al _Set . constant Character_Set;

| SO _646_Set : constant Character_Set;

Lower _Case_Map const ant Char act er _Mappi ng;
- - Mapsto fower case for Ietters elseidentity

Upper _Case_Map : constant Character_Mappi ng;
- - Mapsto upper case for letters, elseidentity

Basi c_Map : constant Character_Mapping;
- - Mapsto basic letter for letters, elseidentity

private

- - not specified by the language
end Ada. Stri ngs. Maps. Const ant s;

Each of these constants represents a correspondingly named set of characters or character mapping in
Characters.Handling (see A.3.2).

A.4.7 Wide_String Handling

Facilities for handling strings of Wide_Character elements are found in the packages Strings.Wide_Maps,
Strings.Wide_Fixed, Strings.Wide_Bounded, Strings.Wide _Unbounded, and Strings.Wide_Maps.Wide_-
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Constants, and in the functions Strings.Wide Hash, Strings.Wide Fixed.Wide Hash, Strings.-
Wide_Bounded.Wide Hash, and Strings.Wide_Unbounded.Wide Hash. They provide the same string-
handling operations as the corresponding packages and functions for strings of Character elements.

Static Semantics
The package Strings.Wide_Maps has the following declaration.

package Ada. Strings. Wde_Maps is
pragma Preel abor at e(W de_Maps) ;

- - Representation for a set of Wide_Character values:
type Wde_Character_Set is private,;
pragnma Preel aborable_lnitialization(Wde_Character_Set);

Nul | _Set : constant W de_Character_Set;

type Wde_Character_Range is
record
Low : Wde_Character;
Hi gh : Wde_Character;
end record;
- - Represents Wide_Character range Low..High

type Wde_Character_Ranges is array (Positive range <>)
of W de_Char act er _Range;

function To_Set (Ranges : in Wde_Character_Ranges)
return Wde_Character_Set;

function To_Set ( Span : in Wde_Character_Range)
return Wde_Character_Set;

function To_Ranges ( Set : in Wde_Character_Set)
return Wde_Charact er _Ranges;

function "=" (Left, Right : in Wde_Character_Set) return Bool ean;

function "not" (Right : in Wde_Character_Set)
return Wde_Character_Set;

function "and" (Left, Right : in Wde_Character_Set)
return Wde_Character_Set;

function "or" (Left, Right : in Wde_Character_Set)
return Wde_Character_Set;

function "xor" (Left, Right : in Wde_Character_Set)
return Wde_Character_Set;

function "-" (Left, Right : in Wde_Character_Set)
return Wde_Character_Set;

function Is_In (Elenment : in Wde_Character;

Set . in Wde_Character_Set)

return Bool ean;

function |s_Subset (Elements : in Wde_Character_Set;

Set : in Wde_Character_Set)

return Bool ean;

function "<=" (Left : in Wde_Character_Set;

Right : in Wde_Character_Set)

return Bool ean renanmes |s_Subset;

- - Alternative representation for a set of Wide_Character values:
subt ype Wde_Character_Sequence is Wde_String;

function To_Set (Sequence : in Wde_Character_Sequence)
return Wde_Character_Set;

function To_Set (Singleton : in Wde_Character)
return Wde_Character_Set;

function To_Sequence (Set : in Wde_Character_Set)
return Wde_Charact er _Sequence;
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- - Representation for a Wide_Character to Wide_Character mapping:
type Wde_Character_Mapping is private;
pragnma Preel aborable_Initialization(Wde_Character_Nappi ng);
function Value (Map : in Wde_Character_Mapping;
El ement : in Wde_Character)
return Wde_Character;
Identity : constant W de_Charact er _Mappi ng;

function To_Mapping (From To : in Wde_Character_Sequence)
return W de_Charact er_Mappi ng;

function To_Domain (Map : in Wde_Character_Mappi ng)
return W de_Charact er_Sequence;

function To_Range (Map : in Wde_Character_Mapping)
return W de_Charact er _Sequence;

type Wde_Character_Mpping Function is
access function (From: in Wde_Character) return Wde_Character;

private
... -~ not specified by the language
end Ada. Strings. Wde_Maps;

The context clause for each of the packages StringsWide Fixed, Strings.Wide Bounded, and

Strings.Wide_Unbounded identifies Strings.Wide_Maps instead of Strings.Maps.

For each of the packages StringsFixed, Strings.Bounded,  Strings.Unbounded,

and

Strings.Maps.Constants, and for functions Strings.Hash, Strings.Fixed.Hash, Strings.Bounded.Hash, and

Strings.Unbounded.Hash, the corresponding wide string package has the same contents except that
* Wide_Space replaces Space
* Wide_Character replaces Character
* Wide_String replaces String
e Wide Character_Set replaces Character_Set
*  Wide_Character_Mapping replaces Character_Mapping
* Wide_Character_Mapping_Function replaces Character_Mapping_Function
*  Wide_Maps replaces Maps
* Bounded Wide_String replaces Bounded_String
* Null_Bounded_Wide_String replaces Null_Bounded_String
e To_Bounded Wide String replaces To_Bounded_String
* To_Wide_String replaces To_String
* Set_Bounded_Wide_String replaces Set_Bounded_String
e Unbounded_Wide_String replaces Unbounded_String
e Null_Unbounded Wide_String replaces Null_Unbounded_String
* Wide_String_Access replaces String_Access
e To_Unbounded Wide_String replaces To_Unbounded_String
e Set_Unbounded_Wide_String replaces Set_Unbounded_String

The following additional declaration is present in Strings.Wide _Maps.Wide_Constants:

Character_Set : constant W de_Maps. Wde_Charact er_Set;
- - Contains each Wide_Character value WC such that
- - Characters.Conversions.Is_Character(WC) is True

A.4.7 Wide_String Handling 10 November 2006
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Each Wide Character_Set constant in the package Strings.Wide Maps.Wide Constants contains no
values outside the Character portion of Wide Character. Similarly, each Wide_Character_Mapping
constant in this package is the identity mapping when applied to any element outside the Character portion
of Wide_Character.

Pragma Pure isreplaced by pragma Preelaborate in Strings.Wide Maps.Wide_Constants.

NOTES
12 If a null Wide_Character_Mapping_Function is passed to any of the Wide String handling subprograms,
Constraint_Error is propagated.

This paragraph was del eted.

A.4.8 Wide_Wide_String Handling

Facilities for handling strings of Wide Wide Character elements are found in the packages Strings.-
Wide Wide Maps, Strings.Wide Wide Fixed, StringsWide Wide Bounded, Strings.Wide Wide -
Unbounded, and StringsWide Wide Maps.Wide Wide Constants, and in the functions Strings.-
Wide Wide Hash, StringsWide Wide Fixed.Wide Wide Hash, Strings.Wide Wide Bounded.Wide -
Wide Hash, and Strings.Wide Wide Unbounded.Wide Wide Hash. They provide the same string-
handling operations as the corresponding packages and functions for strings of Character elements.

Static Semantics
Thelibrary package Strings.Wide_Wide_Maps has the following declaration.

package Ada. Strings. Wde_Wde_Maps is
pragna Preel abor at e(W de_W de_Maps) ;

- - Representation for a set of Wide_Wide_Character values:
type Wde_Wde_Character_Set is private;
pragna Preel aborable_Initializati on(Wde_W de_Character_Set);

Nul | _Set : constant Wde_W de_Character_Set;

type Wde_Wde_Character_Range is
record
Low : Wde_Wde_Character;
H gh : Wde_Wde_Character;
end record,
- - Represents Wide_Wide_Character range Low..High

type Wde_Wde_Character_Ranges is array (Positive range <>)
of W de_W de_Charact er _Range;

function To_Set (Ranges : in Wde_W de_Character_Ranges)
return Wde_W de_Character_Set;

function To_Set (Span : in Wde_Wde_Character_Range)
return Wde_W de_Character_Set;

function To_Ranges (Set : in Wde_Wde_Character_Set)
return Wde_W de_Char act er _Ranges;

function "=" (Left, Right : in Wde_Wde_Character_Set) return Bool ean;

function "not" (Right : in Wde_Wde_Character_Set)
return Wde_W de_Character_Set;

function "and" (Left, Right : in Wde_Wde_Character_Set)
return Wde_W de_Character_Set;

function "or" (Left, Right : in Wde_Wde_Character_Set)
return Wde_W de_Character_Set;

function "xor" (Left, Right : in Wde_Wde_Character_Set)
return Wde_W de_Character_Set;

function "-" (Left, Right : in Wde_Wde_Character_Set)
return Wde_W de_Character_Set;
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function Is_In (Element : in Wde_Wde_Character;
Set : in Wde_Wde_Character_Set)
return Bool ean;

function |Is_Subset (Elements : in Wde_Wde_Character_Set;
Set : in Wde_Wde_Character_Set)
return Bool ean;
function "<=" (Left : in Wde_Wde_Character_Set;
Right : in Wde_Wde_Character Set)

return Bool ean renanes |s_Subset;

- - Alternative representation for a set of Wide_Wide_Character values:
subt ype W de_ W de_Character_Sequence is Wde Wde_String;

function To_Set (Sequence : in Wde_Wde_Character_Sequence)
return Wde_W de_Character_Set;

function To_Set (Singleton : in Wde_Wde_Character)
return Wde_W de_Character_Set;

function To_Sequence (Set : in Wde_Wde_Character_Set)
return Wde_W de_Character_Sequence;

- - Representation for a Wide_Wide_Character to Wide_Wide_Character

- - mapping:

type Wde_Wde_Character_Mpping is private;

pragma Preel aborabl e_Initialization(Wde_ W de_Charact er _Mappi ng) ;

function Val ue (Map : in Wde_Wde_Charact er _Mappi ng;
El ement : in Wde_Wde_Character)
return Wde_Wde_Character;

Identity : constant W de_W de_Charact er _Mappi ng;

function To_Mapping (From To : in Wde_Wde_Character_Sequence)
return Wde_W de_Char act er _Mappi ng;

function To_Domain (Map : in Wde_W de_Charact er_Mappi ng)
return Wde_W de_Char act er _Sequence;

function To_Range (Map : in Wde_W de_Char act er _Mappi ng)
return Wde_W de_Charact er _Sequence;

type Wde_W de_Character_Mppi ng_Function is
access function (From: in Wde_Wde_Character)
return Wde_W de_Character;

private
- - not specified by the language
end Ada. Stri ngs. Wde_W de_Maps;
The context clause for each of the packages Strings.Wide_Wide_Fixed, Strings.Wide_Wide_Bounded, and
Strings.Wide_Wide_Unbounded identifies Strings.Wide_Wide_Maps instead of Strings.Maps.

For each of the packages Strings.Fixed, Strings.Bounded, Strings.Unbounded, and Strings.-
Maps.Constants, and for functions Strings.Hash, Strings.Fixed.Hash, Strings.Bounded.Hash, and Strings.-
Unbounded.Hash, the corresponding wide wide string package or function has the same contents except
that

* Wide_Wide_Space replaces Space

* Wide Wide_Character replaces Character

* Wide Wide_String replaces String

e Wide Wide_Character_Set replaces Character_Set

* Wide Wide_Character_Mapping replaces Character_Mapping

*  Wide Wide_Character_Mapping_Function replaces Character_Mapping_Function
* Wide_Wide_Maps replaces Maps
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Bounded_Wide_Wide_String replaces Bounded_String
Null_Bounded_Wide_Wide_String replaces Null_Bounded_String

¢ To_Bounded Wide Wide_String replaces To_Bounded_String

e To_Wide Wide_String replaces To_String
Set_Bounded_Wide_Wide_String replaces Set_ Bounded_String
Unbounded_Wide_Wide_String replaces Unbounded_String
Null_Unbounded_Wide_Wide_String replaces Null_Unbounded_String
¢ Wide Wide_String_Access replaces String_Access

¢ To_Unbounded Wide Wide_String replaces To_Unbounded_String

¢ Set_Unbounded_Wide Wide_String replaces Set__Unbounded_String

The following additional declarations are present in Strings.Wide Wide_Maps.Wide_Wide_Constants:

Character_Set : constant Wde_Wde_Maps. Wde_W de_Character_Set;

- - Contains each Wide_Wide_Character value WWC such that

- - Characters.Conversions.Is_Character(WW(C) is True

W de_Character_Set : constant Wde_W de_Maps. Wde_W de_Char act er _Set ;

- - Contains each Wide_Wide_Character value WWC such that

- - Characters.Conversions.Is Wide_Character(\WWC) is True
Each Wide Wide Character_Set constant in the package Strings.Wide Wide Maps.Wide Wide -
Constants contains no values outside the Character portion of Wide Wide_Character. Similarly, each
Wide Wide _Character_Mapping constant in this package is the identity mapping when applied to any
element outside the Character portion of Wide Wide_Character.

Pragma Pure isreplaced by pragma Preelaborate in Strings.Wide_Wide Maps.Wide_Wide_Constants.
