
Ada Reference Manual, ISO/IEC 8652:2007(E) Ed. 3

Ada Reference Manual

ISO/IEC 8652:1995(E)

with Technical Corrigendum 1

and Amendment 1

Language and Standard Libraries

Copyright © 1992, 1993, 1994, 1995 Intermetrics, Inc.

Copyright © 2000 The MITRE Corporation, Inc.

Copyright © 2004, 2005, 2006 AXE Consultants

Copyright © 2004, 2005, 2006 Ada-Europe

Ada Reference Manual - Language and Standard Libraries

Copyright © 1992, 1993, 1994, 1995, Intermetrics, Inc.

This copyright is assigned to the U.S. Government. All rights reserved.

This document may be copied, in whole or in part, in any form or by any means, as is or with alterations,
provided that (1) alterations are clearly marked as alterations and (2) this copyright notice is included
unmodified in any copy. Compiled copies of standard library units and examples need not contain this
copyright notice so long as the notice is included in all copies of source code and documentation.

Technical Corrigendum 1

Copyright © 2000, The MITRE Corporation. All Rights Reserved.

This document may be copied, in whole or in part, in any form or by any means, as is, or with alterations,
provided that (1) alterations are clearly marked as alterations and (2) this copyright notice is included
unmodified in any copy. Any other use or distribution of this document is prohibited without the prior
express permission of MITRE.

You use this document on the condition that you indemnify and hold harmless MITRE, its Board of
Trustees, officers, agents, and employees, from any and all liability or damages to yourself or your
hardware or software, or third parties, including attorneys' fees, court costs, and other related costs and
expenses, arising out of your use of this document irrespective of the cause of said liability.

MITRE MAKES THIS DOCUMENT AVAILABLE ON AN "AS IS" BASIS AND MAKES NO
WARRANTY, EXPRESS OR IMPLIED, AS TO THE ACCURACY, CAPABILITY, EFFICIENCY
MERCHANTABILITY, OR FUNCTIONING OF THIS DOCUMENT. IN NO EVENT WILL MITRE
BE LIABLE FOR ANY GENERAL, CONSEQUENTIAL, INDIRECT, INCIDENTAL, EXEMPLARY,
OR SPECIAL DAMAGES, EVEN IF MITRE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

Amendment 1

Copyright © 2004, 2005, 2006, AXE Consultants. All Rights Reserved.

This document may be copied, in whole or in part, in any form or by any means, as is, or with alterations,
provided that (1) alterations are clearly marked as alterations and (2) this copyright notice is included
unmodified in any copy. Any other use or distribution of this document is prohibited without the prior
express permission of AXE.

You use this document on the condition that you indemnify and hold harmless AXE, its board, officers,
agents, and employees, from any and all liability or damages to yourself or your hardware or software, or

third parties, including attorneys' fees, court costs, and other related costs and expenses, arising out of your
use of this document irrespective of the cause of said liability.

AXE MAKES THIS DOCUMENT AVAILABLE ON AN "AS IS" BASIS AND MAKES NO
WARRANTY, EXPRESS OR IMPLIED, AS TO THE ACCURACY, CAPABILITY, EFFICIENCY
MERCHANTABILITY, OR FUNCTIONING OF THIS DOCUMENT. IN NO EVENT WILL AXE BE
LIABLE FOR ANY GENERAL, CONSEQUENTIAL, INDIRECT, INCIDENTAL, EXEMPLARY, OR
SPECIAL DAMAGES, EVEN IF AXE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

Consolidated Standard

Copyright © 2004, 2005, 2006, Ada-Europe.

This document may be copied, in whole or in part, in any form or by any means, as is, or with alterations,
provided that (1) alterations are clearly marked as alterations and (2) this copyright notice is included
unmodified in any copy. Any other use or distribution of this document is prohibited without the prior
express permission of Ada-Europe.

You use this document on the condition that you indemnify and hold harmless Ada-Europe and its Board
from any and all liability or damages to yourself or your hardware or software, or third parties, including
attorneys' fees, court costs, and other related costs and expenses, arising out of your use of this document
irrespective of the cause of said liability.

ADA-EUROPE MAKES THIS DOCUMENT AVAILABLE ON AN "AS IS" BASIS AND MAKES NO
WARRANTY, EXPRESS OR IMPLIED, AS TO THE ACCURACY, CAPABILITY, EFFICIENCY
MERCHANTABILITY, OR FUNCTIONING OF THIS DOCUMENT. IN NO EVENT WILL ADA-
EUROPE BE LIABLE FOR ANY GENERAL, CONSEQUENTIAL, INDIRECT, INCIDENTAL,
EXEMPLARY, OR SPECIAL DAMAGES, EVEN IF ADA-EUROPE HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

i 10 November 2006 Table of Contents

Table of Contents
Table of Contents..i
Foreword to this version of the Ada Reference Manual ...xi
Foreword...xii
Introduction ...xiii
Section 1: General..1

1.1 Scope ...1
1.1.1 Extent ..1
1.1.2 Structure ...2
1.1.3 Conformity of an Implementation with the Standard...4
1.1.4 Method of Description and Syntax Notation...5
1.1.5 Classification of Errors ...7

1.2 Normative References ..8
1.3 Definitions..8

Section 2: Lexical Elements..9
2.1 Character Set...9
2.2 Lexical Elements, Separators, and Delimiters...11
2.3 Identifiers ...12
2.4 Numeric Literals ..13

2.4.1 Decimal Literals ...13
2.4.2 Based Literals ..14

2.5 Character Literals ...14
2.6 String Literals ..15
2.7 Comments..15
2.8 Pragmas ...16
2.9 Reserved Words..18

Section 3: Declarations and Types ..19
3.1 Declarations...19
3.2 Types and Subtypes ...20

3.2.1 Type Declarations..22
3.2.2 Subtype Declarations..23
3.2.3 Classification of Operations...24

3.3 Objects and Named Numbers..25
3.3.1 Object Declarations ...26
3.3.2 Number Declarations...28

3.4 Derived Types and Classes ...29
3.4.1 Derivation Classes...32

3.5 Scalar Types ..34
3.5.1 Enumeration Types ...38
3.5.2 Character Types...39
3.5.3 Boolean Types ...40
3.5.4 Integer Types ...40
3.5.5 Operations of Discrete Types...43
3.5.6 Real Types..44
3.5.7 Floating Point Types ...45
3.5.8 Operations of Floating Point Types...47

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Table of Contents 10 November 2006 ii

3.5.9 Fixed Point Types.. 47
3.5.10 Operations of Fixed Point Types... 49

3.6 Array Types ... 50
3.6.1 Index Constraints and Discrete Ranges... 52
3.6.2 Operations of Array Types ... 54
3.6.3 String Types... 55

3.7 Discriminants.. 55
3.7.1 Discriminant Constraints ... 58
3.7.2 Operations of Discriminated Types .. 59

3.8 Record Types.. 60
3.8.1 Variant Parts and Discrete Choices .. 62

3.9 Tagged Types and Type Extensions .. 64
3.9.1 Type Extensions.. 67
3.9.2 Dispatching Operations of Tagged Types.. 68
3.9.3 Abstract Types and Subprograms .. 71
3.9.4 Interface Types .. 72

3.10 Access Types.. 75
3.10.1 Incomplete Type Declarations ... 77
3.10.2 Operations of Access Types.. 80

3.11 Declarative Parts .. 84
3.11.1 Completions of Declarations ... 84

Section 4: Names and Expressions... 87
4.1 Names .. 87

4.1.1 Indexed Components.. 88
4.1.2 Slices .. 89
4.1.3 Selected Components .. 90
4.1.4 Attributes.. 92

4.2 Literals ... 93
4.3 Aggregates .. 94

4.3.1 Record Aggregates ... 94
4.3.2 Extension Aggregates .. 97
4.3.3 Array Aggregates .. 98

4.4 Expressions .. 101
4.5 Operators and Expression Evaluation ... 102

4.5.1 Logical Operators and Short-circuit Control Forms ... 103
4.5.2 Relational Operators and Membership Tests .. 104
4.5.3 Binary Adding Operators ... 107
4.5.4 Unary Adding Operators .. 108
4.5.5 Multiplying Operators ... 109
4.5.6 Highest Precedence Operators ... 111

4.6 Type Conversions .. 112
4.7 Qualified Expressions.. 116
4.8 Allocators .. 117
4.9 Static Expressions and Static Subtypes.. 119

4.9.1 Statically Matching Constraints and Subtypes.. 122
Section 5: Statements ...123

5.1 Simple and Compound Statements - Sequences of Statements .. 123
5.2 Assignment Statements... 124
5.3 If Statements ... 126
5.4 Case Statements... 127
5.5 Loop Statements .. 128
5.6 Block Statements ... 130

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

iii 10 November 2006 Table of Contents

5.7 Exit Statements ...130
5.8 Goto Statements ...131

Section 6: Subprograms ...133
6.1 Subprogram Declarations..133
6.2 Formal Parameter Modes...135
6.3 Subprogram Bodies..136

6.3.1 Conformance Rules...137
6.3.2 Inline Expansion of Subprograms ...139

6.4 Subprogram Calls ...140
6.4.1 Parameter Associations..142

6.5 Return Statements ..143
6.5.1 Pragma No_Return ..145

6.6 Overloading of Operators ..146
6.7 Null Procedures ..147

Section 7: Packages ..149
7.1 Package Specifications and Declarations..149
7.2 Package Bodies ..150
7.3 Private Types and Private Extensions..151

7.3.1 Private Operations...154
7.4 Deferred Constants...156
7.5 Limited Types ..157
7.6 User-Defined Assignment and Finalization ...158

7.6.1 Completion and Finalization...161
Section 8: Visibility Rules ...165

8.1 Declarative Region..165
8.2 Scope of Declarations ..166
8.3 Visibility..167

8.3.1 Overriding Indicators ..170
8.4 Use Clauses...171
8.5 Renaming Declarations..172

8.5.1 Object Renaming Declarations ..172
8.5.2 Exception Renaming Declarations ..173
8.5.3 Package Renaming Declarations...174
8.5.4 Subprogram Renaming Declarations ..174
8.5.5 Generic Renaming Declarations ..176

8.6 The Context of Overload Resolution ..177
Section 9: Tasks and Synchronization ..181

9.1 Task Units and Task Objects...181
9.2 Task Execution - Task Activation..184
9.3 Task Dependence - Termination of Tasks..185
9.4 Protected Units and Protected Objects..187
9.5 Intertask Communication...190

9.5.1 Protected Subprograms and Protected Actions ..191
9.5.2 Entries and Accept Statements..192
9.5.3 Entry Calls ..195
9.5.4 Requeue Statements ...198

9.6 Delay Statements, Duration, and Time ...199
9.6.1 Formatting, Time Zones, and other operations for Time ..202

9.7 Select Statements ...208
9.7.1 Selective Accept ..209

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Table of Contents 10 November 2006 iv

9.7.2 Timed Entry Calls .. 211
9.7.3 Conditional Entry Calls... 212
9.7.4 Asynchronous Transfer of Control ... 213

9.8 Abort of a Task - Abort of a Sequence of Statements .. 214
9.9 Task and Entry Attributes.. 215
9.10 Shared Variables .. 216
9.11 Example of Tasking and Synchronization... 217

Section 10: Program Structure and Compilation Issues219
10.1 Separate Compilation... 219

10.1.1 Compilation Units - Library Units.. 219
10.1.2 Context Clauses - With Clauses .. 222
10.1.3 Subunits of Compilation Units .. 224
10.1.4 The Compilation Process... 226
10.1.5 Pragmas and Program Units.. 227
10.1.6 Environment-Level Visibility Rules ... 228

10.2 Program Execution... 229
10.2.1 Elaboration Control... 231

Section 11: Exceptions ...235
11.1 Exception Declarations.. 235
11.2 Exception Handlers.. 235
11.3 Raise Statements.. 236
11.4 Exception Handling.. 237

11.4.1 The Package Exceptions.. 238
11.4.2 Pragmas Assert and Assertion_Policy ... 240
11.4.3 Example of Exception Handling .. 241

11.5 Suppressing Checks.. 242
11.6 Exceptions and Optimization .. 245

Section 12: Generic Units ...247
12.1 Generic Declarations.. 247
12.2 Generic Bodies ... 249
12.3 Generic Instantiation.. 250
12.4 Formal Objects ... 252
12.5 Formal Types .. 254

12.5.1 Formal Private and Derived Types .. 255
12.5.2 Formal Scalar Types ... 257
12.5.3 Formal Array Types... 258
12.5.4 Formal Access Types ... 259
12.5.5 Formal Interface Types... 259

12.6 Formal Subprograms ... 260
12.7 Formal Packages .. 262
12.8 Example of a Generic Package ... 264

Section 13: Representation Issues ..267
13.1 Operational and Representation Items .. 267
13.2 Pragma Pack ... 270
13.3 Operational and Representation Attributes... 271
13.4 Enumeration Representation Clauses ... 277
13.5 Record Layout .. 278

13.5.1 Record Representation Clauses.. 278
13.5.2 Storage Place Attributes ..280
13.5.3 Bit Ordering ... 281

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

v 10 November 2006 Table of Contents

13.6 Change of Representation ...282
13.7 The Package System ..283

13.7.1 The Package System.Storage_Elements ..285
13.7.2 The Package System.Address_To_Access_Conversions ..286

13.8 Machine Code Insertions ...286
13.9 Unchecked Type Conversions ..287

13.9.1 Data Validity ...288
13.9.2 The Valid Attribute...289

13.10 Unchecked Access Value Creation...290
13.11 Storage Management..290

13.11.1 The Max_Size_In_Storage_Elements Attribute ..293
13.11.2 Unchecked Storage Deallocation ..294
13.11.3 Pragma Controlled...295

13.12 Pragma Restrictions ...295
13.12.1 Language-Defined Restrictions ...296

13.13 Streams..297
13.13.1 The Package Streams ...297
13.13.2 Stream-Oriented Attributes ..298

13.14 Freezing Rules ..303
The Standard Libraries..305
Annex A (normative) Predefined Language Environment307

A.1 The Package Standard...309
A.2 The Package Ada..313
A.3 Character Handling ..313

A.3.1 The Packages Characters, Wide_Characters, and Wide_Wide_Characters...............314
A.3.2 The Package Characters.Handling..314
A.3.3 The Package Characters.Latin_1...317
A.3.4 The Package Characters.Conversions ...322

A.4 String Handling...324
A.4.1 The Package Strings...324
A.4.2 The Package Strings.Maps ..324
A.4.3 Fixed-Length String Handling..327
A.4.4 Bounded-Length String Handling ...336
A.4.5 Unbounded-Length String Handling...343
A.4.6 String-Handling Sets and Mappings ...348
A.4.7 Wide_String Handling...348
A.4.8 Wide_Wide_String Handling ..351
A.4.9 String Hashing...353

A.5 The Numerics Packages ..354
A.5.1 Elementary Functions...355
A.5.2 Random Number Generation ...358
A.5.3 Attributes of Floating Point Types ..363
A.5.4 Attributes of Fixed Point Types...367

A.6 Input-Output..367
A.7 External Files and File Objects ...367
A.8 Sequential and Direct Files ...369

A.8.1 The Generic Package Sequential_IO...369
A.8.2 File Management ...370
A.8.3 Sequential Input-Output Operations...372
A.8.4 The Generic Package Direct_IO...373
A.8.5 Direct Input-Output Operations ...374

A.9 The Generic Package Storage_IO...375

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Table of Contents 10 November 2006 vi

A.10 Text Input-Output... 375
A.10.1 The Package Text_IO ... 377
A.10.2 Text File Management .. 382
A.10.3 Default Input, Output, and Error Files .. 383
A.10.4 Specification of Line and Page Lengths .. 384
A.10.5 Operations on Columns, Lines, and Pages ... 385
A.10.6 Get and Put Procedures... 388
A.10.7 Input-Output of Characters and Strings... 389
A.10.8 Input-Output for Integer Types.. 391
A.10.9 Input-Output for Real Types .. 393
A.10.10 Input-Output for Enumeration Types ... 396
A.10.11 Input-Output for Bounded Strings.. 397
A.10.12 Input-Output for Unbounded Strings ... 398

A.11 Wide Text Input-Output and Wide Wide Text Input-Output... 399
A.12 Stream Input-Output .. 400

A.12.1 The Package Streams.Stream_IO ... 400
A.12.2 The Package Text_IO.Text_Streams... 403
A.12.3 The Package Wide_Text_IO.Text_Streams.. 403
A.12.4 The Package Wide_Wide_Text_IO.Text_Streams ... 403

A.13 Exceptions in Input-Output... 404
A.14 File Sharing... 405
A.15 The Package Command_Line... 405
A.16 The Package Directories ... 407
A.17 The Package Environment_Variables.. 414
A.18 Containers .. 417

A.18.1 The Package Containers.. 417
A.18.2 The Package Containers.Vectors ... 417
A.18.3 The Package Containers.Doubly_Linked_Lists .. 431
A.18.4 Maps... 440
A.18.5 The Package Containers.Hashed_Maps .. 445
A.18.6 The Package Containers.Ordered_Maps ... 448
A.18.7 Sets .. 452
A.18.8 The Package Containers.Hashed_Sets.. 458
A.18.9 The Package Containers.Ordered_Sets... 462
A.18.10 The Package Containers.Indefinite_Vectors ... 466
A.18.11 The Package Containers.Indefinite_Doubly_Linked_Lists 467
A.18.12 The Package Containers.Indefinite_Hashed_Maps .. 467
A.18.13 The Package Containers.Indefinite_Ordered_Maps ... 468
A.18.14 The Package Containers.Indefinite_Hashed_Sets.. 468
A.18.15 The Package Containers.Indefinite_Ordered_Sets... 468
A.18.16 Array Sorting... 469

Annex B (normative) Interface to Other Languages..471
B.1 Interfacing Pragmas .. 471
B.2 The Package Interfaces... 474
B.3 Interfacing with C and C++ ... 475

B.3.1 The Package Interfaces.C.Strings .. 482
B.3.2 The Generic Package Interfaces.C.Pointers.. 485
B.3.3 Pragma Unchecked_Union.. 488

B.4 Interfacing with COBOL .. 490
B.5 Interfacing with Fortran... 496

Annex C (normative) Systems Programming...499
C.1 Access to Machine Operations .. 499

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

vii 10 November 2006 Table of Contents

C.2 Required Representation Support..500
C.3 Interrupt Support..500

C.3.1 Protected Procedure Handlers ..502
C.3.2 The Package Interrupts ..504

C.4 Preelaboration Requirements ...506
C.5 Pragma Discard_Names ..507
C.6 Shared Variable Control ..507
C.7 Task Information ..509

C.7.1 The Package Task_Identification ..509
C.7.2 The Package Task_Attributes..511
C.7.3 The Package Task_Termination ..513

Annex D (normative) Real-Time Systems ...515
D.1 Task Priorities...515
D.2 Priority Scheduling ..517

D.2.1 The Task Dispatching Model ...517
D.2.2 Task Dispatching Pragmas..519
D.2.3 Preemptive Dispatching ...520
D.2.4 Non-Preemptive Dispatching...521
D.2.5 Round Robin Dispatching..522
D.2.6 Earliest Deadline First Dispatching ..524

D.3 Priority Ceiling Locking ...526
D.4 Entry Queuing Policies ..528
D.5 Dynamic Priorities..529

D.5.1 Dynamic Priorities for Tasks ...529
D.5.2 Dynamic Priorities for Protected Objects...531

D.6 Preemptive Abort..532
D.7 Tasking Restrictions ..533
D.8 Monotonic Time..535
D.9 Delay Accuracy...538
D.10 Synchronous Task Control ...539
D.11 Asynchronous Task Control ...540
D.12 Other Optimizations and Determinism Rules..541
D.13 Run-time Profiles..542

D.13.1 The Ravenscar Profile ..543
D.14 Execution Time...544

D.14.1 Execution Time Timers...546
D.14.2 Group Execution Time Budgets ..548

D.15 Timing Events ...550
Annex E (normative) Distributed Systems ...553

E.1 Partitions ...553
E.2 Categorization of Library Units...554

E.2.1 Shared Passive Library Units ..555
E.2.2 Remote Types Library Units ..556
E.2.3 Remote Call Interface Library Units ..557

E.3 Consistency of a Distributed System...558
E.4 Remote Subprogram Calls ..559

E.4.1 Pragma Asynchronous...561
E.4.2 Example of Use of a Remote Access-to-Class-Wide Type ...561

E.5 Partition Communication Subsystem ..563
Annex F (normative) Information Systems...567

F.1 Machine_Radix Attribute Definition Clause...567

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Table of Contents 10 November 2006 viii

F.2 The Package Decimal... 568
F.3 Edited Output for Decimal Types ... 569

F.3.1 Picture String Formation.. 570
F.3.2 Edited Output Generation .. 574
F.3.3 The Package Text_IO.Editing... 578
F.3.4 The Package Wide_Text_IO.Editing.. 581
F.3.5 The Package Wide_Wide_Text_IO.Editing ... 581

Annex G (normative) Numerics ...583
G.1 Complex Arithmetic... 583

G.1.1 Complex Types ... 583
G.1.2 Complex Elementary Functions ... 588
G.1.3 Complex Input-Output ... 591
G.1.4 The Package Wide_Text_IO.Complex_IO .. 594
G.1.5 The Package Wide_Wide_Text_IO.Complex_IO.. 594

G.2 Numeric Performance Requirements .. 594
G.2.1 Model of Floating Point Arithmetic... 595
G.2.2 Model-Oriented Attributes of Floating Point Types.. 596
G.2.3 Model of Fixed Point Arithmetic ... 597
G.2.4 Accuracy Requirements for the Elementary Functions ... 599
G.2.5 Performance Requirements for Random Number Generation.................................... 601
G.2.6 Accuracy Requirements for Complex Arithmetic ... 601

G.3 Vector and Matrix Manipulation ... 603
G.3.1 Real Vectors and Matrices... 603
G.3.2 Complex Vectors and Matrices... 608

Annex H (normative) High Integrity Systems...619
H.1 Pragma Normalize_Scalars... 619
H.2 Documentation of Implementation Decisions .. 620
H.3 Reviewable Object Code ... 620

H.3.1 Pragma Reviewable.. 620
H.3.2 Pragma Inspection_Point .. 621

H.4 High Integrity Restrictions.. 622
H.5 Pragma Detect_Blocking .. 624
H.6 Pragma Partition_Elaboration_Policy ... 625

Annex J (normative) Obsolescent Features...627
J.1 Renamings of Ada 83 Library Units.. 627
J.2 Allowed Replacements of Characters.. 627
J.3 Reduced Accuracy Subtypes.. 628
J.4 The Constrained Attribute ... 629
J.5 ASCII .. 629
J.6 Numeric_Error .. 630
J.7 At Clauses ... 630

J.7.1 Interrupt Entries .. 630
J.8 Mod Clauses ... 632
J.9 The Storage_Size Attribute.. 632
J.10 Specific Suppression of Checks .. 632
J.11 The Class Attribute of Untagged Incomplete Types... 633
J.12 Pragma Interface .. 633
J.13 Dependence Restriction Identifiers.. 633
J.14 Character and Wide_Character Conversion Functions ... 634

Annex K (informative) Language-Defined Attributes ..635

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

ix 10 November 2006 Table of Contents

Annex L (informative) Language-Defined Pragmas...651
Annex M (informative) Summary of Documentation Requirements.......................653

M.1 Specific Documentation Requirements...653
M.2 Implementation-Defined Characteristics...655
M.3 Implementation Advice..661

Annex N (informative) Glossary ...669
Annex P (informative) Syntax Summary ...675
Annex Q (informative) Language-Defined Entities...703

Q.1 Language-Defined Packages ..703
Q.2 Language-Defined Types and Subtypes ...705
Q.3 Language-Defined Subprograms ...709
Q.4 Language-Defined Exceptions ...717
Q.5 Language-Defined Objects ...718

Index..723

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

xi 10 November 2006 Foreword to this version of the Ada Reference Manual

Foreword to this version of the Ada Reference Manual
The International Standard for the programming language Ada is ISO/IEC 8652:1995(E).

The Ada Working Group ISO/IEC JTC 1/SC 22/WG 9 is tasked by ISO with the work item to interpret
and maintain the International Standard and to produce Technical Corrigenda, as appropriate. The
technical work on the International Standard is performed by the Ada Rapporteur Group (ARG) of WG 9.
In September 2000, WG 9 approved and forwarded Technical Corrigendum 1 to SC 22 for ISO approval,
which was granted in February 2001. Technical Corrigendum 1 was published in June 2001.

In October 2002, WG 9 approved a schedule and guidelines for the preparation of an Amendment to the
International Standard. WG 9 approved the scope of the Amendment in June 2004. In April 2006, WG 9
approved and forwarded the Amendment to SC 22 for approval, which was granted in August 2006. Final
ISO/IEC approval is expected by early 2007.

The Technical Corrigendum lists the individual changes that need to be made to the text of the
International Standard to correct errors, omissions or inconsistencies. The corrections specified in
Technical Corrigendum 1 are part of the International Standard ISO/IEC 8652:1995(E).

Similarly, Amendment 1 lists the individual changes that need to be made to the text of the International
Standard to add new features as well as correct errors.

When ISO published Technical Corrigendum 1, it did not also publish a document that merges the changes
from the Technical Corrigendum into the text of the International Standard. It is not known whether ISO
will publish a document that merges the changes from Technical Corrigendum and Amendment 1 into the
text of the International Standard. However, ISO rules require that the project editor for the International
Standard be able to produce such a document on demand.

This version of the Ada Reference Manual is what the project editor would provide to ISO in response to
such a request. It incorporates the changes specified in the Technical Corrigendum and Amendment into
the text of ISO/IEC 8652:1995(E). It should be understood that the publication of any ISO document
involves changes in general format, boilerplate, headers, etc., as well as a review by professional editors
that may introduce editorial changes to the text. This version of the Ada Reference Manual is therefore
neither an official ISO document, nor a version guaranteed to be identical to an official ISO document,
should ISO decide to reprint the International Standard incorporating an approved Technical Corrigendum
and Amendment. It is nevertheless a best effort to be as close as possible to the technical content of such
an updated document. In the case of a conflict between this document and Amendment 1 as approved by
ISO (or between this document and Technical Corrigendum 1 in the case of paragraphs not changed by
Amendment 1; or between this document and the original 8652:1995 in the case of paragraphs not changed
by either Amendment 1 or Technical Corrigendum 1), the other documents contain the official text of the
International Standard ISO/IEC 8652:1995(E) and its Amendment.

As it is very inconvenient to have the Reference Manual for Ada specified in three documents, this
consolidated version of the Ada Reference Manual is made available to the public.

0.1/1

0.2/1

0.3/2

0.4/1

0.5/2

0.6/2

0.7/2

0.8/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Foreword 10 November 2006 xii

Foreword
ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical activity.
ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work.

In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC
JTC 1. Draft International Standards adopted by the joint technical committee are circulated to national
bodies for voting. Publication as an International Standard requires approval by at least 75 % of the
national bodies casting a vote.

International Standard ISO/IEC 8652 was prepared by Joint Technical Committee ISO/IEC JTC 1,
Information Technology.

This consolidated edition updates the second edition (ISO 8652:1995).

Annexes A to J form an integral part of this International Standard. Annexes K to Q are for information
only.

1

2

3

4/2

5/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

xiii 10 November 2006 Introduction

Introduction
This is the Ada Reference Manual.

Other available Ada documents include:
• Ada 95 Rationale. This gives an introduction to the new features of Ada incorporated in the 1995

edition of this Standard, and explains the rationale behind them. Programmers unfamiliar with
Ada 95 should read this first.

• Ada 2005 Rationale. This gives an introduction to the changes and new features in Ada 2005
(compared with the 1995 edition), and explains the rationale behind them. Programmers should
read this rationale before reading this Standard in depth.

• This paragraph was deleted.

• The Annotated Ada Reference Manual (AARM). The AARM contains all of the text in the
consolidated Ada Reference Manual, plus various annotations. It is intended primarily for
compiler writers, validation test writers, and others who wish to study the fine details. The
annotations include detailed rationale for individual rules and explanations of some of the more
arcane interactions among the rules.

Design Goals

Ada was originally designed with three overriding concerns: program reliability and maintenance,
programming as a human activity, and efficiency. The 1995 revision to the language was designed to
provide greater flexibility and extensibility, additional control over storage management and
synchronization, and standardized packages oriented toward supporting important application areas, while
at the same time retaining the original emphasis on reliability, maintainability, and efficiency. This
amended version provides further flexibility and adds more standardized packages within the framework
provided by the 1995 revision.

The need for languages that promote reliability and simplify maintenance is well established. Hence
emphasis was placed on program readability over ease of writing. For example, the rules of the language
require that program variables be explicitly declared and that their type be specified. Since the type of a
variable is invariant, compilers can ensure that operations on variables are compatible with the properties
intended for objects of the type. Furthermore, error-prone notations have been avoided, and the syntax of
the language avoids the use of encoded forms in favor of more English-like constructs. Finally, the
language offers support for separate compilation of program units in a way that facilitates program
development and maintenance, and which provides the same degree of checking between units as within a
unit.

Concern for the human programmer was also stressed during the design. Above all, an attempt was made
to keep to a relatively small number of underlying concepts integrated in a consistent and systematic way
while continuing to avoid the pitfalls of excessive involution. The design especially aims to provide
language constructs that correspond intuitively to the normal expectations of users.

Like many other human activities, the development of programs is becoming ever more decentralized and
distributed. Consequently, the ability to assemble a program from independently produced software
components continues to be a central idea in the design. The concepts of packages, of private types, and of
generic units are directly related to this idea, which has ramifications in many other aspects of the
language. An allied concern is the maintenance of programs to match changing requirements; type
extension and the hierarchical library enable a program to be modified while minimizing disturbance to
existing tested and trusted components.

1

2

3/2

3.1/2

4/1

5/2

6/2

7

8

9

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Introduction 10 November 2006 xiv

No language can avoid the problem of efficiency. Languages that require over-elaborate compilers, or that
lead to the inefficient use of storage or execution time, force these inefficiencies on all machines and on all
programs. Every construct of the language was examined in the light of present implementation
techniques. Any proposed construct whose implementation was unclear or that required excessive machine
resources was rejected.

Language Summary

An Ada program is composed of one or more program units. Program units may be subprograms (which
define executable algorithms), packages (which define collections of entities), task units (which define
concurrent computations), protected units (which define operations for the coordinated sharing of data
between tasks), or generic units (which define parameterized forms of packages and subprograms). Each
program unit normally consists of two parts: a specification, containing the information that must be
visible to other units, and a body, containing the implementation details, which need not be visible to other
units. Most program units can be compiled separately.

This distinction of the specification and body, and the ability to compile units separately, allows a program
to be designed, written, and tested as a set of largely independent software components.

An Ada program will normally make use of a library of program units of general utility. The language
provides means whereby individual organizations can construct their own libraries. All libraries are
structured in a hierarchical manner; this enables the logical decomposition of a subsystem into individual
components. The text of a separately compiled program unit must name the library units it requires.

Program Units

A subprogram is the basic unit for expressing an algorithm. There are two kinds of subprograms:
procedures and functions. A procedure is the means of invoking a series of actions. For example, it may
read data, update variables, or produce some output. It may have parameters, to provide a controlled
means of passing information between the procedure and the point of call. A function is the means of
invoking the computation of a value. It is similar to a procedure, but in addition will return a result.

A package is the basic unit for defining a collection of logically related entities. For example, a package
can be used to define a set of type declarations and associated operations. Portions of a package can be
hidden from the user, thus allowing access only to the logical properties expressed by the package
specification.

Subprogram and package units may be compiled separately and arranged in hierarchies of parent and child
units giving fine control over visibility of the logical properties and their detailed implementation.

A task unit is the basic unit for defining a task whose sequence of actions may be executed concurrently
with those of other tasks. Such tasks may be implemented on multicomputers, multiprocessors, or with
interleaved execution on a single processor. A task unit may define either a single executing task or a task
type permitting the creation of any number of similar tasks.

A protected unit is the basic unit for defining protected operations for the coordinated use of data shared
between tasks. Simple mutual exclusion is provided automatically, and more elaborate sharing protocols
can be defined. A protected operation can either be a subprogram or an entry. A protected entry specifies a
Boolean expression (an entry barrier) that must be True before the body of the entry is executed. A
protected unit may define a single protected object or a protected type permitting the creation of several
similar objects.

10

11

12

13

14

15

16

17

18

19/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

xv 10 November 2006 Introduction

Declarations and Statements

The body of a program unit generally contains two parts: a declarative part, which defines the logical
entities to be used in the program unit, and a sequence of statements, which defines the execution of the
program unit.

The declarative part associates names with declared entities. For example, a name may denote a type, a
constant, a variable, or an exception. A declarative part also introduces the names and parameters of other
nested subprograms, packages, task units, protected units, and generic units to be used in the program unit.

The sequence of statements describes a sequence of actions that are to be performed. The statements are
executed in succession (unless a transfer of control causes execution to continue from another place).

An assignment statement changes the value of a variable. A procedure call invokes execution of a
procedure after associating any actual parameters provided at the call with the corresponding formal
parameters.

Case statements and if statements allow the selection of an enclosed sequence of statements based on the
value of an expression or on the value of a condition.

The loop statement provides the basic iterative mechanism in the language. A loop statement specifies that
a sequence of statements is to be executed repeatedly as directed by an iteration scheme, or until an exit
statement is encountered.

A block statement comprises a sequence of statements preceded by the declaration of local entities used by
the statements.

Certain statements are associated with concurrent execution. A delay statement delays the execution of a
task for a specified duration or until a specified time. An entry call statement is written as a procedure call
statement; it requests an operation on a task or on a protected object, blocking the caller until the operation
can be performed. A called task may accept an entry call by executing a corresponding accept statement,
which specifies the actions then to be performed as part of the rendezvous with the calling task. An entry
call on a protected object is processed when the corresponding entry barrier evaluates to true, whereupon
the body of the entry is executed. The requeue statement permits the provision of a service as a number of
related activities with preference control. One form of the select statement allows a selective wait for one
of several alternative rendezvous. Other forms of the select statement allow conditional or timed entry
calls and the asynchronous transfer of control in response to some triggering event.

Execution of a program unit may encounter error situations in which normal program execution cannot
continue. For example, an arithmetic computation may exceed the maximum allowed value of a number,
or an attempt may be made to access an array component by using an incorrect index value. To deal with
such error situations, the statements of a program unit can be textually followed by exception handlers that
specify the actions to be taken when the error situation arises. Exceptions can be raised explicitly by a
raise statement.

Data Types

Every object in the language has a type, which characterizes a set of values and a set of applicable
operations. The main classes of types are elementary types (comprising enumeration, numeric, and access
types) and composite types (including array and record types).

An enumeration type defines an ordered set of distinct enumeration literals, for example a list of states or
an alphabet of characters. The enumeration types Boolean, Character, Wide_Character, and
Wide_Wide_Character are predefined.

20

21

22

23

24

25

26

27

28

29

30

31

32/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Introduction 10 November 2006 xvi

Numeric types provide a means of performing exact or approximate numerical computations. Exact
computations use integer types, which denote sets of consecutive integers. Approximate computations use
either fixed point types, with absolute bounds on the error, or floating point types, with relative bounds on
the error. The numeric types Integer, Float, and Duration are predefined.

Composite types allow definitions of structured objects with related components. The composite types in
the language include arrays and records. An array is an object with indexed components of the same type.
A record is an object with named components of possibly different types. Task and protected types are
also forms of composite types. The array types String, Wide_String, and Wide_Wide_String are
predefined.

Record, task, and protected types may have special components called discriminants which parameterize
the type. Variant record structures that depend on the values of discriminants can be defined within a
record type.

Access types allow the construction of linked data structures. A value of an access type represents a
reference to an object declared as aliased or to an object created by the evaluation of an allocator. Several
variables of an access type may designate the same object, and components of one object may designate
the same or other objects. Both the elements in such linked data structures and their relation to other
elements can be altered during program execution. Access types also permit references to subprograms to
be stored, passed as parameters, and ultimately dereferenced as part of an indirect call.

Private types permit restricted views of a type. A private type can be defined in a package so that only the
logically necessary properties are made visible to the users of the type. The full structural details that are
externally irrelevant are then only available within the package and any child units.

From any type a new type may be defined by derivation. A type, together with its derivatives (both direct
and indirect) form a derivation class. Class-wide operations may be defined that accept as a parameter an
operand of any type in a derivation class. For record and private types, the derivatives may be extensions
of the parent type. Types that support these object-oriented capabilities of class-wide operations and type
extension must be tagged, so that the specific type of an operand within a derivation class can be identified
at run time. When an operation of a tagged type is applied to an operand whose specific type is not known
until run time, implicit dispatching is performed based on the tag of the operand.

Interface types provide abstract models from which other interfaces and types may be composed and
derived. This provides a reliable form of multiple inheritance. Interface types may also be implemented by
task types and protected types thereby enabling concurrent programming and inheritance to be merged.

The concept of a type is further refined by the concept of a subtype, whereby a user can constrain the set
of allowed values of a type. Subtypes can be used to define subranges of scalar types, arrays with a limited
set of index values, and records and private types with particular discriminant values.

Other Facilities

Aspect clauses can be used to specify the mapping between types and features of an underlying machine.
For example, the user can specify that objects of a given type must be represented with a given number of
bits, or that the components of a record are to be represented using a given storage layout. Other features
allow the controlled use of low level, nonportable, or implementation-dependent aspects, including the
direct insertion of machine code.

The predefined environment of the language provides for input-output and other capabilities by means of
standard library packages. Input-output is supported for values of user-defined as well as of predefined
types. Standard means of representing values in display form are also provided.

33

34/2

35

36

37

38

38.1/2

39

40

41/2

42/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

xvii 10 November 2006 Introduction

The predefined standard library packages provide facilities such as string manipulation, containers of
various kinds (vectors, lists, maps, etc.), mathematical functions, random number generation, and access to
the execution environment.

The specialized annexes define further predefined library packages and facilities with emphasis on areas
such as real-time scheduling, interrupt handling, distributed systems, numerical computation, and high-
integrity systems.

Finally, the language provides a powerful means of parameterization of program units, called generic
program units. The generic parameters can be types and subprograms (as well as objects and packages)
and so allow general algorithms and data structures to be defined that are applicable to all types of a given
class.

Language Changes

This amended International Standard updates the edition of 1995 which replaced the first edition of 1987.
In the 1995 edition, the following major language changes were incorporated:

• Support for standard 8-bit and 16-bit characters was added. See clauses 2.1, 3.5.2, 3.6.3, A.1,
A.3, and A.4.

• The type model was extended to include facilities for object-oriented programming with
dynamic polymorphism. See the discussions of classes, derived types, tagged types, record
extensions, and private extensions in clauses 3.4, 3.9, and 7.3. Additional forms of generic
formal parameters were allowed as described in clauses 12.5.1 and 12.7.

• Access types were extended to allow an access value to designate a subprogram or an object
declared by an object declaration as opposed to just an object allocated on a heap. See clause
3.10.

• Efficient data-oriented synchronization was provided by the introduction of protected types. See
clause 9.4.

• The library structure was extended to allow library units to be organized into a hierarchy of
parent and child units. See clause 10.1.

• Additional support was added for interfacing to other languages. See Annex B.

• The Specialized Needs Annexes were added to provide specific support for certain application
areas:

• Annex C, “Systems Programming”

• Annex D, “Real-Time Systems”

• Annex E, “Distributed Systems”

• Annex F, “Information Systems”

• Annex G, “Numerics”

• Annex H, “High Integrity Systems”

Amendment 1 modifies the 1995 International Standard by making changes and additions that improve the
capability of the language and the reliability of programs written in the language. In particular the changes
were designed to improve the portability of programs, interfacing to other languages, and both the object-
oriented and real-time capabilities.

The following significant changes with respect to the 1995 edition are incorporated:

42.1/2

42.2/2

43

44/2

45/2

46/2

47/2

48/2

49/2

50/2

51/2

52

53

54

55

56

57

57.1/2

57.2/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Introduction 10 November 2006 xviii

• Support for program text is extended to cover the entire ISO/IEC 10646:2003 repertoire.
Execution support now includes the 32-bit character set. See clauses 2.1, 3.5.2, 3.6.3, A.1, A.3,
and A.4.

• The object-oriented model has been improved by the addition of an interface facility which
provides multiple inheritance and additional flexibility for type extensions. See clauses 3.4, 3.9,
and 7.3. An alternative notation for calling operations more akin to that used in other languages
has also been added. See clause 4.1.3.

• Access types have been further extended to unify properties such as the ability to access
constants and to exclude null values. See clause 3.10. Anonymous access types are now
permitted more freely and anonymous access-to-subprogram types are introduced. See clauses
3.3, 3.6, 3.10, and 8.5.1.

• The control of structure and visibility has been enhanced to permit mutually dependent
references between units and finer control over access from the private part of a package. See
clauses 3.10.1 and 10.1.2. In addition, limited types have been made more useful by the
provision of aggregates, constants, and constructor functions. See clauses 4.3, 6.5, and 7.5.

• The predefined environment has been extended to include additional time and calendar
operations, improved string handling, a comprehensive container library, file and directory
management, and access to environment variables. See clauses 9.6.1, A.4, A.16, A.17, and A.18.

• Two of the Specialized Needs Annexes have been considerably enhanced:

• The Real-Time Systems Annex now includes the Ravenscar profile for high-integrity
systems, further dispatching policies such as Round Robin and Earliest Deadline First,
support for timing events, and support for control of CPU time utilization. See clauses D.2,
D.13, D.14, and D.15.

• The Numerics Annex now includes support for real and complex vectors and matrices as
previously defined in ISO/IEC 13813:1997 plus further basic operations for linear algebra.
See clause G.3.

• The overall reliability of the language has been enhanced by a number of improvements. These
include new syntax which detects accidental overloading, as well as pragmas for making
assertions and giving better control over the suppression of checks. See clauses 6.1, 11.4.2, and
11.5.

57.3/2

57.4/2

57.5/2

57.6/2

57.7/2

57.8/2

57.9/2

57.10/2

57.11/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

xix 10 November 2006 Introduction

Instructions for Comment Submission

Informal comments on this International Standard may be sent via e-mail to ada-comment@ada-
auth.org. If appropriate, the Project Editor will initiate the defect correction procedure.

Comments should use the following format:

 !topic Title summarizing comment
 !reference Ada 2005 RMss.ss(pp)
 !from Author Name yy-mm-dd
 !keywords keywords related to topic
 !discussion

 text of discussion

where ss.ss is the section, clause or subclause number, pp is the paragraph number where applicable, and
yy-mm-dd is the date the comment was sent. The date is optional, as is the !keywords line.

Please use a descriptive “Subject” in your e-mail message, and limit each message to a single comment.

When correcting typographical errors or making minor wording suggestions, please put the correction
directly as the topic of the comment; use square brackets [] to indicate text to be omitted and curly braces
{ } to indicate text to be added, and provide enough context to make the nature of the suggestion self-
evident or put additional information in the body of the comment, for example:

 !topic [c]{C}haracter
 !topic it[']s meaning is not defined

Formal requests for interpretations and for reporting defects in this International Standard may be made in
accordance with the ISO/IEC JTC 1 Directives and the ISO/IEC JTC 1/SC 22 policy for interpretations.
National Bodies may submit a Defect Report to ISO/IEC JTC 1/SC 22 for resolution under the JTC 1
procedures. A response will be provided and, if appropriate, a Technical Corrigendum will be issued in
accordance with the procedures.

58/1

59

60/2

61

62/1

63

64

65

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Introduction 10 November 2006 xx

Acknowledgements for the Ada 95 edition of the Ada Reference Manual
This International Standard was prepared by the Ada 9X Mapping/Revision Team based at Intermetrics,
Inc., which has included: W. Carlson, Program Manager; T. Taft, Technical Director; J. Barnes
(consultant); B. Brosgol (consultant); R. Duff (Oak Tree Software); M. Edwards; C. Garrity; R. Hilliard;
O. Pazy (consultant); D. Rosenfeld; L. Shafer; W. White; M. Woodger.

The following consultants to the Ada 9X Project contributed to the Specialized Needs Annexes: T. Baker
(Real-Time/Systems Programming — SEI, FSU); K. Dritz (Numerics — Argonne National Laboratory);
A. Gargaro (Distributed Systems — Computer Sciences); J. Goodenough (Real-Time/Systems
Programming — SEI); J. McHugh (Secure Systems — consultant); B. Wichmann (Safety-Critical Systems
— NPL: UK).

This work was regularly reviewed by the Ada 9X Distinguished Reviewers and the members of the Ada
9X Rapporteur Group (XRG): E. Ploedereder, Chairman of DRs and XRG (University of Stuttgart:
Germany); B. Bardin (Hughes); J. Barnes (consultant: UK); B. Brett (DEC); B. Brosgol (consultant); R.
Brukardt (RR Software); N. Cohen (IBM); R. Dewar (NYU); G. Dismukes (TeleSoft); A. Evans
(consultant); A. Gargaro (Computer Sciences); M. Gerhardt (ESL); J. Goodenough (SEI); S. Heilbrunner
(University of Salzburg: Austria); P. Hilfinger (UC/Berkeley); B. Källberg (CelsiusTech: Sweden); M.
Kamrad II (Unisys); J. van Katwijk (Delft University of Technology: The Netherlands); V. Kaufman
(Russia); P. Kruchten (Rational); R. Landwehr (CCI: Germany); C. Lester (Portsmouth Polytechnic: UK);
L. Månsson (TELIA Research: Sweden); S. Michell (Multiprocessor Toolsmiths: Canada); M. Mills (US
Air Force); D. Pogge (US Navy); K. Power (Boeing); O. Roubine (Verdix: France); A. Strohmeier (Swiss
Fed Inst of Technology: Switzerland); W. Taylor (consultant: UK); J. Tokar (Tartan); E. Vasilescu
(Grumman); J. Vladik (Prospeks s.r.o.: Czech Republic); S. Van Vlierberghe (OFFIS: Belgium).

Other valuable feedback influencing the revision process was provided by the Ada 9X Language Precision
Team (Odyssey Research Associates), the Ada 9X User/Implementer Teams (AETECH, Tartan, TeleSoft),
the Ada 9X Implementation Analysis Team (New York University) and the Ada community-at-large.

Special thanks go to R. Mathis, Convenor of ISO/IEC JTC 1/SC 22 Working Group 9.

The Ada 9X Project was sponsored by the Ada Joint Program Office. Christine M. Anderson at the Air
Force Phillips Laboratory (Kirtland AFB, NM) was the project manager.

Acknowledgements for the Corrigendum version of the Ada Reference
Manual
The editor [R. Brukardt (USA)] would like to thank the many people whose hard work and assistance has
made this revision possible.

Thanks go out to all of the members of the ISO/IEC JTC 1/SC 22/WG 9 Ada Rapporteur Group, whose
work on creating and editing the wording corrections was critical to the entire process. Especially valuable
contributions came from the chairman of the ARG, E. Ploedereder (Germany), who kept the process
moving; J. Barnes (UK) and K. Ishihata (Japan), whose extremely detailed reviews kept the editor on his
toes; G. Dismukes (USA), M. Kamrad (USA), P. Leroy (France), S. Michell (Canada), T. Taft (USA), J.
Tokar (USA), and other members too numerous to mention.

Special thanks go to R. Duff (USA) for his explanations of the previous system of formatting of these
documents during the tedious conversion to more modern formats. Special thanks also go to the convener
of ISO/IEC JTC 1/SC 22/WG 9, J. Moore (USA), without whose help and support the corrigendum and
this consolidated reference manual would not have been possible.

66

67

68

69

70

71

71.1/1

71.2/1

71.3/1

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

xxi 10 November 2006 Introduction

Acknowledgements for the Amendment version of the Ada Reference Manual
The editor [R. Brukardt (USA)] would like to thank the many people whose hard work and assistance has
made this revision possible.

Thanks go out to all of the members of the ISO/IEC JTC 1/SC 22/WG 9 Ada Rapporteur Group, whose
work on creating and editing the wording corrections was critical to the entire process. Especially valuable
contributions came from the chairman of the ARG, P. Leroy (France), who kept the process on schedule; J.
Barnes (UK) whose careful reviews found many typographical errors; T. Taft (USA), who always seemed
to have a suggestion when we were stuck, and who also was usually able to provide the valuable service of
explaining why things were as they are; S. Baird (USA), who found many obscure problems with the
proposals; and A. Burns (UK), who pushed many of the real-time proposals to completion. Other ARG
members who contributed were: R. Dewar (USA), G. Dismukes (USA), R. Duff (USA), K. Ishihata
(Japan), S. Michell (Canada), E. Ploedereder (Germany), J.P. Rosen (France), E. Schonberg (USA), J.
Tokar (USA), and T. Vardanega (Italy).

Special thanks go to Ada-Europe and the Ada Resource Association, without whose help and support the
Amendment and this consolidated reference manual would not have been possible. M. Heaney (USA)
requires special thanks for his tireless work on the containers packages. Finally, special thanks go to the
convener of ISO/IEC JTC 1/SC 22/WG 9, J. Moore (USA), who guided the document through the
standardization process.

71.4/2

71.5/2

71.6/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Introduction 10 November 2006 xxii

Changes

The International Standard is the same as this version of the Reference Manual, except:
• This list of Changes is not included in the International Standard.

• The “Acknowledgements” page is not included in the International Standard.

• The text in the running headers and footers on each page is slightly different in the International
Standard.

• The title page(s) are different in the International Standard.

• This document is formatted for 8.5-by-11-inch paper, whereas the International Standard is
formatted for A4 paper (210-by-297mm); thus, the page breaks are in different places.

• The “Foreword to this version of the Ada Reference Manual” clause is not included in the
International Standard.

• The “Using this version of the Ada Reference Manual” clause is not included in the International
Standard.

Using this version of the Ada Reference Manual
This document has been revised with the corrections specified in Technical Corrigendum 1 (ISO/IEC
8652:1995/COR.1:2001) and Amendment 1 (ISO/IEC 8652/AMD.1:2007). In addition, a variety of
editorial errors have been corrected.

Changes to the original 8652:1995 can be identified by the version number following the paragraph
number. Paragraphs with a version number of /1 were changed by Technical Corrigendum 1 or were
editorial corrections at that time, while paragraphs with a version number of /2 were changed by
Amendment 1 or were more recent editorial corrections. Paragraphs not so marked are unchanged by
Amendment 1, Technical Corrigendum 1, or editorial corrections. Paragraph numbers of unchanged
paragraphs are the same as in the original Ada Reference Manual. In addition, some versions of this
document include revision bars near the paragraph numbers. Where paragraphs are inserted, the paragraph
numbers are of the form pp.nn, where pp is the number of the preceding paragraph, and nn is an insertion
number. For instance, the first paragraph inserted after paragraph 8 is numbered 8.1, the second paragraph
inserted is numbered 8.2, and so on. Deleted paragraphs are indicated by the text This paragraph was deleted.
Deleted paragraphs include empty paragraphs that were numbered in the original Ada Reference Manual.

72

73

74

75

76

77

77.1/1

77.2/2

77.3/2

77.4/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

1 10 November 2006

INTERNATIONAL STANDARD ISO/IEC 8652:2007(E), Ed. 3

Information technology — Programming

Languages — Ada

Section 1: General
Ada is a programming language designed to support the construction of long-lived, highly reliable
software systems. The language includes facilities to define packages of related types, objects, and
operations. The packages may be parameterized and the types may be extended to support the construction
of libraries of reusable, adaptable software components. The operations may be implemented as
subprograms using conventional sequential control structures, or as entries that include synchronization of
concurrent threads of control as part of their invocation. The language treats modularity in the physical
sense as well, with a facility to support separate compilation.

The language includes a complete facility for the support of real-time, concurrent programming. Errors
can be signaled as exceptions and handled explicitly. The language also covers systems programming; this
requires precise control over the representation of data and access to system-dependent properties. Finally,
a predefined environment of standard packages is provided, including facilities for, among others, input-
output, string manipulation, numeric elementary functions, and random number generation.

1.1 Scope
This International Standard specifies the form and meaning of programs written in Ada. Its purpose is to
promote the portability of Ada programs to a variety of data processing systems.

1.1.1 Extent
This International Standard specifies:

• The form of a program written in Ada;

• The effect of translating and executing such a program;

• The manner in which program units may be combined to form Ada programs;

• The language-defined library units that a conforming implementation is required to supply;

• The permissible variations within the standard, and the manner in which they are to be
documented;

1

2

1

1

2

3

4

5

6

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

1.1.1 Extent 10 November 2006 2

• Those violations of the standard that a conforming implementation is required to detect, and the
effect of attempting to translate or execute a program containing such violations;

• Those violations of the standard that a conforming implementation is not required to detect.

This International Standard does not specify:
• The means whereby a program written in Ada is transformed into object code executable by a

processor;

• The means whereby translation or execution of programs is invoked and the executing units are
controlled;

• The size or speed of the object code, or the relative execution speed of different language
constructs;

• The form or contents of any listings produced by implementations; in particular, the form or
contents of error or warning messages;

• The effect of unspecified execution.

• The size of a program or program unit that will exceed the capacity of a particular conforming
implementation.

1.1.2 Structure
This International Standard contains thirteen sections, fourteen annexes, and an index.

The core of the Ada language consists of:
• Sections 1 through 13

• Annex A, “Predefined Language Environment”

• Annex B, “Interface to Other Languages”

• Annex J, “Obsolescent Features”

The following Specialized Needs Annexes define features that are needed by certain application areas:
• Annex C, “Systems Programming”

• Annex D, “Real-Time Systems”

• Annex E, “Distributed Systems”

• Annex F, “Information Systems”

• Annex G, “Numerics”

• Annex H, “High Integrity Systems”

The core language and the Specialized Needs Annexes are normative, except that the material in each of
the items listed below is informative:

• Text under a NOTES or Examples heading.

• Each clause or subclause whose title starts with the word “Example” or “Examples”.

All implementations shall conform to the core language. In addition, an implementation may conform
separately to one or more Specialized Needs Annexes.

7

8

9

10

11

12

13

14

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

3 10 November 2006 Structure 1.1.2

The following Annexes are informative:
• Annex K, “Language-Defined Attributes”

• Annex L, “Language-Defined Pragmas”

• M.2, “Implementation-Defined Characteristics”

• Annex N, “Glossary”

• Annex P, “Syntax Summary”

Each section is divided into clauses and subclauses that have a common structure. Each section, clause,
and subclause first introduces its subject. After the introductory text, text is labeled with the following
headings:

Syntax

Syntax rules (indented).

Name Resolution Rules

Compile-time rules that are used in name resolution, including overload resolution.

Legality Rules

Rules that are enforced at compile time. A construct is legal if it obeys all of the Legality Rules.

Static Semantics

A definition of the compile-time effect of each construct.

Post-Compilation Rules

Rules that are enforced before running a partition. A partition is legal if its compilation units are legal and
it obeys all of the Post-Compilation Rules.

Dynamic Semantics

A definition of the run-time effect of each construct.

Bounded (Run-Time) Errors

Situations that result in bounded (run-time) errors (see 1.1.5).

Erroneous Execution

Situations that result in erroneous execution (see 1.1.5).

Implementation Requirements

Additional requirements for conforming implementations.

Documentation Requirements

Documentation requirements for conforming implementations.

Metrics

Metrics that are specified for the time/space properties of the execution of certain language constructs.

Implementation Permissions

Additional permissions given to the implementer.

18
19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

1.1.2 Structure 10 November 2006 4

Implementation Advice

Optional advice given to the implementer. The word “should” is used to indicate that the advice is a
recommendation, not a requirement. It is implementation defined whether or not a given recommendation
is obeyed.

NOTES
1 Notes emphasize consequences of the rules described in the (sub)clause or elsewhere. This material is informative.

Examples

Examples illustrate the possible forms of the constructs described. This material is informative.

1.1.3 Conformity of an Implementation with the Standard
Implementation Requirements

A conforming implementation shall:
• Translate and correctly execute legal programs written in Ada, provided that they are not so

large as to exceed the capacity of the implementation;

• Identify all programs or program units that are so large as to exceed the capacity of the
implementation (or raise an appropriate exception at run time);

• Identify all programs or program units that contain errors whose detection is required by this
International Standard;

• Supply all language-defined library units required by this International Standard;

• Contain no variations except those explicitly permitted by this International Standard, or those
that are impossible or impractical to avoid given the implementation's execution environment;

• Specify all such variations in the manner prescribed by this International Standard.

The external effect of the execution of an Ada program is defined in terms of its interactions with its
external environment. The following are defined as external interactions:

• Any interaction with an external file (see A.7);

• The execution of certain code_statements (see 13.8); which code_statements cause external
interactions is implementation defined.

• Any call on an imported subprogram (see Annex B), including any parameters passed to it;

• Any result returned or exception propagated from a main subprogram (see 10.2) or an exported
subprogram (see Annex B) to an external caller;

• Any read or update of an atomic or volatile object (see C.6);

• The values of imported and exported objects (see Annex B) at the time of any other interaction
with the external environment.

A conforming implementation of this International Standard shall produce for the execution of a given
Ada program a set of interactions with the external environment whose order and timing are consistent
with the definitions and requirements of this International Standard for the semantics of the given program.

An implementation that conforms to this Standard shall support each capability required by the core
language as specified. In addition, an implementation that conforms to this Standard may conform to one
or more Specialized Needs Annexes (or to none). Conformance to a Specialized Needs Annex means that
each capability required by the Annex is provided as specified.

37

38

39

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

5 10 November 2006 Conformity of an Implementation with the Standard 1.1.3

An implementation conforming to this International Standard may provide additional attributes, library
units, and pragmas. However, it shall not provide any attribute, library unit, or pragma having the same
name as an attribute, library unit, or pragma (respectively) specified in a Specialized Needs Annex unless
the provided construct is either as specified in the Specialized Needs Annex or is more limited in
capability than that required by the Annex. A program that attempts to use an unsupported capability of an
Annex shall either be identified by the implementation before run time or shall raise an exception at run
time.

Documentation Requirements

Certain aspects of the semantics are defined to be either implementation defined or unspecified. In such
cases, the set of possible effects is specified, and the implementation may choose any effect in the set.
Implementations shall document their behavior in implementation-defined situations, but documentation is
not required for unspecified situations. The implementation-defined characteristics are summarized in M.2.

The implementation may choose to document implementation-defined behavior either by documenting
what happens in general, or by providing some mechanism for the user to determine what happens in a
particular case.

Implementation Advice

If an implementation detects the use of an unsupported Specialized Needs Annex feature at run time, it
should raise Program_Error if feasible.

If an implementation wishes to provide implementation-defined extensions to the functionality of a
language-defined library unit, it should normally do so by adding children to the library unit.

NOTES
2 The above requirements imply that an implementation conforming to this Standard may support some of the capabilities
required by a Specialized Needs Annex without supporting all required capabilities.

1.1.4 Method of Description and Syntax Notation
The form of an Ada program is described by means of a context-free syntax together with context-
dependent requirements expressed by narrative rules.

The meaning of Ada programs is described by means of narrative rules defining both the effects of each
construct and the composition rules for constructs.

The context-free syntax of the language is described using a simple variant of Backus-Naur Form. In
particular:

• Lower case words in a sans-serif font, some containing embedded underlines, are used to denote
syntactic categories, for example:

case_statement

• Boldface words are used to denote reserved words, for example:
array

• Square brackets enclose optional items. Thus the two following rules are equivalent.
simple_return_statement ::= return [expression];
simple_return_statement ::= return; | return expression;

17

18

19

20

21

22

1

2

3

4

5

6

7

8

9/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

1.1.4 Method of Description and Syntax Notation 10 November 2006 6

• Curly brackets enclose a repeated item. The item may appear zero or more times; the repetitions
occur from left to right as with an equivalent left-recursive rule. Thus the two following rules are
equivalent.

term ::= factor {multiplying_operator factor}
term ::= factor | term multiplying_operator factor

• A vertical line separates alternative items unless it occurs immediately after an opening curly
bracket, in which case it stands for itself:

constraint ::= scalar_constraint | composite_constraint
discrete_choice_list ::= discrete_choice {| discrete_choice}

• If the name of any syntactic category starts with an italicized part, it is equivalent to the category
name without the italicized part. The italicized part is intended to convey some semantic
information. For example subtype_name and task_name are both equivalent to name alone.

The delimiters, compound delimiters, reserved words, and numeric_literals are exclusively made of the
characters whose code position is between 16#20# and 16#7E#, inclusively. The special characters for
which names are defined in this International Standard (see 2.1) belong to the same range. For example,
the character E in the definition of exponent is the character whose name is “LATIN CAPITAL LETTER
E”, not “GREEK CAPITAL LETTER EPSILON”.

When this International Standard mentions the conversion of some character or sequence of characters to
upper case, it means the character or sequence of characters obtained by using locale-independent full case
folding, as defined by documents referenced in the note in section 1 of ISO/IEC 10646:2003.

A syntactic category is a nonterminal in the grammar defined in BNF under “Syntax.” Names of syntactic
categories are set in a different font, like_this.

A construct is a piece of text (explicit or implicit) that is an instance of a syntactic category defined under
“Syntax”.

A constituent of a construct is the construct itself, or any construct appearing within it.

Whenever the run-time semantics defines certain actions to happen in an arbitrary order, this means that
the implementation shall arrange for these actions to occur in a way that is equivalent to some sequential
order, following the rules that result from that sequential order. When evaluations are defined to happen in
an arbitrary order, with conversion of the results to some subtypes, or with some run-time checks, the
evaluations, conversions, and checks may be arbitrarily interspersed, so long as each expression is
evaluated before converting or checking its value. Note that the effect of a program can depend on the
order chosen by the implementation. This can happen, for example, if two actual parameters of a given call
have side effects.

NOTES
3 The syntax rules describing structured constructs are presented in a form that corresponds to the recommended
paragraphing. For example, an if_statement is defined as:

if_statement ::=
 if condition then
 sequence_of_statements
 {elsif condition then
 sequence_of_statements}
 [else
 sequence_of_statements]
 end if;

10

11

12

13

14

14.1/2

14.2/2

15

16

17

18

19

20

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

7 10 November 2006 Method of Description and Syntax Notation 1.1.4

4 The line breaks and indentation in the syntax rules indicate the recommended line breaks and indentation in the
corresponding constructs. The preferred places for other line breaks are after semicolons.

1.1.5 Classification of Errors
Implementation Requirements

The language definition classifies errors into several different categories:
• Errors that are required to be detected prior to run time by every Ada implementation;

 These errors correspond to any violation of a rule given in this International Standard, other than
those listed below. In particular, violation of any rule that uses the terms shall, allowed,
permitted, legal, or illegal belongs to this category. Any program that contains such an error is
not a legal Ada program; on the other hand, the fact that a program is legal does not mean, per
se, that the program is free from other forms of error.

 The rules are further classified as either compile time rules, or post compilation rules, depending
on whether a violation has to be detected at the time a compilation unit is submitted to the
compiler, or may be postponed until the time a compilation unit is incorporated into a partition
of a program.

• Errors that are required to be detected at run time by the execution of an Ada program;

 The corresponding error situations are associated with the names of the predefined exceptions.
Every Ada compiler is required to generate code that raises the corresponding exception if such
an error situation arises during program execution. If such an error situation is certain to arise in
every execution of a construct, then an implementation is allowed (although not required) to
report this fact at compilation time.

• Bounded errors;

 The language rules define certain kinds of errors that need not be detected either prior to or
during run time, but if not detected, the range of possible effects shall be bounded. The errors of
this category are called bounded errors. The possible effects of a given bounded error are
specified for each such error, but in any case one possible effect of a bounded error is the raising
of the exception Program_Error.

• Erroneous execution.

 In addition to bounded errors, the language rules define certain kinds of errors as leading to
erroneous execution. Like bounded errors, the implementation need not detect such errors either
prior to or during run time. Unlike bounded errors, there is no language-specified bound on the
possible effect of erroneous execution; the effect is in general not predictable.

Implementation Permissions

An implementation may provide nonstandard modes of operation. Typically these modes would be
selected by a pragma or by a command line switch when the compiler is invoked. When operating in a
nonstandard mode, the implementation may reject compilation_units that do not conform to additional
requirements associated with the mode, such as an excessive number of warnings or violation of coding
style guidelines. Similarly, in a nonstandard mode, the implementation may apply special optimizations or
alternative algorithms that are only meaningful for programs that satisfy certain criteria specified by the
implementation. In any case, an implementation shall support a standard mode that conforms to the
requirements of this International Standard; in particular, in the standard mode, all legal compilation_units
shall be accepted.

21

1

2

3

4

5

6

7

8

9

10

11

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

1.1.5 Classification of Errors 10 November 2006 8

Implementation Advice

If an implementation detects a bounded error or erroneous execution, it should raise Program_Error.

1.2 Normative References
The following standards contain provisions which, through reference in this text, constitute provisions of
this International Standard. At the time of publication, the editions indicated were valid. All standards are
subject to revision, and parties to agreements based on this International Standard are encouraged to
investigate the possibility of applying the most recent editions of the standards indicated below. Members
of IEC and ISO maintain registers of currently valid International Standards.

ISO/IEC 646:1991, Information technology — ISO 7-bit coded character set for information interchange.

ISO/IEC 1539-1:2004, Information technology — Programming languages — Fortran — Part 1: Base
language.

ISO/IEC 1989:2002, Information technology — Programming languages — COBOL.

ISO/IEC 6429:1992, Information technology — Control functions for coded graphic character sets.

ISO 8601:2004, Data elements and interchange formats — Information interchange — Representation of
dates and times.

ISO/IEC 8859-1:1987, Information processing — 8-bit single-byte coded character sets — Part 1: Latin
alphabet No. 1.

ISO/IEC 9899:1999, Programming languages — C, supplemented by Technical Corrigendum 1:2001 and
Technical Corrigendum 2:2004.

ISO/IEC 10646:2003, Information technology — Universal Multiple-Octet Coded Character Set (UCS).

ISO/IEC 14882:2003, Programming languages — C++.

ISO/IEC TR 19769:2004, Information technology — Programming languages, their environments and
system software interfaces — Extensions for the programming language C to support new character data
types.

1.3 Definitions
Terms are defined throughout this International Standard, indicated by italic type. Terms explicitly defined
in this International Standard are not to be presumed to refer implicitly to similar terms defined elsewhere.
Mathematical terms not defined in this International Standard are to be interpreted according to the CRC
Concise Encyclopedia of Mathematics, Second Edition. Other terms not defined in this International
Standard are to be interpreted according to the Webster's Third New International Dictionary of the
English Language. Informal descriptions of some terms are also given in Annex N, “Glossary”.

12

1

2

3/2

4/2

5

5.1/2

6

7/2

8/2

9/2

10/2

1/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

9 10 November 2006 Lexical Elements 2

Section 2: Lexical Elements
The text of a program consists of the texts of one or more compilations. The text of a compilation is a
sequence of lexical elements, each composed of characters; the rules of composition are given in this
section. Pragmas, which provide certain information for the compiler, are also described in this section.

2.1 Character Set
The character repertoire for the text of an Ada program consists of the entire coding space described by the
ISO/IEC 10646:2003 Universal Multiple-Octet Coded Character Set. This coding space is organized in
planes, each plane comprising 65536 characters.

Syntax

Paragraphs 2 and 3 were deleted.
A character is defined by this International Standard for each cell in the coding space described by
ISO/IEC 10646:2003, regardless of whether or not ISO/IEC 10646:2003 allocates a character to that
cell.

Static Semantics

The coded representation for characters is implementation defined (it need not be a representation defined
within ISO/IEC 10646:2003). A character whose relative code position in its plane is 16#FFFE# or
16#FFFF# is not allowed anywhere in the text of a program.

The semantics of an Ada program whose text is not in Normalization Form KC (as defined by section 24
of ISO/IEC 10646:2003) is implementation defined.

The description of the language definition in this International Standard uses the character properties
General Category, Simple Uppercase Mapping, Uppercase Mapping, and Special Case Condition of the
documents referenced by the note in section 1 of ISO/IEC 10646:2003. The actual set of graphic symbols
used by an implementation for the visual representation of the text of an Ada program is not specified.

Characters are categorized as follows:
This paragraph was deleted.

letter_uppercase
 Any character whose General Category is defined to be “Letter, Uppercase”.

letter_lowercase
 Any character whose General Category is defined to be “Letter, Lowercase”.

letter_titlecase
 Any character whose General Category is defined to be “Letter, Titlecase”.

letter_modifier
 Any character whose General Category is defined to be “Letter, Modifier”.

letter_other
 Any character whose General Category is defined to be “Letter, Other”.

mark_non_spacing
 Any character whose General Category is defined to be “Mark, Non-Spacing”.

mark_spacing_combining
 Any character whose General Category is defined to be “Mark, Spacing Combining”.

1

1/2

3.1/2

4/2

4.1/2

5/2

6/2

7/2

8/2

9/2

9.1/2

9.2/2

9.3/2

9.4/2

9.5/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

2.1 Character Set 10 November 2006 10

number_decimal
 Any character whose General Category is defined to be “Number, Decimal”.

number_letter
 Any character whose General Category is defined to be “Number, Letter”.

punctuation_connector
 Any character whose General Category is defined to be “Punctuation, Connector”.

other_format
 Any character whose General Category is defined to be “Other, Format”.

separator_space
 Any character whose General Category is defined to be “Separator, Space”.

separator_line
 Any character whose General Category is defined to be “Separator, Line”.

separator_paragraph
 Any character whose General Category is defined to be “Separator, Paragraph”.

format_effector
 The characters whose code positions are 16#09# (CHARACTER TABULATION), 16#0A#

(LINE FEED), 16#0B# (LINE TABULATION), 16#0C# (FORM FEED), 16#0D#
(CARRIAGE RETURN), 16#85# (NEXT LINE), and the characters in categories
separator_line and separator_paragraph.

other_control
 Any character whose General Category is defined to be “Other, Control”, and which is not

defined to be a format_effector.

other_private_use
 Any character whose General Category is defined to be “Other, Private Use”.

other_surrogate
 Any character whose General Category is defined to be “Other, Surrogate”.

graphic_character
 Any character that is not in the categories other_control, other_private_use,

other_surrogate, format_effector, and whose relative code position in its plane is neither
16#FFFE# nor 16#FFFF#.

The following names are used when referring to certain characters (the first name is that given in ISO/IEC
10646:2003):

 graphic symbol

 "
 #
 &
 '
 (
)
 *
 +
 ,
 –
 .

name

quotation mark
number sign
ampersand
apostrophe, tick
left parenthesis
right parenthesis
asterisk, multiply
plus sign
comma
hyphen-minus, minus
full stop, dot, point

 graphic symbol

 :
 ;
 <
 =
 >
 _
 |
 /
 !
 %

name

colon
semicolon
less-than sign
equals sign
greater-than sign
low line, underline
vertical line
solidus, divide
exclamation point
percent sign

10/2

10.1/2

10.2/2

10.3/2

11/2

12/2

12.1/2

13/2

13.1/2

13.2/2

13.3/2

14/2

15/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

11 10 November 2006 Character Set 2.1

Implementation Permissions

This paragraph was deleted.

NOTES
1 The characters in categories other_control, other_private_use, and other_surrogate are only allowed in comments.

2 The language does not specify the source representation of programs.

2.2 Lexical Elements, Separators, and Delimiters
Static Semantics

The text of a program consists of the texts of one or more compilations. The text of each compilation is a
sequence of separate lexical elements. Each lexical element is formed from a sequence of characters, and
is either a delimiter, an identifier, a reserved word, a numeric_literal, a character_literal, a string_literal, or
a comment. The meaning of a program depends only on the particular sequences of lexical elements that
form its compilations, excluding comments.

The text of a compilation is divided into lines. In general, the representation for an end of line is
implementation defined. However, a sequence of one or more format_effectors other than the character
whose code position is 16#09# (CHARACTER TABULATION) signifies at least one end of line.

In some cases an explicit separator is required to separate adjacent lexical elements. A separator is any of
a separator_space, a format_effector, or the end of a line, as follows:

• A separator_space is a separator except within a comment, a string_literal, or a
character_literal.

• The character whose code position is 16#09# (CHARACTER TABULATION) is a separator
except within a comment.

• The end of a line is always a separator.

One or more separators are allowed between any two adjacent lexical elements, before the first of each
compilation, or after the last. At least one separator is required between an identifier, a reserved word, or a
numeric_literal and an adjacent identifier, reserved word, or numeric_literal.

A delimiter is either one of the following characters:

& ' () * + , – . / : ; < = > |

or one of the following compound delimiters each composed of two adjacent special characters

=> .. ** := /= >= <= << >> <>

Each of the special characters listed for single character delimiters is a single delimiter except if this
character is used as a character of a compound delimiter, or as a character of a comment, string_literal,
character_literal, or numeric_literal.

16/2

17/2

18

1

2/2

3/2

4/2

5/2

6

7

8/2

9

10

11

12

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

2.2 Lexical Elements, Separators, and Delimiters 10 November 2006 12

The following names are used when referring to compound delimiters:

 delimiter name
 => arrow
 .. double dot
 ** double star, exponentiate
 := assignment (pronounced: “becomes”)
 /= inequality (pronounced: “not equal”)
 >= greater than or equal
 <= less than or equal
 << left label bracket
 >> right label bracket
 <> box

Implementation Requirements

An implementation shall support lines of at least 200 characters in length, not counting any characters used
to signify the end of a line. An implementation shall support lexical elements of at least 200 characters in
length. The maximum supported line length and lexical element length are implementation defined.

2.3 Identifiers
Identifiers are used as names.

Syntax

identifier ::=
 identifier_start {identifier_start | identifier_extend}
identifier_start ::=
 letter_uppercase
 | letter_lowercase
 | letter_titlecase
 | letter_modifier
 | letter_other
 | number_letter
identifier_extend ::=
 mark_non_spacing
 | mark_spacing_combining
 | number_decimal
 | punctuation_connector
 | other_format
After eliminating the characters in category other_format, an identifier shall not contain two
consecutive characters in category punctuation_connector, or end with a character in that category.

13

14

1

2/2

3/2

3.1/2

4/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

13 10 November 2006 Identifiers 2.3

Static Semantics

Two identifiers are considered the same if they consist of the same sequence of characters after applying
the following transformations (in this order):

• The characters in category other_format are eliminated.

• The remaining sequence of characters is converted to upper case.

After applying these transformations, an identifier shall not be identical to a reserved word (in upper case).

Implementation Permissions

In a nonstandard mode, an implementation may support other upper/lower case equivalence rules for
identifiers, to accommodate local conventions.

NOTES
3 Identifiers differing only in the use of corresponding upper and lower case letters are considered the same.

Examples

Examples of identifiers:
Count X Get_Symbol Ethelyn Marion
Snobol_4 X1 Page_Count Store_Next_Item
Πλάτων -- Plato
Чайковский -- Tchaikovsky
θ φ -- Angles

2.4 Numeric Literals
There are two kinds of numeric_literals, real literals and integer literals. A real literal is a numeric_literal
that includes a point; an integer literal is a numeric_literal without a point.

Syntax

numeric_literal ::= decimal_literal | based_literal
NOTES
4 The type of an integer literal is universal_integer. The type of a real literal is universal_real.

2.4.1 Decimal Literals
A decimal_literal is a numeric_literal in the conventional decimal notation (that is, the base is ten).

Syntax

decimal_literal ::= numeral [.numeral] [exponent]
numeral ::= digit {[underline] digit}
exponent ::= E [+] numeral | E – numeral
digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
An exponent for an integer literal shall not have a minus sign.

Static Semantics

An underline character in a numeric_literal does not affect its meaning. The letter E of an exponent can be
written either in lower case or in upper case, with the same meaning.

An exponent indicates the power of ten by which the value of the decimal_literal without the exponent is
to be multiplied to obtain the value of the decimal_literal with the exponent.

5/2

5.1/2

5.2/2

5.3/2

6

6.1/2

7

8/2

1

2

3

1

2

3

4

4.1/2

5

6

7

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

2.4.1 Decimal Literals 10 November 2006 14

Examples

Examples of decimal literals:
12 0 1E6 123_456 -- integer literals

12.0 0.0 0.456 3.14159_26 -- real literals

2.4.2 Based Literals
A based_literal is a numeric_literal expressed in a form that specifies the base explicitly.

Syntax

based_literal ::=
 base # based_numeral [.based_numeral] # [exponent]
base ::= numeral
based_numeral ::=
 extended_digit {[underline] extended_digit}
extended_digit ::= digit | A | B | C | D | E | F

Legality Rules

The base (the numeric value of the decimal numeral preceding the first #) shall be at least two and at most
sixteen. The extended_digits A through F represent the digits ten through fifteen, respectively. The value
of each extended_digit of a based_literal shall be less than the base.

Static Semantics

The conventional meaning of based notation is assumed. An exponent indicates the power of the base by
which the value of the based_literal without the exponent is to be multiplied to obtain the value of the
based_literal with the exponent. The base and the exponent, if any, are in decimal notation.

The extended_digits A through F can be written either in lower case or in upper case, with the same
meaning.

Examples

Examples of based literals:
2#1111_1111# 16#FF# 016#0ff# -- integer literals of value 255
16#E#E1 2#1110_0000# -- integer literals of value 224
16#F.FF#E+2 2#1.1111_1111_1110#E11 -- real literals of value 4095.0

2.5 Character Literals
A character_literal is formed by enclosing a graphic character between two apostrophe characters.

Syntax

character_literal ::= 'graphic_character'
NOTES
5 A character_literal is an enumeration literal of a character type. See 3.5.2.

8

9

1

2

3

4

5

6

7

8

9

10

1

2

3

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

15 10 November 2006 Character Literals 2.5

Examples

Examples of character literals:
'A' '*' ''' ' '
'L' 'Л' 'Λ' -- Various els.
 .Big numbers - infinity and aleph -- 'א' '∞'

2.6 String Literals
A string_literal is formed by a sequence of graphic characters (possibly none) enclosed between two
quotation marks used as string brackets. They are used to represent operator_symbols (see 6.1), values of
a string type (see 4.2), and array subaggregates (see 4.3.3).

Syntax

string_literal ::= "{string_element}"
string_element ::= "" | non_quotation_mark_graphic_character
A string_element is either a pair of quotation marks (""), or a single graphic_character other than a
quotation mark.

Static Semantics

The sequence of characters of a string_literal is formed from the sequence of string_elements between the
bracketing quotation marks, in the given order, with a string_element that is "" becoming a single
quotation mark in the sequence of characters, and any other string_element being reproduced in the
sequence.

A null string literal is a string_literal with no string_elements between the quotation marks.

NOTES
6 An end of line cannot appear in a string_literal.

7 No transformation is performed on the sequence of characters of a string_literal.

Examples

Examples of string literals:
"Message of the day:"

"" -- a null string literal
" " "A" """" -- three string literals of length 1

"Characters such as $, %, and } are allowed in string literals"
"Archimedes said ""Εύρηκα"""
"Volume of cylinder (πr²h) = "

2.7 Comments
A comment starts with two adjacent hyphens and extends up to the end of the line.

Syntax

comment ::= --{non_end_of_line_character}
A comment may appear on any line of a program.

4

5/2

1

2

3

4

5

6

7

7.1/2

8

9/2

1

2

3

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

2.7 Comments 10 November 2006 16

Static Semantics

The presence or absence of comments has no influence on whether a program is legal or illegal.
Furthermore, comments do not influence the meaning of a program; their sole purpose is the
enlightenment of the human reader.

Examples

Examples of comments:
-- the last sentence above echoes the Algol 68 report

end; -- processing of Line is complete

-- a long comment may be split onto
-- two or more consecutive lines

---------------- the first two hyphens start the comment

2.8 Pragmas
A pragma is a compiler directive. There are language-defined pragmas that give instructions for
optimization, listing control, etc. An implementation may support additional (implementation-defined)
pragmas.

Syntax

pragma ::=
 pragma identifier [(pragma_argument_association {, pragma_argument_association})];
pragma_argument_association ::=
 [pragma_argument_identifier =>] name
 | [pragma_argument_identifier =>] expression
In a pragma, any pragma_argument_associations without a pragma_argument_identifier shall
precede any associations with a pragma_argument_identifier.
Pragmas are only allowed at the following places in a program:

• After a semicolon delimiter, but not within a formal_part or discriminant_part.
• At any place where the syntax rules allow a construct defined by a syntactic category

whose name ends with "declaration", "statement", "clause", or "alternative", or one of the
syntactic categories variant or exception_handler; but not in place of such a construct.
Also at any place where a compilation_unit would be allowed.

Additional syntax rules and placement restrictions exist for specific pragmas.

The name of a pragma is the identifier following the reserved word pragma. The name or expression of
a pragma_argument_association is a pragma argument.

An identifier specific to a pragma is an identifier that is used in a pragma argument with special meaning
for that pragma.

Static Semantics

If an implementation does not recognize the name of a pragma, then it has no effect on the semantics of
the program. Inside such a pragma, the only rules that apply are the Syntax Rules.

4

5

6

1

2

3

4

5

6

7

8

9

10

11

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

17 10 November 2006 Pragmas 2.8

Dynamic Semantics

Any pragma that appears at the place of an executable construct is executed. Unless otherwise specified
for a particular pragma, this execution consists of the evaluation of each evaluable pragma argument in an
arbitrary order.

Implementation Requirements

The implementation shall give a warning message for an unrecognized pragma name.

Implementation Permissions

An implementation may provide implementation-defined pragmas; the name of an implementation-defined
pragma shall differ from those of the language-defined pragmas.

An implementation may ignore an unrecognized pragma even if it violates some of the Syntax Rules, if
detecting the syntax error is too complex.

Implementation Advice

Normally, implementation-defined pragmas should have no semantic effect for error-free programs; that
is, if the implementation-defined pragmas are removed from a working program, the program should still
be legal, and should still have the same semantics.

Normally, an implementation should not define pragmas that can make an illegal program legal, except as
follows:

• A pragma used to complete a declaration, such as a pragma Import;

• A pragma used to configure the environment by adding, removing, or replacing library_items.

Syntax

The forms of List, Page, and Optimize pragmas are as follows:
 pragma List(identifier);
 pragma Page;
 pragma Optimize(identifier);
Other pragmas are defined throughout this International Standard, and are summarized in Annex L.

Static Semantics

A pragma List takes one of the identifiers On or Off as the single argument. This pragma is allowed
anywhere a pragma is allowed. It specifies that listing of the compilation is to be continued or suspended
until a List pragma with the opposite argument is given within the same compilation. The pragma itself is
always listed if the compiler is producing a listing.

A pragma Page is allowed anywhere a pragma is allowed. It specifies that the program text which follows
the pragma should start on a new page (if the compiler is currently producing a listing).

A pragma Optimize takes one of the identifiers Time, Space, or Off as the single argument. This pragma
is allowed anywhere a pragma is allowed, and it applies until the end of the immediately enclosing
declarative region, or for a pragma at the place of a compilation_unit, to the end of the compilation. It
gives advice to the implementation as to whether time or space is the primary optimization criterion, or
that optional optimizations should be turned off. It is implementation defined how this advice is followed.

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

2.8 Pragmas 10 November 2006 18

Examples

Examples of pragmas:
pragma List(Off); -- turn off listing generation
pragma Optimize(Off); -- turn off optional optimizations
pragma Inline(Set_Mask); -- generate code for Set_Mask inline
pragma Import(C, Put_Char, External_Name => "putchar"); -- import C putchar function

2.9 Reserved Words
Syntax

This paragraph was deleted.
The following are the reserved words. Within a program, some or all of the letters of a reserved word
may be in upper case, and one or more characters in category other_format may be inserted within or
at the end of the reserved word.

abort
abs
abstract
accept
access
aliased
all
and
array
at

begin
body

case
constant

declare
delay
delta
digits
do

else
elsif
end
entry
exception
exit

for
function

generic
goto

if
in
interface
is

limited
loop

mod

new
not
null

of
or
others
out
overriding

package
pragma
private
procedure
protected

raise
range
record
rem
renames
requeue

return
reverse

select
separate
subtype
synchronized

tagged
task
terminate
then
type

until
use

when
while
with

xor

NOTES
8 The reserved words appear in lower case boldface in this International Standard, except when used in the designator of
an attribute (see 4.1.4). Lower case boldface is also used for a reserved word in a string_literal used as an
operator_symbol. This is merely a convention — programs may be written in whatever typeface is desired and available.

28

29/2

1/1

2/2

3

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

19 10 November 2006 Declarations and Types 3

Section 3: Declarations and Types
This section describes the types in the language and the rules for declaring constants, variables, and named
numbers.

3.1 Declarations
The language defines several kinds of named entities that are declared by declarations. The entity's name
is defined by the declaration, usually by a defining_identifier, but sometimes by a defining_character_-
literal or defining_operator_symbol.

There are several forms of declaration. A basic_declaration is a form of declaration defined as follows.

Syntax

basic_declaration ::=
 type_declaration | subtype_declaration
 | object_declaration | number_declaration
 | subprogram_declaration | abstract_subprogram_declaration
 | null_procedure_declaration | package_declaration
 | renaming_declaration | exception_declaration
 | generic_declaration | generic_instantiation
defining_identifier ::= identifier

Static Semantics

A declaration is a language construct that associates a name with (a view of) an entity. A declaration may
appear explicitly in the program text (an explicit declaration), or may be supposed to occur at a given place
in the text as a consequence of the semantics of another construct (an implicit declaration).

Each of the following is defined to be a declaration: any basic_declaration; an enumeration_literal_-
specification; a discriminant_specification; a component_declaration; a loop_parameter_specification; a
parameter_specification; a subprogram_body; an entry_declaration; an entry_index_specification; a
choice_parameter_specification; a generic_formal_parameter_declaration. In addition, an
extended_return_statement is a declaration of its defining_identifier.

All declarations contain a definition for a view of an entity. A view consists of an identification of the
entity (the entity of the view), plus view-specific characteristics that affect the use of the entity through
that view (such as mode of access to an object, formal parameter names and defaults for a subprogram, or
visibility to components of a type). In most cases, a declaration also contains the definition for the entity
itself (a renaming_declaration is an example of a declaration that does not define a new entity, but instead
defines a view of an existing entity (see 8.5)).

For each declaration, the language rules define a certain region of text called the scope of the declaration
(see 8.2). Most declarations associate an identifier with a declared entity. Within its scope, and only there,
there are places where it is possible to use the identifier to refer to the declaration, the view it defines, and
the associated entity; these places are defined by the visibility rules (see 8.3). At such places the identifier
is said to be a name of the entity (the direct_name or selector_name); the name is said to denote the
declaration, the view, and the associated entity (see 8.6). The declaration is said to declare the name, the
view, and in most cases, the entity itself.

1

1

2

3/2

4

5

6/2

7

8

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

3.1 Declarations 10 November 2006 20

As an alternative to an identifier, an enumeration literal can be declared with a character_literal as its
name (see 3.5.1), and a function can be declared with an operator_symbol as its name (see 6.1).

The syntax rules use the terms defining_identifier, defining_character_literal, and defining_operator_-
symbol for the defining occurrence of a name; these are collectively called defining names. The terms
direct_name and selector_name are used for usage occurrences of identifiers, character_literals, and
operator_symbols. These are collectively called usage names.

Dynamic Semantics

The process by which a construct achieves its run-time effect is called execution. This process is also
called elaboration for declarations and evaluation for expressions. One of the terms execution,
elaboration, or evaluation is defined by this International Standard for each construct that has a run-time
effect.

NOTES
1 At compile time, the declaration of an entity declares the entity. At run time, the elaboration of the declaration creates
the entity.

3.2 Types and Subtypes
Static Semantics

A type is characterized by a set of values, and a set of primitive operations which implement the
fundamental aspects of its semantics. An object of a given type is a run-time entity that contains (has) a
value of the type.

Types are grouped into categories of types. There exist several language-defined categories of types (see
NOTES below), reflecting the similarity of their values and primitive operations. Most categories of types
form classes of types. Elementary types are those whose values are logically indivisible; composite types
are those whose values are composed of component values.

The elementary types are the scalar types (discrete and real) and the access types (whose values provide
access to objects or subprograms). Discrete types are either integer types or are defined by enumeration of
their values (enumeration types). Real types are either floating point types or fixed point types.

The composite types are the record types, record extensions, array types, interface types, task types, and
protected types.

There can be multiple views of a type with varying sets of operations. An incomplete type represents an
incomplete view (see 3.10.1) of a type with a very restricted usage, providing support for recursive data
structures. A private type or private extension represents a partial view (see 7.3) of a type, providing
support for data abstraction. The full view (see 3.2.1) of a type represents its complete definition. An
incomplete or partial view is considered a composite type, even if the full view is not.

Certain composite types (and views thereof) have special components called discriminants whose values
affect the presence, constraints, or initialization of other components. Discriminants can be thought of as
parameters of the type.

The term subcomponent is used in this International Standard in place of the term component to indicate
either a component, or a component of another subcomponent. Where other subcomponents are excluded,
the term component is used instead. Similarly, a part of an object or value is used to mean the whole
object or value, or any set of its subcomponents. The terms component, subcomponent, and part are also
applied to a type meaning the component, subcomponent, or part of objects and values of the type.

9

10

11

12

1

2/2

3

4/2

4.1/2

5/2

6/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

21 10 November 2006 Types and Subtypes 3.2

The set of possible values for an object of a given type can be subjected to a condition that is called a
constraint (the case of a null constraint that specifies no restriction is also included); the rules for which
values satisfy a given kind of constraint are given in 3.5 for range_constraints, 3.6.1 for
index_constraints, and 3.7.1 for discriminant_constraints. The set of possible values for an object of an
access type can also be subjected to a condition that excludes the null value (see 3.10).

A subtype of a given type is a combination of the type, a constraint on values of the type, and certain
attributes specific to the subtype. The given type is called the type of the subtype. Similarly, the associated
constraint is called the constraint of the subtype. The set of values of a subtype consists of the values of its
type that satisfy its constraint and any exclusion of the null value. Such values belong to the subtype.

A subtype is called an unconstrained subtype if its type has unknown discriminants, or if its type allows
range, index, or discriminant constraints, but the subtype does not impose such a constraint; otherwise, the
subtype is called a constrained subtype (since it has no unconstrained characteristics).

NOTES
2 Any set of types can be called a “category” of types, and any set of types that is closed under derivation (see 3.4) can be
called a “class” of types. However, only certain categories and classes are used in the description of the rules of the
language — generally those that have their own particular set of primitive operations (see 3.2.3), or that correspond to a
set of types that are matched by a given kind of generic formal type (see 12.5). The following are examples of
“interesting” language-defined classes: elementary, scalar, discrete, enumeration, character, boolean, integer, signed
integer, modular, real, floating point, fixed point, ordinary fixed point, decimal fixed point, numeric, access, access-to-
object, access-to-subprogram, composite, array, string, (untagged) record, tagged, task, protected, nonlimited. Special
syntax is provided to define types in each of these classes. In addition to these classes, the following are examples of
“interesting” language-defined categories: abstract, incomplete, interface, limited, private, record.

These language-defined categories are organized like this:

all types
 elementary
 scalar
 discrete
 enumeration
 character
 boolean
 other enumeration
 integer
 signed integer
 modular integer
 real
 floating point
 fixed point
 ordinary fixed point
 decimal fixed point
 access
 access-to-object
 access-to-subprogram
 composite
 untagged
 array
 string
 other array
 record
 task
 protected
 tagged (including interfaces)
 nonlimited tagged record
 limited tagged
 limited tagged record

7/2

8/2

9

10/2

11/2

12/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

3.2 Types and Subtypes 10 November 2006 22

 synchronized tagged
 tagged task
 tagged protected

There are other categories, such as “numeric” and “discriminated”, which represent other categorization dimensions, but
do not fit into the above strictly hierarchical picture.

3.2.1 Type Declarations
A type_declaration declares a type and its first subtype.

Syntax

type_declaration ::= full_type_declaration
 | incomplete_type_declaration
 | private_type_declaration
 | private_extension_declaration
full_type_declaration ::=
 type defining_identifier [known_discriminant_part] is type_definition;
 | task_type_declaration
 | protected_type_declaration
type_definition ::=
 enumeration_type_definition | integer_type_definition
 | real_type_definition | array_type_definition
 | record_type_definition | access_type_definition
 | derived_type_definition | interface_type_definition

Legality Rules

A given type shall not have a subcomponent whose type is the given type itself.

Static Semantics

The defining_identifier of a type_declaration denotes the first subtype of the type. The known_-
discriminant_part, if any, defines the discriminants of the type (see 3.7, “Discriminants”). The remainder
of the type_declaration defines the remaining characteristics of (the view of) the type.

A type defined by a type_declaration is a named type; such a type has one or more nameable subtypes.
Certain other forms of declaration also include type definitions as part of the declaration for an object. The
type defined by such a declaration is anonymous — it has no nameable subtypes. For explanatory
purposes, this International Standard sometimes refers to an anonymous type by a pseudo-name, written in
italics, and uses such pseudo-names at places where the syntax normally requires an identifier. For a
named type whose first subtype is T, this International Standard sometimes refers to the type of T as
simply “the type T”.

A named type that is declared by a full_type_declaration, or an anonymous type that is defined by an
access_definition or as part of declaring an object of the type, is called a full type. The declaration of a
full type also declares the full view of the type. The type_definition, task_definition, protected_definition,
or access_definition that defines a full type is called a full type definition. Types declared by other forms
of type_declaration are not separate types; they are partial or incomplete views of some full type.

The definition of a type implicitly declares certain predefined operators that operate on the type,
according to what classes the type belongs, as specified in 4.5, “Operators and Expression Evaluation”.

The predefined types (for example the types Boolean, Wide_Character, Integer, root_integer, and
universal_integer) are the types that are defined in a predefined library package called Standard; this

13/2

1

2

3

4/2

5

6

7/2

8/2

9

10

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

23 10 November 2006 Type Declarations 3.2.1

package also includes the (implicit) declarations of their predefined operators. The package Standard is
described in A.1.

Dynamic Semantics

The elaboration of a full_type_declaration consists of the elaboration of the full type definition. Each
elaboration of a full type definition creates a distinct type and its first subtype.

Examples

Examples of type definitions:
(White, Red, Yellow, Green, Blue, Brown, Black)
range 1 .. 72
array(1 .. 10) of Integer

Examples of type declarations:
type Color is (White, Red, Yellow, Green, Blue, Brown, Black);
type Column is range 1 .. 72;
type Table is array(1 .. 10) of Integer;

NOTES
3 Each of the above examples declares a named type. The identifier given denotes the first subtype of the type. Other
named subtypes of the type can be declared with subtype_declarations (see 3.2.2). Although names do not directly denote
types, a phrase like “the type Column” is sometimes used in this International Standard to refer to the type of Column,
where Column denotes the first subtype of the type. For an example of the definition of an anonymous type, see the
declaration of the array Color_Table in 3.3.1; its type is anonymous — it has no nameable subtypes.

3.2.2 Subtype Declarations
A subtype_declaration declares a subtype of some previously declared type, as defined by a
subtype_indication.

Syntax

subtype_declaration ::=
 subtype defining_identifier is subtype_indication;
subtype_indication ::= [null_exclusion] subtype_mark [constraint]
subtype_mark ::= subtype_name
constraint ::= scalar_constraint | composite_constraint
scalar_constraint ::=
 range_constraint | digits_constraint | delta_constraint
composite_constraint ::=
 index_constraint | discriminant_constraint

Name Resolution Rules

A subtype_mark shall resolve to denote a subtype. The type determined by a subtype_mark is the type of
the subtype denoted by the subtype_mark.

Dynamic Semantics

The elaboration of a subtype_declaration consists of the elaboration of the subtype_indication. The
elaboration of a subtype_indication creates a new subtype. If the subtype_indication does not include a
constraint, the new subtype has the same (possibly null) constraint as that denoted by the subtype_mark.
The elaboration of a subtype_indication that includes a constraint proceeds as follows:

11

12

13

14

15

16

1

2

3/2

4

5

6

7

8

9

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

3.2.2 Subtype Declarations 10 November 2006 24

• The constraint is first elaborated.

• A check is then made that the constraint is compatible with the subtype denoted by the
subtype_mark.

The condition imposed by a constraint is the condition obtained after elaboration of the constraint. The
rules defining compatibility are given for each form of constraint in the appropriate subclause. These rules
are such that if a constraint is compatible with a subtype, then the condition imposed by the constraint
cannot contradict any condition already imposed by the subtype on its values. The exception
Constraint_Error is raised if any check of compatibility fails.

NOTES
4 A scalar_constraint may be applied to a subtype of an appropriate scalar type (see 3.5, 3.5.9, and J.3), even if the
subtype is already constrained. On the other hand, a composite_constraint may be applied to a composite subtype (or an
access-to-composite subtype) only if the composite subtype is unconstrained (see 3.6.1 and 3.7.1).

Examples

Examples of subtype declarations:
subtype Rainbow is Color range Red .. Blue; -- see 3.2.1
subtype Red_Blue is Rainbow;
subtype Int is Integer;
subtype Small_Int is Integer range -10 .. 10;
subtype Up_To_K is Column range 1 .. K; -- see 3.2.1
subtype Square is Matrix(1 .. 10, 1 .. 10); -- see 3.6
subtype Male is Person(Sex => M); -- see 3.10.1
subtype Binop_Ref is not null Binop_Ptr; -- see 3.10

3.2.3 Classification of Operations
Static Semantics

An operation operates on a type T if it yields a value of type T, if it has an operand whose expected type
(see 8.6) is T, or if it has an access parameter or access result type (see 6.1) designating T. A predefined
operator, or other language-defined operation such as assignment or a membership test, that operates on a
type, is called a predefined operation of the type. The primitive operations of a type are the predefined
operations of the type, plus any user-defined primitive subprograms.

The primitive subprograms of a specific type are defined as follows:
• The predefined operators of the type (see 4.5);

• For a derived type, the inherited (see 3.4) user-defined subprograms;

• For an enumeration type, the enumeration literals (which are considered parameterless functions
— see 3.5.1);

• For a specific type declared immediately within a package_specification, any subprograms (in
addition to the enumeration literals) that are explicitly declared immediately within the same
package_specification and that operate on the type;

• For a nonformal type, any subprograms not covered above that are explicitly declared
immediately within the same declarative region as the type and that override (see 8.3) other
implicitly declared primitive subprograms of the type.

A primitive subprogram whose designator is an operator_symbol is called a primitive operator.

10

11

12

13

14

15/2

1/2

2

3

4

5

6

7/2

8

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

25 10 November 2006 Objects and Named Numbers 3.3

3.3 Objects and Named Numbers
Objects are created at run time and contain a value of a given type. An object can be created and initialized
as part of elaborating a declaration, evaluating an allocator, aggregate, or function_call, or passing a
parameter by copy. Prior to reclaiming the storage for an object, it is finalized if necessary (see 7.6.1).

Static Semantics

All of the following are objects:
• the entity declared by an object_declaration;

• a formal parameter of a subprogram, entry, or generic subprogram;

• a generic formal object;

• a loop parameter;

• a choice parameter of an exception_handler;

• an entry index of an entry_body;

• the result of dereferencing an access-to-object value (see 4.1);

• the return object created as the result of evaluating a function_call (or the equivalent operator
invocation — see 6.6);

• the result of evaluating an aggregate;

• a component, slice, or view conversion of another object.

An object is either a constant object or a variable object. The value of a constant object cannot be changed
between its initialization and its finalization, whereas the value of a variable object can be changed.
Similarly, a view of an object is either a constant or a variable. All views of a constant object are constant.
A constant view of a variable object cannot be used to modify the value of the variable. The terms constant
and variable by themselves refer to constant and variable views of objects.

The value of an object is read when the value of any part of the object is evaluated, or when the value of
an enclosing object is evaluated. The value of a variable is updated when an assignment is performed to
any part of the variable, or when an assignment is performed to an enclosing object.

Whether a view of an object is constant or variable is determined by the definition of the view. The
following (and no others) represent constants:

• an object declared by an object_declaration with the reserved word constant;

• a formal parameter or generic formal object of mode in;

• a discriminant;

• a loop parameter, choice parameter, or entry index;

• the dereference of an access-to-constant value;

• the result of evaluating a function_call or an aggregate;

• a selected_component, indexed_component, slice, or view conversion of a constant.

At the place where a view of an object is defined, a nominal subtype is associated with the view. The
object's actual subtype (that is, its subtype) can be more restrictive than the nominal subtype of the view; it
always is if the nominal subtype is an indefinite subtype. A subtype is an indefinite subtype if it is an
unconstrained array subtype, or if it has unknown discriminants or unconstrained discriminants without

1

2

3

4

5

6

7

8

9

10/2

11

12

13

14

15

16

17

18

19

20

21

22

23

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

3.3 Objects and Named Numbers 10 November 2006 26

defaults (see 3.7); otherwise the subtype is a definite subtype (all elementary subtypes are definite
subtypes). A class-wide subtype is defined to have unknown discriminants, and is therefore an indefinite
subtype. An indefinite subtype does not by itself provide enough information to create an object; an
additional constraint or explicit initialization expression is necessary (see 3.3.1). A component cannot
have an indefinite nominal subtype.

A named number provides a name for a numeric value known at compile time. It is declared by a
number_declaration.

NOTES
5 A constant cannot be the target of an assignment operation, nor be passed as an in out or out parameter, between its
initialization and finalization, if any.

6 The nominal and actual subtypes of an elementary object are always the same. For a discriminated or array object, if the
nominal subtype is constrained then so is the actual subtype.

3.3.1 Object Declarations
An object_declaration declares a stand-alone object with a given nominal subtype and, optionally, an
explicit initial value given by an initialization expression. For an array, task, or protected object, the
object_declaration may include the definition of the (anonymous) type of the object.

Syntax

object_declaration ::=
 defining_identifier_list : [aliased] [constant] subtype_indication [:= expression];
 | defining_identifier_list : [aliased] [constant] access_definition [:= expression];
 | defining_identifier_list : [aliased] [constant] array_type_definition [:= expression];
 | single_task_declaration
 | single_protected_declaration
defining_identifier_list ::=
 defining_identifier {, defining_identifier}

Name Resolution Rules

For an object_declaration with an expression following the compound delimiter :=, the type expected for
the expression is that of the object. This expression is called the initialization expression.

Legality Rules

An object_declaration without the reserved word constant declares a variable object. If it has a
subtype_indication or an array_type_definition that defines an indefinite subtype, then there shall be an
initialization expression.

Static Semantics

An object_declaration with the reserved word constant declares a constant object. If it has an
initialization expression, then it is called a full constant declaration. Otherwise it is called a deferred
constant declaration. The rules for deferred constant declarations are given in clause 7.4. The rules for full
constant declarations are given in this subclause.

Any declaration that includes a defining_identifier_list with more than one defining_identifier is equivalent
to a series of declarations each containing one defining_identifier from the list, with the rest of the text of
the declaration copied for each declaration in the series, in the same order as the list. The remainder of this
International Standard relies on this equivalence; explanations are given for declarations with a single
defining_identifier.

24

25

26

1

2/2

3

4

5/2

6

7

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

27 10 November 2006 Object Declarations 3.3.1

The subtype_indication, access_definition, or full type definition of an object_declaration defines the
nominal subtype of the object. The object_declaration declares an object of the type of the nominal
subtype.

A component of an object is said to require late initialization if it has an access discriminant value
constrained by a per-object expression, or if it has an initialization expression that includes a name
denoting the current instance of the type or denoting an access discriminant.

Dynamic Semantics

If a composite object declared by an object_declaration has an unconstrained nominal subtype, then if this
subtype is indefinite or the object is constant the actual subtype of this object is constrained. The
constraint is determined by the bounds or discriminants (if any) of its initial value; the object is said to be
constrained by its initial value. When not constrained by its initial value, the actual and nominal subtypes
of the object are the same. If its actual subtype is constrained, the object is called a constrained object.

For an object_declaration without an initialization expression, any initial values for the object or its
subcomponents are determined by the implicit initial values defined for its nominal subtype, as follows:

• The implicit initial value for an access subtype is the null value of the access type.

• The implicit initial (and only) value for each discriminant of a constrained discriminated subtype
is defined by the subtype.

• For a (definite) composite subtype, the implicit initial value of each component with a
default_expression is obtained by evaluation of this expression and conversion to the
component's nominal subtype (which might raise Constraint_Error — see 4.6, “Type
Conversions”), unless the component is a discriminant of a constrained subtype (the previous
case), or is in an excluded variant (see 3.8.1). For each component that does not have a
default_expression, any implicit initial values are those determined by the component's nominal
subtype.

• For a protected or task subtype, there is an implicit component (an entry queue) corresponding to
each entry, with its implicit initial value being an empty queue.

The elaboration of an object_declaration proceeds in the following sequence of steps:
1. The subtype_indication, access_definition, array_type_definition, single_task_declaration, or

single_protected_declaration is first elaborated. This creates the nominal subtype (and the
anonymous type in the last four cases).

2. If the object_declaration includes an initialization expression, the (explicit) initial value is
obtained by evaluating the expression and converting it to the nominal subtype (which might
raise Constraint_Error — see 4.6).

3. The object is created, and, if there is not an initialization expression, the object is initialized by
default. When an object is initialized by default, any per-object constraints (see 3.8) are
elaborated and any implicit initial values for the object or for its subcomponents are obtained as
determined by the nominal subtype. Any initial values (whether explicit or implicit) are assigned
to the object or to the corresponding subcomponents. As described in 5.2 and 7.6, Initialize and
Adjust procedures can be called.

This paragraph was deleted.

For the third step above, evaluations and assignments are performed in an arbitrary order subject to the
following restrictions:

• Assignment to any part of the object is preceded by the evaluation of the value that is to be
assigned.

8/2

8.1/2

9/2

10

11

12

13

14

15

16/2

17

18/2

19/2

20/2

20.1/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

3.3.1 Object Declarations 10 November 2006 28

• The evaluation of a default_expression that includes the name of a discriminant is preceded by
the assignment to that discriminant.

• The evaluation of the default_expression for any component that depends on a discriminant is
preceded by the assignment to that discriminant.

• The assignments to any components, including implicit components, not requiring late
initialization must precede the initial value evaluations for any components requiring late
initialization; if two components both require late initialization, then assignments to parts of the
component occurring earlier in the order of the component declarations must precede the initial
value evaluations of the component occurring later.

There is no implicit initial value defined for a scalar subtype. In the absence of an explicit initialization, a
newly created scalar object might have a value that does not belong to its subtype (see 13.9.1 and H.1).

NOTES
7 Implicit initial values are not defined for an indefinite subtype, because if an object's nominal subtype is indefinite, an
explicit initial value is required.

8 As indicated above, a stand-alone object is an object declared by an object_declaration. Similar definitions apply to
“stand-alone constant” and “stand-alone variable.” A subcomponent of an object is not a stand-alone object, nor is an
object that is created by an allocator. An object declared by a loop_parameter_specification, parameter_specification,
entry_index_specification, choice_parameter_specification, or a formal_object_declaration is not called a stand-alone
object.

9 The type of a stand-alone object cannot be abstract (see 3.9.3).

Examples

Example of a multiple object declaration:
-- the multiple object declaration
John, Paul : not null Person_Name := new Person(Sex => M); -- see 3.10.1
-- is equivalent to the two single object declarations in the order given
John : not null Person_Name := new Person(Sex => M);
Paul : not null Person_Name := new Person(Sex => M);

Examples of variable declarations:
Count, Sum : Integer;
Size : Integer range 0 .. 10_000 := 0;
Sorted : Boolean := False;
Color_Table : array(1 .. Max) of Color;
Option : Bit_Vector(1 .. 10) := (others => True);
Hello : aliased String := "Hi, world.";
θ, φ : Float range -π .. +π;

Examples of constant declarations:
Limit : constant Integer := 10_000;
Low_Limit : constant Integer := Limit/10;
Tolerance : constant Real := Dispersion(1.15);
Hello_Msg : constant access String := Hello'Access; -- see 3.10.2

3.3.2 Number Declarations
A number_declaration declares a named number.

Syntax

number_declaration ::=
 defining_identifier_list : constant := static_expression;

20.2/2

20.3/2

20.4/2

21

22

23

24

25

26

27/2

28

29/2

30

31/2

32

33/2

1

2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

29 10 November 2006 Number Declarations 3.3.2

Name Resolution Rules

The static_expression given for a number_declaration is expected to be of any numeric type.

Legality Rules

The static_expression given for a number declaration shall be a static expression, as defined by clause
4.9.

Static Semantics

The named number denotes a value of type universal_integer if the type of the static_expression is an
integer type. The named number denotes a value of type universal_real if the type of the static_-
expression is a real type.

The value denoted by the named number is the value of the static_expression, converted to the
corresponding universal type.

Dynamic Semantics

The elaboration of a number_declaration has no effect.

Examples

Examples of number declarations:
Two_Pi : constant := 2.0*Ada.Numerics.Pi; -- a real number (see A.5)
Max : constant := 500; -- an integer number
Max_Line_Size : constant := Max/6; -- the integer 83
Power_16 : constant := 2**16; -- the integer 65_536
One, Un, Eins : constant := 1; -- three different names for 1

3.4 Derived Types and Classes
A derived_type_definition defines a derived type (and its first subtype) whose characteristics are derived
from those of a parent type, and possibly from progenitor types.

A class of types is a set of types that is closed under derivation; that is, if the parent or a progenitor type of
a derived type belongs to a class, then so does the derived type. By saying that a particular group of types
forms a class, we are saying that all derivatives of a type in the set inherit the characteristics that define
that set. The more general term category of types is used for a set of types whose defining characteristics
are not necessarily inherited by derivatives; for example, limited, abstract, and interface are all categories
of types, but not classes of types.

Syntax

derived_type_definition ::=
 [abstract] [limited] new parent_subtype_indication [[and interface_list] record_extension_part]

Legality Rules

The parent_subtype_indication defines the parent subtype; its type is the parent type. The interface_list
defines the progenitor types (see 3.9.4). A derived type has one parent type and zero or more progenitor
types.

A type shall be completely defined (see 3.11.1) prior to being specified as the parent type in a
derived_type_definition — the full_type_declarations for the parent type and any of its subcomponents
have to precede the derived_type_definition.

3

4

5

6

7

8

9

10/2

1/2

1.1/2

2/2

3/2

4

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

3.4 Derived Types and Classes 10 November 2006 30

If there is a record_extension_part, the derived type is called a record extension of the parent type. A
record_extension_part shall be provided if and only if the parent type is a tagged type. An interface_list
shall be provided only if the parent type is a tagged type.

If the reserved word limited appears in a derived_type_definition, the parent type shall be a limited type.

Static Semantics

The first subtype of the derived type is unconstrained if a known_discriminant_part is provided in the
declaration of the derived type, or if the parent subtype is unconstrained. Otherwise, the constraint of the
first subtype corresponds to that of the parent subtype in the following sense: it is the same as that of the
parent subtype except that for a range constraint (implicit or explicit), the value of each bound of its range
is replaced by the corresponding value of the derived type.

The first subtype of the derived type excludes null (see 3.10) if and only if the parent subtype excludes
null.

The characteristics of the derived type are defined as follows:
• If the parent type or a progenitor type belongs to a class of types, then the derived type also

belongs to that class. The following sets of types, as well as any higher-level sets composed
from them, are classes in this sense, and hence the characteristics defining these classes are
inherited by derived types from their parent or progenitor types: signed integer, modular integer,
ordinary fixed, decimal fixed, floating point, enumeration, boolean, character, access-to-
constant, general access-to-variable, pool-specific access-to-variable, access-to-subprogram,
array, string, non-array composite, nonlimited, untagged record, tagged, task, protected, and
synchronized tagged.

• If the parent type is an elementary type or an array type, then the set of possible values of the
derived type is a copy of the set of possible values of the parent type. For a scalar type, the base
range of the derived type is the same as that of the parent type.

• If the parent type is a composite type other than an array type, then the components, protected
subprograms, and entries that are declared for the derived type are as follows:

• The discriminants specified by a new known_discriminant_part, if there is one; otherwise,
each discriminant of the parent type (implicitly declared in the same order with the same
specifications) — in the latter case, the discriminants are said to be inherited, or if unknown
in the parent, are also unknown in the derived type;

• Each nondiscriminant component, entry, and protected subprogram of the parent type,
implicitly declared in the same order with the same declarations; these components, entries,
and protected subprograms are said to be inherited;

• Each component declared in a record_extension_part, if any.

 Declarations of components, protected subprograms, and entries, whether implicit or explicit,
occur immediately within the declarative region of the type, in the order indicated above,
following the parent subtype_indication.

• This paragraph was deleted.

• For each predefined operator of the parent type, there is a corresponding predefined operator of
the derived type.

• For each user-defined primitive subprogram (other than a user-defined equality operator — see
below) of the parent type or of a progenitor type that already exists at the place of the
derived_type_definition, there exists a corresponding inherited primitive subprogram of the
derived type with the same defining name. Primitive user-defined equality operators of the

5/2

5.1/2

6

6.1/2

7

8/2

9

10

11

12

13

14

15/2

16

17/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

31 10 November 2006 Derived Types and Classes 3.4

parent type and any progenitor types are also inherited by the derived type, except when the
derived type is a nonlimited record extension, and the inherited operator would have a profile
that is type conformant with the profile of the corresponding predefined equality operator; in this
case, the user-defined equality operator is not inherited, but is rather incorporated into the
implementation of the predefined equality operator of the record extension (see 4.5.2).

 The profile of an inherited subprogram (including an inherited enumeration literal) is obtained
from the profile of the corresponding (user-defined) primitive subprogram of the parent or
progenitor type, after systematic replacement of each subtype of its profile (see 6.1) that is of the
parent or progenitor type with a corresponding subtype of the derived type. For a given subtype
of the parent or progenitor type, the corresponding subtype of the derived type is defined as
follows:

• If the declaration of the derived type has neither a known_discriminant_part nor a
record_extension_part, then the corresponding subtype has a constraint that corresponds
(as defined above for the first subtype of the derived type) to that of the given subtype.

• If the derived type is a record extension, then the corresponding subtype is the first subtype
of the derived type.

• If the derived type has a new known_discriminant_part but is not a record extension, then
the corresponding subtype is constrained to those values that when converted to the parent
type belong to the given subtype (see 4.6).

 The same formal parameters have default_expressions in the profile of the inherited
subprogram. Any type mismatch due to the systematic replacement of the parent or progenitor
type by the derived type is handled as part of the normal type conversion associated with
parameter passing — see 6.4.1.

If a primitive subprogram of the parent or progenitor type is visible at the place of the
derived_type_definition, then the corresponding inherited subprogram is implicitly declared immediately
after the derived_type_definition. Otherwise, the inherited subprogram is implicitly declared later or not at
all, as explained in 7.3.1.

A derived type can also be defined by a private_extension_declaration (see 7.3) or a formal_derived_-
type_definition (see 12.5.1). Such a derived type is a partial view of the corresponding full or actual type.

All numeric types are derived types, in that they are implicitly derived from a corresponding root numeric
type (see 3.5.4 and 3.5.6).

Dynamic Semantics

The elaboration of a derived_type_definition creates the derived type and its first subtype, and consists of
the elaboration of the subtype_indication and the record_extension_part, if any. If the subtype_-
indication depends on a discriminant, then only those expressions that do not depend on a discriminant are
evaluated.

For the execution of a call on an inherited subprogram, a call on the corresponding primitive subprogram
of the parent or progenitor type is performed; the normal conversion of each actual parameter to the
subtype of the corresponding formal parameter (see 6.4.1) performs any necessary type conversion as
well. If the result type of the inherited subprogram is the derived type, the result of calling the subprogram
of the parent or progenitor is converted to the derived type, or in the case of a null extension, extended to
the derived type using the equivalent of an extension_aggregate with the original result as the
ancestor_part and null record as the record_component_association_list.

18/2

19

20

21

22/2

23/2

24

25

26

27/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

3.4 Derived Types and Classes 10 November 2006 32

NOTES
10 Classes are closed under derivation — any class that contains a type also contains its derivatives. Operations available
for a given class of types are available for the derived types in that class.

11 Evaluating an inherited enumeration literal is equivalent to evaluating the corresponding enumeration literal of the
parent type, and then converting the result to the derived type. This follows from their equivalence to parameterless
functions.

12 A generic subprogram is not a subprogram, and hence cannot be a primitive subprogram and cannot be inherited by a
derived type. On the other hand, an instance of a generic subprogram can be a primitive subprogram, and hence can be
inherited.

13 If the parent type is an access type, then the parent and the derived type share the same storage pool; there is a null
access value for the derived type and it is the implicit initial value for the type. See 3.10.

14 If the parent type is a boolean type, the predefined relational operators of the derived type deliver a result of the
predefined type Boolean (see 4.5.2). If the parent type is an integer type, the right operand of the predefined
exponentiation operator is of the predefined type Integer (see 4.5.6).

15 Any discriminants of the parent type are either all inherited, or completely replaced with a new set of discriminants.

16 For an inherited subprogram, the subtype of a formal parameter of the derived type need not have any value in
common with the first subtype of the derived type.

17 If the reserved word abstract is given in the declaration of a type, the type is abstract (see 3.9.3).

18 An interface type that has a progenitor type “is derived from” that type. A derived_type_definition, however, never
defines an interface type.

19 It is illegal for the parent type of a derived_type_definition to be a synchronized tagged type.

Examples

Examples of derived type declarations:
type Local_Coordinate is new Coordinate; -- two different types
type Midweek is new Day range Tue .. Thu; -- see 3.5.1
type Counter is new Positive; -- same range as Positive
type Special_Key is new Key_Manager.Key; -- see 7.3.1
 -- the inherited subprograms have the following specifications:
 -- procedure Get_Key(K : out Special_Key);
 -- function "<"(X,Y : Special_Key) return Boolean;

3.4.1 Derivation Classes
In addition to the various language-defined classes of types, types can be grouped into derivation classes.

Static Semantics

A derived type is derived from its parent type directly; it is derived indirectly from any type from which its
parent type is derived. A derived type, interface type, type extension, task type, protected type, or formal
derived type is also derived from every ancestor of each of its progenitor types, if any. The derivation
class of types for a type T (also called the class rooted at T) is the set consisting of T (the root type of the
class) and all types derived from T (directly or indirectly) plus any associated universal or class-wide types
(defined below).

Every type is either a specific type, a class-wide type, or a universal type. A specific type is one defined
by a type_declaration, a formal_type_declaration, or a full type definition embedded in another construct.
Class-wide and universal types are implicitly defined, to act as representatives for an entire class of types,
as follows:

28

29

30

31

32

33

34

35

35.1/2

35.2/2

36

37

38

1

2/2

3/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

33 10 November 2006 Derivation Classes 3.4.1

Class-wide types
 Class-wide types are defined for (and belong to) each derivation class rooted at a tagged

type (see 3.9). Given a subtype S of a tagged type T, S'Class is the subtype_mark for a
corresponding subtype of the tagged class-wide type T'Class. Such types are called “class-
wide” because when a formal parameter is defined to be of a class-wide type T'Class, an
actual parameter of any type in the derivation class rooted at T is acceptable (see 8.6).

 The set of values for a class-wide type T'Class is the discriminated union of the set of
values of each specific type in the derivation class rooted at T (the tag acts as the implicit
discriminant — see 3.9). Class-wide types have no primitive subprograms of their own.
However, as explained in 3.9.2, operands of a class-wide type T'Class can be used as part of
a dispatching call on a primitive subprogram of the type T. The only components (including
discriminants) of T'Class that are visible are those of T. If S is a first subtype, then S'Class
is a first subtype.

Universal types
 Universal types are defined for (and belong to) the integer, real, fixed point, and access

classes, and are referred to in this standard as respectively, universal_integer,
universal_real, universal_fixed, and universal_access. These are analogous to class-wide
types for these language-defined elementary classes. As with class-wide types, if a formal
parameter is of a universal type, then an actual parameter of any type in the corresponding
class is acceptable. In addition, a value of a universal type (including an integer or real
numeric_literal, or the literal null) is “universal” in that it is acceptable where some
particular type in the class is expected (see 8.6).

 The set of values of a universal type is the undiscriminated union of the set of values
possible for any definable type in the associated class. Like class-wide types, universal
types have no primitive subprograms of their own. However, their “universality” allows
them to be used as operands with the primitive subprograms of any type in the
corresponding class.

The integer and real numeric classes each have a specific root type in addition to their universal type,
named respectively root_integer and root_real.

A class-wide or universal type is said to cover all of the types in its class. A specific type covers only
itself.

A specific type T2 is defined to be a descendant of a type T1 if T2 is the same as T1, or if T2 is derived
(directly or indirectly) from T1. A class-wide type T2'Class is defined to be a descendant of type T1 if T2
is a descendant of T1. Similarly, the numeric universal types are defined to be descendants of the root
types of their classes. If a type T2 is a descendant of a type T1, then T1 is called an ancestor of T2. An
ultimate ancestor of a type is an ancestor of that type that is not itself a descendant of any other type.
Every untagged type has a unique ultimate ancestor.

An inherited component (including an inherited discriminant) of a derived type is inherited from a given
ancestor of the type if the corresponding component was inherited by each derived type in the chain of
derivations going back to the given ancestor.

NOTES
20 Because operands of a universal type are acceptable to the predefined operators of any type in their class, ambiguity
can result. For universal_integer and universal_real, this potential ambiguity is resolved by giving a preference (see 8.6)
to the predefined operators of the corresponding root types (root_integer and root_real, respectively). Hence, in an
apparently ambiguous expression like

1 + 4 < 7

where each of the literals is of type universal_integer, the predefined operators of root_integer will be preferred over
those of other specific integer types, thereby resolving the ambiguity.

4

5

6/2

7

8

9

10/2

11

12

13

14

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

3.5 Scalar Types 10 November 2006 34

3.5 Scalar Types
Scalar types comprise enumeration types, integer types, and real types. Enumeration types and integer
types are called discrete types; each value of a discrete type has a position number which is an integer
value. Integer types and real types are called numeric types. All scalar types are ordered, that is, all
relational operators are predefined for their values.

Syntax

range_constraint ::= range range
range ::= range_attribute_reference
 | simple_expression .. simple_expression

A range has a lower bound and an upper bound and specifies a subset of the values of some scalar type
(the type of the range). A range with lower bound L and upper bound R is described by “L .. R”. If R is
less than L, then the range is a null range, and specifies an empty set of values. Otherwise, the range
specifies the values of the type from the lower bound to the upper bound, inclusive. A value belongs to a
range if it is of the type of the range, and is in the subset of values specified by the range. A value satisfies
a range constraint if it belongs to the associated range. One range is included in another if all values that
belong to the first range also belong to the second.

Name Resolution Rules

For a subtype_indication containing a range_constraint, either directly or as part of some other
scalar_constraint, the type of the range shall resolve to that of the type determined by the subtype_mark
of the subtype_indication. For a range of a given type, the simple_expressions of the range (likewise,
the simple_expressions of the equivalent range for a range_attribute_reference) are expected to be of
the type of the range.

Static Semantics

The base range of a scalar type is the range of finite values of the type that can be represented in every
unconstrained object of the type; it is also the range supported at a minimum for intermediate values
during the evaluation of expressions involving predefined operators of the type.

A constrained scalar subtype is one to which a range constraint applies. The range of a constrained scalar
subtype is the range associated with the range constraint of the subtype. The range of an unconstrained
scalar subtype is the base range of its type.

Dynamic Semantics

A range is compatible with a scalar subtype if and only if it is either a null range or each bound of the
range belongs to the range of the subtype. A range_constraint is compatible with a scalar subtype if and
only if its range is compatible with the subtype.

The elaboration of a range_constraint consists of the evaluation of the range. The evaluation of a range
determines a lower bound and an upper bound. If simple_expressions are given to specify bounds, the
evaluation of the range evaluates these simple_expressions in an arbitrary order, and converts them to the
type of the range. If a range_attribute_reference is given, the evaluation of the range consists of the
evaluation of the range_attribute_reference.

1

2

3

4

5

6

7

8

9

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

35 10 November 2006 Scalar Types 3.5

Attributes

For every scalar subtype S, the following attributes are defined:
S'First S'First denotes the lower bound of the range of S. The value of this attribute is of the type

of S.

S'Last S'Last denotes the upper bound of the range of S. The value of this attribute is of the type of
S.

S'Range S'Range is equivalent to the range S'First .. S'Last.

S'Base S'Base denotes an unconstrained subtype of the type of S. This unconstrained subtype is
called the base subtype of the type.

S'Min S'Min denotes a function with the following specification:
function S'Min(Left, Right : S'Base)
 return S'Base

 The function returns the lesser of the values of the two parameters.

S'Max S'Max denotes a function with the following specification:
function S'Max(Left, Right : S'Base)
 return S'Base

 The function returns the greater of the values of the two parameters.

S'Succ S'Succ denotes a function with the following specification:
function S'Succ(Arg : S'Base)
 return S'Base

 For an enumeration type, the function returns the value whose position number is one more
than that of the value of Arg; Constraint_Error is raised if there is no such value of the type.
For an integer type, the function returns the result of adding one to the value of Arg. For a
fixed point type, the function returns the result of adding small to the value of Arg. For a
floating point type, the function returns the machine number (as defined in 3.5.7)
immediately above the value of Arg; Constraint_Error is raised if there is no such machine
number.

S'Pred S'Pred denotes a function with the following specification:
function S'Pred(Arg : S'Base)
 return S'Base

 For an enumeration type, the function returns the value whose position number is one less
than that of the value of Arg; Constraint_Error is raised if there is no such value of the type.
For an integer type, the function returns the result of subtracting one from the value of Arg.
For a fixed point type, the function returns the result of subtracting small from the value of
Arg. For a floating point type, the function returns the machine number (as defined in 3.5.7)
immediately below the value of Arg; Constraint_Error is raised if there is no such machine
number.

S'Wide_Wide_Image
 S'Wide_Wide_Image denotes a function with the following specification:

function S'Wide_Wide_Image(Arg : S'Base)
 return Wide_Wide_String

 The function returns an image of the value of Arg, that is, a sequence of characters
representing the value in display form. The lower bound of the result is one.

 The image of an integer value is the corresponding decimal literal, without underlines,
leading zeros, exponent, or trailing spaces, but with a single leading character that is either
a minus sign or a space.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

27.1/2

27.2/2

27.3/2

27.4/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

3.5 Scalar Types 10 November 2006 36

 The image of an enumeration value is either the corresponding identifier in upper case or
the corresponding character literal (including the two apostrophes); neither leading nor
trailing spaces are included. For a nongraphic character (a value of a character type that
has no enumeration literal associated with it), the result is a corresponding language-
defined name in upper case (for example, the image of the nongraphic character identified
as nul is “NUL” — the quotes are not part of the image).

 The image of a floating point value is a decimal real literal best approximating the value
(rounded away from zero if halfway between) with a single leading character that is either a
minus sign or a space, a single digit (that is nonzero unless the value is zero), a decimal
point, S'Digits–1 (see 3.5.8) digits after the decimal point (but one if S'Digits is one), an
upper case E, the sign of the exponent (either + or –), and two or more digits (with leading
zeros if necessary) representing the exponent. If S'Signed_Zeros is True, then the leading
character is a minus sign for a negatively signed zero.

 The image of a fixed point value is a decimal real literal best approximating the value
(rounded away from zero if halfway between) with a single leading character that is either a
minus sign or a space, one or more digits before the decimal point (with no redundant
leading zeros), a decimal point, and S'Aft (see 3.5.10) digits after the decimal point.

S'Wide_Image S'Wide_Image denotes a function with the following specification:
function S'Wide_Image(Arg : S'Base)
 return Wide_String

 The function returns an image of the value of Arg as a Wide_String. The lower bound of the
result is one. The image has the same sequence of character as defined for
S'Wide_Wide_Image if all the graphic characters are defined in Wide_Character; otherwise
the sequence of characters is implementation defined (but no shorter than that of
S'Wide_Wide_Image for the same value of Arg).

 Paragraphs 31 through 34 were moved to Wide_Wide_Image.

S'Image S'Image denotes a function with the following specification:
function S'Image(Arg : S'Base)
 return String

 The function returns an image of the value of Arg as a String. The lower bound of the result
is one. The image has the same sequence of graphic characters as that defined for
S'Wide_Wide_Image if all the graphic characters are defined in Character; otherwise the
sequence of characters is implementation defined (but no shorter than that of
S'Wide_Wide_Image for the same value of Arg).

S'Wide_Wide_Width
 S'Wide_Wide_Width denotes the maximum length of a Wide_Wide_String returned by

S'Wide_Wide_Image over all values of the subtype S. It denotes zero for a subtype that has
a null range. Its type is universal_integer.

S'Wide_Width
 S'Wide_Width denotes the maximum length of a Wide_String returned by S'Wide_Image

over all values of the subtype S. It denotes zero for a subtype that has a null range. Its type
is universal_integer.

S'Width S'Width denotes the maximum length of a String returned by S'Image over all values of the
subtype S. It denotes zero for a subtype that has a null range. Its type is universal_integer.

S'Wide_Wide_Value
 S'Wide_Wide_Value denotes a function with the following specification:

function S'Wide_Wide_Value(Arg : Wide_Wide_String)
 return S'Base

27.5/2

27.6/2

27.7/2

28

29

30/2

35

36

37/2

37.1/2

38

39

39.1/2

39.2/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

37 10 November 2006 Scalar Types 3.5

 This function returns a value given an image of the value as a Wide_Wide_String, ignoring
any leading or trailing spaces.

 For the evaluation of a call on S'Wide_Wide_Value for an enumeration subtype S, if the
sequence of characters of the parameter (ignoring leading and trailing spaces) has the
syntax of an enumeration literal and if it corresponds to a literal of the type of S (or
corresponds to the result of S'Wide_Wide_Image for a nongraphic character of the type),
the result is the corresponding enumeration value; otherwise Constraint_Error is raised.

 For the evaluation of a call on S'Wide_Wide_Value for an integer subtype S, if the
sequence of characters of the parameter (ignoring leading and trailing spaces) has the
syntax of an integer literal, with an optional leading sign character (plus or minus for a
signed type; only plus for a modular type), and the corresponding numeric value belongs to
the base range of the type of S, then that value is the result; otherwise Constraint_Error is
raised.

 For the evaluation of a call on S'Wide_Wide_Value for a real subtype S, if the sequence of
characters of the parameter (ignoring leading and trailing spaces) has the syntax of one of
the following:

• numeric_literal

• numeral.[exponent]

• .numeral[exponent]

• base#based_numeral.#[exponent]

• base#.based_numeral#[exponent]

 with an optional leading sign character (plus or minus), and if the corresponding numeric
value belongs to the base range of the type of S, then that value is the result; otherwise
Constraint_Error is raised. The sign of a zero value is preserved (positive if none has been
specified) if S'Signed_Zeros is True.

S'Wide_Value
 S'Wide_Value denotes a function with the following specification:

function S'Wide_Value(Arg : Wide_String)
 return S'Base

 This function returns a value given an image of the value as a Wide_String, ignoring any
leading or trailing spaces.

 For the evaluation of a call on S'Wide_Value for an enumeration subtype S, if the sequence
of characters of the parameter (ignoring leading and trailing spaces) has the syntax of an
enumeration literal and if it corresponds to a literal of the type of S (or corresponds to the
result of S'Wide_Image for a value of the type), the result is the corresponding enumeration
value; otherwise Constraint_Error is raised. For a numeric subtype S, the evaluation of a
call on S'Wide_Value with Arg of type Wide_String is equivalent to a call on
S'Wide_Wide_Value for a corresponding Arg of type Wide_Wide_String.

 Paragraphs 44 through 51 were moved to Wide_Wide_Value.

S'Value S'Value denotes a function with the following specification:
function S'Value(Arg : String)
 return S'Base

 This function returns a value given an image of the value as a String, ignoring any leading
or trailing spaces.

 For the evaluation of a call on S'Value for an enumeration subtype S, if the sequence of
characters of the parameter (ignoring leading and trailing spaces) has the syntax of an

39.3/2

39.4/2

39.5/2

39.6/2

39.7/2

39.8/2

39.9/2

39.10/2

39.11/2

39.12/2

40

41

42

43/2

52

53

54

55/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

3.5 Scalar Types 10 November 2006 38

enumeration literal and if it corresponds to a literal of the type of S (or corresponds to the
result of S'Image for a value of the type), the result is the corresponding enumeration value;
otherwise Constraint_Error is raised. For a numeric subtype S, the evaluation of a call on
S'Value with Arg of type String is equivalent to a call on S'Wide_Wide_Value for a
corresponding Arg of type Wide_Wide_String.

Implementation Permissions

An implementation may extend the Wide_Wide_Value, Wide_Value, Value, Wide_Wide_Image,
Wide_Image, and Image attributes of a floating point type to support special values such as infinities and
NaNs.

NOTES
21 The evaluation of S'First or S'Last never raises an exception. If a scalar subtype S has a nonnull range, S'First and
S'Last belong to this range. These values can, for example, always be assigned to a variable of subtype S.

22 For a subtype of a scalar type, the result delivered by the attributes Succ, Pred, and Value might not belong to the
subtype; similarly, the actual parameters of the attributes Succ, Pred, and Image need not belong to the subtype.

23 For any value V (including any nongraphic character) of an enumeration subtype S, S'Value(S'Image(V)) equals V, as
do S'Wide_Value(S'Wide_Image(V)) and S'Wide_Wide_Value(S'Wide_Wide_Image(V)). None of these expressions ever
raise Constraint_Error.

Examples

Examples of ranges:
-10 .. 10
X .. X + 1
0.0 .. 2.0*Pi
Red .. Green -- see 3.5.1
1 .. 0 -- a null range
Table'Range -- a range attribute reference (see 3.6)

Examples of range constraints:
range -999.0 .. +999.0
range S'First+1 .. S'Last-1

3.5.1 Enumeration Types
An enumeration_type_definition defines an enumeration type.

Syntax

enumeration_type_definition ::=
 (enumeration_literal_specification {, enumeration_literal_specification})
enumeration_literal_specification ::= defining_identifier | defining_character_literal
defining_character_literal ::= character_literal

Legality Rules

The defining_identifiers and defining_character_literals listed in an enumeration_type_definition shall be
distinct.

Static Semantics

Each enumeration_literal_specification is the explicit declaration of the corresponding enumeration
literal: it declares a parameterless function, whose defining name is the defining_identifier or defining_-
character_literal, and whose result type is the enumeration type.

56/2

57

58

59

60

61

62

63

1

2

3

4

5

6

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

39 10 November 2006 Enumeration Types 3.5.1

Each enumeration literal corresponds to a distinct value of the enumeration type, and to a distinct position
number. The position number of the value of the first listed enumeration literal is zero; the position
number of the value of each subsequent enumeration literal is one more than that of its predecessor in the
list.

The predefined order relations between values of the enumeration type follow the order of corresponding
position numbers.

If the same defining_identifier or defining_character_literal is specified in more than one enumeration_-
type_definition, the corresponding enumeration literals are said to be overloaded. At any place where an
overloaded enumeration literal occurs in the text of a program, the type of the enumeration literal has to be
determinable from the context (see 8.6).

Dynamic Semantics

The elaboration of an enumeration_type_definition creates the enumeration type and its first subtype,
which is constrained to the base range of the type.

When called, the parameterless function associated with an enumeration literal returns the corresponding
value of the enumeration type.

NOTES
24 If an enumeration literal occurs in a context that does not otherwise suffice to determine the type of the literal, then
qualification by the name of the enumeration type is one way to resolve the ambiguity (see 4.7).

Examples

Examples of enumeration types and subtypes:
type Day is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
type Suit is (Clubs, Diamonds, Hearts, Spades);
type Gender is (M, F);
type Level is (Low, Medium, Urgent);
type Color is (White, Red, Yellow, Green, Blue, Brown, Black);
type Light is (Red, Amber, Green); -- Red and Green are overloaded
type Hexa is ('A', 'B', 'C', 'D', 'E', 'F');
type Mixed is ('A', 'B', '*', B, None, '?', '%');

subtype Weekday is Day range Mon .. Fri;
subtype Major is Suit range Hearts .. Spades;
subtype Rainbow is Color range Red .. Blue; -- the Color Red, not the Light

3.5.2 Character Types
Static Semantics

An enumeration type is said to be a character type if at least one of its enumeration literals is a
character_literal.

The predefined type Character is a character type whose values correspond to the 256 code positions of
Row 00 (also known as Latin-1) of the ISO/IEC 10646:2003 Basic Multilingual Plane (BMP). Each of the
graphic characters of Row 00 of the BMP has a corresponding character_literal in Character. Each of the
nongraphic positions of Row 00 (0000-001F and 007F-009F) has a corresponding language-defined name,
which is not usable as an enumeration literal, but which is usable with the attributes Image, Wide_Image,
Wide_Wide_Image, Value, Wide_Value, and Wide_Wide_Value; these names are given in the definition
of type Character in A.1, “The Package Standard”, but are set in italics.

7

8

9

10

11

12

13

14

15

16

1

2/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

3.5.2 Character Types 10 November 2006 40

The predefined type Wide_Character is a character type whose values correspond to the 65536 code
positions of the ISO/IEC 10646:2003 Basic Multilingual Plane (BMP). Each of the graphic characters of
the BMP has a corresponding character_literal in Wide_Character. The first 256 values of
Wide_Character have the same character_literal or language-defined name as defined for Character. Each
of the graphic_characters has a corresponding character_literal.

The predefined type Wide_Wide_Character is a character type whose values correspond to the
2147483648 code positions of the ISO/IEC 10646:2003 character set. Each of the graphic_characters has
a corresponding character_literal in Wide_Wide_Character. The first 65536 values of
Wide_Wide_Character have the same character_literal or language-defined name as defined for
Wide_Character.

The characters whose code position is larger than 16#FF# and which are not graphic_characters have
language-defined names which are formed by appending to the string "Hex_" the representation of their
code position in hexadecimal as eight extended digits. As with other language-defined names, these names
are usable only with the attributes (Wide_)Wide_Image and (Wide_)Wide_Value; they are not usable as
enumeration literals.

Implementation Permissions

This paragraph was deleted.

Implementation Advice

This paragraph was deleted.

NOTES
25 The language-defined library package Characters.Latin_1 (see A.3.3) includes the declaration of constants denoting
control characters, lower case characters, and special characters of the predefined type Character.

26 A conventional character set such as EBCDIC can be declared as a character type; the internal codes of the characters
can be specified by an enumeration_representation_clause as explained in clause 13.4.

Examples

Example of a character type:
type Roman_Digit is ('I', 'V', 'X', 'L', 'C', 'D', 'M');

3.5.3 Boolean Types
Static Semantics

There is a predefined enumeration type named Boolean, declared in the visible part of package Standard. It
has the two enumeration literals False and True ordered with the relation False < True. Any descendant of
the predefined type Boolean is called a boolean type.

3.5.4 Integer Types
An integer_type_definition defines an integer type; it defines either a signed integer type, or a modular
integer type. The base range of a signed integer type includes at least the values of the specified range. A
modular type is an integer type with all arithmetic modulo a specified positive modulus; such a type
corresponds to an unsigned type with wrap-around semantics.

Syntax

integer_type_definition ::= signed_integer_type_definition | modular_type_definition

3/2

3.1/2

3.2/2

4/2

5/2

6

7

8

9

1

1

2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

41 10 November 2006 Integer Types 3.5.4

signed_integer_type_definition ::= range static_simple_expression .. static_simple_expression
modular_type_definition ::= mod static_expression

Name Resolution Rules

Each simple_expression in a signed_integer_type_definition is expected to be of any integer type; they
need not be of the same type. The expression in a modular_type_definition is likewise expected to be of
any integer type.

Legality Rules

The simple_expressions of a signed_integer_type_definition shall be static, and their values shall be in
the range System.Min_Int .. System.Max_Int.

The expression of a modular_type_definition shall be static, and its value (the modulus) shall be positive,
and shall be no greater than System.Max_Binary_Modulus if a power of 2, or no greater than
System.Max_Nonbinary_Modulus if not.

Static Semantics

The set of values for a signed integer type is the (infinite) set of mathematical integers, though only values
of the base range of the type are fully supported for run-time operations. The set of values for a modular
integer type are the values from 0 to one less than the modulus, inclusive.

A signed_integer_type_definition defines an integer type whose base range includes at least the values of
the simple_expressions and is symmetric about zero, excepting possibly an extra negative value. A
signed_integer_type_definition also defines a constrained first subtype of the type, with a range whose
bounds are given by the values of the simple_expressions, converted to the type being defined.

A modular_type_definition defines a modular type whose base range is from zero to one less than the
given modulus. A modular_type_definition also defines a constrained first subtype of the type with a
range that is the same as the base range of the type.

There is a predefined signed integer subtype named Integer, declared in the visible part of package
Standard. It is constrained to the base range of its type.

Integer has two predefined subtypes, declared in the visible part of package Standard:
subtype Natural is Integer range 0 .. Integer'Last;
subtype Positive is Integer range 1 .. Integer'Last;

A type defined by an integer_type_definition is implicitly derived from root_integer, an anonymous
predefined (specific) integer type, whose base range is System.Min_Int .. System.Max_Int. However, the
base range of the new type is not inherited from root_integer, but is instead determined by the range or
modulus specified by the integer_type_definition. Integer literals are all of the type universal_integer, the
universal type (see 3.4.1) for the class rooted at root_integer, allowing their use with the operations of any
integer type.

The position number of an integer value is equal to the value.

For every modular subtype S, the following attributes are defined:
S'Mod S'Mod denotes a function with the following specification:

function S'Mod (Arg : universal_integer)
 return S'Base

 This function returns Arg mod S'Modulus, as a value of the type of S.

3

4

5

6

7

8

9

10

11

12

13

14

15

16/2

16.1/2

16.2/2

16.3/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

3.5.4 Integer Types 10 November 2006 42

S'Modulus S'Modulus yields the modulus of the type of S, as a value of the type universal_integer.

Dynamic Semantics

The elaboration of an integer_type_definition creates the integer type and its first subtype.

For a modular type, if the result of the execution of a predefined operator (see 4.5) is outside the base
range of the type, the result is reduced modulo the modulus of the type to a value that is within the base
range of the type.

For a signed integer type, the exception Constraint_Error is raised by the execution of an operation that
cannot deliver the correct result because it is outside the base range of the type. For any integer type,
Constraint_Error is raised by the operators "/", "rem", and "mod" if the right operand is zero.

Implementation Requirements

In an implementation, the range of Integer shall include the range –2**15+1 .. +2**15–1.

If Long_Integer is predefined for an implementation, then its range shall include the range –2**31+1 ..
+2**31–1.

System.Max_Binary_Modulus shall be at least 2**16.

Implementation Permissions

For the execution of a predefined operation of a signed integer type, the implementation need not raise
Constraint_Error if the result is outside the base range of the type, so long as the correct result is produced.

An implementation may provide additional predefined signed integer types, declared in the visible part of
Standard, whose first subtypes have names of the form Short_Integer, Long_Integer, Short_Short_Integer,
Long_Long_Integer, etc. Different predefined integer types are allowed to have the same base range.
However, the range of Integer should be no wider than that of Long_Integer. Similarly, the range of
Short_Integer (if provided) should be no wider than Integer. Corresponding recommendations apply to any
other predefined integer types. There need not be a named integer type corresponding to each distinct base
range supported by an implementation. The range of each first subtype should be the base range of its
type.

An implementation may provide nonstandard integer types, descendants of root_integer that are declared
outside of the specification of package Standard, which need not have all the standard characteristics of a
type defined by an integer_type_definition. For example, a nonstandard integer type might have an
asymmetric base range or it might not be allowed as an array or loop index (a very long integer). Any type
descended from a nonstandard integer type is also nonstandard. An implementation may place arbitrary
restrictions on the use of such types; it is implementation defined whether operators that are predefined for
“any integer type” are defined for a particular nonstandard integer type. In any case, such types are not
permitted as explicit_generic_actual_parameters for formal scalar types — see 12.5.2.

For a one's complement machine, the high bound of the base range of a modular type whose modulus is
one less than a power of 2 may be equal to the modulus, rather than one less than the modulus. It is
implementation defined for which powers of 2, if any, this permission is exercised.

For a one's complement machine, implementations may support non-binary modulus values greater than
System.Max_Nonbinary_Modulus. It is implementation defined which specific values greater than
System.Max_Nonbinary_Modulus, if any, are supported.

17

18

19

20

21

22

23

24

25

26

27

27.1/1

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

43 10 November 2006 Integer Types 3.5.4

Implementation Advice

An implementation should support Long_Integer in addition to Integer if the target machine supports 32-
bit (or longer) arithmetic. No other named integer subtypes are recommended for package Standard.
Instead, appropriate named integer subtypes should be provided in the library package Interfaces (see B.2).

An implementation for a two's complement machine should support modular types with a binary modulus
up to System.Max_Int*2+2. An implementation should support a nonbinary modulus up to Integer'Last.

NOTES
27 Integer literals are of the anonymous predefined integer type universal_integer. Other integer types have no literals.
However, the overload resolution rules (see 8.6, “The Context of Overload Resolution”) allow expressions of the type
universal_integer whenever an integer type is expected.

28 The same arithmetic operators are predefined for all signed integer types defined by a signed_integer_type_definition
(see 4.5, “Operators and Expression Evaluation”). For modular types, these same operators are predefined, plus bit-wise
logical operators (and, or, xor, and not). In addition, for the unsigned types declared in the language-defined package
Interfaces (see B.2), functions are defined that provide bit-wise shifting and rotating.

29 Modular types match a generic_formal_parameter_declaration of the form "type T is mod <>;"; signed integer types
match "type T is range <>;" (see 12.5.2).

Examples

Examples of integer types and subtypes:
type Page_Num is range 1 .. 2_000;
type Line_Size is range 1 .. Max_Line_Size;

subtype Small_Int is Integer range -10 .. 10;
subtype Column_Ptr is Line_Size range 1 .. 10;
subtype Buffer_Size is Integer range 0 .. Max;

type Byte is mod 256; -- an unsigned byte
type Hash_Index is mod 97; -- modulus is prime

3.5.5 Operations of Discrete Types
Static Semantics

For every discrete subtype S, the following attributes are defined:
S'Pos S'Pos denotes a function with the following specification:

function S'Pos(Arg : S'Base)
 return universal_integer

 This function returns the position number of the value of Arg, as a value of type
universal_integer.

S'Val S'Val denotes a function with the following specification:
function S'Val(Arg : universal_integer)
 return S'Base

 This function returns a value of the type of S whose position number equals the value of
Arg. For the evaluation of a call on S'Val, if there is no value in the base range of its type
with the given position number, Constraint_Error is raised.

Implementation Advice

For the evaluation of a call on S'Pos for an enumeration subtype, if the value of the operand does not
correspond to the internal code for any enumeration literal of its type (perhaps due to an uninitialized
variable), then the implementation should raise Program_Error. This is particularly important for
enumeration types with noncontiguous internal codes specified by an enumeration_representation_-
clause.

28

29

30

31

32

33

34

35

36

1

2

3

4

5

6

7

8

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

3.5.5 Operations of Discrete Types 10 November 2006 44

NOTES
30 Indexing and loop iteration use values of discrete types.

31 The predefined operations of a discrete type include the assignment operation, qualification, the membership tests, and
the relational operators; for a boolean type they include the short-circuit control forms and the logical operators; for an
integer type they include type conversion to and from other numeric types, as well as the binary and unary adding
operators – and +, the multiplying operators, the unary operator abs, and the exponentiation operator. The assignment
operation is described in 5.2. The other predefined operations are described in Section 4.

32 As for all types, objects of a discrete type have Size and Address attributes (see 13.3).

33 For a subtype of a discrete type, the result delivered by the attribute Val might not belong to the subtype; similarly, the
actual parameter of the attribute Pos need not belong to the subtype. The following relations are satisfied (in the absence
of an exception) by these attributes:
 S'Val(S'Pos(X)) = X
 S'Pos(S'Val(N)) = N

Examples

Examples of attributes of discrete subtypes:
-- For the types and subtypes declared in subclause 3.5.1 the following hold:
-- Color'First = White, Color'Last = Black
-- Rainbow'First = Red, Rainbow'Last = Blue

-- Color'Succ(Blue) = Rainbow'Succ(Blue) = Brown
-- Color'Pos(Blue) = Rainbow'Pos(Blue) = 4
-- Color'Val(0) = Rainbow'Val(0) = White

3.5.6 Real Types
Real types provide approximations to the real numbers, with relative bounds on errors for floating point
types, and with absolute bounds for fixed point types.

Syntax

real_type_definition ::=
 floating_point_definition | fixed_point_definition

Static Semantics

A type defined by a real_type_definition is implicitly derived from root_real, an anonymous predefined
(specific) real type. Hence, all real types, whether floating point or fixed point, are in the derivation class
rooted at root_real.

Real literals are all of the type universal_real, the universal type (see 3.4.1) for the class rooted at
root_real, allowing their use with the operations of any real type. Certain multiplying operators have a
result type of universal_fixed (see 4.5.5), the universal type for the class of fixed point types, allowing the
result of the multiplication or division to be used where any specific fixed point type is expected.

Dynamic Semantics

The elaboration of a real_type_definition consists of the elaboration of the floating_point_definition or the
fixed_point_definition.

Implementation Requirements

An implementation shall perform the run-time evaluation of a use of a predefined operator of root_real
with an accuracy at least as great as that of any floating point type definable by a floating_point_definition.

9

10

11

12

13

14

15

16

17

1

2

3

4

5

6

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

45 10 November 2006 Real Types 3.5.6

Implementation Permissions

For the execution of a predefined operation of a real type, the implementation need not raise
Constraint_Error if the result is outside the base range of the type, so long as the correct result is produced,
or the Machine_Overflows attribute of the type is False (see G.2).

An implementation may provide nonstandard real types, descendants of root_real that are declared
outside of the specification of package Standard, which need not have all the standard characteristics of a
type defined by a real_type_definition. For example, a nonstandard real type might have an asymmetric or
unsigned base range, or its predefined operations might wrap around or “saturate” rather than overflow
(modular or saturating arithmetic), or it might not conform to the accuracy model (see G.2). Any type
descended from a nonstandard real type is also nonstandard. An implementation may place arbitrary
restrictions on the use of such types; it is implementation defined whether operators that are predefined for
“any real type” are defined for a particular nonstandard real type. In any case, such types are not permitted
as explicit_generic_actual_parameters for formal scalar types — see 12.5.2.

NOTES
34 As stated, real literals are of the anonymous predefined real type universal_real. Other real types have no literals.
However, the overload resolution rules (see 8.6) allow expressions of the type universal_real whenever a real type is
expected.

3.5.7 Floating Point Types
For floating point types, the error bound is specified as a relative precision by giving the required
minimum number of significant decimal digits.

Syntax

floating_point_definition ::=
 digits static_expression [real_range_specification]
real_range_specification ::=
 range static_simple_expression .. static_simple_expression

Name Resolution Rules

The requested decimal precision, which is the minimum number of significant decimal digits required for
the floating point type, is specified by the value of the expression given after the reserved word digits.
This expression is expected to be of any integer type.

Each simple_expression of a real_range_specification is expected to be of any real type; the types need
not be the same.

Legality Rules

The requested decimal precision shall be specified by a static expression whose value is positive and no
greater than System.Max_Base_Digits. Each simple_expression of a real_range_specification shall also
be static. If the real_range_specification is omitted, the requested decimal precision shall be no greater
than System.Max_Digits.

A floating_point_definition is illegal if the implementation does not support a floating point type that
satisfies the requested decimal precision and range.

Static Semantics

The set of values for a floating point type is the (infinite) set of rational numbers. The machine numbers of
a floating point type are the values of the type that can be represented exactly in every unconstrained

7/2

8

9

1

2

3

4

5

6

7

8

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

3.5.7 Floating Point Types 10 November 2006 46

variable of the type. The base range (see 3.5) of a floating point type is symmetric around zero, except that
it can include some extra negative values in some implementations.

The base decimal precision of a floating point type is the number of decimal digits of precision
representable in objects of the type. The safe range of a floating point type is that part of its base range for
which the accuracy corresponding to the base decimal precision is preserved by all predefined operations.

A floating_point_definition defines a floating point type whose base decimal precision is no less than the
requested decimal precision. If a real_range_specification is given, the safe range of the floating point
type (and hence, also its base range) includes at least the values of the simple expressions given in the
real_range_specification. If a real_range_specification is not given, the safe (and base) range of the type
includes at least the values of the range –10.0**(4*D) .. +10.0**(4*D) where D is the requested decimal
precision. The safe range might include other values as well. The attributes Safe_First and Safe_Last give
the actual bounds of the safe range.

A floating_point_definition also defines a first subtype of the type. If a real_range_specification is given,
then the subtype is constrained to a range whose bounds are given by a conversion of the values of the
simple_expressions of the real_range_specification to the type being defined. Otherwise, the subtype is
unconstrained.

There is a predefined, unconstrained, floating point subtype named Float, declared in the visible part of
package Standard.

Dynamic Semantics

The elaboration of a floating_point_definition creates the floating point type and its first subtype.

Implementation Requirements

In an implementation that supports floating point types with 6 or more digits of precision, the requested
decimal precision for Float shall be at least 6.

If Long_Float is predefined for an implementation, then its requested decimal precision shall be at least
11.

Implementation Permissions

An implementation is allowed to provide additional predefined floating point types, declared in the visible
part of Standard, whose (unconstrained) first subtypes have names of the form Short_Float, Long_Float,
Short_Short_Float, Long_Long_Float, etc. Different predefined floating point types are allowed to have
the same base decimal precision. However, the precision of Float should be no greater than that of
Long_Float. Similarly, the precision of Short_Float (if provided) should be no greater than Float.
Corresponding recommendations apply to any other predefined floating point types. There need not be a
named floating point type corresponding to each distinct base decimal precision supported by an
implementation.

Implementation Advice

An implementation should support Long_Float in addition to Float if the target machine supports 11 or
more digits of precision. No other named floating point subtypes are recommended for package Standard.
Instead, appropriate named floating point subtypes should be provided in the library package Interfaces
(see B.2).

NOTES
35 If a floating point subtype is unconstrained, then assignments to variables of the subtype involve only
Overflow_Checks, never Range_Checks.

9

10

11

12

13

14

15

16

17

18

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

47 10 November 2006 Floating Point Types 3.5.7

Examples

Examples of floating point types and subtypes:
type Coefficient is digits 10 range -1.0 .. 1.0;

type Real is digits 8;
type Mass is digits 7 range 0.0 .. 1.0E35;

subtype Probability is Real range 0.0 .. 1.0; -- a subtype with a smaller range

3.5.8 Operations of Floating Point Types
Static Semantics

The following attribute is defined for every floating point subtype S:
S'Digits S'Digits denotes the requested decimal precision for the subtype S. The value of this

attribute is of the type universal_integer. The requested decimal precision of the base
subtype of a floating point type T is defined to be the largest value of d for which

 ceiling(d * log(10) / log(T'Machine_Radix)) + g <= T'Model_Mantissa
 where g is 0 if Machine_Radix is a positive power of 10 and 1 otherwise.

NOTES
36 The predefined operations of a floating point type include the assignment operation, qualification, the membership
tests, and explicit conversion to and from other numeric types. They also include the relational operators and the following
predefined arithmetic operators: the binary and unary adding operators – and +, certain multiplying operators, the unary
operator abs, and the exponentiation operator.

37 As for all types, objects of a floating point type have Size and Address attributes (see 13.3). Other attributes of floating
point types are defined in A.5.3.

3.5.9 Fixed Point Types
A fixed point type is either an ordinary fixed point type, or a decimal fixed point type. The error bound of
a fixed point type is specified as an absolute value, called the delta of the fixed point type.

Syntax

fixed_point_definition ::= ordinary_fixed_point_definition | decimal_fixed_point_definition
ordinary_fixed_point_definition ::=
 delta static_expression real_range_specification
decimal_fixed_point_definition ::=
 delta static_expression digits static_expression [real_range_specification]
digits_constraint ::=
 digits static_expression [range_constraint]

Name Resolution Rules

For a type defined by a fixed_point_definition, the delta of the type is specified by the value of the
expression given after the reserved word delta; this expression is expected to be of any real type. For a
type defined by a decimal_fixed_point_definition (a decimal fixed point type), the number of significant
decimal digits for its first subtype (the digits of the first subtype) is specified by the expression given after
the reserved word digits; this expression is expected to be of any integer type.

Legality Rules

In a fixed_point_definition or digits_constraint, the expressions given after the reserved words delta and
digits shall be static; their values shall be positive.

19

20

21

22

1

2/1

3

4

1

2

3

4

5

6

7

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

3.5.9 Fixed Point Types 10 November 2006 48

The set of values of a fixed point type comprise the integral multiples of a number called the small of the
type. The machine numbers of a fixed point type are the values of the type that can be represented exactly
in every unconstrained variable of the type. For a type defined by an ordinary_fixed_point_definition (an
ordinary fixed point type), the small may be specified by an attribute_definition_clause (see 13.3); if so
specified, it shall be no greater than the delta of the type. If not specified, the small of an ordinary fixed
point type is an implementation-defined power of two less than or equal to the delta.

For a decimal fixed point type, the small equals the delta; the delta shall be a power of 10. If a
real_range_specification is given, both bounds of the range shall be in the range –(10**digits–1)*delta ..
+(10**digits–1)*delta.

A fixed_point_definition is illegal if the implementation does not support a fixed point type with the given
small and specified range or digits.

For a subtype_indication with a digits_constraint, the subtype_mark shall denote a decimal fixed point
subtype.

Static Semantics

The base range (see 3.5) of a fixed point type is symmetric around zero, except possibly for an extra
negative value in some implementations.

An ordinary_fixed_point_definition defines an ordinary fixed point type whose base range includes at least
all multiples of small that are between the bounds specified in the real_range_specification. The base
range of the type does not necessarily include the specified bounds themselves. An ordinary_fixed_point_-
definition also defines a constrained first subtype of the type, with each bound of its range given by the
closer to zero of:

• the value of the conversion to the fixed point type of the corresponding expression of the
real_range_specification;

• the corresponding bound of the base range.

A decimal_fixed_point_definition defines a decimal fixed point type whose base range includes at least
the range –(10**digits–1)*delta .. +(10**digits–1)*delta. A decimal_fixed_point_definition also defines a
constrained first subtype of the type. If a real_range_specification is given, the bounds of the first subtype
are given by a conversion of the values of the expressions of the real_range_specification. Otherwise, the
range of the first subtype is –(10**digits–1)*delta .. +(10**digits–1)*delta.

Dynamic Semantics

The elaboration of a fixed_point_definition creates the fixed point type and its first subtype.

For a digits_constraint on a decimal fixed point subtype with a given delta, if it does not have a
range_constraint, then it specifies an implicit range –(10**D–1)*delta .. +(10**D–1)*delta, where D is
the value of the expression. A digits_constraint is compatible with a decimal fixed point subtype if the
value of the expression is no greater than the digits of the subtype, and if it specifies (explicitly or
implicitly) a range that is compatible with the subtype.

The elaboration of a digits_constraint consists of the elaboration of the range_constraint, if any. If a
range_constraint is given, a check is made that the bounds of the range are both in the range –(10**D–
1)*delta .. +(10**D–1)*delta, where D is the value of the (static) expression given after the reserved
word digits. If this check fails, Constraint_Error is raised.

8/2

9

10

11

12

13

14

15

16

17

18

19

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

49 10 November 2006 Fixed Point Types 3.5.9

Implementation Requirements

The implementation shall support at least 24 bits of precision (including the sign bit) for fixed point types.

Implementation Permissions

Implementations are permitted to support only smalls that are a power of two. In particular, all decimal
fixed point type declarations can be disallowed. Note however that conformance with the Information
Systems Annex requires support for decimal smalls, and decimal fixed point type declarations with digits
up to at least 18.

NOTES
38 The base range of an ordinary fixed point type need not include the specified bounds themselves so that the range
specification can be given in a natural way, such as:
 type Fraction is delta 2.0**(-15) range -1.0 .. 1.0;

With 2's complement hardware, such a type could have a signed 16-bit representation, using 1 bit for the sign and 15 bits
for fraction, resulting in a base range of –1.0 .. 1.0–2.0**(–15).

Examples

Examples of fixed point types and subtypes:
type Volt is delta 0.125 range 0.0 .. 255.0;

 -- A pure fraction which requires all the available
 -- space in a word can be declared as the type Fraction:
type Fraction is delta System.Fine_Delta range -1.0 .. 1.0;
 -- Fraction'Last = 1.0 – System.Fine_Delta
type Money is delta 0.01 digits 15; -- decimal fixed point
subtype Salary is Money digits 10;
 -- Money'Last = 10.0**13 – 0.01, Salary'Last = 10.0**8 – 0.01

3.5.10 Operations of Fixed Point Types
Static Semantics

The following attributes are defined for every fixed point subtype S:
S'Small S'Small denotes the small of the type of S. The value of this attribute is of the type

universal_real. Small may be specified for nonderived ordinary fixed point types via an
attribute_definition_clause (see 13.3); the expression of such a clause shall be static.

S'Delta S'Delta denotes the delta of the fixed point subtype S. The value of this attribute is of the
type universal_real.

S'Fore S'Fore yields the minimum number of characters needed before the decimal point for the
decimal representation of any value of the subtype S, assuming that the representation does
not include an exponent, but includes a one-character prefix that is either a minus sign or a
space. (This minimum number does not include superfluous zeros or underlines, and is at
least 2.) The value of this attribute is of the type universal_integer.

S'Aft S'Aft yields the number of decimal digits needed after the decimal point to accommodate
the delta of the subtype S, unless the delta of the subtype S is greater than 0.1, in which
case the attribute yields the value one. (S'Aft is the smallest positive integer N for which
(10**N)*S'Delta is greater than or equal to one.) The value of this attribute is of the type
universal_integer.

The following additional attributes are defined for every decimal fixed point subtype S:

20

21

22

23

24

25

26

27

28

1

2/1

3

4

5

6

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

3.5.10 Operations of Fixed Point Types 10 November 2006 50

S'Digits S'Digits denotes the digits of the decimal fixed point subtype S, which corresponds to the
number of decimal digits that are representable in objects of the subtype. The value of this
attribute is of the type universal_integer. Its value is determined as follows:

• For a first subtype or a subtype defined by a subtype_indication with a
digits_constraint, the digits is the value of the expression given after the reserved
word digits;

• For a subtype defined by a subtype_indication without a digits_constraint, the
digits of the subtype is the same as that of the subtype denoted by the
subtype_mark in the subtype_indication.

• The digits of a base subtype is the largest integer D such that the range –(10**D–
1)*delta .. +(10**D–1)*delta is included in the base range of the type.

S'Scale S'Scale denotes the scale of the subtype S, defined as the value N such that S'Delta =
10.0**(–N). The scale indicates the position of the point relative to the rightmost significant
digits of values of subtype S. The value of this attribute is of the type universal_integer.

S'Round S'Round denotes a function with the following specification:
function S'Round(X : universal_real)
 return S'Base

 The function returns the value obtained by rounding X (away from 0, if X is midway
between two values of the type of S).

NOTES
39 All subtypes of a fixed point type will have the same value for the Delta attribute, in the absence of delta_constraints
(see J.3).

40 S'Scale is not always the same as S'Aft for a decimal subtype; for example, if S'Delta = 1.0 then S'Aft is 1 while
S'Scale is 0.

41 The predefined operations of a fixed point type include the assignment operation, qualification, the membership tests,
and explicit conversion to and from other numeric types. They also include the relational operators and the following
predefined arithmetic operators: the binary and unary adding operators – and +, multiplying operators, and the unary
operator abs.

42 As for all types, objects of a fixed point type have Size and Address attributes (see 13.3). Other attributes of fixed
point types are defined in A.5.4.

3.6 Array Types
An array object is a composite object consisting of components which all have the same subtype. The
name for a component of an array uses one or more index values belonging to specified discrete types. The
value of an array object is a composite value consisting of the values of the components.

Syntax

array_type_definition ::=
 unconstrained_array_definition | constrained_array_definition
unconstrained_array_definition ::=
 array(index_subtype_definition {, index_subtype_definition}) of component_definition
index_subtype_definition ::= subtype_mark range <>
constrained_array_definition ::=
 array (discrete_subtype_definition {, discrete_subtype_definition}) of component_definition
discrete_subtype_definition ::= discrete_subtype_indication | range

7

8

9

10

11

12

13

14

15

16

17

18

1

2

3

4

5

6

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

51 10 November 2006 Array Types 3.6

component_definition ::=
 [aliased] subtype_indication
 | [aliased] access_definition

Name Resolution Rules

For a discrete_subtype_definition that is a range, the range shall resolve to be of some specific discrete
type; which discrete type shall be determined without using any context other than the bounds of the range
itself (plus the preference for root_integer — see 8.6).

Legality Rules

Each index_subtype_definition or discrete_subtype_definition in an array_type_definition defines an
index subtype; its type (the index type) shall be discrete.

The subtype defined by the subtype_indication of a component_definition (the component subtype) shall
be a definite subtype.

This paragraph was deleted.

Static Semantics

An array is characterized by the number of indices (the dimensionality of the array), the type and position
of each index, the lower and upper bounds for each index, and the subtype of the components. The order
of the indices is significant.

A one-dimensional array has a distinct component for each possible index value. A multidimensional array
has a distinct component for each possible sequence of index values that can be formed by selecting one
value for each index position (in the given order). The possible values for a given index are all the values
between the lower and upper bounds, inclusive; this range of values is called the index range. The bounds
of an array are the bounds of its index ranges. The length of a dimension of an array is the number of
values of the index range of the dimension (zero for a null range). The length of a one-dimensional array is
the length of its only dimension.

An array_type_definition defines an array type and its first subtype. For each object of this array type, the
number of indices, the type and position of each index, and the subtype of the components are as in the
type definition; the values of the lower and upper bounds for each index belong to the corresponding index
subtype of its type, except for null arrays (see 3.6.1).

An unconstrained_array_definition defines an array type with an unconstrained first subtype. Each
index_subtype_definition defines the corresponding index subtype to be the subtype denoted by the
subtype_mark. The compound delimiter <> (called a box) of an index_subtype_definition stands for an
undefined range (different objects of the type need not have the same bounds).

A constrained_array_definition defines an array type with a constrained first subtype. Each discrete_-
subtype_definition defines the corresponding index subtype, as well as the corresponding index range for
the constrained first subtype. The constraint of the first subtype consists of the bounds of the index ranges.

The discrete subtype defined by a discrete_subtype_definition is either that defined by the subtype_-
indication, or a subtype determined by the range as follows:

• If the type of the range resolves to root_integer, then the discrete_subtype_definition defines a
subtype of the predefined type Integer with bounds given by a conversion to Integer of the
bounds of the range;

• Otherwise, the discrete_subtype_definition defines a subtype of the type of the range, with the
bounds given by the range.

7/2

8

9

10

11/2

12

13

14

15

16

17

18

19

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

3.6 Array Types 10 November 2006 52

The component_definition of an array_type_definition defines the nominal subtype of the components. If
the reserved word aliased appears in the component_definition, then each component of the array is
aliased (see 3.10).

Dynamic Semantics

The elaboration of an array_type_definition creates the array type and its first subtype, and consists of the
elaboration of any discrete_subtype_definitions and the component_definition.

The elaboration of a discrete_subtype_definition that does not contain any per-object expressions creates
the discrete subtype, and consists of the elaboration of the subtype_indication or the evaluation of the
range. The elaboration of a discrete_subtype_definition that contains one or more per-object expressions
is defined in 3.8. The elaboration of a component_definition in an array_type_definition consists of the
elaboration of the subtype_indication or access_definition. The elaboration of any discrete_subtype_-
definitions and the elaboration of the component_definition are performed in an arbitrary order.

NOTES
43 All components of an array have the same subtype. In particular, for an array of components that are one-dimensional
arrays, this means that all components have the same bounds and hence the same length.

44 Each elaboration of an array_type_definition creates a distinct array type. A consequence of this is that each object
whose object_declaration contains an array_type_definition is of its own unique type.

Examples

Examples of type declarations with unconstrained array definitions:
type Vector is array(Integer range <>) of Real;
type Matrix is array(Integer range <>, Integer range <>) of Real;
type Bit_Vector is array(Integer range <>) of Boolean;
type Roman is array(Positive range <>) of Roman_Digit; -- see 3.5.2

Examples of type declarations with constrained array definitions:
type Table is array(1 .. 10) of Integer;
type Schedule is array(Day) of Boolean;
type Line is array(1 .. Max_Line_Size) of Character;

Examples of object declarations with array type definitions:
Grid : array(1 .. 80, 1 .. 100) of Boolean;
Mix : array(Color range Red .. Green) of Boolean;
Msg_Table : constant array(Error_Code) of access constant String :=
 (Too_Big => new String'("Result too big"), Too_Small => ...);
Page : array(Positive range <>) of Line := -- an array of arrays
 (1 | 50 => Line'(1 | Line'Last => '+', others => '-'), -- see 4.3.3
 2 .. 49 => Line'(1 | Line'Last => '|', others => ' '));
 -- Page is constrained by its initial value to (1..50)

3.6.1 Index Constraints and Discrete Ranges
An index_constraint determines the range of possible values for every index of an array subtype, and
thereby the corresponding array bounds.

Syntax

index_constraint ::= (discrete_range {, discrete_range})
discrete_range ::= discrete_subtype_indication | range

20

21

22/2

23

24

25

26

27

28

29

30/2

1

2

3

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

53 10 November 2006 Index Constraints and Discrete Ranges 3.6.1

Name Resolution Rules

The type of a discrete_range is the type of the subtype defined by the subtype_indication, or the type of
the range. For an index_constraint, each discrete_range shall resolve to be of the type of the
corresponding index.

Legality Rules

An index_constraint shall appear only in a subtype_indication whose subtype_mark denotes either an
unconstrained array subtype, or an unconstrained access subtype whose designated subtype is an
unconstrained array subtype; in either case, the index_constraint shall provide a discrete_range for each
index of the array type.

Static Semantics

A discrete_range defines a range whose bounds are given by the range, or by the range of the subtype
defined by the subtype_indication.

Dynamic Semantics

An index_constraint is compatible with an unconstrained array subtype if and only if the index range
defined by each discrete_range is compatible (see 3.5) with the corresponding index subtype. If any of
the discrete_ranges defines a null range, any array thus constrained is a null array, having no
components. An array value satisfies an index_constraint if at each index position the array value and the
index_constraint have the same index bounds.

The elaboration of an index_constraint consists of the evaluation of the discrete_range(s), in an arbitrary
order. The evaluation of a discrete_range consists of the elaboration of the subtype_indication or the
evaluation of the range.

NOTES
45 The elaboration of a subtype_indication consisting of a subtype_mark followed by an index_constraint checks the
compatibility of the index_constraint with the subtype_mark (see 3.2.2).

46 Even if an array value does not satisfy the index constraint of an array subtype, Constraint_Error is not raised on
conversion to the array subtype, so long as the length of each dimension of the array value and the array subtype match.
See 4.6.

Examples

Examples of array declarations including an index constraint:
Board : Matrix(1 .. 8, 1 .. 8); -- see 3.6
Rectangle : Matrix(1 .. 20, 1 .. 30);
Inverse : Matrix(1 .. N, 1 .. N); -- N need not be static
Filter : Bit_Vector(0 .. 31);

Example of array declaration with a constrained array subtype:
My_Schedule : Schedule; -- all arrays of type Schedule have the same bounds

Example of record type with a component that is an array:
type Var_Line(Length : Natural) is
 record
 Image : String(1 .. Length);
 end record;

Null_Line : Var_Line(0); -- Null_Line.Image is a null array

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

3.6.2 Operations of Array Types 10 November 2006 54

3.6.2 Operations of Array Types
Legality Rules

The argument N used in the attribute_designators for the N-th dimension of an array shall be a static
expression of some integer type. The value of N shall be positive (nonzero) and no greater than the
dimensionality of the array.

Static Semantics

The following attributes are defined for a prefix A that is of an array type (after any implicit dereference),
or denotes a constrained array subtype:

A'First A'First denotes the lower bound of the first index range; its type is the corresponding index
type.

A'First(N) A'First(N) denotes the lower bound of the N-th index range; its type is the corresponding
index type.

A'Last A'Last denotes the upper bound of the first index range; its type is the corresponding index
type.

A'Last(N) A'Last(N) denotes the upper bound of the N-th index range; its type is the corresponding
index type.

A'Range A'Range is equivalent to the range A'First .. A'Last, except that the prefix A is only
evaluated once.

A'Range(N) A'Range(N) is equivalent to the range A'First(N) .. A'Last(N), except that the prefix A is
only evaluated once.

A'Length A'Length denotes the number of values of the first index range (zero for a null range); its
type is universal_integer.

A'Length(N) A'Length(N) denotes the number of values of the N-th index range (zero for a null range);
its type is universal_integer.

Implementation Advice

An implementation should normally represent multidimensional arrays in row-major order, consistent with
the notation used for multidimensional array aggregates (see 4.3.3). However, if a pragma
Convention(Fortran, ...) applies to a multidimensional array type, then column-major order should be used
instead (see B.5, “Interfacing with Fortran”).

NOTES
47 The attribute_references A'First and A'First(1) denote the same value. A similar relation exists for the
attribute_references A'Last, A'Range, and A'Length. The following relation is satisfied (except for a null array) by the
above attributes if the index type is an integer type:
 A'Length(N) = A'Last(N) - A'First(N) + 1

48 An array type is limited if its component type is limited (see 7.5).

49 The predefined operations of an array type include the membership tests, qualification, and explicit conversion. If the
array type is not limited, they also include assignment and the predefined equality operators. For a one-dimensional array
type, they include the predefined concatenation operators (if nonlimited) and, if the component type is discrete, the
predefined relational operators; if the component type is boolean, the predefined logical operators are also included.

50 A component of an array can be named with an indexed_component. A value of an array type can be specified with an
array_aggregate. For a one-dimensional array type, a slice of the array can be named; also, string literals are defined if the
component type is a character type.

1

2/1

3

4

5

6

7

8

9

10

11

12

13

14

15

16/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

55 10 November 2006 Operations of Array Types 3.6.2

Examples

Examples (using arrays declared in the examples of subclause 3.6.1):
-- Filter'First = 0 Filter'Last = 31 Filter'Length = 32
-- Rectangle'Last(1) = 20 Rectangle'Last(2) = 30

3.6.3 String Types
Static Semantics

A one-dimensional array type whose component type is a character type is called a string type.

There are three predefined string types, String, Wide_String, and Wide_Wide_String, each indexed by
values of the predefined subtype Positive; these are declared in the visible part of package Standard:

subtype Positive is Integer range 1 .. Integer'Last;

type String is array(Positive range <>) of Character;
type Wide_String is array(Positive range <>) of Wide_Character;
type Wide_Wide_String is array(Positive range <>) of Wide_Wide_Character;

NOTES
51 String literals (see 2.6 and 4.2) are defined for all string types. The concatenation operator & is predefined for string
types, as for all nonlimited one-dimensional array types. The ordering operators <, <=, >, and >= are predefined for string
types, as for all one-dimensional discrete array types; these ordering operators correspond to lexicographic order (see
4.5.2).

Examples

Examples of string objects:
Stars : String(1 .. 120) := (1 .. 120 => '*');
Question : constant String := "How many characters?";
 -- Question'First = 1, Question'Last = 20
 -- Question'Length = 20 (the number of
characters)
Ask_Twice : String := Question & Question; -- constrained to (1..40)
Ninety_Six : constant Roman := "XCVI"; -- see 3.5.2 and 3.6

3.7 Discriminants
A composite type (other than an array or interface type) can have discriminants, which parameterize the
type. A known_discriminant_part specifies the discriminants of a composite type. A discriminant of an
object is a component of the object, and is either of a discrete type or an access type. An
unknown_discriminant_part in the declaration of a view of a type specifies that the discriminants of the
type are unknown for the given view; all subtypes of such a view are indefinite subtypes.

Syntax

discriminant_part ::= unknown_discriminant_part | known_discriminant_part
unknown_discriminant_part ::= (<>)
known_discriminant_part ::=
 (discriminant_specification {; discriminant_specification})
discriminant_specification ::=
 defining_identifier_list : [null_exclusion] subtype_mark [:= default_expression]
 | defining_identifier_list : access_definition [:= default_expression]
default_expression ::= expression

17

18

1

2/2

3

4/2

5

6

7

8

1/2

2/2

3

4

5/2

6

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

3.7 Discriminants 10 November 2006 56

Name Resolution Rules

The expected type for the default_expression of a discriminant_specification is that of the corresponding
discriminant.

Legality Rules

A discriminant_part is only permitted in a declaration for a composite type that is not an array or interface
type (this includes generic formal types). A type declared with a known_discriminant_part is called a
discriminated type, as is a type that inherits (known) discriminants.

The subtype of a discriminant may be defined by an optional null_exclusion and a subtype_mark, in
which case the subtype_mark shall denote a discrete or access subtype, or it may be defined by an
access_definition. A discriminant that is defined by an access_definition is called an access discriminant
and is of an anonymous access type.

Default_expressions shall be provided either for all or for none of the discriminants of a known_-
discriminant_part. No default_expressions are permitted in a known_discriminant_part in a declaration
of a tagged type or a generic formal type.

A discriminant_specification for an access discriminant may have a default_expression only in the
declaration for a task or protected type, or for a type that is a descendant of an explicitly limited record
type. In addition to the places where Legality Rules normally apply (see 12.3), this rule applies also in the
private part of an instance of a generic unit.

This paragraph was deleted.

For a type defined by a derived_type_definition, if a known_discriminant_part is provided in its
declaration, then:

• The parent subtype shall be constrained;

• If the parent type is not a tagged type, then each discriminant of the derived type shall be used in
the constraint defining the parent subtype;

• If a discriminant is used in the constraint defining the parent subtype, the subtype of the
discriminant shall be statically compatible (see 4.9.1) with the subtype of the corresponding
parent discriminant.

The type of the default_expression, if any, for an access discriminant shall be convertible to the
anonymous access type of the discriminant (see 4.6).

Static Semantics

A discriminant_specification declares a discriminant; the subtype_mark denotes its subtype unless it is an
access discriminant, in which case the discriminant's subtype is the anonymous access-to-variable subtype
defined by the access_definition.

For a type defined by a derived_type_definition, each discriminant of the parent type is either inherited,
constrained to equal some new discriminant of the derived type, or constrained to the value of an
expression. When inherited or constrained to equal some new discriminant, the parent discriminant and the
discriminant of the derived type are said to correspond. Two discriminants also correspond if there is some
common discriminant to which they both correspond. A discriminant corresponds to itself as well. If a
discriminant of a parent type is constrained to a specific value by a derived_type_definition, then that
discriminant is said to be specified by that derived_type_definition.

7

8/2

9/2

9.1/2

10/2

11/2

12

13

14

15

16

17

18

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

57 10 November 2006 Discriminants 3.7

A constraint that appears within the definition of a discriminated type depends on a discriminant of the
type if it names the discriminant as a bound or discriminant value. A component_definition depends on a
discriminant if its constraint depends on the discriminant, or on a discriminant that corresponds to it.

A component depends on a discriminant if:
• Its component_definition depends on the discriminant; or

• It is declared in a variant_part that is governed by the discriminant; or

• It is a component inherited as part of a derived_type_definition, and the constraint of the
parent_subtype_indication depends on the discriminant; or

• It is a subcomponent of a component that depends on the discriminant.

Each value of a discriminated type includes a value for each component of the type that does not depend
on a discriminant; this includes the discriminants themselves. The values of discriminants determine which
other component values are present in the value of the discriminated type.

A type declared with a known_discriminant_part is said to have known discriminants; its first subtype is
unconstrained. A type declared with an unknown_discriminant_part is said to have unknown
discriminants. A type declared without a discriminant_part has no discriminants, unless it is a derived
type; if derived, such a type has the same sort of discriminants (known, unknown, or none) as its parent (or
ancestor) type. A tagged class-wide type also has unknown discriminants. Any subtype of a type with
unknown discriminants is an unconstrained and indefinite subtype (see 3.2 and 3.3).

Dynamic Semantics

For an access discriminant, its access_definition is elaborated when the value of the access discriminant is
defined: by evaluation of its default_expression, by elaboration of a discriminant_constraint, or by an
assignment that initializes the enclosing object.

NOTES
52 If a discriminated type has default_expressions for its discriminants, then unconstrained variables of the type are
permitted, and the values of the discriminants can be changed by an assignment to such a variable. If defaults are not
provided for the discriminants, then all variables of the type are constrained, either by explicit constraint or by their initial
value; the values of the discriminants of such a variable cannot be changed after initialization.

53 The default_expression for a discriminant of a type is evaluated when an object of an unconstrained subtype of the
type is created.

54 Assignment to a discriminant of an object (after its initialization) is not allowed, since the name of a discriminant is a
constant; neither assignment_statements nor assignments inherent in passing as an in out or out parameter are allowed.
Note however that the value of a discriminant can be changed by assigning to the enclosing object, presuming it is an
unconstrained variable.

55 A discriminant that is of a named access type is not called an access discriminant; that term is used only for
discriminants defined by an access_definition.

Examples

Examples of discriminated types:
type Buffer(Size : Buffer_Size := 100) is -- see 3.5.4
 record
 Pos : Buffer_Size := 0;
 Value : String(1 .. Size);
 end record;

type Matrix_Rec(Rows, Columns : Integer) is
 record
 Mat : Matrix(1 .. Rows, 1 .. Columns); -- see 3.6
 end record;

19

20

21

22

23

24

25

26

27/2

28

29

30

31

32

33

34

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

3.7 Discriminants 10 November 2006 58

type Square(Side : Integer) is new
 Matrix_Rec(Rows => Side, Columns => Side);

type Double_Square(Number : Integer) is
 record
 Left : Square(Number);
 Right : Square(Number);
 end record;

task type Worker(Prio : System.Priority; Buf : access Buffer) is
 -- discriminants used to parameterize the task type (see 9.1)
 pragma Priority(Prio); -- see D.1
 entry Fill;
 entry Drain;
end Worker;

3.7.1 Discriminant Constraints
A discriminant_constraint specifies the values of the discriminants for a given discriminated type.

Syntax

discriminant_constraint ::=
 (discriminant_association {, discriminant_association})
discriminant_association ::=
 [discriminant_selector_name {| discriminant_selector_name} =>] expression
A discriminant_association is said to be named if it has one or more discriminant_selector_names;
it is otherwise said to be positional. In a discriminant_constraint, any positional associations shall
precede any named associations.

Name Resolution Rules

Each selector_name of a named discriminant_association shall resolve to denote a discriminant of the
subtype being constrained; the discriminants so named are the associated discriminants of the named
association. For a positional association, the associated discriminant is the one whose discriminant_-
specification occurred in the corresponding position in the known_discriminant_part that defined the
discriminants of the subtype being constrained.

The expected type for the expression in a discriminant_association is that of the associated
discriminant(s).

Legality Rules

A discriminant_constraint is only allowed in a subtype_indication whose subtype_mark denotes either an
unconstrained discriminated subtype, or an unconstrained access subtype whose designated subtype is an
unconstrained discriminated subtype. However, in the case of an access subtype, a discriminant_constraint
is illegal if the designated type has a partial view that is constrained or, for a general access subtype, has
default_expressions for its discriminants. In addition to the places where Legality Rules normally apply
(see 12.3), these rules apply also in the private part of an instance of a generic unit. In a generic body, this
rule is checked presuming all formal access types of the generic might be general access types, and all
untagged discriminated formal types of the generic might have default_expressions for their
discriminants.

A named discriminant_association with more than one selector_name is allowed only if the named
discriminants are all of the same type. A discriminant_constraint shall provide exactly one value for each
discriminant of the subtype being constrained.

35

36

37/2

1

2

3

4

5

6

7/2

8

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

59 10 November 2006 Discriminant Constraints 3.7.1

The expression associated with an access discriminant shall be of a type convertible to the anonymous
access type.

Dynamic Semantics

A discriminant_constraint is compatible with an unconstrained discriminated subtype if each discriminant
value belongs to the subtype of the corresponding discriminant.

A composite value satisfies a discriminant constraint if and only if each discriminant of the composite
value has the value imposed by the discriminant constraint.

For the elaboration of a discriminant_constraint, the expressions in the discriminant_associations are
evaluated in an arbitrary order and converted to the type of the associated discriminant (which might raise
Constraint_Error — see 4.6); the expression of a named association is evaluated (and converted) once for
each associated discriminant. The result of each evaluation and conversion is the value imposed by the
constraint for the associated discriminant.

NOTES
56 The rules of the language ensure that a discriminant of an object always has a value, either from explicit or implicit
initialization.

Examples

Examples (using types declared above in clause 3.7):
Large : Buffer(200); -- constrained, always 200 characters
 -- (explicit discriminant value)
Message : Buffer; -- unconstrained, initially 100 characters
 -- (default discriminant value)
Basis : Square(5); -- constrained, always 5 by 5
Illegal : Square; -- illegal, a Square has to be constrained

3.7.2 Operations of Discriminated Types
If a discriminated type has default_expressions for its discriminants, then unconstrained variables of the
type are permitted, and the discriminants of such a variable can be changed by assignment to the variable.
For a formal parameter of such a type, an attribute is provided to determine whether the corresponding
actual parameter is constrained or unconstrained.

Static Semantics

For a prefix A that is of a discriminated type (after any implicit dereference), the following attribute is
defined:

A'Constrained
 Yields the value True if A denotes a constant, a value, or a constrained variable, and False

otherwise.

Erroneous Execution

The execution of a construct is erroneous if the construct has a constituent that is a name denoting a
subcomponent that depends on discriminants, and the value of any of these discriminants is changed by
this execution between evaluating the name and the last use (within this execution) of the subcomponent
denoted by the name.

9

10

11

12

13

14

15

1

2

3

4

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

3.8 Record Types 10 November 2006 60

3.8 Record Types
A record object is a composite object consisting of named components. The value of a record object is a
composite value consisting of the values of the components.

Syntax

record_type_definition ::= [[abstract] tagged] [limited] record_definition
record_definition ::=
 record
 component_list
 end record
 | null record
component_list ::=
 component_item {component_item}
 | {component_item} variant_part
 | null;
component_item ::= component_declaration | aspect_clause
component_declaration ::=
 defining_identifier_list : component_definition [:= default_expression];

Name Resolution Rules

The expected type for the default_expression, if any, in a component_declaration is the type of the
component.

Legality Rules

This paragraph was deleted.

Each component_declaration declares a component of the record type. Besides components declared by
component_declarations, the components of a record type include any components declared by
discriminant_specifications of the record type declaration. The identifiers of all components of a record
type shall be distinct.

Within a type_declaration, a name that denotes a component, protected subprogram, or entry of the type
is allowed only in the following cases:

• A name that denotes any component, protected subprogram, or entry is allowed within a
representation item that occurs within the declaration of the composite type.

• A name that denotes a noninherited discriminant is allowed within the declaration of the type,
but not within the discriminant_part. If the discriminant is used to define the constraint of a
component, the bounds of an entry family, or the constraint of the parent subtype in a
derived_type_definition then its name shall appear alone as a direct_name (not as part of a
larger expression or expanded name). A discriminant shall not be used to define the constraint of
a scalar component.

If the name of the current instance of a type (see 8.6) is used to define the constraint of a component, then
it shall appear as a direct_name that is the prefix of an attribute_reference whose result is of an access
type, and the attribute_reference shall appear alone.

1

2

3

4

5/1

6

7

8/2

9/2

10

11

12

13

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

61 10 November 2006 Record Types 3.8

Static Semantics

If a record_type_definition includes the reserved word limited, the type is called an explicitly limited
record type.

The component_definition of a component_declaration defines the (nominal) subtype of the component.
If the reserved word aliased appears in the component_definition, then the component is aliased (see
3.10).

If the component_list of a record type is defined by the reserved word null and there are no discriminants,
then the record type has no components and all records of the type are null records. A record_definition of
null record is equivalent to record null; end record.

Dynamic Semantics

The elaboration of a record_type_definition creates the record type and its first subtype, and consists of
the elaboration of the record_definition. The elaboration of a record_definition consists of the elaboration
of its component_list, if any.

The elaboration of a component_list consists of the elaboration of the component_items and variant_part,
if any, in the order in which they appear. The elaboration of a component_declaration consists of the
elaboration of the component_definition.

Within the definition of a composite type, if a component_definition or discrete_subtype_definition (see
9.5.2) includes a name that denotes a discriminant of the type, or that is an attribute_reference whose
prefix denotes the current instance of the type, the expression containing the name is called a per-object
expression, and the constraint or range being defined is called a per-object constraint. For the elaboration
of a component_definition of a component_declaration or the discrete_subtype_definition of an entry_-
declaration for an entry family (see 9.5.2), if the component subtype is defined by an access_definition or
if the constraint or range of the subtype_indication or discrete_subtype_definition is not a per-object
constraint, then the access_definition, subtype_indication, or discrete_subtype_definition is elaborated.
On the other hand, if the constraint or range is a per-object constraint, then the elaboration consists of the
evaluation of any included expression that is not part of a per-object expression. Each such expression is
evaluated once unless it is part of a named association in a discriminant constraint, in which case it is
evaluated once for each associated discriminant.

When a per-object constraint is elaborated (as part of creating an object), each per-object expression of the
constraint is evaluated. For other expressions, the values determined during the elaboration of the
component_definition or entry_declaration are used. Any checks associated with the enclosing
subtype_indication or discrete_subtype_definition are performed, including the subtype compatibility
check (see 3.2.2), and the associated subtype is created.

NOTES
57 A component_declaration with several identifiers is equivalent to a sequence of single component_declarations, as
explained in 3.3.1.

58 The default_expression of a record component is only evaluated upon the creation of a default-initialized object of the
record type (presuming the object has the component, if it is in a variant_part — see 3.3.1).

59 The subtype defined by a component_definition (see 3.6) has to be a definite subtype.

60 If a record type does not have a variant_part, then the same components are present in all values of the type.

61 A record type is limited if it has the reserved word limited in its definition, or if any of its components are limited (see
7.5).

62 The predefined operations of a record type include membership tests, qualification, and explicit conversion. If the
record type is nonlimited, they also include assignment and the predefined equality operators.

13.1/2

14

15

16

17

18/2

18.1/1

19

20

21

22

23

24

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

3.8 Record Types 10 November 2006 62

63 A component of a record can be named with a selected_component. A value of a record can be specified with a
record_aggregate.

Examples

Examples of record type declarations:
type Date is
 record
 Day : Integer range 1 .. 31;
 Month : Month_Name;
 Year : Integer range 0 .. 4000;
 end record;

type Complex is
 record
 Re : Real := 0.0;
 Im : Real := 0.0;
 end record;

Examples of record variables:
Tomorrow, Yesterday : Date;
A, B, C : Complex;

-- both components of A, B, and C are implicitly initialized to zero

3.8.1 Variant Parts and Discrete Choices
A record type with a variant_part specifies alternative lists of components. Each variant defines the
components for the value or values of the discriminant covered by its discrete_choice_list.

Syntax

variant_part ::=
 case discriminant_direct_name is
 variant
 {variant}
 end case;
variant ::=
 when discrete_choice_list =>
 component_list
discrete_choice_list ::= discrete_choice {| discrete_choice}
discrete_choice ::= expression | discrete_range | others

Name Resolution Rules

The discriminant_direct_name shall resolve to denote a discriminant (called the discriminant of the
variant_part) specified in the known_discriminant_part of the full_type_declaration that contains the
variant_part. The expected type for each discrete_choice in a variant is the type of the discriminant of the
variant_part.

Legality Rules

The discriminant of the variant_part shall be of a discrete type.

The expressions and discrete_ranges given as discrete_choices in a variant_part shall be static. The
discrete_choice others shall appear alone in a discrete_choice_list, and such a discrete_choice_list, if it
appears, shall be the last one in the enclosing construct.

25/2

26

27

28

29

30

31

1

2

3

4

5

6

7

8

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

63 10 November 2006 Variant Parts and Discrete Choices 3.8.1

A discrete_choice is defined to cover a value in the following cases:
• A discrete_choice that is an expression covers a value if the value equals the value of the

expression converted to the expected type.

• A discrete_choice that is a discrete_range covers all values (possibly none) that belong to the
range.

• The discrete_choice others covers all values of its expected type that are not covered by
previous discrete_choice_lists of the same construct.

A discrete_choice_list covers a value if one of its discrete_choices covers the value.

The possible values of the discriminant of a variant_part shall be covered as follows:
• If the discriminant is of a static constrained scalar subtype, then each non-others discrete_-

choice shall cover only values in that subtype, and each value of that subtype shall be covered
by some discrete_choice (either explicitly or by others);

• If the type of the discriminant is a descendant of a generic formal scalar type then the
variant_part shall have an others discrete_choice;

• Otherwise, each value of the base range of the type of the discriminant shall be covered (either
explicitly or by others).

Two distinct discrete_choices of a variant_part shall not cover the same value.

Static Semantics

If the component_list of a variant is specified by null, the variant has no components.

The discriminant of a variant_part is said to govern the variant_part and its variants. In addition, the
discriminant of a derived type governs a variant_part and its variants if it corresponds (see 3.7) to the
discriminant of the variant_part.

Dynamic Semantics

A record value contains the values of the components of a particular variant only if the value of the
discriminant governing the variant is covered by the discrete_choice_list of the variant. This rule applies
in turn to any further variant that is, itself, included in the component_list of the given variant.

The elaboration of a variant_part consists of the elaboration of the component_list of each variant in the
order in which they appear.

Examples

Example of record type with a variant part:
type Device is (Printer, Disk, Drum);
type State is (Open, Closed);

type Peripheral(Unit : Device := Disk) is
 record
 Status : State;
 case Unit is
 when Printer =>
 Line_Count : Integer range 1 .. Page_Size;
 when others =>
 Cylinder : Cylinder_Index;
 Track : Track_Number;
 end case;
 end record;

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

3.8.1 Variant Parts and Discrete Choices 10 November 2006 64

Examples of record subtypes:
subtype Drum_Unit is Peripheral(Drum);
subtype Disk_Unit is Peripheral(Disk);

Examples of constrained record variables:
Writer : Peripheral(Unit => Printer);
Archive : Disk_Unit;

3.9 Tagged Types and Type Extensions
Tagged types and type extensions support object-oriented programming, based on inheritance with
extension and run-time polymorphism via dispatching operations.

Static Semantics

A record type or private type that has the reserved word tagged in its declaration is called a tagged type.
In addition, an interface type is a tagged type, as is a task or protected type derived from an interface (see
3.9.4). When deriving from a tagged type, as for any derived type, additional primitive subprograms may
be defined, and inherited primitive subprograms may be overridden. The derived type is called an
extension of its ancestor types, or simply a type extension.

Every type extension is also a tagged type, and is a record extension or a private extension of some other
tagged type, or a non-interface synchronized tagged type (see 3.9.4). A record extension is defined by a
derived_type_definition with a record_extension_part (see 3.9.1), which may include the definition of
additional components. A private extension, which is a partial view of a record extension or of a
synchronized tagged type, can be declared in the visible part of a package (see 7.3) or in a generic formal
part (see 12.5.1).

An object of a tagged type has an associated (run-time) tag that identifies the specific tagged type used to
create the object originally. The tag of an operand of a class-wide tagged type T'Class controls which
subprogram body is to be executed when a primitive subprogram of type T is applied to the operand (see
3.9.2); using a tag to control which body to execute is called dispatching.

The tag of a specific tagged type identifies the full_type_declaration of the type, and for a type extension,
is sufficient to uniquely identify the type among all descendants of the same ancestor. If a declaration for a
tagged type occurs within a generic_package_declaration, then the corresponding type declarations in
distinct instances of the generic package are associated with distinct tags. For a tagged type that is local to
a generic package body and with all of its ancestors (if any) also local to the generic body, the language
does not specify whether repeated instantiations of the generic body result in distinct tags.

The following language-defined library package exists:
package Ada.Tags is
 pragma Preelaborate(Tags);
 type Tag is private;
 pragma Preelaborable_Initialization(Tag);

 No_Tag : constant Tag;

 function Expanded_Name(T : Tag) return String;
 function Wide_Expanded_Name(T : Tag) return Wide_String;
 function Wide_Wide_Expanded_Name(T : Tag) return Wide_Wide_String;
 function External_Tag(T : Tag) return String;
 function Internal_Tag(External : String) return Tag;

 function Descendant_Tag(External : String; Ancestor : Tag) return Tag;
 function Is_Descendant_At_Same_Level(Descendant, Ancestor : Tag)
 return Boolean;

26
27

28

29

1

2/2

2.1/2

3

4/2

5

6/2

6.1/2

7/2

7.1/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

65 10 November 2006 Tagged Types and Type Extensions 3.9

 function Parent_Tag (T : Tag) return Tag;

 type Tag_Array is array (Positive range <>) of Tag;

 function Interface_Ancestor_Tags (T : Tag) return Tag_Array;

 Tag_Error : exception;

private
 ... -- not specified by the language
end Ada.Tags;

No_Tag is the default initial value of type Tag.

The function Wide_Wide_Expanded_Name returns the full expanded name of the first subtype of the
specific type identified by the tag, in upper case, starting with a root library unit. The result is
implementation defined if the type is declared within an unnamed block_statement.

The function Expanded_Name (respectively, Wide_Expanded_Name) returns the same sequence of
graphic characters as that defined for Wide_Wide_Expanded_Name, if all the graphic characters are
defined in Character (respectively, Wide_Character); otherwise, the sequence of characters is
implementation defined, but no shorter than that returned by Wide_Wide_Expanded_Name for the same
value of the argument.

The function External_Tag returns a string to be used in an external representation for the given tag. The
call External_Tag(S'Tag) is equivalent to the attribute_reference S'External_Tag (see 13.3).

The string returned by the functions Expanded_Name, Wide_Expanded_Name,
Wide_Wide_Expanded_Name, and External_Tag has lower bound 1.

The function Internal_Tag returns a tag that corresponds to the given external tag, or raises Tag_Error if
the given string is not the external tag for any specific type of the partition. Tag_Error is also raised if the
specific type identified is a library-level type whose tag has not yet been created (see 13.14).

The function Descendant_Tag returns the (internal) tag for the type that corresponds to the given external
tag and is both a descendant of the type identified by the Ancestor tag and has the same accessibility level
as the identified ancestor. Tag_Error is raised if External is not the external tag for such a type. Tag_Error
is also raised if the specific type identified is a library-level type whose tag has not yet been created.

The function Is_Descendant_At_Same_Level returns True if the Descendant tag identifies a type that is
both a descendant of the type identified by Ancestor and at the same accessibility level. If not, it returns
False.

The function Parent_Tag returns the tag of the parent type of the type whose tag is T. If the type does not
have a parent type (that is, it was not declared by a derived_type_declaration), then No_Tag is returned.

The function Interface_Ancestor_Tags returns an array containing the tag of each interface ancestor type
of the type whose tag is T, other than T itself. The lower bound of the returned array is 1, and the order of
the returned tags is unspecified. Each tag appears in the result exactly once. If the type whose tag is T has
no interface ancestors, a null array is returned.

For every subtype S of a tagged type T (specific or class-wide), the following attributes are defined:

S'Class S'Class denotes a subtype of the class-wide type (called T'Class in this International
Standard) for the class rooted at T (or if S already denotes a class-wide subtype, then
S'Class is the same as S).

 S'Class is unconstrained. However, if S is constrained, then the values of S'Class are only
those that when converted to the type T belong to S.

7.2/2

7.3/2

7.4/2

8

9

9.1/2

10/2

10.1/2

11

11.1/2

12/2

12.1/2

12.2/2

12.3/2

12.4/2

13

14

15

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

3.9 Tagged Types and Type Extensions 10 November 2006 66

S'Tag S'Tag denotes the tag of the type T (or if T is class-wide, the tag of the root type of the
corresponding class). The value of this attribute is of type Tag.

Given a prefix X that is of a class-wide tagged type (after any implicit dereference), the following attribute
is defined:

X'Tag X'Tag denotes the tag of X. The value of this attribute is of type Tag.

The following language-defined generic function exists:
generic
 type T (<>) is abstract tagged limited private;
 type Parameters (<>) is limited private;
 with function Constructor (Params : not null access Parameters)
 return T is abstract;
function Ada.Tags.Generic_Dispatching_Constructor
 (The_Tag : Tag;
 Params : not null access Parameters) return T'Class;
pragma Preelaborate(Generic_Dispatching_Constructor);
pragma Convention(Intrinsic, Generic_Dispatching_Constructor);

Tags.Generic_Dispatching_Constructor provides a mechanism to create an object of an appropriate type
from just a tag value. The function Constructor is expected to create the object given a reference to an
object of type Parameters.

Dynamic Semantics

The tag associated with an object of a tagged type is determined as follows:
• The tag of a stand-alone object, a component, or an aggregate of a specific tagged type T

identifies T.

• The tag of an object created by an allocator for an access type with a specific designated tagged
type T, identifies T.

• The tag of an object of a class-wide tagged type is that of its initialization expression.

• The tag of the result returned by a function whose result type is a specific tagged type T
identifies T.

• The tag of the result returned by a function with a class-wide result type is that of the return
object.

The tag is preserved by type conversion and by parameter passing. The tag of a value is the tag of the
associated object (see 6.2).

Tag_Error is raised by a call of Descendant_Tag, Expanded_Name, External_Tag,
Interface_Ancestor_Tag, Is_Descendant_At_Same_Level, or Parent_Tag if any tag passed is No_Tag.

An instance of Tags.Generic_Dispatching_Constructor raises Tag_Error if The_Tag does not represent a
concrete descendant of T or if the innermost master (see 7.6.1) of this descendant is not also a master of
the instance. Otherwise, it dispatches to the primitive function denoted by the formal Constructor for the
type identified by The_Tag, passing Params, and returns the result. Any exception raised by the function is
propagated.

Erroneous Execution

If an internal tag provided to an instance of Tags.Generic_Dispatching_Constructor or to any subprogram
declared in package Tags identifies either a type that is not library-level and whose tag has not been
created (see 13.14), or a type that does not exist in the partition at the time of the call, then execution is
erroneous.

16

17

18

18.1/2

18.2/2

18.3/2

19

20

21

22

23

24/2

25

25.1/2

25.2/2

25.3/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

67 10 November 2006 Tagged Types and Type Extensions 3.9

Implementation Permissions

The implementation of Internal_Tag and Descendant_Tag may raise Tag_Error if no specific type
corresponding to the string External passed as a parameter exists in the partition at the time the function is
called, or if there is no such type whose innermost master is a master of the point of the function call.

Implementation Advice

Internal_Tag should return the tag of a type whose innermost master is the master of the point of the
function call.

NOTES
64 A type declared with the reserved word tagged should normally be declared in a package_specification, so that new
primitive subprograms can be declared for it.

65 Once an object has been created, its tag never changes.

66 Class-wide types are defined to have unknown discriminants (see 3.7). This means that objects of a class-wide type
have to be explicitly initialized (whether created by an object_declaration or an allocator), and that aggregates have to be
explicitly qualified with a specific type when their expected type is class-wide.

This paragraph was deleted.

67 The capability provided by Tags.Generic_Dispatching_Constructor is sometimes known as a factory.

Examples

Examples of tagged record types:
type Point is tagged
 record
 X, Y : Real := 0.0;
 end record;

type Expression is tagged null record;
 -- Components will be added by each extension

3.9.1 Type Extensions
Every type extension is a tagged type, and is a record extension or a private extension of some other
tagged type, or a non-interface synchronized tagged type..

Syntax

record_extension_part ::= with record_definition

Legality Rules

The parent type of a record extension shall not be a class-wide type nor shall it be a synchronized tagged
type (see 3.9.4). If the parent type or any progenitor is nonlimited, then each of the components of the
record_extension_part shall be nonlimited. In addition to the places where Legality Rules normally apply
(see 12.3), these rules apply also in the private part of an instance of a generic unit.

Within the body of a generic unit, or the body of any of its descendant library units, a tagged type shall not
be declared as a descendant of a formal type declared within the formal part of the generic unit.

Static Semantics

A record extension is a null extension if its declaration has no known_discriminant_part and its
record_extension_part includes no component_declarations.

Dynamic Semantics

The elaboration of a record_extension_part consists of the elaboration of the record_definition.

26/2

26.1/2

27

28

29

30/2

30.1/2

31

32

33

1/2

2

3/2

4/2

4.1/2

5

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

3.9.1 Type Extensions 10 November 2006 68

NOTES
68 The term “type extension” refers to a type as a whole. The term “extension part” refers to the piece of text that defines
the additional components (if any) the type extension has relative to its specified ancestor type.

69 When an extension is declared immediately within a body, primitive subprograms are inherited and are overridable,
but new primitive subprograms cannot be added.

70 A name that denotes a component (including a discriminant) of the parent type is not allowed within the
record_extension_part. Similarly, a name that denotes a component defined within the record_extension_part is not
allowed within the record_extension_part. It is permissible to use a name that denotes a discriminant of the record
extension, providing there is a new known_discriminant_part in the enclosing type declaration. (The full rule is given in
3.8.)

71 Each visible component of a record extension has to have a unique name, whether the component is (visibly) inherited
from the parent type or declared in the record_extension_part (see 8.3).

Examples

Examples of record extensions (of types defined above in 3.9):
type Painted_Point is new Point with
 record
 Paint : Color := White;
 end record;
 -- Components X and Y are inherited
Origin : constant Painted_Point := (X | Y => 0.0, Paint => Black);

type Literal is new Expression with
 record -- a leaf in an Expression tree
 Value : Real;
 end record;

type Expr_Ptr is access all Expression'Class;
 -- see 3.10
type Binary_Operation is new Expression with
 record -- an internal node in an Expression tree
 Left, Right : Expr_Ptr;
 end record;

type Addition is new Binary_Operation with null record;
type Subtraction is new Binary_Operation with null record;
 -- No additional components needed for these extensions
Tree : Expr_Ptr := -- A tree representation of “5.0 + (13.0–7.0)”
 new Addition'(
 Left => new Literal'(Value => 5.0),
 Right => new Subtraction'(
 Left => new Literal'(Value => 13.0),
 Right => new Literal'(Value => 7.0)));

3.9.2 Dispatching Operations of Tagged Types
The primitive subprograms of a tagged type, the subprograms declared by formal_abstract_subprogram_-
declarations, and the stream attributes of a specific tagged type that are available (see 13.13.2) at the end
of the declaration list where the type is declared are called dispatching operations. A dispatching operation
can be called using a statically determined controlling tag, in which case the body to be executed is
determined at compile time. Alternatively, the controlling tag can be dynamically determined, in which
case the call dispatches to a body that is determined at run time; such a call is termed a dispatching call.
As explained below, the properties of the operands and the context of a particular call on a dispatching
operation determine how the controlling tag is determined, and hence whether or not the call is a
dispatching call. Run-time polymorphism is achieved when a dispatching operation is called by a
dispatching call.

6

7/2

8

9

10

11

12

13

14

15

16

17

1/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

69 10 November 2006 Dispatching Operations of Tagged Types 3.9.2

Static Semantics

A call on a dispatching operation is a call whose name or prefix denotes the declaration of a dispatching
operation. A controlling operand in a call on a dispatching operation of a tagged type T is one whose
corresponding formal parameter is of type T or is of an anonymous access type with designated type T; the
corresponding formal parameter is called a controlling formal parameter. If the controlling formal
parameter is an access parameter, the controlling operand is the object designated by the actual parameter,
rather than the actual parameter itself. If the call is to a (primitive) function with result type T, then the call
has a controlling result — the context of the call can control the dispatching. Similarly, if the call is to a
function with access result type designating T, then the call has a controlling access result, and the context
can similarly control dispatching.

A name or expression of a tagged type is either statically tagged, dynamically tagged, or tag
indeterminate, according to whether, when used as a controlling operand, the tag that controls dispatching
is determined statically by the operand's (specific) type, dynamically by its tag at run time, or from
context. A qualified_expression or parenthesized expression is statically, dynamically, or indeterminately
tagged according to its operand. For other kinds of names and expressions, this is determined as follows:

• The name or expression is statically tagged if it is of a specific tagged type and, if it is a call
with a controlling result or controlling access result, it has at least one statically tagged
controlling operand;

• The name or expression is dynamically tagged if it is of a class-wide type, or it is a call with a
controlling result or controlling access result and at least one dynamically tagged controlling
operand;

• The name or expression is tag indeterminate if it is a call with a controlling result or controlling
access result, all of whose controlling operands (if any) are tag indeterminate.

A type_conversion is statically or dynamically tagged according to whether the type determined by the
subtype_mark is specific or class-wide, respectively. For an object that is designated by an expression
whose expected type is an anonymous access-to-specific tagged type, the object is dynamically tagged if
the expression, ignoring enclosing parentheses, is of the form X'Access, where X is of a class-wide type,
or is of the form new T'(...), where T denotes a class-wide subtype. Otherwise, the object is statically or
dynamically tagged according to whether the designated type of the type of the expression is specific or
class-wide, respectively.

Legality Rules

A call on a dispatching operation shall not have both dynamically tagged and statically tagged controlling
operands.

If the expected type for an expression or name is some specific tagged type, then the expression or name
shall not be dynamically tagged unless it is a controlling operand in a call on a dispatching operation.
Similarly, if the expected type for an expression is an anonymous access-to-specific tagged type, then the
object designated by the expression shall not be dynamically tagged unless it is a controlling operand in a
call on a dispatching operation.

In the declaration of a dispatching operation of a tagged type, everywhere a subtype of the tagged type
appears as a subtype of the profile (see 6.1), it shall statically match the first subtype of the tagged type. If
the dispatching operation overrides an inherited subprogram, it shall be subtype conformant with the
inherited subprogram. The convention of an inherited dispatching operation is the convention of the
corresponding primitive operation of the parent or progenitor type. The default convention of a dispatching
operation that overrides an inherited primitive operation is the convention of the inherited operation; if the

2/2

3

4/2

5/2

6/2

7/1

8

9/1

10/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

3.9.2 Dispatching Operations of Tagged Types 10 November 2006 70

operation overrides multiple inherited operations, then they shall all have the same convention. An
explicitly declared dispatching operation shall not be of convention Intrinsic.

The default_expression for a controlling formal parameter of a dispatching operation shall be tag indeter-
minate.

If a dispatching operation is defined by a subprogram_renaming_declaration or the instantiation of a
generic subprogram, any access parameter of the renamed subprogram or the generic subprogram that
corresponds to a controlling access parameter of the dispatching operation, shall have a subtype that
excludes null.

A given subprogram shall not be a dispatching operation of two or more distinct tagged types.

The explicit declaration of a primitive subprogram of a tagged type shall occur before the type is frozen
(see 13.14). For example, new dispatching operations cannot be added after objects or values of the type
exist, nor after deriving a record extension from it, nor after a body.

Dynamic Semantics

For the execution of a call on a dispatching operation of a type T, the controlling tag value determines
which subprogram body is executed. The controlling tag value is defined as follows:

• If one or more controlling operands are statically tagged, then the controlling tag value is
statically determined to be the tag of T.

• If one or more controlling operands are dynamically tagged, then the controlling tag value is not
statically determined, but is rather determined by the tags of the controlling operands. If there is
more than one dynamically tagged controlling operand, a check is made that they all have the
same tag. If this check fails, Constraint_Error is raised unless the call is a function_call whose
name denotes the declaration of an equality operator (predefined or user defined) that returns
Boolean, in which case the result of the call is defined to indicate inequality, and no
subprogram_body is executed. This check is performed prior to evaluating any tag-
indeterminate controlling operands.

• If all of the controlling operands (if any) are tag-indeterminate, then:
• If the call has a controlling result or controlling access result and is itself, or designates, a

(possibly parenthesized or qualified) controlling operand of an enclosing call on a
dispatching operation of a descendant of type T, then its controlling tag value is determined
by the controlling tag value of this enclosing call;

• If the call has a controlling result or controlling access result and (possibly parenthesized,
qualified, or dereferenced) is the expression of an assignment_statement whose target is
of a class-wide type, then its controlling tag value is determined by the target;

• Otherwise, the controlling tag value is statically determined to be the tag of type T.

For the execution of a call on a dispatching operation, the action performed is determined by the properties
of the corresponding dispatching operation of the specific type identified by the controlling tag value. If
the corresponding operation is explicitly declared for this type, even if the declaration occurs in a private
part, then the action comprises an invocation of the explicit body for the operation. If the corresponding
operation is implicitly declared for this type:

• if the operation is implemented by an entry or protected subprogram (see 9.1 and 9.4), then the
action comprises a call on this entry or protected subprogram, with the target object being given
by the first actual parameter of the call, and the actual parameters of the entry or protected
subprogram being given by the remaining actual parameters of the call, if any;

• otherwise, the action is the same as the action for the corresponding operation of the parent type.

11/2

11.1/2

12

13

14

15

16

17/2

18/2

18.1/2

19

20/2

20.1/2

20.2/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

71 10 November 2006 Dispatching Operations of Tagged Types 3.9.2

NOTES
72 The body to be executed for a call on a dispatching operation is determined by the tag; it does not matter whether that
tag is determined statically or dynamically, and it does not matter whether the subprogram's declaration is visible at the
place of the call.

73 This subclause covers calls on dispatching subprograms of a tagged type. Rules for tagged type membership tests are
described in 4.5.2. Controlling tag determination for an assignment_statement is described in 5.2.

74 A dispatching call can dispatch to a body whose declaration is not visible at the place of the call.

75 A call through an access-to-subprogram value is never a dispatching call, even if the access value designates a
dispatching operation. Similarly a call whose prefix denotes a subprogram_renaming_declaration cannot be a dispatching
call unless the renaming itself is the declaration of a primitive subprogram.

3.9.3 Abstract Types and Subprograms
An abstract type is a tagged type intended for use as an ancestor of other types, but which is not allowed to
have objects of its own. An abstract subprogram is a subprogram that has no body, but is intended to be
overridden at some point when inherited. Because objects of an abstract type cannot be created, a
dispatching call to an abstract subprogram always dispatches to some overriding body.

Syntax

abstract_subprogram_declaration ::=
 [overriding_indicator]
 subprogram_specification is abstract;

Static Semantics

Interface types (see 3.9.4) are abstract types. In addition, a tagged type that has the reserved word abstract
in its declaration is an abstract type. The class-wide type (see 3.4.1) rooted at an abstract type is not itself
an abstract type.

Legality Rules

Only a tagged type shall have the reserved word abstract in its declaration.

A subprogram declared by an abstract_subprogram_declaration or a formal_abstract_subprogram_-
declaration (see 12.6) is an abstract subprogram. If it is a primitive subprogram of a tagged type, then the
tagged type shall be abstract.

If a type has an implicitly declared primitive subprogram that is inherited or is the predefined equality
operator, and the corresponding primitive subprogram of the parent or ancestor type is abstract or is a
function with a controlling access result, or if a type other than a null extension inherits a function with a
controlling result, then:

• If the type is abstract or untagged, the implicitly declared subprogram is abstract.

• Otherwise, the subprogram shall be overridden with a nonabstract subprogram or, in the case of
a private extension inheriting a function with a controlling result, have a full type that is a null
extension; for a type declared in the visible part of a package, the overriding may be either in the
visible or the private part. Such a subprogram is said to require overriding. However, if the type
is a generic formal type, the subprogram need not be overridden for the formal type itself; a
nonabstract version will necessarily be provided by the actual type.

A call on an abstract subprogram shall be a dispatching call; nondispatching calls to an abstract
subprogram are not allowed.

21

22/2

23

24

1/2

1.1/2

1.2/2

2/2

3/2

4/2

5/2

6/2

7

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

3.9.3 Abstract Types and Subprograms 10 November 2006 72

The type of an aggregate, or of an object created by an object_declaration or an allocator, or a generic
formal object of mode in, shall not be abstract. The type of the target of an assignment operation (see 5.2)
shall not be abstract. The type of a component shall not be abstract. If the result type of a function is
abstract, then the function shall be abstract.

If a partial view is not abstract, the corresponding full view shall not be abstract. If a generic formal type is
abstract, then for each primitive subprogram of the formal that is not abstract, the corresponding primitive
subprogram of the actual shall not be abstract.

For an abstract type declared in a visible part, an abstract primitive subprogram shall not be declared in the
private part, unless it is overriding an abstract subprogram implicitly declared in the visible part. For a
tagged type declared in a visible part, a primitive function with a controlling result shall not be declared in
the private part, unless it is overriding a function implicitly declared in the visible part.

A generic actual subprogram shall not be an abstract subprogram unless the generic formal subprogram is
declared by a formal_abstract_subprogram_declaration. The prefix of an attribute_reference for the
Access, Unchecked_Access, or Address attributes shall not denote an abstract subprogram.

Dynamic Semantics

The elaboration of an abstract_subprogram_declaration has no effect.

NOTES
76 Abstractness is not inherited; to declare an abstract type, the reserved word abstract has to be used in the declaration
of the type extension.

77 A class-wide type is never abstract. Even if a class is rooted at an abstract type, the class-wide type for the class is not
abstract, and an object of the class-wide type can be created; the tag of such an object will identify some nonabstract type
in the class.

Examples

Example of an abstract type representing a set of natural numbers:
package Sets is
 subtype Element_Type is Natural;
 type Set is abstract tagged null record;
 function Empty return Set is abstract;
 function Union(Left, Right : Set) return Set is abstract;
 function Intersection(Left, Right : Set) return Set is abstract;
 function Unit_Set(Element : Element_Type) return Set is abstract;
 procedure Take(Element : out Element_Type;
 From : in out Set) is abstract;
end Sets;

NOTES
78 Notes on the example: Given the above abstract type, one could then derive various (nonabstract) extensions of the
type, representing alternative implementations of a set. One might use a bit vector, but impose an upper bound on the
largest element representable, while another might use a hash table, trading off space for flexibility.

3.9.4 Interface Types
An interface type is an abstract tagged type that provides a restricted form of multiple inheritance. A
tagged type, task type, or protected type may have one or more interface types as ancestors.

Syntax

interface_type_definition ::=
 [limited | task | protected | synchronized] interface [and interface_list]
interface_list ::= interface_subtype_mark {and interface_subtype_mark}

8

9

10

11/2

11.1/2

12

13

14

15

16

1/2

2/2

3/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

73 10 November 2006 Interface Types 3.9.4

Static Semantics

An interface type (also called an interface) is a specific abstract tagged type that is defined by an
interface_type_definition.

An interface with the reserved word limited, task, protected, or synchronized in its definition is termed,
respectively, a limited interface, a task interface, a protected interface, or a synchronized interface. In
addition, all task and protected interfaces are synchronized interfaces, and all synchronized interfaces are
limited interfaces.

A task or protected type derived from an interface is a tagged type. Such a tagged type is called a
synchronized tagged type, as are synchronized interfaces and private extensions whose declaration
includes the reserved word synchronized.

A task interface is an abstract task type. A protected interface is an abstract protected type.

An interface type has no components.

An interface_subtype_mark in an interface_list names a progenitor subtype; its type is the progenitor
type. An interface type inherits user-defined primitive subprograms from each progenitor type in the same
way that a derived type inherits user-defined primitive subprograms from its progenitor types (see 3.4).

Legality Rules

All user-defined primitive subprograms of an interface type shall be abstract subprograms or null
procedures.

The type of a subtype named in an interface_list shall be an interface type.

A type derived from a nonlimited interface shall be nonlimited.

An interface derived from a task interface shall include the reserved word task in its definition; any other
type derived from a task interface shall be a private extension or a task type declared by a task declaration
(see 9.1).

An interface derived from a protected interface shall include the reserved word protected in its definition;
any other type derived from a protected interface shall be a private extension or a protected type declared
by a protected declaration (see 9.4).

An interface derived from a synchronized interface shall include one of the reserved words task,
protected, or synchronized in its definition; any other type derived from a synchronized interface shall be
a private extension, a task type declared by a task declaration, or a protected type declared by a protected
declaration.

No type shall be derived from both a task interface and a protected interface.

In addition to the places where Legality Rules normally apply (see 12.3), these rules apply also in the
private part of an instance of a generic unit.

Dynamic Semantics

The elaboration of an interface_type_definition has no effect.

NOTES
79 Nonlimited interface types have predefined nonabstract equality operators. These may be overridden with user-defined
abstract equality operators. Such operators will then require an explicit overriding for any nonabstract descendant of the
interface.

4/2

5/2

6/2

7/2

8/2

9/2

10/2

11/2

12/2

13/2

14/2

15/2

16/2

17/2

18/2

19/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

3.9.4 Interface Types 10 November 2006 74

Examples

Example of a limited interface and a synchronized interface extending it:
type Queue is limited interface;
procedure Append(Q : in out Queue; Person : in Person_Name) is abstract;
procedure Remove_First(Q : in out Queue;
 Person : out Person_Name) is abstract;
function Cur_Count(Q : in Queue) return Natural is abstract;
function Max_Count(Q : in Queue) return Natural is abstract;
-- See 3.10.1 for Person_Name.
Queue_Error : exception;
-- Append raises Queue_Error if Count(Q) = Max_Count(Q)
-- Remove_First raises Queue_Error if Count(Q) = 0
type Synchronized_Queue is synchronized interface and Queue; -- see 9.11
procedure Append_Wait(Q : in out Synchronized_Queue;
 Person : in Person_Name) is abstract;
procedure Remove_First_Wait(Q : in out Synchronized_Queue;
 Person : out Person_Name) is abstract;

...

procedure Transfer(From : in out Queue'Class;
 To : in out Queue'Class;
 Number : in Natural := 1) is
 Person : Person_Name;
begin
 for I in 1..Number loop
 Remove_First(From, Person);
 Append(To, Person);
 end loop;
end Transfer;

This defines a Queue interface defining a queue of people. (A similar design could be created to define
any kind of queue simply by replacing Person_Name by an appropriate type.) The Queue interface has
four dispatching operations, Append, Remove_First, Cur_Count, and Max_Count. The body of a class-
wide operation, Transfer is also shown. Every non-abstract extension of Queue must provide
implementations for at least its four dispatching operations, as they are abstract. Any object of a type
derived from Queue may be passed to Transfer as either the From or the To operand. The two operands
need not be of the same type in any given call.

The Synchronized_Queue interface inherits the four dispatching operations from Queue and adds two
additional dispatching operations, which wait if necessary rather than raising the Queue_Error exception.
This synchronized interface may only be implemented by a task or protected type, and as such ensures
safe concurrent access.

Example use of the interface:
type Fast_Food_Queue is new Queue with record ...;
procedure Append(Q : in out Fast_Food_Queue; Person : in Person_Name);
procedure Remove_First(Q : in out Fast_Food_Queue; Person : in Person_Name);
function Cur_Count(Q : in Fast_Food_Queue) return Natural;
function Max_Count(Q : in Fast_Food_Queue) return Natural;

...

Cashier, Counter : Fast_Food_Queue;

...
-- Add George (see 3.10.1) to the cashier's queue:
Append (Cashier, George);
-- After payment, move George to the sandwich counter queue:
Transfer (Cashier, Counter);
...

20/2

21/2

22/2

23/2

24/2

25/2

26/2

27/2

28/2

29/2

30/2

31/2

32/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

75 10 November 2006 Interface Types 3.9.4

An interface such as Queue can be used directly as the parent of a new type (as shown here), or can be
used as a progenitor when a type is derived. In either case, the primitive operations of the interface are
inherited. For Queue, the implementation of the four inherited routines must be provided. Inside the call of
Transfer, calls will dispatch to the implementations of Append and Remove_First for type
Fast_Food_Queue.

Example of a task interface:
type Serial_Device is task interface; -- see 9.1
procedure Read (Dev : in Serial_Device; C : out Character) is abstract;
procedure Write(Dev : in Serial_Device; C : in Character) is abstract;

The Serial_Device interface has two dispatching operations which are intended to be implemented by task
entries (see 9.1).

3.10 Access Types
A value of an access type (an access value) provides indirect access to the object or subprogram it
designates. Depending on its type, an access value can designate either subprograms, objects created by
allocators (see 4.8), or more generally aliased objects of an appropriate type.

Syntax

access_type_definition ::=
 [null_exclusion] access_to_object_definition
 | [null_exclusion] access_to_subprogram_definition
access_to_object_definition ::=
 access [general_access_modifier] subtype_indication
general_access_modifier ::= all | constant
access_to_subprogram_definition ::=
 access [protected] procedure parameter_profile
 | access [protected] function parameter_and_result_profile
null_exclusion ::= not null
access_definition ::=
 [null_exclusion] access [constant] subtype_mark
 | [null_exclusion] access [protected] procedure parameter_profile
 | [null_exclusion] access [protected] function parameter_and_result_profile

Static Semantics

There are two kinds of access types, access-to-object types, whose values designate objects, and access-to-
subprogram types, whose values designate subprograms. Associated with an access-to-object type is a
storage pool; several access types may share the same storage pool. All descendants of an access type
share the same storage pool. A storage pool is an area of storage used to hold dynamically allocated
objects (called pool elements) created by allocators; storage pools are described further in 13.11, “Storage
Management”.

Access-to-object types are further subdivided into pool-specific access types, whose values can designate
only the elements of their associated storage pool, and general access types, whose values can designate
the elements of any storage pool, as well as aliased objects created by declarations rather than allocators,
and aliased subcomponents of other objects.

33/2

34/2

35/2

36/2

1

2/2

3

4

5

5.1/2

6/2

7/1

8

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

3.10 Access Types 10 November 2006 76

A view of an object is defined to be aliased if it is defined by an object_declaration or component_-
definition with the reserved word aliased, or by a renaming of an aliased view. In addition, the dereference
of an access-to-object value denotes an aliased view, as does a view conversion (see 4.6) of an aliased
view. The current instance of a limited tagged type, a protected type, a task type, or a type that has the
reserved word limited in its full definition is also defined to be aliased. Finally, a formal parameter or
generic formal object of a tagged type is defined to be aliased. Aliased views are the ones that can be
designated by an access value.

An access_to_object_definition defines an access-to-object type and its first subtype; the subtype_-
indication defines the designated subtype of the access type. If a general_access_modifier appears, then
the access type is a general access type. If the modifier is the reserved word constant, then the type is an
access-to-constant type; a designated object cannot be updated through a value of such a type. If the
modifier is the reserved word all, then the type is an access-to-variable type; a designated object can be
both read and updated through a value of such a type. If no general_access_modifier appears in the
access_to_object_definition, the access type is a pool-specific access-to-variable type.

An access_to_subprogram_definition defines an access-to-subprogram type and its first subtype; the
parameter_profile or parameter_and_result_profile defines the designated profile of the access type.
There is a calling convention associated with the designated profile; only subprograms with this calling
convention can be designated by values of the access type. By default, the calling convention is
“protected” if the reserved word protected appears, and “Ada” otherwise. See Annex B for how to
override this default.

An access_definition defines an anonymous general access type or an anonymous access-to-subprogram
type. For a general access type, the subtype_mark denotes its designated subtype; if the general_-
access_modifier constant appears, the type is an access-to-constant type; otherwise it is an access-to-
variable type. For an access-to-subprogram type, the parameter_profile or parameter_and_result_profile
denotes its designated profile.

For each access type, there is a null access value designating no entity at all, which can be obtained by
(implicitly) converting the literal null to the access type. The null value of an access type is the default
initial value of the type. Non-null values of an access-to-object type are obtained by evaluating an
allocator, which returns an access value designating a newly created object (see 3.10.2), or in the case of a
general access-to-object type, evaluating an attribute_reference for the Access or Unchecked_Access
attribute of an aliased view of an object. Non-null values of an access-to-subprogram type are obtained by
evaluating an attribute_reference for the Access attribute of a non-intrinsic subprogram..

A null_exclusion in a construct specifies that the null value does not belong to the access subtype defined
by the construct, that is, the access subtype excludes null. In addition, the anonymous access subtype
defined by the access_definition for a controlling access parameter (see 3.9.2) excludes null. Finally, for a
subtype_indication without a null_exclusion, the subtype denoted by the subtype_indication excludes null
if and only if the subtype denoted by the subtype_mark in the subtype_indication excludes null.

All subtypes of an access-to-subprogram type are constrained. The first subtype of a type defined by an
access_definition or an access_to_object_definition is unconstrained if the designated subtype is an
unconstrained array or discriminated subtype; otherwise it is constrained.

Legality Rules

If a subtype_indication, discriminant_specification, parameter_specification, parameter_and_result_-
profile, object_renaming_declaration, or formal_object_declaration has a null_exclusion, the subtype_-
mark in that construct shall denote an access subtype that does not exclude null.

9/2

10

11

12/2

13/2

13.1/2

14/1

14.1/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

77 10 November 2006 Access Types 3.10

Dynamic Semantics

A composite_constraint is compatible with an unconstrained access subtype if it is compatible with the
designated subtype. A null_exclusion is compatible with any access subtype that does not exclude null. An
access value satisfies a composite_constraint of an access subtype if it equals the null value of its type or
if it designates an object whose value satisfies the constraint. An access value satisfies an exclusion of the
null value if it does not equal the null value of its type.

The elaboration of an access_type_definition creates the access type and its first subtype. For an access-
to-object type, this elaboration includes the elaboration of the subtype_indication, which creates the
designated subtype.

The elaboration of an access_definition creates an anonymous access type.

NOTES
80 Access values are called “pointers” or “references” in some other languages.

81 Each access-to-object type has an associated storage pool; several access types can share the same pool. An object can
be created in the storage pool of an access type by an allocator (see 4.8) for the access type. A storage pool (roughly)
corresponds to what some other languages call a “heap.” See 13.11 for a discussion of pools.

82 Only index_constraints and discriminant_constraints can be applied to access types (see 3.6.1 and 3.7.1).

Examples

Examples of access-to-object types:
type Peripheral_Ref is not null access Peripheral; -- see 3.8.1
type Binop_Ptr is access all Binary_Operation'Class;
 -- general access-to-class-wide, see 3.9.1

Example of an access subtype:
subtype Drum_Ref is Peripheral_Ref(Drum); -- see 3.8.1

Example of an access-to-subprogram type:
type Message_Procedure is access procedure (M : in String := "Error!");
procedure Default_Message_Procedure(M : in String);
Give_Message : Message_Procedure := Default_Message_Procedure'Access;
...
procedure Other_Procedure(M : in String);
...
Give_Message := Other_Procedure'Access;
...
Give_Message("File not found."); -- call with parameter (.all is optional)
Give_Message.all; -- call with no parameters

3.10.1 Incomplete Type Declarations
There are no particular limitations on the designated type of an access type. In particular, the type of a
component of the designated type can be another access type, or even the same access type. This permits
mutually dependent and recursive access types. An incomplete_type_declaration can be used to introduce
a type to be used as a designated type, while deferring its full definition to a subsequent
full_type_declaration.

Syntax

incomplete_type_declaration ::= type defining_identifier [discriminant_part] [is tagged];

15/2

16

17/2

18

19

20

21

22/2

23

24

25

26

1

2/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

3.10.1 Incomplete Type Declarations 10 November 2006 78

Static Semantics

An incomplete_type_declaration declares an incomplete view of a type and its first subtype; the first
subtype is unconstrained if a discriminant_part appears. If the incomplete_type_declaration includes the
reserved word tagged, it declares a tagged incomplete view. An incomplete view of a type is a limited
view of the type (see 7.5).

Given an access type A whose designated type T is an incomplete view, a dereference of a value of type A
also has this incomplete view except when:

• it occurs within the immediate scope of the completion of T, or

• it occurs within the scope of a nonlimited_with_clause that mentions a library package in whose
visible part the completion of T is declared.

In these cases, the dereference has the full view of T.

Similarly, if a subtype_mark denotes a subtype_declaration defining a subtype of an incomplete view T,
the subtype_mark denotes an incomplete view except under the same two circumstances given above, in
which case it denotes the full view of T.

Legality Rules

An incomplete_type_declaration requires a completion, which shall be a full_type_declaration. If the
incomplete_type_declaration occurs immediately within either the visible part of a package_-
specification or a declarative_part, then the full_type_declaration shall occur later and immediately
within this visible part or declarative_part. If the incomplete_type_declaration occurs immediately within
the private part of a given package_specification, then the full_type_declaration shall occur later and
immediately within either the private part itself, or the declarative_part of the corresponding package_-
body.

If an incomplete_type_declaration includes the reserved word tagged, then a full_type_declaration that
completes it shall declare a tagged type. If an incomplete_type_declaration has a known_discriminant_-
part, then a full_type_declaration that completes it shall have a fully conforming (explicit) known_-
discriminant_part (see 6.3.1). If an incomplete_type_declaration has no discriminant_part (or an
unknown_discriminant_part), then a corresponding full_type_declaration is nevertheless allowed to have
discriminants, either explicitly, or inherited via derivation.

A name that denotes an incomplete view of a type may be used as follows:
• as the subtype_mark in the subtype_indication of an access_to_object_definition; the only

form of constraint allowed in this subtype_indication is a discriminant_constraint;

• as the subtype_mark in the subtype_indication of a subtype_declaration; the subtype_-
indication shall not have a null_exclusion or a constraint;

• as the subtype_mark in an access_definition.

If such a name denotes a tagged incomplete view, it may also be used:
• as the subtype_mark defining the subtype of a parameter in a formal_part;

• as the prefix of an attribute_reference whose attribute_designator is Class; such an attribute_-
reference is restricted to the uses allowed here; it denotes a tagged incomplete view.

If such a name occurs within the declaration list containing the completion of the incomplete view, it may
also be used:

• as the subtype_mark defining the subtype of a parameter or result of an access_to_-
subprogram_definition.

2.1/2

2.2/2

2.3/2

2.4/2

2.5/2

2.6/2

3

4/2

5/2

6

7/2

8/2

8.1/2

8.2/2

9/2

9.1/2

9.2/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

79 10 November 2006 Incomplete Type Declarations 3.10.1

If any of the above uses occurs as part of the declaration of a primitive subprogram of the incomplete
view, and the declaration occurs immediately within the private part of a package, then the completion of
the incomplete view shall also occur immediately within the private part; it shall not be deferred to the
package body.

No other uses of a name that denotes an incomplete view of a type are allowed.

A prefix that denotes an object shall not be of an incomplete view.

Static Semantics

This paragraph was deleted.

Dynamic Semantics

The elaboration of an incomplete_type_declaration has no effect.

NOTES
83 Within a declarative_part, an incomplete_type_declaration and a corresponding full_type_declaration cannot be
separated by an intervening body. This is because a type has to be completely defined before it is frozen, and a body
freezes all types declared prior to it in the same declarative_part (see 13.14).

Examples

Example of a recursive type:
type Cell; -- incomplete type declaration
type Link is access Cell;

type Cell is
 record
 Value : Integer;
 Succ : Link;
 Pred : Link;
 end record;

Head : Link := new Cell'(0, null, null);
Next : Link := Head.Succ;

Examples of mutually dependent access types:
type Person(<>); -- incomplete type declaration
type Car is tagged; -- incomplete type declaration
type Person_Name is access Person;
type Car_Name is access all Car'Class;

type Car is tagged
 record
 Number : Integer;
 Owner : Person_Name;
 end record;

type Person(Sex : Gender) is
 record
 Name : String(1 .. 20);
 Birth : Date;
 Age : Integer range 0 .. 130;
 Vehicle : Car_Name;
 case Sex is
 when M => Wife : Person_Name(Sex => F);
 when F => Husband : Person_Name(Sex => M);
 end case;
 end record;

My_Car, Your_Car, Next_Car : Car_Name := new Car; -- see 4.8
George : Person_Name := new Person(M);
 ...
George.Vehicle := Your_Car;

9.3/2

9.4/2

10/2

11/2

12

13

14

15

16

17

18

19/2

20/2

21/2

22

23

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

3.10.2 Operations of Access Types 10 November 2006 80

3.10.2 Operations of Access Types
The attribute Access is used to create access values designating aliased objects and non-intrinsic
subprograms. The “accessibility” rules prevent dangling references (in the absence of uses of certain
unchecked features — see Section 13).

Name Resolution Rules

For an attribute_reference with attribute_designator Access (or Unchecked_Access — see 13.10), the
expected type shall be a single access type A such that:

• A is an access-to-object type with designated type D and the type of the prefix is D'Class or is
covered by D, or

• A is an access-to-subprogram type whose designated profile is type conformant with that of the
prefix.

The prefix of such an attribute_reference is never interpreted as an implicit_dereference or a
parameterless function_call (see 4.1.4). The designated type or profile of the expected type of the
attribute_reference is the expected type or profile for the prefix.

Static Semantics

The accessibility rules, which prevent dangling references, are written in terms of accessibility levels,
which reflect the run-time nesting of masters. As explained in 7.6.1, a master is the execution of a certain
construct, such as a subprogram_body. An accessibility level is deeper than another if it is more deeply
nested at run time. For example, an object declared local to a called subprogram has a deeper accessibility
level than an object declared local to the calling subprogram. The accessibility rules for access types
require that the accessibility level of an object designated by an access value be no deeper than that of the
access type. This ensures that the object will live at least as long as the access type, which in turn ensures
that the access value cannot later designate an object that no longer exists. The Unchecked_Access
attribute may be used to circumvent the accessibility rules.

A given accessibility level is said to be statically deeper than another if the given level is known at
compile time (as defined below) to be deeper than the other for all possible executions. In most cases,
accessibility is enforced at compile time by Legality Rules. Run-time accessibility checks are also used,
since the Legality Rules do not cover certain cases involving access parameters and generic packages.

Each master, and each entity and view created by it, has an accessibility level:
• The accessibility level of a given master is deeper than that of each dynamically enclosing

master, and deeper than that of each master upon which the task executing the given master
directly depends (see 9.3).

• An entity or view defined by a declaration and created as part of its elaboration has the same
accessibility level as the innermost master of the declaration except in the cases of renaming and
derived access types described below. A parameter of a master has the same accessibility level
as the master.

• The accessibility level of a view of an object or subprogram defined by a renaming_declaration
is the same as that of the renamed view.

• The accessibility level of a view conversion, qualified_expression, or parenthesized expression,
is the same as that of the operand.

• The accessibility level of an aggregate or the result of a function call (or equivalent use of an
operator) that is used (in its entirety) to directly initialize part of an object is that of the object

1

2/2

2.1/2

2.2/2

2.3/2

3/2

4

5

6

7/2

8

9/2

10/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

81 10 November 2006 Operations of Access Types 3.10.2

being initialized. In other contexts, the accessibility level of an aggregate or the result of a
function call is that of the innermost master that evaluates the aggregate or function call.

• Within a return statement, the accessibility level of the return object is that of the execution of
the return statement. If the return statement completes normally by returning from the function,
then prior to leaving the function, the accessibility level of the return object changes to be a level
determined by the point of call, as does the level of any coextensions (see below) of the return
object.

• The accessibility level of a derived access type is the same as that of its ultimate ancestor.

• The accessibility level of the anonymous access type defined by an access_definition of an
object_renaming_declaration is the same as that of the renamed view.

• The accessibility level of the anonymous access type of an access discriminant in the
subtype_indication or qualified_expression of an allocator, or in the expression or return_-
subtype_indication of a return statement is determined as follows:

• If the value of the access discriminant is determined by a discriminant_association in a
subtype_indication, the accessibility level of the object or subprogram designated by the
associated value (or library level if the value is null);

• If the value of the access discriminant is determined by a record_component_association
in an aggregate, the accessibility level of the object or subprogram designated by the
associated value (or library level if the value is null);

• In other cases, where the value of the access discriminant is determined by an object with
an unconstrained nominal subtype, the accessibility level of the object.

• The accessibility level of the anonymous access type of an access discriminant in any other
context is that of the enclosing object.

• The accessibility level of the anonymous access type of an access parameter specifying an
access-to-object type is the same as that of the view designated by the actual.

• The accessibility level of the anonymous access type of an access parameter specifying an
access-to-subprogram type is deeper than that of any master; all such anonymous access types
have this same level.

• The accessibility level of an object created by an allocator is the same as that of the access type,
except for an allocator of an anonymous access type that defines the value of an access
parameter or an access discriminant. For an allocator defining the value of an access parameter,
the accessibility level is that of the innermost master of the call. For one defining an access
discriminant, the accessibility level is determined as follows:

• for an allocator used to define the constraint in a subtype_declaration, the level of the
subtype_declaration;

• for an allocator used to define the constraint in a component_definition, the level of the
enclosing type;

• for an allocator used to define the discriminant of an object, the level of the object.

 In this last case, the allocated object is said to be a coextension of the object whose discriminant
designates it, as well as of any object of which the discriminated object is itself a coextension or
subcomponent. All coextensions of an object are finalized when the object is finalized (see
7.6.1).

• The accessibility level of a view of an object or subprogram denoted by a dereference of an
access value is the same as that of the access type.

10.1/2

11

11.1/2

12/2

12.1/2

12.2/2

12.3/2

12.4/2

13/2

13.1/2

14/2

14.1/2

14.2/2

14.3/2

14.4/2

15

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

3.10.2 Operations of Access Types 10 November 2006 82

• The accessibility level of a component, protected subprogram, or entry of (a view of) a
composite object is the same as that of (the view of) the composite object.

In the above rules, the operand of a view conversion, parenthesized expression or qualified_expression is
considered to be used in a context if the view conversion, parenthesized expression or
qualified_expression itself is used in that context.

One accessibility level is defined to be statically deeper than another in the following cases:
• For a master that is statically nested within another master, the accessibility level of the inner

master is statically deeper than that of the outer master.

• The accessibility level of the anonymous access type of an access parameter specifying an
access-to-subprogram type is statically deeper than that of any master; all such anonymous
access types have this same level.

• The statically deeper relationship does not apply to the accessibility level of the anonymous type
of an access parameter specifying an access-to-object type; that is, such an accessibility level is
not considered to be statically deeper, nor statically shallower, than any other.

• For determining whether one level is statically deeper than another when within a generic
package body, the generic package is presumed to be instantiated at the same level as where it
was declared; run-time checks are needed in the case of more deeply nested instantiations.

• For determining whether one level is statically deeper than another when within the declarative
region of a type_declaration, the current instance of the type is presumed to be an object created
at a deeper level than that of the type.

The accessibility level of all library units is called the library level; a library-level declaration or entity is
one whose accessibility level is the library level.

The following attribute is defined for a prefix X that denotes an aliased view of an object:
X'Access X'Access yields an access value that designates the object denoted by X. The type of

X'Access is an access-to-object type, as determined by the expected type. The expected
type shall be a general access type. X shall denote an aliased view of an object, including
possibly the current instance (see 8.6) of a limited type within its definition, or a formal
parameter or generic formal object of a tagged type. The view denoted by the prefix X shall
satisfy the following additional requirements, presuming the expected type for X'Access is
the general access type A with designated type D:

• If A is an access-to-variable type, then the view shall be a variable; on the other
hand, if A is an access-to-constant type, the view may be either a constant or a
variable.

• The view shall not be a subcomponent that depends on discriminants of a variable
whose nominal subtype is unconstrained, unless this subtype is indefinite, or the
variable is constrained by its initial value.

• If A is a named access type and D is a tagged type, then the type of the view shall
be covered by D; if A is anonymous and D is tagged, then the type of the view
shall be either D'Class or a type covered by D; if D is untagged, then the type of
the view shall be D, and either:

• the designated subtype of A shall statically match the nominal subtype of the
view; or

• D shall be discriminated in its full view and unconstrained in any partial
view, and the designated subtype of A shall be unconstrained.

16

16.1/2

17

18

18.1/2

19/2

20

21

22

23

24/1

25

26/2

27/2

27.1/2

27.2/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

83 10 November 2006 Operations of Access Types 3.10.2

• The accessibility level of the view shall not be statically deeper than that of the
access type A. In addition to the places where Legality Rules normally apply (see
12.3), this rule applies also in the private part of an instance of a generic unit.

 A check is made that the accessibility level of X is not deeper than that of the access type A.
If this check fails, Program_Error is raised.

 If the nominal subtype of X does not statically match the designated subtype of A, a view
conversion of X to the designated subtype is evaluated (which might raise Constraint_Error
— see 4.6) and the value of X'Access designates that view.

The following attribute is defined for a prefix P that denotes a subprogram:

P'Access P'Access yields an access value that designates the subprogram denoted by P. The type of
P'Access is an access-to-subprogram type (S), as determined by the expected type. The
accessibility level of P shall not be statically deeper than that of S. In addition to the places
where Legality Rules normally apply (see 12.3), this rule applies also in the private part of
an instance of a generic unit. The profile of P shall be subtype-conformant with the
designated profile of S, and shall not be Intrinsic. If the subprogram denoted by P is
declared within a generic unit, and the expression P'Access occurs within the body of that
generic unit or within the body of a generic unit declared within the declarative region of
the generic unit, then the ultimate ancestor of S shall be either a non-formal type declared
within the generic unit or an anonymous access type of an access parameter.

NOTES
84 The Unchecked_Access attribute yields the same result as the Access attribute for objects, but has fewer restrictions
(see 13.10). There are other predefined operations that yield access values: an allocator can be used to create an object,
and return an access value that designates it (see 4.8); evaluating the literal null yields a null access value that designates
no entity at all (see 4.2).

85 The predefined operations of an access type also include the assignment operation, qualification, and membership
tests. Explicit conversion is allowed between general access types with matching designated subtypes; explicit conversion
is allowed between access-to-subprogram types with subtype conformant profiles (see 4.6). Named access types have
predefined equality operators; anonymous access types do not, but they can use the predefined equality operators for
universal_access (see 4.5.2).

86 The object or subprogram designated by an access value can be named with a dereference, either an explicit_-
dereference or an implicit_dereference. See 4.1.

87 A call through the dereference of an access-to-subprogram value is never a dispatching call.

88 The Access attribute for subprograms and parameters of an anonymous access-to-subprogram type may together be
used to implement “downward closures” — that is, to pass a more-nested subprogram as a parameter to a less-nested
subprogram, as might be appropriate for an iterator abstraction or numerical integration. Downward closures can also be
implemented using generic formal subprograms (see 12.6). Note that Unchecked_Access is not allowed for subprograms.

89 Note that using an access-to-class-wide tagged type with a dispatching operation is a potentially more structured
alternative to using an access-to-subprogram type.

90 An implementation may consider two access-to-subprogram values to be unequal, even though they designate the
same subprogram. This might be because one points directly to the subprogram, while the other points to a special
prologue that performs an Elaboration_Check and then jumps to the subprogram. See 4.5.2.

Examples

Example of use of the Access attribute:
Martha : Person_Name := new Person(F); -- see 3.10.1
Cars : array (1..2) of aliased Car;
 ...
Martha.Vehicle := Cars(1)'Access;
George.Vehicle := Cars(2)'Access;

28

29

30

31

32/2

33

34/2

35

36

37/2

38

39

40

41

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

3.11 Declarative Parts 10 November 2006 84

3.11 Declarative Parts
A declarative_part contains declarative_items (possibly none).

Syntax

declarative_part ::= {declarative_item}
declarative_item ::=
 basic_declarative_item | body
basic_declarative_item ::=
 basic_declaration | aspect_clause | use_clause
body ::= proper_body | body_stub
proper_body ::=
 subprogram_body | package_body | task_body | protected_body

Static Semantics

The list of declarative_items of a declarative_part is called the declaration list of the declarative_part.

Dynamic Semantics

The elaboration of a declarative_part consists of the elaboration of the declarative_items, if any, in the
order in which they are given in the declarative_part.

An elaborable construct is in the elaborated state after the normal completion of its elaboration. Prior to
that, it is not yet elaborated.

For a construct that attempts to use a body, a check (Elaboration_Check) is performed, as follows:

• For a call to a (non-protected) subprogram that has an explicit body, a check is made that the
body is already elaborated. This check and the evaluations of any actual parameters of the call
are done in an arbitrary order.

• For a call to a protected operation of a protected type (that has a body — no check is performed
if a pragma Import applies to the protected type), a check is made that the protected_body is
already elaborated. This check and the evaluations of any actual parameters of the call are done
in an arbitrary order.

• For the activation of a task, a check is made by the activator that the task_body is already
elaborated. If two or more tasks are being activated together (see 9.2), as the result of the
elaboration of a declarative_part or the initialization for the object created by an allocator, this
check is done for all of them before activating any of them.

• For the instantiation of a generic unit that has a body, a check is made that this body is already
elaborated. This check and the evaluation of any explicit_generic_actual_parameters of the
instantiation are done in an arbitrary order.

The exception Program_Error is raised if any of these checks fails.

3.11.1 Completions of Declarations
Declarations sometimes come in two parts. A declaration that requires a second part is said to require
completion. The second part is called the completion of the declaration (and of the entity declared), and is
either another declaration, a body, or a pragma. A body is a body, an entry_body, or a renaming-as-body
(see 8.5.4).

1

2

3

4/1

5

6

6.1/2

7

8

9

10/1

11

12

13

14

1/1

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

85 10 November 2006 Completions of Declarations 3.11.1

Name Resolution Rules

A construct that can be a completion is interpreted as the completion of a prior declaration only if:
• The declaration and the completion occur immediately within the same declarative region;

• The defining name or defining_program_unit_name in the completion is the same as in the
declaration, or in the case of a pragma, the pragma applies to the declaration;

• If the declaration is overloadable, then the completion either has a type-conformant profile, or is
a pragma.

Legality Rules

An implicit declaration shall not have a completion. For any explicit declaration that is specified to require
completion, there shall be a corresponding explicit completion.

At most one completion is allowed for a given declaration. Additional requirements on completions appear
where each kind of completion is defined.

A type is completely defined at a place that is after its full type definition (if it has one) and after all of its
subcomponent types are completely defined. A type shall be completely defined before it is frozen (see
13.14 and 7.3).

NOTES
91 Completions are in principle allowed for any kind of explicit declaration. However, for some kinds of declaration, the
only allowed completion is a pragma Import, and implementations are not required to support pragma Import for every
kind of entity.

92 There are rules that prevent premature uses of declarations that have a corresponding completion. The
Elaboration_Checks of 3.11 prevent such uses at run time for subprograms, protected operations, tasks, and generic units.
The rules of 13.14, “Freezing Rules” prevent, at compile time, premature uses of other entities such as private types and
deferred constants.

2

3

4

5

6

7

8

9

10

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

87 10 November 2006 Names and Expressions 4

Section 4: Names and Expressions
The rules applicable to the different forms of name and expression, and to their evaluation, are given in
this section.

4.1 Names
Names can denote declared entities, whether declared explicitly or implicitly (see 3.1). Names can also
denote objects or subprograms designated by access values; the results of type_conversions or
function_calls; subcomponents and slices of objects and values; protected subprograms, single entries,
entry families, and entries in families of entries. Finally, names can denote attributes of any of the
foregoing.

Syntax

name ::=
 direct_name | explicit_dereference
 | indexed_component | slice
 | selected_component | attribute_reference
 | type_conversion | function_call
 | character_literal
direct_name ::= identifier | operator_symbol
prefix ::= name | implicit_dereference
explicit_dereference ::= name.all
implicit_dereference ::= name

Certain forms of name (indexed_components, selected_components, slices, and attribute_references)
include a prefix that is either itself a name that denotes some related entity, or an implicit_dereference of
an access value that designates some related entity.

Name Resolution Rules

The name in a dereference (either an implicit_dereference or an explicit_dereference) is expected to be
of any access type.

Static Semantics

If the type of the name in a dereference is some access-to-object type T, then the dereference denotes a
view of an object, the nominal subtype of the view being the designated subtype of T.

If the type of the name in a dereference is some access-to-subprogram type S, then the dereference
denotes a view of a subprogram, the profile of the view being the designated profile of S.

Dynamic Semantics

The evaluation of a name determines the entity denoted by the name. This evaluation has no other effect
for a name that is a direct_name or a character_literal.

The evaluation of a name that has a prefix includes the evaluation of the prefix. The evaluation of a prefix
consists of the evaluation of the name or the implicit_dereference. The prefix denotes the entity denoted
by the name or the implicit_dereference.

1

1

2

3

4

5

6

7/2

8

9

10

11/2

12

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

4.1 Names 10 November 2006 88

The evaluation of a dereference consists of the evaluation of the name and the determination of the object
or subprogram that is designated by the value of the name. A check is made that the value of the name is
not the null access value. Constraint_Error is raised if this check fails. The dereference denotes the object
or subprogram designated by the value of the name.

Examples

Examples of direct names:
Pi -- the direct name of a number (see 3.3.2)
Limit -- the direct name of a constant (see 3.3.1)
Count -- the direct name of a scalar variable (see 3.3.1)
Board -- the direct name of an array variable (see 3.6.1)
Matrix -- the direct name of a type (see 3.6)
Random -- the direct name of a function (see 6.1)
Error -- the direct name of an exception (see 11.1)

Examples of dereferences:
Next_Car.all -- explicit dereference denoting the object designated by
 -- the access variable Next_Car (see 3.10.1)
Next_Car.Owner -- selected component with implicit dereference;
 -- same as Next_Car.all.Owner

4.1.1 Indexed Components
An indexed_component denotes either a component of an array or an entry in a family of entries.

Syntax

indexed_component ::= prefix(expression {, expression})

Name Resolution Rules

The prefix of an indexed_component with a given number of expressions shall resolve to denote an array
(after any implicit dereference) with the corresponding number of index positions, or shall resolve to
denote an entry family of a task or protected object (in which case there shall be only one expression).

The expected type for each expression is the corresponding index type.

Static Semantics

When the prefix denotes an array, the indexed_component denotes the component of the array with the
specified index value(s). The nominal subtype of the indexed_component is the component subtype of the
array type.

When the prefix denotes an entry family, the indexed_component denotes the individual entry of the entry
family with the specified index value.

Dynamic Semantics

For the evaluation of an indexed_component, the prefix and the expressions are evaluated in an arbitrary
order. The value of each expression is converted to the corresponding index type. A check is made that
each index value belongs to the corresponding index range of the array or entry family denoted by the
prefix. Constraint_Error is raised if this check fails.

13

14

15

16

17

1

2

3

4

5

6

7

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

89 10 November 2006 Indexed Components 4.1.1

Examples

Examples of indexed components:
 My_Schedule(Sat) -- a component of a one-dimensional array (see 3.6.1)
 Page(10) -- a component of a one-dimensional array (see 3.6)
 Board(M, J + 1) -- a component of a two-dimensional array (see 3.6.1)
 Page(10)(20) -- a component of a component (see 3.6)
 Request(Medium) -- an entry in a family of entries (see 9.1)
 Next_Frame(L)(M, N) -- a component of a function call (see 6.1)
NOTES
1 Notes on the examples: Distinct notations are used for components of multidimensional arrays (such as Board) and
arrays of arrays (such as Page). The components of an array of arrays are arrays and can therefore be indexed. Thus
Page(10)(20) denotes the 20th component of Page(10). In the last example Next_Frame(L) is a function call returning an
access value that designates a two-dimensional array.

4.1.2 Slices
A slice denotes a one-dimensional array formed by a sequence of consecutive components of a one-
dimensional array. A slice of a variable is a variable; a slice of a constant is a constant; a slice of a value is
a value.

Syntax

slice ::= prefix(discrete_range)

Name Resolution Rules

The prefix of a slice shall resolve to denote a one-dimensional array (after any implicit dereference).

The expected type for the discrete_range of a slice is the index type of the array type.

Static Semantics

A slice denotes a one-dimensional array formed by the sequence of consecutive components of the array
denoted by the prefix, corresponding to the range of values of the index given by the discrete_range.

The type of the slice is that of the prefix. Its bounds are those defined by the discrete_range.

Dynamic Semantics

For the evaluation of a slice, the prefix and the discrete_range are evaluated in an arbitrary order. If the
slice is not a null slice (a slice where the discrete_range is a null range), then a check is made that the
bounds of the discrete_range belong to the index range of the array denoted by the prefix.
Constraint_Error is raised if this check fails.

NOTES
2 A slice is not permitted as the prefix of an Access attribute_reference, even if the components or the array as a whole
are aliased. See 3.10.2.

3 For a one-dimensional array A, the slice A(N .. N) denotes an array that has only one component; its type is the type of
A. On the other hand, A(N) denotes a component of the array A and has the corresponding component type.

8

9

10

1

2

3

4

5

6

7

8

9

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

4.1.2 Slices 10 November 2006 90

Examples

Examples of slices:
 Stars(1 .. 15) -- a slice of 15 characters (see 3.6.3)
 Page(10 .. 10 + Size) -- a slice of 1 + Size components (see 3.6)
 Page(L)(A .. B) -- a slice of the array Page(L) (see 3.6)
 Stars(1 .. 0) -- a null slice (see 3.6.3)
 My_Schedule(Weekday) -- bounds given by subtype (see 3.6.1 and 3.5.1)
 Stars(5 .. 15)(K) -- same as Stars(K) (see 3.6.3)
 -- provided that K is in 5 .. 15

4.1.3 Selected Components
Selected_components are used to denote components (including discriminants), entries, entry families,
and protected subprograms; they are also used as expanded names as described below.

Syntax

selected_component ::= prefix . selector_name
selector_name ::= identifier | character_literal | operator_symbol

Name Resolution Rules

A selected_component is called an expanded name if, according to the visibility rules, at least one
possible interpretation of its prefix denotes a package or an enclosing named construct (directly, not
through a subprogram_renaming_declaration or generic_renaming_declaration).

A selected_component that is not an expanded name shall resolve to denote one of the following:
• A component (including a discriminant):

 The prefix shall resolve to denote an object or value of some non-array composite type (after any
implicit dereference). The selector_name shall resolve to denote a discriminant_specification of
the type, or, unless the type is a protected type, a component_declaration of the type. The
selected_component denotes the corresponding component of the object or value.

• A single entry, an entry family, or a protected subprogram:

 The prefix shall resolve to denote an object or value of some task or protected type (after any
implicit dereference). The selector_name shall resolve to denote an entry_declaration or
subprogram_declaration occurring (implicitly or explicitly) within the visible part of that type.
The selected_component denotes the corresponding entry, entry family, or protected
subprogram.

• A view of a subprogram whose first formal parameter is of a tagged type or is an access
parameter whose designated type is tagged:

 The prefix (after any implicit dereference) shall resolve to denote an object or value of a specific
tagged type T or class-wide type T'Class. The selector_name shall resolve to denote a view of a
subprogram declared immediately within the declarative region in which an ancestor of the type
T is declared. The first formal parameter of the subprogram shall be of type T, or a class-wide
type that covers T, or an access parameter designating one of these types. The designator of the
subprogram shall not be the same as that of a component of the tagged type visible at the point
of the selected_component. The selected_component denotes a view of this subprogram that
omits the first formal parameter. This view is called a prefixed view of the subprogram, and the
prefix of the selected_component (after any implicit dereference) is called the prefix of the
prefixed view.

An expanded name shall resolve to denote a declaration that occurs immediately within a named
declarative region, as follows:

10

11

1

2

3

4

5

6

7

8

9

9.1/2

9.2/2

10

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

91 10 November 2006 Selected Components 4.1.3

• The prefix shall resolve to denote either a package (including the current instance of a generic
package, or a rename of a package), or an enclosing named construct.

• The selector_name shall resolve to denote a declaration that occurs immediately within the
declarative region of the package or enclosing construct (the declaration shall be visible at the
place of the expanded name — see 8.3). The expanded name denotes that declaration.

• If the prefix does not denote a package, then it shall be a direct_name or an expanded name, and
it shall resolve to denote a program unit (other than a package), the current instance of a type, a
block_statement, a loop_statement, or an accept_statement (in the case of an accept_-
statement or entry_body, no family index is allowed); the expanded name shall occur within the
declarative region of this construct. Further, if this construct is a callable construct and the prefix
denotes more than one such enclosing callable construct, then the expanded name is ambiguous,
independently of the selector_name.

Legality Rules

For a subprogram whose first parameter is an access parameter, the prefix of any prefixed view shall
denote an aliased view of an object.

For a subprogram whose first parameter is of mode in out or out, or of an anonymous access-to-variable
type, the prefix of any prefixed view shall denote a variable.

Dynamic Semantics

The evaluation of a selected_component includes the evaluation of the prefix.

For a selected_component that denotes a component of a variant, a check is made that the values of the
discriminants are such that the value or object denoted by the prefix has this component. The exception
Constraint_Error is raised if this check fails.

Examples

Examples of selected components:
 Tomorrow.Month -- a record component (see 3.8)
 Next_Car.Owner -- a record component (see 3.10.1)
 Next_Car.Owner.Age -- a record component (see 3.10.1)
 -- the previous two lines involve implicit dereferences
 Writer.Unit -- a record component (a discriminant) (see 3.8.1)
 Min_Cell(H).Value -- a record component of the result (see 6.1)
 -- of the function call Min_Cell(H)
 Cashier.Append -- a prefixed view of a procedure (see 3.9.4)
 Control.Seize -- an entry of a protected object (see 9.4)
 Pool(K).Write -- an entry of the task Pool(K) (see 9.4)

Examples of expanded names:
 Key_Manager."<" -- an operator of the visible part of a package (see 7.3.1)
 Dot_Product.Sum -- a variable declared in a function body (see 6.1)
 Buffer.Pool -- a variable declared in a protected unit (see 9.11)
 Buffer.Read -- an entry of a protected unit (see 9.11)
 Swap.Temp -- a variable declared in a block statement (see 5.6)
 Standard.Boolean -- the name of a predefined type (see A.1)

11

12

13

13.1/2

13.2/2

14

15

16

17/2

18

19

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

4.1.4 Attributes 10 November 2006 92

4.1.4 Attributes
An attribute is a characteristic of an entity that can be queried via an attribute_reference or a range_-
attribute_reference.

Syntax

attribute_reference ::= prefix'attribute_designator
attribute_designator ::=
 identifier[(static_expression)]
 | Access | Delta | Digits
range_attribute_reference ::= prefix'range_attribute_designator
range_attribute_designator ::= Range[(static_expression)]

Name Resolution Rules

In an attribute_reference, if the attribute_designator is for an attribute defined for (at least some) objects
of an access type, then the prefix is never interpreted as an implicit_dereference; otherwise (and for all
range_attribute_references), if the type of the name within the prefix is of an access type, the prefix is
interpreted as an implicit_dereference. Similarly, if the attribute_designator is for an attribute defined for
(at least some) functions, then the prefix is never interpreted as a parameterless function_call; otherwise
(and for all range_attribute_references), if the prefix consists of a name that denotes a function, it is
interpreted as a parameterless function_call.

The expression, if any, in an attribute_designator or range_attribute_designator is expected to be of any
integer type.

Legality Rules

The expression, if any, in an attribute_designator or range_attribute_designator shall be static.

Static Semantics

An attribute_reference denotes a value, an object, a subprogram, or some other kind of program entity.

A range_attribute_reference X'Range(N) is equivalent to the range X'First(N) .. X'Last(N), except that
the prefix is only evaluated once. Similarly, X'Range is equivalent to X'First .. X'Last, except that the
prefix is only evaluated once.

Dynamic Semantics

The evaluation of an attribute_reference (or range_attribute_reference) consists of the evaluation of the
prefix.

Implementation Permissions

An implementation may provide implementation-defined attributes; the identifier for an implementation-
defined attribute shall differ from those of the language-defined attributes unless supplied for compatibility
with a previous edition of this International Standard.

NOTES
4 Attributes are defined throughout this International Standard, and are summarized in Annex K.

5 In general, the name in a prefix of an attribute_reference (or a range_attribute_reference) has to be resolved without
using any context. However, in the case of the Access attribute, the expected type for the attribute_reference has to be a
single access type, and the resolution of the name can use the fact that the type of the object or the profile of the callable

1

2

3

4

5

6

7

8

9

10

11

12/1

13

14/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

93 10 November 2006 Attributes 4.1.4

entity denoted by the prefix has to match the designated type or be type conformant with the designated profile of the
access type.

Examples

Examples of attributes:
Color'First -- minimum value of the enumeration type Color (see 3.5.1)
Rainbow'Base'First -- same as Color'First (see 3.5.1)
Real'Digits -- precision of the type Real (see 3.5.7)
Board'Last(2) -- upper bound of the second dimension of Board (see 3.6.1)
Board'Range(1) -- index range of the first dimension of Board (see 3.6.1)
Pool(K)'Terminated -- True if task Pool(K) is terminated (see 9.1)
Date'Size -- number of bits for records of type Date (see 3.8)
Message'Address -- address of the record variable Message (see 3.7.1)

4.2 Literals
A literal represents a value literally, that is, by means of notation suited to its kind. A literal is either a
numeric_literal, a character_literal, the literal null, or a string_literal.

Name Resolution Rules

This paragraph was deleted.

For a name that consists of a character_literal, either its expected type shall be a single character type, in
which case it is interpreted as a parameterless function_call that yields the corresponding value of the
character type, or its expected profile shall correspond to a parameterless function with a character result
type, in which case it is interpreted as the name of the corresponding parameterless function declared as
part of the character type's definition (see 3.5.1). In either case, the character_literal denotes the
enumeration_literal_specification.

The expected type for a primary that is a string_literal shall be a single string type.

Legality Rules

A character_literal that is a name shall correspond to a defining_character_literal of the expected type, or
of the result type of the expected profile.

For each character of a string_literal with a given expected string type, there shall be a corresponding
defining_character_literal of the component type of the expected string type.

This paragraph was deleted.

Static Semantics

An integer literal is of type universal_integer. A real literal is of type universal_real. The literal null is of
type universal_access.

Dynamic Semantics

The evaluation of a numeric literal, or the literal null, yields the represented value.

The evaluation of a string_literal that is a primary yields an array value containing the value of each
character of the sequence of characters of the string_literal, as defined in 2.6. The bounds of this array
value are determined according to the rules for positional_array_aggregates (see 4.3.3), except that for a
null string literal, the upper bound is the predecessor of the lower bound.

15

16

1

2/2

3

4

5

6

7/2

8/2

9

10

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

4.2 Literals 10 November 2006 94

For the evaluation of a string_literal of type T, a check is made that the value of each character of the
string_literal belongs to the component subtype of T. For the evaluation of a null string literal, a check is
made that its lower bound is greater than the lower bound of the base range of the index type. The
exception Constraint_Error is raised if either of these checks fails.

NOTES
6 Enumeration literals that are identifiers rather than character_literals follow the normal rules for identifiers when used in
a name (see 4.1 and 4.1.3). Character_literals used as selector_names follow the normal rules for expanded names (see
4.1.3).

Examples

Examples of literals:
3.14159_26536 -- a real literal
1_345 -- an integer literal
'A' -- a character literal
"Some Text" -- a string literal

4.3 Aggregates
An aggregate combines component values into a composite value of an array type, record type, or record
extension.

Syntax

aggregate ::= record_aggregate | extension_aggregate | array_aggregate

Name Resolution Rules

The expected type for an aggregate shall be a single array type, record type, or record extension.

Legality Rules

An aggregate shall not be of a class-wide type.

Dynamic Semantics

For the evaluation of an aggregate, an anonymous object is created and values for the components or
ancestor part are obtained (as described in the subsequent subclause for each kind of the aggregate) and
assigned into the corresponding components or ancestor part of the anonymous object. Obtaining the
values and the assignments occur in an arbitrary order. The value of the aggregate is the value of this
object.

If an aggregate is of a tagged type, a check is made that its value belongs to the first subtype of the type.
Constraint_Error is raised if this check fails.

4.3.1 Record Aggregates
In a record_aggregate, a value is specified for each component of the record or record extension value,
using either a named or a positional association.

Syntax

record_aggregate ::= (record_component_association_list)
record_component_association_list ::=
 record_component_association {, record_component_association}
 | null record

11

12

13

14

1

2

3/2

4

5

6

1

2

3

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

95 10 November 2006 Record Aggregates 4.3.1

record_component_association ::=
 [component_choice_list =>] expression
 | component_choice_list => <>
component_choice_list ::=
 component_selector_name {| component_selector_name}
 | others
A record_component_association is a named component association if it has a
component_choice_list; otherwise, it is a positional component association. Any positional
component associations shall precede any named component associations. If there is a named
association with a component_choice_list of others, it shall come last.
In the record_component_association_list for a record_aggregate, if there is only one association,
it shall be a named association.

Name Resolution Rules

The expected type for a record_aggregate shall be a single record type or record extension.

For the record_component_association_list of a record_aggregate, all components of the composite
value defined by the aggregate are needed; for the association list of an extension_aggregate, only those
components not determined by the ancestor expression or subtype are needed (see 4.3.2). Each selector_-
name in a record_component_association shall denote a needed component (including possibly a
discriminant).

The expected type for the expression of a record_component_association is the type of the associated
component(s); the associated component(s) are as follows:

• For a positional association, the component (including possibly a discriminant) in the
corresponding relative position (in the declarative region of the type), counting only the needed
components;

• For a named association with one or more component_selector_names, the named
component(s);

• For a named association with the reserved word others, all needed components that are not
associated with some previous association.

Legality Rules

If the type of a record_aggregate is a record extension, then it shall be a descendant of a record type,
through one or more record extensions (and no private extensions).

If there are no components needed in a given record_component_association_list, then the reserved
words null record shall appear rather than a list of record_component_associations.

Each record_component_association other than an others choice with a <> shall have at least one
associated component, and each needed component shall be associated with exactly one record_-
component_association. If a record_component_association with an expression has two or more
associated components, all of them shall be of the same type.

If the components of a variant_part are needed, then the value of a discriminant that governs the
variant_part shall be given by a static expression.

A record_component_association for a discriminant without a default_expression shall have an
expression rather than <>.

4/2

5

6

7

8/2

9

10

11

12

13

14

15

16/2

17

17.1/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

4.3.1 Record Aggregates 10 November 2006 96

Dynamic Semantics

The evaluation of a record_aggregate consists of the evaluation of the record_component_association_-
list.

For the evaluation of a record_component_association_list, any per-object constraints (see 3.8) for
components specified in the association list are elaborated and any expressions are evaluated and
converted to the subtype of the associated component. Any constraint elaborations and expression
evaluations (and conversions) occur in an arbitrary order, except that the expression for a discriminant is
evaluated (and converted) prior to the elaboration of any per-object constraint that depends on it, which in
turn occurs prior to the evaluation and conversion of the expression for the component with the per-object
constraint.

For a record_component_association with an expression, the expression defines the value for the
associated component(s). For a record_component_association with <>, if the component_declaration
has a default_expression, that default_expression defines the value for the associated component(s);
otherwise, the associated component(s) are initialized by default as for a stand-alone object of the
component subtype (see 3.3.1).

The expression of a record_component_association is evaluated (and converted) once for each
associated component.

NOTES
7 For a record_aggregate with positional associations, expressions specifying discriminant values appear first since the
known_discriminant_part is given first in the declaration of the type; they have to be in the same order as in the
known_discriminant_part.

Examples

Example of a record aggregate with positional associations:
(4, July, 1776) -- see 3.8

Examples of record aggregates with named associations:
(Day => 4, Month => July, Year => 1776)
(Month => July, Day => 4, Year => 1776)

(Disk, Closed, Track => 5, Cylinder => 12) -- see 3.8.1
(Unit => Disk, Status => Closed, Cylinder => 9, Track => 1)

Examples of component associations with several choices:
(Value => 0, Succ|Pred => new Cell'(0, null, null)) -- see 3.10.1
 -- The allocator is evaluated twice: Succ and Pred designate different cells
(Value => 0, Succ|Pred => <>) -- see 3.10.1
 -- Succ and Pred will be set to null

Examples of record aggregates for tagged types (see 3.9 and 3.9.1):
Expression'(null record)
Literal'(Value => 0.0)
Painted_Point'(0.0, Pi/2.0, Paint => Red)

18

19

19.1/2

20

21

22

23

24

25

26

27/2

28

29

29.1/2

29.2/2

30

31

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

97 10 November 2006 Extension Aggregates 4.3.2

4.3.2 Extension Aggregates
An extension_aggregate specifies a value for a type that is a record extension by specifying a value or
subtype for an ancestor of the type, followed by associations for any components not determined by the
ancestor_part.

Syntax

extension_aggregate ::=
 (ancestor_part with record_component_association_list)
ancestor_part ::= expression | subtype_mark

Name Resolution Rules

The expected type for an extension_aggregate shall be a single type that is a record extension. If the
ancestor_part is an expression, it is expected to be of any tagged type.

Legality Rules

If the ancestor_part is a subtype_mark, it shall denote a specific tagged subtype. If the ancestor_part is
an expression, it shall not be dynamically tagged. The type of the extension_aggregate shall be derived
from the type of the ancestor_part, through one or more record extensions (and no private extensions).

Static Semantics

For the record_component_association_list of an extension_aggregate, the only components needed are
those of the composite value defined by the aggregate that are not inherited from the type of the
ancestor_part, plus any inherited discriminants if the ancestor_part is a subtype_mark that denotes an
unconstrained subtype.

Dynamic Semantics

For the evaluation of an extension_aggregate, the record_component_association_list is evaluated. If
the ancestor_part is an expression, it is also evaluated; if the ancestor_part is a subtype_mark, the
components of the value of the aggregate not given by the record_component_association_list are
initialized by default as for an object of the ancestor type. Any implicit initializations or evaluations are
performed in an arbitrary order, except that the expression for a discriminant is evaluated prior to any
other evaluation or initialization that depends on it.

If the type of the ancestor_part has discriminants that are not inherited by the type of the
extension_aggregate, then, unless the ancestor_part is a subtype_mark that denotes an unconstrained
subtype, a check is made that each discriminant of the ancestor has the value specified for a corresponding
discriminant, either in the record_component_association_list, or in the derived_type_definition for
some ancestor of the type of the extension_aggregate. Constraint_Error is raised if this check fails.

NOTES
8 If all components of the value of the extension_aggregate are determined by the ancestor_part, then the record_-
component_association_list is required to be simply null record.

9 If the ancestor_part is a subtype_mark, then its type can be abstract. If its type is controlled, then as the last step of
evaluating the aggregate, the Initialize procedure of the ancestor type is called, unless the Initialize procedure is abstract
(see 7.6).

1

2

3

4/2

5/2

6

7

8

9

10

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

4.3.2 Extension Aggregates 10 November 2006 98

Examples

Examples of extension aggregates (for types defined in 3.9.1):
Painted_Point'(Point with Red)
(Point'(P) with Paint => Black)

(Expression with Left => 1.2, Right => 3.4)
Addition'(Binop with null record)
 -- presuming Binop is of type Binary_Operation

4.3.3 Array Aggregates
In an array_aggregate, a value is specified for each component of an array, either positionally or by its
index. For a positional_array_aggregate, the components are given in increasing-index order, with a final
others, if any, representing any remaining components. For a named_array_aggregate, the components
are identified by the values covered by the discrete_choices.

Syntax

array_aggregate ::=
 positional_array_aggregate | named_array_aggregate
positional_array_aggregate ::=
 (expression, expression {, expression})
 | (expression {, expression}, others => expression)
 | (expression {, expression}, others => <>)
named_array_aggregate ::=
 (array_component_association {, array_component_association})
array_component_association ::=
 discrete_choice_list => expression
 | discrete_choice_list => <>

An n-dimensional array_aggregate is one that is written as n levels of nested array_aggregates (or at the
bottom level, equivalent string_literals). For the multidimensional case (n >= 2) the array_aggregates (or
equivalent string_literals) at the n–1 lower levels are called subaggregates of the enclosing n-dimensional
array_aggregate. The expressions of the bottom level subaggregates (or of the array_aggregate itself if
one-dimensional) are called the array component expressions of the enclosing n-dimensional
array_aggregate.

Name Resolution Rules

The expected type for an array_aggregate (that is not a subaggregate) shall be a single array type. The
component type of this array type is the expected type for each array component expression of the
array_aggregate.

The expected type for each discrete_choice in any discrete_choice_list of a named_array_aggregate is
the type of the corresponding index; the corresponding index for an array_aggregate that is not a
subaggregate is the first index of its type; for an (n–m)-dimensional subaggregate within an
array_aggregate of an n-dimensional type, the corresponding index is the index in position m+1.

Legality Rules

An array_aggregate of an n-dimensional array type shall be written as an n-dimensional
array_aggregate.

An others choice is allowed for an array_aggregate only if an applicable index constraint applies to the
array_aggregate. An applicable index constraint is a constraint provided by certain contexts where an

11

12

13

1

2

3/2

4

5/2

6

7/2

8

9

10

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

99 10 November 2006 Array Aggregates 4.3.3

array_aggregate is permitted that can be used to determine the bounds of the array value specified by the
aggregate. Each of the following contexts (and none other) defines an applicable index constraint:

• For an explicit_actual_parameter, an explicit_generic_actual_parameter, the expression of a
return statement, the initialization expression in an object_declaration, or a default_expression
(for a parameter or a component), when the nominal subtype of the corresponding formal
parameter, generic formal parameter, function return object, object, or component is a
constrained array subtype, the applicable index constraint is the constraint of the subtype;

• For the expression of an assignment_statement where the name denotes an array variable, the
applicable index constraint is the constraint of the array variable;

• For the operand of a qualified_expression whose subtype_mark denotes a constrained array
subtype, the applicable index constraint is the constraint of the subtype;

• For a component expression in an aggregate, if the component's nominal subtype is a
constrained array subtype, the applicable index constraint is the constraint of the subtype;

• For a parenthesized expression, the applicable index constraint is that, if any, defined for the
expression.

The applicable index constraint applies to an array_aggregate that appears in such a context, as well as to
any subaggregates thereof. In the case of an explicit_actual_parameter (or default_expression) for a call
on a generic formal subprogram, no applicable index constraint is defined.

The discrete_choice_list of an array_component_association is allowed to have a discrete_choice that is
a nonstatic expression or that is a discrete_range that defines a nonstatic or null range, only if it is the
single discrete_choice of its discrete_choice_list, and there is only one array_component_association in
the array_aggregate.

In a named_array_aggregate with more than one discrete_choice, no two discrete_choices are allowed
to cover the same value (see 3.8.1); if there is no others choice, the discrete_choices taken together shall
exactly cover a contiguous sequence of values of the corresponding index type.

A bottom level subaggregate of a multidimensional array_aggregate of a given array type is allowed to be
a string_literal only if the component type of the array type is a character type; each character of such a
string_literal shall correspond to a defining_character_literal of the component type.

Static Semantics

A subaggregate that is a string_literal is equivalent to one that is a positional_array_aggregate of the
same length, with each expression being the character_literal for the corresponding character of the
string_literal.

Dynamic Semantics

The evaluation of an array_aggregate of a given array type proceeds in two steps:
1. Any discrete_choices of this aggregate and of its subaggregates are evaluated in an arbitrary

order, and converted to the corresponding index type;

2. The array component expressions of the aggregate are evaluated in an arbitrary order and their
values are converted to the component subtype of the array type; an array component expression
is evaluated once for each associated component.

Each expression in an array_component_association defines the value for the associated component(s).
For an array_component_association with <>, the associated component(s) are initialized by default as
for a stand-alone object of the component subtype (see 3.3.1).

11/2

12

13

14

15

16

17

18

19

20

21

22

23

23.1/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

4.3.3 Array Aggregates 10 November 2006 100

The bounds of the index range of an array_aggregate (including a subaggregate) are determined as
follows:

• For an array_aggregate with an others choice, the bounds are those of the corresponding index
range from the applicable index constraint;

• For a positional_array_aggregate (or equivalent string_literal) without an others choice, the
lower bound is that of the corresponding index range in the applicable index constraint, if
defined, or that of the corresponding index subtype, if not; in either case, the upper bound is
determined from the lower bound and the number of expressions (or the length of the
string_literal);

• For a named_array_aggregate without an others choice, the bounds are determined by the
smallest and largest index values covered by any discrete_choice_list.

For an array_aggregate, a check is made that the index range defined by its bounds is compatible with the
corresponding index subtype.

For an array_aggregate with an others choice, a check is made that no expression is specified for an
index value outside the bounds determined by the applicable index constraint.

For a multidimensional array_aggregate, a check is made that all subaggregates that correspond to the
same index have the same bounds.

The exception Constraint_Error is raised if any of the above checks fail.

NOTES
10 In an array_aggregate, positional notation may only be used with two or more expressions; a single expression in
parentheses is interpreted as a parenthesized expression. A named_array_aggregate, such as (1 => X), may be used to
specify an array with a single component.

Examples

Examples of array aggregates with positional associations:
(7, 9, 5, 1, 3, 2, 4, 8, 6, 0)
Table'(5, 8, 4, 1, others => 0) -- see 3.6

Examples of array aggregates with named associations:
(1 .. 5 => (1 .. 8 => 0.0)) -- two-dimensional
(1 .. N => new Cell) -- N new cells, in particular for N = 0
Table'(2 | 4 | 10 => 1, others => 0)
Schedule'(Mon .. Fri => True, others => False) -- see 3.6
Schedule'(Wed | Sun => False, others => True)
Vector'(1 => 2.5) -- single-component vector

Examples of two-dimensional array aggregates:
-- Three aggregates for the same value of subtype Matrix(1..2,1..3) (see 3.6):
((1.1, 1.2, 1.3), (2.1, 2.2, 2.3))
(1 => (1.1, 1.2, 1.3), 2 => (2.1, 2.2, 2.3))
(1 => (1 => 1.1, 2 => 1.2, 3 => 1.3), 2 => (1 => 2.1, 2 => 2.2, 3 => 2.3))

Examples of aggregates as initial values:
A : Table := (7, 9, 5, 1, 3, 2, 4, 8, 6, 0); -- A(1)=7, A(10)=0
B : Table := (2 | 4 | 10 => 1, others => 0); -- B(1)=0, B(10)=1
C : constant Matrix := (1 .. 5 => (1 .. 8 => 0.0)); -- C'Last(1)=5, C'Last(2)=8
D : Bit_Vector(M .. N) := (M .. N => True); -- see 3.6
E : Bit_Vector(M .. N) := (others => True);
F : String(1 .. 1) := (1 => 'F'); -- a one component aggregate: same as "F"

24

25

26

27

28

29

30

31

32/2

33

34

35

36

37

38

39

40

41

42

43

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

101 10 November 2006 Array Aggregates 4.3.3

Example of an array aggregate with defaulted others choice and with an applicable index constraint
provided by an enclosing record aggregate:

Buffer'(Size => 50, Pos => 1, Value => String'('x', others => <>)) -- see 3.7

4.4 Expressions
An expression is a formula that defines the computation or retrieval of a value. In this International
Standard, the term “expression” refers to a construct of the syntactic category expression or of any of the
other five syntactic categories defined below.

Syntax

expression ::=
 relation {and relation} | relation {and then relation}
 | relation {or relation} | relation {or else relation}
 | relation {xor relation}
relation ::=
 simple_expression [relational_operator simple_expression]
 | simple_expression [not] in range
 | simple_expression [not] in subtype_mark
simple_expression ::= [unary_adding_operator] term {binary_adding_operator term}
term ::= factor {multiplying_operator factor}
factor ::= primary [** primary] | abs primary | not primary
primary ::=
 numeric_literal | null | string_literal | aggregate
 | name | qualified_expression | allocator | (expression)

Name Resolution Rules

A name used as a primary shall resolve to denote an object or a value.

Static Semantics

Each expression has a type; it specifies the computation or retrieval of a value of that type.

Dynamic Semantics

The value of a primary that is a name denoting an object is the value of the object.

Implementation Permissions

For the evaluation of a primary that is a name denoting an object of an unconstrained numeric subtype, if
the value of the object is outside the base range of its type, the implementation may either raise
Constraint_Error or return the value of the object.

44/2

45/2

1

2

3

4

5

6

7

8

9

10

11

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

4.4 Expressions 10 November 2006 102

Examples

Examples of primaries:
4.0 -- real literal
Pi -- named number
(1 .. 10 => 0) -- array aggregate
Sum -- variable
Integer'Last -- attribute
Sine(X) -- function call
Color'(Blue) -- qualified expression
Real(M*N) -- conversion
(Line_Count + 10) -- parenthesized expression

Examples of expressions:
Volume -- primary
not Destroyed -- factor
2*Line_Count -- term
-4.0 -- simple expression
-4.0 + A -- simple expression
B**2 - 4.0*A*C -- simple expression
R*Sin(θ)*Cos(φ) -- simple expression
Password(1 .. 3) = "Bwv" -- relation
Count in Small_Int -- relation
Count not in Small_Int -- relation
Index = 0 or Item_Hit -- expression
(Cold and Sunny) or Warm -- expression (parentheses are required)
A**(B**C) -- expression (parentheses are required)

4.5 Operators and Expression Evaluation
The language defines the following six categories of operators (given in order of increasing precedence).
The corresponding operator_symbols, and only those, can be used as designators in declarations of
functions for user-defined operators. See 6.6, “Overloading of Operators”.

Syntax

logical_operator ::= and | or | xor
relational_operator ::= = | /= | < | <= | > | >=
binary_adding_operator ::= + | – | &
unary_adding_operator ::= + | –
multiplying_operator ::= * | / | mod | rem
highest_precedence_operator ::= ** | abs | not

Static Semantics

For a sequence of operators of the same precedence level, the operators are associated with their operands
in textual order from left to right. Parentheses can be used to impose specific associations.

For each form of type definition, certain of the above operators are predefined; that is, they are implicitly
declared immediately after the type definition. For each such implicit operator declaration, the parameters
are called Left and Right for binary operators; the single parameter is called Right for unary operators. An
expression of the form X op Y, where op is a binary operator, is equivalent to a function_call of the form
"op"(X, Y). An expression of the form op Y, where op is a unary operator, is equivalent to a function_call
of the form "op"(Y). The predefined operators and their effects are described in subclauses 4.5.1 through
4.5.6.

12

13

14

15/2

1

2

3

4

5

6

7

8

9

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

103 10 November 2006 Operators and Expression Evaluation 4.5

Dynamic Semantics

The predefined operations on integer types either yield the mathematically correct result or raise the
exception Constraint_Error. For implementations that support the Numerics Annex, the predefined
operations on real types yield results whose accuracy is defined in Annex G, or raise the exception
Constraint_Error.

Implementation Requirements

The implementation of a predefined operator that delivers a result of an integer or fixed point type may
raise Constraint_Error only if the result is outside the base range of the result type.

The implementation of a predefined operator that delivers a result of a floating point type may raise
Constraint_Error only if the result is outside the safe range of the result type.

Implementation Permissions

For a sequence of predefined operators of the same precedence level (and in the absence of parentheses
imposing a specific association), an implementation may impose any association of the operators with
operands so long as the result produced is an allowed result for the left-to-right association, but ignoring
the potential for failure of language-defined checks in either the left-to-right or chosen order of
association.

NOTES
11 The two operands of an expression of the form X op Y, where op is a binary operator, are evaluated in an arbitrary
order, as for any function_call (see 6.4).

Examples

Examples of precedence:
not Sunny or Warm -- same as (not Sunny) or Warm
X > 4.0 and Y > 0.0 -- same as (X > 4.0) and (Y > 0.0)
-4.0*A**2 -- same as –(4.0 * (A**2))
abs(1 + A) + B -- same as (abs (1 + A)) + B
Y**(-3) -- parentheses are necessary
A / B * C -- same as (A/B)*C
A + (B + C) -- evaluate B + C before adding it to A

4.5.1 Logical Operators and Short-circuit Control Forms
Name Resolution Rules

An expression consisting of two relations connected by and then or or else (a short-circuit control form)
shall resolve to be of some boolean type; the expected type for both relations is that same boolean type.

Static Semantics

The following logical operators are predefined for every boolean type T, for every modular type T, and for
every one-dimensional array type T whose component type is a boolean type:

function "and"(Left, Right : T) return T
function "or" (Left, Right : T) return T
function "xor"(Left, Right : T) return T

For boolean types, the predefined logical operators and, or, and xor perform the conventional operations
of conjunction, inclusive disjunction, and exclusive disjunction, respectively.

For modular types, the predefined logical operators are defined on a bit-by-bit basis, using the binary
representation of the value of the operands to yield a binary representation for the result, where zero

10

11

12

13

14

15

16

17

1

2

3

4

5

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

4.5.1 Logical Operators and Short-circuit Control Forms 10 November 2006 104

represents False and one represents True. If this result is outside the base range of the type, a final
subtraction by the modulus is performed to bring the result into the base range of the type.

The logical operators on arrays are performed on a component-by-component basis on matching
components (as for equality — see 4.5.2), using the predefined logical operator for the component type.
The bounds of the resulting array are those of the left operand.

Dynamic Semantics

The short-circuit control forms and then and or else deliver the same result as the corresponding
predefined and and or operators for boolean types, except that the left operand is always evaluated first,
and the right operand is not evaluated if the value of the left operand determines the result.

For the logical operators on arrays, a check is made that for each component of the left operand there is a
matching component of the right operand, and vice versa. Also, a check is made that each component of
the result belongs to the component subtype. The exception Constraint_Error is raised if either of the
above checks fails.

NOTES
12 The conventional meaning of the logical operators is given by the following truth table:

 A B (A and B) (A or B) (A xor B)

 True True True True False
 True False False True True
 False True False True True
 False False False False False

Examples

Examples of logical operators:
Sunny or Warm
Filter(1 .. 10) and Filter(15 .. 24) -- see 3.6.1

Examples of short-circuit control forms:
Next_Car.Owner /= null and then Next_Car.Owner.Age > 25 -- see 3.10.1
N = 0 or else A(N) = Hit_Value

4.5.2 Relational Operators and Membership Tests
The equality operators = (equals) and /= (not equals) are predefined for nonlimited types. The other
relational_operators are the ordering operators < (less than), <= (less than or equal), > (greater than), and
>= (greater than or equal). The ordering operators are predefined for scalar types, and for discrete array
types, that is, one-dimensional array types whose components are of a discrete type.

A membership test, using in or not in, determines whether or not a value belongs to a given subtype or
range, or has a tag that identifies a type that is covered by a given type. Membership tests are allowed for
all types.

Name Resolution Rules

The tested type of a membership test is the type of the range or the type determined by the subtype_mark.
If the tested type is tagged, then the simple_expression shall resolve to be of a type that is convertible
(see 4.6) to the tested type; if untagged, the expected type for the simple_expression is the tested type.

6

7

8

9

10

11

12

13

14

1

2

3/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

105 10 November 2006 Relational Operators and Membership Tests 4.5.2

Legality Rules

For a membership test, if the simple_expression is of a tagged class-wide type, then the tested type shall
be (visibly) tagged.

Static Semantics

The result type of a membership test is the predefined type Boolean.

The equality operators are predefined for every specific type T that is not limited, and not an anonymous
access type, with the following specifications:

function "=" (Left, Right : T) return Boolean
function "/="(Left, Right : T) return Boolean

The following additional equality operators for the universal_access type are declared in package Standard
for use with anonymous access types:

function "=" (Left, Right : universal_access) return Boolean
function "/="(Left, Right : universal_access) return Boolean

The ordering operators are predefined for every specific scalar type T, and for every discrete array type T,
with the following specifications:

function "<" (Left, Right : T) return Boolean
function "<="(Left, Right : T) return Boolean
function ">" (Left, Right : T) return Boolean
function ">="(Left, Right : T) return Boolean

Name Resolution Rules

At least one of the operands of an equality operator for universal_access shall be of a specific anonymous
access type. Unless the predefined equality operator is identified using an expanded name with prefix
denoting the package Standard, neither operand shall be of an access-to-object type whose designated type
is D or D'Class, where D has a user-defined primitive equality operator such that:

• its result type is Boolean;

• it is declared immediately within the same declaration list as D; and

• at least one of its operands is an access parameter with designated type D.

Legality Rules

At least one of the operands of the equality operators for universal_access shall be of type
universal_access, or both shall be of access-to-object types, or both shall be of access-to-subprogram
types. Further:

• When both are of access-to-object types, the designated types shall be the same or one shall
cover the other, and if the designated types are elementary or array types, then the designated
subtypes shall statically match;

• When both are of access-to-subprogram types, the designated profiles shall be subtype
conformant.

Dynamic Semantics

For discrete types, the predefined relational operators are defined in terms of corresponding mathematical
operations on the position numbers of the values of the operands.

For real types, the predefined relational operators are defined in terms of the corresponding mathematical
operations on the values of the operands, subject to the accuracy of the type.

4

5

6

7

7.1/2

7.2/2

8

9

9.1/2

9.2/2

9.3/2

9.4/2

9.5/2

9.6/2

9.7/2

10

11

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

4.5.2 Relational Operators and Membership Tests 10 November 2006 106

Two access-to-object values are equal if they designate the same object, or if both are equal to the null
value of the access type.

Two access-to-subprogram values are equal if they are the result of the same evaluation of an Access
attribute_reference, or if both are equal to the null value of the access type. Two access-to-subprogram
values are unequal if they designate different subprograms. It is unspecified whether two access values
that designate the same subprogram but are the result of distinct evaluations of Access
attribute_references are equal or unequal.

For a type extension, predefined equality is defined in terms of the primitive (possibly user-defined) equals
operator of the parent type and of any tagged components of the extension part, and predefined equality
for any other components not inherited from the parent type.

For a private type, if its full type is tagged, predefined equality is defined in terms of the primitive equals
operator of the full type; if the full type is untagged, predefined equality for the private type is that of its
full type.

For other composite types, the predefined equality operators (and certain other predefined operations on
composite types — see 4.5.1 and 4.6) are defined in terms of the corresponding operation on matching
components, defined as follows:

• For two composite objects or values of the same non-array type, matching components are those
that correspond to the same component_declaration or discriminant_specification;

• For two one-dimensional arrays of the same type, matching components are those (if any) whose
index values match in the following sense: the lower bounds of the index ranges are defined to
match, and the successors of matching indices are defined to match;

• For two multidimensional arrays of the same type, matching components are those whose index
values match in successive index positions.

The analogous definitions apply if the types of the two objects or values are convertible, rather than being
the same.

Given the above definition of matching components, the result of the predefined equals operator for
composite types (other than for those composite types covered earlier) is defined as follows:

• If there are no components, the result is defined to be True;

• If there are unmatched components, the result is defined to be False;

• Otherwise, the result is defined in terms of the primitive equals operator for any matching tagged
components, and the predefined equals for any matching untagged components.

For any composite type, the order in which "=" is called for components is unspecified. Furthermore, if the
result can be determined before calling "=" on some components, it is unspecified whether "=" is called on
those components.

The predefined "/=" operator gives the complementary result to the predefined "=" operator.

For a discrete array type, the predefined ordering operators correspond to lexicographic order using the
predefined order relation of the component type: A null array is lexicographically less than any array
having at least one component. In the case of nonnull arrays, the left operand is lexicographically less than
the right operand if the first component of the left operand is less than that of the right; otherwise the left
operand is lexicographically less than the right operand only if their first components are equal and the tail
of the left operand is lexicographically less than that of the right (the tail consists of the remaining
components beyond the first and can be null).

12

13

14

15

16

17

18

19

20

21

22

23

24

24.1/1

25

26

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

107 10 November 2006 Relational Operators and Membership Tests 4.5.2

For the evaluation of a membership test, the simple_expression and the range (if any) are evaluated in an
arbitrary order.

A membership test using in yields the result True if:
• The tested type is scalar, and the value of the simple_expression belongs to the given range, or

the range of the named subtype; or

• The tested type is not scalar, and the value of the simple_expression satisfies any constraints of
the named subtype, and:

• if the type of the simple_expression is class-wide, the value has a tag that identifies a type
covered by the tested type;

• if the tested type is an access type and the named subtype excludes null, the value of the
simple_expression is not null.

Otherwise the test yields the result False.

A membership test using not in gives the complementary result to the corresponding membership test
using in.

Implementation Requirements

For all nonlimited types declared in language-defined packages, the "=" and "/=" operators of the type
shall behave as if they were the predefined equality operators for the purposes of the equality of composite
types and generic formal types.

NOTES
This paragraph was deleted.

13 If a composite type has components that depend on discriminants, two values of this type have matching components
if and only if their discriminants are equal. Two nonnull arrays have matching components if and only if the length of
each dimension is the same for both.

Examples

Examples of expressions involving relational operators and membership tests:
X /= Y

"" < "A" and "A" < "Aa" -- True
"Aa" < "B" and "A" < "A " -- True
My_Car = null -- true if My_Car has been set to null (see 3.10.1)
My_Car = Your_Car -- true if we both share the same car
My_Car.all = Your_Car.all -- true if the two cars are identical
N not in 1 .. 10 -- range membership test
Today in Mon .. Fri -- range membership test
Today in Weekday -- subtype membership test (see 3.5.1)
Archive in Disk_Unit -- subtype membership test (see 3.8.1)
Tree.all in Addition'Class -- class membership test (see 3.9.1)

4.5.3 Binary Adding Operators
Static Semantics

The binary adding operators + (addition) and – (subtraction) are predefined for every specific numeric
type T with their conventional meaning. They have the following specifications:

function "+"(Left, Right : T) return T
function "-"(Left, Right : T) return T

27

28

29

30/2

30.1/2

30.2/2

31

32

32.1/1

33/2

34

35

36

37

38

39

1

2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

4.5.3 Binary Adding Operators 10 November 2006 108

The concatenation operators & are predefined for every nonlimited, one-dimensional array type T with
component type C. They have the following specifications:

function "&"(Left : T; Right : T) return T
function "&"(Left : T; Right : C) return T
function "&"(Left : C; Right : T) return T
function "&"(Left : C; Right : C) return T

Dynamic Semantics

For the evaluation of a concatenation with result type T, if both operands are of type T, the result of the
concatenation is a one-dimensional array whose length is the sum of the lengths of its operands, and whose
components comprise the components of the left operand followed by the components of the right
operand. If the left operand is a null array, the result of the concatenation is the right operand. Otherwise,
the lower bound of the result is determined as follows:

• If the ultimate ancestor of the array type was defined by a constrained_array_definition, then
the lower bound of the result is that of the index subtype;

• If the ultimate ancestor of the array type was defined by an unconstrained_array_definition,
then the lower bound of the result is that of the left operand.

The upper bound is determined by the lower bound and the length. A check is made that the upper bound
of the result of the concatenation belongs to the range of the index subtype, unless the result is a null array.
Constraint_Error is raised if this check fails.

If either operand is of the component type C, the result of the concatenation is given by the above rules,
using in place of such an operand an array having this operand as its only component (converted to the
component subtype) and having the lower bound of the index subtype of the array type as its lower bound.

The result of a concatenation is defined in terms of an assignment to an anonymous object, as for any
function call (see 6.5).

NOTES
14 As for all predefined operators on modular types, the binary adding operators + and – on modular types include a final
reduction modulo the modulus if the result is outside the base range of the type.

Examples

Examples of expressions involving binary adding operators:
Z + 0.1 -- Z has to be of a real type
"A" & "BCD" -- concatenation of two string literals
'A' & "BCD" -- concatenation of a character literal and a string literal
'A' & 'A' -- concatenation of two character literals

4.5.4 Unary Adding Operators
Static Semantics

The unary adding operators + (identity) and – (negation) are predefined for every specific numeric type T
with their conventional meaning. They have the following specifications:

function "+"(Right : T) return T
function "-"(Right : T) return T
NOTES
15 For modular integer types, the unary adding operator –, when given a nonzero operand, returns the result of
subtracting the value of the operand from the modulus; for a zero operand, the result is zero.

3

4

5

6

7

8

9

10

11

12

13

14

1

2

3

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

109 10 November 2006 Multiplying Operators 4.5.5

4.5.5 Multiplying Operators
Static Semantics

The multiplying operators * (multiplication), / (division), mod (modulus), and rem (remainder) are
predefined for every specific integer type T:

function "*" (Left, Right : T) return T
function "/" (Left, Right : T) return T
function "mod"(Left, Right : T) return T
function "rem"(Left, Right : T) return T

Signed integer multiplication has its conventional meaning.

Signed integer division and remainder are defined by the relation:
A = (A/B)*B + (A rem B)

where (A rem B) has the sign of A and an absolute value less than the absolute value of B. Signed integer
division satisfies the identity:

(-A)/B = -(A/B) = A/(-B)

The signed integer modulus operator is defined such that the result of A mod B has the sign of B and an
absolute value less than the absolute value of B; in addition, for some signed integer value N, this result
satisfies the relation:

A = B*N + (A mod B)

The multiplying operators on modular types are defined in terms of the corresponding signed integer
operators, followed by a reduction modulo the modulus if the result is outside the base range of the type
(which is only possible for the "*" operator).

Multiplication and division operators are predefined for every specific floating point type T:
function "*"(Left, Right : T) return T
function "/"(Left, Right : T) return T

The following multiplication and division operators, with an operand of the predefined type Integer, are
predefined for every specific fixed point type T:

function "*"(Left : T; Right : Integer) return T
function "*"(Left : Integer; Right : T) return T
function "/"(Left : T; Right : Integer) return T

All of the above multiplying operators are usable with an operand of an appropriate universal numeric
type. The following additional multiplying operators for root_real are predefined, and are usable when
both operands are of an appropriate universal or root numeric type, and the result is allowed to be of type
root_real, as in a number_declaration:

function "*"(Left, Right : root_real) return root_real
function "/"(Left, Right : root_real) return root_real
function "*"(Left : root_real; Right : root_integer) return root_real
function "*"(Left : root_integer; Right : root_real) return root_real
function "/"(Left : root_real; Right : root_integer) return root_real

Multiplication and division between any two fixed point types are provided by the following two
predefined operators:

function "*"(Left, Right : universal_fixed) return universal_fixed
function "/"(Left, Right : universal_fixed) return universal_fixed

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

4.5.5 Multiplying Operators 10 November 2006 110

Name Resolution Rules

The above two fixed-fixed multiplying operators shall not be used in a context where the expected type for
the result is itself universal_fixed — the context has to identify some other numeric type to which the
result is to be converted, either explicitly or implicitly. Unless the predefined universal operator is
identified using an expanded name with prefix denoting the package Standard, an explicit conversion is
required on the result when using the above fixed-fixed multiplication operator if either operand is of a
type having a user-defined primitive multiplication operator such that:

• it is declared immediately within the same declaration list as the type; and

• both of its formal parameters are of a fixed-point type.

A corresponding requirement applies to the universal fixed-fixed division operator.

Legality Rules

This paragraph was deleted.

Dynamic Semantics

The multiplication and division operators for real types have their conventional meaning. For floating
point types, the accuracy of the result is determined by the precision of the result type. For decimal fixed
point types, the result is truncated toward zero if the mathematical result is between two multiples of the
small of the specific result type (possibly determined by context); for ordinary fixed point types, if the
mathematical result is between two multiples of the small, it is unspecified which of the two is the result.

The exception Constraint_Error is raised by integer division, rem, and mod if the right operand is zero.
Similarly, for a real type T with T'Machine_Overflows True, division by zero raises Constraint_Error.

NOTES
16 For positive A and B, A/B is the quotient and A rem B is the remainder when A is divided by B. The following
relations are satisfied by the rem operator:
 A rem (-B) = A rem B
 (-A) rem B = -(A rem B)

17 For any signed integer K, the following identity holds:
 A mod B = (A + K*B) mod B

The relations between signed integer division, remainder, and modulus are illustrated by the following table:
 A B A/B A rem B A mod B A B A/B A rem B A mod B

 10 5 2 0 0 -10 5 -2 0 0
 11 5 2 1 1 -11 5 -2 -1 4
 12 5 2 2 2 -12 5 -2 -2 3
 13 5 2 3 3 -13 5 -2 -3 2
 14 5 2 4 4 -14 5 -2 -4 1

 A B A/B A rem B A mod B A B A/B A rem B A mod B

 10 -5 -2 0 0 -10 -5 2 0 0
 11 -5 -2 1 -4 -11 -5 2 -1 -1
 12 -5 -2 2 -3 -12 -5 2 -2 -2
 13 -5 -2 3 -2 -13 -5 2 -3 -3
 14 -5 -2 4 -1 -14 -5 2 -4 -4

Examples

Examples of expressions involving multiplying operators:
I : Integer := 1;
J : Integer := 2;
K : Integer := 3;

19.1/2

19.2/2

19.3/2

19.4/2

20/2

21

22

23

24

25

26

27

28

29

30

31

32

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

111 10 November 2006 Multiplying Operators 4.5.5

X : Real := 1.0; -- see 3.5.7
Y : Real := 2.0;

F : Fraction := 0.25; -- see 3.5.9
G : Fraction := 0.5;

Expression Value Result Type

I*J 2 same as I and J, that is, Integer
K/J 1 same as K and J, that is, Integer
K mod J 1 same as K and J, that is, Integer

X/Y 0.5 same as X and Y, that is, Real
F/2 0.125 same as F, that is, Fraction

3*F 0.75 same as F, that is, Fraction
0.75*G 0.375 universal_fixed, implicitly convertible
 to any fixed point type
Fraction(F*G) 0.125 Fraction, as stated by the conversion
Real(J)*Y 4.0 Real, the type of both operands after
 conversion of J

4.5.6 Highest Precedence Operators
Static Semantics

The highest precedence unary operator abs (absolute value) is predefined for every specific numeric type
T, with the following specification:

function "abs"(Right : T) return T

The highest precedence unary operator not (logical negation) is predefined for every boolean type T, every
modular type T, and for every one-dimensional array type T whose components are of a boolean type, with
the following specification:

function "not"(Right : T) return T

The result of the operator not for a modular type is defined as the difference between the high bound of
the base range of the type and the value of the operand. For a binary modulus, this corresponds to a bit-
wise complement of the binary representation of the value of the operand.

The operator not that applies to a one-dimensional array of boolean components yields a one-dimensional
boolean array with the same bounds; each component of the result is obtained by logical negation of the
corresponding component of the operand (that is, the component that has the same index value). A check
is made that each component of the result belongs to the component subtype; the exception
Constraint_Error is raised if this check fails.

The highest precedence exponentiation operator ** is predefined for every specific integer type T with the
following specification:

function "**"(Left : T; Right : Natural) return T

Exponentiation is also predefined for every specific floating point type as well as root_real, with the
following specification (where T is root_real or the floating point type):

function "**"(Left : T; Right : Integer'Base) return T

The right operand of an exponentiation is the exponent. The expression X**N with the value of the
exponent N positive is equivalent to the expression X*X*...X (with N–1 multiplications) except that the
multiplications are associated in an arbitrary order. With N equal to zero, the result is one. With the value
of N negative (only defined for a floating point operand), the result is the reciprocal of the result using the
absolute value of N as the exponent.

33

34

35

1

2

3

4

5

6

7

8

9

10

11

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

4.5.6 Highest Precedence Operators 10 November 2006 112

Implementation Permissions

The implementation of exponentiation for the case of a negative exponent is allowed to raise
Constraint_Error if the intermediate result of the repeated multiplications is outside the safe range of the
type, even though the final result (after taking the reciprocal) would not be. (The best machine
approximation to the final result in this case would generally be 0.0.)

NOTES
18 As implied by the specification given above for exponentiation of an integer type, a check is made that the exponent is
not negative. Constraint_Error is raised if this check fails.

4.6 Type Conversions
Explicit type conversions, both value conversions and view conversions, are allowed between closely
related types as defined below. This clause also defines rules for value and view conversions to a
particular subtype of a type, both explicit ones and those implicit in other constructs.

Syntax

type_conversion ::=
 subtype_mark(expression)
 | subtype_mark(name)

The target subtype of a type_conversion is the subtype denoted by the subtype_mark. The operand of a
type_conversion is the expression or name within the parentheses; its type is the operand type.

One type is convertible to a second type if a type_conversion with the first type as operand type and the
second type as target type is legal according to the rules of this clause. Two types are convertible if each is
convertible to the other.

A type_conversion whose operand is the name of an object is called a view conversion if both its target
type and operand type are tagged, or if it appears in a call as an actual parameter of mode out or in out;
other type_conversions are called value conversions.

Name Resolution Rules

The operand of a type_conversion is expected to be of any type.

The operand of a view conversion is interpreted only as a name; the operand of a value conversion is
interpreted as an expression.

Legality Rules

In a view conversion for an untagged type, the target type shall be convertible (back) to the operand type.

Paragraphs 9 through 20 were reorganized and moved below.

If there is a type that is an ancestor of both the target type and the operand type, or both types are class-
wide types, then at least one of the following rules shall apply:

• The target type shall be untagged; or

• The operand type shall be covered by or descended from the target type; or

• The operand type shall be a class-wide type that covers the target type; or

• The operand and target types shall both be class-wide types and the specific type associated with
at least one of them shall be an interface type.

12

13

1

2

3

4

5/2

6

7

8/2

21/2

21.1/2

22

23/2

23.1/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

113 10 November 2006 Type Conversions 4.6

If there is no type that is the ancestor of both the target type and the operand type, and they are not both
class-wide types, one of the following rules shall apply:

• If the target type is a numeric type, then the operand type shall be a numeric type.

• If the target type is an array type, then the operand type shall be an array type. Further:
• The types shall have the same dimensionality;

• Corresponding index types shall be convertible;

• The component subtypes shall statically match;

• If the component types are anonymous access types, then the accessibility level of the
operand type shall not be statically deeper than that of the target type;

• Neither the target type nor the operand type shall be limited;

• If the target type of a view conversion has aliased components, then so shall the operand
type; and

• The operand type of a view conversion shall not have a tagged, private, or volatile
subcomponent.

• If the target type is universal_access, then the operand type shall be an access type.

• If the target type is a general access-to-object type, then the operand type shall be universal_-
access or an access-to-object type. Further, if the operand type is not universal_access:

• If the target type is an access-to-variable type, then the operand type shall be an access-to-
variable type;

• If the target designated type is tagged, then the operand designated type shall be convertible
to the target designated type;

• If the target designated type is not tagged, then the designated types shall be the same, and
either:

• the designated subtypes shall statically match; or

• the designated type shall be discriminated in its full view and unconstrained in any
partial view, and one of the designated subtypes shall be unconstrained;

• The accessibility level of the operand type shall not be statically deeper than that of the
target type. In addition to the places where Legality Rules normally apply (see 12.3), this
rule applies also in the private part of an instance of a generic unit.

• If the target type is a pool-specific access-to-object type, then the operand type shall be
universal_access.

• If the target type is an access-to-subprogram type, then the operand type shall be universal_-
access or an access-to-subprogram type. Further, if the operand type is not universal_access:

• The designated profiles shall be subtype-conformant.

• The accessibility level of the operand type shall not be statically deeper than that of the
target type. In addition to the places where Legality Rules normally apply (see 12.3), this
rule applies also in the private part of an instance of a generic unit. If the operand type is
declared within a generic body, the target type shall be declared within the generic body.

Static Semantics

A type_conversion that is a value conversion denotes the value that is the result of converting the value of
the operand to the target subtype.

24/2

24.1/2

24.2/2

24.3/2

24.4/2

24.5/2

24.6/2

24.7/2

24.8/2

24.9/2

24.10/2

24.11/2

24.12/2

24.13/2

24.14/2

24.15/2

24.16/2

24.17/2

24.18/2

24.19/2

24.20/2

24.21/2

25

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

4.6 Type Conversions 10 November 2006 114

A type_conversion that is a view conversion denotes a view of the object denoted by the operand. This
view is a variable of the target type if the operand denotes a variable; otherwise it is a constant of the
target type.

The nominal subtype of a type_conversion is its target subtype.

Dynamic Semantics

For the evaluation of a type_conversion that is a value conversion, the operand is evaluated, and then the
value of the operand is converted to a corresponding value of the target type, if any. If there is no value of
the target type that corresponds to the operand value, Constraint_Error is raised; this can only happen on
conversion to a modular type, and only when the operand value is outside the base range of the modular
type. Additional rules follow:

• Numeric Type Conversion

• If the target and the operand types are both integer types, then the result is the value of the
target type that corresponds to the same mathematical integer as the operand.

• If the target type is a decimal fixed point type, then the result is truncated (toward 0) if the
value of the operand is not a multiple of the small of the target type.

• If the target type is some other real type, then the result is within the accuracy of the target
type (see G.2, “Numeric Performance Requirements”, for implementations that support the
Numerics Annex).

• If the target type is an integer type and the operand type is real, the result is rounded to the
nearest integer (away from zero if exactly halfway between two integers).

• Enumeration Type Conversion

• The result is the value of the target type with the same position number as that of the
operand value.

• Array Type Conversion

• If the target subtype is a constrained array subtype, then a check is made that the length of
each dimension of the value of the operand equals the length of the corresponding
dimension of the target subtype. The bounds of the result are those of the target subtype.

• If the target subtype is an unconstrained array subtype, then the bounds of the result are
obtained by converting each bound of the value of the operand to the corresponding index
type of the target type. For each nonnull index range, a check is made that the bounds of the
range belong to the corresponding index subtype.

• In either array case, the value of each component of the result is that of the matching
component of the operand value (see 4.5.2).

• If the component types of the array types are anonymous access types, then a check is made
that the accessibility level of the operand type is not deeper than that of the target type.

• Composite (Non-Array) Type Conversion

• The value of each nondiscriminant component of the result is that of the matching
component of the operand value.

• The tag of the result is that of the operand. If the operand type is class-wide, a check is
made that the tag of the operand identifies a (specific) type that is covered by or descended
from the target type.

• For each discriminant of the target type that corresponds to a discriminant of the operand
type, its value is that of the corresponding discriminant of the operand value; if it

26

27

28

29

30

31

32

33

34

35

36

37

38

39

39.1/2

40

41

42

43

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

115 10 November 2006 Type Conversions 4.6

corresponds to more than one discriminant of the operand type, a check is made that all
these discriminants are equal in the operand value.

• For each discriminant of the target type that corresponds to a discriminant that is specified
by the derived_type_definition for some ancestor of the operand type (or if class-wide,
some ancestor of the specific type identified by the tag of the operand), its value in the
result is that specified by the derived_type_definition.

• For each discriminant of the operand type that corresponds to a discriminant that is
specified by the derived_type_definition for some ancestor of the target type, a check is
made that in the operand value it equals the value specified for it.

• For each discriminant of the result, a check is made that its value belongs to its subtype.

• Access Type Conversion

• For an access-to-object type, a check is made that the accessibility level of the operand type
is not deeper than that of the target type.

• If the operand value is null, the result of the conversion is the null value of the target type.

• If the operand value is not null, then the result designates the same object (or subprogram)
as is designated by the operand value, but viewed as being of the target designated subtype
(or profile); any checks associated with evaluating a conversion to the target designated
subtype are performed.

After conversion of the value to the target type, if the target subtype is constrained, a check is performed
that the value satisfies this constraint. If the target subtype excludes null, then a check is made that the
value is not null.

For the evaluation of a view conversion, the operand name is evaluated, and a new view of the object
denoted by the operand is created, whose type is the target type; if the target type is composite, checks are
performed as above for a value conversion.

The properties of this new view are as follows:
• If the target type is composite, the bounds or discriminants (if any) of the view are as defined

above for a value conversion; each nondiscriminant component of the view denotes the matching
component of the operand object; the subtype of the view is constrained if either the target
subtype or the operand object is constrained, or if the target subtype is indefinite, or if the
operand type is a descendant of the target type and has discriminants that were not inherited
from the target type;

• If the target type is tagged, then an assignment to the view assigns to the corresponding part of
the object denoted by the operand; otherwise, an assignment to the view assigns to the object,
after converting the assigned value to the subtype of the object (which might raise
Constraint_Error);

• Reading the value of the view yields the result of converting the value of the operand object to
the target subtype (which might raise Constraint_Error), except if the object is of an access type
and the view conversion is passed as an out parameter; in this latter case, the value of the
operand object is used to initialize the formal parameter without checking against any constraint
of the target subtype (see 6.4.1).

If an Accessibility_Check fails, Program_Error is raised. Any other check associated with a conversion
raises Constraint_Error if it fails.

Conversion to a type is the same as conversion to an unconstrained subtype of the type.

44

45

46

47

48

49/2

50

51/2

52

53

54/1

55

56

57

58

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

4.6 Type Conversions 10 November 2006 116

NOTES
19 In addition to explicit type_conversions, type conversions are performed implicitly in situations where the expected
type and the actual type of a construct differ, as is permitted by the type resolution rules (see 8.6). For example, an integer
literal is of the type universal_integer, and is implicitly converted when assigned to a target of some specific integer type.
Similarly, an actual parameter of a specific tagged type is implicitly converted when the corresponding formal parameter
is of a class-wide type.

Even when the expected and actual types are the same, implicit subtype conversions are performed to adjust the array
bounds (if any) of an operand to match the desired target subtype, or to raise Constraint_Error if the (possibly adjusted)
value does not satisfy the constraints of the target subtype.

20 A ramification of the overload resolution rules is that the operand of an (explicit) type_conversion cannot be an
allocator, an aggregate, a string_literal, a character_literal, or an attribute_reference for an Access or Unchecked_Access
attribute. Similarly, such an expression enclosed by parentheses is not allowed. A qualified_expression (see 4.7) can be
used instead of such a type_conversion.

21 The constraint of the target subtype has no effect for a type_conversion of an elementary type passed as an out
parameter. Hence, it is recommended that the first subtype be specified as the target to minimize confusion (a similar
recommendation applies to renaming and generic formal in out objects).

Examples

Examples of numeric type conversion:
Real(2*J) -- value is converted to floating point
Integer(1.6) -- value is 2
Integer(-0.4) -- value is 0

Example of conversion between derived types:
type A_Form is new B_Form;

X : A_Form;
Y : B_Form;

X := A_Form(Y);
Y := B_Form(X); -- the reverse conversion

Examples of conversions between array types:
type Sequence is array (Integer range <>) of Integer;
subtype Dozen is Sequence(1 .. 12);
Ledger : array(1 .. 100) of Integer;

Sequence(Ledger) -- bounds are those of Ledger
Sequence(Ledger(31 .. 42)) -- bounds are 31 and 42
Dozen(Ledger(31 .. 42)) -- bounds are those of Dozen

4.7 Qualified Expressions
A qualified_expression is used to state explicitly the type, and to verify the subtype, of an operand that is
either an expression or an aggregate.

Syntax

qualified_expression ::=
 subtype_mark'(expression) | subtype_mark'aggregate

Name Resolution Rules

The operand (the expression or aggregate) shall resolve to be of the type determined by the subtype_-
mark, or a universal type that covers it.

59

60

61/2

62

63

64

65

66

67

68

69

70

71

1

2

3

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

117 10 November 2006 Qualified Expressions 4.7

Dynamic Semantics

The evaluation of a qualified_expression evaluates the operand (and if of a universal type, converts it to
the type determined by the subtype_mark) and checks that its value belongs to the subtype denoted by the
subtype_mark. The exception Constraint_Error is raised if this check fails.

NOTES
22 When a given context does not uniquely identify an expected type, a qualified_expression can be used to do so. In
particular, if an overloaded name or aggregate is passed to an overloaded subprogram, it might be necessary to qualify
the operand to resolve its type.

Examples

Examples of disambiguating expressions using qualification:
type Mask is (Fix, Dec, Exp, Signif);
type Code is (Fix, Cla, Dec, Tnz, Sub);

Print (Mask'(Dec)); -- Dec is of type Mask
Print (Code'(Dec)); -- Dec is of type Code
for J in Code'(Fix) .. Code'(Dec) loop ... -- qualification needed for either Fix or Dec
for J in Code range Fix .. Dec loop ... -- qualification unnecessary
for J in Code'(Fix) .. Dec loop ... -- qualification unnecessary for Dec
Dozen'(1 | 3 | 5 | 7 => 2, others => 0) -- see 4.6

4.8 Allocators
The evaluation of an allocator creates an object and yields an access value that designates the object.

Syntax

allocator ::=
 new subtype_indication | new qualified_expression

Name Resolution Rules

The expected type for an allocator shall be a single access-to-object type with designated type D such that
either D covers the type determined by the subtype_mark of the subtype_indication or qualified_-
expression, or the expected type is anonymous and the determined type is D'Class.

Legality Rules

An initialized allocator is an allocator with a qualified_expression. An uninitialized allocator is one with a
subtype_indication. In the subtype_indication of an uninitialized allocator, a constraint is permitted only
if the subtype_mark denotes an unconstrained composite subtype; if there is no constraint, then the
subtype_mark shall denote a definite subtype.

If the type of the allocator is an access-to-constant type, the allocator shall be an initialized allocator.

If the designated type of the type of the allocator is class-wide, the accessibility level of the type
determined by the subtype_indication or qualified_expression shall not be statically deeper than that of
the type of the allocator.

If the designated subtype of the type of the allocator has one or more unconstrained access discriminants,
then the accessibility level of the anonymous access type of each access discriminant, as determined by the
subtype_indication or qualified_expression of the allocator, shall not be statically deeper than that of the
type of the allocator (see 3.10.2).

4

5

6

7

8

9

10

1

2

3/1

4

5/2

5.1/2

5.2/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

4.8 Allocators 10 November 2006 118

An allocator shall not be of an access type for which the Storage_Size has been specified by a static
expression with value zero or is defined by the language to be zero. In addition to the places where
Legality Rules normally apply (see 12.3), this rule applies also in the private part of an instance of a
generic unit. This rule does not apply in the body of a generic unit or within a body declared within the
declarative region of a generic unit, if the type of the allocator is a descendant of a formal access type
declared within the formal part of the generic unit.

Static Semantics

If the designated type of the type of the allocator is elementary, then the subtype of the created object is
the designated subtype. If the designated type is composite, then the subtype of the created object is the
designated subtype when the designated subtype is constrained or there is a partial view of the designated
type that is constrained; otherwise, the created object is constrained by its initial value (even if the
designated subtype is unconstrained with defaults).

Dynamic Semantics

For the evaluation of an initialized allocator, the evaluation of the qualified_expression is performed first.
An object of the designated type is created and the value of the qualified_expression is converted to the
designated subtype and assigned to the object.

For the evaluation of an uninitialized allocator, the elaboration of the subtype_indication is performed
first. Then:

• If the designated type is elementary, an object of the designated subtype is created and any
implicit initial value is assigned;

• If the designated type is composite, an object of the designated type is created with tag, if any,
determined by the subtype_mark of the subtype_indication. This object is then initialized by
default (see 3.3.1) using the subtype_indication to determine its nominal subtype. A check is
made that the value of the object belongs to the designated subtype. Constraint_Error is raised if
this check fails. This check and the initialization of the object are performed in an arbitrary
order.

For any allocator, if the designated type of the type of the allocator is class-wide, then a check is made
that the accessibility level of the type determined by the subtype_indication, or by the tag of the value of
the qualified_expression, is not deeper than that of the type of the allocator. If the designated subtype of
the allocator has one or more unconstrained access discriminants, then a check is made that the
accessibility level of the anonymous access type of each access discriminant is not deeper than that of the
type of the allocator. Program_Error is raised if either such check fails.

If the object to be created by an allocator has a controlled or protected part, and the finalization of the
collection of the type of the allocator (see 7.6.1) has started, Program_Error is raised.

If the object to be created by an allocator contains any tasks, and the master of the type of the allocator is
completed, and all of the dependent tasks of the master are terminated (see 9.3), then Program_Error is
raised.

If the created object contains any tasks, they are activated (see 9.2). Finally, an access value that
designates the created object is returned.

Bounded (Run-Time) Errors

 It is a bounded error if the finalization of the collection of the type (see 7.6.1) of the allocator has started.
If the error is detected, Program_Error is raised. Otherwise, the allocation proceeds normally.

5.3/2

6/2

7/2

8

9/2

10/2

10.1/2

10.2/2

10.3/2

11

11.1/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

119 10 November 2006 Allocators 4.8

NOTES
23 Allocators cannot create objects of an abstract type. See 3.9.3.

24 If any part of the created object is controlled, the initialization includes calls on corresponding Initialize or Adjust
procedures. See 7.6.

25 As explained in 13.11, “Storage Management”, the storage for an object allocated by an allocator comes from a
storage pool (possibly user defined). The exception Storage_Error is raised by an allocator if there is not enough storage.
Instances of Unchecked_Deallocation may be used to explicitly reclaim storage.

26 Implementations are permitted, but not required, to provide garbage collection (see 13.11.3).

Examples

Examples of allocators:
new Cell'(0, null, null) -- initialized explicitly, see 3.10.1
new Cell'(Value => 0, Succ => null, Pred => null) -- initialized explicitly
new Cell -- not initialized
new Matrix(1 .. 10, 1 .. 20) -- the bounds only are given
new Matrix'(1 .. 10 => (1 .. 20 => 0.0)) -- initialized explicitly
new Buffer(100) -- the discriminant only is given
new Buffer'(Size => 80, Pos => 0, Value => (1 .. 80 => 'A')) -- initialized explicitly
Expr_Ptr'(new Literal) -- allocator for access-to-class-wide type, see 3.9.1
Expr_Ptr'(new Literal'(Expression with 3.5)) -- initialized explicitly

4.9 Static Expressions and Static Subtypes
Certain expressions of a scalar or string type are defined to be static. Similarly, certain discrete ranges are
defined to be static, and certain scalar and string subtypes are defined to be static subtypes. Static means
determinable at compile time, using the declared properties or values of the program entities.

A static expression is a scalar or string expression that is one of the following:
• a numeric_literal;

• a string_literal of a static string subtype;

• a name that denotes the declaration of a named number or a static constant;

• a function_call whose function_name or function_prefix statically denotes a static function, and
whose actual parameters, if any (whether given explicitly or by default), are all static
expressions;

• an attribute_reference that denotes a scalar value, and whose prefix denotes a static scalar
subtype;

• an attribute_reference whose prefix statically denotes a statically constrained array object or
array subtype, and whose attribute_designator is First, Last, or Length, with an optional
dimension;

• a type_conversion whose subtype_mark denotes a static scalar subtype, and whose operand is a
static expression;

• a qualified_expression whose subtype_mark denotes a static (scalar or string) subtype, and
whose operand is a static expression;

• a membership test whose simple_expression is a static expression, and whose range is a static
range or whose subtype_mark denotes a static (scalar or string) subtype;

• a short-circuit control form both of whose relations are static expressions;

• a static expression enclosed in parentheses.

12

13

14

15

16

17

18

19

20

1

2

3

4

5

6

7

8

9

10

11

12

13

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

4.9 Static Expressions and Static Subtypes 10 November 2006 120

A name statically denotes an entity if it denotes the entity and:
• It is a direct_name, expanded name, or character_literal, and it denotes a declaration other than

a renaming_declaration; or

• It is an attribute_reference whose prefix statically denotes some entity; or

• It denotes a renaming_declaration with a name that statically denotes the renamed entity.

A static function is one of the following:
• a predefined operator whose parameter and result types are all scalar types none of which are

descendants of formal scalar types;

• a predefined concatenation operator whose result type is a string type;

• an enumeration literal;

• a language-defined attribute that is a function, if the prefix denotes a static scalar subtype, and if
the parameter and result types are scalar.

In any case, a generic formal subprogram is not a static function.

A static constant is a constant view declared by a full constant declaration or an object_renaming_-
declaration with a static nominal subtype, having a value defined by a static scalar expression or by a
static string expression whose value has a length not exceeding the maximum length of a string_literal in
the implementation.

A static range is a range whose bounds are static expressions, or a range_attribute_reference that is
equivalent to such a range. A static discrete_range is one that is a static range or is a subtype_indication
that defines a static scalar subtype. The base range of a scalar type is a static range, unless the type is a
descendant of a formal scalar type.

A static subtype is either a static scalar subtype or a static string subtype. A static scalar subtype is an
unconstrained scalar subtype whose type is not a descendant of a formal type, or a constrained scalar
subtype formed by imposing a compatible static constraint on a static scalar subtype. A static string
subtype is an unconstrained string subtype whose index subtype and component subtype are static, or a
constrained string subtype formed by imposing a compatible static constraint on a static string subtype. In
any case, the subtype of a generic formal object of mode in out, and the result subtype of a generic formal
function, are not static.

The different kinds of static constraint are defined as follows:
• A null constraint is always static;

• A scalar constraint is static if it has no range_constraint, or one with a static range;

• An index constraint is static if each discrete_range is static, and each index subtype of the
corresponding array type is static;

• A discriminant constraint is static if each expression of the constraint is static, and the subtype
of each discriminant is static.

In any case, the constraint of the first subtype of a scalar formal type is neither static nor null.

A subtype is statically constrained if it is constrained, and its constraint is static. An object is statically
constrained if its nominal subtype is statically constrained, or if it is a static string constant.

14

15

16

17

18

19

20

21

22

23

24

25

26/2

27

28

29

30

31

31.1/2

32

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

121 10 November 2006 Static Expressions and Static Subtypes 4.9

Legality Rules

A static expression is evaluated at compile time except when it is part of the right operand of a static short-
circuit control form whose value is determined by its left operand. This evaluation is performed exactly,
without performing Overflow_Checks. For a static expression that is evaluated:

• The expression is illegal if its evaluation fails a language-defined check other than Overflow_-
Check.

• If the expression is not part of a larger static expression and the expression is expected to be of a
single specific type, then its value shall be within the base range of its expected type. Otherwise,
the value may be arbitrarily large or small.

• If the expression is of type universal_real and its expected type is a decimal fixed point type,
then its value shall be a multiple of the small of the decimal type. This restriction does not apply
if the expected type is a descendant of a formal scalar type (or a corresponding actual type in an
instance).

In addition to the places where Legality Rules normally apply (see 12.3), the above restrictions also apply
in the private part of an instance of a generic unit.

Implementation Requirements

For a real static expression that is not part of a larger static expression, and whose expected type is not a
descendant of a formal type, the implementation shall round or truncate the value (according to the
Machine_Rounds attribute of the expected type) to the nearest machine number of the expected type; if the
value is exactly half-way between two machine numbers, the rounding performed is implementation-
defined. If the expected type is a descendant of a formal type, or if the static expression appears in the
body of an instance of a generic unit and the corresponding expression is nonstatic in the corresponding
generic body, then no special rounding or truncating is required — normal accuracy rules apply (see
Annex G).

Implementation Advice

For a real static expression that is not part of a larger static expression, and whose expected type is not a
descendant of a formal type, the rounding should be the same as the default rounding for the target system.

NOTES
27 An expression can be static even if it occurs in a context where staticness is not required.

28 A static (or run-time) type_conversion from a real type to an integer type performs rounding. If the operand value is
exactly half-way between two integers, the rounding is performed away from zero.

Examples

Examples of static expressions:
1 + 1 -- 2
abs(-10)*3 -- 30
Kilo : constant := 1000;
Mega : constant := Kilo*Kilo; -- 1_000_000
Long : constant := Float'Digits*2;

Half_Pi : constant := Pi/2; -- see 3.3.2
Deg_To_Rad : constant := Half_Pi/90;
Rad_To_Deg : constant := 1.0/Deg_To_Rad; -- equivalent to 1.0/((3.14159_26536/2)/90)

33

34

35/2

36/2

37/2

38/2

38.1/2

39

40

41

42

43

44

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

4.9.1 Statically Matching Constraints and Subtypes 10 November 2006 122

4.9.1 Statically Matching Constraints and Subtypes
Static Semantics

A constraint statically matches another constraint if:

• both are null constraints;

• both are static and have equal corresponding bounds or discriminant values;

• both are nonstatic and result from the same elaboration of a constraint of a subtype_indication
or the same evaluation of a range of a discrete_subtype_definition; or

• both are nonstatic and come from the same formal_type_declaration.

A subtype statically matches another subtype of the same type if they have statically matching constraints,
and, for access subtypes, either both or neither exclude null. Two anonymous access-to-object subtypes
statically match if their designated subtypes statically match, and either both or neither exclude null, and
either both or neither are access-to-constant. Two anonymous access-to-subprogram subtypes statically
match if their designated profiles are subtype conformant, and either both or neither exclude null.

Two ranges of the same type statically match if both result from the same evaluation of a range, or if both
are static and have equal corresponding bounds.

A constraint is statically compatible with a scalar subtype if it statically matches the constraint of the
subtype, or if both are static and the constraint is compatible with the subtype. A constraint is statically
compatible with an access or composite subtype if it statically matches the constraint of the subtype, or if
the subtype is unconstrained. One subtype is statically compatible with a second subtype if the constraint
of the first is statically compatible with the second subtype.

1/2

1.1/2

1.2/2

1.3/2

1.4/2

2/2

3

4

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

123 10 November 2006 Statements 5

Section 5: Statements
A statement defines an action to be performed upon its execution.

This section describes the general rules applicable to all statements. Some statements are discussed in
later sections: Procedure_call_statements and return statements are described in 6, “Subprograms”.
Entry_call_statements, requeue_statements, delay_statements, accept_statements, select_statements,
and abort_statements are described in 9, “Tasks and Synchronization”. Raise_statements are described
in 11, “Exceptions”, and code_statements in 13. The remaining forms of statements are presented in this
section.

5.1 Simple and Compound Statements - Sequences of Statements
A statement is either simple or compound. A simple_statement encloses no other statement. A
compound_statement can enclose simple_statements and other compound_statements.

Syntax

sequence_of_statements ::= statement {statement}
statement ::=
 {label} simple_statement | {label} compound_statement
simple_statement ::= null_statement
 | assignment_statement | exit_statement
 | goto_statement | procedure_call_statement
 | simple_return_statement | entry_call_statement
 | requeue_statement | delay_statement
 | abort_statement | raise_statement
 | code_statement
compound_statement ::=
 if_statement | case_statement
 | loop_statement | block_statement
 | extended_return_statement
 | accept_statement | select_statement
null_statement ::= null;
label ::= <<label_statement_identifier>>
statement_identifier ::= direct_name
The direct_name of a statement_identifier shall be an identifier (not an operator_symbol).

Name Resolution Rules

The direct_name of a statement_identifier shall resolve to denote its corresponding implicit declaration
(see below).

Legality Rules

Distinct identifiers shall be used for all statement_identifiers that appear in the same body, including inner
block_statements but excluding inner program units.

1

2/2

1

2

3

4/2

5/2

6

7

8

9

10

11

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

5.1 Simple and Compound Statements - Sequences of Statements 10 November 2006 124

Static Semantics

For each statement_identifier, there is an implicit declaration (with the specified identifier) at the end of
the declarative_part of the innermost block_statement or body that encloses the statement_identifier. The
implicit declarations occur in the same order as the statement_identifiers occur in the source text. If a
usage name denotes such an implicit declaration, the entity it denotes is the label, loop_statement, or
block_statement with the given statement_identifier.

Dynamic Semantics

The execution of a null_statement has no effect.

A transfer of control is the run-time action of an exit_statement, return statement, goto_statement, or
requeue_statement, selection of a terminate_alternative, raising of an exception, or an abort, which
causes the next action performed to be one other than what would normally be expected from the other
rules of the language. As explained in 7.6.1, a transfer of control can cause the execution of constructs to
be completed and then left, which may trigger finalization.

The execution of a sequence_of_statements consists of the execution of the individual statements in
succession until the sequence_ is completed.

NOTES
1 A statement_identifier that appears immediately within the declarative region of a named loop_statement or an
accept_statement is nevertheless implicitly declared immediately within the declarative region of the innermost enclosing
body or block_statement; in other words, the expanded name for a named statement is not affected by whether the
statement occurs inside or outside a named loop or an accept_statement — only nesting within block_statements is
relevant to the form of its expanded name.

Examples

Examples of labeled statements:
<<Here>> <<Ici>> <<Aqui>> <<Hier>> null;

<<After>> X := 1;

5.2 Assignment Statements
An assignment_statement replaces the current value of a variable with the result of evaluating an
expression.

Syntax

assignment_statement ::=
 variable_name := expression;

The execution of an assignment_statement includes the evaluation of the expression and the assignment
of the value of the expression into the target. An assignment operation (as opposed to an assignment_-
statement) is performed in other contexts as well, including object initialization and by-copy parameter
passing. The target of an assignment operation is the view of the object to which a value is being assigned;
the target of an assignment_statement is the variable denoted by the variable_name.

Name Resolution Rules

The variable_name of an assignment_statement is expected to be of any type. The expected type for the
expression is the type of the target.

12

13

14/2

15

16

17

18

19

1

2

3

4/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

125 10 November 2006 Assignment Statements 5.2

Legality Rules

The target denoted by the variable_name shall be a variable of a nonlimited type.

If the target is of a tagged class-wide type T'Class, then the expression shall either be dynamically tagged,
or of type T and tag-indeterminate (see 3.9.2).

Dynamic Semantics

For the execution of an assignment_statement, the variable_name and the expression are first evaluated
in an arbitrary order.

When the type of the target is class-wide:
• If the expression is tag-indeterminate (see 3.9.2), then the controlling tag value for the

expression is the tag of the target;

• Otherwise (the expression is dynamically tagged), a check is made that the tag of the value of
the expression is the same as that of the target; if this check fails, Constraint_Error is raised.

The value of the expression is converted to the subtype of the target. The conversion might raise an
exception (see 4.6).

In cases involving controlled types, the target is finalized, and an anonymous object might be used as an
intermediate in the assignment, as described in 7.6.1, “Completion and Finalization”. In any case, the
converted value of the expression is then assigned to the target, which consists of the following two steps:

• The value of the target becomes the converted value.

• If any part of the target is controlled, its value is adjusted as explained in clause 7.6.
NOTES
2 The tag of an object never changes; in particular, an assignment_statement does not change the tag of the target.

This paragraph was deleted.

Examples

Examples of assignment statements:
Value := Max_Value - 1;
Shade := Blue;

Next_Frame(F)(M, N) := 2.5; -- see 4.1.1
U := Dot_Product(V, W); -- see 6.3
Writer := (Status => Open, Unit => Printer, Line_Count => 60); -- see 3.8.1
Next_Car.all := (72074, null); -- see 3.10.1

Examples involving scalar subtype conversions:
I, J : Integer range 1 .. 10 := 5;
K : Integer range 1 .. 20 := 15;
 ...

I := J; -- identical ranges
K := J; -- compatible ranges
J := K; -- will raise Constraint_Error if K > 10

Examples involving array subtype conversions:
A : String(1 .. 31);
B : String(3 .. 33);
 ...

A := B; -- same number of components

5/2

6

7

8

9

10

11

12

13

14

15

16/2

17

18

19

20

21

22

23

24

25

26

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

5.2 Assignment Statements 10 November 2006 126

A(1 .. 9) := "tar sauce";
A(4 .. 12) := A(1 .. 9); -- A(1 .. 12) = "tartar sauce"
NOTES
3 Notes on the examples: Assignment_statements are allowed even in the case of overlapping slices of the same array,
because the variable_name and expression are both evaluated before copying the value into the variable. In the above
example, an implementation yielding A(1 .. 12) = "tartartartar" would be incorrect.

5.3 If Statements
An if_statement selects for execution at most one of the enclosed sequences_of_statements, depending
on the (truth) value of one or more corresponding conditions.

Syntax

if_statement ::=
 if condition then
 sequence_of_statements
 {elsif condition then
 sequence_of_statements}
 [else
 sequence_of_statements]
 end if;
condition ::= boolean_expression

Name Resolution Rules

A condition is expected to be of any boolean type.

Dynamic Semantics

For the execution of an if_statement, the condition specified after if, and any conditions specified after
elsif, are evaluated in succession (treating a final else as elsif True then), until one evaluates to True or all
conditions are evaluated and yield False. If a condition evaluates to True, then the corresponding
sequence_of_statements is executed; otherwise none of them is executed.

Examples

Examples of if statements:
if Month = December and Day = 31 then
 Month := January;
 Day := 1;
 Year := Year + 1;
end if;

if Line_Too_Short then
 raise Layout_Error;
elsif Line_Full then
 New_Line;
 Put(Item);
else
 Put(Item);
end if;

if My_Car.Owner.Vehicle /= My_Car then -- see 3.10.1
 Report ("Incorrect data");
end if;

27

28

1

2

3

4

5

6

7

8

9

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

127 10 November 2006 Case Statements 5.4

5.4 Case Statements
A case_statement selects for execution one of a number of alternative sequences_of_statements; the
chosen alternative is defined by the value of an expression.

Syntax

case_statement ::=
 case expression is
 case_statement_alternative
 {case_statement_alternative}
 end case;
case_statement_alternative ::=
 when discrete_choice_list =>
 sequence_of_statements

Name Resolution Rules

The expression is expected to be of any discrete type. The expected type for each discrete_choice is the
type of the expression.

Legality Rules

The expressions and discrete_ranges given as discrete_choices of a case_statement shall be static. A
discrete_choice others, if present, shall appear alone and in the last discrete_choice_list.

The possible values of the expression shall be covered as follows:

• If the expression is a name (including a type_conversion or a function_call) having a static and
constrained nominal subtype, or is a qualified_expression whose subtype_mark denotes a static
and constrained scalar subtype, then each non-others discrete_choice shall cover only values in
that subtype, and each value of that subtype shall be covered by some discrete_choice (either
explicitly or by others).

• If the type of the expression is root_integer, universal_integer, or a descendant of a formal
scalar type, then the case_statement shall have an others discrete_choice.

• Otherwise, each value of the base range of the type of the expression shall be covered (either
explicitly or by others).

Two distinct discrete_choices of a case_statement shall not cover the same value.

Dynamic Semantics

For the execution of a case_statement the expression is first evaluated.

If the value of the expression is covered by the discrete_choice_list of some case_statement_-
alternative, then the sequence_of_statements of the _alternative is executed.

Otherwise (the value is not covered by any discrete_choice_list, perhaps due to being outside the base
range), Constraint_Error is raised.

NOTES
4 The execution of a case_statement chooses one and only one alternative. Qualification of the expression of a
case_statement by a static subtype can often be used to limit the number of choices that need be given explicitly.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

5.4 Case Statements 10 November 2006 128

Examples

Examples of case statements:
case Sensor is
 when Elevation => Record_Elevation(Sensor_Value);
 when Azimuth => Record_Azimuth (Sensor_Value);
 when Distance => Record_Distance (Sensor_Value);
 when others => null;
end case;

case Today is
 when Mon => Compute_Initial_Balance;
 when Fri => Compute_Closing_Balance;
 when Tue .. Thu => Generate_Report(Today);
 when Sat .. Sun => null;
end case;

case Bin_Number(Count) is
 when 1 => Update_Bin(1);
 when 2 => Update_Bin(2);
 when 3 | 4 =>
 Empty_Bin(1);
 Empty_Bin(2);
 when others => raise Error;
end case;

5.5 Loop Statements
A loop_statement includes a sequence_of_statements that is to be executed repeatedly, zero or more
times.

Syntax

loop_statement ::=
 [loop_statement_identifier:]
 [iteration_scheme] loop
 sequence_of_statements
 end loop [loop_identifier];
iteration_scheme ::= while condition
 | for loop_parameter_specification
loop_parameter_specification ::=
 defining_identifier in [reverse] discrete_subtype_definition
If a loop_statement has a loop_statement_identifier, then the identifier shall be repeated after the
end loop; otherwise, there shall not be an identifier after the end loop.

Static Semantics

A loop_parameter_specification declares a loop parameter, which is an object whose subtype is that
defined by the discrete_subtype_definition.

Dynamic Semantics

For the execution of a loop_statement, the sequence_of_statements is executed repeatedly, zero or more
times, until the loop_statement is complete. The loop_statement is complete when a transfer of control
occurs that transfers control out of the loop, or, in the case of an iteration_scheme, as specified below.

For the execution of a loop_statement with a while iteration_scheme, the condition is evaluated before
each execution of the sequence_of_statements; if the value of the condition is True, the sequence_of_-
statements is executed; if False, the execution of the loop_statement is complete.

15

16

17

18

1

2

3

4

5

6

7

8

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

129 10 November 2006 Loop Statements 5.5

For the execution of a loop_statement with a for iteration_scheme, the loop_parameter_specification is
first elaborated. This elaboration creates the loop parameter and elaborates the discrete_subtype_-
definition. If the discrete_subtype_definition defines a subtype with a null range, the execution of the
loop_statement is complete. Otherwise, the sequence_of_statements is executed once for each value of
the discrete subtype defined by the discrete_subtype_definition (or until the loop is left as a consequence
of a transfer of control). Prior to each such iteration, the corresponding value of the discrete subtype is
assigned to the loop parameter. These values are assigned in increasing order unless the reserved word
reverse is present, in which case the values are assigned in decreasing order.

NOTES
5 A loop parameter is a constant; it cannot be updated within the sequence_of_statements of the loop (see 3.3).

6 An object_declaration should not be given for a loop parameter, since the loop parameter is automatically declared by
the loop_parameter_specification. The scope of a loop parameter extends from the loop_parameter_specification to the
end of the loop_statement, and the visibility rules are such that a loop parameter is only visible within the
sequence_of_statements of the loop.

7 The discrete_subtype_definition of a for loop is elaborated just once. Use of the reserved word reverse does not alter
the discrete subtype defined, so that the following iteration_schemes are not equivalent; the first has a null range.

for J in reverse 1 .. 0
for J in 0 .. 1

Examples

Example of a loop statement without an iteration scheme:
loop
 Get(Current_Character);
 exit when Current_Character = '*';
end loop;

Example of a loop statement with a while iteration scheme:
while Bid(N).Price < Cut_Off.Price loop
 Record_Bid(Bid(N).Price);
 N := N + 1;
end loop;

Example of a loop statement with a for iteration scheme:
for J in Buffer'Range loop -- works even with a null range
 if Buffer(J) /= Space then
 Put(Buffer(J));
 end if;
end loop;

Example of a loop statement with a name:
Summation:
 while Next /= Head loop -- see 3.10.1
 Sum := Sum + Next.Value;
 Next := Next.Succ;
 end loop Summation;

9

10

11

12

13

14

15

16

17

18

19

20

21

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

5.6 Block Statements 10 November 2006 130

5.6 Block Statements
A block_statement encloses a handled_sequence_of_statements optionally preceded by a
declarative_part.

Syntax

block_statement ::=
 [block_statement_identifier:]
 [declare
 declarative_part]
 begin
 handled_sequence_of_statements
 end [block_identifier];
If a block_statement has a block_statement_identifier, then the identifier shall be repeated after the
end; otherwise, there shall not be an identifier after the end.

Static Semantics

A block_statement that has no explicit declarative_part has an implicit empty declarative_part.

Dynamic Semantics

The execution of a block_statement consists of the elaboration of its declarative_part followed by the
execution of its handled_sequence_of_statements.

Examples

Example of a block statement with a local variable:
Swap:
 declare
 Temp : Integer;
 begin
 Temp := V; V := U; U := Temp;
 end Swap;

5.7 Exit Statements
An exit_statement is used to complete the execution of an enclosing loop_statement; the completion is
conditional if the exit_statement includes a condition.

Syntax

exit_statement ::=
 exit [loop_name] [when condition];

Name Resolution Rules

The loop_name, if any, in an exit_statement shall resolve to denote a loop_statement.

Legality Rules

Each exit_statement applies to a loop_statement; this is the loop_statement being exited. An exit_-
statement with a name is only allowed within the loop_statement denoted by the name, and applies to
that loop_statement. An exit_statement without a name is only allowed within a loop_statement, and
applies to the innermost enclosing one. An exit_statement that applies to a given loop_statement shall not

1

2

3

4

5

6

7

1

2

3

4

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

131 10 November 2006 Exit Statements 5.7

appear within a body or accept_statement, if this construct is itself enclosed by the given
loop_statement.

Dynamic Semantics

For the execution of an exit_statement, the condition, if present, is first evaluated. If the value of the
condition is True, or if there is no condition, a transfer of control is done to complete the loop_statement.
If the value of the condition is False, no transfer of control takes place.

NOTES
8 Several nested loops can be exited by an exit_statement that names the outer loop.

Examples

Examples of loops with exit statements:
for N in 1 .. Max_Num_Items loop
 Get_New_Item(New_Item);
 Merge_Item(New_Item, Storage_File);
 exit when New_Item = Terminal_Item;
end loop;

Main_Cycle:
 loop
 -- initial statements
 exit Main_Cycle when Found;
 -- final statements
 end loop Main_Cycle;

5.8 Goto Statements
A goto_statement specifies an explicit transfer of control from this statement to a target statement with a
given label.

Syntax

goto_statement ::= goto label_name;

Name Resolution Rules

The label_name shall resolve to denote a label; the statement with that label is the target statement.

Legality Rules

The innermost sequence_of_statements that encloses the target statement shall also enclose the
goto_statement. Furthermore, if a goto_statement is enclosed by an accept_statement or a body, then
the target statement shall not be outside this enclosing construct.

Dynamic Semantics

The execution of a goto_statement transfers control to the target statement, completing the execution of
any compound_statement that encloses the goto_statement but does not enclose the target.

NOTES
9 The above rules allow transfer of control to a statement of an enclosing sequence_of_statements but not the reverse.
Similarly, they prohibit transfers of control such as between alternatives of a case_statement, if_statement, or
select_statement; between exception_handlers; or from an exception_handler of a handled_sequence_of_statements
back to its sequence_of_statements.

5

6

7

8

9

1

2

3

4

5

6

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

5.8 Goto Statements 10 November 2006 132

Examples

Example of a loop containing a goto statement:
<<Sort>>
for I in 1 .. N-1 loop
 if A(I) > A(I+1) then
 Exchange(A(I), A(I+1));
 goto Sort;
 end if;
end loop;

7

8

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

133 10 November 2006 Subprograms 6

Section 6: Subprograms
A subprogram is a program unit or intrinsic operation whose execution is invoked by a subprogram call.
There are two forms of subprogram: procedures and functions. A procedure call is a statement; a function
call is an expression and returns a value. The definition of a subprogram can be given in two parts: a
subprogram declaration defining its interface, and a subprogram_body defining its execution. Operators
and enumeration literals are functions.

A callable entity is a subprogram or entry (see Section 9). A callable entity is invoked by a call; that is, a
subprogram call or entry call. A callable construct is a construct that defines the action of a call upon a
callable entity: a subprogram_body, entry_body, or accept_statement.

6.1 Subprogram Declarations
A subprogram_declaration declares a procedure or function.

Syntax

subprogram_declaration ::=
 [overriding_indicator]
 subprogram_specification;
This paragraph was deleted.
subprogram_specification ::=
 procedure_specification
 | function_specification
procedure_specification ::= procedure defining_program_unit_name parameter_profile
function_specification ::= function defining_designator parameter_and_result_profile
designator ::= [parent_unit_name .]identifier | operator_symbol
defining_designator ::= defining_program_unit_name | defining_operator_symbol
defining_program_unit_name ::= [parent_unit_name .]defining_identifier
The optional parent_unit_name is only allowed for library units (see 10.1.1).
operator_symbol ::= string_literal
The sequence of characters in an operator_symbol shall form a reserved word, a delimiter, or
compound delimiter that corresponds to an operator belonging to one of the six categories of
operators defined in clause 4.5.
defining_operator_symbol ::= operator_symbol
parameter_profile ::= [formal_part]
parameter_and_result_profile ::=
 [formal_part] return [null_exclusion] subtype_mark
 | [formal_part] return access_definition
formal_part ::=
 (parameter_specification {; parameter_specification})
parameter_specification ::=
 defining_identifier_list : mode [null_exclusion] subtype_mark [:= default_expression]
 | defining_identifier_list : access_definition [:= default_expression]
mode ::= [in] | in out | out

1

2

1

2/2

3/2

4/2

4.1/2

4.2/2

5

6

7

8

9

10/2

11

12

13/2

14

15/2

16

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

6.1 Subprogram Declarations 10 November 2006 134

Name Resolution Rules

A formal parameter is an object directly visible within a subprogram_body that represents the actual
parameter passed to the subprogram in a call; it is declared by a parameter_specification. For a formal
parameter, the expected type for its default_expression, if any, is that of the formal parameter.

Legality Rules

The parameter mode of a formal parameter conveys the direction of information transfer with the actual
parameter: in, in out, or out. Mode in is the default, and is the mode of a parameter defined by an
access_definition. The formal parameters of a function, if any, shall have the mode in.

A default_expression is only allowed in a parameter_specification for a formal parameter of mode in.

A subprogram_declaration or a generic_subprogram_declaration requires a completion: a body, a
renaming_declaration (see 8.5), or a pragma Import (see B.1). A completion is not allowed for an
abstract_subprogram_declaration (see 3.9.3) or a null_procedure_declaration (see 6.7).

A name that denotes a formal parameter is not allowed within the formal_part in which it is declared, nor
within the formal_part of a corresponding body or accept_statement.

Static Semantics

The profile of (a view of) a callable entity is either a parameter_profile or parameter_and_result_profile;
it embodies information about the interface to that entity — for example, the profile includes information
about parameters passed to the callable entity. All callable entities have a profile — enumeration literals,
other subprograms, and entries. An access-to-subprogram type has a designated profile. Associated with a
profile is a calling convention. A subprogram_declaration declares a procedure or a function, as indicated
by the initial reserved word, with name and profile as given by its specification.

The nominal subtype of a formal parameter is the subtype determined by the optional null_exclusion and
the subtype_mark, or defined by the access_definition, in the parameter_specification. The nominal
subtype of a function result is the subtype determined by the optional null_exclusion and the
subtype_mark, or defined by the access_definition, in the parameter_and_result_profile.

An access parameter is a formal in parameter specified by an access_definition. An access result type is a
function result type specified by an access_definition. An access parameter or result type is of an
anonymous access type (see 3.10). Access parameters of an access-to-object type allow dispatching calls
to be controlled by access values. Access parameters of an access-to-subprogram type permit calls to
subprograms passed as parameters irrespective of their accessibility level.

The subtypes of a profile are:
• For any non-access parameters, the nominal subtype of the parameter.

• For any access parameters of an access-to-object type, the designated subtype of the parameter
type.

• For any access parameters of an access-to-subprogram type, the subtypes of the profile of the
parameter type.

• For any non-access result, the nominal subtype of the function result.

• For any access result type of an access-to-object type, the designated subtype of the result type.

• For any access result type of an access-to-subprogram type, the subtypes of the profile of the
result type.

The types of a profile are the types of those subtypes.

17

18

19

20/2

21

22

23/2

24/2

25

26

27/2

27.1/2

28/2

28.1/2

28.2/2

29

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

135 10 November 2006 Subprogram Declarations 6.1

A subprogram declared by an abstract_subprogram_declaration is abstract; a subprogram declared by a
subprogram_declaration is not. See 3.9.3, “Abstract Types and Subprograms”. Similarly, a procedure
defined by a null_procedure_declaration is a null procedure; a procedure declared by a
subprogram_declaration is not. See 6.7, “Null Procedures”.

An overriding_indicator is used to indicate whether overriding is intended. See 8.3.1, “Overriding
Indicators”.

Dynamic Semantics

The elaboration of a subprogram_declaration has no effect.

NOTES
1 A parameter_specification with several identifiers is equivalent to a sequence of single parameter_specifications, as
explained in 3.3.

2 Abstract subprograms do not have bodies, and cannot be used in a nondispatching call (see 3.9.3, “Abstract Types and
Subprograms”).

3 The evaluation of default_expressions is caused by certain calls, as described in 6.4.1. They are not evaluated during
the elaboration of the subprogram declaration.

4 Subprograms can be called recursively and can be called concurrently from multiple tasks.

Examples

Examples of subprogram declarations:
procedure Traverse_Tree;
procedure Increment(X : in out Integer);
procedure Right_Indent(Margin : out Line_Size); -- see 3.5.4
procedure Switch(From, To : in out Link); -- see 3.10.1
function Random return Probability; -- see 3.5.7
function Min_Cell(X : Link) return Cell; -- see 3.10.1
function Next_Frame(K : Positive) return Frame; -- see 3.10
function Dot_Product(Left, Right : Vector) return Real; -- see 3.6
function "*"(Left, Right : Matrix) return Matrix; -- see 3.6

Examples of in parameters with default expressions:
procedure Print_Header(Pages : in Natural;
 Header : in Line := (1 .. Line'Last => ' '); -- see 3.6
 Center : in Boolean := True);

6.2 Formal Parameter Modes
A parameter_specification declares a formal parameter of mode in, in out, or out.

Static Semantics

A parameter is passed either by copy or by reference. When a parameter is passed by copy, the formal
parameter denotes a separate object from the actual parameter, and any information transfer between the
two occurs only before and after executing the subprogram. When a parameter is passed by reference, the
formal parameter denotes (a view of) the object denoted by the actual parameter; reads and updates of the
formal parameter directly reference the actual parameter object.

A type is a by-copy type if it is an elementary type, or if it is a descendant of a private type whose full type
is a by-copy type. A parameter of a by-copy type is passed by copy.

30/2

30.1/2

31/2

32

33

34

35

36

37

38

39

40

41

42

1

2

3

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

6.2 Formal Parameter Modes 10 November 2006 136

A type is a by-reference type if it is a descendant of one of the following:
• a tagged type;

• a task or protected type;

• a nonprivate type with the reserved word limited in its declaration;

• a composite type with a subcomponent of a by-reference type;

• a private type whose full type is a by-reference type.

A parameter of a by-reference type is passed by reference. Each value of a by-reference type has an
associated object. For a parenthesized expression, qualified_expression, or type_conversion, this object is
the one associated with the operand.

For parameters of other types, it is unspecified whether the parameter is passed by copy or by reference.

Bounded (Run-Time) Errors

If one name denotes a part of a formal parameter, and a second name denotes a part of a distinct formal
parameter or an object that is not part of a formal parameter, then the two names are considered distinct
access paths. If an object is of a type for which the parameter passing mechanism is not specified, then it
is a bounded error to assign to the object via one access path, and then read the value of the object via a
distinct access path, unless the first access path denotes a part of a formal parameter that no longer exists
at the point of the second access (due to leaving the corresponding callable construct). The possible
consequences are that Program_Error is raised, or the newly assigned value is read, or some old value of
the object is read.

NOTES
5 A formal parameter of mode in is a constant view (see 3.3); it cannot be updated within the subprogram_body.

6.3 Subprogram Bodies
A subprogram_body specifies the execution of a subprogram.

Syntax

subprogram_body ::=
 [overriding_indicator]
 subprogram_specification is
 declarative_part
 begin
 handled_sequence_of_statements
 end [designator];
If a designator appears at the end of a subprogram_body, it shall repeat the defining_designator of
the subprogram_specification.

Legality Rules

In contrast to other bodies, a subprogram_body need not be the completion of a previous declaration, in
which case the body declares the subprogram. If the body is a completion, it shall be the completion of a
subprogram_declaration or generic_subprogram_declaration. The profile of a subprogram_body that
completes a declaration shall conform fully to that of the declaration.

4

5

6

7

8

9

10

11

12

13

1

2/2

3

4

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

137 10 November 2006 Subprogram Bodies 6.3

Static Semantics

A subprogram_body is considered a declaration. It can either complete a previous declaration, or itself be
the initial declaration of the subprogram.

Dynamic Semantics

The elaboration of a non-generic subprogram_body has no other effect than to establish that the
subprogram can from then on be called without failing the Elaboration_Check.

The execution of a subprogram_body is invoked by a subprogram call. For this execution the
declarative_part is elaborated, and the handled_sequence_of_statements is then executed.

Examples

Example of procedure body:
procedure Push(E : in Element_Type; S : in out Stack) is
begin
 if S.Index = S.Size then
 raise Stack_Overflow;
 else
 S.Index := S.Index + 1;
 S.Space(S.Index) := E;
 end if;
end Push;

Example of a function body:
function Dot_Product(Left, Right : Vector) return Real is
 Sum : Real := 0.0;
begin
 Check(Left'First = Right'First and Left'Last = Right'Last);
 for J in Left'Range loop
 Sum := Sum + Left(J)*Right(J);
 end loop;
 return Sum;
end Dot_Product;

6.3.1 Conformance Rules
When subprogram profiles are given in more than one place, they are required to conform in one of four
ways: type conformance, mode conformance, subtype conformance, or full conformance.

Static Semantics

As explained in B.1, “Interfacing Pragmas”, a convention can be specified for an entity. Unless this
International Standard states otherwise, the default convention of an entity is Ada. For a callable entity or
access-to-subprogram type, the convention is called the calling convention. The following conventions are
defined by the language:

• The default calling convention for any subprogram not listed below is Ada. A pragma
Convention, Import, or Export may be used to override the default calling convention (see B.1).

• The Intrinsic calling convention represents subprograms that are “built in” to the compiler. The
default calling convention is Intrinsic for the following:

• an enumeration literal;

• a "/=" operator declared implicitly due to the declaration of "=" (see 6.6);

• any other implicitly declared subprogram unless it is a dispatching operation of a tagged
type;

5

6

7

8

9

10

11

1

2/1

3

4

5

6

7

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

6.3.1 Conformance Rules 10 November 2006 138

• an inherited subprogram of a generic formal tagged type with unknown discriminants;

• an attribute that is a subprogram;

• a subprogram declared immediately within a protected_body;

• any prefixed view of a subprogram (see 4.1.3).

 The Access attribute is not allowed for Intrinsic subprograms.

• The default calling convention is protected for a protected subprogram, and for an access-to-
subprogram type with the reserved word protected in its definition.

• The default calling convention is entry for an entry.

• The calling convention for an anonymous access-to-subprogram parameter or anonymous
access-to-subprogram result is protected if the reserved word protected appears in its definition
and otherwise is the convention of the subprogram that contains the parameter.

• If not specified above as Intrinsic, the calling convention for any inherited or overriding
dispatching operation of a tagged type is that of the corresponding subprogram of the parent
type. The default calling convention for a new dispatching operation of a tagged type is the
convention of the type.

Of these four conventions, only Ada and Intrinsic are allowed as a convention_identifier in a pragma
Convention, Import, or Export.

Two profiles are type conformant if they have the same number of parameters, and both have a result if
either does, and corresponding parameter and result types are the same, or, for access parameters or access
results, corresponding designated types are the same, or corresponding designated profiles are type
conformant.

Two profiles are mode conformant if they are type-conformant, and corresponding parameters have
identical modes, and, for access parameters or access result types, the designated subtypes statically
match, or the designated profiles are subtype conformant.

Two profiles are subtype conformant if they are mode-conformant, corresponding subtypes of the profile
statically match, and the associated calling conventions are the same. The profile of a generic formal
subprogram is not subtype-conformant with any other profile.

Two profiles are fully conformant if they are subtype-conformant, and corresponding parameters have the
same names and have default_expressions that are fully conformant with one another.

Two expressions are fully conformant if, after replacing each use of an operator with the equivalent
function_call:

• each constituent construct of one corresponds to an instance of the same syntactic category in
the other, except that an expanded name may correspond to a direct_name (or character_literal)
or to a different expanded name in the other; and

• each direct_name, character_literal, and selector_name that is not part of the prefix of an
expanded name in one denotes the same declaration as the corresponding direct_name,
character_literal, or selector_name in the other; and

• each attribute_designator in one must be the same as the corresponding attribute_designator in
the other; and

• each primary that is a literal in one has the same value as the corresponding literal in the other.

8

9

10/2

10.1/2

11

12

13

13.1/2

13.2/1

14

15/2

16/2

17

18

19

20

21

21.1/1

22

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

139 10 November 2006 Conformance Rules 6.3.1

Two known_discriminant_parts are fully conformant if they have the same number of discriminants, and
discriminants in the same positions have the same names, statically matching subtypes, and
default_expressions that are fully conformant with one another.

Two discrete_subtype_definitions are fully conformant if they are both subtype_indications or are both
ranges, the subtype_marks (if any) denote the same subtype, and the corresponding simple_expressions
of the ranges (if any) fully conform.

The prefixed view profile of a subprogram is the profile obtained by omitting the first parameter of that
subprogram. There is no prefixed view profile for a parameterless subprogram. For the purposes of
defining subtype and mode conformance, the convention of a prefixed view profile is considered to match
that of either an entry or a protected operation.

Implementation Permissions

An implementation may declare an operator declared in a language-defined library unit to be intrinsic.

6.3.2 Inline Expansion of Subprograms
Subprograms may be expanded in line at the call site.

Syntax

The form of a pragma Inline, which is a program unit pragma (see 10.1.5), is as follows:
 pragma Inline(name {, name});

Legality Rules

The pragma shall apply to one or more callable entities or generic subprograms.

Static Semantics

If a pragma Inline applies to a callable entity, this indicates that inline expansion is desired for all calls to
that entity. If a pragma Inline applies to a generic subprogram, this indicates that inline expansion is
desired for all calls to all instances of that generic subprogram.

Implementation Permissions

For each call, an implementation is free to follow or to ignore the recommendation expressed by the
pragma.

An implementation may allow a pragma Inline that has an argument which is a direct_name denoting a
subprogram_body of the same declarative_part.

NOTES
6 The name in a pragma Inline can denote more than one entity in the case of overloading. Such a pragma applies to all
of the denoted entities.

23

24

24.1/2

25

1

2

3

4

5

6

6.1/2

7

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

6.4 Subprogram Calls 10 November 2006 140

6.4 Subprogram Calls
A subprogram call is either a procedure_call_statement or a function_call; it invokes the execution of the
subprogram_body. The call specifies the association of the actual parameters, if any, with formal
parameters of the subprogram.

Syntax

procedure_call_statement ::=
 procedure_name;
 | procedure_prefix actual_parameter_part;
function_call ::=
 function_name
 | function_prefix actual_parameter_part
actual_parameter_part ::=
 (parameter_association {, parameter_association})
parameter_association ::=
 [formal_parameter_selector_name =>] explicit_actual_parameter
explicit_actual_parameter ::= expression | variable_name
A parameter_association is named or positional according to whether or not the formal_parameter_-
selector_name is specified. Any positional associations shall precede any named associations.
Named associations are not allowed if the prefix in a subprogram call is an attribute_reference.

Name Resolution Rules

The name or prefix given in a procedure_call_statement shall resolve to denote a callable entity that is a
procedure, or an entry renamed as (viewed as) a procedure. The name or prefix given in a function_call
shall resolve to denote a callable entity that is a function. The name or prefix shall not resolve to denote an
abstract subprogram unless it is also a dispatching subprogram. When there is an actual_parameter_part,
the prefix can be an implicit_dereference of an access-to-subprogram value.

A subprogram call shall contain at most one association for each formal parameter. Each formal parameter
without an association shall have a default_expression (in the profile of the view denoted by the name or
prefix). This rule is an overloading rule (see 8.6).

Dynamic Semantics

For the execution of a subprogram call, the name or prefix of the call is evaluated, and each parameter_-
association is evaluated (see 6.4.1). If a default_expression is used, an implicit parameter_association is
assumed for this rule. These evaluations are done in an arbitrary order. The subprogram_body is then
executed, or a call on an entry or protected subprogram is performed (see 3.9.2). Finally, if the subprogram
completes normally, then after it is left, any necessary assigning back of formal to actual parameters
occurs (see 6.4.1).

If the name or prefix of a subprogram call denotes a prefixed view (see 4.1.3), the subprogram call is
equivalent to a call on the underlying subprogram, with the first actual parameter being provided by the
prefix of the prefixed view (or the Access attribute of this prefix if the first formal parameter is an access
parameter), and the remaining actual parameters given by the actual_parameter_part, if any.

The exception Program_Error is raised at the point of a function_call if the function completes normally
without executing a return statement.

1

2

3

4

5

6

7

8/2

9

10/2

10.1/2

11/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

141 10 November 2006 Subprogram Calls 6.4

A function_call denotes a constant, as defined in 6.5; the nominal subtype of the constant is given by the
nominal subtype of the function result.

Examples

Examples of procedure calls:
Traverse_Tree; -- see 6.1
Print_Header(128, Title, True); -- see 6.1
Switch(From => X, To => Next); -- see 6.1
Print_Header(128, Header => Title, Center => True); -- see 6.1
Print_Header(Header => Title, Center => True, Pages => 128); -- see 6.1

Examples of function calls:
Dot_Product(U, V) -- see 6.1 and 6.3
Clock -- see 9.6
F.all -- presuming F is of an access-to-subprogram type — see 3.10

Examples of procedures with default expressions:
procedure Activate(Process : in Process_Name;
 After : in Process_Name := No_Process;
 Wait : in Duration := 0.0;
 Prior : in Boolean := False);

procedure Pair(Left, Right : in Person_Name := new Person); -- see 3.10.1

Examples of their calls:
Activate(X);
Activate(X, After => Y);
Activate(X, Wait => 60.0, Prior => True);
Activate(X, Y, 10.0, False);

Pair;
Pair(Left => new Person, Right => new Person);

NOTES
7 If a default_expression is used for two or more parameters in a multiple parameter_specification, the default_-
expression is evaluated once for each omitted parameter. Hence in the above examples, the two calls of Pair are
equivalent.

Examples

Examples of overloaded subprograms:
procedure Put(X : in Integer);
procedure Put(X : in String);

procedure Set(Tint : in Color);
procedure Set(Signal : in Light);

Examples of their calls:
Put(28);
Put("no possible ambiguity here");

Set(Tint => Red);
Set(Signal => Red);
Set(Color'(Red));

-- Set(Red) would be ambiguous since Red may
-- denote a value either of type Color or of type Light

12/2

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

6.4.1 Parameter Associations 10 November 2006 142

6.4.1 Parameter Associations
A parameter association defines the association between an actual parameter and a formal parameter.

Name Resolution Rules

The formal_parameter_selector_name of a parameter_association shall resolve to denote a parameter_-
specification of the view being called.

The actual parameter is either the explicit_actual_parameter given in a parameter_association for a
given formal parameter, or the corresponding default_expression if no parameter_association is given
for the formal parameter. The expected type for an actual parameter is the type of the corresponding
formal parameter.

If the mode is in, the actual is interpreted as an expression; otherwise, the actual is interpreted only as a
name, if possible.

Legality Rules

If the mode is in out or out, the actual shall be a name that denotes a variable.

The type of the actual parameter associated with an access parameter shall be convertible (see 4.6) to its
anonymous access type.

Dynamic Semantics

For the evaluation of a parameter_association:
• The actual parameter is first evaluated.

• For an access parameter, the access_definition is elaborated, which creates the anonymous
access type.

• For a parameter (of any mode) that is passed by reference (see 6.2), a view conversion of the
actual parameter to the nominal subtype of the formal parameter is evaluated, and the formal
parameter denotes that conversion.

• For an in or in out parameter that is passed by copy (see 6.2), the formal parameter object is
created, and the value of the actual parameter is converted to the nominal subtype of the formal
parameter and assigned to the formal.

• For an out parameter that is passed by copy, the formal parameter object is created, and:
• For an access type, the formal parameter is initialized from the value of the actual,

without a constraint check;

• For a composite type with discriminants or that has implicit initial values for any
subcomponents (see 3.3.1), the behavior is as for an in out parameter passed by copy.

• For any other type, the formal parameter is uninitialized. If composite, a view
conversion of the actual parameter to the nominal subtype of the formal is evaluated
(which might raise Constraint_Error), and the actual subtype of the formal is that of
the view conversion. If elementary, the actual subtype of the formal is given by its
nominal subtype.

A formal parameter of mode in out or out with discriminants is constrained if either its nominal subtype or
the actual parameter is constrained.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

143 10 November 2006 Parameter Associations 6.4.1

After normal completion and leaving of a subprogram, for each in out or out parameter that is passed by
copy, the value of the formal parameter is converted to the subtype of the variable given as the actual
parameter and assigned to it. These conversions and assignments occur in an arbitrary order.

6.5 Return Statements
A simple_return_statement or extended_return_statement (collectively called a return statement) is
used to complete the execution of the innermost enclosing subprogram_body, entry_body, or accept_-
statement.

Syntax

simple_return_statement ::= return [expression];
extended_return_statement ::=
 return defining_identifier : [aliased] return_subtype_indication [:= expression] [do
 handled_sequence_of_statements
 end return];
return_subtype_indication ::= subtype_indication | access_definition

Name Resolution Rules

The result subtype of a function is the subtype denoted by the subtype_mark, or defined by the
access_definition, after the reserved word return in the profile of the function. The expected type for the
expression, if any, of a simple_return_statement is the result type of the corresponding function. The
expected type for the expression of an extended_return_statement is that of the return_subtype_-
indication.

Legality Rules

A return statement shall be within a callable construct, and it applies to the innermost callable construct or
extended_return_statement that contains it. A return statement shall not be within a body that is within
the construct to which the return statement applies.

A function body shall contain at least one return statement that applies to the function body, unless the
function contains code_statements. A simple_return_statement shall include an expression if and only
if it applies to a function body. An extended_return_statement shall apply to a function body.

For an extended_return_statement that applies to a function body:
• If the result subtype of the function is defined by a subtype_mark, the return_subtype_-

indication shall be a subtype_indication. The type of the subtype_indication shall be the result
type of the function. If the result subtype of the function is constrained, then the subtype defined
by the subtype_indication shall also be constrained and shall statically match this result subtype.
If the result subtype of the function is unconstrained, then the subtype defined by the
subtype_indication shall be a definite subtype, or there shall be an expression.

• If the result subtype of the function is defined by an access_definition, the return_subtype_-
indication shall be an access_definition. The subtype defined by the access_definition shall
statically match the result subtype of the function. The accessibility level of this anonymous
access subtype is that of the result subtype.

For any return statement that applies to a function body:

17

1/2

2/2

2.1/2

2.2/2

3/2

4/2

5/2

5.1/2

5.2/2

5.3/2

5.4/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

6.5 Return Statements 10 November 2006 144

• If the result subtype of the function is limited, then the expression of the return statement (if
any) shall be an aggregate, a function call (or equivalent use of an operator), or a
qualified_expression or parenthesized expression whose operand is one of these.

• If the result subtype of the function is class-wide, the accessibility level of the type of the
expression of the return statement shall not be statically deeper than that of the master that
elaborated the function body. If the result subtype has one or more unconstrained access
discriminants, the accessibility level of the anonymous access type of each access discriminant,
as determined by the expression of the simple_return_statement or the return_subtype_-
indication, shall not be statically deeper than that of the master that elaborated the function body.

Static Semantics

Within an extended_return_statement, the return object is declared with the given defining_identifier,
with the nominal subtype defined by the return_subtype_indication.

Dynamic Semantics

For the execution of an extended_return_statement, the subtype_indication or access_definition is
elaborated. This creates the nominal subtype of the return object. If there is an expression, it is evaluated
and converted to the nominal subtype (which might raise Constraint_Error — see 4.6); the return object is
created and the converted value is assigned to the return object. Otherwise, the return object is created and
initialized by default as for a stand-alone object of its nominal subtype (see 3.3.1). If the nominal subtype
is indefinite, the return object is constrained by its initial value.

For the execution of a simple_return_statement, the expression (if any) is first evaluated, converted to
the result subtype, and then is assigned to the anonymous return object.

If the return object has any parts that are tasks, the activation of those tasks does not occur until after the
function returns (see 9.2).

If the result type of a function is a specific tagged type, the tag of the return object is that of the result
type. If the result type is class-wide, the tag of the return object is that of the value of the expression. A
check is made that the accessibility level of the type identified by the tag of the result is not deeper than
that of the master that elaborated the function body. If this check fails, Program_Error is raised.

Paragraphs 9 through 20 were deleted.

If the result subtype of a function has one or more unconstrained access discriminants, a check is made
that the accessibility level of the anonymous access type of each access discriminant, as determined by the
expression or the return_subtype_indication of the function, is not deeper than that of the master that
elaborated the function body. If this check fails, Program_Error is raised.

For the execution of an extended_return_statement, the handled_sequence_of_statements is executed.
Within this handled_sequence_of_statements, the execution of a simple_return_statement that applies
to the extended_return_statement causes a transfer of control that completes the extended_return_-
statement. Upon completion of a return statement that applies to a callable construct, a transfer of control
is performed which completes the execution of the callable construct, and returns to the caller.

In the case of a function, the function_call denotes a constant view of the return object.

Implementation Permissions

If the result subtype of a function is unconstrained, and a call on the function is used to provide the initial
value of an object with a constrained nominal subtype, Constraint_Error may be raised at the point of the
call (after abandoning the execution of the function body) if, while elaborating the return_subtype_-

5.5/2

5.6/2

5.7/2

5.8/2

6/2

7/2

8/2

21/2

22/2

23/2

24/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

145 10 November 2006 Return Statements 6.5

indication or evaluating the expression of a return statement that applies to the function body, it is
determined that the value of the result will violate the constraint of the subtype of this object.

Examples

Examples of return statements:
return; -- in a procedure body, entry_body,
 -- accept_statement, or extended_return_statement
return Key_Value(Last_Index); -- in a function body
return Node : Cell do -- in a function body, see 3.10.1 for Cell
 Node.Value := Result;
 Node.Succ := Next_Node;
end return;

6.5.1 Pragma No_Return
A pragma No_Return indicates that a procedure cannot return normally; it may propagate an exception or
loop forever.

Syntax

The form of a pragma No_Return, which is a representation pragma (see 13.1), is as follows:
 pragma No_Return(procedure_local_name{, procedure_local_name});

Legality Rules

Each procedure_local_name shall denote one or more procedures or generic procedures; the denoted
entities are non-returning. The procedure_local_name shall not denote a null procedure nor an instance of
a generic unit.

A return statement shall not apply to a non-returning procedure or generic procedure.

A procedure shall be non-returning if it overrides a dispatching non-returning procedure. In addition to the
places where Legality Rules normally apply (see 12.3), this rule applies also in the private part of an
instance of a generic unit.

If a renaming-as-body completes a non-returning procedure declaration, then the renamed procedure shall
be non-returning.

Static Semantics

If a generic procedure is non-returning, then so are its instances. If a procedure declared within a generic
unit is non-returning, then so are the corresponding copies of that procedure in instances.

Dynamic Semantics

If the body of a non-returning procedure completes normally, Program_Error is raised at the point of the
call.

Examples
procedure Fail(Msg : String); -- raises Fatal_Error exception
pragma No_Return(Fail);
 -- Inform compiler and reader that procedure never returns normally

25

26/2

27

28/2

1/2

2/2

3/2

4/2

5/2

6/2

7/2

8/2

9/2

10/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

6.6 Overloading of Operators 10 November 2006 146

6.6 Overloading of Operators
An operator is a function whose designator is an operator_symbol. Operators, like other functions, may
be overloaded.

Name Resolution Rules

Each use of a unary or binary operator is equivalent to a function_call with function_prefix being the
corresponding operator_symbol, and with (respectively) one or two positional actual parameters being the
operand(s) of the operator (in order).

Legality Rules

The subprogram_specification of a unary or binary operator shall have one or two parameters,
respectively. A generic function instantiation whose designator is an operator_symbol is only allowed if
the specification of the generic function has the corresponding number of parameters.

Default_expressions are not allowed for the parameters of an operator (whether the operator is declared
with an explicit subprogram_specification or by a generic_instantiation).

An explicit declaration of "/=" shall not have a result type of the predefined type Boolean.

Static Semantics

A declaration of "=" whose result type is Boolean implicitly declares a declaration of "/=" that gives the
complementary result.

NOTES
8 The operators "+" and "–" are both unary and binary operators, and hence may be overloaded with both one- and two-
parameter functions.

Examples

Examples of user-defined operators:
function "+" (Left, Right : Matrix) return Matrix;
function "+" (Left, Right : Vector) return Vector;

-- assuming that A, B, and C are of the type Vector
-- the following two statements are equivalent:

A := B + C;
A := "+"(B, C);

1

2

3

4

5

6

7

8

9

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

147 10 November 2006 Null Procedures 6.7

6.7 Null Procedures
A null_procedure_declaration provides a shorthand to declare a procedure with an empty body.

Syntax

null_procedure_declaration ::=
 [overriding_indicator]
 procedure_specification is null;

Static Semantics

A null_procedure_declaration declares a null procedure. A completion is not allowed for a
null_procedure_declaration.

Dynamic Semantics

The execution of a null procedure is invoked by a subprogram call. For the execution of a subprogram call
on a null procedure, the execution of the subprogram_body has no effect.

The elaboration of a null_procedure_declaration has no effect.

Examples
procedure Simplify(Expr : in out Expression) is null; -- see 3.9
-- By default, Simplify does nothing, but it may be overridden in extensions of Expression

1/2

2/2

3/2

4/2

5/2

6/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

149 10 November 2006 Packages 7

Section 7: Packages
Packages are program units that allow the specification of groups of logically related entities. Typically, a
package contains the declaration of a type (often a private type or private extension) along with the
declarations of primitive subprograms of the type, which can be called from outside the package, while
their inner workings remain hidden from outside users.

7.1 Package Specifications and Declarations
A package is generally provided in two parts: a package_specification and a package_body. Every
package has a package_specification, but not all packages have a package_body.

Syntax

package_declaration ::= package_specification;
package_specification ::=
 package defining_program_unit_name is
 {basic_declarative_item}
 [private
 {basic_declarative_item}]
 end [[parent_unit_name.]identifier]
If an identifier or parent_unit_name.identifier appears at the end of a package_specification, then
this sequence of lexical elements shall repeat the defining_program_unit_name.

Legality Rules

A package_declaration or generic_package_declaration requires a completion (a body) if it contains any
basic_declarative_item that requires a completion, but whose completion is not in its
package_specification.

Static Semantics

The first list of basic_declarative_items of a package_specification of a package other than a generic
formal package is called the visible part of the package. The optional list of basic_declarative_items after
the reserved word private (of any package_specification) is called the private part of the package. If the
reserved word private does not appear, the package has an implicit empty private part. Each list of
basic_declarative_items of a package_specification forms a declaration list of the package.

An entity declared in the private part of a package is visible only within the declarative region of the
package itself (including any child units — see 10.1.1). In contrast, expanded names denoting entities
declared in the visible part can be used even outside the package; furthermore, direct visibility of such
entities can be achieved by means of use_clauses (see 4.1.3 and 8.4).

Dynamic Semantics

The elaboration of a package_declaration consists of the elaboration of its basic_declarative_items in the
given order.

NOTES
1 The visible part of a package contains all the information that another program unit is able to know about the package.

2 If a declaration occurs immediately within the specification of a package, and the declaration has a corresponding
completion that is a body, then that body has to occur immediately within the body of the package.

1

1

2

3

4

5/2

6/2

7

8

9

10

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

7.1 Package Specifications and Declarations 10 November 2006 150

Examples

Example of a package declaration:
package Rational_Numbers is

 type Rational is
 record
 Numerator : Integer;
 Denominator : Positive;
 end record;

 function "="(X,Y : Rational) return Boolean;

 function "/" (X,Y : Integer) return Rational; -- to construct a rational number
 function "+" (X,Y : Rational) return Rational;
 function "-" (X,Y : Rational) return Rational;
 function "*" (X,Y : Rational) return Rational;
 function "/" (X,Y : Rational) return Rational;
end Rational_Numbers;

There are also many examples of package declarations in the predefined language environment (see Annex
A).

7.2 Package Bodies
In contrast to the entities declared in the visible part of a package, the entities declared in the
package_body are visible only within the package_body itself. As a consequence, a package with a
package_body can be used for the construction of a group of related subprograms in which the logical
operations available to clients are clearly isolated from the internal entities.

Syntax

package_body ::=
 package body defining_program_unit_name is
 declarative_part
 [begin
 handled_sequence_of_statements]
 end [[parent_unit_name.]identifier];
If an identifier or parent_unit_name.identifier appears at the end of a package_body, then this
sequence of lexical elements shall repeat the defining_program_unit_name.

Legality Rules

A package_body shall be the completion of a previous package_declaration or generic_package_-
declaration. A library package_declaration or library generic_package_declaration shall not have a
body unless it requires a body; pragma Elaborate_Body can be used to require a library_unit_declaration
to have a body (see 10.2.1) if it would not otherwise require one.

Static Semantics

In any package_body without statements there is an implicit null_statement. For any package_-
declaration without an explicit completion, there is an implicit package_body containing a single
null_statement. For a noninstance, nonlibrary package, this body occurs at the end of the declarative_part
of the innermost enclosing program unit or block_statement; if there are several such packages, the order
of the implicit package_bodies is unspecified. (For an instance, the implicit package_body occurs at the
place of the instantiation (see 12.3). For a library package, the place is partially determined by the
elaboration dependences (see Section 10).)

11

12

13

14

15

16

17

1

2

3

4

5

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

151 10 November 2006 Package Bodies 7.2

Dynamic Semantics

For the elaboration of a nongeneric package_body, its declarative_part is first elaborated, and its
handled_sequence_of_statements is then executed.

NOTES
3 A variable declared in the body of a package is only visible within this body and, consequently, its value can only be
changed within the package_body. In the absence of local tasks, the value of such a variable remains unchanged between
calls issued from outside the package to subprograms declared in the visible part. The properties of such a variable are
similar to those of a “static” variable of C.

4 The elaboration of the body of a subprogram explicitly declared in the visible part of a package is caused by the
elaboration of the body of the package. Hence a call of such a subprogram by an outside program unit raises the exception
Program_Error if the call takes place before the elaboration of the package_body (see 3.11).

Examples

Example of a package body (see 7.1):
package body Rational_Numbers is

 procedure Same_Denominator (X,Y : in out Rational) is
 begin
 -- reduces X and Y to the same denominator:
 ...
 end Same_Denominator;

 function "="(X,Y : Rational) return Boolean is
 U : Rational := X;
 V : Rational := Y;
 begin
 Same_Denominator (U,V);
 return U.Numerator = V.Numerator;
 end "=";

 function "/" (X,Y : Integer) return Rational is
 begin
 if Y > 0 then
 return (Numerator => X, Denominator => Y);
 else
 return (Numerator => -X, Denominator => -Y);
 end if;
 end "/";

 function "+" (X,Y : Rational) return Rational is ... end "+";
 function "-" (X,Y : Rational) return Rational is ... end "-";
 function "*" (X,Y : Rational) return Rational is ... end "*";
 function "/" (X,Y : Rational) return Rational is ... end "/";

end Rational_Numbers;

7.3 Private Types and Private Extensions
The declaration (in the visible part of a package) of a type as a private type or private extension serves to
separate the characteristics that can be used directly by outside program units (that is, the logical
properties) from other characteristics whose direct use is confined to the package (the details of the
definition of the type itself). See 3.9.1 for an overview of type extensions.

Syntax

private_type_declaration ::=
 type defining_identifier [discriminant_part] is [[abstract] tagged] [limited] private;

6

7

8

9

10

11

12

13

14

15

1

2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

7.3 Private Types and Private Extensions 10 November 2006 152

private_extension_declaration ::=
 type defining_identifier [discriminant_part] is
 [abstract] [limited | synchronized] new ancestor_subtype_indication
 [and interface_list] with private;

Legality Rules

A private_type_declaration or private_extension_declaration declares a partial view of the type; such a
declaration is allowed only as a declarative_item of the visible part of a package, and it requires a
completion, which shall be a full_type_declaration that occurs as a declarative_item of the private part of
the package. The view of the type declared by the full_type_declaration is called the full view. A generic
formal private type or a generic formal private extension is also a partial view.

A type shall be completely defined before it is frozen (see 3.11.1 and 13.14). Thus, neither the declaration
of a variable of a partial view of a type, nor the creation by an allocator of an object of the partial view are
allowed before the full declaration of the type. Similarly, before the full declaration, the name of the
partial view cannot be used in a generic_instantiation or in a representation item.

A private type is limited if its declaration includes the reserved word limited; a private extension is limited
if its ancestor type is a limited type that is not an interface type, or if the reserved word limited or
synchronized appears in its definition. If the partial view is nonlimited, then the full view shall be
nonlimited. If a tagged partial view is limited, then the full view shall be limited. On the other hand, if an
untagged partial view is limited, the full view may be limited or nonlimited.

If the partial view is tagged, then the full view shall be tagged. On the other hand, if the partial view is
untagged, then the full view may be tagged or untagged. In the case where the partial view is untagged and
the full view is tagged, no derivatives of the partial view are allowed within the immediate scope of the
partial view; derivatives of the full view are allowed.

If a full type has a partial view that is tagged, then:
• the partial view shall be a synchronized tagged type (see 3.9.4) if and only if the full type is a

synchronized tagged type;

• the partial view shall be a descendant of an interface type (see 3.9.4) if and only if the full type
is a descendant of the interface type.

The ancestor subtype of a private_extension_declaration is the subtype defined by the ancestor_-
subtype_indication; the ancestor type shall be a specific tagged type. The full view of a private extension
shall be derived (directly or indirectly) from the ancestor type. In addition to the places where Legality
Rules normally apply (see 12.3), the requirement that the ancestor be specific applies also in the private
part of an instance of a generic unit.

If the reserved word limited appears in a private_extension_declaration, the ancestor type shall be a
limited type. If the reserved word synchronized appears in a private_extension_declaration, the ancestor
type shall be a limited interface.

If the declaration of a partial view includes a known_discriminant_part, then the full_type_declaration
shall have a fully conforming (explicit) known_discriminant_part (see 6.3.1, “Conformance Rules”). The
ancestor subtype may be unconstrained; the parent subtype of the full view is required to be constrained
(see 3.7).

If a private extension inherits known discriminants from the ancestor subtype, then the full view shall also
inherit its discriminants from the ancestor subtype, and the parent subtype of the full view shall be
constrained if and only if the ancestor subtype is constrained.

3/2

4

5

6/2

7

7.1/2

7.2/2

7.3/2

8

8.1/2

9

10

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

153 10 November 2006 Private Types and Private Extensions 7.3

If the full_type_declaration for a private extension is defined by a derived_type_definition, then the
reserved word limited shall appear in the full_type_declaration if and only if it also appears in the
private_extension_declaration.

If a partial view has unknown discriminants, then the full_type_declaration may define a definite or an
indefinite subtype, with or without discriminants.

If a partial view has neither known nor unknown discriminants, then the full_type_declaration shall define
a definite subtype.

If the ancestor subtype of a private extension has constrained discriminants, then the parent subtype of the
full view shall impose a statically matching constraint on those discriminants.

Static Semantics

A private_type_declaration declares a private type and its first subtype. Similarly, a private_extension_-
declaration declares a private extension and its first subtype.

A declaration of a partial view and the corresponding full_type_declaration define two views of a single
type. The declaration of a partial view together with the visible part define the operations that are available
to outside program units; the declaration of the full view together with the private part define other
operations whose direct use is possible only within the declarative region of the package itself. Moreover,
within the scope of the declaration of the full view, the characteristics of the type are determined by the
full view; in particular, within its scope, the full view determines the classes that include the type, which
components, entries, and protected subprograms are visible, what attributes and other predefined
operations are allowed, and whether the first subtype is static. See 7.3.1.

A private extension inherits components (including discriminants unless there is a new discriminant_part
specified) and user-defined primitive subprograms from its ancestor type and its progenitor types (if any),
in the same way that a record extension inherits components and user-defined primitive subprograms from
its parent type and its progenitor types (see 3.4).

Dynamic Semantics

The elaboration of a private_type_declaration creates a partial view of a type. The elaboration of a
private_extension_declaration elaborates the ancestor_subtype_indication, and creates a partial view of a
type.

NOTES
5 The partial view of a type as declared by a private_type_declaration is defined to be a composite view (in 3.2). The full
view of the type might or might not be composite. A private extension is also composite, as is its full view.

6 Declaring a private type with an unknown_discriminant_part is a way of preventing clients from creating uninitialized
objects of the type; they are then forced to initialize each object by calling some operation declared in the visible part of
the package.

7 The ancestor type specified in a private_extension_declaration and the parent type specified in the corresponding
declaration of a record extension given in the private part need not be the same. If the ancestor type is not an interface
type, the parent type of the full view can be any descendant of the ancestor type. In this case, for a primitive subprogram
that is inherited from the ancestor type and not overridden, the formal parameter names and default expressions (if any)
come from the corresponding primitive subprogram of the specified ancestor type, while the body comes from the
corresponding primitive subprogram of the parent type of the full view. See 3.9.2.

8 If the ancestor type specified in a private_extension_declaration is an interface type, the parent type can be any type so
long as the full view is a descendant of the ancestor type. The progenitor types specified in a
private_extension_declaration and the progenitor types specified in the corresponding declaration of a record extension
given in the private part need not be the same — the only requirement is that the private extension and the record
extension be descended from the same set of interfaces.

10.1/2

11

12

13

14

15

16/2

17

18

19/2

20/2

20.1/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

7.3 Private Types and Private Extensions 10 November 2006 154

Examples

Examples of private type declarations:
type Key is private;
type File_Name is limited private;

Example of a private extension declaration:
type List is new Ada.Finalization.Controlled with private;

7.3.1 Private Operations
For a type declared in the visible part of a package or generic package, certain operations on the type do
not become visible until later in the package — either in the private part or the body. Such private
operations are available only inside the declarative region of the package or generic package.

Static Semantics

The predefined operators that exist for a given type are determined by the classes to which the type
belongs. For example, an integer type has a predefined "+" operator. In most cases, the predefined
operators of a type are declared immediately after the definition of the type; the exceptions are explained
below. Inherited subprograms are also implicitly declared immediately after the definition of the type,
except as stated below.

For a composite type, the characteristics (see 7.3) of the type are determined in part by the characteristics
of its component types. At the place where the composite type is declared, the only characteristics of
component types used are those characteristics visible at that place. If later immediately within the
declarative region in which the composite type is declared additional characteristics become visible for a
component type, then any corresponding characteristics become visible for the composite type. Any
additional predefined operators are implicitly declared at that place.

The corresponding rule applies to a type defined by a derived_type_definition, if there is a place
immediately within the declarative region in which the type is declared where additional characteristics of
its parent type become visible.

For example, an array type whose component type is limited private becomes nonlimited if the full view of
the component type is nonlimited and visible at some later place immediately within the declarative region
in which the array type is declared. In such a case, the predefined "=" operator is implicitly declared at that
place, and assignment is allowed after that place.

Inherited primitive subprograms follow a different rule. For a derived_type_definition, each inherited
primitive subprogram is implicitly declared at the earliest place, if any, immediately within the declarative
region in which the type_declaration occurs, but after the type_declaration, where the corresponding
declaration from the parent is visible. If there is no such place, then the inherited subprogram is not
declared at all. An inherited subprogram that is not declared at all cannot be named in a call and cannot be
overridden, but for a tagged type, it is possible to dispatch to it.

For a private_extension_declaration, each inherited subprogram is declared immediately after the
private_extension_declaration if the corresponding declaration from the ancestor is visible at that place.
Otherwise, the inherited subprogram is not declared for the private extension, though it might be for the
full type.

The Class attribute is defined for tagged subtypes in 3.9. In addition, for every subtype S of an untagged
private type whose full view is tagged, the following attribute is defined:

21

22

23

24

1

2

3/1

4/1

5/1

6/1

7

8

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

155 10 November 2006 Private Operations 7.3.1

S'Class Denotes the class-wide subtype corresponding to the full view of S. This attribute is
allowed only from the beginning of the private part in which the full view is declared, until
the declaration of the full view. After the full view, the Class attribute of the full view can
be used.

NOTES
9 Because a partial view and a full view are two different views of one and the same type, outside of the defining package
the characteristics of the type are those defined by the visible part. Within these outside program units the type is just a
private type or private extension, and any language rule that applies only to another class of types does not apply. The fact
that the full declaration might implement a private type with a type of a particular class (for example, as an array type) is
relevant only within the declarative region of the package itself including any child units.

The consequences of this actual implementation are, however, valid everywhere. For example: any default initialization of
components takes place; the attribute Size provides the size of the full view; finalization is still done for controlled
components of the full view; task dependence rules still apply to components that are task objects.

10 Partial views provide initialization, membership tests, selected components for the selection of discriminants and
inherited components, qualification, and explicit conversion. Nonlimited partial views also allow use of
assignment_statements.

11 For a subtype S of a partial view, S'Size is defined (see 13.3). For an object A of a partial view, the attributes A'Size
and A'Address are defined (see 13.3). The Position, First_Bit, and Last_Bit attributes are also defined for discriminants
and inherited components.

Examples

Example of a type with private operations:
package Key_Manager is
 type Key is private;
 Null_Key : constant Key; -- a deferred constant declaration (see 7.4)
 procedure Get_Key(K : out Key);
 function "<" (X, Y : Key) return Boolean;
private
 type Key is new Natural;
 Null_Key : constant Key := Key'First;
end Key_Manager;

package body Key_Manager is
 Last_Key : Key := Null_Key;
 procedure Get_Key(K : out Key) is
 begin
 Last_Key := Last_Key + 1;
 K := Last_Key;
 end Get_Key;

 function "<" (X, Y : Key) return Boolean is
 begin
 return Natural(X) < Natural(Y);
 end "<";
end Key_Manager;

NOTES
12 Notes on the example: Outside of the package Key_Manager, the operations available for objects of type Key include
assignment, the comparison for equality or inequality, the procedure Get_Key and the operator "<"; they do not include
other relational operators such as ">=", or arithmetic operators.

The explicitly declared operator "<" hides the predefined operator "<" implicitly declared by the full_type_declaration.
Within the body of the function, an explicit conversion of X and Y to the subtype Natural is necessary to invoke the "<"
operator of the parent type. Alternatively, the result of the function could be written as not (X >= Y), since the operator
">=" is not redefined.

The value of the variable Last_Key, declared in the package body, remains unchanged between calls of the procedure
Get_Key. (See also the NOTES of 7.2.)

9

10

11

12/2

13

14

15

16

17

18

19

20

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

7.4 Deferred Constants 10 November 2006 156

7.4 Deferred Constants
Deferred constant declarations may be used to declare constants in the visible part of a package, but with
the value of the constant given in the private part. They may also be used to declare constants imported
from other languages (see Annex B).

Legality Rules

A deferred constant declaration is an object_declaration with the reserved word constant but no
initialization expression. The constant declared by a deferred constant declaration is called a deferred
constant. A deferred constant declaration requires a completion, which shall be a full constant declaration
(called the full declaration of the deferred constant), or a pragma Import (see Annex B).

A deferred constant declaration that is completed by a full constant declaration shall occur immediately
within the visible part of a package_specification. For this case, the following additional rules apply to
the corresponding full declaration:

• The full declaration shall occur immediately within the private part of the same package;

• The deferred and full constants shall have the same type, or shall have statically matching
anonymous access subtypes;

• If the deferred constant declaration includes a subtype_indication that defines a constrained
subtype, then the subtype defined by the subtype_indication in the full declaration shall match it
statically. On the other hand, if the subtype of the deferred constant is unconstrained, then the
full declaration is still allowed to impose a constraint. The constant itself will be constrained,
like all constants;

• If the deferred constant declaration includes the reserved word aliased, then the full declaration
shall also;

• If the subtype of the deferred constant declaration excludes null, the subtype of the full
declaration shall also exclude null.

A deferred constant declaration that is completed by a pragma Import need not appear in the visible part
of a package_specification, and has no full constant declaration.

The completion of a deferred constant declaration shall occur before the constant is frozen (see 13.14).

Dynamic Semantics

The elaboration of a deferred constant declaration elaborates the subtype_indication or (only allowed in
the case of an imported constant) the array_type_definition.

NOTES
13 The full constant declaration for a deferred constant that is of a given private type or private extension is not allowed
before the corresponding full_type_declaration. This is a consequence of the freezing rules for types (see 13.14).

Examples

Examples of deferred constant declarations:
Null_Key : constant Key; -- see 7.3.1
CPU_Identifier : constant String(1..8);
pragma Import(Assembler, CPU_Identifier, Link_Name => "CPU_ID");
 -- see B.1

1

2

3

4

5/2

6/2

7/2

7.1/2

8

9/2

10

11

12

13

14

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

157 10 November 2006 Limited Types 7.5

7.5 Limited Types
A limited type is (a view of) a type for which copying (such as for an assignment_statement) is not
allowed. A nonlimited type is a (view of a) type for which copying is allowed.

Legality Rules

If a tagged record type has any limited components, then the reserved word limited shall appear in its
record_type_definition. If the reserved word limited appears in the definition of a
derived_type_definition, its parent type and any progenitor interfaces shall be limited.

In the following contexts, an expression of a limited type is not permitted unless it is an aggregate, a
function_call, or a parenthesized expression or qualified_expression whose operand is permitted by this
rule:

• the initialization expression of an object_declaration (see 3.3.1)

• the default_expression of a component_declaration (see 3.8)

• the expression of a record_component_association (see 4.3.1)

• the expression for an ancestor_part of an extension_aggregate (see 4.3.2)

• an expression of a positional_array_aggregate or the expression of an
array_component_association (see 4.3.3)

• the qualified_expression of an initialized allocator (see 4.8)

• the expression of a return statement (see 6.5)

• the default_expression or actual parameter for a formal object of mode in (see 12.4)

Static Semantics

A type is limited if it is one of the following:
• a type with the reserved word limited, synchronized, task, or protected in its definition;

• This paragraph was deleted.

• a composite type with a limited component;

• a derived type whose parent is limited and is not an interface.

Otherwise, the type is nonlimited.

There are no predefined equality operators for a limited type.

Implementation Requirements

For an aggregate of a limited type used to initialize an object as allowed above, the implementation shall
not create a separate anonymous object for the aggregate. For a function_call of a type with a part that is
of a task, protected, or explicitly limited record type that is used to initialize an object as allowed above,
the implementation shall not create a separate return object (see 6.5) for the function_call. The aggregate
or function_call shall be constructed directly in the new object.

NOTES
14 While it is allowed to write initializations of limited objects, such initializations never copy a limited object. The
source of such an assignment operation must be an aggregate or function_call, and such aggregates and function_calls
must be built directly in the target object.

Paragraphs 10 through 15 were deleted.

1/2

2/2

2.1/2

2.2/2

2.3/2

2.4/2

2.5/2

2.6/2

2.7/2

2.8/2

2.9/2

3/2

4/2

5/2

6/2

6.1/2

7

8

8.1/2

9/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

7.5 Limited Types 10 November 2006 158

15 As illustrated in 7.3.1, an untagged limited type can become nonlimited under certain circumstances.

Examples

Example of a package with a limited type:
package IO_Package is
 type File_Name is limited private;

 procedure Open (F : in out File_Name);
 procedure Close(F : in out File_Name);
 procedure Read (F : in File_Name; Item : out Integer);
 procedure Write(F : in File_Name; Item : in Integer);
private
 type File_Name is
 limited record
 Internal_Name : Integer := 0;
 end record;
end IO_Package;

package body IO_Package is
 Limit : constant := 200;
 type File_Descriptor is record ... end record;
 Directory : array (1 .. Limit) of File_Descriptor;
 ...
 procedure Open (F : in out File_Name) is ... end;
 procedure Close(F : in out File_Name) is ... end;
 procedure Read (F : in File_Name; Item : out Integer) is ... end;
 procedure Write(F : in File_Name; Item : in Integer) is ... end;
begin
 ...
end IO_Package;

NOTES
16 Notes on the example: In the example above, an outside subprogram making use of IO_Package may obtain a file
name by calling Open and later use it in calls to Read and Write. Thus, outside the package, a file name obtained from
Open acts as a kind of password; its internal properties (such as containing a numeric value) are not known and no other
operations (such as addition or comparison of internal names) can be performed on a file name. Most importantly, clients
of the package cannot make copies of objects of type File_Name.

This example is characteristic of any case where complete control over the operations of a type is desired. Such packages
serve a dual purpose. They prevent a user from making use of the internal structure of the type. They also implement the
notion of an encapsulated data type where the only operations on the type are those given in the package specification.

The fact that the full view of File_Name is explicitly declared limited means that parameter passing will always be by
reference and function results will always be built directly in the result object (see 6.2 and 6.5).

7.6 User-Defined Assignment and Finalization
Three kinds of actions are fundamental to the manipulation of objects: initialization, finalization, and
assignment. Every object is initialized, either explicitly or by default, after being created (for example, by
an object_declaration or allocator). Every object is finalized before being destroyed (for example, by
leaving a subprogram_body containing an object_declaration, or by a call to an instance of
Unchecked_Deallocation). An assignment operation is used as part of assignment_statements, explicit
initialization, parameter passing, and other operations.

Default definitions for these three fundamental operations are provided by the language, but a controlled
type gives the user additional control over parts of these operations. In particular, the user can define, for a
controlled type, an Initialize procedure which is invoked immediately after the normal default
initialization of a controlled object, a Finalize procedure which is invoked immediately before finalization
of any of the components of a controlled object, and an Adjust procedure which is invoked as the last step
of an assignment to a (nonlimited) controlled object.

16

17

18

19

20

21

22

23/2

1

2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

159 10 November 2006 User-Defined Assignment and Finalization 7.6

Static Semantics

The following language-defined library package exists:
package Ada.Finalization is
 pragma Preelaborate(Finalization);
 pragma Remote_Types(Finalization);

 type Controlled is abstract tagged private;
 pragma Preelaborable_Initialization(Controlled);

 procedure Initialize (Object : in out Controlled) is null;
 procedure Adjust (Object : in out Controlled) is null;
 procedure Finalize (Object : in out Controlled) is null;

 type Limited_Controlled is abstract tagged limited private;
 pragma Preelaborable_Initialization(Limited_Controlled);

 procedure Initialize (Object : in out Limited_Controlled) is null;
 procedure Finalize (Object : in out Limited_Controlled) is null;
private
 ... -- not specified by the language
end Ada.Finalization;

A controlled type is a descendant of Controlled or Limited_Controlled. The predefined "=" operator of
type Controlled always returns True, since this operator is incorporated into the implementation of the
predefined equality operator of types derived from Controlled, as explained in 4.5.2. The type
Limited_Controlled is like Controlled, except that it is limited and it lacks the primitive subprogram
Adjust.

A type is said to need finalization if:
• it is a controlled type, a task type or a protected type; or

• it has a component that needs finalization; or

• it is a limited type that has an access discriminant whose designated type needs finalization; or

• it is one of a number of language-defined types that are explicitly defined to need finalization.

Dynamic Semantics

During the elaboration or evaluation of a construct that causes an object to be initialized by default, for
every controlled subcomponent of the object that is not assigned an initial value (as defined in 3.3.1),
Initialize is called on that subcomponent. Similarly, if the object that is initialized by default as a whole is
controlled, Initialize is called on the object.

For an extension_aggregate whose ancestor_part is a subtype_mark denoting a controlled subtype, the
Initialize procedure of the ancestor type is called, unless that Initialize procedure is abstract.

Initialize and other initialization operations are done in an arbitrary order, except as follows. Initialize is
applied to an object after initialization of its subcomponents, if any (including both implicit initialization
and Initialize calls). If an object has a component with an access discriminant constrained by a per-object
expression, Initialize is applied to this component after any components that do not have such
discriminants. For an object with several components with such a discriminant, Initialize is applied to them
in order of their component_declarations. For an allocator, any task activations follow all calls on
Initialize.

When a target object with any controlled parts is assigned a value, either when created or in a subsequent
assignment_statement, the assignment operation proceeds as follows:

• The value of the target becomes the assigned value.

• The value of the target is adjusted.

3

4/1

5/2

6/2

7/2

8/2

9/2

9.1/2

9.2/2

9.3/2

9.4/2

9.5/2

10/2

11/2

12

13

14

15

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

7.6 User-Defined Assignment and Finalization 10 November 2006 160

To adjust the value of a (nonlimited) composite object, the values of the components of the object are first
adjusted in an arbitrary order, and then, if the object is controlled, Adjust is called. Adjusting the value of
an elementary object has no effect, nor does adjusting the value of a composite object with no controlled
parts.

For an assignment_statement, after the name and expression have been evaluated, and any conversion
(including constraint checking) has been done, an anonymous object is created, and the value is assigned
into it; that is, the assignment operation is applied. (Assignment includes value adjustment.) The target of
the assignment_statement is then finalized. The value of the anonymous object is then assigned into the
target of the assignment_statement. Finally, the anonymous object is finalized. As explained below, the
implementation may eliminate the intermediate anonymous object, so this description subsumes the one
given in 5.2, “Assignment Statements”.

Implementation Requirements

For an aggregate of a controlled type whose value is assigned, other than by an assignment_statement,
the implementation shall not create a separate anonymous object for the aggregate. The aggregate value
shall be constructed directly in the target of the assignment operation and Adjust is not called on the target
object.

Implementation Permissions

An implementation is allowed to relax the above rules (for nonlimited controlled types) in the following
ways:

• For an assignment_statement that assigns to an object the value of that same object, the
implementation need not do anything.

• For an assignment_statement for a noncontrolled type, the implementation may finalize and
assign each component of the variable separately (rather than finalizing the entire variable and
assigning the entire new value) unless a discriminant of the variable is changed by the
assignment.

• For an aggregate or function call whose value is assigned into a target object, the
implementation need not create a separate anonymous object if it can safely create the value of
the aggregate or function call directly in the target object. Similarly, for an assignment_-
statement, the implementation need not create an anonymous object if the value being assigned
is the result of evaluating a name denoting an object (the source object) whose storage cannot
overlap with the target. If the source object might overlap with the target object, then the
implementation can avoid the need for an intermediary anonymous object by exercising one of
the above permissions and perform the assignment one component at a time (for an overlapping
array assignment), or not at all (for an assignment where the target and the source of the
assignment are the same object).

Furthermore, an implementation is permitted to omit implicit Initialize, Adjust, and Finalize calls and
associated assignment operations on an object of a nonlimited controlled type provided that:

• any omitted Initialize call is not a call on a user-defined Initialize procedure, and

• any usage of the value of the object after the implicit Initialize or Adjust call and before any
subsequent Finalize call on the object does not change the external effect of the program, and

• after the omission of such calls and operations, any execution of the program that executes an
Initialize or Adjust call on an object or initializes an object by an aggregate will also later
execute a Finalize call on the object and will always do so prior to assigning a new value to the
object, and

• the assignment operations associated with omitted Adjust calls are also omitted.

16

17

17.1/2

18

19

20

21/2

22/2

23/2

24/2

25/2

26/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

161 10 November 2006 User-Defined Assignment and Finalization 7.6

This permission applies to Adjust and Finalize calls even if the implicit calls have additional external
effects.

7.6.1 Completion and Finalization
This subclause defines completion and leaving of the execution of constructs and entities. A master is the
execution of a construct that includes finalization of local objects after it is complete (and after waiting for
any local tasks — see 9.3), but before leaving. Other constructs and entities are left immediately upon
completion.

Dynamic Semantics

The execution of a construct or entity is complete when the end of that execution has been reached, or
when a transfer of control (see 5.1) causes it to be abandoned. Completion due to reaching the end of
execution, or due to the transfer of control of an exit_statement, return statement, goto_statement, or
requeue_statement or of the selection of a terminate_alternative is normal completion. Completion is
abnormal otherwise — when control is transferred out of a construct due to abort or the raising of an
exception.

After execution of a construct or entity is complete, it is left, meaning that execution continues with the
next action, as defined for the execution that is taking place. Leaving an execution happens immediately
after its completion, except in the case of a master: the execution of a body other than a package_body;
the execution of a statement; or the evaluation of an expression, function_call, or range that is not part of
an enclosing expression, function_call, range, or simple_statement other than a simple_return_-
statement. A master is finalized after it is complete, and before it is left.

For the finalization of a master, dependent tasks are first awaited, as explained in 9.3. Then each object
whose accessibility level is the same as that of the master is finalized if the object was successfully
initialized and still exists. These actions are performed whether the master is left by reaching the last
statement or via a transfer of control. When a transfer of control causes completion of an execution, each
included master is finalized in order, from innermost outward.

For the finalization of an object:
• If the object is of an elementary type, finalization has no effect;

• If the object is of a controlled type, the Finalize procedure is called;

• If the object is of a protected type, the actions defined in 9.4 are performed;

• If the object is of a composite type, then after performing the above actions, if any, every
component of the object is finalized in an arbitrary order, except as follows: if the object has a
component with an access discriminant constrained by a per-object expression, this component
is finalized before any components that do not have such discriminants; for an object with
several components with such a discriminant, they are finalized in the reverse of the order of
their component_declarations;

• If the object has coextensions (see 3.10.2), each coextension is finalized after the object whose
access discriminant designates it.

Immediately before an instance of Unchecked_Deallocation reclaims the storage of an object, the object is
finalized. If an instance of Unchecked_Deallocation is never applied to an object created by an allocator,
the object will still exist when the corresponding master completes, and it will be finalized then.

The order in which the finalization of a master performs finalization of objects is as follows: Objects
created by declarations in the master are finalized in the reverse order of their creation. For objects that

27/2

1

2/2

3/2

4

5

6

7

8

9/2

9.1/2

10

11/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

7.6.1 Completion and Finalization 10 November 2006 162

were created by allocators for an access type whose ultimate ancestor is declared in the master, this rule is
applied as though each such object that still exists had been created in an arbitrary order at the first
freezing point (see 13.14) of the ultimate ancestor type; the finalization of these objects is called the
finalization of the collection. After the finalization of a master is complete, the objects finalized as part of
its finalization cease to exist, as do any types and subtypes defined and created within the master.

The target of an assignment_statement is finalized before copying in the new value, as explained in 7.6.

The master of an object is the master enclosing its creation whose accessibility level (see 3.10.2) is equal
to that of the object.

In the case of an expression that is a master, finalization of any (anonymous) objects occurs as the final
part of evaluation of the expression.

Bounded (Run-Time) Errors

It is a bounded error for a call on Finalize or Adjust that occurs as part of object finalization or assignment
to propagate an exception. The possible consequences depend on what action invoked the Finalize or
Adjust operation:

• For a Finalize invoked as part of an assignment_statement, Program_Error is raised at that
point.

• For an Adjust invoked as part of assignment operations other than those invoked as part of an
assignment_statement, other adjustments due to be performed might or might not be
performed, and then Program_Error is raised. During its propagation, finalization might or might
not be applied to objects whose Adjust failed. For an Adjust invoked as part of an
assignment_statement, any other adjustments due to be performed are performed, and then
Program_Error is raised.

• For a Finalize invoked as part of a call on an instance of Unchecked_Deallocation, any other
finalizations due to be performed are performed, and then Program_Error is raised.

• For a Finalize invoked as part of the finalization of the anonymous object created by a function
call or aggregate, any other finalizations due to be performed are performed, and then
Program_Error is raised.

• For a Finalize invoked due to reaching the end of the execution of a master, any other
finalizations associated with the master are performed, and Program_Error is raised immediately
after leaving the master.

• For a Finalize invoked by the transfer of control of an exit_statement, return statement,
goto_statement, or requeue_statement, Program_Error is raised no earlier than after the
finalization of the master being finalized when the exception occurred, and no later than the
point where normal execution would have continued. Any other finalizations due to be
performed up to that point are performed before raising Program_Error.

• For a Finalize invoked by a transfer of control that is due to raising an exception, any other
finalizations due to be performed for the same master are performed; Program_Error is raised
immediately after leaving the master.

• For a Finalize invoked by a transfer of control due to an abort or selection of a terminate
alternative, the exception is ignored; any other finalizations due to be performed are performed.
NOTES
17 The rules of Section 10 imply that immediately prior to partition termination, Finalize operations are applied to
library-level controlled objects (including those created by allocators of library-level access types, except those already
finalized). This occurs after waiting for library-level tasks to terminate.

12/2

13/2

13.1/2

14/1

15

16/2

17

17.1/1

17.2/1

18/2

19

20

21

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

163 10 November 2006 Completion and Finalization 7.6.1

18 A constant is only constant between its initialization and finalization. Both initialization and finalization are allowed to
change the value of a constant.

19 Abort is deferred during certain operations related to controlled types, as explained in 9.8. Those rules prevent an
abort from causing a controlled object to be left in an ill-defined state.

20 The Finalize procedure is called upon finalization of a controlled object, even if Finalize was called earlier, either
explicitly or as part of an assignment; hence, if a controlled type is visibly controlled (implying that its Finalize primitive
is directly callable), or is nonlimited (implying that assignment is allowed), its Finalize procedure should be designed to
have no ill effect if it is applied a second time to the same object.

22

23

24

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

165 10 November 2006 Visibility Rules 8

Section 8: Visibility Rules
The rules defining the scope of declarations and the rules defining which identifiers, character_literals,
and operator_symbols are visible at (or from) various places in the text of the program are described in
this section. The formulation of these rules uses the notion of a declarative region.

As explained in Section 3, a declaration declares a view of an entity and associates a defining name with
that view. The view comprises an identification of the viewed entity, and possibly additional properties. A
usage name denotes a declaration. It also denotes the view declared by that declaration, and denotes the
entity of that view. Thus, two different usage names might denote two different views of the same entity;
in this case they denote the same entity.

8.1 Declarative Region
Static Semantics

For each of the following constructs, there is a portion of the program text called its declarative region,
within which nested declarations can occur:

• any declaration, other than that of an enumeration type, that is not a completion of a previous
declaration;

• a block_statement;

• a loop_statement;

• an extended_return_statement;

• an accept_statement;

• an exception_handler.

The declarative region includes the text of the construct together with additional text determined
(recursively), as follows:

• If a declaration is included, so is its completion, if any.

• If the declaration of a library unit (including Standard — see 10.1.1) is included, so are the
declarations of any child units (and their completions, by the previous rule). The child
declarations occur after the declaration.

• If a body_stub is included, so is the corresponding subunit.

• If a type_declaration is included, then so is a corresponding record_representation_clause, if
any.

The declarative region of a declaration is also called the declarative region of any view or entity declared
by the declaration.

A declaration occurs immediately within a declarative region if this region is the innermost declarative
region that encloses the declaration (the immediately enclosing declarative region), not counting the
declarative region (if any) associated with the declaration itself.

A declaration is local to a declarative region if the declaration occurs immediately within the declarative
region. An entity is local to a declarative region if the entity is declared by a declaration that is local to the
declarative region.

1

2

1

2

3

4

4.1/2

5

6

7

8

9

10

11

12

13

14

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

8.1 Declarative Region 10 November 2006 166

A declaration is global to a declarative region if the declaration occurs immediately within another
declarative region that encloses the declarative region. An entity is global to a declarative region if the
entity is declared by a declaration that is global to the declarative region.

NOTES
1 The children of a parent library unit are inside the parent's declarative region, even though they do not occur inside the
parent's declaration or body. This implies that one can use (for example) "P.Q" to refer to a child of P whose defining
name is Q, and that after "use P;" Q can refer (directly) to that child.

2 As explained above and in 10.1.1, “Compilation Units - Library Units”, all library units are descendants of Standard,
and so are contained in the declarative region of Standard. They are not inside the declaration or body of Standard, but
they are inside its declarative region.

3 For a declarative region that comes in multiple parts, the text of the declarative region does not contain any text that
might appear between the parts. Thus, when a portion of a declarative region is said to extend from one place to another in
the declarative region, the portion does not contain any text that might appear between the parts of the declarative region.

8.2 Scope of Declarations
For each declaration, the language rules define a certain portion of the program text called the scope of the
declaration. The scope of a declaration is also called the scope of any view or entity declared by the
declaration. Within the scope of an entity, and only there, there are places where it is legal to refer to the
declared entity. These places are defined by the rules of visibility and overloading.

Static Semantics

The immediate scope of a declaration is a portion of the declarative region immediately enclosing the
declaration. The immediate scope starts at the beginning of the declaration, except in the case of an
overloadable declaration, in which case the immediate scope starts just after the place where the profile of
the callable entity is determined (which is at the end of the _specification for the callable entity, or at the
end of the generic_instantiation if an instance). The immediate scope extends to the end of the declarative
region, with the following exceptions:

• The immediate scope of a library_item includes only its semantic dependents.

• The immediate scope of a declaration in the private part of a library unit does not include the
visible part of any public descendant of that library unit.

The visible part of (a view of) an entity is a portion of the text of its declaration containing declarations
that are visible from outside. The private part of (a view of) an entity that has a visible part contains all
declarations within the declaration of (the view of) the entity, except those in the visible part; these are not
visible from outside. Visible and private parts are defined only for these kinds of entities: callable entities,
other program units, and composite types.

• The visible part of a view of a callable entity is its profile.

• The visible part of a composite type other than a task or protected type consists of the
declarations of all components declared (explicitly or implicitly) within the type_declaration.

• The visible part of a generic unit includes the generic_formal_part. For a generic package, it
also includes the first list of basic_declarative_items of the package_specification. For a
generic subprogram, it also includes the profile.

• The visible part of a package, task unit, or protected unit consists of declarations in the program
unit's declaration other than those following the reserved word private, if any; see 7.1 and 12.7
for packages, 9.1 for task units, and 9.4 for protected units.

15

16

17

18

1

2

3

4

5

6

7

8

9

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

167 10 November 2006 Scope of Declarations 8.2

The scope of a declaration always contains the immediate scope of the declaration. In addition, for a given
declaration that occurs immediately within the visible part of an outer declaration, or is a public child of an
outer declaration, the scope of the given declaration extends to the end of the scope of the outer
declaration, except that the scope of a library_item includes only its semantic dependents.

The scope of an attribute_definition_clause is identical to the scope of a declaration that would occur at
the point of the attribute_definition_clause.

The immediate scope of a declaration is also the immediate scope of the entity or view declared by the
declaration. Similarly, the scope of a declaration is also the scope of the entity or view declared by the
declaration.

NOTES
4 There are notations for denoting visible declarations that are not directly visible. For example, parameter_-
specifications are in the visible part of a subprogram_declaration so that they can be used in named-notation calls
appearing outside the called subprogram. For another example, declarations of the visible part of a package can be denoted
by expanded names appearing outside the package, and can be made directly visible by a use_clause.

8.3 Visibility
The visibility rules, given below, determine which declarations are visible and directly visible at each
place within a program. The visibility rules apply to both explicit and implicit declarations.

Static Semantics

A declaration is defined to be directly visible at places where a name consisting of only an identifier or
operator_symbol is sufficient to denote the declaration; that is, no selected_component notation or
special context (such as preceding => in a named association) is necessary to denote the declaration. A
declaration is defined to be visible wherever it is directly visible, as well as at other places where some
name (such as a selected_component) can denote the declaration.

The syntactic category direct_name is used to indicate contexts where direct visibility is required. The
syntactic category selector_name is used to indicate contexts where visibility, but not direct visibility, is
required.

There are two kinds of direct visibility: immediate visibility and use-visibility. A declaration is
immediately visible at a place if it is directly visible because the place is within its immediate scope. A
declaration is use-visible if it is directly visible because of a use_clause (see 8.4). Both conditions can
apply.

A declaration can be hidden, either from direct visibility, or from all visibility, within certain parts of its
scope. Where hidden from all visibility, it is not visible at all (neither using a direct_name nor a
selector_name). Where hidden from direct visibility, only direct visibility is lost; visibility using a
selector_name is still possible.

Two or more declarations are overloaded if they all have the same defining name and there is a place
where they are all directly visible.

The declarations of callable entities (including enumeration literals) are overloadable, meaning that
overloading is allowed for them.

Two declarations are homographs if they have the same defining name, and, if both are overloadable, their
profiles are type conformant. An inner declaration hides any outer homograph from direct visibility.

10

10.1/2

11

12

1

2

3

4

5

6

7

8

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

8.3 Visibility 10 November 2006 168

Two homographs are not generally allowed immediately within the same declarative region unless one
overrides the other (see Legality Rules below). The only declarations that are overridable are the implicit
declarations for predefined operators and inherited primitive subprograms. A declaration overrides another
homograph that occurs immediately within the same declarative region in the following cases:

• A declaration that is not overridable overrides one that is overridable, regardless of which
declaration occurs first;

• The implicit declaration of an inherited operator overrides that of a predefined operator;

• An implicit declaration of an inherited subprogram overrides a previous implicit declaration of
an inherited subprogram.

• If two or more homographs are implicitly declared at the same place:
• If at least one is a subprogram that is neither a null procedure nor an abstract subprogram,

and does not require overriding (see 3.9.3), then they override those that are null
procedures, abstract subprograms, or require overriding. If more than one such homograph
remains that is not thus overridden, then they are all hidden from all visibility.

• Otherwise (all are null procedures, abstract subprograms, or require overriding), then any
null procedure overrides all abstract subprograms and all subprograms that require
overriding; if more than one such homograph remains that is not thus overridden, then if
they are all fully conformant with one another, one is chosen arbitrarily; if not, they are all
hidden from all visibility.

• For an implicit declaration of a primitive subprogram in a generic unit, there is a copy of this
declaration in an instance. However, a whole new set of primitive subprograms is implicitly
declared for each type declared within the visible part of the instance. These new declarations
occur immediately after the type declaration, and override the copied ones. The copied ones can
be called only from within the instance; the new ones can be called only from outside the
instance, although for tagged types, the body of a new one can be executed by a call to an old
one.

A declaration is visible within its scope, except where hidden from all visibility, as follows:
• An overridden declaration is hidden from all visibility within the scope of the overriding

declaration.

• A declaration is hidden from all visibility until the end of the declaration, except:
• For a record type or record extension, the declaration is hidden from all visibility only until

the reserved word record;

• For a package_declaration, generic_package_declaration, or subprogram_body, the
declaration is hidden from all visibility only until the reserved word is of the declaration;

• For a task declaration or protected declaration, the declaration is hidden from all visibility
only until the reserved word with of the declaration if there is one, or the reserved word is
of the declaration if there is no with.

• If the completion of a declaration is a declaration, then within the scope of the completion, the
first declaration is hidden from all visibility. Similarly, a discriminant_specification or
parameter_specification is hidden within the scope of a corresponding discriminant_-
specification or parameter_specification of a corresponding completion, or of a corresponding
accept_statement.

• The declaration of a library unit (including a library_unit_renaming_declaration) is hidden from
all visibility at places outside its declarative region that are not within the scope of a
nonlimited_with_clause that mentions it. The limited view of a library package is hidden from
all visibility at places that are not within the scope of a limited_with_clause that mentions it; in

9/1

10/1

11

12

12.1/2

12.2/2

12.3/2

13

14

15

16

17

18/2

18.1/2

19

20/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

169 10 November 2006 Visibility 8.3

addition, the limited view is hidden from all visibility within the declarative region of the
package, as well as within the scope of any nonlimited_with_clause that mentions the package.
Where the declaration of the limited view of a package is visible, any name that denotes the
package denotes the limited view, including those provided by a package renaming.

• For each declaration or renaming of a generic unit as a child of some parent generic package,
there is a corresponding declaration nested immediately within each instance of the parent. Such
a nested declaration is hidden from all visibility except at places that are within the scope of a
with_clause that mentions the child.

A declaration with a defining_identifier or defining_operator_symbol is immediately visible (and hence
directly visible) within its immediate scope except where hidden from direct visibility, as follows:

• A declaration is hidden from direct visibility within the immediate scope of a homograph of the
declaration, if the homograph occurs within an inner declarative region;

• A declaration is also hidden from direct visibility where hidden from all visibility.

An attribute_definition_clause is visible everywhere within its scope.

Name Resolution Rules

A direct_name shall resolve to denote a directly visible declaration whose defining name is the same as
the direct_name. A selector_name shall resolve to denote a visible declaration whose defining name is
the same as the selector_name.

These rules on visibility and direct visibility do not apply in a context_clause, a parent_unit_name, or a
pragma that appears at the place of a compilation_unit. For those contexts, see the rules in 10.1.6,
“Environment-Level Visibility Rules”.

Legality Rules

A non-overridable declaration is illegal if there is a homograph occurring immediately within the same
declarative region that is visible at the place of the declaration, and is not hidden from all visibility by the
non-overridable declaration. In addition, a type extension is illegal if somewhere within its immediate
scope it has two visible components with the same name. Similarly, the context_clause for a compilation
unit is illegal if it mentions (in a with_clause) some library unit, and there is a homograph of the library
unit that is visible at the place of the compilation unit, and the homograph and the mentioned library unit
are both declared immediately within the same declarative region. These rules also apply to dispatching
operations declared in the visible part of an instance of a generic unit. However, they do not apply to other
overloadable declarations in an instance; such declarations may have type conformant profiles in the
instance, so long as the corresponding declarations in the generic were not type conformant.

NOTES
5 Visibility for compilation units follows from the definition of the environment in 10.1.4, except that it is necessary to
apply a with_clause to obtain visibility to a library_unit_declaration or library_unit_renaming_declaration.

6 In addition to the visibility rules given above, the meaning of the occurrence of a direct_name or selector_name at a
given place in the text can depend on the overloading rules (see 8.6).

7 Not all contexts where an identifier, character_literal, or operator_symbol are allowed require visibility of a
corresponding declaration. Contexts where visibility is not required are identified by using one of these three syntactic
categories directly in a syntax rule, rather than using direct_name or selector_name.

20.1/2

21

22

23

23.1/2

24

25

26/2

27

28

29

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

8.3.1 Overriding Indicators 10 November 2006 170

8.3.1 Overriding Indicators
An overriding_indicator is used to declare that an operation is intended to override (or not override) an
inherited operation.

Syntax

overriding_indicator ::= [not] overriding

Legality Rules

If an abstract_subprogram_declaration, null_procedure_declaration, subprogram_body, subprogram_-
body_stub, subprogram_renaming_declaration, generic_instantiation of a subprogram, or
subprogram_declaration other than a protected subprogram has an overriding_indicator, then:

• the operation shall be a primitive operation for some type;

• if the overriding_indicator is overriding, then the operation shall override a homograph at the
place of the declaration or body;

• if the overriding_indicator is not overriding, then the operation shall not override any
homograph (at any place).

In addition to the places where Legality Rules normally apply, these rules also apply in the private part of
an instance of a generic unit.

NOTES
8 Rules for overriding_indicators of task and protected entries and of protected subprograms are found in 9.5.2 and 9.4,
respectively.

Examples

The use of overriding_indicators allows the detection of errors at compile-time that otherwise might not be
detected at all. For instance, we might declare a security queue derived from the Queue interface of 3.9.4
as:

type Security_Queue is new Queue with record ...;

overriding
procedure Append(Q : in out Security_Queue; Person : in Person_Name);

overriding
procedure Remove_First(Q : in out Security_Queue; Person : in Person_Name);

overriding
function Cur_Count(Q : in Security_Queue) return Natural;

overriding
function Max_Count(Q : in Security_Queue) return Natural;

not overriding
procedure Arrest(Q : in out Security_Queue; Person : in Person_Name);

The first four subprogram declarations guarantee that these subprograms will override the four
subprograms inherited from the Queue interface. A misspelling in one of these subprograms will be
detected by the implementation. Conversely, the declaration of Arrest guarantees that this is a new
operation.

1/2

2/2

3/2

4/2

5/2

6/2

7/2

8/2

9/2

10/2

11/2

12/2

13/2

14/2

15/2

16/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

171 10 November 2006 Use Clauses 8.4

8.4 Use Clauses
A use_package_clause achieves direct visibility of declarations that appear in the visible part of a
package; a use_type_clause achieves direct visibility of the primitive operators of a type.

Syntax

use_clause ::= use_package_clause | use_type_clause
use_package_clause ::= use package_name {, package_name};
use_type_clause ::= use type subtype_mark {, subtype_mark};

Legality Rules

A package_name of a use_package_clause shall denote a nonlimited view of a package.

Static Semantics

For each use_clause, there is a certain region of text called the scope of the use_clause. For a
use_clause within a context_clause of a library_unit_declaration or library_unit_renaming_declaration,
the scope is the entire declarative region of the declaration. For a use_clause within a context_clause of a
body, the scope is the entire body and any subunits (including multiply nested subunits). The scope does
not include context_clauses themselves.

For a use_clause immediately within a declarative region, the scope is the portion of the declarative
region starting just after the use_clause and extending to the end of the declarative region. However, the
scope of a use_clause in the private part of a library unit does not include the visible part of any public
descendant of that library unit.

A package is named in a use_package_clause if it is denoted by a package_name of that clause. A type
is named in a use_type_clause if it is determined by a subtype_mark of that clause.

For each package named in a use_package_clause whose scope encloses a place, each declaration that
occurs immediately within the declarative region of the package is potentially use-visible at this place if
the declaration is visible at this place. For each type T or T'Class named in a use_type_clause whose
scope encloses a place, the declaration of each primitive operator of type T is potentially use-visible at this
place if its declaration is visible at this place.

A declaration is use-visible if it is potentially use-visible, except in these naming-conflict cases:
• A potentially use-visible declaration is not use-visible if the place considered is within the

immediate scope of a homograph of the declaration.

• Potentially use-visible declarations that have the same identifier are not use-visible unless each
of them is an overloadable declaration.

Dynamic Semantics

The elaboration of a use_clause has no effect.

Examples

Example of a use clause in a context clause:
with Ada.Calendar; use Ada;

1

2

3

4

5/2

6

7

7.1/2

8/2

9

10

11

12

13

14

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

8.4 Use Clauses 10 November 2006 172

Example of a use type clause:
use type Rational_Numbers.Rational; -- see 7.1
Two_Thirds: Rational_Numbers.Rational := 2/3;

8.5 Renaming Declarations
A renaming_declaration declares another name for an entity, such as an object, exception, package,
subprogram, entry, or generic unit. Alternatively, a subprogram_renaming_declaration can be the
completion of a previous subprogram_declaration.

Syntax

renaming_declaration ::=
 object_renaming_declaration
 | exception_renaming_declaration
 | package_renaming_declaration
 | subprogram_renaming_declaration
 | generic_renaming_declaration

Dynamic Semantics

The elaboration of a renaming_declaration evaluates the name that follows the reserved word renames
and thereby determines the view and entity denoted by this name (the renamed view and renamed entity).
A name that denotes the renaming_declaration denotes (a new view of) the renamed entity.

NOTES
9 Renaming may be used to resolve name conflicts and to act as a shorthand. Renaming with a different identifier or
operator_symbol does not hide the old name; the new name and the old name need not be visible at the same places.

10 A task or protected object that is declared by an explicit object_declaration can be renamed as an object. However, a
single task or protected object cannot be renamed since the corresponding type is anonymous (meaning it has no nameable
subtypes). For similar reasons, an object of an anonymous array or access type cannot be renamed.

11 A subtype defined without any additional constraint can be used to achieve the effect of renaming another subtype
(including a task or protected subtype) as in
 subtype Mode is Ada.Text_IO.File_Mode;

8.5.1 Object Renaming Declarations
An object_renaming_declaration is used to rename an object.

Syntax

object_renaming_declaration ::=
 defining_identifier : [null_exclusion] subtype_mark renames object_name;
 | defining_identifier : access_definition renames object_name;

Name Resolution Rules

The type of the object_name shall resolve to the type determined by the subtype_mark, or in the case
where the type is defined by an access_definition, to an anonymous access type. If the anonymous access
type is an access-to-object type, the type of the object_name shall have the same designated type as that of
the access_definition. If the anonymous access type is an access-to-subprogram type, the type of the
object_name shall have a designated profile that is type conformant with that of the access_definition.

Legality Rules

The renamed entity shall be an object.

15
16

1

2

3

4

5

6

7

1

2/2

3/2

4

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

173 10 November 2006 Object Renaming Declarations 8.5.1

In the case where the type is defined by an access_definition, the type of the renamed object and the type
defined by the access_definition:

• shall both be access-to-object types with statically matching designated subtypes and with both
or neither being access-to-constant types; or

• shall both be access-to-subprogram types with subtype conformant designated profiles.

For an object_renaming_declaration with a null_exclusion or an access_definition that has a
null_exclusion:

• if the object_name denotes a generic formal object of a generic unit G, and the
object_renaming_declaration occurs within the body of G or within the body of a generic unit
declared within the declarative region of G, then the declaration of the formal object of G shall
have a null_exclusion;

• otherwise, the subtype of the object_name shall exclude null. In addition to the places where
Legality Rules normally apply (see 12.3), this rule applies also in the private part of an instance
of a generic unit.

The renamed entity shall not be a subcomponent that depends on discriminants of a variable whose
nominal subtype is unconstrained, unless this subtype is indefinite, or the variable is constrained by its
initial value. A slice of an array shall not be renamed if this restriction disallows renaming of the array. In
addition to the places where Legality Rules normally apply, these rules apply also in the private part of an
instance of a generic unit. These rules also apply for a renaming that appears in the body of a generic unit,
with the additional requirement that even if the nominal subtype of the variable is indefinite, its type shall
not be a descendant of an untagged generic formal derived type.

Static Semantics

An object_renaming_declaration declares a new view of the renamed object whose properties are
identical to those of the renamed view. Thus, the properties of the renamed object are not affected by the
renaming_declaration. In particular, its value and whether or not it is a constant are unaffected; similarly,
the null exclusion or constraints that apply to an object are not affected by renaming (any constraint
implied by the subtype_mark or access_definition of the object_renaming_declaration is ignored).

Examples

Example of renaming an object:
declare
 L : Person renames Leftmost_Person; -- see 3.10.1
begin
 L.Age := L.Age + 1;
end;

8.5.2 Exception Renaming Declarations
An exception_renaming_declaration is used to rename an exception.

Syntax

exception_renaming_declaration ::= defining_identifier : exception renames exception_name;

Legality Rules

The renamed entity shall be an exception.

4.1/2

4.2/2

4.3/2

4.4/2

4.5/2

4.6/2

5/2

6/2

7

8

1

2

3

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

8.5.2 Exception Renaming Declarations 10 November 2006 174

Static Semantics

An exception_renaming_declaration declares a new view of the renamed exception.

Examples

Example of renaming an exception:
EOF : exception renames Ada.IO_Exceptions.End_Error; -- see A.13

8.5.3 Package Renaming Declarations
A package_renaming_declaration is used to rename a package.

Syntax

package_renaming_declaration ::=
package defining_program_unit_name renames package_name;

Legality Rules

The renamed entity shall be a package.

If the package_name of a package_renaming_declaration denotes a limited view of a package P, then a
name that denotes the package_renaming_declaration shall occur only within the immediate scope of the
renaming or the scope of a with_clause that mentions the package P or, if P is a nested package, the
innermost library package enclosing P.

Static Semantics

A package_renaming_declaration declares a new view of the renamed package.

At places where the declaration of the limited view of the renamed package is visible, a name that denotes
the package_renaming_declaration denotes a limited view of the package (see 10.1.1).

Examples

Example of renaming a package:
package TM renames Table_Manager;

8.5.4 Subprogram Renaming Declarations
A subprogram_renaming_declaration can serve as the completion of a subprogram_declaration; such a
renaming_declaration is called a renaming-as-body. A subprogram_renaming_declaration that is not a
completion is called a renaming-as-declaration, and is used to rename a subprogram (possibly an
enumeration literal) or an entry.

Syntax

subprogram_renaming_declaration ::=
 [overriding_indicator]
 subprogram_specification renames callable_entity_name;

Name Resolution Rules

The expected profile for the callable_entity_name is the profile given in the subprogram_specification.

4

5

6

1

2

3

3.1/2

4

4.1/2

5

6

1

2/2

3

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

175 10 November 2006 Subprogram Renaming Declarations 8.5.4

Legality Rules

The profile of a renaming-as-declaration shall be mode-conformant with that of the renamed callable
entity.

For a parameter or result subtype of the subprogram_specification that has an explicit null_exclusion:
• if the callable_entity_name denotes a generic formal subprogram of a generic unit G, and the

subprogram_renaming_declaration occurs within the body of a generic unit G or within the
body of a generic unit declared within the declarative region of the generic unit G, then the
corresponding parameter or result subtype of the formal subprogram of G shall have a
null_exclusion;

• otherwise, the subtype of the corresponding parameter or result type of the renamed callable
entity shall exclude null. In addition to the places where Legality Rules normally apply (see
12.3), this rule applies also in the private part of an instance of a generic unit.

The profile of a renaming-as-body shall conform fully to that of the declaration it completes. If the
renaming-as-body completes that declaration before the subprogram it declares is frozen, the profile shall
be mode-conformant with that of the renamed callable entity and the subprogram it declares takes its
convention from the renamed subprogram; otherwise, the profile shall be subtype-conformant with that of
the renamed callable entity and the convention of the renamed subprogram shall not be Intrinsic. A
renaming-as-body is illegal if the declaration occurs before the subprogram whose declaration it completes
is frozen, and the renaming renames the subprogram itself, through one or more subprogram renaming
declarations, none of whose subprograms has been frozen.

The callable_entity_name of a renaming shall not denote a subprogram that requires overriding (see
3.9.3).

The callable_entity_name of a renaming-as-body shall not denote an abstract subprogram.

A name that denotes a formal parameter of the subprogram_specification is not allowed within the
callable_entity_name.

Static Semantics

A renaming-as-declaration declares a new view of the renamed entity. The profile of this new view takes
its subtypes, parameter modes, and calling convention from the original profile of the callable entity, while
taking the formal parameter names and default_expressions from the profile given in the
subprogram_renaming_declaration. The new view is a function or procedure, never an entry.

Dynamic Semantics

For a call to a subprogram whose body is given as a renaming-as-body, the execution of the renaming-as-
body is equivalent to the execution of a subprogram_body that simply calls the renamed subprogram with
its formal parameters as the actual parameters and, if it is a function, returns the value of the call.

For a call on a renaming of a dispatching subprogram that is overridden, if the overriding occurred before
the renaming, then the body executed is that of the overriding declaration, even if the overriding
declaration is not visible at the place of the renaming; otherwise, the inherited or predefined subprogram is
called.

Bounded (Run-Time) Errors

If a subprogram directly or indirectly renames itself, then it is a bounded error to call that subprogram.
Possible consequences are that Program_Error or Storage_Error is raised, or that the call results in infinite
recursion.

4

4.1/2

4.2/2

4.3/2

5/1

5.1/2

5.2/2

6

7

7.1/1

8

8.1/1

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

8.5.4 Subprogram Renaming Declarations 10 November 2006 176

NOTES
12 A procedure can only be renamed as a procedure. A function whose defining_designator is either an identifier or an
operator_symbol can be renamed with either an identifier or an operator_symbol; for renaming as an operator, the
subprogram specification given in the renaming_declaration is subject to the rules given in 6.6 for operator declarations.
Enumeration literals can be renamed as functions; similarly, attribute_references that denote functions (such as references
to Succ and Pred) can be renamed as functions. An entry can only be renamed as a procedure; the new name is only
allowed to appear in contexts that allow a procedure name. An entry of a family can be renamed, but an entry family
cannot be renamed as a whole.

13 The operators of the root numeric types cannot be renamed because the types in the profile are anonymous, so the
corresponding specifications cannot be written; the same holds for certain attributes, such as Pos.

14 Calls with the new name of a renamed entry are procedure_call_statements and are not allowed at places where the
syntax requires an entry_call_statement in conditional_ and timed_entry_calls, nor in an asynchronous_select; similarly,
the Count attribute is not available for the new name.

15 The primitiveness of a renaming-as-declaration is determined by its profile, and by where it occurs, as for any
declaration of (a view of) a subprogram; primitiveness is not determined by the renamed view. In order to perform a
dispatching call, the subprogram name has to denote a primitive subprogram, not a non-primitive renaming of a primitive
subprogram.

Examples

Examples of subprogram renaming declarations:
procedure My_Write(C : in Character) renames Pool(K).Write; -- see 4.1.3
function Real_Plus(Left, Right : Real) return Real renames "+";
function Int_Plus (Left, Right : Integer) return Integer renames "+";

function Rouge return Color renames Red; -- see 3.5.1
function Rot return Color renames Red;
function Rosso return Color renames Rouge;

function Next(X : Color) return Color renames Color'Succ; -- see 3.5.1

Example of a subprogram renaming declaration with new parameter names:
function "*" (X,Y : Vector) return Real renames Dot_Product; -- see 6.1

Example of a subprogram renaming declaration with a new default expression:
function Minimum(L : Link := Head) return Cell renames Min_Cell; -- see 6.1

8.5.5 Generic Renaming Declarations
A generic_renaming_declaration is used to rename a generic unit.

Syntax

generic_renaming_declaration ::=
 generic package defining_program_unit_name renames generic_package_name;
 | generic procedure defining_program_unit_name renames generic_procedure_name;
 | generic function defining_program_unit_name renames generic_function_name;

Legality Rules

The renamed entity shall be a generic unit of the corresponding kind.

Static Semantics

A generic_renaming_declaration declares a new view of the renamed generic unit.

9

10

11

12

13

14

15

16

17

18

19

20

21

1

2

3

4

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

177 10 November 2006 Generic Renaming Declarations 8.5.5

NOTES
16 Although the properties of the new view are the same as those of the renamed view, the place where the
generic_renaming_declaration occurs may affect the legality of subsequent renamings and instantiations that denote the
generic_renaming_declaration, in particular if the renamed generic unit is a library unit (see 10.1.1).

Examples

Example of renaming a generic unit:
generic package Enum_IO renames Ada.Text_IO.Enumeration_IO; -- see A.10.10

8.6 The Context of Overload Resolution
Because declarations can be overloaded, it is possible for an occurrence of a usage name to have more than
one possible interpretation; in most cases, ambiguity is disallowed. This clause describes how the possible
interpretations resolve to the actual interpretation.

Certain rules of the language (the Name Resolution Rules) are considered “overloading rules”. If a
possible interpretation violates an overloading rule, it is assumed not to be the intended interpretation;
some other possible interpretation is assumed to be the actual interpretation. On the other hand, violations
of non-overloading rules do not affect which interpretation is chosen; instead, they cause the construct to
be illegal. To be legal, there usually has to be exactly one acceptable interpretation of a construct that is a
“complete context”, not counting any nested complete contexts.

The syntax rules of the language and the visibility rules given in 8.3 determine the possible interpretations.
Most type checking rules (rules that require a particular type, or a particular class of types, for example)
are overloading rules. Various rules for the matching of formal and actual parameters are overloading
rules.

Name Resolution Rules

Overload resolution is applied separately to each complete context, not counting inner complete contexts.
Each of the following constructs is a complete context:

• A context_item.

• A declarative_item or declaration.

• A statement.

• A pragma_argument_association.

• The expression of a case_statement.

An (overall) interpretation of a complete context embodies its meaning, and includes the following
information about the constituents of the complete context, not including constituents of inner complete
contexts:

• for each constituent of the complete context, to which syntactic categories it belongs, and by
which syntax rules; and

• for each usage name, which declaration it denotes (and, therefore, which view and which entity
it denotes); and

• for a complete context that is a declarative_item, whether or not it is a completion of a
declaration, and (if so) which declaration it completes.

A possible interpretation is one that obeys the syntax rules and the visibility rules. An acceptable
interpretation is a possible interpretation that obeys the overloading rules, that is, those rules that specify
an expected type or expected profile, or specify how a construct shall resolve or be interpreted.

5

6

7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

8.6 The Context of Overload Resolution 10 November 2006 178

The interpretation of a constituent of a complete context is determined from the overall interpretation of
the complete context as a whole. Thus, for example, “interpreted as a function_call,” means that the
construct's interpretation says that it belongs to the syntactic category function_call.

Each occurrence of a usage name denotes the declaration determined by its interpretation. It also denotes
the view declared by its denoted declaration, except in the following cases:

• If a usage name appears within the declarative region of a type_declaration and denotes that
same type_declaration, then it denotes the current instance of the type (rather than the type
itself); the current instance of a type is the object or value of the type that is associated with the
execution that evaluates the usage name. This rule does not apply if the usage name appears
within the subtype_mark of an access_definition for an access-to-object type, or within the
subtype of a parameter or result of an access-to-subprogram type.

• If a usage name appears within the declarative region of a generic_declaration (but not within
its generic_formal_part) and it denotes that same generic_declaration, then it denotes the
current instance of the generic unit (rather than the generic unit itself). See also 12.3.

A usage name that denotes a view also denotes the entity of that view.

The expected type for a given expression, name, or other construct determines, according to the type
resolution rules given below, the types considered for the construct during overload resolution. The type
resolution rules provide support for class-wide programming, universal literals, dispatching operations,
and anonymous access types:

• If a construct is expected to be of any type in a class of types, or of the universal or class-wide
type for a class, then the type of the construct shall resolve to a type in that class or to a
universal type that covers the class.

• If the expected type for a construct is a specific type T, then the type of the construct shall
resolve either to T, or:

• to T'Class; or

• to a universal type that covers T; or

• when T is a specific anonymous access-to-object type (see 3.10) with designated type D, to
an access-to-object type whose designated type is D'Class or is covered by D; or

• when T is an anonymous access-to-subprogram type (see 3.10), to an access-to-subprogram
type whose designated profile is type-conformant with that of T.

In certain contexts, such as in a subprogram_renaming_declaration, the Name Resolution Rules define an
expected profile for a given name; in such cases, the name shall resolve to the name of a callable entity
whose profile is type conformant with the expected profile.

Legality Rules

When a construct is one that requires that its expected type be a single type in a given class, the type of the
construct shall be determinable solely from the context in which the construct appears, excluding the
construct itself, but using the requirement that it be in the given class. Furthermore, the context shall not
be one that expects any type in some class that contains types of the given class; in particular, the
construct shall not be the operand of a type_conversion.

A complete context shall have at least one acceptable interpretation; if there is exactly one, then that one is
chosen.

There is a preference for the primitive operators (and ranges) of the root numeric types root_integer and
root_real. In particular, if two acceptable interpretations of a constituent of a complete context differ only

15

16

17/2

18

19

20/2

21

22

23

24

25/2

25.1/2

26

27/2

28

29

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

179 10 November 2006 The Context of Overload Resolution 8.6

in that one is for a primitive operator (or range) of the type root_integer or root_real, and the other is not,
the interpretation using the primitive operator (or range) of the root numeric type is preferred.

For a complete context, if there is exactly one overall acceptable interpretation where each constituent's
interpretation is the same as or preferred (in the above sense) over those in all other overall acceptable
interpretations, then that one overall acceptable interpretation is chosen. Otherwise, the complete context
is ambiguous.

A complete context other than a pragma_argument_association shall not be ambiguous.

A complete context that is a pragma_argument_association is allowed to be ambiguous (unless otherwise
specified for the particular pragma), but only if every acceptable interpretation of the pragma argument is
as a name that statically denotes a callable entity. Such a name denotes all of the declarations determined
by its interpretations, and all of the views declared by these declarations.

NOTES
17 If a usage name has only one acceptable interpretation, then it denotes the corresponding entity. However, this does
not mean that the usage name is necessarily legal since other requirements exist which are not considered for overload
resolution; for example, the fact that an expression is static, whether an object is constant, mode and subtype conformance
rules, freezing rules, order of elaboration, and so on.

Similarly, subtypes are not considered for overload resolution (the violation of a constraint does not make a program
illegal but raises an exception during program execution).

30

31

32

33

34

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

181 10 November 2006 Tasks and Synchronization 9

Section 9: Tasks and Synchronization
The execution of an Ada program consists of the execution of one or more tasks. Each task represents a
separate thread of control that proceeds independently and concurrently between the points where it
interacts with other tasks. The various forms of task interaction are described in this section, and include:

• the activation and termination of a task;

• a call on a protected subprogram of a protected object, providing exclusive read-write access, or
concurrent read-only access to shared data;

• a call on an entry, either of another task, allowing for synchronous communication with that
task, or of a protected object, allowing for asynchronous communication with one or more other
tasks using that same protected object;

• a timed operation, including a simple delay statement, a timed entry call or accept, or a timed
asynchronous select statement (see next item);

• an asynchronous transfer of control as part of an asynchronous select statement, where a task
stops what it is doing and begins execution at a different point in response to the completion of
an entry call or the expiration of a delay;

• an abort statement, allowing one task to cause the termination of another task.

In addition, tasks can communicate indirectly by reading and updating (unprotected) shared variables,
presuming the access is properly synchronized through some other kind of task interaction.

Static Semantics

The properties of a task are defined by a corresponding task declaration and task_body, which together
define a program unit called a task unit.

Dynamic Semantics

Over time, tasks proceed through various states. A task is initially inactive; upon activation, and prior to
its termination it is either blocked (as part of some task interaction) or ready to run. While ready, a task
competes for the available execution resources that it requires to run.

NOTES
1 Concurrent task execution may be implemented on multicomputers, multiprocessors, or with interleaved execution on a
single physical processor. On the other hand, whenever an implementation can determine that the required semantic
effects can be achieved when parts of the execution of a given task are performed by different physical processors acting
in parallel, it may choose to perform them in this way.

9.1 Task Units and Task Objects
A task unit is declared by a task declaration, which has a corresponding task_body. A task declaration
may be a task_type_declaration, in which case it declares a named task type; alternatively, it may be a
single_task_declaration, in which case it defines an anonymous task type, as well as declaring a named
task object of that type.

Syntax

task_type_declaration ::=
 task type defining_identifier [known_discriminant_part] [is
 [new interface_list with]
 task_definition];

1

2

3

4

5

6

7

8

9

10

11

1

2/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

9.1 Task Units and Task Objects 10 November 2006 182

single_task_declaration ::=
 task defining_identifier [is
 [new interface_list with]
 task_definition];
task_definition ::=
 {task_item}
 [private
 {task_item}]
 end [task_identifier]
task_item ::= entry_declaration | aspect_clause
task_body ::=
 task body defining_identifier is
 declarative_part
 begin
 handled_sequence_of_statements
 end [task_identifier];
If a task_identifier appears at the end of a task_definition or task_body, it shall repeat the
defining_identifier.

Legality Rules

This paragraph was deleted.

Static Semantics

A task_definition defines a task type and its first subtype. The first list of task_items of a task_definition,
together with the known_discriminant_part, if any, is called the visible part of the task unit. The optional
list of task_items after the reserved word private is called the private part of the task unit.

For a task declaration without a task_definition, a task_definition without task_items is assumed.

For a task declaration with an interface_list, the task type inherits user-defined primitive subprograms
from each progenitor type (see 3.9.4), in the same way that a derived type inherits user-defined primitive
subprograms from its progenitor types (see 3.4). If the first parameter of a primitive inherited subprogram
is of the task type or an access parameter designating the task type, and there is an entry_declaration for a
single entry with the same identifier within the task declaration, whose profile is type conformant with the
prefixed view profile of the inherited subprogram, the inherited subprogram is said to be implemented by
the conforming task entry.

Legality Rules

A task declaration requires a completion, which shall be a task_body, and every task_body shall be the
completion of some task declaration.

Each interface_subtype_mark of an interface_list appearing within a task declaration shall denote a
limited interface type that is not a protected interface.

The prefixed view profile of an explicitly declared primitive subprogram of a tagged task type shall not be
type conformant with any entry of the task type, if the first parameter of the subprogram is of the task type
or is an access parameter designating the task type.

For each primitive subprogram inherited by the type declared by a task declaration, at most one of the
following shall apply:

3/2

4

5/1

6

7

8/2

9

9.1/1

9.2/2

9.3/2

9.4/2

9.5/2

9.6/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

183 10 November 2006 Task Units and Task Objects 9.1

• the inherited subprogram is overridden with a primitive subprogram of the task type, in which
case the overriding subprogram shall be subtype conformant with the inherited subprogram and
not abstract; or

• the inherited subprogram is implemented by a single entry of the task type; in which case its
prefixed view profile shall be subtype conformant with that of the task entry.

If neither applies, the inherited subprogram shall be a null procedure. In addition to the places where
Legality Rules normally apply (see 12.3), these rules also apply in the private part of an instance of a
generic unit.

Dynamic Semantics

The elaboration of a task declaration elaborates the task_definition. The elaboration of a single_task_-
declaration also creates an object of an (anonymous) task type.

The elaboration of a task_definition creates the task type and its first subtype; it also includes the
elaboration of the entry_declarations in the given order.

As part of the initialization of a task object, any aspect_clauses and any per-object constraints associated
with entry_declarations of the corresponding task_definition are elaborated in the given order.

The elaboration of a task_body has no effect other than to establish that tasks of the type can from then on
be activated without failing the Elaboration_Check.

The execution of a task_body is invoked by the activation of a task of the corresponding type (see 9.2).

The content of a task object of a given task type includes:
• The values of the discriminants of the task object, if any;

• An entry queue for each entry of the task object;

• A representation of the state of the associated task.
NOTES
2 Other than in an access_definition, the name of a task unit within the declaration or body of the task unit denotes the
current instance of the unit (see 8.6), rather than the first subtype of the corresponding task type (and thus the name cannot
be used as a subtype_mark).

3 The notation of a selected_component can be used to denote a discriminant of a task (see 4.1.3). Within a task unit, the
name of a discriminant of the task type denotes the corresponding discriminant of the current instance of the unit.

4 A task type is a limited type (see 7.5), and hence precludes use of assignment_statements and predefined equality
operators. If an application needs to store and exchange task identities, it can do so by defining an access type designating
the corresponding task objects and by using access values for identification purposes. Assignment is available for such an
access type as for any access type. Alternatively, if the implementation supports the Systems Programming Annex, the
Identity attribute can be used for task identification (see C.7.1).

Examples

Examples of declarations of task types:
task type Server is
 entry Next_Work_Item(WI : in Work_Item);
 entry Shut_Down;
end Server;

task type Keyboard_Driver(ID : Keyboard_ID := New_ID) is
 new Serial_Device with -- see 3.9.4
 entry Read (C : out Character);
 entry Write(C : in Character);
end Keyboard_Driver;

9.7/2

9.8/2

9.9/2

10

11

12/1

13

14

15

16

17

18

19/2

20

21/2

22

23

24/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

9.1 Task Units and Task Objects 10 November 2006 184

Examples of declarations of single tasks:
task Controller is
 entry Request(Level)(D : Item); -- a family of entries
end Controller;

task Parser is
 entry Next_Lexeme(L : in Lexical_Element);
 entry Next_Action(A : out Parser_Action);
end;

task User; -- has no entries

Examples of task objects:
Agent : Server;
Teletype : Keyboard_Driver(TTY_ID);
Pool : array(1 .. 10) of Keyboard_Driver;

Example of access type designating task objects:
type Keyboard is access Keyboard_Driver;
Terminal : Keyboard := new Keyboard_Driver(Term_ID);

9.2 Task Execution - Task Activation
Dynamic Semantics

The execution of a task of a given task type consists of the execution of the corresponding task_body. The
initial part of this execution is called the activation of the task; it consists of the elaboration of the
declarative_part of the task_body. Should an exception be propagated by the elaboration of its
declarative_part, the activation of the task is defined to have failed, and it becomes a completed task.

A task object (which represents one task) can be a part of a stand-alone object, of an object created by an
allocator, or of an anonymous object of a limited type, or a coextension of one of these. All tasks that are
part or coextensions of any of the stand-alone objects created by the elaboration of object_declarations (or
generic_associations of formal objects of mode in) of a single declarative region are activated together.
All tasks that are part or coextensions of a single object that is not a stand-alone object are activated
together.

For the tasks of a given declarative region, the activations are initiated within the context of the handled_-
sequence_of_statements (and its associated exception_handlers if any — see 11.2), just prior to
executing the statements of the handled_sequence_of_statements. For a package without an explicit
body or an explicit handled_sequence_of_statements, an implicit body or an implicit null_statement is
assumed, as defined in 7.2.

For tasks that are part or coextensions of a single object that is not a stand-alone object, activations are
initiated after completing any initialization of the outermost object enclosing these tasks, prior to
performing any other operation on the outermost object. In particular, for tasks that are part or
coextensions of the object created by the evaluation of an allocator, the activations are initiated as the last
step of evaluating the allocator, prior to returning the new access value. For tasks that are part or
coextensions of an object that is the result of a function call, the activations are not initiated until after the
function returns.

The task that created the new tasks and initiated their activations (the activator) is blocked until all of
these activations complete (successfully or not). Once all of these activations are complete, if the
activation of any of the tasks has failed (due to the propagation of an exception), Tasking_Error is raised
in the activator, at the place at which it initiated the activations. Otherwise, the activator proceeds with its

25

26

27

28

29

30

31

32

1

2/2

3/2

4/2

5

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

185 10 November 2006 Task Execution - Task Activation 9.2

execution normally. Any tasks that are aborted prior to completing their activation are ignored when
determining whether to raise Tasking_Error.

Should the task that created the new tasks never reach the point where it would initiate the activations (due
to an abort or the raising of an exception), the newly created tasks become terminated and are never
activated.

NOTES
5 An entry of a task can be called before the task has been activated.

6 If several tasks are activated together, the execution of any of these tasks need not await the end of the activation of the
other tasks.

7 A task can become completed during its activation either because of an exception or because it is aborted (see 9.8).

Examples

Example of task activation:
procedure P is
 A, B : Server; -- elaborate the task objects A, B
 C : Server; -- elaborate the task object C
begin
 -- the tasks A, B, C are activated together before the first statement
 ...
end;

9.3 Task Dependence - Termination of Tasks
Dynamic Semantics

Each task (other than an environment task — see 10.2) depends on one or more masters (see 7.6.1), as
follows:

• If the task is created by the evaluation of an allocator for a given access type, it depends on each
master that includes the elaboration of the declaration of the ultimate ancestor of the given
access type.

• If the task is created by the elaboration of an object_declaration, it depends on each master that
includes this elaboration.

• Otherwise, the task depends on the master of the outermost object of which it is a part (as
determined by the accessibility level of that object — see 3.10.2 and 7.6.1), as well as on any
master whose execution includes that of the master of the outermost object.

Furthermore, if a task depends on a given master, it is defined to depend on the task that executes the
master, and (recursively) on any master of that task.

A task is said to be completed when the execution of its corresponding task_body is completed. A task is
said to be terminated when any finalization of the task_body has been performed (see 7.6.1). The first step
of finalizing a master (including a task_body) is to wait for the termination of any tasks dependent on the
master. The task executing the master is blocked until all the dependents have terminated. Any remaining
finalization is then performed and the master is left.

Completion of a task (and the corresponding task_body) can occur when the task is blocked at a select_-
statement with an open terminate_alternative (see 9.7.1); the open terminate_alternative is selected if
and only if the following conditions are satisfied:

• The task depends on some completed master; and

6

7

8

9

10

11

1

2

3

3.1/2

4

5

6/1

7/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

9.3 Task Dependence - Termination of Tasks 10 November 2006 186

• Each task that depends on the master considered is either already terminated or similarly blocked
at a select_statement with an open terminate_alternative.

When both conditions are satisfied, the task considered becomes completed, together with all tasks that
depend on the master considered that are not yet completed.

NOTES
8 The full view of a limited private type can be a task type, or can have subcomponents of a task type. Creation of an
object of such a type creates dependences according to the full type.

9 An object_renaming_declaration defines a new view of an existing entity and hence creates no further dependence.

10 The rules given for the collective completion of a group of tasks all blocked on select_statements with open
terminate_alternatives ensure that the collective completion can occur only when there are no remaining active tasks that
could call one of the tasks being collectively completed.

11 If two or more tasks are blocked on select_statements with open terminate_alternatives, and become completed
collectively, their finalization actions proceed concurrently.

12 The completion of a task can occur due to any of the following:
• the raising of an exception during the elaboration of the declarative_part of the corresponding task_body;
• the completion of the handled_sequence_of_statements of the corresponding task_body;
• the selection of an open terminate_alternative of a select_statement in the corresponding task_body;
• the abort of the task.

Examples

Example of task dependence:
declare
 type Global is access Server; -- see 9.1
 A, B : Server;
 G : Global;
begin
 -- activation of A and B
 declare
 type Local is access Server;
 X : Global := new Server; -- activation of X.all
 L : Local := new Server; -- activation of L.all
 C : Server;
 begin
 -- activation of C
 G := X; -- both G and X designate the same task object
 ...
 end; -- await termination of C and L.all (but not X.all)
 ...
end; -- await termination of A, B, and G.all

8

9

10

11

12

13

14

15

16

17

18

19

20

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

187 10 November 2006 Protected Units and Protected Objects 9.4

9.4 Protected Units and Protected Objects
A protected object provides coordinated access to shared data, through calls on its visible protected
operations, which can be protected subprograms or protected entries. A protected unit is declared by a
protected declaration, which has a corresponding protected_body. A protected declaration may be a
protected_type_declaration, in which case it declares a named protected type; alternatively, it may be a
single_protected_declaration, in which case it defines an anonymous protected type, as well as declaring
a named protected object of that type.

Syntax

protected_type_declaration ::=
 protected type defining_identifier [known_discriminant_part] is
 [new interface_list with]
 protected_definition;
single_protected_declaration ::=
 protected defining_identifier is
 [new interface_list with]
 protected_definition;
protected_definition ::=
 { protected_operation_declaration }
[private
 { protected_element_declaration }]
 end [protected_identifier]
protected_operation_declaration ::= subprogram_declaration
 | entry_declaration
 | aspect_clause
protected_element_declaration ::= protected_operation_declaration
 | component_declaration
protected_body ::=
 protected body defining_identifier is
 { protected_operation_item }
 end [protected_identifier];
protected_operation_item ::= subprogram_declaration
 | subprogram_body
 | entry_body
 | aspect_clause
If a protected_identifier appears at the end of a protected_definition or protected_body, it shall
repeat the defining_identifier.

Legality Rules

This paragraph was deleted.

Static Semantics

A protected_definition defines a protected type and its first subtype. The list of protected_operation_-
declarations of a protected_definition, together with the known_discriminant_part, if any, is called the
visible part of the protected unit. The optional list of protected_element_declarations after the reserved
word private is called the private part of the protected unit.

1

2/2

3/2

4

5/1

6

7

8/1

9

10/2

11/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

9.4 Protected Units and Protected Objects 10 November 2006 188

For a protected declaration with an interface_list, the protected type inherits user-defined primitive
subprograms from each progenitor type (see 3.9.4), in the same way that a derived type inherits user-
defined primitive subprograms from its progenitor types (see 3.4). If the first parameter of a primitive
inherited subprogram is of the protected type or an access parameter designating the protected type, and
there is a protected_operation_declaration for a protected subprogram or single entry with the same
identifier within the protected declaration, whose profile is type conformant with the prefixed view profile
of the inherited subprogram, the inherited subprogram is said to be implemented by the conforming
protected subprogram or entry.

Legality Rules

A protected declaration requires a completion, which shall be a protected_body, and every protected_-
body shall be the completion of some protected declaration.

Each interface_subtype_mark of an interface_list appearing within a protected declaration shall denote a
limited interface type that is not a task interface.

The prefixed view profile of an explicitly declared primitive subprogram of a tagged protected type shall
not be type conformant with any protected operation of the protected type, if the first parameter of the
subprogram is of the protected type or is an access parameter designating the protected type.

For each primitive subprogram inherited by the type declared by a protected declaration, at most one of
the following shall apply:

• the inherited subprogram is overridden with a primitive subprogram of the protected type, in
which case the overriding subprogram shall be subtype conformant with the inherited
subprogram and not abstract; or

• the inherited subprogram is implemented by a protected subprogram or single entry of the
protected type, in which case its prefixed view profile shall be subtype conformant with that of
the protected subprogram or entry.

If neither applies, the inherited subprogram shall be a null procedure. In addition to the places where
Legality Rules normally apply (see 12.3), these rules also apply in the private part of an instance of a
generic unit.

If an inherited subprogram is implemented by a protected procedure or an entry, then the first parameter of
the inherited subprogram shall be of mode out or in out, or an access-to-variable parameter.

If a protected subprogram declaration has an overriding_indicator, then at the point of the declaration:
• if the overriding_indicator is overriding, then the subprogram shall implement an inherited

subprogram;

• if the overriding_indicator is not overriding, then the subprogram shall not implement any
inherited subprogram.

In addition to the places where Legality Rules normally apply (see 12.3), these rules also apply in the
private part of an instance of a generic unit.

Dynamic Semantics

The elaboration of a protected declaration elaborates the protected_definition. The elaboration of a
single_protected_declaration also creates an object of an (anonymous) protected type.

The elaboration of a protected_definition creates the protected type and its first subtype; it also includes
the elaboration of the component_declarations and protected_operation_declarations in the given order.

11.1/2

11.2/2

11.3/2

11.4/2

11.5/2

11.6/2

11.7/2

11.8/2

11.9/2

11.10/2

11.11/2

11.12/2

11.13/2

12

13

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

189 10 November 2006 Protected Units and Protected Objects 9.4

As part of the initialization of a protected object, any per-object constraints (see 3.8) are elaborated.

The elaboration of a protected_body has no other effect than to establish that protected operations of the
type can from then on be called without failing the Elaboration_Check.

The content of an object of a given protected type includes:
• The values of the components of the protected object, including (implicitly) an entry queue for

each entry declared for the protected object;

• A representation of the state of the execution resource associated with the protected object (one
such resource is associated with each protected object).

The execution resource associated with a protected object has to be acquired to read or update any
components of the protected object; it can be acquired (as part of a protected action — see 9.5.1) either for
concurrent read-only access, or for exclusive read-write access.

As the first step of the finalization of a protected object, each call remaining on any entry queue of the
object is removed from its queue and Program_Error is raised at the place of the corresponding entry_-
call_statement.

Bounded (Run-Time) Errors

It is a bounded error to call an entry or subprogram of a protected object after that object is finalized. If the
error is detected, Program_Error is raised. Otherwise, the call proceeds normally, which may leave a task
queued forever.

NOTES
13 Within the declaration or body of a protected unit other than in an access_definition, the name of the protected unit
denotes the current instance of the unit (see 8.6), rather than the first subtype of the corresponding protected type (and
thus the name cannot be used as a subtype_mark).

14 A selected_component can be used to denote a discriminant of a protected object (see 4.1.3). Within a protected unit,
the name of a discriminant of the protected type denotes the corresponding discriminant of the current instance of the unit.

15 A protected type is a limited type (see 7.5), and hence precludes use of assignment_statements and predefined
equality operators.

16 The bodies of the protected operations given in the protected_body define the actions that take place upon calls to the
protected operations.

17 The declarations in the private part are only visible within the private part and the body of the protected unit.

Examples

Example of declaration of protected type and corresponding body:
protected type Resource is
 entry Seize;
 procedure Release;
private
 Busy : Boolean := False;
end Resource;

protected body Resource is
 entry Seize when not Busy is
 begin
 Busy := True;
 end Seize;

 procedure Release is
 begin
 Busy := False;
 end Release;
end Resource;

14

15

16

17

18

19

20

20.1/2

21/2

22

23/2

24

25

26

27

28

29

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

9.4 Protected Units and Protected Objects 10 November 2006 190

Example of a single protected declaration and corresponding body:
protected Shared_Array is
 -- Index, Item, and Item_Array are global types
 function Component (N : in Index) return Item;
 procedure Set_Component(N : in Index; E : in Item);
private
 Table : Item_Array(Index) := (others => Null_Item);
end Shared_Array;

protected body Shared_Array is
 function Component(N : in Index) return Item is
 begin
 return Table(N);
 end Component;

 procedure Set_Component(N : in Index; E : in Item) is
 begin
 Table(N) := E;
 end Set_Component;
end Shared_Array;

Examples of protected objects:
Control : Resource;
Flags : array(1 .. 100) of Resource;

9.5 Intertask Communication
The primary means for intertask communication is provided by calls on entries and protected
subprograms. Calls on protected subprograms allow coordinated access to shared data objects. Entry calls
allow for blocking the caller until a given condition is satisfied (namely, that the corresponding entry is
open — see 9.5.3), and then communicating data or control information directly with another task or
indirectly via a shared protected object.

Static Semantics

Any call on an entry or on a protected subprogram identifies a target object for the operation, which is
either a task (for an entry call) or a protected object (for an entry call or a protected subprogram call). The
target object is considered an implicit parameter to the operation, and is determined by the operation name
(or prefix) used in the call on the operation, as follows:

• If it is a direct_name or expanded name that denotes the declaration (or body) of the operation,
then the target object is implicitly specified to be the current instance of the task or protected
unit immediately enclosing the operation; such a call is defined to be an internal call;

• If it is a selected_component that is not an expanded name, then the target object is explicitly
specified to be the task or protected object denoted by the prefix of the name; such a call is
defined to be an external call;

• If the name or prefix is a dereference (implicit or explicit) of an access-to-protected-subprogram
value, then the target object is determined by the prefix of the Access attribute_reference that
produced the access value originally, and the call is defined to be an external call;

• If the name or prefix denotes a subprogram_renaming_declaration, then the target object is as
determined by the name of the renamed entity.

A corresponding definition of target object applies to a requeue_statement (see 9.5.4), with a
corresponding distinction between an internal requeue and an external requeue.

30
31

32

33

34

35

1

2

3

4

5

6

7

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

191 10 November 2006 Intertask Communication 9.5

Legality Rules

The view of the target protected object associated with a call of a protected procedure or entry shall be a
variable.

Dynamic Semantics

Within the body of a protected operation, the current instance (see 8.6) of the immediately enclosing
protected unit is determined by the target object specified (implicitly or explicitly) in the call (or requeue)
on the protected operation.

Any call on a protected procedure or entry of a target protected object is defined to be an update to the
object, as is a requeue on such an entry.

9.5.1 Protected Subprograms and Protected Actions
A protected subprogram is a subprogram declared immediately within a protected_definition. Protected
procedures provide exclusive read-write access to the data of a protected object; protected functions
provide concurrent read-only access to the data.

Static Semantics

Within the body of a protected function (or a function declared immediately within a protected_body), the
current instance of the enclosing protected unit is defined to be a constant (that is, its subcomponents may
be read but not updated). Within the body of a protected procedure (or a procedure declared immediately
within a protected_body), and within an entry_body, the current instance is defined to be a variable
(updating is permitted).

Dynamic Semantics

For the execution of a call on a protected subprogram, the evaluation of the name or prefix and of the
parameter associations, and any assigning back of in out or out parameters, proceeds as for a normal
subprogram call (see 6.4). If the call is an internal call (see 9.5), the body of the subprogram is executed as
for a normal subprogram call. If the call is an external call, then the body of the subprogram is executed as
part of a new protected action on the target protected object; the protected action completes after the body
of the subprogram is executed. A protected action can also be started by an entry call (see 9.5.3).

A new protected action is not started on a protected object while another protected action on the same
protected object is underway, unless both actions are the result of a call on a protected function. This rule
is expressible in terms of the execution resource associated with the protected object:

• Starting a protected action on a protected object corresponds to acquiring the execution resource
associated with the protected object, either for concurrent read-only access if the protected
action is for a call on a protected function, or for exclusive read-write access otherwise;

• Completing the protected action corresponds to releasing the associated execution resource.

After performing an operation on a protected object other than a call on a protected function, but prior to
completing the associated protected action, the entry queues (if any) of the protected object are serviced
(see 9.5.3).

Bounded (Run-Time) Errors

During a protected action, it is a bounded error to invoke an operation that is potentially blocking. The
following are defined to be potentially blocking operations:

• a select_statement;

7.1/2

8

9

1

2

3

4

5

6

7

8

9

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

9.5.1 Protected Subprograms and Protected Actions 10 November 2006 192

• an accept_statement;

• an entry_call_statement;

• a delay_statement;

• an abort_statement;

• task creation or activation;

• an external call on a protected subprogram (or an external requeue) with the same target object
as that of the protected action;

• a call on a subprogram whose body contains a potentially blocking operation.

If the bounded error is detected, Program_Error is raised. If not detected, the bounded error might result in
deadlock or a (nested) protected action on the same target object.

Certain language-defined subprograms are potentially blocking. In particular, the subprograms of the
language-defined input-output packages that manipulate files (implicitly or explicitly) are potentially
blocking. Other potentially blocking subprograms are identified where they are defined. When not
specified as potentially blocking, a language-defined subprogram is nonblocking.

NOTES
18 If two tasks both try to start a protected action on a protected object, and at most one is calling a protected function,
then only one of the tasks can proceed. Although the other task cannot proceed, it is not considered blocked, and it might
be consuming processing resources while it awaits its turn. There is no language-defined ordering or queuing presumed
for tasks competing to start a protected action — on a multiprocessor such tasks might use busy-waiting; for
monoprocessor considerations, see D.3, “Priority Ceiling Locking”.

19 The body of a protected unit may contain declarations and bodies for local subprograms. These are not visible outside
the protected unit.

20 The body of a protected function can contain internal calls on other protected functions, but not protected procedures,
because the current instance is a constant. On the other hand, the body of a protected procedure can contain internal calls
on both protected functions and procedures.

21 From within a protected action, an internal call on a protected subprogram, or an external call on a protected
subprogram with a different target object is not considered a potentially blocking operation.

22 The pragma Detect_Blocking may be used to ensure that all executions of potentially blocking operations during a
protected action raise Program_Error. See H.5.

Examples

Examples of protected subprogram calls (see 9.4):
Shared_Array.Set_Component(N, E);
E := Shared_Array.Component(M);
Control.Release;

9.5.2 Entries and Accept Statements
Entry_declarations, with the corresponding entry_bodies or accept_statements, are used to define
potentially queued operations on tasks and protected objects.

Syntax

entry_declaration ::=
 [overriding_indicator]
 entry defining_identifier [(discrete_subtype_definition)] parameter_profile;

10

11

12

13

14

15

16

17

18

19

20

21

22

22.1/2

23

24

1

2/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

193 10 November 2006 Entries and Accept Statements 9.5.2

accept_statement ::=
 accept entry_direct_name [(entry_index)] parameter_profile [do
 handled_sequence_of_statements
 end [entry_identifier]];
entry_index ::= expression
entry_body ::=
 entry defining_identifier entry_body_formal_part entry_barrier is
 declarative_part
 begin
 handled_sequence_of_statements
 end [entry_identifier];
entry_body_formal_part ::= [(entry_index_specification)] parameter_profile
entry_barrier ::= when condition
entry_index_specification ::= for defining_identifier in discrete_subtype_definition
If an entry_identifier appears at the end of an accept_statement, it shall repeat the entry_direct_-
name. If an entry_identifier appears at the end of an entry_body, it shall repeat the defining_-
identifier.
An entry_declaration is allowed only in a protected or task declaration.
An overriding_indicator is not allowed in an entry_declaration that includes a
discrete_subtype_definition.

Name Resolution Rules

In an accept_statement, the expected profile for the entry_direct_name is that of the entry_declaration;
the expected type for an entry_index is that of the subtype defined by the discrete_subtype_definition of
the corresponding entry_declaration.

Within the handled_sequence_of_statements of an accept_statement, if a selected_component has a
prefix that denotes the corresponding entry_declaration, then the entity denoted by the prefix is the
accept_statement, and the selected_component is interpreted as an expanded name (see 4.1.3); the
selector_name of the selected_component has to be the identifier for some formal parameter of the
accept_statement.

Legality Rules

An entry_declaration in a task declaration shall not contain a specification for an access parameter (see
3.10).

If an entry_declaration has an overriding_indicator, then at the point of the declaration:
• if the overriding_indicator is overriding, then the entry shall implement an inherited

subprogram;

• if the overriding_indicator is not overriding, then the entry shall not implement any inherited
subprogram.

In addition to the places where Legality Rules normally apply (see 12.3), these rules also apply in the
private part of an instance of a generic unit.

For an accept_statement, the innermost enclosing body shall be a task_body, and the entry_direct_name
shall denote an entry_declaration in the corresponding task declaration; the profile of the accept_-
statement shall conform fully to that of the corresponding entry_declaration. An accept_statement shall

3

4

5

6

7

8

9

10

10.1/2

11

12

13

13.1/2

13.2/2

13.3/2

13.4/2

14

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

9.5.2 Entries and Accept Statements 10 November 2006 194

have a parenthesized entry_index if and only if the corresponding entry_declaration has a discrete_-
subtype_definition.

An accept_statement shall not be within another accept_statement that corresponds to the same entry_-
declaration, nor within an asynchronous_select inner to the enclosing task_body.

An entry_declaration of a protected unit requires a completion, which shall be an entry_body, and every
entry_body shall be the completion of an entry_declaration of a protected unit. The profile of the entry_-
body shall conform fully to that of the corresponding declaration.

An entry_body_formal_part shall have an entry_index_specification if and only if the corresponding
entry_declaration has a discrete_subtype_definition. In this case, the discrete_subtype_definitions of the
entry_declaration and the entry_index_specification shall fully conform to one another (see 6.3.1).

A name that denotes a formal parameter of an entry_body is not allowed within the entry_barrier of the
entry_body.

Static Semantics

The parameter modes defined for parameters in the parameter_profile of an entry_declaration are the
same as for a subprogram_declaration and have the same meaning (see 6.2).

An entry_declaration with a discrete_subtype_definition (see 3.6) declares a family of distinct entries
having the same profile, with one such entry for each value of the entry index subtype defined by the
discrete_subtype_definition. A name for an entry of a family takes the form of an indexed_component,
where the prefix denotes the entry_declaration for the family, and the index value identifies the entry
within the family. The term single entry is used to refer to any entry other than an entry of an entry family.

In the entry_body for an entry family, the entry_index_specification declares a named constant whose
subtype is the entry index subtype defined by the corresponding entry_declaration; the value of the named
entry index identifies which entry of the family was called.

Dynamic Semantics

The elaboration of an entry_declaration for an entry family consists of the elaboration of the discrete_-
subtype_definition, as described in 3.8. The elaboration of an entry_declaration for a single entry has no
effect.

The actions to be performed when an entry is called are specified by the corresponding accept_-
statements (if any) for an entry of a task unit, and by the corresponding entry_body for an entry of a
protected unit.

For the execution of an accept_statement, the entry_index, if any, is first evaluated and converted to the
entry index subtype; this index value identifies which entry of the family is to be accepted. Further
execution of the accept_statement is then blocked until a caller of the corresponding entry is selected (see
9.5.3), whereupon the handled_sequence_of_statements, if any, of the accept_statement is executed,
with the formal parameters associated with the corresponding actual parameters of the selected entry call.
Upon completion of the handled_sequence_of_statements, the accept_statement completes and is left.
When an exception is propagated from the handled_sequence_of_statements of an accept_statement,
the same exception is also raised by the execution of the corresponding entry_call_statement.

The above interaction between a calling task and an accepting task is called a rendezvous. After a
rendezvous, the two tasks continue their execution independently.

15

16

17

18

19

20

21

22/1

23

24

25

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

195 10 November 2006 Entries and Accept Statements 9.5.2

An entry_body is executed when the condition of the entry_barrier evaluates to True and a caller of the
corresponding single entry, or entry of the corresponding entry family, has been selected (see 9.5.3). For
the execution of the entry_body, the declarative_part of the entry_body is elaborated, and the handled_-
sequence_of_statements of the body is executed, as for the execution of a subprogram_body. The value
of the named entry index, if any, is determined by the value of the entry index specified in the entry_name
of the selected entry call (or intermediate requeue_statement — see 9.5.4).

NOTES
23 A task entry has corresponding accept_statements (zero or more), whereas a protected entry has a corresponding
entry_body (exactly one).

24 A consequence of the rule regarding the allowed placements of accept_statements is that a task can execute
accept_statements only for its own entries.

25 A return statement (see 6.5) or a requeue_statement (see 9.5.4) may be used to complete the execution of an
accept_statement or an entry_body.

26 The condition in the entry_barrier may reference anything visible except the formal parameters of the entry. This
includes the entry index (if any), the components (including discriminants) of the protected object, the Count attribute of
an entry of that protected object, and data global to the protected unit.

The restriction against referencing the formal parameters within an entry_barrier ensures that all calls of the same entry
see the same barrier value. If it is necessary to look at the parameters of an entry call before deciding whether to handle it,
the entry_barrier can be “when True” and the caller can be requeued (on some private entry) when its parameters indicate
that it cannot be handled immediately.

Examples

Examples of entry declarations:
entry Read(V : out Item);
entry Seize;
entry Request(Level)(D : Item); -- a family of entries

Examples of accept statements:
accept Shut_Down;

accept Read(V : out Item) do
 V := Local_Item;
end Read;

accept Request(Low)(D : Item) do
 ...
end Request;

9.5.3 Entry Calls
An entry_call_statement (an entry call) can appear in various contexts. A simple entry call is a stand-
alone statement that represents an unconditional call on an entry of a target task or a protected object.
Entry calls can also appear as part of select_statements (see 9.7).

Syntax

entry_call_statement ::= entry_name [actual_parameter_part];

Name Resolution Rules

The entry_name given in an entry_call_statement shall resolve to denote an entry. The rules for
parameter associations are the same as for subprogram calls (see 6.4 and 6.4.1).

26

27

28

29/2

30

31

32

33

34

35

36

37

1

2

3

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

9.5.3 Entry Calls 10 November 2006 196

Static Semantics

The entry_name of an entry_call_statement specifies (explicitly or implicitly) the target object of the call,
the entry or entry family, and the entry index, if any (see 9.5).

Dynamic Semantics

Under certain circumstances (detailed below), an entry of a task or protected object is checked to see
whether it is open or closed:

• An entry of a task is open if the task is blocked on an accept_statement that corresponds to the
entry (see 9.5.2), or on a selective_accept (see 9.7.1) with an open accept_alternative that
corresponds to the entry; otherwise it is closed.

• An entry of a protected object is open if the condition of the entry_barrier of the corresponding
entry_body evaluates to True; otherwise it is closed. If the evaluation of the condition
propagates an exception, the exception Program_Error is propagated to all current callers of all
entries of the protected object.

For the execution of an entry_call_statement, evaluation of the name and of the parameter associations is
as for a subprogram call (see 6.4). The entry call is then issued: For a call on an entry of a protected object,
a new protected action is started on the object (see 9.5.1). The named entry is checked to see if it is open;
if open, the entry call is said to be selected immediately, and the execution of the call proceeds as follows:

• For a call on an open entry of a task, the accepting task becomes ready and continues the
execution of the corresponding accept_statement (see 9.5.2).

• For a call on an open entry of a protected object, the corresponding entry_body is executed (see
9.5.2) as part of the protected action.

If the accept_statement or entry_body completes other than by a requeue (see 9.5.4), return is made to
the caller (after servicing the entry queues — see below); any necessary assigning back of formal to actual
parameters occurs, as for a subprogram call (see 6.4.1); such assignments take place outside of any
protected action.

If the named entry is closed, the entry call is added to an entry queue (as part of the protected action, for a
call on a protected entry), and the call remains queued until it is selected or cancelled; there is a separate
(logical) entry queue for each entry of a given task or protected object (including each entry of an entry
family).

When a queued call is selected, it is removed from its entry queue. Selecting a queued call from a
particular entry queue is called servicing the entry queue. An entry with queued calls can be serviced
under the following circumstances:

• When the associated task reaches a corresponding accept_statement, or a selective_accept
with a corresponding open accept_alternative;

• If after performing, as part of a protected action on the associated protected object, an operation
on the object other than a call on a protected function, the entry is checked and found to be open.

If there is at least one call on a queue corresponding to an open entry, then one such call is selected
according to the entry queuing policy in effect (see below), and the corresponding accept_statement or
entry_body is executed as above for an entry call that is selected immediately.

The entry queuing policy controls selection among queued calls both for task and protected entry queues.
The default entry queuing policy is to select calls on a given entry queue in order of arrival. If calls from
two or more queues are simultaneously eligible for selection, the default entry queuing policy does not
specify which queue is serviced first. Other entry queuing policies can be specified by pragmas (see D.4).

4

5

6

7

8

9

10

11

12

13

14

15

16

17

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

197 10 November 2006 Entry Calls 9.5.3

For a protected object, the above servicing of entry queues continues until there are no open entries with
queued calls, at which point the protected action completes.

For an entry call that is added to a queue, and that is not the triggering_statement of an asynchronous_-
select (see 9.7.4), the calling task is blocked until the call is cancelled, or the call is selected and a
corresponding accept_statement or entry_body completes without requeuing. In addition, the calling task
is blocked during a rendezvous.

An attempt can be made to cancel an entry call upon an abort (see 9.8) and as part of certain forms of
select_statement (see 9.7.2, 9.7.3, and 9.7.4). The cancellation does not take place until a point (if any)
when the call is on some entry queue, and not protected from cancellation as part of a requeue (see 9.5.4);
at such a point, the call is removed from the entry queue and the call completes due to the cancellation.
The cancellation of a call on an entry of a protected object is a protected action, and as such cannot take
place while any other protected action is occurring on the protected object. Like any protected action, it
includes servicing of the entry queues (in case some entry barrier depends on a Count attribute).

A call on an entry of a task that has already completed its execution raises the exception Tasking_Error at
the point of the call; similarly, this exception is raised at the point of the call if the called task completes
its execution or becomes abnormal before accepting the call or completing the rendezvous (see 9.8). This
applies equally to a simple entry call and to an entry call as part of a select_statement.

Implementation Permissions

An implementation may perform the sequence of steps of a protected action using any thread of control; it
need not be that of the task that started the protected action. If an entry_body completes without
requeuing, then the corresponding calling task may be made ready without waiting for the entire protected
action to complete.

When the entry of a protected object is checked to see whether it is open, the implementation need not
reevaluate the condition of the corresponding entry_barrier if no variable or attribute referenced by the
condition (directly or indirectly) has been altered by the execution (or cancellation) of a protected
procedure or entry call on the object since the condition was last evaluated.

An implementation may evaluate the conditions of all entry_barriers of a given protected object any time
any entry of the object is checked to see if it is open.

When an attempt is made to cancel an entry call, the implementation need not make the attempt using the
thread of control of the task (or interrupt) that initiated the cancellation; in particular, it may use the thread
of control of the caller itself to attempt the cancellation, even if this might allow the entry call to be
selected in the interim.

NOTES
27 If an exception is raised during the execution of an entry_body, it is propagated to the corresponding caller (see 11.4).

28 For a call on a protected entry, the entry is checked to see if it is open prior to queuing the call, and again thereafter if
its Count attribute (see 9.9) is referenced in some entry barrier.

29 In addition to simple entry calls, the language permits timed, conditional, and asynchronous entry calls (see 9.7.2,
9.7.3, and see 9.7.4).

30 The condition of an entry_barrier is allowed to be evaluated by an implementation more often than strictly necessary,
even if the evaluation might have side effects. On the other hand, an implementation need not reevaluate the condition if
nothing it references was updated by an intervening protected action on the protected object, even if the condition
references some global variable that might have been updated by an action performed from outside of a protected action.

18

19

20

21

22

23

24

25

26

27

28

29

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

9.5.3 Entry Calls 10 November 2006 198

Examples

Examples of entry calls:
Agent.Shut_Down; -- see 9.1
Parser.Next_Lexeme(E); -- see 9.1
Pool(5).Read(Next_Char); -- see 9.1
Controller.Request(Low)(Some_Item); -- see 9.1
Flags(3).Seize; -- see 9.4

9.5.4 Requeue Statements
A requeue_statement can be used to complete an accept_statement or entry_body, while redirecting the
corresponding entry call to a new (or the same) entry queue. Such a requeue can be performed with or
without allowing an intermediate cancellation of the call, due to an abort or the expiration of a delay.

Syntax

requeue_statement ::= requeue entry_name [with abort];

Name Resolution Rules

The entry_name of a requeue_statement shall resolve to denote an entry (the target entry) that either has
no parameters, or that has a profile that is type conformant (see 6.3.1) with the profile of the innermost
enclosing entry_body or accept_statement.

Legality Rules

A requeue_statement shall be within a callable construct that is either an entry_body or an
accept_statement, and this construct shall be the innermost enclosing body or callable construct.

If the target entry has parameters, then its profile shall be subtype conformant with the profile of the
innermost enclosing callable construct.

In a requeue_statement of an accept_statement of some task unit, either the target object shall be a part
of a formal parameter of the accept_statement, or the accessibility level of the target object shall not be
equal to or statically deeper than any enclosing accept_statement of the task unit. In a requeue_-
statement of an entry_body of some protected unit, either the target object shall be a part of a formal
parameter of the entry_body, or the accessibility level of the target object shall not be statically deeper
than that of the entry_declaration.

Dynamic Semantics

The execution of a requeue_statement proceeds by first evaluating the entry_name, including the prefix
identifying the target task or protected object and the expression identifying the entry within an entry
family, if any. The entry_body or accept_statement enclosing the requeue_statement is then completed,
finalized, and left (see 7.6.1).

For the execution of a requeue on an entry of a target task, after leaving the enclosing callable construct,
the named entry is checked to see if it is open and the requeued call is either selected immediately or
queued, as for a normal entry call (see 9.5.3).

For the execution of a requeue on an entry of a target protected object, after leaving the enclosing callable
construct:

• if the requeue is an internal requeue (that is, the requeue is back on an entry of the same
protected object — see 9.5), the call is added to the queue of the named entry and the ongoing
protected action continues (see 9.5.1);

30

31

1

2

3

4

5

6

7

8

9

10

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

199 10 November 2006 Requeue Statements 9.5.4

• if the requeue is an external requeue (that is, the target protected object is not implicitly the same
as the current object — see 9.5), a protected action is started on the target object and proceeds as
for a normal entry call (see 9.5.3).

If the new entry named in the requeue_statement has formal parameters, then during the execution of the
accept_statement or entry_body corresponding to the new entry, the formal parameters denote the same
objects as did the corresponding formal parameters of the callable construct completed by the requeue. In
any case, no parameters are specified in a requeue_statement; any parameter passing is implicit.

If the requeue_statement includes the reserved words with abort (it is a requeue-with-abort), then:
• if the original entry call has been aborted (see 9.8), then the requeue acts as an abort completion

point for the call, and the call is cancelled and no requeue is performed;

• if the original entry call was timed (or conditional), then the original expiration time is the
expiration time for the requeued call.

If the reserved words with abort do not appear, then the call remains protected against cancellation while
queued as the result of the requeue_statement.

NOTES
31 A requeue is permitted from a single entry to an entry of an entry family, or vice-versa. The entry index, if any, plays
no part in the subtype conformance check between the profiles of the two entries; an entry index is part of the entry_name
for an entry of a family.

Examples

Examples of requeue statements:
requeue Request(Medium) with abort;
 -- requeue on a member of an entry family of the current task, see 9.1
requeue Flags(I).Seize;
 -- requeue on an entry of an array component, see 9.4

9.6 Delay Statements, Duration, and Time
A delay_statement is used to block further execution until a specified expiration time is reached. The
expiration time can be specified either as a particular point in time (in a delay_until_statement), or in
seconds from the current time (in a delay_relative_statement). The language-defined package Calendar
provides definitions for a type Time and associated operations, including a function Clock that returns the
current time.

Syntax

delay_statement ::= delay_until_statement | delay_relative_statement
delay_until_statement ::= delay until delay_expression;
delay_relative_statement ::= delay delay_expression;

Name Resolution Rules

The expected type for the delay_expression in a delay_relative_statement is the predefined type
Duration. The delay_expression in a delay_until_statement is expected to be of any nonlimited type.

Legality Rules

There can be multiple time bases, each with a corresponding clock, and a corresponding time type. The
type of the delay_expression in a delay_until_statement shall be a time type — either the type Time

11

12

13

14

15

16

17

18

19

20

1

2

3

4

5

6

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

9.6 Delay Statements, Duration, and Time 10 November 2006 200

defined in the language-defined package Calendar (see below), or some other implementation-defined time
type (see D.8).

Static Semantics

There is a predefined fixed point type named Duration, declared in the visible part of package Standard; a
value of type Duration is used to represent the length of an interval of time, expressed in seconds. The type
Duration is not specific to a particular time base, but can be used with any time base.

A value of the type Time in package Calendar, or of some other implementation-defined time type,
represents a time as reported by a corresponding clock.

The following language-defined library package exists:

package Ada.Calendar is
 type Time is private;

 subtype Year_Number is Integer range 1901 .. 2399;
 subtype Month_Number is Integer range 1 .. 12;
 subtype Day_Number is Integer range 1 .. 31;
 subtype Day_Duration is Duration range 0.0 .. 86_400.0;

 function Clock return Time;

 function Year (Date : Time) return Year_Number;
 function Month (Date : Time) return Month_Number;
 function Day (Date : Time) return Day_Number;
 function Seconds(Date : Time) return Day_Duration;

 procedure Split (Date : in Time;
 Year : out Year_Number;
 Month : out Month_Number;
 Day : out Day_Number;
 Seconds : out Day_Duration);

 function Time_Of(Year : Year_Number;
 Month : Month_Number;
 Day : Day_Number;
 Seconds : Day_Duration := 0.0)
 return Time;

 function "+" (Left : Time; Right : Duration) return Time;
 function "+" (Left : Duration; Right : Time) return Time;
 function "-" (Left : Time; Right : Duration) return Time;
 function "-" (Left : Time; Right : Time) return Duration;

 function "<" (Left, Right : Time) return Boolean;
 function "<="(Left, Right : Time) return Boolean;
 function ">" (Left, Right : Time) return Boolean;
 function ">="(Left, Right : Time) return Boolean;

 Time_Error : exception;

private
 ... -- not specified by the language
end Ada.Calendar;

Dynamic Semantics

For the execution of a delay_statement, the delay_expression is first evaluated. For a
delay_until_statement, the expiration time for the delay is the value of the delay_expression, in the time
base associated with the type of the expression. For a delay_relative_statement, the expiration time is
defined as the current time, in the time base associated with relative delays, plus the value of the
delay_expression converted to the type Duration, and then rounded up to the next clock tick. The time
base associated with relative delays is as defined in D.9, “Delay Accuracy” or is implementation defined.

7

8

9

10

11/2

12

13

14

15

16

17

18

19

20

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

201 10 November 2006 Delay Statements, Duration, and Time 9.6

The task executing a delay_statement is blocked until the expiration time is reached, at which point it
becomes ready again. If the expiration time has already passed, the task is not blocked.

If an attempt is made to cancel the delay_statement (as part of an asynchronous_select or abort — see
9.7.4 and 9.8), the _statement is cancelled if the expiration time has not yet passed, thereby completing
the delay_statement.

The time base associated with the type Time of package Calendar is implementation defined. The function
Clock of package Calendar returns a value representing the current time for this time base. The
implementation-defined value of the named number System.Tick (see 13.7) is an approximation of the
length of the real-time interval during which the value of Calendar.Clock remains constant.

The functions Year, Month, Day, and Seconds return the corresponding values for a given value of the
type Time, as appropriate to an implementation-defined time zone; the procedure Split returns all four
corresponding values. Conversely, the function Time_Of combines a year number, a month number, a day
number, and a duration, into a value of type Time. The operators "+" and "–" for addition and subtraction
of times and durations, and the relational operators for times, have the conventional meaning.

If Time_Of is called with a seconds value of 86_400.0, the value returned is equal to the value of Time_Of
for the next day with a seconds value of 0.0. The value returned by the function Seconds or through the
Seconds parameter of the procedure Split is always less than 86_400.0.

The exception Time_Error is raised by the function Time_Of if the actual parameters do not form a proper
date. This exception is also raised by the operators "+" and "–" if the result is not representable in the type
Time or Duration, as appropriate. This exception is also raised by the functions Year, Month, Day, and
Seconds and the procedure Split if the year number of the given date is outside of the range of the subtype
Year_Number.

Implementation Requirements

The implementation of the type Duration shall allow representation of time intervals (both positive and
negative) up to at least 86400 seconds (one day); Duration'Small shall not be greater than twenty
milliseconds. The implementation of the type Time shall allow representation of all dates with year
numbers in the range of Year_Number; it may allow representation of other dates as well (both earlier and
later).

Implementation Permissions

An implementation may define additional time types (see D.8).

An implementation may raise Time_Error if the value of a delay_expression in a delay_until_statement
of a select_statement represents a time more than 90 days past the current time. The actual limit, if any, is
implementation-defined.

Implementation Advice

Whenever possible in an implementation, the value of Duration'Small should be no greater than 100
microseconds.

The time base for delay_relative_statements should be monotonic; it need not be the same time base as
used for Calendar.Clock.

NOTES
32 A delay_relative_statement with a negative value of the delay_expression is equivalent to one with a zero value.

21

22

23

24/2

25

26/1

27

28

29

30

31

32

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

9.6 Delay Statements, Duration, and Time 10 November 2006 202

33 A delay_statement may be executed by the environment task; consequently delay_statements may be executed as
part of the elaboration of a library_item or the execution of the main subprogram. Such statements delay the environment
task (see 10.2).

34 A delay_statement is an abort completion point and a potentially blocking operation, even if the task is not actually
blocked.

35 There is no necessary relationship between System.Tick (the resolution of the clock of package Calendar) and
Duration'Small (the small of type Duration).

36 Additional requirements associated with delay_statements are given in D.9, “Delay Accuracy”.

Examples

Example of a relative delay statement:
delay 3.0; -- delay 3.0 seconds

Example of a periodic task:
declare
 use Ada.Calendar;
 Next_Time : Time := Clock + Period;
 -- Period is a global constant of type Duration
begin
 loop -- repeated every Period seconds
 delay until Next_Time;
 ... -- perform some actions
 Next_Time := Next_Time + Period;
 end loop;
end;

9.6.1 Formatting, Time Zones, and other operations for Time
Static Semantics

The following language-defined library packages exist:
package Ada.Calendar.Time_Zones is

 -- Time zone manipulation:
 type Time_Offset is range -28*60 .. 28*60;

 Unknown_Zone_Error : exception;

 function UTC_Time_Offset (Date : Time := Clock) return Time_Offset;

end Ada.Calendar.Time_Zones;

package Ada.Calendar.Arithmetic is

 -- Arithmetic on days:
 type Day_Count is range
 -366*(1+Year_Number'Last - Year_Number'First)
 ..
 366*(1+Year_Number'Last - Year_Number'First);

 subtype Leap_Seconds_Count is Integer range -2047 .. 2047;

 procedure Difference (Left, Right : in Time;
 Days : out Day_Count;
 Seconds : out Duration;
 Leap_Seconds : out Leap_Seconds_Count);

 function "+" (Left : Time; Right : Day_Count) return Time;
 function "+" (Left : Day_Count; Right : Time) return Time;
 function "-" (Left : Time; Right : Day_Count) return Time;
 function "-" (Left, Right : Time) return Day_Count;

33

34

35

36

37

38

39

40

1/2

2/2

3/2

4/2

5/2

6/2

7/2

8/2

9/2

10/2

11/2

12/2

13/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

203 10 November 2006 Formatting, Time Zones, and other operations for Time 9.6.1

end Ada.Calendar.Arithmetic;

with Ada.Calendar.Time_Zones;
package Ada.Calendar.Formatting is

 -- Day of the week:
 type Day_Name is (Monday, Tuesday, Wednesday, Thursday,
 Friday, Saturday, Sunday);

 function Day_of_Week (Date : Time) return Day_Name;

 -- Hours:Minutes:Seconds access:
 subtype Hour_Number is Natural range 0 .. 23;
 subtype Minute_Number is Natural range 0 .. 59;
 subtype Second_Number is Natural range 0 .. 59;
 subtype Second_Duration is Day_Duration range 0.0 .. 1.0;

 function Year (Date : Time;
 Time_Zone : Time_Zones.Time_Offset := 0)
 return Year_Number;

 function Month (Date : Time;
 Time_Zone : Time_Zones.Time_Offset := 0)
 return Month_Number;

 function Day (Date : Time;
 Time_Zone : Time_Zones.Time_Offset := 0)
 return Day_Number;

 function Hour (Date : Time;
 Time_Zone : Time_Zones.Time_Offset := 0)
 return Hour_Number;

 function Minute (Date : Time;
 Time_Zone : Time_Zones.Time_Offset := 0)
 return Minute_Number;

 function Second (Date : Time)
 return Second_Number;

 function Sub_Second (Date : Time)
 return Second_Duration;

 function Seconds_Of (Hour : Hour_Number;
 Minute : Minute_Number;
 Second : Second_Number := 0;
 Sub_Second : Second_Duration := 0.0)
 return Day_Duration;

 procedure Split (Seconds : in Day_Duration;
 Hour : out Hour_Number;
 Minute : out Minute_Number;
 Second : out Second_Number;
 Sub_Second : out Second_Duration);

 function Time_Of (Year : Year_Number;
 Month : Month_Number;
 Day : Day_Number;
 Hour : Hour_Number;
 Minute : Minute_Number;
 Second : Second_Number;
 Sub_Second : Second_Duration := 0.0;
 Leap_Second: Boolean := False;
 Time_Zone : Time_Zones.Time_Offset := 0)
 return Time;

 function Time_Of (Year : Year_Number;
 Month : Month_Number;
 Day : Day_Number;
 Seconds : Day_Duration := 0.0;
 Leap_Second: Boolean := False;
 Time_Zone : Time_Zones.Time_Offset := 0)
 return Time;

14/2

15/2

16/2

17/2

18/2

19/2

20/2

21/2

22/2

23/2

24/2

25/2

26/2

27/2

28/2

29/2

30/2

31/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

9.6.1 Formatting, Time Zones, and other operations for Time 10 November 2006 204

 procedure Split (Date : in Time;
 Year : out Year_Number;
 Month : out Month_Number;
 Day : out Day_Number;
 Hour : out Hour_Number;
 Minute : out Minute_Number;
 Second : out Second_Number;
 Sub_Second : out Second_Duration;
 Time_Zone : in Time_Zones.Time_Offset := 0);

 procedure Split (Date : in Time;
 Year : out Year_Number;
 Month : out Month_Number;
 Day : out Day_Number;
 Hour : out Hour_Number;
 Minute : out Minute_Number;
 Second : out Second_Number;
 Sub_Second : out Second_Duration;
 Leap_Second: out Boolean;
 Time_Zone : in Time_Zones.Time_Offset := 0);

 procedure Split (Date : in Time;
 Year : out Year_Number;
 Month : out Month_Number;
 Day : out Day_Number;
 Seconds : out Day_Duration;
 Leap_Second: out Boolean;
 Time_Zone : in Time_Zones.Time_Offset := 0);

 -- Simple image and value:
 function Image (Date : Time;
 Include_Time_Fraction : Boolean := False;
 Time_Zone : Time_Zones.Time_Offset := 0) return String;

 function Value (Date : String;
 Time_Zone : Time_Zones.Time_Offset := 0) return Time;

 function Image (Elapsed_Time : Duration;
 Include_Time_Fraction : Boolean := False) return String;

 function Value (Elapsed_Time : String) return Duration;

end Ada.Calendar.Formatting;

Type Time_Offset represents the number of minutes difference between the implementation-defined time
zone used by Calendar and another time zone.

function UTC_Time_Offset (Date : Time := Clock) return Time_Offset;

Returns, as a number of minutes, the difference between the implementation-defined time zone
of Calendar, and UTC time, at the time Date. If the time zone of the Calendar implementation is
unknown, then Unknown_Zone_Error is raised.

procedure Difference (Left, Right : in Time;
 Days : out Day_Count;
 Seconds : out Duration;
 Leap_Seconds : out Leap_Seconds_Count);

Returns the difference between Left and Right. Days is the number of days of difference,
Seconds is the remainder seconds of difference excluding leap seconds, and Leap_Seconds is the
number of leap seconds. If Left < Right, then Seconds <= 0.0, Days <= 0, and Leap_Seconds <=
0. Otherwise, all values are nonnegative. The absolute value of Seconds is always less than
86_400.0. For the returned values, if Days = 0, then Seconds + Duration(Leap_Seconds) =
Calendar."–" (Left, Right).

32/2

33/2

34/2

35/2

36/2

37/2

38/2

39/2

40/2

41/2

42/2

43/2

44/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

205 10 November 2006 Formatting, Time Zones, and other operations for Time 9.6.1

function "+" (Left : Time; Right : Day_Count) return Time;
function "+" (Left : Day_Count; Right : Time) return Time;

Adds a number of days to a time value. Time_Error is raised if the result is not representable as a
value of type Time.

function "-" (Left : Time; Right : Day_Count) return Time;

Subtracts a number of days from a time value. Time_Error is raised if the result is not
representable as a value of type Time.

function "-" (Left, Right : Time) return Day_Count;

Subtracts two time values, and returns the number of days between them. This is the same value
that Difference would return in Days.

function Day_of_Week (Date : Time) return Day_Name;

Returns the day of the week for Time. This is based on the Year, Month, and Day values of
Time.

function Year (Date : Time;
 Time_Zone : Time_Zones.Time_Offset := 0)
 return Year_Number;

Returns the year for Date, as appropriate for the specified time zone offset.

function Month (Date : Time;
 Time_Zone : Time_Zones.Time_Offset := 0)
 return Month_Number;

Returns the month for Date, as appropriate for the specified time zone offset.

function Day (Date : Time;
 Time_Zone : Time_Zones.Time_Offset := 0)
 return Day_Number;

Returns the day number for Date, as appropriate for the specified time zone offset.

function Hour (Date : Time;
 Time_Zone : Time_Zones.Time_Offset := 0)
 return Hour_Number;

Returns the hour for Date, as appropriate for the specified time zone offset.

function Minute (Date : Time;
 Time_Zone : Time_Zones.Time_Offset := 0)
 return Minute_Number;

Returns the minute within the hour for Date, as appropriate for the specified time zone offset.

function Second (Date : Time)
 return Second_Number;

Returns the second within the hour and minute for Date.

function Sub_Second (Date : Time)
 return Second_Duration;

Returns the fraction of second for Date (this has the same accuracy as Day_Duration). The value
returned is always less than 1.0.

45/2

46/2

47/2

48/2

49/2

50/2

51/2

52/2

53/2

54/2

55/2

56/2

57/2

58/2

59/2

60/2

61/2

62/2

63/2

64/2

65/2

66/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

9.6.1 Formatting, Time Zones, and other operations for Time 10 November 2006 206

function Seconds_Of (Hour : Hour_Number;
 Minute : Minute_Number;
 Second : Second_Number := 0;
 Sub_Second : Second_Duration := 0.0)
 return Day_Duration;

Returns a Day_Duration value for the combination of the given Hour, Minute, Second, and
Sub_Second. This value can be used in Calendar.Time_Of as well as the argument to
Calendar."+" and Calendar."–". If Seconds_Of is called with a Sub_Second value of 1.0, the
value returned is equal to the value of Seconds_Of for the next second with a Sub_Second value
of 0.0.

procedure Split (Seconds : in Day_Duration;
 Hour : out Hour_Number;
 Minute : out Minute_Number;
 Second : out Second_Number;
 Sub_Second : out Second_Duration);

Splits Seconds into Hour, Minute, Second and Sub_Second in such a way that the resulting
values all belong to their respective subtypes. The value returned in the Sub_Second parameter
is always less than 1.0.

function Time_Of (Year : Year_Number;
 Month : Month_Number;
 Day : Day_Number;
 Hour : Hour_Number;
 Minute : Minute_Number;
 Second : Second_Number;
 Sub_Second : Second_Duration := 0.0;
 Leap_Second: Boolean := False;
 Time_Zone : Time_Zones.Time_Offset := 0)
 return Time;

If Leap_Second is False, returns a Time built from the date and time values, relative to the
specified time zone offset. If Leap_Second is True, returns the Time that represents the time
within the leap second that is one second later than the time specified by the other parameters.
Time_Error is raised if the parameters do not form a proper date or time. If Time_Of is called
with a Sub_Second value of 1.0, the value returned is equal to the value of Time_Of for the next
second with a Sub_Second value of 0.0.

function Time_Of (Year : Year_Number;
 Month : Month_Number;
 Day : Day_Number;
 Seconds : Day_Duration := 0.0;
 Leap_Second: Boolean := False;
 Time_Zone : Time_Zones.Time_Offset := 0)
 return Time;

If Leap_Second is False, returns a Time built from the date and time values, relative to the
specified time zone offset. If Leap_Second is True, returns the Time that represents the time
within the leap second that is one second later than the time specified by the other parameters.
Time_Error is raised if the parameters do not form a proper date or time. If Time_Of is called
with a Seconds value of 86_400.0, the value returned is equal to the value of Time_Of for the
next day with a Seconds value of 0.0.

67/2

68/2

69/2

70/2

71/2

72/2

73/2

74/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

207 10 November 2006 Formatting, Time Zones, and other operations for Time 9.6.1

procedure Split (Date : in Time;
 Year : out Year_Number;
 Month : out Month_Number;
 Day : out Day_Number;
 Hour : out Hour_Number;
 Minute : out Minute_Number;
 Second : out Second_Number;
 Sub_Second : out Second_Duration;
 Leap_Second: out Boolean;
 Time_Zone : in Time_Zones.Time_Offset := 0);

If Date does not represent a time within a leap second, splits Date into its constituent parts (Year,
Month, Day, Hour, Minute, Second, Sub_Second), relative to the specified time zone offset, and
sets Leap_Second to False. If Date represents a time within a leap second, set the constituent
parts to values corresponding to a time one second earlier than that given by Date, relative to the
specified time zone offset, and sets Leap_Seconds to True. The value returned in the
Sub_Second parameter is always less than 1.0.

procedure Split (Date : in Time;
 Year : out Year_Number;
 Month : out Month_Number;
 Day : out Day_Number;
 Hour : out Hour_Number;
 Minute : out Minute_Number;
 Second : out Second_Number;
 Sub_Second : out Second_Duration;
 Time_Zone : in Time_Zones.Time_Offset := 0);

Splits Date into its constituent parts (Year, Month, Day, Hour, Minute, Second, Sub_Second),
relative to the specified time zone offset. The value returned in the Sub_Second parameter is
always less than 1.0.

procedure Split (Date : in Time;
 Year : out Year_Number;
 Month : out Month_Number;
 Day : out Day_Number;
 Seconds : out Day_Duration;
 Leap_Second: out Boolean;
 Time_Zone : in Time_Zones.Time_Offset := 0);

If Date does not represent a time within a leap second, splits Date into its constituent parts (Year,
Month, Day, Seconds), relative to the specified time zone offset, and sets Leap_Second to False.
If Date represents a time within a leap second, set the constituent parts to values corresponding
to a time one second earlier than that given by Date, relative to the specified time zone offset,
and sets Leap_Seconds to True. The value returned in the Seconds parameter is always less than
86_400.0.

function Image (Date : Time;
 Include_Time_Fraction : Boolean := False;
 Time_Zone : Time_Zones.Time_Offset := 0) return String;

Returns a string form of the Date relative to the given Time_Zone. The format is "Year-Month-
Day Hour:Minute:Second", where the Year is a 4-digit value, and all others are 2-digit values, of
the functions defined in Calendar and Calendar.Formatting, including a leading zero, if needed.
The separators between the values are a minus, another minus, a colon, and a single space
between the Day and Hour. If Include_Time_Fraction is True, the integer part of
Sub_Seconds*100 is suffixed to the string as a point followed by a 2-digit value.

75/2

76/2

77/2

78/2

79/2

80/2

81/2

82/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

9.6.1 Formatting, Time Zones, and other operations for Time 10 November 2006 208

function Value (Date : String;
 Time_Zone : Time_Zones.Time_Offset := 0) return Time;

Returns a Time value for the image given as Date, relative to the given time zone.
Constraint_Error is raised if the string is not formatted as described for Image, or the function
cannot interpret the given string as a Time value.

function Image (Elapsed_Time : Duration;
 Include_Time_Fraction : Boolean := False) return String;

Returns a string form of the Elapsed_Time. The format is "Hour:Minute:Second", where all
values are 2-digit values, including a leading zero, if needed. The separators between the values
are colons. If Include_Time_Fraction is True, the integer part of Sub_Seconds*100 is suffixed to
the string as a point followed by a 2-digit value. If Elapsed_Time < 0.0, the result is Image (abs
Elapsed_Time, Include_Time_Fraction) prefixed with a minus sign. If abs Elapsed_Time
represents 100 hours or more, the result is implementation-defined.

function Value (Elapsed_Time : String) return Duration;

Returns a Duration value for the image given as Elapsed_Time. Constraint_Error is raised if the
string is not formatted as described for Image, or the function cannot interpret the given string as
a Duration value.

Implementation Advice

An implementation should support leap seconds if the target system supports them. If leap seconds are not
supported, Difference should return zero for Leap_Seconds, Split should return False for Leap_Second,
and Time_Of should raise Time_Error if Leap_Second is True.

NOTES
37 The implementation-defined time zone of package Calendar may, but need not, be the local time zone.
UTC_Time_Offset always returns the difference relative to the implementation-defined time zone of package Calendar. If
UTC_Time_Offset does not raise Unknown_Zone_Error, UTC time can be safely calculated (within the accuracy of the
underlying time-base).

38 Calling Split on the results of subtracting Duration(UTC_Time_Offset*60) from Clock provides the components
(hours, minutes, and so on) of the UTC time. In the United States, for example, UTC_Time_Offset will generally be
negative.

9.7 Select Statements
There are four forms of the select_statement. One form provides a selective wait for one or more
select_alternatives. Two provide timed and conditional entry calls. The fourth provides asynchronous
transfer of control.

Syntax

select_statement ::=
 selective_accept
 | timed_entry_call
 | conditional_entry_call
 | asynchronous_select

83/2

84/2

85/2

86/2

87/2

88/2

89/2

90/2

91/2

1

2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

209 10 November 2006 Select Statements 9.7

Examples

Example of a select statement:
select
 accept Driver_Awake_Signal;
or
 delay 30.0*Seconds;
 Stop_The_Train;
end select;

9.7.1 Selective Accept
This form of the select_statement allows a combination of waiting for, and selecting from, one or more
alternatives. The selection may depend on conditions associated with each alternative of the
selective_accept.

Syntax

selective_accept ::=
 select
 [guard]
 select_alternative
{ or
 [guard]
 select_alternative }
[else
 sequence_of_statements]
 end select;
guard ::= when condition =>
select_alternative ::=
 accept_alternative
 | delay_alternative
 | terminate_alternative
accept_alternative ::=
 accept_statement [sequence_of_statements]
delay_alternative ::=
 delay_statement [sequence_of_statements]
terminate_alternative ::= terminate;
A selective_accept shall contain at least one accept_alternative. In addition, it can contain:

• a terminate_alternative (only one); or
• one or more delay_alternatives; or
• an else part (the reserved word else followed by a sequence_of_statements).

These three possibilities are mutually exclusive.

Legality Rules

If a selective_accept contains more than one delay_alternative, then all shall be delay_relative_-
statements, or all shall be delay_until_statements for the same time type.

Dynamic Semantics

A select_alternative is said to be open if it is not immediately preceded by a guard, or if the condition of
its guard evaluates to True. It is said to be closed otherwise.

3

4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

9.7.1 Selective Accept 10 November 2006 210

For the execution of a selective_accept, any guard conditions are evaluated; open alternatives are thus
determined. For an open delay_alternative, the delay_expression is also evaluated. Similarly, for an open
accept_alternative for an entry of a family, the entry_index is also evaluated. These evaluations are
performed in an arbitrary order, except that a delay_expression or entry_index is not evaluated until after
evaluating the corresponding condition, if any. Selection and execution of one open alternative, or of the
else part, then completes the execution of the selective_accept; the rules for this selection are described
below.

Open accept_alternatives are first considered. Selection of one such alternative takes place immediately if
the corresponding entry already has queued calls. If several alternatives can thus be selected, one of them
is selected according to the entry queuing policy in effect (see 9.5.3 and D.4). When such an alternative is
selected, the selected call is removed from its entry queue and the handled_sequence_of_statements (if
any) of the corresponding accept_statement is executed; after the rendezvous completes any subsequent
sequence_of_statements of the alternative is executed. If no selection is immediately possible (in the
above sense) and there is no else part, the task blocks until an open alternative can be selected.

Selection of the other forms of alternative or of an else part is performed as follows:
• An open delay_alternative is selected when its expiration time is reached if no accept_-

alternative or other delay_alternative can be selected prior to the expiration time. If several
delay_alternatives have this same expiration time, one of them is selected according to the
queuing policy in effect (see D.4); the default queuing policy chooses arbitrarily among the
delay_alternatives whose expiration time has passed.

• The else part is selected and its sequence_of_statements is executed if no accept_alternative
can immediately be selected; in particular, if all alternatives are closed.

• An open terminate_alternative is selected if the conditions stated at the end of clause 9.3 are
satisfied.

The exception Program_Error is raised if all alternatives are closed and there is no else part.

NOTES
39 A selective_accept is allowed to have several open delay_alternatives. A selective_accept is allowed to have several
open accept_alternatives for the same entry.

Examples

Example of a task body with a selective accept:
task body Server is
 Current_Work_Item : Work_Item;
begin
 loop
 select
 accept Next_Work_Item(WI : in Work_Item) do
 Current_Work_Item := WI;
 end;
 Process_Work_Item(Current_Work_Item);
 or
 accept Shut_Down;
 exit; -- Premature shut down requested
 or
 terminate; -- Normal shutdown at end of scope
 end select;
 end loop;
end Server;

15

16

17

18

19

20

21

22

23

24

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

211 10 November 2006 Timed Entry Calls 9.7.2

9.7.2 Timed Entry Calls
A timed_entry_call issues an entry call that is cancelled if the call (or a requeue-with-abort of the call) is
not selected before the expiration time is reached. A procedure call may appear rather than an entry call
for cases where the procedure might be implemented by an entry.

Syntax

timed_entry_call ::=
 select
 entry_call_alternative
 or
 delay_alternative
 end select;
entry_call_alternative ::=
 procedure_or_entry_call [sequence_of_statements]
procedure_or_entry_call ::=
 procedure_call_statement | entry_call_statement

Legality Rules

If a procedure_call_statement is used for a procedure_or_entry_call, the procedure_name or
procedure_prefix of the procedure_call_statement shall statically denote an entry renamed as a procedure
or (a view of) a primitive subprogram of a limited interface whose first parameter is a controlling
parameter (see 3.9.2).

Static Semantics

If a procedure_call_statement is used for a procedure_or_entry_call, and the procedure is implemented
by an entry, then the procedure_name, or procedure_prefix and possibly the first parameter of the
procedure_call_statement, determine the target object of the call and the entry to be called.

Dynamic Semantics

For the execution of a timed_entry_call, the entry_name, procedure_name, or procedure_prefix, and any
actual parameters are evaluated, as for a simple entry call (see 9.5.3) or procedure call (see 6.4). The
expiration time (see 9.6) for the call is determined by evaluating the delay_expression of the
delay_alternative. If the call is an entry call or a call on a procedure implemented by an entry, the entry
call is then issued. Otherwise, the call proceeds as described in 6.4 for a procedure call, followed by the
sequence_of_statements of the entry_call_alternative; the sequence_of_statements of the delay_-
alternative is ignored.

If the call is queued (including due to a requeue-with-abort), and not selected before the expiration time is
reached, an attempt to cancel the call is made. If the call completes due to the cancellation, the optional
sequence_of_statements of the delay_alternative is executed; if the entry call completes normally, the
optional sequence_of_statements of the entry_call_alternative is executed.

1/2

2

3/2

3.1/2

3.2/2

3.3/2

4/2

5

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

9.7.2 Timed Entry Calls 10 November 2006 212

Examples

Example of a timed entry call:
select
 Controller.Request(Medium)(Some_Item);
or
 delay 45.0;
 -- controller too busy, try something else
end select;

9.7.3 Conditional Entry Calls
A conditional_entry_call issues an entry call that is then cancelled if it is not selected immediately (or if a
requeue-with-abort of the call is not selected immediately). A procedure call may appear rather than an
entry call for cases where the procedure might be implemented by an entry.

Syntax

conditional_entry_call ::=
 select
 entry_call_alternative
 else
 sequence_of_statements
 end select;

Dynamic Semantics

The execution of a conditional_entry_call is defined to be equivalent to the execution of a timed_entry_-
call with a delay_alternative specifying an immediate expiration time and the same sequence_of_-
statements as given after the reserved word else.

NOTES
40 A conditional_entry_call may briefly increase the Count attribute of the entry, even if the conditional call is not
selected.

Examples

Example of a conditional entry call:
procedure Spin(R : in Resource) is
begin
 loop
 select
 R.Seize;
 return;
 else
 null; -- busy waiting
 end select;
 end loop;
end;

6

7

1/2

2

3

4

5

6

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

213 10 November 2006 Asynchronous Transfer of Control 9.7.4

9.7.4 Asynchronous Transfer of Control
An asynchronous select_statement provides asynchronous transfer of control upon completion of an entry
call or the expiration of a delay.

Syntax

asynchronous_select ::=
 select
 triggering_alternative
 then abort
 abortable_part
 end select;
triggering_alternative ::= triggering_statement [sequence_of_statements]
triggering_statement ::= procedure_or_entry_call | delay_statement
abortable_part ::= sequence_of_statements

Dynamic Semantics

For the execution of an asynchronous_select whose triggering_statement is a procedure_or_entry_call,
the entry_name, procedure_name, or procedure_prefix, and actual parameters are evaluated as for a
simple entry call (see 9.5.3) or procedure call (see 6.4). If the call is an entry call or a call on a procedure
implemented by an entry, the entry call is issued. If the entry call is queued (or requeued-with-abort), then
the abortable_part is executed. If the entry call is selected immediately, and never requeued-with-abort,
then the abortable_part is never started. If the call is on a procedure that is not implemented by an entry,
the call proceeds as described in 6.4, followed by the sequence_of_statements of the triggering_-
alternative; the abortable_part is never started.

For the execution of an asynchronous_select whose triggering_statement is a delay_statement, the
delay_expression is evaluated and the expiration time is determined, as for a normal delay_statement. If
the expiration time has not already passed, the abortable_part is executed.

If the abortable_part completes and is left prior to completion of the triggering_statement, an attempt to
cancel the triggering_statement is made. If the attempt to cancel succeeds (see 9.5.3 and 9.6), the
asynchronous_select is complete.

If the triggering_statement completes other than due to cancellation, the abortable_part is aborted (if
started but not yet completed — see 9.8). If the triggering_statement completes normally, the optional
sequence_of_statements of the triggering_alternative is executed after the abortable_part is left.

Examples

Example of a main command loop for a command interpreter:
loop
 select
 Terminal.Wait_For_Interrupt;
 Put_Line("Interrupted");
 then abort
 -- This will be abandoned upon terminal interrupt
 Put_Line("-> ");
 Get_Line(Command, Last);
 Process_Command(Command(1..Last));
 end select;
end loop;

1

2

3

4/2

5

6/2

7

8

9

10

11

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

9.7.4 Asynchronous Transfer of Control 10 November 2006 214

Example of a time-limited calculation:
select
 delay 5.0;
 Put_Line("Calculation does not converge");
then abort
 -- This calculation should finish in 5.0 seconds;
 -- if not, it is assumed to diverge.
 Horribly_Complicated_Recursive_Function(X, Y);
end select;

9.8 Abort of a Task - Abort of a Sequence of Statements
An abort_statement causes one or more tasks to become abnormal, thus preventing any further interaction
with such tasks. The completion of the triggering_statement of an asynchronous_select causes a
sequence_of_statements to be aborted.

Syntax

abort_statement ::= abort task_name {, task_name};

Name Resolution Rules

Each task_name is expected to be of any task type; they need not all be of the same task type.

Dynamic Semantics

For the execution of an abort_statement, the given task_names are evaluated in an arbitrary order. Each
named task is then aborted, which consists of making the task abnormal and aborting the execution of the
corresponding task_body, unless it is already completed.

When the execution of a construct is aborted (including that of a task_body or of a sequence_of_-
statements), the execution of every construct included within the aborted execution is also aborted, except
for executions included within the execution of an abort-deferred operation; the execution of an abort-
deferred operation continues to completion without being affected by the abort; the following are the
abort-deferred operations:

• a protected action;

• waiting for an entry call to complete (after having initiated the attempt to cancel it — see
below);

• waiting for the termination of dependent tasks;

• the execution of an Initialize procedure as the last step of the default initialization of a controlled
object;

• the execution of a Finalize procedure as part of the finalization of a controlled object;

• an assignment operation to an object with a controlled part.

The last three of these are discussed further in 7.6.

When a master is aborted, all tasks that depend on that master are aborted.

The order in which tasks become abnormal as the result of an abort_statement or the abort of a
sequence_of_statements is not specified by the language.

If the execution of an entry call is aborted, an immediate attempt is made to cancel the entry call (see
9.5.3). If the execution of a construct is aborted at a time when the execution is blocked, other than for an
entry call, at a point that is outside the execution of an abort-deferred operation, then the execution of the

12
13

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

215 10 November 2006 Abort of a Task - Abort of a Sequence of Statements 9.8

construct completes immediately. For an abort due to an abort_statement, these immediate effects occur
before the execution of the abort_statement completes. Other than for these immediate cases, the
execution of a construct that is aborted does not necessarily complete before the abort_statement
completes. However, the execution of the aborted construct completes no later than its next abort
completion point (if any) that occurs outside of an abort-deferred operation; the following are abort
completion points for an execution:

• the point where the execution initiates the activation of another task;

• the end of the activation of a task;

• the start or end of the execution of an entry call, accept_statement, delay_statement, or
abort_statement;

• the start of the execution of a select_statement, or of the sequence_of_statements of an
exception_handler.

Bounded (Run-Time) Errors

An attempt to execute an asynchronous_select as part of the execution of an abort-deferred operation is a
bounded error. Similarly, an attempt to create a task that depends on a master that is included entirely
within the execution of an abort-deferred operation is a bounded error. In both cases, Program_Error is
raised if the error is detected by the implementation; otherwise the operations proceed as they would
outside an abort-deferred operation, except that an abort of the abortable_part or the created task might or
might not have an effect.

Erroneous Execution

If an assignment operation completes prematurely due to an abort, the assignment is said to be disrupted;
the target of the assignment or its parts can become abnormal, and certain subsequent uses of the object
can be erroneous, as explained in 13.9.1.

NOTES
41 An abort_statement should be used only in situations requiring unconditional termination.

42 A task is allowed to abort any task it can name, including itself.

43 Additional requirements associated with abort are given in D.6, “Preemptive Abort”.

9.9 Task and Entry Attributes
Dynamic Semantics

For a prefix T that is of a task type (after any implicit dereference), the following attributes are defined:
T'Callable Yields the value True when the task denoted by T is callable, and False otherwise; a task is

callable unless it is completed or abnormal. The value of this attribute is of the predefined
type Boolean.

T'Terminated Yields the value True if the task denoted by T is terminated, and False otherwise. The value
of this attribute is of the predefined type Boolean.

For a prefix E that denotes an entry of a task or protected unit, the following attribute is defined. This
attribute is only allowed within the body of the task or protected unit, but excluding, in the case of an entry
of a task unit, within any program unit that is, itself, inner to the body of the task unit.

E'Count Yields the number of calls presently queued on the entry E of the current instance of the
unit. The value of this attribute is of the type universal_integer.

16

17

18

19

20

21

22

23

24

1

2

3

4

5

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

9.9 Task and Entry Attributes 10 November 2006 216

NOTES
44 For the Count attribute, the entry can be either a single entry or an entry of a family. The name of the entry or entry
family can be either a direct_name or an expanded name.

45 Within task units, algorithms interrogating the attribute E'Count should take precautions to allow for the increase of
the value of this attribute for incoming entry calls, and its decrease, for example with timed_entry_calls. Also, a
conditional_entry_call may briefly increase this value, even if the conditional call is not accepted.

46 Within protected units, algorithms interrogating the attribute E'Count in the entry_barrier for the entry E should take
precautions to allow for the evaluation of the condition of the barrier both before and after queuing a given caller.

9.10 Shared Variables
Static Semantics

If two different objects, including nonoverlapping parts of the same object, are independently addressable,
they can be manipulated concurrently by two different tasks without synchronization. Normally, any two
nonoverlapping objects are independently addressable. However, if packing, record layout, or
Component_Size is specified for a given composite object, then it is implementation defined whether or
not two nonoverlapping parts of that composite object are independently addressable.

Dynamic Semantics

Separate tasks normally proceed independently and concurrently with one another. However, task
interactions can be used to synchronize the actions of two or more tasks to allow, for example, meaningful
communication by the direct updating and reading of variables shared between the tasks. The actions of
two different tasks are synchronized in this sense when an action of one task signals an action of the other
task; an action A1 is defined to signal an action A2 under the following circumstances:

• If A1 and A2 are part of the execution of the same task, and the language rules require A1 to be
performed before A2;

• If A1 is the action of an activator that initiates the activation of a task, and A2 is part of the
execution of the task that is activated;

• If A1 is part of the activation of a task, and A2 is the action of waiting for completion of the
activation;

• If A1 is part of the execution of a task, and A2 is the action of waiting for the termination of the
task;

• If A1 is the termination of a task T, and A2 is either the evaluation of the expression
T'Terminated or a call to Ada.Task_Identification.Is_Terminated with an actual parameter that
identifies T (see C.7.1);

• If A1 is the action of issuing an entry call, and A2 is part of the corresponding execution of the
appropriate entry_body or accept_statement.

• If A1 is part of the execution of an accept_statement or entry_body, and A2 is the action of
returning from the corresponding entry call;

• If A1 is part of the execution of a protected procedure body or entry_body for a given protected
object, and A2 is part of a later execution of an entry_body for the same protected object;

• If A1 signals some action that in turn signals A2.

6

7

8

1

2

3

4

5

6

6.1/1

7

8

9

10

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

217 10 November 2006 Shared Variables 9.10

Erroneous Execution

Given an action of assigning to an object, and an action of reading or updating a part of the same object (or
of a neighboring object if the two are not independently addressable), then the execution of the actions is
erroneous unless the actions are sequential. Two actions are sequential if one of the following is true:

• One action signals the other;

• Both actions occur as part of the execution of the same task;

• Both actions occur as part of protected actions on the same protected object, and at most one of
the actions is part of a call on a protected function of the protected object.

A pragma Atomic or Atomic_Components may also be used to ensure that certain reads and updates are
sequential — see C.6.

9.11 Example of Tasking and Synchronization
Examples

The following example defines a buffer protected object to smooth variations between the speed of output
of a producing task and the speed of input of some consuming task. For instance, the producing task might
have the following structure:

task Producer;

task body Producer is
 Person : Person_Name; -- see 3.10.1
begin
 loop
 ... -- simulate arrival of the next customer
 Buffer.Append_Wait(Person);
 exit when Person = null;
 end loop;
end Producer;

and the consuming task might have the following structure:
task Consumer;

task body Consumer is
 Person : Person_Name;
begin
 loop
 Buffer.Remove_First_Wait(Person);
 exit when Person = null;
 ... -- simulate serving a customer
 end loop;
end Consumer;

The buffer object contains an internal array of person names managed in a round-robin fashion. The array
has two indices, an In_Index denoting the index for the next input person name and an Out_Index denoting
the index for the next output person name.

The Buffer is defined as an extension of the Synchronized_Queue interface (see 3.9.4), and as such
promises to implement the abstraction defined by that interface. By doing so, the Buffer can be passed to
the Transfer class-wide operation defined for objects of a type covered by Queue'Class.

11

12

13

14

15

1

2

3/2

4

5

6/2

7/2

7.1/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

9.11 Example of Tasking and Synchronization 10 November 2006 218

protected Buffer is new Synchronized_Queue with -- see 3.9.4
 entry Append_Wait(Person : in Person_Name);
 entry Remove_First_Wait(Person : out Person_Name);
 function Cur_Count return Natural;
 function Max_Count return Natural;
 procedure Append(Person : in Person_Name);
 procedure Remove_First(Person : out Person_Name);
private
 Pool : Person_Name_Array(1 .. 100);
 Count : Natural := 0;
 In_Index, Out_Index : Positive := 1;
end Buffer;

protected body Buffer is
 entry Append_Wait(Person : in Person_Name)
 when Count < Pool'Length is
 begin
 Append(Person);
 end Append_Wait;

 procedure Append(Person : in Person_Name) is
 begin
 if Count = Pool'Length then
 raise Queue_Error with "Buffer Full"; -- see 11.3
 end if;
 Pool(In_Index) := Person;
 In_Index := (In_Index mod Pool'Length) + 1;
 Count := Count + 1;
 end Append;

 entry Remove_First_Wait(Person : out Person_Name)
 when Count > 0 is
 begin
 Remove_First(Person);
 end Remove_First_Wait;

 procedure Remove_First(Person : out Person_Name) is
 begin
 if Count = 0 then
 raise Queue_Error with "Buffer Empty"; -- see 11.3
 end if;
 Person := Pool(Out_Index);
 Out_Index := (Out_Index mod Pool'Length) + 1;
 Count := Count - 1;
 end Remove_First;

 function Cur_Count return Natural is
 begin
 return Buffer.Count;
 end Cur_Count;

 function Max_Count return Natural is
 begin
 return Pool'Length;
 end Max_Count;
end Buffer;

8/2

9/2

9.1/2

10/2

11/2

12/2

13/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

219 10 November 2006 Program Structure and Compilation Issues 10

Section 10: Program Structure and Compilation Issues
The overall structure of programs and the facilities for separate compilation are described in this section. A
program is a set of partitions, each of which may execute in a separate address space, possibly on a
separate computer.

As explained below, a partition is constructed from library units. Syntactically, the declaration of a library
unit is a library_item, as is the body of a library unit. An implementation may support a concept of a
program library (or simply, a “library”), which contains library_items and their subunits. Library units
may be organized into a hierarchy of children, grandchildren, and so on.

This section has two clauses: 10.1, “Separate Compilation” discusses compile-time issues related to
separate compilation. 10.2, “Program Execution” discusses issues related to what is traditionally known as
“link time” and “run time” — building and executing partitions.

10.1 Separate Compilation
A program unit is either a package, a task unit, a protected unit, a protected entry, a generic unit, or an
explicitly declared subprogram other than an enumeration literal. Certain kinds of program units can be
separately compiled. Alternatively, they can appear physically nested within other program units.

The text of a program can be submitted to the compiler in one or more compilations. Each compilation is a
succession of compilation_units. A compilation_unit contains either the declaration, the body, or a
renaming of a program unit. The representation for a compilation is implementation-defined.

A library unit is a separately compiled program unit, and is always a package, subprogram, or generic unit.
Library units may have other (logically nested) library units as children, and may have other program units
physically nested within them. A root library unit, together with its children and grandchildren and so on,
form a subsystem.

Implementation Permissions

An implementation may impose implementation-defined restrictions on compilations that contain multiple
compilation_units.

10.1.1 Compilation Units - Library Units
A library_item is a compilation unit that is the declaration, body, or renaming of a library unit. Each
library unit (except Standard) has a parent unit, which is a library package or generic library package. A
library unit is a child of its parent unit. The root library units are the children of the predefined library
package Standard.

Syntax

compilation ::= {compilation_unit}
compilation_unit ::=
 context_clause library_item
 | context_clause subunit
library_item ::= [private] library_unit_declaration
 | library_unit_body
 | [private] library_unit_renaming_declaration

1

2

3

1

2

3

4

1

2

3

4

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

10.1.1 Compilation Units - Library Units 10 November 2006 220

library_unit_declaration ::=
 subprogram_declaration | package_declaration
 | generic_declaration | generic_instantiation
library_unit_renaming_declaration ::=
 package_renaming_declaration
 | generic_renaming_declaration
 | subprogram_renaming_declaration
library_unit_body ::= subprogram_body | package_body
parent_unit_name ::= name
An overriding_indicator is not allowed in a subprogram_declaration, generic_instantiation, or
subprogram_renaming_declaration that declares a library unit.

A library unit is a program unit that is declared by a library_item. When a program unit is a library unit,
the prefix “library” is used to refer to it (or “generic library” if generic), as well as to its declaration and
body, as in “library procedure”, “library package_body”, or “generic library package”. The term
compilation unit is used to refer to a compilation_unit. When the meaning is clear from context, the term is
also used to refer to the library_item of a compilation_unit or to the proper_body of a subunit (that is, the
compilation_unit without the context_clause and the separate (parent_unit_name)).

The parent declaration of a library_item (and of the library unit) is the declaration denoted by the parent_-
unit_name, if any, of the defining_program_unit_name of the library_item. If there is no parent_-
unit_name, the parent declaration is the declaration of Standard, the library_item is a root library_item,
and the library unit (renaming) is a root library unit (renaming). The declaration and body of Standard
itself have no parent declaration. The parent unit of a library_item or library unit is the library unit
declared by its parent declaration.

The children of a library unit occur immediately within the declarative region of the declaration of the
library unit. The ancestors of a library unit are itself, its parent, its parent's parent, and so on. (Standard is
an ancestor of every library unit.) The descendant relation is the inverse of the ancestor relation.

A library_unit_declaration or a library_unit_renaming_declaration is private if the declaration is
immediately preceded by the reserved word private; it is otherwise public. A library unit is private or
public according to its declaration. The public descendants of a library unit are the library unit itself, and
the public descendants of its public children. Its other descendants are private descendants.

For each library package_declaration in the environment, there is an implicit declaration of a limited view
of that library package. The limited view of a package contains:

• For each nested package_declaration, a declaration of the limited view of that package, with the
same defining_program_unit_name.

• For each type_declaration in the visible part, an incomplete view of the type; if the
type_declaration is tagged, then the view is a tagged incomplete view.

The limited view of a library package_declaration is private if that library package_declaration is
immediately preceded by the reserved word private.

There is no syntax for declaring limited views of packages, because they are always implicit. The implicit
declaration of a limited view of a library package is not the declaration of a library unit (the library
package_declaration is); nonetheless, it is a library_item. The implicit declaration of the limited view of a
library package forms an (implicit) compilation unit whose context_clause is empty.

A library package_declaration is the completion of the declaration of its limited view.

5

6

7

8

8.1/2

9

10

11

12

12.1/2

12.2/2

12.3/2

12.4/2

12.5/2

12.6/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

221 10 November 2006 Compilation Units - Library Units 10.1.1

Legality Rules

The parent unit of a library_item shall be a library package or generic library package.

If a defining_program_unit_name of a given declaration or body has a parent_unit_name, then the given
declaration or body shall be a library_item. The body of a program unit shall be a library_item if and only
if the declaration of the program unit is a library_item. In a library_unit_renaming_declaration, the (old)
name shall denote a library_item.

A parent_unit_name (which can be used within a defining_program_unit_name of a library_item and in
the separate clause of a subunit), and each of its prefixes, shall not denote a renaming_declaration. On
the other hand, a name that denotes a library_unit_renaming_declaration is allowed in a
nonlimited_with_clause and other places where the name of a library unit is allowed.

If a library package is an instance of a generic package, then every child of the library package shall either
be itself an instance or be a renaming of a library unit.

A child of a generic library package shall either be itself a generic unit or be a renaming of some other
child of the same generic unit. The renaming of a child of a generic package shall occur only within the
declarative region of the generic package.

A child of a parent generic package shall be instantiated or renamed only within the declarative region of
the parent generic.

For each child C of some parent generic package P, there is a corresponding declaration C nested
immediately within each instance of P. For the purposes of this rule, if a child C itself has a child D, each
corresponding declaration for C has a corresponding child D. The corresponding declaration for a child
within an instance is visible only within the scope of a with_clause that mentions the (original) child
generic unit.

A library subprogram shall not override a primitive subprogram.

The defining name of a function that is a compilation unit shall not be an operator_symbol.

Static Semantics

A subprogram_renaming_declaration that is a library_unit_renaming_declaration is a renaming-as-
declaration, not a renaming-as-body.

There are two kinds of dependences among compilation units:
• The semantic dependences (see below) are the ones needed to check the compile-time rules

across compilation unit boundaries; a compilation unit depends semantically on the other
compilation units needed to determine its legality. The visibility rules are based on the semantic
dependences.

• The elaboration dependences (see 10.2) determine the order of elaboration of library_items.

A library_item depends semantically upon its parent declaration. A subunit depends semantically upon its
parent body. A library_unit_body depends semantically upon the corresponding library_unit_declaration,
if any. The declaration of the limited view of a library package depends semantically upon the declaration
of the limited view of its parent. The declaration of a library package depends semantically upon the
declaration of its limited view. A compilation unit depends semantically upon each library_item mentioned
in a with_clause of the compilation unit. In addition, if a given compilation unit contains an
attribute_reference of a type defined in another compilation unit, then the given compilation unit depends
semantically upon the other compilation unit. The semantic dependence relationship is transitive.

13

14

15/2

16

17

18

19/2

20

21

22

23

24

25

26/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

10.1.1 Compilation Units - Library Units 10 November 2006 222

Dynamic Semantics

The elaboration of the declaration of the limited view of a package has no effect.

NOTES
1 A simple program may consist of a single compilation unit. A compilation need not have any compilation units; for
example, its text can consist of pragmas.

2 The designator of a library function cannot be an operator_symbol, but a nonlibrary renaming_declaration is allowed
to rename a library function as an operator. Within a partition, two library subprograms are required to have distinct
names and hence cannot overload each other. However, renaming_declarations are allowed to define overloaded names
for such subprograms, and a locally declared subprogram is allowed to overload a library subprogram. The expanded
name Standard.L can be used to denote a root library unit L (unless the declaration of Standard is hidden) since root
library unit declarations occur immediately within the declarative region of package Standard.

Examples

Examples of library units:
package Rational_Numbers.IO is -- public child of Rational_Numbers, see 7.1
 procedure Put(R : in Rational);
 procedure Get(R : out Rational);
end Rational_Numbers.IO;

private procedure Rational_Numbers.Reduce(R : in out Rational);
 -- private child of Rational_Numbers
with Rational_Numbers.Reduce; -- refer to a private child
package body Rational_Numbers is
 ...
end Rational_Numbers;

with Rational_Numbers.IO; use Rational_Numbers;
with Ada.Text_io; -- see A.10
procedure Main is -- a root library procedure
 R : Rational;
begin
 R := 5/3; -- construct a rational number, see 7.1
 Ada.Text_IO.Put("The answer is: ");
 IO.Put(R);
 Ada.Text_IO.New_Line;
end Main;

with Rational_Numbers.IO;
package Rational_IO renames Rational_Numbers.IO;
 -- a library unit renaming declaration

Each of the above library_items can be submitted to the compiler separately.

10.1.2 Context Clauses - With Clauses
A context_clause is used to specify the library_items whose names are needed within a compilation unit.

Syntax

context_clause ::= {context_item}
context_item ::= with_clause | use_clause
with_clause ::= limited_with_clause | nonlimited_with_clause
limited_with_clause ::= limited [private] with library_unit_name {, library_unit_name};
nonlimited_with_clause ::= [private] with library_unit_name {, library_unit_name};

26.1/2

27

28

29

30

31

32

33

34

35

1

2

3

4/2

4.1/2

4.2/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

223 10 November 2006 Context Clauses - With Clauses 10.1.2

Name Resolution Rules

The scope of a with_clause that appears on a library_unit_declaration or library_unit_renaming_-
declaration consists of the entire declarative region of the declaration, which includes all children and
subunits. The scope of a with_clause that appears on a body consists of the body, which includes all
subunits.

A library_item (and the corresponding library unit) is named in a with_clause if it is denoted by a
library_unit_name in the with_clause. A library_item (and the corresponding library unit) is mentioned in
a with_clause if it is named in the with_clause or if it is denoted by a prefix in the with_clause.

Outside its own declarative region, the declaration or renaming of a library unit can be visible only within
the scope of a with_clause that mentions it. The visibility of the declaration or renaming of a library unit
otherwise follows from its placement in the environment.

Legality Rules

If a with_clause of a given compilation_unit mentions a private child of some library unit, then the given
compilation_unit shall be one of:

• the declaration, body, or subunit of a private descendant of that library unit;

• the body or subunit of a public descendant of that library unit, but not a subprogram body acting
as a subprogram declaration (see 10.1.4); or

• the declaration of a public descendant of that library unit, in which case the with_clause shall
include the reserved word private.

A name denoting a library item that is visible only due to being mentioned in one or more with_clauses
that include the reserved word private shall appear only within:

• a private part;

• a body, but not within the subprogram_specification of a library subprogram body;

• a private descendant of the unit on which one of these with_clauses appear; or

• a pragma within a context clause.

A library_item mentioned in a limited_with_clause shall be the implicit declaration of the limited view of
a library package, not the declaration of a subprogram, generic unit, generic instance, or a renaming.

A limited_with_clause shall not appear on a library_unit_body, subunit, or library_unit_renaming_-
declaration.

A limited_with_clause that names a library package shall not appear:
• in the context_clause for the explicit declaration of the named library package;

• in the same context_clause as, or within the scope of, a nonlimited_with_clause that mentions
the same library package; or

• in the same context_clause as, or within the scope of, a use_clause that names an entity
declared within the declarative region of the library package.
NOTES
3 A library_item mentioned in a nonlimited_with_clause of a compilation unit is visible within the compilation unit and
hence acts just like an ordinary declaration. Thus, within a compilation unit that mentions its declaration, the name of a
library package can be given in use_clauses and can be used to form expanded names, a library subprogram can be
called, and instances of a generic library unit can be declared. If a child of a parent generic package is mentioned in a
nonlimited_with_clause, then the corresponding declaration nested within each visible instance is visible within the

5

6/2

7

8/2

9/2

10/2

11/2

12/2

13/2

14/2

15/2

16/2

17/2

18/2

19/2

20/2

21/2

22/2

23/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

10.1.2 Context Clauses - With Clauses 10 November 2006 224

compilation unit. Similarly, a library_item mentioned in a limited_with_clause of a compilation unit is visible within the
compilation unit and thus can be used to form expanded names.

Examples
package Office is
end Office;

with Ada.Strings.Unbounded;
package Office.Locations is
 type Location is new Ada.Strings.Unbounded.Unbounded_String;
end Office.Locations;

limited with Office.Departments; -- types are incomplete
private with Office.Locations; -- only visible in private part
package Office.Employees is
 type Employee is private;

 function Dept_Of(Emp : Employee) return access Departments.Department;
 procedure Assign_Dept(Emp : in out Employee;
 Dept : access Departments.Department);

 ...
private
 type Employee is
 record
 Dept : access Departments.Department;
 Loc : Locations.Location;
 ...
 end record;
end Office.Employees;

limited with Office.Employees;
package Office.Departments is
 type Department is private;

 function Manager_Of(Dept : Department) return access Employees.Employee;
 procedure Assign_Manager(Dept : in out Department;
 Mgr : access Employees.Employee);
 ...
end Office.Departments;

The limited_with_clause may be used to support mutually dependent abstractions that are split across
multiple packages. In this case, an employee is assigned to a department, and a department has a manager
who is an employee. If a with_clause with the reserved word private appears on one library unit and
mentions a second library unit, it provides visibility to the second library unit, but restricts that visibility to
the private part and body of the first unit. The compiler checks that no use is made of the second unit in
the visible part of the first unit.

10.1.3 Subunits of Compilation Units
Subunits are like child units, with these (important) differences: subunits support the separate compilation
of bodies only (not declarations); the parent contains a body_stub to indicate the existence and place of
each of its subunits; declarations appearing in the parent's body can be visible within the subunits.

Syntax

body_stub ::=
subprogram_body_stub | package_body_stub | task_body_stub | protected_body_stub
subprogram_body_stub ::=
 [overriding_indicator]
 subprogram_specification is separate;
package_body_stub ::= package body defining_identifier is separate;

24/2

25/2

26/2

27/2

28/2

29/2

30/2

31/2

1

2

3/2

4

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

225 10 November 2006 Subunits of Compilation Units 10.1.3

task_body_stub ::= task body defining_identifier is separate;
protected_body_stub ::= protected body defining_identifier is separate;
subunit ::= separate (parent_unit_name) proper_body

Legality Rules

The parent body of a subunit is the body of the program unit denoted by its parent_unit_name. The term
subunit is used to refer to a subunit and also to the proper_body of a subunit. The subunits of a program
unit include any subunit that names that program unit as its parent, as well as any subunit that names such
a subunit as its parent (recursively).

The parent body of a subunit shall be present in the current environment, and shall contain a corresponding
body_stub with the same defining_identifier as the subunit.

A package_body_stub shall be the completion of a package_declaration or generic_package_-
declaration; a task_body_stub shall be the completion of a task declaration; a protected_body_stub shall
be the completion of a protected declaration.

In contrast, a subprogram_body_stub need not be the completion of a previous declaration, in which case
the _stub declares the subprogram. If the _stub is a completion, it shall be the completion of a
subprogram_declaration or generic_subprogram_declaration. The profile of a subprogram_body_stub
that completes a declaration shall conform fully to that of the declaration.

A subunit that corresponds to a body_stub shall be of the same kind (package_, subprogram_, task_, or
protected_) as the body_stub. The profile of a subprogram_body subunit shall be fully conformant to that
of the corresponding body_stub.

A body_stub shall appear immediately within the declarative_part of a compilation unit body. This rule
does not apply within an instance of a generic unit.

The defining_identifiers of all body_stubs that appear immediately within a particular declarative_part
shall be distinct.

Post-Compilation Rules

For each body_stub, there shall be a subunit containing the corresponding proper_body.

NOTES
4 The rules in 10.1.4, “The Compilation Process” say that a body_stub is equivalent to the corresponding proper_body.
This implies:

• Visibility within a subunit is the visibility that would be obtained at the place of the corresponding body_stub
(within the parent body) if the context_clause of the subunit were appended to that of the parent body.

• The effect of the elaboration of a body_stub is to elaborate the subunit.

Examples

The package Parent is first written without subunits:
package Parent is
 procedure Inner;
end Parent;

with Ada.Text_IO;
package body Parent is
 Variable : String := "Hello, there.";
 procedure Inner is
 begin
 Ada.Text_IO.Put_Line(Variable);
 end Inner;
end Parent;

5

6

7

8/2

9

10/2

11

12

13

14

15

16

17

18

19

20

21

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

10.1.3 Subunits of Compilation Units 10 November 2006 226

The body of procedure Inner may be turned into a subunit by rewriting the package body as follows (with
the declaration of Parent remaining the same):

package body Parent is
 Variable : String := "Hello, there.";
 procedure Inner is separate;
end Parent;

with Ada.Text_IO;
separate(Parent)
procedure Inner is
begin
 Ada.Text_IO.Put_Line(Variable);
end Inner;

10.1.4 The Compilation Process
Each compilation unit submitted to the compiler is compiled in the context of an environment
declarative_part (or simply, an environment), which is a conceptual declarative_part that forms the
outermost declarative region of the context of any compilation. At run time, an environment forms the
declarative_part of the body of the environment task of a partition (see 10.2, “Program Execution”).

The declarative_items of the environment are library_items appearing in an order such that there are no
forward semantic dependences. Each included subunit occurs in place of the corresponding stub. The
visibility rules apply as if the environment were the outermost declarative region, except that with_clauses
are needed to make declarations of library units visible (see 10.1.2).

The mechanisms for creating an environment and for adding and replacing compilation units within an
environment are implementation defined. The mechanisms for adding a compilation unit mentioned in a
limited_with_clause to an environment are implementation defined.

Name Resolution Rules

If a library_unit_body that is a subprogram_body is submitted to the compiler, it is interpreted only as a
completion if a library_unit_declaration with the same defining_program_unit_name already exists in the
environment for a subprogram other than an instance of a generic subprogram or for a generic subprogram
(even if the profile of the body is not type conformant with that of the declaration); otherwise the
subprogram_body is interpreted as both the declaration and body of a library subprogram.

Legality Rules

When a compilation unit is compiled, all compilation units upon which it depends semantically shall
already exist in the environment; the set of these compilation units shall be consistent in the sense that the
new compilation unit shall not semantically depend (directly or indirectly) on two different versions of the
same compilation unit, nor on an earlier version of itself.

Implementation Permissions

The implementation may require that a compilation unit be legal before it can be mentioned in a
limited_with_clause or it can be inserted into the environment.

When a compilation unit that declares or renames a library unit is added to the environment, the
implementation may remove from the environment any preexisting library_item or subunit with the same
full expanded name. When a compilation unit that is a subunit or the body of a library unit is added to the
environment, the implementation may remove from the environment any preexisting version of the same
compilation unit. When a compilation unit that contains a body_stub is added to the environment, the
implementation may remove any preexisting library_item or subunit with the same full expanded name as

22

23

24

1

2

3/2

4/1

5

6/2

7/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

227 10 November 2006 The Compilation Process 10.1.4

the body_stub. When a given compilation unit is removed from the environment, the implementation may
also remove any compilation unit that depends semantically upon the given one. If the given compilation
unit contains the body of a subprogram to which a pragma Inline applies, the implementation may also
remove any compilation unit containing a call to that subprogram.

NOTES
5 The rules of the language are enforced across compilation and compilation unit boundaries, just as they are enforced
within a single compilation unit.

6 An implementation may support a concept of a library, which contains library_items. If multiple libraries are supported,
the implementation has to define how a single environment is constructed when a compilation unit is submitted to the
compiler. Naming conflicts between different libraries might be resolved by treating each library as the root of a hierarchy
of child library units.

7 A compilation unit containing an instantiation of a separately compiled generic unit does not semantically depend on
the body of the generic unit. Therefore, replacing the generic body in the environment does not result in the removal of the
compilation unit containing the instantiation.

10.1.5 Pragmas and Program Units
This subclause discusses pragmas related to program units, library units, and compilations.

Name Resolution Rules

Certain pragmas are defined to be program unit pragmas. A name given as the argument of a program
unit pragma shall resolve to denote the declarations or renamings of one or more program units that occur
immediately within the declarative region or compilation in which the pragma immediately occurs, or it
shall resolve to denote the declaration of the immediately enclosing program unit (if any); the pragma
applies to the denoted program unit(s). If there are no names given as arguments, the pragma applies to
the immediately enclosing program unit.

Legality Rules

A program unit pragma shall appear in one of these places:
• At the place of a compilation_unit, in which case the pragma shall immediately follow in the

same compilation (except for other pragmas) a library_unit_declaration that is a subprogram_-
declaration, generic_subprogram_declaration, or generic_instantiation, and the pragma shall
have an argument that is a name denoting that declaration.

• Immediately within the visible part of a program unit and before any nested declaration (but not
within a generic formal part), in which case the argument, if any, shall be a direct_name that
denotes the immediately enclosing program unit declaration.

• At the place of a declaration other than the first, of a declarative_part or program unit
declaration, in which case the pragma shall have an argument, which shall be a direct_name
that denotes one or more of the following (and nothing else): a subprogram_declaration, a
generic_subprogram_declaration, or a generic_instantiation, of the same declarative_part or
program unit declaration.

Certain program unit pragmas are defined to be library unit pragmas. The name, if any, in a library unit
pragma shall denote the declaration of a library unit.

Static Semantics

A library unit pragma that applies to a generic unit does not apply to its instances, unless a specific rule for
the pragma specifies the contrary.

8

9

10

1

2

3

4

5/1

6

7

7.1/1

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

10.1.5 Pragmas and Program Units 10 November 2006 228

Post-Compilation Rules

Certain pragmas are defined to be configuration pragmas; they shall appear before the first
compilation_unit of a compilation. They are generally used to select a partition-wide or system-wide
option. The pragma applies to all compilation_units appearing in the compilation, unless there are none, in
which case it applies to all future compilation_units compiled into the same environment.

Implementation Permissions

An implementation may require that configuration pragmas that select partition-wide or system-wide
options be compiled when the environment contains no library_items other than those of the predefined
environment. In this case, the implementation shall still accept configuration pragmas in individual
compilations that confirm the initially selected partition-wide or system-wide options.

Implementation Advice

When applied to a generic unit, a program unit pragma that is not a library unit pragma should apply to
each instance of the generic unit for which there is not an overriding pragma applied directly to the
instance.

10.1.6 Environment-Level Visibility Rules
The normal visibility rules do not apply within a parent_unit_name or a context_clause, nor within a
pragma that appears at the place of a compilation unit. The special visibility rules for those contexts are
given here.

Static Semantics

Within the parent_unit_name at the beginning of an explicit library_item, and within a
nonlimited_with_clause, the only declarations that are visible are those that are explicit library_items of
the environment, and the only declarations that are directly visible are those that are explicit root
library_items of the environment. Within a limited_with_clause, the only declarations that are visible are
those that are the implicit declaration of the limited view of a library package of the environment, and the
only declarations that are directly visible are those that are the implicit declaration of the limited view of a
root library package.

Within a use_clause or pragma that is within a context_clause, each library_item mentioned in a
previous with_clause of the same context_clause is visible, and each root library_item so mentioned is
directly visible. In addition, within such a use_clause, if a given declaration is visible or directly visible,
each declaration that occurs immediately within the given declaration's visible part is also visible. No
other declarations are visible or directly visible.

Within the parent_unit_name of a subunit, library_items are visible as they are in the parent_unit_name
of a library_item; in addition, the declaration corresponding to each body_stub in the environment is also
visible.

Within a pragma that appears at the place of a compilation unit, the immediately preceding library_item
and each of its ancestors is visible. The ancestor root library_item is directly visible.

Notwithstanding the rules of 4.1.3, an expanded name in a with_clause, a pragma in a context_clause, or
a pragma that appears at the place of a compilation unit may consist of a prefix that denotes a generic
package and a selector_name that denotes a child of that generic package. (The child is necessarily a
generic unit; see 10.1.1.)

8

9/2

10/1

1

2/2

3

4

5

6/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

229 10 November 2006 Program Execution 10.2

10.2 Program Execution
An Ada program consists of a set of partitions, which can execute in parallel with one another, possibly in
a separate address space, and possibly on a separate computer.

Post-Compilation Rules

A partition is a program or part of a program that can be invoked from outside the Ada implementation.
For example, on many systems, a partition might be an executable file generated by the system linker. The
user can explicitly assign library units to a partition. The assignment is done in an implementation-defined
manner. The compilation units included in a partition are those of the explicitly assigned library units, as
well as other compilation units needed by those library units. The compilation units needed by a given
compilation unit are determined as follows (unless specified otherwise via an implementation-defined
pragma, or by some other implementation-defined means):

• A compilation unit needs itself;

• If a compilation unit is needed, then so are any compilation units upon which it depends
semantically;

• If a library_unit_declaration is needed, then so is any corresponding library_unit_body;

• If a compilation unit with stubs is needed, then so are any corresponding subunits;

• If the (implicit) declaration of the limited view of a library package is needed, then so is the
explicit declaration of the library package.

The user can optionally designate (in an implementation-defined manner) one subprogram as the main
subprogram for the partition. A main subprogram, if specified, shall be a subprogram.

Each partition has an anonymous environment task, which is an implicit outermost task whose execution
elaborates the library_items of the environment declarative_part, and then calls the main subprogram, if
there is one. A partition's execution is that of its tasks.

The order of elaboration of library units is determined primarily by the elaboration dependences. There is
an elaboration dependence of a given library_item upon another if the given library_item or any of its
subunits depends semantically on the other library_item. In addition, if a given library_item or any of its
subunits has a pragma Elaborate or Elaborate_All that names another library unit, then there is an
elaboration dependence of the given library_item upon the body of the other library unit, and, for
Elaborate_All only, upon each library_item needed by the declaration of the other library unit.

The environment task for a partition has the following structure:
task Environment_Task;
task body Environment_Task is
 ... (1) -- The environment declarative_part
 -- (that is, the sequence of library_items) goes here.
begin
 ... (2) -- Call the main subprogram, if there is one.
end Environment_Task;

The environment declarative_part at (1) is a sequence of declarative_items consisting of copies of the
library_items included in the partition. The order of elaboration of library_items is the order in which they
appear in the environment declarative_part:

• The order of all included library_items is such that there are no forward elaboration
dependences.

1

2

3

4

5

6/2

6.1/2

7

8

9

10

11

12/2

13

14

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

10.2 Program Execution 10 November 2006 230

• Any included library_unit_declaration to which a pragma Elaborate_Body applies is
immediately followed by its library_unit_body, if included.

• All library_items declared pure occur before any that are not declared pure.

• All preelaborated library_items occur before any that are not preelaborated.

There shall be a total order of the library_items that obeys the above rules. The order is otherwise
implementation defined.

The full expanded names of the library units and subunits included in a given partition shall be distinct.

The sequence_of_statements of the environment task (see (2) above) consists of either:
• A call to the main subprogram, if the partition has one. If the main subprogram has parameters,

they are passed; where the actuals come from is implementation defined. What happens to the
result of a main function is also implementation defined.

or:
• A null_statement, if there is no main subprogram.

The mechanisms for building and running partitions are implementation defined. These might be
combined into one operation, as, for example, in dynamic linking, or “load-and-go” systems.

Dynamic Semantics

The execution of a program consists of the execution of a set of partitions. Further details are
implementation defined. The execution of a partition starts with the execution of its environment task,
ends when the environment task terminates, and includes the executions of all tasks of the partition. The
execution of the (implicit) task_body of the environment task acts as a master for all other tasks created as
part of the execution of the partition. When the environment task completes (normally or abnormally), it
waits for the termination of all such tasks, and then finalizes any remaining objects of the partition.

Bounded (Run-Time) Errors

Once the environment task has awaited the termination of all other tasks of the partition, any further
attempt to create a task (during finalization) is a bounded error, and may result in the raising of
Program_Error either upon creation or activation of the task. If such a task is activated, it is not specified
whether the task is awaited prior to termination of the environment task.

Implementation Requirements

The implementation shall ensure that all compilation units included in a partition are consistent with one
another, and are legal according to the rules of the language.

Implementation Permissions

The kind of partition described in this clause is known as an active partition. An implementation is
allowed to support other kinds of partitions, with implementation-defined semantics.

An implementation may restrict the kinds of subprograms it supports as main subprograms. However, an
implementation is required to support all main subprograms that are public parameterless library
procedures.

If the environment task completes abnormally, the implementation may abort any dependent tasks.

NOTES
8 An implementation may provide inter-partition communication mechanism(s) via special packages and pragmas.
Standard pragmas for distribution and methods for specifying inter-partition communication are defined in Annex E,

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

231 10 November 2006 Program Execution 10.2

“Distributed Systems”. If no such mechanisms are provided, then each partition is isolated from all others, and behaves as
a program in and of itself.

9 Partitions are not required to run in separate address spaces. For example, an implementation might support dynamic
linking via the partition concept.

10 An order of elaboration of library_items that is consistent with the partial ordering defined above does not always
ensure that each library_unit_body is elaborated before any other compilation unit whose elaboration necessitates that the
library_unit_body be already elaborated. (In particular, there is no requirement that the body of a library unit be elaborated
as soon as possible after the library_unit_declaration is elaborated, unless the pragmas in subclause 10.2.1 are used.)

11 A partition (active or otherwise) need not have a main subprogram. In such a case, all the work done by the partition
would be done by elaboration of various library_items, and by tasks created by that elaboration. Passive partitions, which
cannot have main subprograms, are defined in Annex E, “Distributed Systems”.

10.2.1 Elaboration Control
This subclause defines pragmas that help control the elaboration order of library_items.

Syntax

The form of a pragma Preelaborate is as follows:
 pragma Preelaborate[(library_unit_name)];
A pragma Preelaborate is a library unit pragma.
The form of a pragma Preelaborable_Initialization is as follows:
 pragma Preelaborable_Initialization(direct_name);

Legality Rules

An elaborable construct is preelaborable unless its elaboration performs any of the following actions:
• The execution of a statement other than a null_statement.

• A call to a subprogram other than a static function.

• The evaluation of a primary that is a name of an object, unless the name is a static expression,
or statically denotes a discriminant of an enclosing type.

• The creation of an object (including a component) of a type that does not have preelaborable
initialization. Similarly, the evaluation of an extension_aggregate with an ancestor subtype_-
mark denoting a subtype of such a type.

A generic body is preelaborable only if elaboration of a corresponding instance body would not perform
any such actions, presuming that:

• the actual for each formal private type (or extension) declared within the formal part of the
generic unit is a private type (or extension) that does not have preelaborable initialization;

• the actual for each formal type is nonstatic;

• the actual for each formal object is nonstatic; and

• the actual for each formal subprogram is a user-defined subprogram.

If a pragma Preelaborate (or pragma Pure — see below) applies to a library unit, then it is preelaborated.
If a library unit is preelaborated, then its declaration, if any, and body, if any, are elaborated prior to all
non-preelaborated library_items of the partition. The declaration and body of a preelaborated library unit,
and all subunits that are elaborated as part of elaborating the library unit, shall be preelaborable. In
addition to the places where Legality Rules normally apply (see 12.3), this rule applies also in the private

32

33

34

1

2

3

4

4.1/2

4.2/2

5

6

7

8

9/2

10/2

10.1/2

10.2/2

10.3/2

10.4/2

11/1

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

10.2.1 Elaboration Control 10 November 2006 232

part of an instance of a generic unit. In addition, all compilation units of a preelaborated library unit shall
depend semantically only on compilation units of other preelaborated library units.

The following rules specify which entities have preelaborable initialization:

• The partial view of a private type or private extension, a protected type without
entry_declarations, a generic formal private type, or a generic formal derived type, have
preelaborable initialization if and only if the pragma Preelaborable_Initialization has been
applied to them. A protected type with entry_declarations or a task type never has preelaborable
initialization.

• A component (including a discriminant) of a record or protected type has preelaborable
initialization if its declaration includes a default_expression whose execution does not perform
any actions prohibited in preelaborable constructs as described above, or if its declaration does
not include a default expression and its type has preelaborable initialization.

• A derived type has preelaborable initialization if its parent type has preelaborable initialization
and (in the case of a derived record extension) if the non-inherited components all have
preelaborable initialization. However, a user-defined controlled type with an overriding Initialize
procedure does not have preelaborable initialization.

• A view of a type has preelaborable initialization if it is an elementary type, an array type whose
component type has preelaborable initialization, a record type whose components all have
preelaborable initialization, or an interface type.

A pragma Preelaborable_Initialization specifies that a type has preelaborable initialization. This pragma
shall appear in the visible part of a package or generic package.

If the pragma appears in the first list of basic_declarative_items of a package_specification, then the
direct_name shall denote the first subtype of a private type, private extension, or protected type that is not
an interface type and is without entry_declarations, and the type shall be declared immediately within the
same package as the pragma. If the pragma is applied to a private type or a private extension, the full
view of the type shall have preelaborable initialization. If the pragma is applied to a protected type, each
component of the protected type shall have preelaborable initialization. In addition to the places where
Legality Rules normally apply, these rules apply also in the private part of an instance of a generic unit.

If the pragma appears in a generic_formal_part, then the direct_name shall denote a generic formal
private type or a generic formal derived type declared in the same generic_formal_part as the pragma. In
a generic_instantiation the corresponding actual type shall have preelaborable initialization.

Implementation Advice

In an implementation, a type declared in a preelaborated package should have the same representation in
every elaboration of a given version of the package, whether the elaborations occur in distinct executions
of the same program, or in executions of distinct programs or partitions that include the given version.

Syntax

The form of a pragma Pure is as follows:
 pragma Pure[(library_unit_name)];
A pragma Pure is a library unit pragma.

Static Semantics

A pure library_item is a preelaborable library_item whose elaboration does not perform any of the
following actions:

• the elaboration of a variable declaration;

11.1/2

11.2/2

11.3/2

11.4/2

11.5/2

11.6/2

11.7/2

11.8/2

12

13

14

15

15.1/2

15.2/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

233 10 November 2006 Elaboration Control 10.2.1

• the evaluation of an allocator of an access-to-variable type; for the purposes of this rule, the
partial view of a type is presumed to have non-visible components whose default initialization
evaluates such an allocator;

• the elaboration of the declaration of a named access-to-variable type unless the Storage_Size of
the type has been specified by a static expression with value zero or is defined by the language
to be zero;

• the elaboration of the declaration of a named access-to-constant type for which the Storage_Size
has been specified by an expression other than a static expression with value zero.

The Storage_Size for an anonymous access-to-variable type declared at library level in a library unit that
is declared pure is defined to be zero.

Legality Rules

This paragraph was deleted.

A pragma Pure is used to declare that a library unit is pure. If a pragma Pure applies to a library unit, then
its compilation units shall be pure, and they shall depend semantically only on compilation units of other
library units that are declared pure. Furthermore, the full view of any partial view declared in the visible
part of the library unit that has any available stream attributes shall support external streaming (see
13.13.2).

Implementation Permissions

If a library unit is declared pure, then the implementation is permitted to omit a call on a library-level
subprogram of the library unit if the results are not needed after the call. In addition, the implementation
may omit a call on such a subprogram and simply reuse the results produced by an earlier call on the same
subprogram, provided that none of the parameters nor any object accessible via access values from the
parameters are of a limited type, and the addresses and values of all by-reference actual parameters, the
values of all by-copy-in actual parameters, and the values of all objects accessible via access values from
the parameters, are the same as they were at the earlier call. This permission applies even if the
subprogram produces other side effects when called.

Syntax

The form of a pragma Elaborate, Elaborate_All, or Elaborate_Body is as follows:
 pragma Elaborate(library_unit_name{, library_unit_name});
 pragma Elaborate_All(library_unit_name{, library_unit_name});
 pragma Elaborate_Body[(library_unit_name)];
A pragma Elaborate or Elaborate_All is only allowed within a context_clause.
A pragma Elaborate_Body is a library unit pragma.

Legality Rules

If a pragma Elaborate_Body applies to a declaration, then the declaration requires a completion (a body).

The library_unit_name of a pragma Elaborate or Elaborate_All shall denote a nonlimited view of a
library unit.

Static Semantics

A pragma Elaborate specifies that the body of the named library unit is elaborated before the current
library_item. A pragma Elaborate_All specifies that each library_item that is needed by the named library

15.3/2

15.4/2

15.5/2

15.6/2

16/2

17/2

18/2

19

20

21

22

23

24

25

25.1/2

26

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

10.2.1 Elaboration Control 10 November 2006 234

unit declaration is elaborated before the current library_item. A pragma Elaborate_Body specifies that the
body of the library unit is elaborated immediately after its declaration.

NOTES
12 A preelaborated library unit is allowed to have non-preelaborable children.

13 A library unit that is declared pure is allowed to have impure children.

27

28

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

235 10 November 2006 Exceptions 11

Section 11: Exceptions
This section defines the facilities for dealing with errors or other exceptional situations that arise during
program execution. An exception represents a kind of exceptional situation; an occurrence of such a
situation (at run time) is called an exception occurrence. To raise an exception is to abandon normal
program execution so as to draw attention to the fact that the corresponding situation has arisen.
Performing some actions in response to the arising of an exception is called handling the exception.

An exception_declaration declares a name for an exception. An exception is raised initially either by a
raise_statement or by the failure of a language-defined check. When an exception arises, control can be
transferred to a user-provided exception_handler at the end of a handled_sequence_of_statements, or it
can be propagated to a dynamically enclosing execution.

11.1 Exception Declarations
An exception_declaration declares a name for an exception.

Syntax

exception_declaration ::= defining_identifier_list : exception;

Static Semantics

Each single exception_declaration declares a name for a different exception. If a generic unit includes an
exception_declaration, the exception_declarations implicitly generated by different instantiations of the
generic unit refer to distinct exceptions (but all have the same defining_identifier). The particular
exception denoted by an exception name is determined at compilation time and is the same regardless of
how many times the exception_declaration is elaborated.

The predefined exceptions are the ones declared in the declaration of package Standard: Constraint_Error,
Program_Error, Storage_Error, and Tasking_Error; one of them is raised when a language-defined check
fails.

Dynamic Semantics

The elaboration of an exception_declaration has no effect.

The execution of any construct raises Storage_Error if there is insufficient storage for that execution. The
amount of storage needed for the execution of constructs is unspecified.

Examples

Examples of user-defined exception declarations:
Singular : exception;
Error : exception;
Overflow, Underflow : exception;

11.2 Exception Handlers
The response to one or more exceptions is specified by an exception_handler.

1

2

1

2

3

4

5

6

7

8

1

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

11.2 Exception Handlers 10 November 2006 236

Syntax

handled_sequence_of_statements ::=
 sequence_of_statements
 [exception
 exception_handler
 {exception_handler}]
exception_handler ::=
 when [choice_parameter_specification:] exception_choice {| exception_choice} =>
 sequence_of_statements
choice_parameter_specification ::= defining_identifier
exception_choice ::= exception_name | others

Legality Rules

A choice with an exception_name covers the named exception. A choice with others covers all exceptions
not named by previous choices of the same handled_sequence_of_statements. Two choices in different
exception_handlers of the same handled_sequence_of_statements shall not cover the same exception.

A choice with others is allowed only for the last handler of a handled_sequence_of_statements and as
the only choice of that handler.

An exception_name of a choice shall not denote an exception declared in a generic formal package.

Static Semantics

A choice_parameter_specification declares a choice parameter, which is a constant object of type
Exception_Occurrence (see 11.4.1). During the handling of an exception occurrence, the choice parameter,
if any, of the handler represents the exception occurrence that is being handled.

Dynamic Semantics

The execution of a handled_sequence_of_statements consists of the execution of the sequence_of_-
statements. The optional handlers are used to handle any exceptions that are propagated by the
sequence_of_statements.

Examples

Example of an exception handler:
begin
 Open(File, In_File, "input.txt"); -- see A.8.2
exception
 when E : Name_Error =>
 Put("Cannot open input file : ");
 Put_Line(Exception_Message(E)); -- see 11.4.1
 raise;
end;

11.3 Raise Statements
A raise_statement raises an exception.

Syntax

raise_statement ::= raise;
 | raise exception_name [with string_expression];

2

3

4

5

6

7

8

9

10

11

12

1

2/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

237 10 November 2006 Raise Statements 11.3

Legality Rules

The name, if any, in a raise_statement shall denote an exception. A raise_statement with no
exception_name (that is, a re-raise statement) shall be within a handler, but not within a body enclosed by
that handler.

Name Resolution Rules

The expression, if any, in a raise_statement, is expected to be of type String.

Dynamic Semantics

To raise an exception is to raise a new occurrence of that exception, as explained in 11.4. For the
execution of a raise_statement with an exception_name, the named exception is raised. If a
string_expression is present, the expression is evaluated and its value is associated with the exception
occurrence. For the execution of a re-raise statement, the exception occurrence that caused transfer of
control to the innermost enclosing handler is raised again.

Examples

Examples of raise statements:
raise Ada.IO_Exceptions.Name_Error; -- see A.13
raise Queue_Error with "Buffer Full"; -- see 9.11
raise; -- re-raise the current exception

11.4 Exception Handling
When an exception occurrence is raised, normal program execution is abandoned and control is transferred
to an applicable exception_handler, if any. To handle an exception occurrence is to respond to the
exceptional event. To propagate an exception occurrence is to raise it again in another context; that is, to
fail to respond to the exceptional event in the present context.

Dynamic Semantics

Within a given task, if the execution of construct a is defined by this International Standard to consist (in
part) of the execution of construct b, then while b is executing, the execution of a is said to dynamically
enclose the execution of b. The innermost dynamically enclosing execution of a given execution is the
dynamically enclosing execution that started most recently.

When an exception occurrence is raised by the execution of a given construct, the rest of the execution of
that construct is abandoned; that is, any portions of the execution that have not yet taken place are not
performed. The construct is first completed, and then left, as explained in 7.6.1. Then:

• If the construct is a task_body, the exception does not propagate further;

• If the construct is the sequence_of_statements of a handled_sequence_of_statements that
has a handler with a choice covering the exception, the occurrence is handled by that handler;

• Otherwise, the occurrence is propagated to the innermost dynamically enclosing execution,
which means that the occurrence is raised again in that context.

When an occurrence is handled by a given handler, the choice_parameter_specification, if any, is first
elaborated, which creates the choice parameter and initializes it to the occurrence. Then, the
sequence_of_statements of the handler is executed; this execution replaces the abandoned portion of the
execution of the sequence_of_statements.

3

3.1/2

4/2

5

6/2

7

1

2

3

4

5

6

7

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

11.4 Exception Handling 10 November 2006 238

NOTES
1 Note that exceptions raised in a declarative_part of a body are not handled by the handlers of the handled_-
sequence_of_statements of that body.

11.4.1 The Package Exceptions
Static Semantics

The following language-defined library package exists:
with Ada.Streams;
package Ada.Exceptions is
 pragma Preelaborate(Exceptions);
 type Exception_Id is private;
 pragma Preelaborable_Initialization(Exception_Id);
 Null_Id : constant Exception_Id;
 function Exception_Name(Id : Exception_Id) return String;
 function Wide_Exception_Name(Id : Exception_Id) return Wide_String;
 function Wide_Wide_Exception_Name(Id : Exception_Id)
 return Wide_Wide_String;

 type Exception_Occurrence is limited private;
 pragma Preelaborable_Initialization(Exception_Occurrence);
 type Exception_Occurrence_Access is access all Exception_Occurrence;
 Null_Occurrence : constant Exception_Occurrence;

 procedure Raise_Exception(E : in Exception_Id;
 Message : in String := "");
 pragma No_Return(Raise_Exception);
 function Exception_Message(X : Exception_Occurrence) return String;
 procedure Reraise_Occurrence(X : in Exception_Occurrence);

 function Exception_Identity(X : Exception_Occurrence)
 return Exception_Id;
 function Exception_Name(X : Exception_Occurrence) return String;
 -- Same as Exception_Name(Exception_Identity(X)).
 function Wide_Exception_Name(X : Exception_Occurrence)
 return Wide_String;
 -- Same as Wide_Exception_Name(Exception_Identity(X)).
 function Wide_Wide_Exception_Name(X : Exception_Occurrence)
 return Wide_Wide_String;
 -- Same as Wide_Wide_Exception_Name(Exception_Identity(X)).
 function Exception_Information(X : Exception_Occurrence) return String;

 procedure Save_Occurrence(Target : out Exception_Occurrence;
 Source : in Exception_Occurrence);
 function Save_Occurrence(Source : Exception_Occurrence)
 return Exception_Occurrence_Access;

 procedure Read_Exception_Occurrence
 (Stream : not null access Ada.Streams.Root_Stream_Type'Class;
 Item : out Exception_Occurrence);
 procedure Write_Exception_Occurrence
 (Stream : not null access Ada.Streams.Root_Stream_Type'Class;
 Item : in Exception_Occurrence);

 for Exception_Occurrence'Read use Read_Exception_Occurrence;
 for Exception_Occurrence'Write use Write_Exception_Occurrence;

private
 ... -- not specified by the language
end Ada.Exceptions;

Each distinct exception is represented by a distinct value of type Exception_Id. Null_Id does not represent
any exception, and is the default initial value of type Exception_Id. Each occurrence of an exception is
represented by a value of type Exception_Occurrence. Null_Occurrence does not represent any exception
occurrence, and is the default initial value of type Exception_Occurrence.

8

1

2/2

3/2

4/2

5/2

6/2

6.1/2

6.2/2

6.3/2

7

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

239 10 November 2006 The Package Exceptions 11.4.1

For a prefix E that denotes an exception, the following attribute is defined:
E'Identity E'Identity returns the unique identity of the exception. The type of this attribute is

Exception_Id.

Raise_Exception raises a new occurrence of the identified exception.

Exception_Message returns the message associated with the given Exception_Occurrence. For an
occurrence raised by a call to Raise_Exception, the message is the Message parameter passed to
Raise_Exception. For the occurrence raised by a raise_statement with an exception_name and a
string_expression, the message is the string_expression. For the occurrence raised by a raise_statement
with an exception_name but without a string_expression, the message is a string giving implementation-
defined information about the exception occurrence. In all cases, Exception_Message returns a string with
lower bound 1.

Reraise_Occurrence reraises the specified exception occurrence.

Exception_Identity returns the identity of the exception of the occurrence.

The Wide_Wide_Exception_Name functions return the full expanded name of the exception, in upper
case, starting with a root library unit. For an exception declared immediately within package Standard, the
defining_identifier is returned. The result is implementation defined if the exception is declared within an
unnamed block_statement.

The Exception_Name functions (respectively, Wide_Exception_Name) return the same sequence of
graphic characters as that defined for Wide_Wide_Exception_Name, if all the graphic characters are
defined in Character (respectively, Wide_Character); otherwise, the sequence of characters is
implementation defined, but no shorter than that returned by Wide_Wide_Exception_Name for the same
value of the argument.

The string returned by the Exception_Name, Wide_Exception_Name, and Wide_Wide_Exception_Name
functions has lower bound 1.

Exception_Information returns implementation-defined information about the exception occurrence. The
returned string has lower bound 1.

Reraise_Occurrence has no effect in the case of Null_Occurrence. Raise_Exception and Exception_Name
raise Constraint_Error for a Null_Id. Exception_Message, Exception_Name, and Exception_Information
raise Constraint_Error for a Null_Occurrence. Exception_Identity applied to Null_Occurrence returns
Null_Id.

The Save_Occurrence procedure copies the Source to the Target. The Save_Occurrence function uses an
allocator of type Exception_Occurrence_Access to create a new object, copies the Source to this new
object, and returns an access value designating this new object; the result may be deallocated using an
instance of Unchecked_Deallocation.

Write_Exception_Occurrence writes a representation of an exception occurrence to a stream;
Read_Exception_Occurrence reconstructs an exception occurrence from a stream (including one written in
a different partition).

Implementation Requirements

This paragraph was deleted.

8/1

9

10/2

10.1/2

10.2/2

11

12/2

12.1/2

12.2/2

13/2

14/2

15

15.1/2

16/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

11.4.1 The Package Exceptions 10 November 2006 240

Implementation Permissions

An implementation of Exception_Name in a space-constrained environment may return the defining_-
identifier instead of the full expanded name.

The string returned by Exception_Message may be truncated (to no less than 200 characters) by the
Save_Occurrence procedure (not the function), the Reraise_Occurrence procedure, and the re-raise
statement.

Implementation Advice

Exception_Message (by default) and Exception_Information should produce information useful for
debugging. Exception_Message should be short (about one line), whereas Exception_Information can be
long. Exception_Message should not include the Exception_Name. Exception_Information should include
both the Exception_Name and the Exception_Message.

11.4.2 Pragmas Assert and Assertion_Policy
Pragma Assert is used to assert the truth of a Boolean expression at any point within a sequence of
declarations or statements. Pragma Assertion_Policy is used to control whether such assertions are to be
ignored by the implementation, checked at run-time, or handled in some implementation-defined manner.

Syntax

The form of a pragma Assert is as follows:
 pragma Assert([Check =>] boolean_expression[, [Message =>] string_expression]);
A pragma Assert is allowed at the place where a declarative_item or a statement is allowed.
The form of a pragma Assertion_Policy is as follows:
 pragma Assertion_Policy(policy_identifier);
A pragma Assertion_Policy is a configuration pragma.

Name Resolution Rules

The expected type for the boolean_expression of a pragma Assert is any boolean type. The expected type
for the string_expression of a pragma Assert is type String.

Legality Rules

The policy_identifier of a pragma Assertion_Policy shall be either Check, Ignore, or an implementation-
defined identifier.

Static Semantics

A pragma Assertion_Policy is a configuration pragma that specifies the assertion policy in effect for the
compilation units to which it applies. Different policies may apply to different compilation units within the
same partition. The default assertion policy is implementation-defined.

The following language-defined library package exists:
package Ada.Assertions is
 pragma Pure(Assertions);

 Assertion_Error : exception;

 procedure Assert(Check : in Boolean);
 procedure Assert(Check : in Boolean; Message : in String);

end Ada.Assertions;

17

18

19

1/2

2/2

3/2

4/2

5/2

6/2

7/2

8/2

9/2

10/2

11/2

12/2

13/2

14/2

15/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

241 10 November 2006 Pragmas Assert and Assertion_Policy 11.4.2

A compilation unit containing a pragma Assert has a semantic dependence on the Assertions library unit.

The assertion policy that applies to a generic unit also applies to all its instances.

Dynamic Semantics

An assertion policy specifies how a pragma Assert is interpreted by the implementation. If the assertion
policy is Ignore at the point of a pragma Assert, the pragma is ignored. If the assertion policy is Check at
the point of a pragma Assert, the elaboration of the pragma consists of evaluating the boolean expression,
and if the result is False, evaluating the Message argument, if any, and raising the exception
Assertions.Assertion_Error, with a message if the Message argument is provided.

Calling the procedure Assertions.Assert without a Message parameter is equivalent to:
if Check = False then
 raise Ada.Assertions.Assertion_Error;
end if;

Calling the procedure Assertions.Assert with a Message parameter is equivalent to:
if Check = False then
 raise Ada.Assertions.Assertion_Error with Message;
end if;

The procedures Assertions.Assert have these effects independently of the assertion policy in effect.

Implementation Permissions

Assertion_Error may be declared by renaming an implementation-defined exception from another
package.

Implementations may define their own assertion policies.

NOTES
2 Normally, the boolean expression in a pragma Assert should not call functions that have significant side-effects when
the result of the expression is True, so that the particular assertion policy in effect will not affect normal operation of the
program.

11.4.3 Example of Exception Handling
Examples

Exception handling may be used to separate the detection of an error from the response to that error:
package File_System is
 type File_Handle is limited private;

 File_Not_Found : exception;
 procedure Open(F : in out File_Handle; Name : String);
 -- raises File_Not_Found if named file does not exist
 End_Of_File : exception;
 procedure Read(F : in out File_Handle; Data : out Data_Type);
 -- raises End_Of_File if the file is not open
 ...
end File_System;

16/2

17/2

18/2

19/2

20/2

21/2

22/2

23/2

24/2

25/2

26/2

1

2/2

3

4

5

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

11.4.3 Example of Exception Handling 10 November 2006 242

package body File_System is
 procedure Open(F : in out File_Handle; Name : String) is
 begin
 if File_Exists(Name) then
 ...
 else
 raise File_Not_Found with "File not found: " & Name & ".";
 end if;
 end Open;

 procedure Read(F : in out File_Handle; Data : out Data_Type) is
 begin
 if F.Current_Position <= F.Last_Position then
 ...
 else
 raise End_Of_File;
 end if;
 end Read;

 ...

end File_System;

with Ada.Text_IO;
with Ada.Exceptions;
with File_System; use File_System;
use Ada;
procedure Main is
begin
 ... -- call operations in File_System
exception
 when End_Of_File =>
 Close(Some_File);
 when Not_Found_Error : File_Not_Found =>
 Text_IO.Put_Line(Exceptions.Exception_Message(Not_Found_Error));
 when The_Error : others =>
 Text_IO.Put_Line("Unknown error:");
 if Verbosity_Desired then
 Text_IO.Put_Line(Exceptions.Exception_Information(The_Error));
 else
 Text_IO.Put_Line(Exceptions.Exception_Name(The_Error));
 Text_IO.Put_Line(Exceptions.Exception_Message(The_Error));
 end if;
 raise;
end Main;

In the above example, the File_System package contains information about detecting certain exceptional
situations, but it does not specify how to handle those situations. Procedure Main specifies how to handle
them; other clients of File_System might have different handlers, even though the exceptional situations
arise from the same basic causes.

11.5 Suppressing Checks
Checking pragmas give instructions to an implementation on handling language-defined checks. A
pragma Suppress gives permission to an implementation to omit certain language-defined checks, while a
pragma Unsuppress revokes the permission to omit checks..

A language-defined check (or simply, a “check”) is one of the situations defined by this International
Standard that requires a check to be made at run time to determine whether some condition is true. A
check fails when the condition being checked is false, causing an exception to be raised.

6/2

7

8

9

10

11

1/2

2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

243 10 November 2006 Suppressing Checks 11.5

Syntax

The forms of checking pragmas are as follows:
 pragma Suppress(identifier);
 pragma Unsuppress(identifier);
A checking pragma is allowed only immediately within a declarative_part, immediately within a
package_specification, or as a configuration pragma.

Legality Rules

The identifier shall be the name of a check.

This paragraph was deleted.

Static Semantics

A checking pragma applies to the named check in a specific region, and applies to all entities in that
region. A checking pragma given in a declarative_part or immediately within a package_specification
applies from the place of the pragma to the end of the innermost enclosing declarative region. The region
for a checking pragma given as a configuration pragma is the declarative region for the entire compilation
unit (or units) to which it applies.

If a checking pragma applies to a generic instantiation, then the checking pragma also applies to the
instance. If a checking pragma applies to a call to a subprogram that has a pragma Inline applied to it, then
the checking pragma also applies to the inlined subprogram body.

A pragma Suppress gives permission to an implementation to omit the named check (or every check in the
case of All_Checks) for any entities to which it applies. If permission has been given to suppress a given
check, the check is said to be suppressed.

A pragma Unsuppress revokes the permission to omit the named check (or every check in the case of
All_Checks) given by any pragma Suppress that applies at the point of the pragma Unsuppress. The
permission is revoked for the region to which the pragma Unsuppress applies. If there is no such
permission at the point of a pragma Unsuppress, then the pragma has no effect. A later pragma Suppress
can renew the permission.

The following are the language-defined checks:
• The following checks correspond to situations in which the exception Constraint_Error is raised

upon failure.

Access_Check
 When evaluating a dereference (explicit or implicit), check that the value of the name

is not null. When converting to a subtype that excludes null, check that the converted
value is not null.

Discriminant_Check
 Check that the discriminants of a composite value have the values imposed by a

discriminant constraint. Also, when accessing a record component, check that it exists
for the current discriminant values.

Division_Check
 Check that the second operand is not zero for the operations /, rem and mod.

Index_Check
 Check that the bounds of an array value are equal to the corresponding bounds of an

index constraint. Also, when accessing a component of an array object, check for each
dimension that the given index value belongs to the range defined by the bounds of the

3/2

4/2

4.1/2

5/2

6/2

7/2

7.1/2

7.2/2

8/2

8.1/2

9

10

11/2

12

13/2

14

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

11.5 Suppressing Checks 10 November 2006 244

array object. Also, when accessing a slice of an array object, check that the given
discrete range is compatible with the range defined by the bounds of the array object.

Length_Check
 Check that two arrays have matching components, in the case of array subtype

conversions, and logical operators for arrays of boolean components.

Overflow_Check
 Check that a scalar value is within the base range of its type, in cases where the

implementation chooses to raise an exception instead of returning the correct
mathematical result.

Range_Check
 Check that a scalar value satisfies a range constraint. Also, for the elaboration of a

subtype_indication, check that the constraint (if present) is compatible with the
subtype denoted by the subtype_mark. Also, for an aggregate, check that an index or
discriminant value belongs to the corresponding subtype. Also, check that when the
result of an operation yields an array, the value of each component belongs to the
component subtype.

Tag_Check
 Check that operand tags in a dispatching call are all equal. Check for the correct tag on

tagged type conversions, for an assignment_statement, and when returning a tagged
limited object from a function.

• The following checks correspond to situations in which the exception Program_Error is raised
upon failure.

Accessibility_Check
 Check the accessibility level of an entity or view.

Allocation_Check
 For an allocator, check that the master of any tasks to be created by the allocator is not

yet completed or some dependents have not yet terminated, and that the finalization of
the collection has not started.

Elaboration_Check
 When a subprogram or protected entry is called, a task activation is accomplished, or a

generic instantiation is elaborated, check that the body of the corresponding unit has
already been elaborated.

This paragraph was deleted.

• The following check corresponds to situations in which the exception Storage_Error is raised
upon failure.
Storage_Check
 Check that evaluation of an allocator does not require more space than is available for

a storage pool. Check that the space available for a task or subprogram has not been
exceeded.

• The following check corresponds to all situations in which any predefined exception is raised.
All_Checks
 Represents the union of all checks; suppressing All_Checks suppresses all checks.

Erroneous Execution

If a given check has been suppressed, and the corresponding error situation occurs, the execution of the
program is erroneous.

15

16

17

18

19

19.1/2

19.2/2

20

21/2

22

23

24

25

26

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

245 10 November 2006 Suppressing Checks 11.5

Implementation Permissions

An implementation is allowed to place restrictions on checking pragmas, subject only to the requirement
that pragma Unsuppress shall allow any check names supported by pragma Suppress. An implementation
is allowed to add additional check names, with implementation-defined semantics. When Overflow_Check
has been suppressed, an implementation may also suppress an unspecified subset of the Range_Checks.

An implementation may support an additional parameter on pragma Unsuppress similar to the one
allowed for pragma Suppress (see J.10). The meaning of such a parameter is implementation-defined.

Implementation Advice

The implementation should minimize the code executed for checks that have been suppressed.

NOTES
3 There is no guarantee that a suppressed check is actually removed; hence a pragma Suppress should be used only for
efficiency reasons.

4 It is possible to give both a pragma Suppress and Unsuppress for the same check immediately within the same
declarative_part. In that case, the last pragma given determines whether or not the check is suppressed. Similarly, it is
possible to resuppress a check which has been unsuppressed by giving a pragma Suppress in an inner declarative region.

Examples

Examples of suppressing and unsuppressing checks:
pragma Suppress(Index_Check);
pragma Unsuppress(Overflow_Check);

11.6 Exceptions and Optimization
This clause gives permission to the implementation to perform certain “optimizations” that do not
necessarily preserve the canonical semantics.

Dynamic Semantics

The rest of this International Standard (outside this clause) defines the canonical semantics of the
language. The canonical semantics of a given (legal) program determines a set of possible external effects
that can result from the execution of the program with given inputs.

As explained in 1.1.3, “Conformity of an Implementation with the Standard”, the external effect of a
program is defined in terms of its interactions with its external environment. Hence, the implementation
can perform any internal actions whatsoever, in any order or in parallel, so long as the external effect of
the execution of the program is one that is allowed by the canonical semantics, or by the rules of this
clause.

Implementation Permissions

The following additional permissions are granted to the implementation:
• An implementation need not always raise an exception when a language-defined check fails.

Instead, the operation that failed the check can simply yield an undefined result. The exception
need be raised by the implementation only if, in the absence of raising it, the value of this
undefined result would have some effect on the external interactions of the program. In
determining this, the implementation shall not presume that an undefined result has a value that
belongs to its subtype, nor even to the base range of its type, if scalar. Having removed the raise
of the exception, the canonical semantics will in general allow the implementation to omit the
code for the check, and some or all of the operation itself.

27/2

27.1/2

28

29

29.1/2

30/2

31/2

1

2

3

4

5

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

11.6 Exceptions and Optimization 10 November 2006 246

• If an exception is raised due to the failure of a language-defined check, then upon reaching the
corresponding exception_handler (or the termination of the task, if none), the external
interactions that have occurred need reflect only that the exception was raised somewhere within
the execution of the sequence_of_statements with the handler (or the task_body), possibly
earlier (or later if the interactions are independent of the result of the checked operation) than
that defined by the canonical semantics, but not within the execution of some abort-deferred
operation or independent subprogram that does not dynamically enclose the execution of the
construct whose check failed. An independent subprogram is one that is defined outside the
library unit containing the construct whose check failed, and has no Inline pragma applied to it.
Any assignment that occurred outside of such abort-deferred operations or independent
subprograms can be disrupted by the raising of the exception, causing the object or its parts to
become abnormal, and certain subsequent uses of the object to be erroneous, as explained in
13.9.1.
NOTES
5 The permissions granted by this clause can have an effect on the semantics of a program only if the program fails a
language-defined check.

6

7

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

247 10 November 2006 Generic Units 12

Section 12: Generic Units
A generic unit is a program unit that is either a generic subprogram or a generic package. A generic unit is
a template, which can be parameterized, and from which corresponding (nongeneric) subprograms or
packages can be obtained. The resulting program units are said to be instances of the original generic unit.

A generic unit is declared by a generic_declaration. This form of declaration has a generic_formal_part
declaring any generic formal parameters. An instance of a generic unit is obtained as the result of a
generic_instantiation with appropriate generic actual parameters for the generic formal parameters. An
instance of a generic subprogram is a subprogram. An instance of a generic package is a package.

Generic units are templates. As templates they do not have the properties that are specific to their
nongeneric counterparts. For example, a generic subprogram can be instantiated but it cannot be called. In
contrast, an instance of a generic subprogram is a (nongeneric) subprogram; hence, this instance can be
called but it cannot be used to produce further instances.

12.1 Generic Declarations
A generic_declaration declares a generic unit, which is either a generic subprogram or a generic package.
A generic_declaration includes a generic_formal_part declaring any generic formal parameters. A
generic formal parameter can be an object; alternatively (unlike a parameter of a subprogram), it can be a
type, a subprogram, or a package.

Syntax

generic_declaration ::= generic_subprogram_declaration | generic_package_declaration
generic_subprogram_declaration ::=
 generic_formal_part subprogram_specification;
generic_package_declaration ::=
 generic_formal_part package_specification;
generic_formal_part ::= generic {generic_formal_parameter_declaration | use_clause}
generic_formal_parameter_declaration ::=
 formal_object_declaration
 | formal_type_declaration
 | formal_subprogram_declaration
 | formal_package_declaration
The only form of subtype_indication allowed within a generic_formal_part is a subtype_mark (that
is, the subtype_indication shall not include an explicit constraint). The defining name of a generic
subprogram shall be an identifier (not an operator_symbol).

Static Semantics

A generic_declaration declares a generic unit — a generic package, generic procedure, or generic
function, as appropriate.

An entity is a generic formal entity if it is declared by a generic_formal_parameter_declaration. “Generic
formal,” or simply “formal,” is used as a prefix in referring to objects, subtypes (and types), functions,
procedures and packages, that are generic formal entities, as well as to their respective declarations.
Examples: “generic formal procedure” or a “formal integer type declaration.”

1

2

3

1

2

3

4

5

6

7

8/2

9

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

12.1 Generic Declarations 10 November 2006 248

Dynamic Semantics

The elaboration of a generic_declaration has no effect.

NOTES
1 Outside a generic unit a name that denotes the generic_declaration denotes the generic unit. In contrast, within the
declarative region of the generic unit, a name that denotes the generic_declaration denotes the current instance.

2 Within a generic subprogram_body, the name of this program unit acts as the name of a subprogram. Hence this name
can be overloaded, and it can appear in a recursive call of the current instance. For the same reason, this name cannot
appear after the reserved word new in a (recursive) generic_instantiation.

3 A default_expression or default_name appearing in a generic_formal_part is not evaluated during elaboration of the
generic_formal_part; instead, it is evaluated when used. (The usual visibility rules apply to any name used in a default:
the denoted declaration therefore has to be visible at the place of the expression.)

Examples

Examples of generic formal parts:
generic -- parameterless
generic
 Size : Natural; -- formal object
generic
 Length : Integer := 200; -- formal object with a default expression
 Area : Integer := Length*Length; -- formal object with a default expression
generic
 type Item is private; -- formal type
 type Index is (<>); -- formal type
 type Row is array(Index range <>) of Item; -- formal type
 with function "<"(X, Y : Item) return Boolean; -- formal subprogram

Examples of generic declarations declaring generic subprograms Exchange and Squaring:
generic
 type Elem is private;
procedure Exchange(U, V : in out Elem);

generic
 type Item is private;
 with function "*"(U, V : Item) return Item is <>;
function Squaring(X : Item) return Item;

Example of a generic declaration declaring a generic package:
generic
 type Item is private;
 type Vector is array (Positive range <>) of Item;
 with function Sum(X, Y : Item) return Item;
package On_Vectors is
 function Sum (A, B : Vector) return Vector;
 function Sigma(A : Vector) return Item;
 Length_Error : exception;
end On_Vectors;

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

249 10 November 2006 Generic Bodies 12.2

12.2 Generic Bodies
The body of a generic unit (a generic body) is a template for the instance bodies. The syntax of a generic
body is identical to that of a nongeneric body.

Dynamic Semantics

The elaboration of a generic body has no other effect than to establish that the generic unit can from then
on be instantiated without failing the Elaboration_Check. If the generic body is a child of a generic
package, then its elaboration establishes that each corresponding declaration nested in an instance of the
parent (see 10.1.1) can from then on be instantiated without failing the Elaboration_Check.

NOTES
4 The syntax of generic subprograms implies that a generic subprogram body is always the completion of a declaration.

Examples

Example of a generic procedure body:
procedure Exchange(U, V : in out Elem) is -- see 12.1
 T : Elem; -- the generic formal type
begin
 T := U;
 U := V;
 V := T;
end Exchange;

Example of a generic function body:
function Squaring(X : Item) return Item is -- see 12.1
begin
 return X*X; -- the formal operator "*"
end Squaring;

Example of a generic package body:
package body On_Vectors is -- see 12.1
 function Sum(A, B : Vector) return Vector is
 Result : Vector(A'Range); -- the formal type Vector
 Bias : constant Integer := B'First - A'First;
 begin
 if A'Length /= B'Length then
 raise Length_Error;
 end if;

 for N in A'Range loop
 Result(N) := Sum(A(N), B(N + Bias)); -- the formal function Sum
 end loop;
 return Result;
 end Sum;

 function Sigma(A : Vector) return Item is
 Total : Item := A(A'First); -- the formal type Item
 begin
 for N in A'First + 1 .. A'Last loop
 Total := Sum(Total, A(N)); -- the formal function Sum
 end loop;
 return Total;
 end Sigma;
end On_Vectors;

1

2

3

4

5

6

7

8

9

10

11

12

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

12.3 Generic Instantiation 10 November 2006 250

12.3 Generic Instantiation
An instance of a generic unit is declared by a generic_instantiation.

Syntax

generic_instantiation ::=
 package defining_program_unit_name is
 new generic_package_name [generic_actual_part];
 | [overriding_indicator]
 procedure defining_program_unit_name is
 new generic_procedure_name [generic_actual_part];
 | [overriding_indicator]
 function defining_designator is
 new generic_function_name [generic_actual_part];
generic_actual_part ::=
 (generic_association {, generic_association})
generic_association ::=
 [generic_formal_parameter_selector_name =>] explicit_generic_actual_parameter
explicit_generic_actual_parameter ::= expression | variable_name
 | subprogram_name | entry_name | subtype_mark
 | package_instance_name
A generic_association is named or positional according to whether or not the generic_formal_-
parameter_selector_name is specified. Any positional associations shall precede any named
associations.

The generic actual parameter is either the explicit_generic_actual_parameter given in a generic_-
association for each formal, or the corresponding default_expression or default_name if no generic_-
association is given for the formal. When the meaning is clear from context, the term “generic actual,” or
simply “actual,” is used as a synonym for “generic actual parameter” and also for the view denoted by one,
or the value of one.

Legality Rules

In a generic_instantiation for a particular kind of program unit (package, procedure, or function), the
name shall denote a generic unit of the corresponding kind (generic package, generic procedure, or
generic function, respectively).

The generic_formal_parameter_selector_name of a generic_association shall denote a
generic_formal_parameter_declaration of the generic unit being instantiated. If two or more formal
subprograms have the same defining name, then named associations are not allowed for the corresponding
actuals.

A generic_instantiation shall contain at most one generic_association for each formal. Each formal
without an association shall have a default_expression or subprogram_default.

In a generic unit Legality Rules are enforced at compile time of the generic_declaration and generic body,
given the properties of the formals. In the visible part and formal part of an instance, Legality Rules are
enforced at compile time of the generic_instantiation, given the properties of the actuals. In other parts of
an instance, Legality Rules are not enforced; this rule does not apply when a given rule explicitly specifies
otherwise.

1

2/2

3

4

5

6

7/2

8

9

10

11

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

251 10 November 2006 Generic Instantiation 12.3

Static Semantics

A generic_instantiation declares an instance; it is equivalent to the instance declaration (a package_-
declaration or subprogram_declaration) immediately followed by the instance body, both at the place of
the instantiation.

The instance is a copy of the text of the template. Each use of a formal parameter becomes (in the copy) a
use of the actual, as explained below. An instance of a generic package is a package, that of a generic
procedure is a procedure, and that of a generic function is a function.

The interpretation of each construct within a generic declaration or body is determined using the
overloading rules when that generic declaration or body is compiled. In an instance, the interpretation of
each (copied) construct is the same, except in the case of a name that denotes the generic_declaration or
some declaration within the generic unit; the corresponding name in the instance then denotes the
corresponding copy of the denoted declaration. The overloading rules do not apply in the instance.

In an instance, a generic_formal_parameter_declaration declares a view whose properties are identical to
those of the actual, except as specified in 12.4, “Formal Objects” and 12.6, “Formal Subprograms”.
Similarly, for a declaration within a generic_formal_parameter_declaration, the corresponding
declaration in an instance declares a view whose properties are identical to the corresponding declaration
within the declaration of the actual.

Implicit declarations are also copied, and a name that denotes an implicit declaration in the generic
denotes the corresponding copy in the instance. However, for a type declared within the visible part of the
generic, a whole new set of primitive subprograms is implicitly declared for use outside the instance, and
may differ from the copied set if the properties of the type in some way depend on the properties of some
actual type specified in the instantiation. For example, if the type in the generic is derived from a formal
private type, then in the instance the type will inherit subprograms from the corresponding actual type.

These new implicit declarations occur immediately after the type declaration in the instance, and override
the copied ones. The copied ones can be called only from within the instance; the new ones can be called
only from outside the instance, although for tagged types, the body of a new one can be executed by a call
to an old one.

In the visible part of an instance, an explicit declaration overrides an implicit declaration if they are
homographs, as described in 8.3. On the other hand, an explicit declaration in the private part of an
instance overrides an implicit declaration in the instance, only if the corresponding explicit declaration in
the generic overrides a corresponding implicit declaration in the generic. Corresponding rules apply to the
other kinds of overriding described in 8.3.

Post-Compilation Rules

Recursive generic instantiation is not allowed in the following sense: if a given generic unit includes an
instantiation of a second generic unit, then the instance generated by this instantiation shall not include an
instance of the first generic unit (whether this instance is generated directly, or indirectly by intermediate
instantiations).

Dynamic Semantics

For the elaboration of a generic_instantiation, each generic_association is first evaluated. If a default is
used, an implicit generic_association is assumed for this rule. These evaluations are done in an arbitrary
order, except that the evaluation for a default actual takes place after the evaluation for another actual if
the default includes a name that denotes the other one. Finally, the instance declaration and body are
elaborated.

12

13

14

15

16

17

18

19

20

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

12.3 Generic Instantiation 10 November 2006 252

For the evaluation of a generic_association the generic actual parameter is evaluated. Additional actions
are performed in the case of a formal object of mode in (see 12.4).

NOTES
5 If a formal type is not tagged, then the type is treated as an untagged type within the generic body. Deriving from such a
type in a generic body is permitted; the new type does not get a new tag value, even if the actual is tagged. Overriding
operations for such a derived type cannot be dispatched to from outside the instance.

Examples

Examples of generic instantiations (see 12.1):
procedure Swap is new Exchange(Elem => Integer);
procedure Swap is new Exchange(Character); -- Swap is overloaded
function Square is new Squaring(Integer); -- "*" of Integer used by default
function Square is new Squaring(Item => Matrix, "*" => Matrix_Product);
function Square is new Squaring(Matrix, Matrix_Product); -- same as previous
package Int_Vectors is new On_Vectors(Integer, Table, "+");

Examples of uses of instantiated units:
Swap(A, B);
A := Square(A);

T : Table(1 .. 5) := (10, 20, 30, 40, 50);
N : Integer := Int_Vectors.Sigma(T); -- 150 (see 12.2, “Generic Bodies” for the body of
Sigma)
use Int_Vectors;
M : Integer := Sigma(T); -- 150

12.4 Formal Objects
A generic formal object can be used to pass a value or variable to a generic unit.

Syntax

formal_object_declaration ::=
 defining_identifier_list : mode [null_exclusion] subtype_mark [:= default_expression];
 defining_identifier_list : mode access_definition [:= default_expression];

Name Resolution Rules

The expected type for the default_expression, if any, of a formal object is the type of the formal object.

For a generic formal object of mode in, the expected type for the actual is the type of the formal.

For a generic formal object of mode in out, the type of the actual shall resolve to the type determined by
the subtype_mark, or for a formal_object_declaration with an access_definition, to a specific anonymous
access type. If the anonymous access type is an access-to-object type, the type of the actual shall have the
same designated type as that of the access_definition. If the anonymous access type is an access-to-
subprogram type, the type of the actual shall have a designated profile which is type conformant with that
of the access_definition. .

Legality Rules

If a generic formal object has a default_expression, then the mode shall be in (either explicitly or by
default); otherwise, its mode shall be either in or in out.

For a generic formal object of mode in, the actual shall be an expression. For a generic formal object of
mode in out, the actual shall be a name that denotes a variable for which renaming is allowed (see 8.5.1).

21

22

23

24

25

26

27

28

29

1

2/2

3

4

5/2

6

7

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

253 10 November 2006 Formal Objects 12.4

In the case where the type of the formal is defined by an access_definition, the type of the actual and the
type of the formal:

• shall both be access-to-object types with statically matching designated subtypes and with both
or neither being access-to-constant types; or

• shall both be access-to-subprogram types with subtype conformant designated profiles.

For a formal_object_declaration with a null_exclusion or an access_definition that has a null_exclusion:
• if the actual matching the formal_object_declaration denotes the generic formal object of

another generic unit G, and the instantiation containing the actual occurs within the body of G or
within the body of a generic unit declared within the declarative region of G, then the
declaration of the formal object of G shall have a null_exclusion;

• otherwise, the subtype of the actual matching the formal_object_declaration shall exclude null.
In addition to the places where Legality Rules normally apply (see 12.3), this rule applies also in
the private part of an instance of a generic unit.

Static Semantics

A formal_object_declaration declares a generic formal object. The default mode is in. For a formal object
of mode in, the nominal subtype is the one denoted by the subtype_mark or access_definition in the
declaration of the formal. For a formal object of mode in out, its type is determined by the subtype_mark
or access_definition in the declaration; its nominal subtype is nonstatic, even if the subtype_mark
denotes a static subtype; for a composite type, its nominal subtype is unconstrained if the first subtype of
the type is unconstrained, even if the subtype_mark denotes a constrained subtype.

In an instance, a formal_object_declaration of mode in is a full constant declaration and declares a new
stand-alone constant object whose initialization expression is the actual, whereas a
formal_object_declaration of mode in out declares a view whose properties are identical to those of the
actual.

Dynamic Semantics

For the evaluation of a generic_association for a formal object of mode in, a constant object is created,
the value of the actual parameter is converted to the nominal subtype of the formal object, and assigned to
the object, including any value adjustment — see 7.6.

NOTES
6 The constraints that apply to a generic formal object of mode in out are those of the corresponding generic actual
parameter (not those implied by the subtype_mark that appears in the formal_object_declaration). Therefore, to avoid
confusion, it is recommended that the name of a first subtype be used for the declaration of such a formal object.

8/2

8.1/2

8.2/2

8.3/2

8.4/2

8.5/2

9/2

10/2

11

12

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

12.5 Formal Types 10 November 2006 254

12.5 Formal Types
A generic formal subtype can be used to pass to a generic unit a subtype whose type is in a certain
category of types.

Syntax

formal_type_declaration ::=
 type defining_identifier[discriminant_part] is formal_type_definition;
formal_type_definition ::=
 formal_private_type_definition
 | formal_derived_type_definition
 | formal_discrete_type_definition
 | formal_signed_integer_type_definition
 | formal_modular_type_definition
 | formal_floating_point_definition
 | formal_ordinary_fixed_point_definition
 | formal_decimal_fixed_point_definition
 | formal_array_type_definition
 | formal_access_type_definition
 | formal_interface_type_definition

Legality Rules

For a generic formal subtype, the actual shall be a subtype_mark; it denotes the (generic) actual subtype.

Static Semantics

A formal_type_declaration declares a (generic) formal type, and its first subtype, the (generic) formal
subtype.

The form of a formal_type_definition determines a category (of types) to which the formal type belongs.
For a formal_private_type_definition the reserved words tagged and limited indicate the category of types
(see 12.5.1). For a formal_derived_type_definition the category of types is the derivation class rooted at
the ancestor type. For other formal types, the name of the syntactic category indicates the category of
types; a formal_discrete_type_definition defines a discrete type, and so on.

Legality Rules

The actual type shall be in the category determined for the formal.

Static Semantics

The formal type also belongs to each category that contains the determined category. The primitive
subprograms of the type are as for any type in the determined category. For a formal type other than a
formal derived type, these are the predefined operators of the type. For an elementary formal type, the
predefined operators are implicitly declared immediately after the declaration of the formal type. For a
composite formal type, the predefined operators are implicitly declared either immediately after the
declaration of the formal type, or later immediately within the declarative region in which the type is
declared according to the rules of 7.3.1. In an instance, the copy of such an implicit declaration declares a
view of the predefined operator of the actual type, even if this operator has been overridden for the actual
type. The rules specific to formal derived types are given in 12.5.1.

1/2

2

3/2

4

5

6/2

7/2

8/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

255 10 November 2006 Formal Types 12.5

NOTES
7 Generic formal types, like all types, are not named. Instead, a name can denote a generic formal subtype. Within a
generic unit, a generic formal type is considered as being distinct from all other (formal or nonformal) types.

8 A discriminant_part is allowed only for certain kinds of types, and therefore only for certain kinds of generic formal
types. See 3.7.

Examples

Examples of generic formal types:
type Item is private;
type Buffer(Length : Natural) is limited private;

type Enum is (<>);
type Int is range <>;
type Angle is delta <>;
type Mass is digits <>;

type Table is array (Enum) of Item;

Example of a generic formal part declaring a formal integer type:
generic
 type Rank is range <>;
 First : Rank := Rank'First;
 Second : Rank := First + 1; -- the operator "+" of the type Rank

12.5.1 Formal Private and Derived Types
In its most general form, the category determined for a formal private type is all types, but it can be
restricted to only nonlimited types or to only tagged types. The category determined for a formal derived
type is the derivation class rooted at the ancestor type.

Syntax

formal_private_type_definition ::= [[abstract] tagged] [limited] private
formal_derived_type_definition ::=
 [abstract] [limited | synchronized] new subtype_mark [[and interface_list]with private]

Legality Rules

If a generic formal type declaration has a known_discriminant_part, then it shall not include a
default_expression for a discriminant.

The ancestor subtype of a formal derived type is the subtype denoted by the subtype_mark of the
formal_derived_type_definition. For a formal derived type declaration, the reserved words with private
shall appear if and only if the ancestor type is a tagged type; in this case the formal derived type is a
private extension of the ancestor type and the ancestor shall not be a class-wide type. Similarly, an
interface_list or the optional reserved words abstract or synchronized shall appear only if the ancestor
type is a tagged type. The reserved word limited or synchronized shall appear only if the ancestor type
and any progenitor types are limited types. The reserved word synchronized shall appear (rather than
limited) if the ancestor type or any of the progenitor types are synchronized interfaces.

The actual type for a formal derived type shall be a descendant of the ancestor type and every progenitor
of the formal type. If the reserved word synchronized appears in the declaration of the formal derived
type, the actual type shall be a synchronized tagged type.

If the formal subtype is definite, then the actual subtype shall also be definite.

For a generic formal derived type with no discriminant_part:

9

10

11

12

13

14

15

16

1/2

2

3/2

4

5/2

5.1/2

6

7

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

12.5.1 Formal Private and Derived Types 10 November 2006 256

• If the ancestor subtype is constrained, the actual subtype shall be constrained, and shall be
statically compatible with the ancestor;

• If the ancestor subtype is an unconstrained access or composite subtype, the actual subtype shall
be unconstrained.

• If the ancestor subtype is an unconstrained discriminated subtype, then the actual shall have the
same number of discriminants, and each discriminant of the actual shall correspond to a
discriminant of the ancestor, in the sense of 3.7.

• If the ancestor subtype is an access subtype, the actual subtype shall exclude null if and only if
the ancestor subtype excludes null.

The declaration of a formal derived type shall not have a known_discriminant_part. For a generic formal
private type with a known_discriminant_part:

• The actual type shall be a type with the same number of discriminants.

• The actual subtype shall be unconstrained.

• The subtype of each discriminant of the actual type shall statically match the subtype of the
corresponding discriminant of the formal type.

For a generic formal type with an unknown_discriminant_part, the actual may, but need not, have
discriminants, and may be definite or indefinite.

Static Semantics

The category determined for a formal private type is as follows:
Type Definition Determined Category

limited private the category of all types
private the category of all nonlimited types
tagged limited private the category of all tagged types
tagged private the category of all nonlimited tagged types

The presence of the reserved word abstract determines whether the actual type may be abstract.

A formal private or derived type is a private or derived type, respectively. A formal derived tagged type is
a private extension. A formal private or derived type is abstract if the reserved word abstract appears in its
declaration.

If the ancestor type is a composite type that is not an array type, the formal type inherits components from
the ancestor type (including discriminants if a new discriminant_part is not specified), as for a derived
type defined by a derived_type_definition (see 3.4 and 7.3.1).

For a formal derived type, the predefined operators and inherited user-defined subprograms are determined
by the ancestor type and any progenitor types, and are implicitly declared at the earliest place, if any,
immediately within the declarative region in which the formal type is declared, where the corresponding
primitive subprogram of the ancestor or progenitor is visible (see 7.3.1). In an instance, the copy of such
an implicit declaration declares a view of the corresponding primitive subprogram of the ancestor or
progenitor of the formal derived type, even if this primitive has been overridden for the actual type. When
the ancestor or progenitor of the formal derived type is itself a formal type, the copy of the implicit
declaration declares a view of the corresponding copied operation of the ancestor or progenitor. In the case
of a formal private extension, however, the tag of the formal type is that of the actual type, so if the tag in
a call is statically determined to be that of the formal type, the body executed will be that corresponding to
the actual type.

8

9

10

10.1/2

11

12

13

14

15

16/2

17/2

18

19

20/2

21/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

257 10 November 2006 Formal Private and Derived Types 12.5.1

For a prefix S that denotes a formal indefinite subtype, the following attribute is defined:
S'Definite S'Definite yields True if the actual subtype corresponding to S is definite; otherwise it

yields False. The value of this attribute is of the predefined type Boolean.

Dynamic Semantics

In the case where a formal type is tagged with unknown discriminants, and the actual type is a class-wide
type T'Class:

• For the purposes of defining the primitive operations of the formal type, each of the primitive
operations of the actual type is considered to be a subprogram (with an intrinsic calling
convention — see 6.3.1) whose body consists of a dispatching call upon the corresponding
operation of T, with its formal parameters as the actual parameters. If it is a function, the result
of the dispatching call is returned.

• If the corresponding operation of T has no controlling formal parameters, then the controlling tag
value is determined by the context of the call, according to the rules for tag-indeterminate calls
(see 3.9.2 and 5.2). In the case where the tag would be statically determined to be that of the
formal type, the call raises Program_Error. If such a function is renamed, any call on the
renaming raises Program_Error.
NOTES
9 In accordance with the general rule that the actual type shall belong to the category determined for the formal (see 12.5,
“Formal Types”):

• If the formal type is nonlimited, then so shall be the actual;
• For a formal derived type, the actual shall be in the class rooted at the ancestor subtype.

10 The actual type can be abstract only if the formal type is abstract (see 3.9.3).

11 If the formal has a discriminant_part, the actual can be either definite or indefinite. Otherwise, the actual has to be
definite.

12.5.2 Formal Scalar Types
A formal scalar type is one defined by any of the formal_type_definitions in this subclause. The category
determined for a formal scalar type is the category of all discrete, signed integer, modular, floating point,
ordinary fixed point, or decimal types.

Syntax

formal_discrete_type_definition ::= (<>)
formal_signed_integer_type_definition ::= range <>
formal_modular_type_definition ::= mod <>
formal_floating_point_definition ::= digits <>
formal_ordinary_fixed_point_definition ::= delta <>
formal_decimal_fixed_point_definition ::= delta <> digits <>

Legality Rules

The actual type for a formal scalar type shall not be a nonstandard numeric type.

NOTES
12 The actual type shall be in the class of types implied by the syntactic category of the formal type definition (see 12.5,
“Formal Types”). For example, the actual for a formal_modular_type_definition shall be a modular type.

22/1

23

23.1/2

23.2/2

23.3/2

24/2

25

26

27

28

1/2

2

3

4

5

6

7

8

9

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

12.5.3 Formal Array Types 10 November 2006 258

12.5.3 Formal Array Types
The category determined for a formal array type is the category of all array types.

Syntax

formal_array_type_definition ::= array_type_definition

Legality Rules

The only form of discrete_subtype_definition that is allowed within the declaration of a generic formal
(constrained) array subtype is a subtype_mark.

For a formal array subtype, the actual subtype shall satisfy the following conditions:
• The formal array type and the actual array type shall have the same dimensionality; the formal

subtype and the actual subtype shall be either both constrained or both unconstrained.

• For each index position, the index types shall be the same, and the index subtypes (if
unconstrained), or the index ranges (if constrained), shall statically match (see 4.9.1).

• The component subtypes of the formal and actual array types shall statically match.

• If the formal type has aliased components, then so shall the actual.

Examples

Example of formal array types:
-- given the generic package
generic
 type Item is private;
 type Index is (<>);
 type Vector is array (Index range <>) of Item;
 type Table is array (Index) of Item;
package P is
 ...
end P;

-- and the types
type Mix is array (Color range <>) of Boolean;
type Option is array (Color) of Boolean;

-- then Mix can match Vector and Option can match Table
package R is new P(Item => Boolean, Index => Color,
 Vector => Mix, Table => Option);

-- Note that Mix cannot match Table and Option cannot match Vector

1/2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

259 10 November 2006 Formal Access Types 12.5.4

12.5.4 Formal Access Types
The category determined for a formal access type is the category of all access types.

Syntax

formal_access_type_definition ::= access_type_definition

Legality Rules

For a formal access-to-object type, the designated subtypes of the formal and actual types shall statically
match.

If and only if the general_access_modifier constant applies to the formal, the actual shall be an access-
to-constant type. If the general_access_modifier all applies to the formal, then the actual shall be a
general access-to-variable type (see 3.10). If and only if the formal subtype excludes null, the actual
subtype shall exclude null.

For a formal access-to-subprogram subtype, the designated profiles of the formal and the actual shall be
mode-conformant, and the calling convention of the actual shall be protected if and only if that of the
formal is protected.

Examples

Example of formal access types:
-- the formal types of the generic package
generic
 type Node is private;
 type Link is access Node;
package P is
 ...
end P;

-- can be matched by the actual types
type Car;
type Car_Name is access Car;

type Car is
 record
 Pred, Succ : Car_Name;
 Number : License_Number;
 Owner : Person;
 end record;

-- in the following generic instantiation
package R is new P(Node => Car, Link => Car_Name);

12.5.5 Formal Interface Types
The category determined for a formal interface type is the category of all interface types.

Syntax

formal_interface_type_definition ::= interface_type_definition

Legality Rules

The actual type shall be a descendant of every progenitor of the formal type.

1/2

2

3

4/2

5

6

7

8

9

10

11

12

13

1/2

2/2

3/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

12.5.5 Formal Interface Types 10 November 2006 260

The actual type shall be a limited, task, protected, or synchronized interface if and only if the formal type
is also, respectively, a limited, task, protected, or synchronized interface.

Examples
type Root_Work_Item is tagged private;

generic
 type Managed_Task is task interface;
 type Work_Item(<>) is new Root_Work_Item with private;
package Server_Manager is
 task type Server is new Managed_Task with
 entry Start(Data : in out Work_Item);
 end Server;
end Server_Manager;

This generic allows an application to establish a standard interface that all tasks need to implement so they
can be managed appropriately by an application-specific scheduler.

12.6 Formal Subprograms
Formal subprograms can be used to pass callable entities to a generic unit.

Syntax

formal_subprogram_declaration ::= formal_concrete_subprogram_declaration
 | formal_abstract_subprogram_declaration
formal_concrete_subprogram_declaration ::=
 with subprogram_specification [is subprogram_default];
formal_abstract_subprogram_declaration ::=
 with subprogram_specification is abstract [subprogram_default];
subprogram_default ::= default_name | <> | null
default_name ::= name
A subprogram_default of null shall not be specified for a formal function or for a
formal_abstract_subprogram_declaration.

Name Resolution Rules

The expected profile for the default_name, if any, is that of the formal subprogram.

For a generic formal subprogram, the expected profile for the actual is that of the formal subprogram.

Legality Rules

The profiles of the formal and any named default shall be mode-conformant.

The profiles of the formal and actual shall be mode-conformant.

For a parameter or result subtype of a formal_subprogram_declaration that has an explicit null_exclusion:
• if the actual matching the formal_subprogram_declaration denotes a generic formal object of

another generic unit G, and the instantiation containing the actual that occurs within the body of
a generic unit G or within the body of a generic unit declared within the declarative region of the
generic unit G, then the corresponding parameter or result type of the formal subprogram of G
shall have a null_exclusion;

• otherwise, the subtype of the corresponding parameter or result type of the actual matching the
formal_subprogram_declaration shall exclude null. In addition to the places where Legality

4/2

5/2

6/2

7/2

1

2/2

2.1/2

2.2/2

3/2

4

4.1/2

5

6

7

8

8.1/2

8.2/2

8.3/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

261 10 November 2006 Formal Subprograms 12.6

Rules normally apply (see 12.3), this rule applies also in the private part of an instance of a
generic unit.

If a formal parameter of a formal_abstract_subprogram_declaration is of a specific tagged type T or of
an anonymous access type designating a specific tagged type T, T is called a controlling type of the
formal_abstract_subprogram_declaration. Similarly, if the result of a formal_abstract_subprogram_-
declaration for a function is of a specific tagged type T or of an anonymous access type designating a
specific tagged type T, T is called a controlling type of the formal_abstract_subprogram_declaration. A
formal_abstract_subprogram_declaration shall have exactly one controlling type.

The actual subprogram for a formal_abstract_subprogram_declaration shall be a dispatching operation of
the controlling type or of the actual type corresponding to the controlling type.

Static Semantics

A formal_subprogram_declaration declares a generic formal subprogram. The types of the formal
parameters and result, if any, of the formal subprogram are those determined by the subtype_marks given
in the formal_subprogram_declaration; however, independent of the particular subtypes that are denoted
by the subtype_marks, the nominal subtypes of the formal parameters and result, if any, are defined to be
nonstatic, and unconstrained if of an array type (no applicable index constraint is provided in a call on a
formal subprogram). In an instance, a formal_subprogram_declaration declares a view of the actual. The
profile of this view takes its subtypes and calling convention from the original profile of the actual entity,
while taking the formal parameter names and default_expressions from the profile given in the formal_-
subprogram_declaration. The view is a function or procedure, never an entry.

If a generic unit has a subprogram_default specified by a box, and the corresponding actual parameter is
omitted, then it is equivalent to an explicit actual parameter that is a usage name identical to the defining
name of the formal.

If a generic unit has a subprogram_default specified by the reserved word null, and the corresponding
actual parameter is omitted, then it is equivalent to an explicit actual parameter that is a null procedure
having the profile given in the formal_subprogram_declaration.

The subprogram declared by a formal_abstract_subprogram_declaration with a controlling type T is a
dispatching operation of type T.

NOTES
13 The matching rules for formal subprograms state requirements that are similar to those applying to
subprogram_renaming_declarations (see 8.5.4). In particular, the name of a parameter of the formal subprogram need not
be the same as that of the corresponding parameter of the actual subprogram; similarly, for these parameters,
default_expressions need not correspond.

14 The constraints that apply to a parameter of a formal subprogram are those of the corresponding formal parameter of
the matching actual subprogram (not those implied by the corresponding subtype_mark in the _specification of the formal
subprogram). A similar remark applies to the result of a function. Therefore, to avoid confusion, it is recommended that
the name of a first subtype be used in any declaration of a formal subprogram.

15 The subtype specified for a formal parameter of a generic formal subprogram can be any visible subtype, including a
generic formal subtype of the same generic_formal_part.

16 A formal subprogram is matched by an attribute of a type if the attribute is a function with a matching specification.
An enumeration literal of a given type matches a parameterless formal function whose result type is the given type.

17 A default_name denotes an entity that is visible or directly visible at the place of the generic_declaration; a box used
as a default is equivalent to a name that denotes an entity that is directly visible at the place of the _instantiation.

18 The actual subprogram cannot be abstract unless the formal subprogram is a formal_abstract_subprogram_-
declaration (see 3.9.3).

8.4/2

8.5/2

9

10

10.1/2

10.2/2

11

12

13

14

15

16/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

12.6 Formal Subprograms 10 November 2006 262

19 The subprogram declared by a formal_abstract_subprogram_declaration is an abstract subprogram. All calls on a
subprogram declared by a formal_abstract_subprogram_declaration must be dispatching calls. See 3.9.3.

20 A null procedure as a subprogram default has convention Intrinsic (see 6.3.1).

Examples

Examples of generic formal subprograms:
with function "+"(X, Y : Item) return Item is <>;
with function Image(X : Enum) return String is Enum'Image;
with procedure Update is Default_Update;
with procedure Pre_Action(X : in Item) is null; -- defaults to no action
with procedure Write(S : not null access Root_Stream_Type'Class;
 Desc : Descriptor)
 is abstract Descriptor'Write; -- see 13.13.2
-- Dispatching operation on Descriptor with default
-- given the generic procedure declaration
generic
 with procedure Action (X : in Item);
procedure Iterate(Seq : in Item_Sequence);

-- and the procedure
procedure Put_Item(X : in Item);

-- the following instantiation is possible
procedure Put_List is new Iterate(Action => Put_Item);

12.7 Formal Packages
Formal packages can be used to pass packages to a generic unit. The formal_package_declaration
declares that the formal package is an instance of a given generic package. Upon instantiation, the actual
package has to be an instance of that generic package.

Syntax

formal_package_declaration ::=
 with package defining_identifier is new generic_package_name formal_package_actual_part;
formal_package_actual_part ::=
 ([others =>] <>)
 | [generic_actual_part]
 | (formal_package_association {, formal_package_association} [, others => <>])
formal_package_association ::=
 generic_association
 | generic_formal_parameter_selector_name => <>
Any positional formal_package_associations shall precede any named
formal_package_associations.

Legality Rules

The generic_package_name shall denote a generic package (the template for the formal package); the
formal package is an instance of the template.

A formal_package_actual_part shall contain at most one formal_package_association for each formal
parameter. If the formal_package_actual_part does not include “others => <>”, each formal parameter
without an association shall have a default_expression or subprogram_default.

16.1/2

16.2/2

17

18/2

19

20

21

22

23

24

1

2

3/2

3.1/2

3.2/2

4

4.1/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

263 10 November 2006 Formal Packages 12.7

The actual shall be an instance of the template. If the formal_package_actual_part is (<>) or (others =>
<>), then the actual may be any instance of the template; otherwise, certain of the actual parameters of the
actual instance shall match the corresponding actual parameters of the formal package, determined as
follows:

• If the formal_package_actual_part includes generic_associations as well as associations with
<>, then only the actual parameters specified explicitly with generic_associations are required
to match;

• Otherwise, all actual parameters shall match, whether any actual parameter is given explicitly or
by default.

The rules for matching of actual parameters between the actual instance and the formal package are as
follows:

• For a formal object of mode in, the actuals match if they are static expressions with the same
value, or if they statically denote the same constant, or if they are both the literal null.

• For a formal subtype, the actuals match if they denote statically matching subtypes.

• For other kinds of formals, the actuals match if they statically denote the same entity.

For the purposes of matching, any actual parameter that is the name of a formal object of mode in is
replaced by the formal object's actual expression (recursively).

Static Semantics

A formal_package_declaration declares a generic formal package.

The visible part of a formal package includes the first list of basic_declarative_items of the package_-
specification. In addition, for each actual parameter that is not required to match, a copy of the declaration
of the corresponding formal parameter of the template is included in the visible part of the formal package.
If the copied declaration is for a formal type, copies of the implicit declarations of the primitive
subprograms of the formal type are also included in the visible part of the formal package.

For the purposes of matching, if the actual instance A is itself a formal package, then the actual parameters
of A are those specified explicitly or implicitly in the formal_package_actual_part for A, plus, for those
not specified, the copies of the formal parameters of the template included in the visible part of A.

Examples

Example of a generic package with formal package parameters:
with Ada.Containers.Ordered_Maps; -- see A.18.6
generic
 with package Mapping_1 is new Ada.Containers.Ordered_Maps(<>);
 with package Mapping_2 is new Ada.Containers.Ordered_Maps
 (Key_Type => Mapping_1.Element_Type,
 others => <>);
package Ordered_Join is
 -- Provide a "join" between two mappings
 subtype Key_Type is Mapping_1.Key_Type;
 subtype Element_Type is Mapping_2.Element_Type;

 function Lookup(Key : Key_Type) return Element_Type;

 ...
end Ordered_Join;

5/2

5.1/2

5.2/2

5.3/2

6/2

7

8

8.1/1

9

10/2

11/2

12/2

13/2

14/2

15/2

16/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

12.7 Formal Packages 10 November 2006 264

Example of an instantiation of a package with formal packages:
with Ada.Containers.Ordered_Maps;
package Symbol_Package is

 type String_Id is ...

 type Symbol_Info is ...

 package String_Table is new Ada.Containers.Ordered_Maps
 (Key_Type => String,
 Element_Type => String_Id);

 package Symbol_Table is new Ada.Containers.Ordered_Maps
 (Key_Type => String_Id,
 Element_Type => Symbol_Info);

 package String_Info is new Ordered_Join(Mapping_1 => String_Table,
 Mapping_2 => Symbol_Table);

 Apple_Info : constant Symbol_Info := String_Info.Lookup("Apple");

end Symbol_Package;

12.8 Example of a Generic Package
The following example provides a possible formulation of stacks by means of a generic package. The size
of each stack and the type of the stack elements are provided as generic formal parameters.

Examples

This paragraph was deleted.
generic
 Size : Positive;
 type Item is private;
package Stack is
 procedure Push(E : in Item);
 procedure Pop (E : out Item);
 Overflow, Underflow : exception;
end Stack;

package body Stack is

 type Table is array (Positive range <>) of Item;
 Space : Table(1 .. Size);
 Index : Natural := 0;

 procedure Push(E : in Item) is
 begin
 if Index >= Size then
 raise Overflow;
 end if;
 Index := Index + 1;
 Space(Index) := E;
 end Push;

 procedure Pop(E : out Item) is
 begin
 if Index = 0 then
 raise Underflow;
 end if;
 E := Space(Index);
 Index := Index - 1;
 end Pop;

end Stack;

17/2

18/2

19/2

20/2

21/2

22/2

23/2

24/2

25/2

1

2/1

3

4

5

6

7

8

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

265 10 November 2006 Example of a Generic Package 12.8

Instances of this generic package can be obtained as follows:
package Stack_Int is new Stack(Size => 200, Item => Integer);
package Stack_Bool is new Stack(100, Boolean);

Thereafter, the procedures of the instantiated packages can be called as follows:
Stack_Int.Push(N);
Stack_Bool.Push(True);

Alternatively, a generic formulation of the type Stack can be given as follows (package body omitted):
generic
 type Item is private;
package On_Stacks is
 type Stack(Size : Positive) is limited private;
 procedure Push(S : in out Stack; E : in Item);
 procedure Pop (S : in out Stack; E : out Item);
 Overflow, Underflow : exception;
private
 type Table is array (Positive range <>) of Item;
 type Stack(Size : Positive) is
 record
 Space : Table(1 .. Size);
 Index : Natural := 0;
 end record;
end On_Stacks;

In order to use such a package, an instance has to be created and thereafter stacks of the corresponding
type can be declared:

declare
 package Stack_Real is new On_Stacks(Real); use Stack_Real;
 S : Stack(100);
begin
 ...
 Push(S, 2.54);
 ...
end;

9
10

11

12

13

14

15

16

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

267 10 November 2006 Representation Issues 13

Section 13: Representation Issues
This section describes features for querying and controlling certain aspects of entities and for interfacing
to hardware.

13.1 Operational and Representation Items
Representation and operational items can be used to specify aspects of entities. Two kinds of aspects of
entities can be specified: aspects of representation and operational aspects. Representation items specify
how the types and other entities of the language are to be mapped onto the underlying machine.
Operational items specify other properties of entities.

There are six kinds of representation items: attribute_definition_clauses for representation attributes,
enumeration_representation_clauses, record_representation_clauses, at_clauses, component_clauses,
and representation pragmas. They can be provided to give more efficient representation or to interface
with features that are outside the domain of the language (for example, peripheral hardware).

An operational item is an attribute_definition_clause for an operational attribute.

An operational item or a representation item applies to an entity identified by a local_name, which
denotes an entity declared local to the current declarative region, or a library unit declared immediately
preceding a representation pragma in a compilation.

Syntax

aspect_clause ::= attribute_definition_clause
 | enumeration_representation_clause
 | record_representation_clause
 | at_clause
local_name ::= direct_name
 | direct_name'attribute_designator
 | library_unit_name
A representation pragma is allowed only at places where an aspect_clause or compilation_unit is
allowed.

Name Resolution Rules

In an operational item or representation item, if the local_name is a direct_name, then it shall resolve to
denote a declaration (or, in the case of a pragma, one or more declarations) that occurs immediately within
the same declarative region as the item. If the local_name has an attribute_designator, then it shall
resolve to denote an implementation-defined component (see 13.5.1) or a class-wide type implicitly
declared immediately within the same declarative region as the item. A local_name that is a
library_unit_name (only permitted in a representation pragma) shall resolve to denote the library_item
that immediately precedes (except for other pragmas) the representation pragma.

Legality Rules

The local_name of an aspect_clause or representation pragma shall statically denote an entity (or, in the
case of a pragma, one or more entities) declared immediately preceding it in a compilation, or within the
same declarative_part, package_specification, task_definition, protected_definition, or record_definition
as the representation or operational item. If a local_name denotes a local callable entity, it may do so

1/1

0.1/1

1/1

1.1/1

1.2/1

2/1

3

4/1

5/1

6/1

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

13.1 Operational and Representation Items 10 November 2006 268

through a local subprogram_renaming_declaration (as a way to resolve ambiguity in the presence of
overloading); otherwise, the local_name shall not denote a renaming_declaration.

The representation of an object consists of a certain number of bits (the size of the object). For an object of
an elementary type, these are the bits that are normally read or updated by the machine code when loading,
storing, or operating-on the value of the object. For an object of a composite type, these are the bits
reserved for this object, and include bits occupied by subcomponents of the object. If the size of an object
is greater than that of its subtype, the additional bits are padding bits. For an elementary object, these
padding bits are normally read and updated along with the others. For a composite object, padding bits
might not be read or updated in any given composite operation, depending on the implementation.

A representation item directly specifies an aspect of representation of the entity denoted by the
local_name, except in the case of a type-related representation item, whose local_name shall denote a
first subtype, and which directly specifies an aspect of the subtype's type. A representation item that names
a subtype is either subtype-specific (Size and Alignment clauses) or type-related (all others). Subtype-
specific aspects may differ for different subtypes of the same type.

An operational item directly specifies an operational aspect of the type of the subtype denoted by the
local_name. The local_name of an operational item shall denote a first subtype. An operational item that
names a subtype is type-related.

A representation item that directly specifies an aspect of a subtype or type shall appear after the type is
completely defined (see 3.11.1), and before the subtype or type is frozen (see 13.14). If a representation
item is given that directly specifies an aspect of an entity, then it is illegal to give another representation
item that directly specifies the same aspect of the entity.

An operational item that directly specifies an aspect of a type shall appear before the type is frozen (see
13.14). If an operational item is given that directly specifies an aspect of a type, then it is illegal to give
another operational item that directly specifies the same aspect of the type.

For an untagged derived type, no type-related representation items are allowed if the parent type is a by-
reference type, or has any user-defined primitive subprograms.

Operational and representation aspects of a generic formal parameter are the same as those of the actual.
Operational and representation aspects are the same for all views of a type. A type-related representation
item is not allowed for a descendant of a generic formal untagged type.

A representation item that specifies the Size for a given subtype, or the size or storage place for an object
(including a component) of a given subtype, shall allow for enough storage space to accommodate any
value of the subtype.

A representation or operational item that is not supported by the implementation is illegal, or raises an
exception at run time.

A type_declaration is illegal if it has one or more progenitors, and a representation item applies to an
ancestor, and this representation item conflicts with the representation of some other ancestor. The cases
that cause conflicts are implementation defined.

Static Semantics

If two subtypes statically match, then their subtype-specific aspects (Size and Alignment) are the same.

A derived type inherits each type-related aspect of representation of its parent type that was directly
specified before the declaration of the derived type, or (in the case where the parent is derived) that was
inherited by the parent type from the grandparent type. A derived subtype inherits each subtype-specific

7/2

8

8.1/1

9

9.1/1

10

11/2

12

13/1

13.1/2

14

15/1

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

269 10 November 2006 Operational and Representation Items 13.1

aspect of representation of its parent subtype that was directly specified before the declaration of the
derived type, or (in the case where the parent is derived) that was inherited by the parent subtype from the
grandparent subtype, but only if the parent subtype statically matches the first subtype of the parent type.
An inherited aspect of representation is overridden by a subsequent representation item that specifies the
same aspect of the type or subtype.

In contrast, whether operational aspects are inherited by an untagged derived type depends on each
specific aspect. Operational aspects are never inherited for a tagged type. When operational aspects are
inherited by an untagged derived type, aspects that were directly specified by operational items that are
visible at the point of the derived type declaration, or (in the case where the parent is derived) that were
inherited by the parent type from the grandparent type are inherited. An inherited operational aspect is
overridden by a subsequent operational item that specifies the same aspect of the type.

When an aspect that is a subprogram is inherited, the derived type inherits the aspect in the same way that
a derived type inherits a user-defined primitive subprogram from its parent (see 3.4).

Each aspect of representation of an entity is as follows:
• If the aspect is specified for the entity, meaning that it is either directly specified or inherited,

then that aspect of the entity is as specified, except in the case of Storage_Size, which specifies a
minimum.

• If an aspect of representation of an entity is not specified, it is chosen by default in an
unspecified manner.

If an operational aspect is specified for an entity (meaning that it is either directly specified or inherited),
then that aspect of the entity is as specified. Otherwise, the aspect of the entity has the default value for
that aspect.

A representation item that specifies an aspect of representation that would have been chosen in the absence
of the representation item is said to be confirming.

Dynamic Semantics

For the elaboration of an aspect_clause, any evaluable constructs within it are evaluated.

Implementation Permissions

An implementation may interpret aspects of representation in an implementation-defined manner. An
implementation may place implementation-defined restrictions on representation items. A recommended
level of support is specified for representation items and related features in each subclause. These
recommendations are changed to requirements for implementations that support the Systems Programming
Annex (see C.2, “Required Representation Support”).

Implementation Advice

The recommended level of support for all representation items is qualified as follows:
• A confirming representation item should be supported.

• An implementation need not support representation items containing nonstatic expressions,
except that an implementation should support a representation item for a given entity if each
nonstatic expression in the representation item is a name that statically denotes a constant
declared before the entity.

• An implementation need not support a specification for the Size for a given composite subtype,
nor the size or storage place for an object (including a component) of a given composite subtype,

15.1/2

15.2/2

16

17

18

18.1/1

18.2/2

19/1

20

21

21.1/2

22

23

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

13.1 Operational and Representation Items 10 November 2006 270

unless the constraints on the subtype and its composite subcomponents (if any) are all static
constraints.

• An implementation need not support a nonconfirming representation item if it could cause an
aliased object or an object of a by-reference type to be allocated at a nonaddressable location or,
when the alignment attribute of the subtype of such an object is nonzero, at an address that is not
an integral multiple of that alignment.

• An implementation need not support a nonconfirming representation item if it could cause an
aliased object of an elementary type to have a size other than that which would have been
chosen by default.

• An implementation need not support a nonconfirming representation item if it could cause an
aliased object of a composite type, or an object whose type is by-reference, to have a size
smaller than that which would have been chosen by default.

• An implementation need not support a nonconfirming subtype-specific representation item
specifying an aspect of representation of an indefinite or abstract subtype.

For purposes of these rules, the determination of whether a representation item applied to a type could
cause an object to have some property is based solely on the properties of the type itself, not on any
available information about how the type is used. In particular, it presumes that minimally aligned objects
of this type might be declared at some point.

13.2 Pragma Pack
A pragma Pack specifies that storage minimization should be the main criterion when selecting the
representation of a composite type.

Syntax

The form of a pragma Pack is as follows:
 pragma Pack(first_subtype_local_name);

Legality Rules

The first_subtype_local_name of a pragma Pack shall denote a composite subtype.

Static Semantics

A pragma Pack specifies the packing aspect of representation; the type (or the extension part) is said to be
packed. For a type extension, the parent part is packed as for the parent type, and a pragma Pack causes
packing only of the extension part.

Implementation Advice

If a type is packed, then the implementation should try to minimize storage allocated to objects of the type,
possibly at the expense of speed of accessing components, subject to reasonable complexity in addressing
calculations.

If a packed type has a component that is not of a by-reference type and has no aliased part, then such a
component need not be aligned according to the Alignment of its subtype; in particular it need not be
allocated on a storage element boundary.

The recommended level of support for pragma Pack is:
• For a packed record type, the components should be packed as tightly as possible subject to the

Sizes of the component subtypes, and subject to any record_representation_clause that applies

24/2

25/2

26/2

27/2

28/2

1

2

3

4

5

6

6.1/2

7

8

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

271 10 November 2006 Pragma Pack 13.2

to the type; the implementation may, but need not, reorder components or cross aligned word
boundaries to improve the packing. A component whose Size is greater than the word size may
be allocated an integral number of words.

• For a packed array type, if the component subtype's Size is less than or equal to the word size,
and Component_Size is not specified for the type, Component_Size should be less than or equal
to the Size of the component subtype, rounded up to the nearest factor of the word size.

13.3 Operational and Representation Attributes
The values of certain implementation-dependent characteristics can be obtained by interrogating
appropriate operational or representation attributes. Some of these attributes are specifiable via an
attribute_definition_clause.

Syntax

attribute_definition_clause ::=
 for local_name'attribute_designator use expression;
 | for local_name'attribute_designator use name;

Name Resolution Rules

For an attribute_definition_clause that specifies an attribute that denotes a value, the form with an
expression shall be used. Otherwise, the form with a name shall be used.

For an attribute_definition_clause that specifies an attribute that denotes a value or an object, the expected
type for the expression or name is that of the attribute. For an attribute_definition_clause that specifies an
attribute that denotes a subprogram, the expected profile for the name is the profile required for the
attribute. For an attribute_definition_clause that specifies an attribute that denotes some other kind of
entity, the name shall resolve to denote an entity of the appropriate kind.

Legality Rules

An attribute_designator is allowed in an attribute_definition_clause only if this International Standard
explicitly allows it, or for an implementation-defined attribute if the implementation allows it. Each
specifiable attribute constitutes an operational aspect or aspect of representation.

For an attribute_definition_clause that specifies an attribute that denotes a subprogram, the profile shall be
mode conformant with the one required for the attribute, and the convention shall be Ada. Additional
requirements are defined for particular attributes.

Static Semantics

A Size clause is an attribute_definition_clause whose attribute_designator is Size. Similar definitions
apply to the other specifiable attributes.

A storage element is an addressable element of storage in the machine. A word is the largest amount of
storage that can be conveniently and efficiently manipulated by the hardware, given the implementation's
run-time model. A word consists of an integral number of storage elements.

A machine scalar is an amount of storage that can be conveniently and efficiently loaded, stored, or
operated upon by the hardware. Machine scalars consist of an integral number of storage elements. The set
of machine scalars is implementation defined, but must include at least the storage element and the word.
Machine scalars are used to interpret component_clauses when the nondefault bit ordering applies.

9

1/1

2

3

4

5/1

6

7/2

8

8.1/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

13.3 Operational and Representation Attributes 10 November 2006 272

The following representation attributes are defined: Address, Alignment, Size, Storage_Size, and
Component_Size.

For a prefix X that denotes an object, program unit, or label:
X'Address Denotes the address of the first of the storage elements allocated to X. For a program unit or

label, this value refers to the machine code associated with the corresponding body or
statement. The value of this attribute is of type System.Address.

 Address may be specified for stand-alone objects and for program units via an
attribute_definition_clause.

Erroneous Execution

If an Address is specified, it is the programmer's responsibility to ensure that the address is valid;
otherwise, program execution is erroneous.

Implementation Advice

For an array X, X'Address should point at the first component of the array, and not at the array bounds.

The recommended level of support for the Address attribute is:

• X'Address should produce a useful result if X is an object that is aliased or of a by-reference
type, or is an entity whose Address has been specified.

• An implementation should support Address clauses for imported subprograms.

• This paragraph was deleted.

• If the Address of an object is specified, or it is imported or exported, then the implementation
should not perform optimizations based on assumptions of no aliases.
NOTES
1 The specification of a link name in a pragma Export (see B.1) for a subprogram or object is an alternative to explicit
specification of its link-time address, allowing a link-time directive to place the subprogram or object within memory.

2 The rules for the Size attribute imply, for an aliased object X, that if X'Size = Storage_Unit, then X'Address points at a
storage element containing all of the bits of X, and only the bits of X.

Static Semantics

For a prefix X that denotes an object:
X'Alignment The value of this attribute is of type universal_integer, and nonnegative; zero means that

the object is not necessarily aligned on a storage element boundary. If X'Alignment is not
zero, then X is aligned on a storage unit boundary and X'Address is an integral multiple of
X'Alignment (that is, the Address modulo the Alignment is zero).

This paragraph was deleted.

 Alignment may be specified for stand-alone objects via an attribute_definition_clause; the
expression of such a clause shall be static, and its value nonnegative.

This paragraph was deleted.

For every subtype S:
S'Alignment The value of this attribute is of type universal_integer, and nonnegative.

 For an object X of subtype S, if S'Alignment is not zero, then X'Alignment is a nonzero
integral multiple of S'Alignment unless specified otherwise by a representation item.

 Alignment may be specified for first subtypes via an attribute_definition_clause; the
expression of such a clause shall be static, and its value nonnegative.

9/1

10/1

11

12

13

14

15

16

17

18/2

19

20

21

22/2

23/2

24/2

25/2

26/2

26.1/2

26.2/2

26.3/2

26.4/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

273 10 November 2006 Operational and Representation Attributes 13.3

Erroneous Execution

Program execution is erroneous if an Address clause is given that conflicts with the Alignment.

For an object that is not allocated under control of the implementation, execution is erroneous if the object
is not aligned according to its Alignment.

Implementation Advice

The recommended level of support for the Alignment attribute for subtypes is:

• An implementation should support an Alignment clause for a discrete type, fixed point type,
record type, or array type, specifying an Alignment value that is zero or a power of two, subject
to the following:

• An implementation need not support an Alignment clause for a signed integer type specifying an
Alignment greater than the largest Alignment value that is ever chosen by default by the
implementation for any signed integer type. A corresponding limitation may be imposed for
modular integer types, fixed point types, enumeration types, record types, and array types.

• An implementation need not support a nonconfirming Alignment clause which could enable the
creation of an object of an elementary type which cannot be easily loaded and stored by
available machine instructions.

• An implementation need not support an Alignment specified for a derived tagged type which is
not a multiple of the Alignment of the parent type. An implementation need not support a
nonconfirming Alignment specified for a derived untagged by-reference type.

The recommended level of support for the Alignment attribute for objects is:
• This paragraph was deleted.

• For stand-alone library-level objects of statically constrained subtypes, the implementation
should support all Alignments supported by the target linker. For example, page alignment is
likely to be supported for such objects, but not for subtypes.

• For other objects, an implementation should at least support the alignments supported for their
subtype, subject to the following:

• An implementation need not support Alignments specified for objects of a by-reference type or
for objects of types containing aliased subcomponents if the specified Alignment is not a
multiple of the Alignment of the subtype of the object.
NOTES
3 Alignment is a subtype-specific attribute.

This paragraph was deleted.

4 A component_clause, Component_Size clause, or a pragma Pack can override a specified Alignment.

Static Semantics

For a prefix X that denotes an object:
X'Size Denotes the size in bits of the representation of the object. The value of this attribute is of

the type universal_integer.

 Size may be specified for stand-alone objects via an attribute_definition_clause; the
expression of such a clause shall be static and its value nonnegative.

Implementation Advice

The size of an array object should not include its bounds.

27

28/2

29

30/2

31/2

32/2

32.1/2

33

34/2

35

35.1/2

35.2/2

36

37/2

38

39/1

40

41

41.1/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

13.3 Operational and Representation Attributes 10 November 2006 274

The recommended level of support for the Size attribute of objects is the same as for subtypes (see below),
except that only a confirming Size clause need be supported for an aliased elementary object.

• This paragraph was deleted.

Static Semantics

For every subtype S:
S'Size If S is definite, denotes the size (in bits) that the implementation would choose for the

following objects of subtype S:
• A record component of subtype S when the record type is packed.

• The formal parameter of an instance of Unchecked_Conversion that converts
from subtype S to some other subtype.

 If S is indefinite, the meaning is implementation defined. The value of this attribute is of
the type universal_integer. The Size of an object is at least as large as that of its subtype,
unless the object's Size is determined by a Size clause, a component_clause, or a
Component_Size clause. Size may be specified for first subtypes via an attribute_-
definition_clause; the expression of such a clause shall be static and its value nonnegative.

Implementation Requirements

In an implementation, Boolean'Size shall be 1.

Implementation Advice

If the Size of a subtype allows for efficient independent addressability (see 9.10) on the target architecture,
then the Size of the following objects of the subtype should equal the Size of the subtype:

• Aliased objects (including components).

• Unaliased components, unless the Size of the component is determined by a component_clause
or Component_Size clause.

A Size clause on a composite subtype should not affect the internal layout of components.

The recommended level of support for the Size attribute of subtypes is:
• The Size (if not specified) of a static discrete or fixed point subtype should be the number of bits

needed to represent each value belonging to the subtype using an unbiased representation,
leaving space for a sign bit only if the subtype contains negative values. If such a subtype is a
first subtype, then an implementation should support a specified Size for it that reflects this
representation.

• For a subtype implemented with levels of indirection, the Size should include the size of the
pointers, but not the size of what they point at.

• An implementation should support a Size clause for a discrete type, fixed point type, record
type, or array type, subject to the following:

• An implementation need not support a Size clause for a signed integer type specifying a
Size greater than that of the largest signed integer type supported by the implementation in
the absence of a size clause (that is, when the size is chosen by default). A corresponding
limitation may be imposed for modular integer types, fixed point types, enumeration types,
record types, and array types.

• A nonconfirming size clause for the first subtype of a derived untagged by-reference type
need not be supported.

42/2

43/2

44

45

46

47

48

49

50/2

51

52

53

54

55

56

56.1/2

56.2/2

56.3/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

275 10 November 2006 Operational and Representation Attributes 13.3

NOTES
5 Size is a subtype-specific attribute.

6 A component_clause or Component_Size clause can override a specified Size. A pragma Pack cannot.

Static Semantics

For a prefix T that denotes a task object (after any implicit dereference):
T'Storage_Size
 Denotes the number of storage elements reserved for the task. The value of this attribute is

of the type universal_integer. The Storage_Size includes the size of the task's stack, if any.
The language does not specify whether or not it includes other storage associated with the
task (such as the “task control block” used by some implementations.) If a pragma
Storage_Size is given, the value of the Storage_Size attribute is at least the value specified
in the pragma.

A pragma Storage_Size specifies the amount of storage to be reserved for the execution of a task.

Syntax

The form of a pragma Storage_Size is as follows:
 pragma Storage_Size(expression);
A pragma Storage_Size is allowed only immediately within a task_definition.

Name Resolution Rules

The expression of a pragma Storage_Size is expected to be of any integer type.

Dynamic Semantics

A pragma Storage_Size is elaborated when an object of the type defined by the immediately enclosing
task_definition is created. For the elaboration of a pragma Storage_Size, the expression is evaluated; the
Storage_Size attribute of the newly created task object is at least the value of the expression.

At the point of task object creation, or upon task activation, Storage_Error is raised if there is insufficient
free storage to accommodate the requested Storage_Size.

Static Semantics

For a prefix X that denotes an array subtype or array object (after any implicit dereference):
X'Component_Size
 Denotes the size in bits of components of the type of X. The value of this attribute is of type

universal_integer.

 Component_Size may be specified for array types via an attribute_definition_clause; the
expression of such a clause shall be static, and its value nonnegative.

Implementation Advice

The recommended level of support for the Component_Size attribute is:
• An implementation need not support specified Component_Sizes that are less than the Size of

the component subtype.

• An implementation should support specified Component_Sizes that are factors and multiples of
the word size. For such Component_Sizes, the array should contain no gaps between
components. For other Component_Sizes (if supported), the array should contain no gaps
between components when packing is also specified; the implementation should forbid this
combination in cases where it cannot support a no-gaps representation.

57

58

59/1

60

61

62

63

64

65

66

67

68/1

69

70

71

72

73

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

13.3 Operational and Representation Attributes 10 November 2006 276

Static Semantics

The following operational attribute is defined: External_Tag.

For every subtype S of a tagged type T (specific or class-wide):
S'External_Tag
 S'External_Tag denotes an external string representation for S'Tag; it is of the predefined

type String. External_Tag may be specified for a specific tagged type via an
attribute_definition_clause; the expression of such a clause shall be static. The default
external tag representation is implementation defined. See 3.9.2 and 13.13.2. The value of
External_Tag is never inherited; the default value is always used unless a new value is
directly specified for a type.

Implementation Requirements

In an implementation, the default external tag for each specific tagged type declared in a partition shall be
distinct, so long as the type is declared outside an instance of a generic body. If the compilation unit in
which a given tagged type is declared, and all compilation units on which it semantically depends, are the
same in two different partitions, then the external tag for the type shall be the same in the two partitions.
What it means for a compilation unit to be the same in two different partitions is implementation defined.
At a minimum, if the compilation unit is not recompiled between building the two different partitions that
include it, the compilation unit is considered the same in the two partitions.

NOTES
7 The following language-defined attributes are specifiable, at least for some of the kinds of entities to which they apply:
Address, Alignment, Bit_Order, Component_Size, External_Tag, Input, Machine_Radix, Output, Read, Size, Small,
Storage_Pool, Storage_Size, Stream_Size, and Write.

8 It follows from the general rules in 13.1 that if one writes “for X'Size use Y;” then the X'Size attribute_reference will
return Y (assuming the implementation allows the Size clause). The same is true for all of the specifiable attributes except
Storage_Size.

Examples

Examples of attribute definition clauses:
Byte : constant := 8;
Page : constant := 2**12;

type Medium is range 0 .. 65_000;
for Medium'Size use 2*Byte;
for Medium'Alignment use 2;
Device_Register : Medium;
for Device_Register'Size use Medium'Size;
for Device_Register'Address use
System.Storage_Elements.To_Address(16#FFFF_0020#);

type Short is delta 0.01 range -100.0 .. 100.0;
for Short'Size use 15;

for Car_Name'Storage_Size use -- specify access type's storage pool size
 2000*((Car'Size/System.Storage_Unit) +1); -- approximately 2000 cars
function My_Input(Stream : not null access
Ada.Streams.Root_Stream_Type'Class)
 return T;
for T'Input use My_Input; -- see 13.13.2
NOTES
9 Notes on the examples: In the Size clause for Short, fifteen bits is the minimum necessary, since the type definition
requires Short'Small <= 2**(–7).

73.1/1

74/1

75/1

76

77/2

78

79

80

81

82

83

84/2

85

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

277 10 November 2006 Enumeration Representation Clauses 13.4

13.4 Enumeration Representation Clauses
An enumeration_representation_clause specifies the internal codes for enumeration literals.

Syntax

enumeration_representation_clause ::=
 for first_subtype_local_name use enumeration_aggregate;
enumeration_aggregate ::= array_aggregate

Name Resolution Rules

The enumeration_aggregate shall be written as a one-dimensional array_aggregate, for which the index
subtype is the unconstrained subtype of the enumeration type, and each component expression is expected
to be of any integer type.

Legality Rules

The first_subtype_local_name of an enumeration_representation_clause shall denote an enumeration
subtype.

Each component of the array_aggregate shall be given by an expression rather than a <>. The
expressions given in the array_aggregate shall be static, and shall specify distinct integer codes for each
value of the enumeration type; the associated integer codes shall satisfy the predefined ordering relation of
the type.

Static Semantics

An enumeration_representation_clause specifies the coding aspect of representation. The coding
consists of the internal code for each enumeration literal, that is, the integral value used internally to
represent each literal.

Implementation Requirements

For nonboolean enumeration types, if the coding is not specified for the type, then for each value of the
type, the internal code shall be equal to its position number.

Implementation Advice

The recommended level of support for enumeration_representation_clauses is:
• An implementation should support at least the internal codes in the range

System.Min_Int..System.Max_Int. An implementation need not support enumeration_-
representation_clauses for boolean types.
NOTES
10 Unchecked_Conversion may be used to query the internal codes used for an enumeration type. The attributes of the
type, such as Succ, Pred, and Pos, are unaffected by the enumeration_representation_clause. For example, Pos always
returns the position number, not the internal integer code that might have been specified in an
enumeration_representation_clause}.

Examples

Example of an enumeration representation clause:
type Mix_Code is (ADD, SUB, MUL, LDA, STA, STZ);

for Mix_Code use
 (ADD => 1, SUB => 2, MUL => 3, LDA => 8, STA => 24, STZ =>33);

1

2

3

4

5

6/2

7

8

9

10

11/1

12

13

14

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

13.5 Record Layout 10 November 2006 278

13.5 Record Layout
The (record) layout aspect of representation consists of the storage places for some or all components, that
is, storage place attributes of the components. The layout can be specified with a record_representation_-
clause.

13.5.1 Record Representation Clauses
A record_representation_clause specifies the storage representation of records and record extensions,
that is, the order, position, and size of components (including discriminants, if any).

Syntax

record_representation_clause ::=
 for first_subtype_local_name use
 record [mod_clause]
 {component_clause}
 end record;
component_clause ::=
 component_local_name at position range first_bit .. last_bit;
position ::= static_expression
first_bit ::= static_simple_expression
last_bit ::= static_simple_expression

Name Resolution Rules

Each position, first_bit, and last_bit is expected to be of any integer type.

Legality Rules

The first_subtype_local_name of a record_representation_clause shall denote a specific record or record
extension subtype.

If the component_local_name is a direct_name, the local_name shall denote a component of the type. For
a record extension, the component shall not be inherited, and shall not be a discriminant that corresponds
to a discriminant of the parent type. If the component_local_name has an attribute_designator, the
direct_name of the local_name shall denote either the declaration of the type or a component of the type,
and the attribute_designator shall denote an implementation-defined implicit component of the type.

The position, first_bit, and last_bit shall be static expressions. The value of position and first_bit shall be
nonnegative. The value of last_bit shall be no less than first_bit – 1.

If the nondefault bit ordering applies to the type, then either:
• the value of last_bit shall be less than the size of the largest machine scalar; or

• the value of first_bit shall be zero and the value of last_bit + 1 shall be a multiple of
System.Storage_Unit.

At most one component_clause is allowed for each component of the type, including for each
discriminant (component_clauses may be given for some, all, or none of the components). Storage places
within a component_list shall not overlap, unless they are for components in distinct variants of the same
variant_part.

1

1

2

3

4

5

6

7

8/2

9

10

10.1/2

10.2/2

10.3/2

11

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

279 10 November 2006 Record Representation Clauses 13.5.1

A name that denotes a component of a type is not allowed within a record_representation_clause for the
type, except as the component_local_name of a component_clause.

Static Semantics

A record_representation_clause (without the mod_clause) specifies the layout.

If the default bit ordering applies to the type, the position, first_bit, and last_bit of each
component_clause directly specify the position and size of the corresponding component.

If the nondefault bit ordering applies to the type then the layout is determined as follows:
• the component_clauses for which the value of last_bit is greater than or equal to the size of the

largest machine scalar directly specify the position and size of the corresponding component;

• for other component_clauses, all of the components having the same value of position are
considered to be part of a single machine scalar, located at that position; this machine scalar has
a size which is the smallest machine scalar size larger than the largest last_bit for all
component_clauses at that position; the first_bit and last_bit of each component_clause are
then interpreted as bit offsets in this machine scalar.

A record_representation_clause for a record extension does not override the layout of the parent part; if
the layout was specified for the parent type, it is inherited by the record extension.

Implementation Permissions

An implementation may generate implementation-defined components (for example, one containing the
offset of another component). An implementation may generate names that denote such implementation-
defined components; such names shall be implementation-defined attribute_references. An implemen-
tation may allow such implementation-defined names to be used in record_representation_clauses. An
implementation can restrict such component_clauses in any manner it sees fit.

If a record_representation_clause is given for an untagged derived type, the storage place attributes for
all of the components of the derived type may differ from those of the corresponding components of the
parent type, even for components whose storage place is not specified explicitly in the record_-
representation_clause.

Implementation Advice

The recommended level of support for record_representation_clauses is:
• An implementation should support machine scalars that correspond to all of the integer, floating

point, and address formats supported by the machine.

• An implementation should support storage places that can be extracted with a load, mask, shift
sequence of machine code, and set with a load, shift, mask, store sequence, given the available
machine instructions and run-time model.

• A storage place should be supported if its size is equal to the Size of the component subtype, and
it starts and ends on a boundary that obeys the Alignment of the component subtype.

• For a component with a subtype whose Size is less than the word size, any storage place that
does not cross an aligned word boundary should be supported.

• An implementation may reserve a storage place for the tag field of a tagged type, and disallow
other components from overlapping that place.

• An implementation need not support a component_clause for a component of an extension part
if the storage place is not after the storage places of all components of the parent type, whether
or not those storage places had been specified.

12

13/2

13.1/2

13.2/2

13.3/2

13.4/2

14

15

16

17

17.1/2

18

19

20/2

21

22

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

13.5.1 Record Representation Clauses 10 November 2006 280

NOTES
11 If no component_clause is given for a component, then the choice of the storage place for the component is left to the
implementation. If component_clauses are given for all components, the record_representation_clause completely
specifies the representation of the type and will be obeyed exactly by the implementation.

Examples

Example of specifying the layout of a record type:
Word : constant := 4; -- storage element is byte, 4 bytes per word
type State is (A,M,W,P);
type Mode is (Fix, Dec, Exp, Signif);

type Byte_Mask is array (0..7) of Boolean;
type State_Mask is array (State) of Boolean;
type Mode_Mask is array (Mode) of Boolean;

type Program_Status_Word is
 record
 System_Mask : Byte_Mask;
 Protection_Key : Integer range 0 .. 3;
 Machine_State : State_Mask;
 Interrupt_Cause : Interruption_Code;
 Ilc : Integer range 0 .. 3;
 Cc : Integer range 0 .. 3;
 Program_Mask : Mode_Mask;
 Inst_Address : Address;
end record;

for Program_Status_Word use
 record
 System_Mask at 0*Word range 0 .. 7;
 Protection_Key at 0*Word range 10 .. 11; -- bits 8,9 unused
 Machine_State at 0*Word range 12 .. 15;
 Interrupt_Cause at 0*Word range 16 .. 31;
 Ilc at 1*Word range 0 .. 1; -- second word
 Cc at 1*Word range 2 .. 3;
 Program_Mask at 1*Word range 4 .. 7;
 Inst_Address at 1*Word range 8 .. 31;
 end record;

for Program_Status_Word'Size use 8*System.Storage_Unit;
for Program_Status_Word'Alignment use 8;

NOTES
12 Note on the example: The record_representation_clause defines the record layout. The Size clause guarantees that (at
least) eight storage elements are used for objects of the type. The Alignment clause guarantees that aliased, imported, or
exported objects of the type will have addresses divisible by eight.

13.5.2 Storage Place Attributes
Static Semantics

For a component C of a composite, non-array object R, the storage place attributes are defined:
R.C'Position If the nondefault bit ordering applies to the composite type, and if a component_clause

specifies the placement of C, denotes the value given for the position of the
component_clause; otherwise, denotes the same value as R.C'Address – R'Address. The
value of this attribute is of the type universal_integer.

R.C'First_Bit
 If the nondefault bit ordering applies to the composite type, and if a component_clause

specifies the placement of C, denotes the value given for the first_bit of the
component_clause; otherwise, denotes the offset, from the start of the first of the storage
elements occupied by C, of the first bit occupied by C. This offset is measured in bits. The

23

24

25

26

27

28

29

30

31

1

2/2

3/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

281 10 November 2006 Storage Place Attributes 13.5.2

first bit of a storage element is numbered zero. The value of this attribute is of the type
universal_integer.

R.C'Last_Bit
 If the nondefault bit ordering applies to the composite type, and if a component_clause

specifies the placement of C, denotes the value given for the last_bit of the
component_clause; otherwise, denotes the offset, from the start of the first of the storage
elements occupied by C, of the last bit occupied by C. This offset is measured in bits. The
value of this attribute is of the type universal_integer.

Implementation Advice

If a component is represented using some form of pointer (such as an offset) to the actual data of the
component, and this data is contiguous with the rest of the object, then the storage place attributes should
reflect the place of the actual data, not the pointer. If a component is allocated discontiguously from the
rest of the object, then a warning should be generated upon reference to one of its storage place attributes.

13.5.3 Bit Ordering
The Bit_Order attribute specifies the interpretation of the storage place attributes.

Static Semantics

A bit ordering is a method of interpreting the meaning of the storage place attributes. High_Order_First
(known in the vernacular as “big endian”) means that the first bit of a storage element (bit 0) is the most
significant bit (interpreting the sequence of bits that represent a component as an unsigned integer value).
Low_Order_First (known in the vernacular as “little endian”) means the opposite: the first bit is the least
significant.

For every specific record subtype S, the following attribute is defined:
S'Bit_Order Denotes the bit ordering for the type of S. The value of this attribute is of type

System.Bit_Order. Bit_Order may be specified for specific record types via an
attribute_definition_clause; the expression of such a clause shall be static.

If Word_Size = Storage_Unit, the default bit ordering is implementation defined. If Word_Size >
Storage_Unit, the default bit ordering is the same as the ordering of storage elements in a word, when
interpreted as an integer.

The storage place attributes of a component of a type are interpreted according to the bit ordering of the
type.

Implementation Advice

The recommended level of support for the nondefault bit ordering is:
• The implementation should support the nondefault bit ordering in addition to the default bit

ordering.
NOTES
13 Bit_Order clauses make it possible to write record_representation_clauses that can be ported between machines
having different bit ordering. They do not guarantee transparent exchange of data between such machines.

4/2

5

1

2

3

4

5

6

7

8/2

9/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

13.6 Change of Representation 10 November 2006 282

13.6 Change of Representation
A type_conversion (see 4.6) can be used to convert between two different representations of the same
array or record. To convert an array from one representation to another, two array types need to be
declared with matching component subtypes, and convertible index types. If one type has packing
specified and the other does not, then explicit conversion can be used to pack or unpack an array.

To convert a record from one representation to another, two record types with a common ancestor type
need to be declared, with no inherited subprograms. Distinct representations can then be specified for the
record types, and explicit conversion between the types can be used to effect a change in representation.

Examples

Example of change of representation:
-- Packed_Descriptor and Descriptor are two different types
-- with identical characteristics, apart from their
-- representation
type Descriptor is
 record
 -- components of a descriptor
 end record;

type Packed_Descriptor is new Descriptor;

for Packed_Descriptor use
 record
 -- component clauses for some or for all components
 end record;

-- Change of representation can now be accomplished by explicit type conversions:
D : Descriptor;
P : Packed_Descriptor;

P := Packed_Descriptor(D); -- pack D
D := Descriptor(P); -- unpack P

1

2

3

4

5

6

7

8

9

10

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

283 10 November 2006 The Package System 13.7

13.7 The Package System
For each implementation there is a library package called System which includes the definitions of certain
configuration-dependent characteristics.

Static Semantics

The following language-defined library package exists:
package System is
 pragma Pure(System);

 type Name is implementation-defined-enumeration-type;
 System_Name : constant Name := implementation-defined;
 -- System-Dependent Named Numbers:
 Min_Int : constant := root_integer'First;
 Max_Int : constant := root_integer'Last;
 Max_Binary_Modulus : constant := implementation-defined;
 Max_Nonbinary_Modulus : constant := implementation-defined;
 Max_Base_Digits : constant := root_real'Digits;
 Max_Digits : constant := implementation-defined;
 Max_Mantissa : constant := implementation-defined;
 Fine_Delta : constant := implementation-defined;
 Tick : constant := implementation-defined;
 -- Storage-related Declarations:
 type Address is implementation-defined;
 Null_Address : constant Address;

 Storage_Unit : constant := implementation-defined;
 Word_Size : constant := implementation-defined * Storage_Unit;
 Memory_Size : constant := implementation-defined;
 -- Address Comparison:
 function "<" (Left, Right : Address) return Boolean;
 function "<="(Left, Right : Address) return Boolean;
 function ">" (Left, Right : Address) return Boolean;
 function ">="(Left, Right : Address) return Boolean;
 function "=" (Left, Right : Address) return Boolean;
-- function "/=" (Left, Right : Address) return Boolean;
 -- "/=" is implicitly defined
 pragma Convention(Intrinsic, "<");
 ... -- and so on for all language-defined subprograms in this package
 -- Other System-Dependent Declarations:
 type Bit_Order is (High_Order_First, Low_Order_First);
 Default_Bit_Order : constant Bit_Order := implementation-defined;
 -- Priority-related declarations (see D.1):
 subtype Any_Priority is Integer range implementation-defined;
 subtype Priority is Any_Priority range Any_Priority'First ..
 implementation-defined;
 subtype Interrupt_Priority is Any_Priority range Priority'Last+1 ..
 Any_Priority'Last;

 Default_Priority : constant Priority :=
 (Priority'First + Priority'Last)/2;

private
 ... -- not specified by the language
end System;

Name is an enumeration subtype. Values of type Name are the names of alternative machine configura-
tions handled by the implementation. System_Name represents the current machine configuration.

1

2

3/2

4

5

6

7

8

9

10

11

12

13

14

15/2

16

17

18

19

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

13.7 The Package System 10 November 2006 284

The named numbers Fine_Delta and Tick are of the type universal_real; the others are of the type
universal_integer.

The meanings of the named numbers are:
Min_Int The smallest (most negative) value allowed for the expressions of a signed_integer_type_-

definition.

Max_Int The largest (most positive) value allowed for the expressions of a signed_integer_type_-
definition.

Max_Binary_Modulus
 A power of two such that it, and all lesser positive powers of two, are allowed as the

modulus of a modular_type_definition.

Max_Nonbinary_Modulus
 A value such that it, and all lesser positive integers, are allowed as the modulus of a

modular_type_definition.

Max_Base_Digits
 The largest value allowed for the requested decimal precision in a floating_point_definition.

Max_Digits The largest value allowed for the requested decimal precision in a floating_point_definition
that has no real_range_specification. Max_Digits is less than or equal to
Max_Base_Digits.

Max_Mantissa
 The largest possible number of binary digits in the mantissa of machine numbers of a user-

defined ordinary fixed point type. (The mantissa is defined in Annex G.)

Fine_Delta The smallest delta allowed in an ordinary_fixed_point_definition that has the real_range_-
specification range –1.0 .. 1.0.

Tick A period in seconds approximating the real time interval during which the value of
Calendar.Clock remains constant.

Storage_Unit
 The number of bits per storage element.

Word_Size The number of bits per word.

Memory_Size An implementation-defined value that is intended to reflect the memory size of the
configuration in storage elements.

Address is a definite, nonlimited type with preelaborable initialization (see 10.2.1). Address represents
machine addresses capable of addressing individual storage elements. Null_Address is an address that is
distinct from the address of any object or program unit.

Default_Bit_Order shall be a static constant. See 13.5.3 for an explanation of Bit_Order and
Default_Bit_Order.

Implementation Permissions

An implementation may add additional implementation-defined declarations to package System and its
children. However, it is usually better for the implementation to provide additional functionality via
implementation-defined children of System.

Implementation Advice

Address should be a private type.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34/2

35/2

36/2

37

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

285 10 November 2006 The Package System 13.7

NOTES
14 There are also some language-defined child packages of System defined elsewhere.

13.7.1 The Package System.Storage_Elements
Static Semantics

The following language-defined library package exists:
package System.Storage_Elements is
 pragma Pure(Storage_Elements);

 type Storage_Offset is range implementation-defined;
 subtype Storage_Count is Storage_Offset range 0..Storage_Offset'Last;

 type Storage_Element is mod implementation-defined;
 for Storage_Element'Size use Storage_Unit;
 type Storage_Array is array
 (Storage_Offset range <>) of aliased Storage_Element;
 for Storage_Array'Component_Size use Storage_Unit;

 -- Address Arithmetic:
 function "+"(Left : Address; Right : Storage_Offset)
 return Address;
 function "+"(Left : Storage_Offset; Right : Address)
 return Address;
 function "-"(Left : Address; Right : Storage_Offset)
 return Address;
 function "-"(Left, Right : Address)
 return Storage_Offset;

 function "mod"(Left : Address; Right : Storage_Offset)
 return Storage_Offset;

 -- Conversion to/from integers:
 type Integer_Address is implementation-defined;
 function To_Address(Value : Integer_Address) return Address;
 function To_Integer(Value : Address) return Integer_Address;

 pragma Convention(Intrinsic, "+");
 -- ...and so on for all language-defined subprograms declared in this package.
end System.Storage_Elements;

Storage_Element represents a storage element. Storage_Offset represents an offset in storage elements.
Storage_Count represents a number of storage elements. Storage_Array represents a contiguous sequence
of storage elements.

Integer_Address is a (signed or modular) integer subtype. To_Address and To_Integer convert back and
forth between this type and Address.

Implementation Requirements

Storage_Offset'Last shall be greater than or equal to Integer'Last or the largest possible storage offset,
whichever is smaller. Storage_Offset'First shall be <= (–Storage_Offset'Last).

Implementation Permissions

This paragraph was deleted.

Implementation Advice

Operations in System and its children should reflect the target environment semantics as closely as is
reasonable. For example, on most machines, it makes sense for address arithmetic to “wrap around.”
Operations that do not make sense should raise Program_Error.

38

1

2/2

3

4

5

6

7

8

9

10

11

12

13

14

15/2

16

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

13.7.2 The Package System.Address_To_Access_Conversions 10 November 2006 286

13.7.2 The Package System.Address_To_Access_Conversions
Static Semantics

The following language-defined generic library package exists:
generic
 type Object(<>) is limited private;
package System.Address_To_Access_Conversions is
 pragma Preelaborate(Address_To_Access_Conversions);

 type Object_Pointer is access all Object;
 function To_Pointer(Value : Address) return Object_Pointer;
 function To_Address(Value : Object_Pointer) return Address;

 pragma Convention(Intrinsic, To_Pointer);
 pragma Convention(Intrinsic, To_Address);
end System.Address_To_Access_Conversions;

The To_Pointer and To_Address subprograms convert back and forth between values of types
Object_Pointer and Address. To_Pointer(X'Address) is equal to X'Unchecked_Access for any X that
allows Unchecked_Access. To_Pointer(Null_Address) returns null. For other addresses, the behavior is
unspecified. To_Address(null) returns Null_Address. To_Address(Y), where Y /= null, returns
Y.all'Address.

Implementation Permissions

An implementation may place restrictions on instantiations of Address_To_Access_Conversions.

13.8 Machine Code Insertions
A machine code insertion can be achieved by a call to a subprogram whose sequence_of_statements
contains code_statements.

Syntax

code_statement ::= qualified_expression;
A code_statement is only allowed in the handled_sequence_of_statements of a subprogram_-
body. If a subprogram_body contains any code_statements, then within this subprogram_body the
only allowed form of statement is a code_statement (labeled or not), the only allowed declarative_-
items are use_clauses, and no exception_handler is allowed (comments and pragmas are allowed
as usual).

Name Resolution Rules

The qualified_expression is expected to be of any type.

Legality Rules

The qualified_expression shall be of a type declared in package System.Machine_Code.

A code_statement shall appear only within the scope of a with_clause that mentions package
System.Machine_Code.

Static Semantics

The contents of the library package System.Machine_Code (if provided) are implementation defined. The
meaning of code_statements is implementation defined. Typically, each qualified_expression represents
a machine instruction or assembly directive.

1

2

3

4

5/2

6

1

2

3

4

5

6

7

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

287 10 November 2006 Machine Code Insertions 13.8

Implementation Permissions

An implementation may place restrictions on code_statements. An implementation is not required to
provide package System.Machine_Code.

NOTES
15 An implementation may provide implementation-defined pragmas specifying register conventions and calling
conventions.

16 Machine code functions are exempt from the rule that a return statement is required. In fact, return statements are
forbidden, since only code_statements are allowed.

17 Intrinsic subprograms (see 6.3.1, “Conformance Rules”) can also be used to achieve machine code insertions. Interface
to assembly language can be achieved using the features in Annex B, “Interface to Other Languages”.

Examples

Example of a code statement:
M : Mask;
procedure Set_Mask; pragma Inline(Set_Mask);

procedure Set_Mask is
 use System.Machine_Code; -- assume “with System.Machine_Code;” appears somewhere above
begin
 SI_Format'(Code => SSM, B => M'Base_Reg, D => M'Disp);
 -- Base_Reg and Disp are implementation-defined attributes
end Set_Mask;

13.9 Unchecked Type Conversions
An unchecked type conversion can be achieved by a call to an instance of the generic function
Unchecked_Conversion.

Static Semantics

The following language-defined generic library function exists:
generic
 type Source(<>) is limited private;
 type Target(<>) is limited private;
function Ada.Unchecked_Conversion(S : Source) return Target;
pragma Convention(Intrinsic, Ada.Unchecked_Conversion);
pragma Pure(Ada.Unchecked_Conversion);

Dynamic Semantics

The size of the formal parameter S in an instance of Unchecked_Conversion is that of its subtype. This is
the actual subtype passed to Source, except when the actual is an unconstrained composite subtype, in
which case the subtype is constrained by the bounds or discriminants of the value of the actual expression
passed to S.

If all of the following are true, the effect of an unchecked conversion is to return the value of an object of
the target subtype whose representation is the same as that of the source object S:

• S'Size = Target'Size.

• S'Alignment = Target'Alignment.

• The target subtype is not an unconstrained composite subtype.

• S and the target subtype both have a contiguous representation.

• The representation of S is a representation of an object of the target subtype.

8

9

10/2

11

12

13

14

1

2

3

4

5

6

7

8

9

10

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

13.9 Unchecked Type Conversions 10 November 2006 288

Otherwise, if the result type is scalar, the result of the function is implementation defined, and can have an
invalid representation (see 13.9.1). If the result type is nonscalar, the effect is implementation defined; in
particular, the result can be abnormal (see 13.9.1).

Implementation Permissions

An implementation may return the result of an unchecked conversion by reference, if the Source type is
not a by-copy type. In this case, the result of the unchecked conversion represents simply a different (read-
only) view of the operand of the conversion.

An implementation may place restrictions on Unchecked_Conversion.

Implementation Advice

Since the Size of an array object generally does not include its bounds, the bounds should not be part of
the converted data.

The implementation should not generate unnecessary run-time checks to ensure that the representation of
S is a representation of the target type. It should take advantage of the permission to return by reference
when possible. Restrictions on unchecked conversions should be avoided unless required by the target
environment.

The recommended level of support for unchecked conversions is:
• Unchecked conversions should be supported and should be reversible in the cases where this

clause defines the result. To enable meaningful use of unchecked conversion, a contiguous
representation should be used for elementary subtypes, for statically constrained array subtypes
whose component subtype is one of the subtypes described in this paragraph, and for record
subtypes without discriminants whose component subtypes are described in this paragraph.

13.9.1 Data Validity
Certain actions that can potentially lead to erroneous execution are not directly erroneous, but instead can
cause objects to become abnormal. Subsequent uses of abnormal objects can be erroneous.

A scalar object can have an invalid representation, which means that the object's representation does not
represent any value of the object's subtype. The primary cause of invalid representations is uninitialized
variables.

Abnormal objects and invalid representations are explained in this subclause.

Dynamic Semantics

When an object is first created, and any explicit or default initializations have been performed, the object
and all of its parts are in the normal state. Subsequent operations generally leave them normal. However,
an object or part of an object can become abnormal in the following ways:

• An assignment to the object is disrupted due to an abort (see 9.8) or due to the failure of a
language-defined check (see 11.6).

• The object is not scalar, and is passed to an in out or out parameter of an imported procedure,
the Read procedure of an instance of Sequential_IO, Direct_IO, or Storage_IO, or the stream
attribute T'Read, if after return from the procedure the representation of the parameter does not
represent a value of the parameter's subtype.

• The object is the return object of a function call of a nonscalar type, and the function is an
imported function, an instance of Unchecked_Conversion, or the stream attribute T'Input, if after

11/2

12

13

14/2

15

16

17

1

2

3

4

5

6/2

6.1/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

289 10 November 2006 Data Validity 13.9.1

return from the function the representation of the return object does not represent a value of the
function's subtype.

For an imported object, it is the programmer's responsibility to ensure that the object remains in a normal
state.

Whether or not an object actually becomes abnormal in these cases is not specified. An abnormal object
becomes normal again upon successful completion of an assignment to the object as a whole.

Erroneous Execution

It is erroneous to evaluate a primary that is a name denoting an abnormal object, or to evaluate a prefix
that denotes an abnormal object.

Bounded (Run-Time) Errors

If the representation of a scalar object does not represent a value of the object's subtype (perhaps because
the object was not initialized), the object is said to have an invalid representation. It is a bounded error to
evaluate the value of such an object. If the error is detected, either Constraint_Error or Program_Error is
raised. Otherwise, execution continues using the invalid representation. The rules of the language outside
this subclause assume that all objects have valid representations. The semantics of operations on invalid
representations are as follows:

• If the representation of the object represents a value of the object's type, the value of the type is
used.

• If the representation of the object does not represent a value of the object's type, the semantics of
operations on such representations is implementation-defined, but does not by itself lead to
erroneous or unpredictable execution, or to other objects becoming abnormal.

Erroneous Execution

A call to an imported function or an instance of Unchecked_Conversion is erroneous if the result is scalar,
the result object has an invalid representation, and the result is used other than as the expression of an
assignment_statement or an object_declaration, or as the prefix of a Valid attribute. If such a result
object is used as the source of an assignment, and the assigned value is an invalid representation for the
target of the assignment, then any use of the target object prior to a further assignment to the target object,
other than as the prefix of a Valid attribute reference, is erroneous.

The dereference of an access value is erroneous if it does not designate an object of an appropriate type or
a subprogram with an appropriate profile, if it designates a nonexistent object, or if it is an access-to-
variable value that designates a constant object. Such an access value can exist, for example, because of
Unchecked_Deallocation, Unchecked_Access, or Unchecked_Conversion.

NOTES
18 Objects can become abnormal due to other kinds of actions that directly update the object's representation; such
actions are generally considered directly erroneous, however.

13.9.2 The Valid Attribute
The Valid attribute can be used to check the validity of data produced by unchecked conversion, input,
interface to foreign languages, and the like.

Static Semantics

For a prefix X that denotes a scalar object (after any implicit dereference), the following attribute is
defined:

6.2/2

7

8

9

10

11

12/2

13

14

1

2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

13.9.2 The Valid Attribute 10 November 2006 290

X'Valid Yields True if and only if the object denoted by X is normal and has a valid representation.
The value of this attribute is of the predefined type Boolean.

NOTES
19 Invalid data can be created in the following cases (not counting erroneous or unpredictable execution):

• an uninitialized scalar object,
• the result of an unchecked conversion,
• input,
• interface to another language (including machine code),
• aborting an assignment,
• disrupting an assignment due to the failure of a language-defined check (see 11.6), and
• use of an object whose Address has been specified.

20 X'Valid is not considered to be a read of X; hence, it is not an error to check the validity of invalid data.

21 The Valid attribute may be used to check the result of calling an instance of Unchecked_Conversion (or any other
operation that can return invalid values). However, an exception handler should also be provided because implementations
are permitted to raise Constraint_Error or Program_Error if they detect the use of an invalid representation (see 13.9.1).

13.10 Unchecked Access Value Creation
The attribute Unchecked_Access is used to create access values in an unsafe manner — the programmer is
responsible for preventing “dangling references.”

Static Semantics

The following attribute is defined for a prefix X that denotes an aliased view of an object:
X'Unchecked_Access
 All rules and semantics that apply to X'Access (see 3.10.2) apply also to

X'Unchecked_Access, except that, for the purposes of accessibility rules and checks, it is as
if X were declared immediately within a library package.

NOTES
22 This attribute is provided to support the situation where a local object is to be inserted into a global linked data
structure, when the programmer knows that it will always be removed from the data structure prior to exiting the object's
scope. The Access attribute would be illegal in this case (see 3.10.2, “Operations of Access Types”).

23 There is no Unchecked_Access attribute for subprograms.

13.11 Storage Management
Each access-to-object type has an associated storage pool. The storage allocated by an allocator comes
from the pool; instances of Unchecked_Deallocation return storage to the pool. Several access types can
share the same pool.

A storage pool is a variable of a type in the class rooted at Root_Storage_Pool, which is an abstract limited
controlled type. By default, the implementation chooses a standard storage pool for each access-to-object
type. The user may define new pool types, and may override the choice of pool for an access-to-object
type by specifying Storage_Pool for the type.

Legality Rules

If Storage_Pool is specified for a given access type, Storage_Size shall not be specified for it.

3

4

5

6

7

8

9

10

11

12

13/2

1

2

3

4

5

1

2/2

3

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

291 10 November 2006 Storage Management 13.11

Static Semantics

The following language-defined library package exists:
with Ada.Finalization;
with System.Storage_Elements;
package System.Storage_Pools is
 pragma Preelaborate(System.Storage_Pools);

 type Root_Storage_Pool is
 abstract new Ada.Finalization.Limited_Controlled with private;
 pragma Preelaborable_Initialization(Root_Storage_Pool);

 procedure Allocate(
 Pool : in out Root_Storage_Pool;
 Storage_Address : out Address;
 Size_In_Storage_Elements : in Storage_Elements.Storage_Count;
 Alignment : in Storage_Elements.Storage_Count) is abstract;

 procedure Deallocate(
 Pool : in out Root_Storage_Pool;
 Storage_Address : in Address;
 Size_In_Storage_Elements : in Storage_Elements.Storage_Count;
 Alignment : in Storage_Elements.Storage_Count) is abstract;

 function Storage_Size(Pool : Root_Storage_Pool)
 return Storage_Elements.Storage_Count is abstract;

private
 ... -- not specified by the language
end System.Storage_Pools;

A storage pool type (or pool type) is a descendant of Root_Storage_Pool. The elements of a storage pool
are the objects allocated in the pool by allocators.

For every access-to-object subtype S, the following representation attributes are defined:
S'Storage_Pool
 Denotes the storage pool of the type of S. The type of this attribute is Root_Storage_-

Pool'Class.

S'Storage_Size
 Yields the result of calling Storage_Size(S'Storage_Pool), which is intended to be a

measure of the number of storage elements reserved for the pool. The type of this attribute
is universal_integer.

Storage_Size or Storage_Pool may be specified for a non-derived access-to-object type via an attribute_-
definition_clause; the name in a Storage_Pool clause shall denote a variable.

An allocator of type T allocates storage from T's storage pool. If the storage pool is a user-defined object,
then the storage is allocated by calling Allocate, passing T'Storage_Pool as the Pool parameter. The
Size_In_Storage_Elements parameter indicates the number of storage elements to be allocated, and is no
more than D'Max_Size_In_Storage_Elements, where D is the designated subtype. The Alignment
parameter is D'Alignment. The result returned in the Storage_Address parameter is used by the allocator
as the address of the allocated storage, which is a contiguous block of memory of Size_In_Storage_-
Elements storage elements. Any exception propagated by Allocate is propagated by the allocator.

If Storage_Pool is not specified for a type defined by an access_to_object_definition, then the
implementation chooses a standard storage pool for it in an implementation-defined manner. In this case,
the exception Storage_Error is raised by an allocator if there is not enough storage. It is implementation
defined whether or not the implementation provides user-accessible names for the standard pool type(s).

If Storage_Size is specified for an access type, then the Storage_Size of this pool is at least that requested,
and the storage for the pool is reclaimed when the master containing the declaration of the access type is

4

5

6/2

7

8

9

10

11

12/2

13

14

15

16

17

18

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

13.11 Storage Management 10 November 2006 292

left. If the implementation cannot satisfy the request, Storage_Error is raised at the point of the attribute_-
definition_clause. If neither Storage_Pool nor Storage_Size are specified, then the meaning of
Storage_Size is implementation defined.

If Storage_Pool is specified for an access type, then the specified pool is used.

The effect of calling Allocate and Deallocate for a standard storage pool directly (rather than implicitly via
an allocator or an instance of Unchecked_Deallocation) is unspecified.

Erroneous Execution

If Storage_Pool is specified for an access type, then if Allocate can satisfy the request, it should allocate a
contiguous block of memory, and return the address of the first storage element in Storage_Address. The
block should contain Size_In_Storage_Elements storage elements, and should be aligned according to
Alignment. The allocated storage should not be used for any other purpose while the pool element remains
in existence. If the request cannot be satisfied, then Allocate should propagate an exception (such as
Storage_Error). If Allocate behaves in any other manner, then the program execution is erroneous.

Documentation Requirements

An implementation shall document the set of values that a user-defined Allocate procedure needs to accept
for the Alignment parameter. An implementation shall document how the standard storage pool is chosen,
and how storage is allocated by standard storage pools.

Implementation Advice

An implementation should document any cases in which it dynamically allocates heap storage for a
purpose other than the evaluation of an allocator.

A default (implementation-provided) storage pool for an access-to-constant type should not have overhead
to support deallocation of individual objects.

The storage pool used for an allocator of an anonymous access type should be determined as follows:
• If the allocator is defining a coextension (see 3.10.2) of an object being created by an outer

allocator, then the storage pool used for the outer allocator should also be used for the
coextension;

• For other access discriminants and access parameters, the storage pool should be created at the
point of the allocator, and be reclaimed when the allocated object becomes inaccessible;

• Otherwise, a default storage pool should be created at the point where the anonymous access
type is elaborated; such a storage pool need not support deallocation of individual objects.
NOTES
24 A user-defined storage pool type can be obtained by extending the Root_Storage_Pool type, and overriding the
primitive subprograms Allocate, Deallocate, and Storage_Size. A user-defined storage pool can then be obtained by
declaring an object of the type extension. The user can override Initialize and Finalize if there is any need for non-trivial
initialization and finalization for a user-defined pool type. For example, Finalize might reclaim blocks of storage that are
allocated separately from the pool object itself.

25 The writer of the user-defined allocation and deallocation procedures, and users of allocators for the associated access
type, are responsible for dealing with any interactions with tasking. In particular:

• If the allocators are used in different tasks, they require mutual exclusion.
• If they are used inside protected objects, they cannot block.
• If they are used by interrupt handlers (see C.3, “Interrupt Support”), the mutual exclusion mechanism has to

work properly in that context.

19

20

21

22

23

24

25/2

25.1/2

25.2/2

25.3/2

26

27

28

29

30

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

293 10 November 2006 Storage Management 13.11

26 The primitives Allocate, Deallocate, and Storage_Size are declared as abstract (see 3.9.3), and therefore they have to
be overridden when a new (non-abstract) storage pool type is declared.

Examples

To associate an access type with a storage pool object, the user first declares a pool object of some type
derived from Root_Storage_Pool. Then, the user defines its Storage_Pool attribute, as follows:

Pool_Object : Some_Storage_Pool_Type;

type T is access Designated;
for T'Storage_Pool use Pool_Object;

Another access type may be added to an existing storage pool, via:
for T2'Storage_Pool use T'Storage_Pool;

The semantics of this is implementation defined for a standard storage pool.

As usual, a derivative of Root_Storage_Pool may define additional operations. For example, presuming
that Mark_Release_Pool_Type has two additional operations, Mark and Release, the following is a
possible use:

type Mark_Release_Pool_Type
 (Pool_Size : Storage_Elements.Storage_Count;
 Block_Size : Storage_Elements.Storage_Count)
 is new Root_Storage_Pool with private;

...

MR_Pool : Mark_Release_Pool_Type (Pool_Size => 2000,
 Block_Size => 100);

type Acc is access ...;
for Acc'Storage_Pool use MR_Pool;
...

Mark(MR_Pool);
... -- Allocate objects using “new Designated(...)”.
Release(MR_Pool); -- Reclaim the storage.

13.11.1 The Max_Size_In_Storage_Elements Attribute
The Max_Size_In_Storage_Elements attribute is useful in writing user-defined pool types.

Static Semantics

For every subtype S, the following attribute is defined:
S'Max_Size_In_Storage_Elements
 Denotes the maximum value for Size_In_Storage_Elements that could be requested by the

implementation via Allocate for an access type whose designated subtype is S. For a type
with access discriminants, if the implementation allocates space for a coextension in the
same pool as that of the object having the access discriminant, then this accounts for any
calls on Allocate that could be performed to provide space for such coextensions. The value
of this attribute is of type universal_integer.

31

32

33

34

35

36

37

38

39/1

40

41

42

43

1

2

3/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

13.11.2 Unchecked Storage Deallocation 10 November 2006 294

13.11.2 Unchecked Storage Deallocation
Unchecked storage deallocation of an object designated by a value of an access type is achieved by a call
to an instance of the generic procedure Unchecked_Deallocation.

Static Semantics

The following language-defined generic library procedure exists:
generic
 type Object(<>) is limited private;
 type Name is access Object;
procedure Ada.Unchecked_Deallocation(X : in out Name);
pragma Convention(Intrinsic, Ada.Unchecked_Deallocation);
pragma Preelaborate(Ada.Unchecked_Deallocation);

Dynamic Semantics

Given an instance of Unchecked_Deallocation declared as follows:
procedure Free is
 new Ada.Unchecked_Deallocation(
 object_subtype_name, access_to_variable_subtype_name);

Procedure Free has the following effect:
1. After executing Free(X), the value of X is null.

2. Free(X), when X is already equal to null, has no effect.

3. Free(X), when X is not equal to null first performs finalization of the object designated by X
(and any coextensions of the object — see 3.10.2), as described in 7.6.1. It then deallocates the
storage occupied by the object designated by X (and any coextensions). If the storage pool is a
user-defined object, then the storage is deallocated by calling Deallocate, passing access_to_-
variable_subtype_name'Storage_Pool as the Pool parameter. Storage_Address is the value
returned in the Storage_Address parameter of the corresponding Allocate call. Size_In_-
Storage_Elements and Alignment are the same values passed to the corresponding Allocate call.
There is one exception: if the object being freed contains tasks, the object might not be
deallocated.

After Free(X), the object designated by X, and any subcomponents (and coextensions) thereof, no longer
exist; their storage can be reused for other purposes.

Bounded (Run-Time) Errors

It is a bounded error to free a discriminated, unterminated task object. The possible consequences are:
• No exception is raised.

• Program_Error or Tasking_Error is raised at the point of the deallocation.

• Program_Error or Tasking_Error is raised in the task the next time it references any of the
discriminants.

In the first two cases, the storage for the discriminants (and for any enclosing object if it is designated by
an access discriminant of the task) is not reclaimed prior to task termination.

Erroneous Execution

Evaluating a name that denotes a nonexistent object is erroneous. The execution of a call to an instance of
Unchecked_Deallocation is erroneous if the object was created other than by an allocator for an access
type whose pool is Name'Storage_Pool.

1

2

3

4

5

6

7

8

9/2

10/2

11

12

13

14

15

16

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

295 10 November 2006 Unchecked Storage Deallocation 13.11.2

Implementation Advice

For a standard storage pool, Free should actually reclaim the storage.

NOTES
27 The rules here that refer to Free apply to any instance of Unchecked_Deallocation.

28 Unchecked_Deallocation cannot be instantiated for an access-to-constant type. This is implied by the rules of 12.5.4.

13.11.3 Pragma Controlled
Pragma Controlled is used to prevent any automatic reclamation of storage (garbage collection) for the
objects created by allocators of a given access type.

Syntax

The form of a pragma Controlled is as follows:
 pragma Controlled(first_subtype_local_name);

Legality Rules

The first_subtype_local_name of a pragma Controlled shall denote a non-derived access subtype.

Static Semantics

A pragma Controlled is a representation pragma that specifies the controlled aspect of representation.

Garbage collection is a process that automatically reclaims storage, or moves objects to a different
address, while the objects still exist.

If a pragma Controlled is specified for an access type with a standard storage pool, then garbage
collection is not performed for objects in that pool.

Implementation Permissions

An implementation need not support garbage collection, in which case, a pragma Controlled has no effect.

13.12 Pragma Restrictions
A pragma Restrictions expresses the user's intent to abide by certain restrictions. This may facilitate the
construction of simpler run-time environments.

Syntax

The form of a pragma Restrictions is as follows:
 pragma Restrictions(restriction{, restriction});
restriction ::= restriction_identifier
 | restriction_parameter_identifier => restriction_parameter_argument
restriction_parameter_argument ::= name | expression

Name Resolution Rules

Unless otherwise specified for a particular restriction, the expression is expected to be of any integer type.

Legality Rules

Unless otherwise specified for a particular restriction, the expression shall be static, and its value shall be
nonnegative.

17

18

19

1

2

3

4

5

6

7

8

1

2

3

4/2

4.1/2

5

6

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

13.12 Pragma Restrictions 10 November 2006 296

Static Semantics

The set of restrictions is implementation defined.

Post-Compilation Rules

A pragma Restrictions is a configuration pragma; unless otherwise specified for a particular restriction, a
partition shall obey the restriction if a pragma Restrictions applies to any compilation unit included in the
partition.

For the purpose of checking whether a partition contains constructs that violate any restriction (unless
specified otherwise for a particular restriction):

• Generic instances are logically expanded at the point of instantiation;

• If an object of a type is declared or allocated and not explicitly initialized, then all expressions
appearing in the definition for the type and any of its ancestors are presumed to be used;

• A default_expression for a formal parameter or a generic formal object is considered to be used
if and only if the corresponding actual parameter is not provided in a given call or instantiation.

Implementation Permissions

An implementation may place limitations on the values of the expression that are supported, and
limitations on the supported combinations of restrictions. The consequences of violating such limitations
are implementation defined.

An implementation is permitted to omit restriction checks for code that is recognized at compile time to be
unreachable and for which no code is generated.

Whenever enforcement of a restriction is not required prior to execution, an implementation may
nevertheless enforce the restriction prior to execution of a partition to which the restriction applies,
provided that every execution of the partition would violate the restriction.

NOTES
29 Restrictions intended to facilitate the construction of efficient tasking run-time systems are defined in D.7. Restrictions
intended for use when constructing high integrity systems are defined in H.4.

30 An implementation has to enforce the restrictions in cases where enforcement is required, even if it chooses not to take
advantage of the restrictions in terms of efficiency.

13.12.1 Language-Defined Restrictions
Static Semantics

The following restriction_identifiers are language-defined (additional restrictions are defined in the
Specialized Needs Annexes):
No_Implementation_Attributes
 There are no implementation-defined attributes. This restriction applies only to the current

compilation or environment, not the entire partition.

No_Implementation_Pragmas
 There are no implementation-defined pragmas or pragma arguments. This restriction

applies only to the current compilation or environment, not the entire partition.

No_Obsolescent_Features
 There is no use of language features defined in Annex J. It is implementation-defined if

uses of the renamings of J.1 are detected by this restriction. This restriction applies only to
the current compilation or environment, not the entire partition.

7/2

8

8.1/1

8.2/1

8.3/1

8.4/1

9

9.1/1

9.2/1

10/2

11

1/2

2/2

3/2

4/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

297 10 November 2006 Language-Defined Restrictions 13.12.1

The following restriction_parameter_identifier is language defined:
No_Dependence
 Specifies a library unit on which there are no semantic dependences.

Legality Rules

The restriction_parameter_argument of a No_Dependence restriction shall be a name; the name shall
have the form of a full expanded name of a library unit, but need not denote a unit present in the
environment.

Post-Compilation Rules

No compilation unit included in the partition shall depend semantically on the library unit identified by the
name.

13.13 Streams
A stream is a sequence of elements comprising values from possibly different types and allowing
sequential access to these values. A stream type is a type in the class whose root type is
Streams.Root_Stream_Type. A stream type may be implemented in various ways, such as an external
sequential file, an internal buffer, or a network channel.

13.13.1 The Package Streams
Static Semantics

The abstract type Root_Stream_Type is the root type of the class of stream types. The types in this class
represent different kinds of streams. A new stream type is defined by extending the root type (or some
other stream type), overriding the Read and Write operations, and optionally defining additional primitive
subprograms, according to the requirements of the particular kind of stream. The predefined stream-
oriented attributes like T'Read and T'Write make dispatching calls on the Read and Write procedures of
the Root_Stream_Type. (User-defined T'Read and T'Write attributes can also make such calls, or can call
the Read and Write attributes of other types.)

package Ada.Streams is
 pragma Pure(Streams);

 type Root_Stream_Type is abstract tagged limited private;
 pragma Preelaborable_Initialization(Root_Stream_Type);

 type Stream_Element is mod implementation-defined;
 type Stream_Element_Offset is range implementation-defined;
 subtype Stream_Element_Count is
 Stream_Element_Offset range 0..Stream_Element_Offset'Last;
 type Stream_Element_Array is
 array(Stream_Element_Offset range <>) of aliased Stream_Element;

 procedure Read(
 Stream : in out Root_Stream_Type;
 Item : out Stream_Element_Array;
 Last : out Stream_Element_Offset) is abstract;

 procedure Write(
 Stream : in out Root_Stream_Type;
 Item : in Stream_Element_Array) is abstract;

private
 ... -- not specified by the language
end Ada.Streams;

5/2

6/2

7/2

8/2

1

1

2

3/2

4/1

5

6

7

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

13.13.1 The Package Streams 10 November 2006 298

The Read operation transfers stream elements from the specified stream to fill the array Item. Elements are
transferred until Item'Length elements have been transferred, or until the end of the stream is reached. If
any elements are transferred, the index of the last stream element transferred is returned in Last.
Otherwise, Item'First - 1 is returned in Last. Last is less than Item'Last only if the end of the stream is
reached.

The Write operation appends Item to the specified stream.

Implementation Permissions

If Stream_Element'Size is not a multiple of System.Storage_Unit, then the components of Stream_-
Element_Array need not be aliased.

NOTES
31 See A.12.1, “The Package Streams.Stream_IO” for an example of extending type Root_Stream_Type.

32 If the end of stream has been reached, and Item'First is Stream_Element_Offset'First, Read will raise Constraint_Error.

13.13.2 Stream-Oriented Attributes
The operational attributes Write, Read, Output, and Input convert values to a stream of elements and
reconstruct values from a stream.

Static Semantics

For every subtype S of an elementary type T, the following representation attribute is defined:
S'Stream_Size
 Denotes the number of bits occupied in a stream by items of subtype S. Hence, the number

of stream elements required per item of elementary type T is:
T'Stream_Size / Ada.Streams.Stream_Element'Size

 The value of this attribute is of type universal_integer and is a multiple of
Stream_Element'Size.

 Stream_Size may be specified for first subtypes via an attribute_definition_clause; the
expression of such a clause shall be static, nonnegative, and a multiple of
Stream_Element'Size.

Implementation Advice

If not specified, the value of Stream_Size for an elementary type should be the number of bits that
corresponds to the minimum number of stream elements required by the first subtype of the type, rounded
up to the nearest factor or multiple of the word size that is also a multiple of the stream element size.

The recommended level of support for the Stream_Size attribute is:
• A Stream_Size clause should be supported for a discrete or fixed point type T if the specified

Stream_Size is a multiple of Stream_Element'Size and is no less than the size of the first subtype
of T, and no greater than the size of the largest type of the same elementary class (signed integer,
modular integer, enumeration, ordinary fixed point, or decimal fixed point).

8/2

9

9.1/1

10

11/2

1/1

1.1/2

1.2/2

1.3/2

1.4/2

1.5/2

1.6/2

1.7/2

1.8/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

299 10 November 2006 Stream-Oriented Attributes 13.13.2

Static Semantics

For every subtype S of a specific type T, the following attributes are defined.

S'Write S'Write denotes a procedure with the following specification:
procedure S'Write(
 Stream : not null access Ada.Streams.Root_Stream_Type'Class;
 Item : in T)

 S'Write writes the value of Item to Stream.

S'Read S'Read denotes a procedure with the following specification:
procedure S'Read(
 Stream : not null access Ada.Streams.Root_Stream_Type'Class;
 Item : out T)

 S'Read reads the value of Item from Stream.

For an untagged derived type, the Write (resp. Read) attribute is inherited according to the rules given in
13.1 if the attribute is available for the parent type at the point where T is declared. For a tagged derived
type, these attributes are not inherited, but rather the default implementations are used.

The default implementations of the Write and Read attributes, where available, execute as follows:

For elementary types, Read reads (and Write writes) the number of stream elements implied by the
Stream_Size for the type T; the representation of those stream elements is implementation defined. For
composite types, the Write or Read attribute for each component is called in canonical order, which is last
dimension varying fastest for an array, and positional aggregate order for a record. Bounds are not
included in the stream if T is an array type. If T is a discriminated type, discriminants are included only if
they have defaults. If T is a tagged type, the tag is not included. For type extensions, the Write or Read
attribute for the parent type is called, followed by the Write or Read attribute of each component of the
extension part, in canonical order. For a limited type extension, if the attribute of the parent type or any
progenitor type of T is available anywhere within the immediate scope of T, and the attribute of the parent
type or the type of any of the extension components is not available at the freezing point of T, then the
attribute of T shall be directly specified.

Constraint_Error is raised by the predefined Write attribute if the value of the elementary item is outside
the range of values representable using Stream_Size bits. For a signed integer type, an enumeration type,
or a fixed point type, the range is unsigned only if the integer code for the lower bound of the first subtype
is nonnegative, and a (symmetric) signed range that covers all values of the first subtype would require
more than Stream_Size bits; otherwise the range is signed.

For every subtype S'Class of a class-wide type T'Class:
S'Class'Write
 S'Class'Write denotes a procedure with the following specification:

procedure S'Class'Write(
 Stream : not null access Ada.Streams.Root_Stream_Type'Class;
 Item : in T'Class)

 Dispatches to the subprogram denoted by the Write attribute of the specific type identified
by the tag of Item.

S'Class'Read S'Class'Read denotes a procedure with the following specification:
procedure S'Class'Read(
 Stream : not null access Ada.Streams.Root_Stream_Type'Class;
 Item : out T'Class)

2

3

4/2

5

6

7/2

8

8.1/2

8.2/2

9/2

9.1/2

10

11

12/2

13

14

15/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

13.13.2 Stream-Oriented Attributes 10 November 2006 300

 Dispatches to the subprogram denoted by the Read attribute of the specific type identified
by the tag of Item.

Implementation Advice

This paragraph was deleted.

Static Semantics

For every subtype S of a specific type T, the following attributes are defined.

S'Output S'Output denotes a procedure with the following specification:
procedure S'Output(
 Stream : not null access Ada.Streams.Root_Stream_Type'Class;
 Item : in T)

 S'Output writes the value of Item to Stream, including any bounds or discriminants.

S'Input S'Input denotes a function with the following specification:
function S'Input(
 Stream : not null access Ada.Streams.Root_Stream_Type'Class)
 return T

 S'Input reads and returns one value from Stream, using any bounds or discriminants written
by a corresponding S'Output to determine how much to read.

For an untagged derived type, the Output (resp. Input) attribute is inherited according to the rules given in
13.1 if the attribute is available for the parent type at the point where T is declared. For a tagged derived
type, these attributes are not inherited, but rather the default implementations are used.

The default implementations of the Output and Input attributes, where available, execute as follows:
• If T is an array type, S'Output first writes the bounds, and S'Input first reads the bounds. If T has

discriminants without defaults, S'Output first writes the discriminants (using S'Write for each),
and S'Input first reads the discriminants (using S'Read for each).

• S'Output then calls S'Write to write the value of Item to the stream. S'Input then creates an object
(with the bounds or discriminants, if any, taken from the stream), passes it to S'Read, and returns
the value of the object. Normal default initialization and finalization take place for this object
(see 3.3.1, 7.6, and 7.6.1).

If T is an abstract type, then S'Input is an abstract function.

For every subtype S'Class of a class-wide type T'Class:
S'Class'Output
 S'Class'Output denotes a procedure with the following specification:

procedure S'Class'Output(
 Stream : not null access Ada.Streams.Root_Stream_Type'Class;
 Item : in T'Class)

 First writes the external tag of Item to Stream (by calling String'Output(Stream, Tags.-
External_Tag(Item'Tag)) — see 3.9) and then dispatches to the subprogram denoted by the
Output attribute of the specific type identified by the tag. Tag_Error is raised if the tag of
Item identifies a type declared at an accessibility level deeper than that of S.

S'Class'Input
 S'Class'Input denotes a function with the following specification:

function S'Class'Input(
 Stream : not null access Ada.Streams.Root_Stream_Type'Class)
 return T'Class

16

17/2

18

19

20/2

21

22

23/2

24

25/2

25.1/2

26

27/2

27.1/2

28

29

30/2

31/2

32

33/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

301 10 November 2006 Stream-Oriented Attributes 13.13.2

 First reads the external tag from Stream and determines the corresponding internal tag (by
calling Tags.Descendant_Tag(String'Input(Stream), S'Tag) which might raise Tag_Error —
see 3.9) and then dispatches to the subprogram denoted by the Input attribute of the specific
type identified by the internal tag; returns that result. If the specific type identified by the
internal tag is not covered by T'Class or is abstract, Constraint_Error is raised.

In the default implementation of Read and Input for a composite type, for each scalar component that is a
discriminant or whose component_declaration includes a default_expression, a check is made that the
value returned by Read for the component belongs to its subtype. Constraint_Error is raised if this check
fails. For other scalar components, no check is made. For each component that is of an access type, if the
implementation can detect that the value returned by Read for the component is not a value of its subtype,
Constraint_Error is raised. If the value is not a value of its subtype and this error is not detected, the
component has an abnormal value, and erroneous execution can result (see 13.9.1). In the default
implementation of Read for a composite type with defaulted discriminants, if the actual parameter of Read
is constrained, a check is made that the discriminants read from the stream are equal to those of the actual
parameter. Constraint_Error is raised if this check fails.

It is unspecified at which point and in which order these checks are performed. In particular, if
Constraint_Error is raised due to the failure of one of these checks, it is unspecified how many stream
elements have been read from the stream.

In the default implementation of Read and Input for a type, End_Error is raised if the end of the stream is
reached before the reading of a value of the type is completed.

The stream-oriented attributes may be specified for any type via an attribute_definition_clause. The
subprogram name given in such a clause shall not denote an abstract subprogram. Furthermore, if a
stream-oriented attribute is specified for an interface type by an attribute_definition_clause, the
subprogram name given in the clause shall statically denote a null procedure.

A stream-oriented attribute for a subtype of a specific type T is available at places where one of the
following conditions is true:

• T is nonlimited.

• The attribute_designator is Read (resp. Write) and T is a limited record extension, and the
attribute Read (resp. Write) is available for the parent type of T and for the types of all of the
extension components.

• T is a limited untagged derived type, and the attribute was inherited for the type.

• The attribute_designator is Input (resp. Output), and T is a limited type, and the attribute Read
(resp. Write) is available for T.

• The attribute has been specified via an attribute_definition_clause, and the
attribute_definition_clause is visible.

A stream-oriented attribute for a subtype of a class-wide type T'Class is available at places where one of
the following conditions is true:

• T is nonlimited;

• the attribute has been specified via an attribute_definition_clause, and the
attribute_definition_clause is visible; or

• the corresponding attribute of T is available, provided that if T has a partial view, the
corresponding attribute is available at the end of the visible part where T is declared.

34/2

35/2

36/2

37/1

38/2

39/2

40/2

41/2

42/2

43/2

44/2

45/2

46/2

47/2

48/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

13.13.2 Stream-Oriented Attributes 10 November 2006 302

An attribute_reference for one of the stream-oriented attributes is illegal unless the attribute is available at
the place of the attribute_reference. Furthermore, an attribute_reference for T'Input is illegal if T is an
abstract type.

In the parameter_and_result_profiles for the stream-oriented attributes, the subtype of the Item parameter
is the base subtype of T if T is a scalar type, and the first subtype otherwise. The same rule applies to the
result of the Input attribute.

For an attribute_definition_clause specifying one of these attributes, the subtype of the Item parameter
shall be the base subtype if scalar, and the first subtype otherwise. The same rule applies to the result of
the Input function.

A type is said to support external streaming if Read and Write attributes are provided for sending values
of such a type between active partitions, with Write marshalling the representation, and Read
unmarshalling the representation. A limited type supports external streaming only if it has available Read
and Write attributes. A type with a part that is of an access type supports external streaming only if that
access type or the type of some part that includes the access type component, has Read and Write
attributes that have been specified via an attribute_definition_clause, and that attribute_definition_clause
is visible. An anonymous access type does not support external streaming. All other types support external
streaming.

Erroneous Execution

If the internal tag returned by Descendant_Tag to T'Class'Input identifies a type that is not library-level
and whose tag has not been created, or does not exist in the partition at the time of the call, execution is
erroneous.

Implementation Requirements

For every subtype S of a language-defined nonlimited specific type T, the output generated by S'Output or
S'Write shall be readable by S'Input or S'Read, respectively. This rule applies across partitions if the
implementation conforms to the Distributed Systems Annex.

If Constraint_Error is raised during a call to Read because of failure of one the above checks, the
implementation must ensure that the discriminants of the actual parameter of Read are not modified.

Implementation Permissions

The number of calls performed by the predefined implementation of the stream-oriented attributes on the
Read and Write operations of the stream type is unspecified. An implementation may take advantage of
this permission to perform internal buffering. However, all the calls on the Read and Write operations of
the stream type needed to implement an explicit invocation of a stream-oriented attribute must take place
before this invocation returns. An explicit invocation is one appearing explicitly in the program text,
possibly through a generic instantiation (see 12.3).

NOTES
33 For a definite subtype S of a type T, only T'Write and T'Read are needed to pass an arbitrary value of the subtype
through a stream. For an indefinite subtype S of a type T, T'Output and T'Input will normally be needed, since T'Write and
T'Read do not pass bounds, discriminants, or tags.

34 User-specified attributes of S'Class are not inherited by other class-wide types descended from S.

49/2

50/2

51/2

52/2

53/2

54/1

55/2

56/2

57

58

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

303 10 November 2006 Stream-Oriented Attributes 13.13.2

Examples

Example of user-defined Write attribute:
procedure My_Write(
 Stream : not null access Ada.Streams.Root_Stream_Type'Class;
 Item : My_Integer'Base);
for My_Integer'Write use My_Write;

13.14 Freezing Rules
This clause defines a place in the program text where each declared entity becomes “frozen.” A use of an
entity, such as a reference to it by name, or (for a type) an expression of the type, causes freezing of the
entity in some contexts, as described below. The Legality Rules forbid certain kinds of uses of an entity in
the region of text where it is frozen.

The freezing of an entity occurs at one or more places (freezing points) in the program text where the
representation for the entity has to be fully determined. Each entity is frozen from its first freezing point to
the end of the program text (given the ordering of compilation units defined in 10.1.4).

The end of a declarative_part, protected_body, or a declaration of a library package or generic library
package, causes freezing of each entity declared within it, except for incomplete types. A noninstance
body other than a renames-as-body causes freezing of each entity declared before it within the same
declarative_part.

A construct that (explicitly or implicitly) references an entity can cause the freezing of the entity, as
defined by subsequent paragraphs. At the place where a construct causes freezing, each name,
expression, implicit_dereference, or range within the construct causes freezing:

• The occurrence of a generic_instantiation causes freezing; also, if a parameter of the
instantiation is defaulted, the default_expression or default_name for that parameter causes
freezing.

• The occurrence of an object_declaration that has no corresponding completion causes freezing.
• The declaration of a record extension causes freezing of the parent subtype.

• The declaration of a record extension, interface type, task unit, or protected unit causes freezing
of any progenitor types specified in the declaration.

A static expression causes freezing where it occurs. An object name or nonstatic expression causes
freezing where it occurs, unless the name or expression is part of a default_expression, a default_name,
or a per-object expression of a component's constraint, in which case, the freezing occurs later as part of
another construct.

An implicit call freezes the same entities that would be frozen by an explicit call. This is true even if the
implicit call is removed via implementation permissions.

If an expression is implicitly converted to a type or subtype T, then at the place where the expression
causes freezing, T is frozen.

The following rules define which entities are frozen at the place where a construct causes freezing:
• At the place where an expression causes freezing, the type of the expression is frozen, unless the

expression is an enumeration literal used as a discrete_choice of the array_aggregate of an
enumeration_representation_clause.

59

60/2

1

2

3/1

4/1

5

6

7

7.1/2

8/1

8.1/1

8.2/1

9

10

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

13.14 Freezing Rules 10 November 2006 304

• At the place where a name causes freezing, the entity denoted by the name is frozen, unless the
name is a prefix of an expanded name; at the place where an object name causes freezing, the
nominal subtype associated with the name is frozen.

• At the place where an implicit_dereference causes freezing, the nominal subtype associated with
the implicit_dereference is frozen.

• At the place where a range causes freezing, the type of the range is frozen.
• At the place where an allocator causes freezing, the designated subtype of its type is frozen. If

the type of the allocator is a derived type, then all ancestor types are also frozen.
• At the place where a callable entity is frozen, each subtype of its profile is frozen. If the callable

entity is a member of an entry family, the index subtype of the family is frozen. At the place
where a function call causes freezing, if a parameter of the call is defaulted, the default_-
expression for that parameter causes freezing.

• At the place where a subtype is frozen, its type is frozen. At the place where a type is frozen, any
expressions or names within the full type definition cause freezing; the first subtype, and any
component subtypes, index subtypes, and parent subtype of the type are frozen as well. For a
specific tagged type, the corresponding class-wide type is frozen as well. For a class-wide type,
the corresponding specific type is frozen as well.

• At the place where a specific tagged type is frozen, the primitive subprograms of the type are
frozen.

Legality Rules

The explicit declaration of a primitive subprogram of a tagged type shall occur before the type is frozen
(see 3.9.2).

A type shall be completely defined before it is frozen (see 3.11.1 and 7.3).

The completion of a deferred constant declaration shall occur before the constant is frozen (see 7.4).

An operational or representation item that directly specifies an aspect of an entity shall appear before the
entity is frozen (see 13.1).

Dynamic Semantics

The tag (see 3.9) of a tagged type T is created at the point where T is frozen.

11

11.1/1

12

13

14

15

15.1/2

16

17

18

19/1

20/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

305 10 November 2006 The Standard Libraries

The Standard Libraries

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

307 10 November 2006 Predefined Language Environment A

Annex A
(normative)

Predefined Language Environment
This Annex contains the specifications of library units that shall be provided by every implementation.
There are three root library units: Ada, Interfaces, and System; other library units are children of these:

Standard — A.1
 Ada — A.2
 Assertions — 11.4.2
 Asynchronous_Task_Control — D.11
 Calendar — 9.6
 Arithmetic — 9.6.1
 Formatting — 9.6.1
 Time_Zones — 9.6.1
 Characters — A.3.1
 Conversions — A.3.4
 Handling — A.3.2
 Latin_1 — A.3.3
 Command_Line — A.15
 Complex_Text_IO — G.1.3
 Containers — A.18.1
 Doubly_Linked_Lists — A.18.3
 Generic_Array_Sort — A.18.16
 Generic_Constrained_Array_Sort
 — A.18.16
 Hashed_Maps — A.18.5
 Hashed_Sets — A.18.8
 Indefinite_Doubly_Linked_Lists
 — A.18.11
 Indefinite_Hashed_Maps — A.18.12
 Indefinite_Hashed_Sets — A.18.14
 Indefinite_Ordered_Maps — A.18.13
 Indefinite_Ordered_Sets — A.18.15
 Indefinite_Vectors — A.18.10
 Ordered_Maps — A.18.6
 Ordered_Sets — A.18.9
 Vectors — A.18.2
 Decimal — F.2
 Direct_IO — A.8.4
 Directories — A.16
 Information — A.16
 Dispatching — D.2.1
 EDF — D.2.6
 Round_Robin — D.2.5
 Dynamic_Priorities — D.5

Standard (...continued)
 Ada (...continued)
 Environment_Variables — A.17
 Exceptions — 11.4.1
 Execution_Time — D.14
 Group_Budgets — D.14.2
 Timers — D.14.1
 Finalization — 7.6
 Float_Text_IO — A.10.9
 Float_Wide_Text_IO — A.11
 Float_Wide_Wide_Text_IO — A.11
 Integer_Text_IO — A.10.8
 Integer_Wide_Text_IO — A.11
 Integer_Wide_Wide_Text_IO — A.11
 Interrupts — C.3.2
 Names — C.3.2
 IO_Exceptions — A.13
 Numerics — A.5
 Complex_Arrays — G.3.2
 Complex_Elementary_Functions — G.1.2
 Complex_Types — G.1.1
 Discrete_Random — A.5.2
 Elementary_Functions — A.5.1
 Float_Random — A.5.2
 Generic_Complex_Arrays — G.3.2
 Generic_Complex_Elementary_Functions
 — G.1.2
 Generic_Complex_Types — G.1.1
 Generic_Elementary_Functions — A.5.1
 Generic_Real_Arrays — G.3.1
 Real_Arrays — G.3.1
 Real_Time — D.8
 Timing_Events — D.15
 Sequential_IO — A.8.1
 Storage_IO — A.9
 Streams — 13.13.1
 Stream_IO — A.12.1

1

2/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A Predefined Language Environment 10 November 2006 308

Standard (...continued)
 Ada (...continued)
 Strings — A.4.1
 Bounded — A.4.4
 Hash — A.4.9
 Fixed — A.4.3
 Hash — A.4.9
 Hash — A.4.9
 Maps — A.4.2
 Constants — A.4.6
 Unbounded — A.4.5
 Hash — A.4.9
 Wide_Bounded — A.4.7
 Wide_Hash — A.4.7
 Wide_Fixed — A.4.7
 Wide_Hash — A.4.7
 Wide_Hash — A.4.7
 Wide_Maps — A.4.7
 Wide_Constants — A.4.7
 Wide_Unbounded — A.4.7
 Wide_Hash — A.4.7
 Wide_Wide_Bounded — A.4.8
 Wide_Wide_Hash — A.4.8
 Wide_Wide_Fixed — A.4.8
 Wide_Wide_Hash — A.4.8
 Wide_Wide_Hash — A.4.8
 Wide_Wide_Maps — A.4.8
 Wide_Wide_Constants — A.4.8
 Wide_Wide_Unbounded — A.4.8
 Wide_Wide_Hash — A.4.8
 Synchronous_Task_Control — D.10
 Tags — 3.9
 Generic_Dispatching_Constructor — 3.9
 Task_Attributes — C.7.2
 Task_Identification — C.7.1
 Task_Termination — C.7.3

Standard (...continued)
 Ada (...continued)
 Text_IO — A.10.1
 Bounded_IO — A.10.11
 Complex_IO — G.1.3
 Editing — F.3.3
 Text_Streams — A.12.2
 Unbounded_IO — A.10.12
 Unchecked_Conversion — 13.9
 Unchecked_Deallocation — 13.11.2
 Wide_Characters — A.3.1
 Wide_Text_IO — A.11
 Complex_IO — G.1.4
 Editing — F.3.4
 Text_Streams — A.12.3
 Wide_Bounded_IO — A.11
 Wide_Unbounded_IO — A.11
 Wide_Wide_Characters — A.3.1
 Wide_Wide_Text_IO — A.11
 Complex_IO — G.1.5
 Editing — F.3.5
 Text_Streams — A.12.4
 Wide_Wide_Bounded_IO — A.11
 Wide_Wide_Unbounded_IO — A.11
 Interfaces — B.2
 C — B.3
 Pointers — B.3.2
 Strings — B.3.1
 COBOL — B.4
 Fortran — B.5
 System — 13.7
 Address_To_Access_Conversions — 13.7.2
 Machine_Code — 13.8
 RPC — E.5
 Storage_Elements — 13.7.1
 Storage_Pools — 13.11

Implementation Requirements

The implementation shall ensure that each language-defined subprogram is reentrant in the sense that
concurrent calls on the same subprogram perform as specified, so long as all parameters that could be
passed by reference denote nonoverlapping objects.

Implementation Permissions

The implementation may restrict the replacement of language-defined compilation units. The
implementation may restrict children of language-defined library units (other than Standard).

3/2

4

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

309 10 November 2006 The Package Standard A.1

A.1 The Package Standard
This clause outlines the specification of the package Standard containing all predefined identifiers in the
language. The corresponding package body is not specified by the language.

The operators that are predefined for the types declared in the package Standard are given in comments
since they are implicitly declared. Italics are used for pseudo-names of anonymous types (such as
root_real) and for undefined information (such as implementation-defined).

Static Semantics

The library package Standard has the following declaration:
package Standard is
 pragma Pure(Standard);

 type Boolean is (False, True);

 -- The predefined relational operators for this type are as follows:
 -- function "=" (Left, Right : Boolean'Base) return Boolean;
 -- function "/=" (Left, Right : Boolean'Base) return Boolean;
 -- function "<" (Left, Right : Boolean'Base) return Boolean;
 -- function "<=" (Left, Right : Boolean'Base) return Boolean;
 -- function ">" (Left, Right : Boolean'Base) return Boolean;
 -- function ">=" (Left, Right : Boolean'Base) return Boolean;

 -- The predefined logical operators and the predefined logical
 -- negation operator are as follows:
 -- function "and" (Left, Right : Boolean'Base) return Boolean'Base;
 -- function "or" (Left, Right : Boolean'Base) return Boolean'Base;
 -- function "xor" (Left, Right : Boolean'Base) return Boolean'Base;

 -- function "not" (Right : Boolean'Base) return Boolean'Base;

 -- The integer type root_integer and the
 -- corresponding universal type universal_integer are predefined.
 type Integer is range implementation-defined;
 subtype Natural is Integer range 0 .. Integer'Last;
 subtype Positive is Integer range 1 .. Integer'Last;

 -- The predefined operators for type Integer are as follows:
 -- function "=" (Left, Right : Integer'Base) return Boolean;
 -- function "/=" (Left, Right : Integer'Base) return Boolean;
 -- function "<" (Left, Right : Integer'Base) return Boolean;
 -- function "<=" (Left, Right : Integer'Base) return Boolean;
 -- function ">" (Left, Right : Integer'Base) return Boolean;
 -- function ">=" (Left, Right : Integer'Base) return Boolean;

 -- function "+" (Right : Integer'Base) return Integer'Base;
 -- function "-" (Right : Integer'Base) return Integer'Base;
 -- function "abs" (Right : Integer'Base) return Integer'Base;

 -- function "+" (Left, Right : Integer'Base) return Integer'Base;
 -- function "-" (Left, Right : Integer'Base) return Integer'Base;
 -- function "*" (Left, Right : Integer'Base) return Integer'Base;
 -- function "/" (Left, Right : Integer'Base) return Integer'Base;
 -- function "rem" (Left, Right : Integer'Base) return Integer'Base;
 -- function "mod" (Left, Right : Integer'Base) return Integer'Base;

 -- function "**" (Left : Integer'Base; Right : Natural)
 -- return Integer'Base;

1

2

3

4

5

6

7/1

8

9/1

10/1

11/2

12

13

14

15

16

17

18

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.1 The Package Standard 10 November 2006 310

 -- The specification of each operator for the type
 -- root_integer, or for any additional predefined integer
 -- type, is obtained by replacing Integer by the name of the type
 -- in the specification of the corresponding operator of the type
 -- Integer. The right operand of the exponentiation operator
 -- remains as subtype Natural.
 -- The floating point type root_real and the
 -- corresponding universal type universal_real are predefined.
 type Float is digits implementation-defined;
 -- The predefined operators for this type are as follows:
 -- function "=" (Left, Right : Float) return Boolean;
 -- function "/=" (Left, Right : Float) return Boolean;
 -- function "<" (Left, Right : Float) return Boolean;
 -- function "<=" (Left, Right : Float) return Boolean;
 -- function ">" (Left, Right : Float) return Boolean;
 -- function ">=" (Left, Right : Float) return Boolean;

 -- function "+" (Right : Float) return Float;
 -- function "-" (Right : Float) return Float;
 -- function "abs" (Right : Float) return Float;

 -- function "+" (Left, Right : Float) return Float;
 -- function "-" (Left, Right : Float) return Float;
 -- function "*" (Left, Right : Float) return Float;
 -- function "/" (Left, Right : Float) return Float;

 -- function "**" (Left : Float; Right : Integer'Base) return Float;

 -- The specification of each operator for the type root_real, or for
 -- any additional predefined floating point type, is obtained by
 -- replacing Float by the name of the type in the specification of the
 -- corresponding operator of the type Float.
 -- In addition, the following operators are predefined for the root
 -- numeric types:
 function "*" (Left : root_integer; Right : root_real)
 return root_real;
 function "*" (Left : root_real; Right : root_integer)
 return root_real;
 function "/" (Left : root_real; Right : root_integer)
 return root_real;
 -- The type universal_fixed is predefined.
 -- The only multiplying operators defined between
 -- fixed point types are
 function "*" (Left : universal_fixed; Right : universal_fixed)
 return universal_fixed;
 function "/" (Left : universal_fixed; Right : universal_fixed)
 return universal_fixed;
 -- The type universal_access is predefined.
 -- The following equality operators are predefined:
 function "=" (Left, Right: universal_access) return Boolean;
 function "/=" (Left, Right: universal_access) return Boolean;

19

20/2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

34.1/2

34.2/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

311 10 November 2006 The Package Standard A.1

 -- The declaration of type Character is based on the standard ISO 8859-1 character set.

 -- There are no character literals corresponding to the positions for control characters.
 -- They are indicated in italics in this definition. See 3.5.2.

 type Character is
 (nul, soh, stx, etx, eot, enq, ack, bel, --0 (16#00#) .. 7 (16#07#)
 bs, ht, lf, vt, ff, cr, so, si, --8 (16#08#) .. 15 (16#0F#)

 dle, dc1, dc2, dc3, dc4, nak, syn, etb, --16 (16#10#) .. 23 (16#17#)
 can, em, sub, esc, fs, gs, rs, us, --24 (16#18#) .. 31 (16#1F#)

 ' ', '!', '"', '#', '$', '%', '&', ''', --32 (16#20#) .. 39 (16#27#)
 '(', ')', '*', '+', ',', '-', '.', '/', --40 (16#28#) .. 47 (16#2F#)

 '0', '1', '2', '3', '4', '5', '6', '7', --48 (16#30#) .. 55 (16#37#)
 '8', '9', ':', ';', '<', '=', '>', '?', --56 (16#38#) .. 63 (16#3F#)

 '@', 'A', 'B', 'C', 'D', 'E', 'F', 'G', --64 (16#40#) .. 71 (16#47#)
 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', --72 (16#48#) .. 79 (16#4F#)

 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', --80 (16#50#) .. 87 (16#57#)
 'X', 'Y', 'Z', '[', '\', ']', '^', '_', --88 (16#58#) .. 95 (16#5F#)

 '`', 'a', 'b', 'c', 'd', 'e', 'f', 'g', --96 (16#60#) .. 103 (16#67#)
 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', --104 (16#68#) .. 111 (16#6F#)

 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', --112 (16#70#) .. 119 (16#77#)
 'x', 'y', 'z', '{', '|', '}', '~', del, --120 (16#78#) .. 127 (16#7F#)

 reserved_128, reserved_129, bph, nbh, --128 (16#80#) .. 131 (16#83#)
 reserved_132, nel, ssa, esa, --132 (16#84#) .. 135 (16#87#)
 hts, htj, vts, pld, plu, ri, ss2, ss3, --136 (16#88#) .. 143 (16#8F#)

 dcs, pu1, pu2, sts, cch, mw, spa, epa, --144 (16#90#) .. 151 (16#97#)
 sos, reserved_153, sci, csi, --152 (16#98#) .. 155 (16#9B#)
 st, osc, pm, apc, --156 (16#9C#) .. 159 (16#9F#)

 ' ', '¡', '¢', '£', '¤', '¥', '¦', '§', --160 (16#A0#) .. 167 (16#A7#)
 '¨', '©', 'ª', '«', '¬', '-', '®', '¯', --168 (16#A8#) .. 175 (16#AF#)

 '°', '±', '²', '³', '´', 'µ', '¶', '·', --176 (16#B0#) .. 183 (16#B7#)
 '¸', '¹', 'º', '»', '¼', '½', '¾', '¿', --184 (16#B8#) .. 191 (16#BF#)

 'À', 'Á', 'Â', 'Ã', 'Ä', 'Å', 'Æ', 'Ç', --192 (16#C0#) .. 199 (16#C7#)
 'È', 'É', 'Ê', 'Ë', 'Ì', 'Í', 'Î', 'Ï', --200 (16#C8#) .. 207 (16#CF#)

 'Ð', 'Ñ', 'Ò', 'Ó', 'Ô', 'Õ', 'Ö', '×', --208 (16#D0#) .. 215 (16#D7#)
 'Ø', 'Ù', 'Ú', 'Û', 'Ü', 'Ý', 'Þ', 'ß', --216 (16#D8#) .. 223 (16#DF#)

 'à', 'á', 'â', 'ã', 'ä', 'å', 'æ', 'ç', --224 (16#E0#) .. 231 (16#E7#)
 'è', 'é', 'ê', 'ë', 'ì', 'í', 'î', 'ï', --232 (16#E8#) .. 239 (16#EF#)

 'ð', 'ñ', 'ò', 'ó', 'ô', 'õ', 'ö', '÷', --240 (16#F0#) .. 247 (16#F7#)
 'ø', 'ù', 'ú', 'û', 'ü', 'ý', 'þ', 'ÿ');--248 (16#F8#) .. 255 (16#FF#)
 -- The predefined operators for the type Character are the same as for
 -- any enumeration type.

 -- The declaration of type Wide_Character is based on the standard ISO/IEC 10646:2003 BMP character
 -- set. The first 256 positions have the same contents as type Character. See 3.5.2.

 type Wide_Character is (nul, soh ... Hex_0000FFFE, Hex_0000FFFF);

35/2

36

36.1/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.1 The Package Standard 10 November 2006 312

 -- The declaration of type Wide_Wide_Character is based on the full
 -- ISO/IEC 10646:2003 character set. The first 65536 positions have the
 -- same contents as type Wide_Character. See 3.5.2.

 type Wide_Wide_Character is (nul, soh ... Hex_7FFFFFFE, Hex_7FFFFFFF);
 for Wide_Wide_Character'Size use 32;

 package ASCII is ... end ASCII; --Obsolescent; see J.5

 -- Predefined string types:

 type String is array(Positive range <>) of Character;
 pragma Pack(String);

 -- The predefined operators for this type are as follows:
 -- function "=" (Left, Right: String) return Boolean;
 -- function "/=" (Left, Right: String) return Boolean;
 -- function "<" (Left, Right: String) return Boolean;
 -- function "<=" (Left, Right: String) return Boolean;
 -- function ">" (Left, Right: String) return Boolean;
 -- function ">=" (Left, Right: String) return Boolean;

 -- function "&" (Left: String; Right: String) return String;
 -- function "&" (Left: Character; Right: String) return String;
 -- function "&" (Left: String; Right: Character) return String;
 -- function "&" (Left: Character; Right: Character) return String;

 type Wide_String is array(Positive range <>) of Wide_Character;
 pragma Pack(Wide_String);

 -- The predefined operators for this type correspond to those for String.
 type Wide_Wide_String is array (Positive range <>)
 of Wide_Wide_Character;
 pragma Pack (Wide_Wide_String);

 -- The predefined operators for this type correspond to those for String.
 type Duration is delta implementation-defined range implementation-defined;
 -- The predefined operators for the type Duration are the same as for
 -- any fixed point type.
 -- The predefined exceptions:
 Constraint_Error: exception;
 Program_Error : exception;
 Storage_Error : exception;
 Tasking_Error : exception;

end Standard;

Standard has no private part.

In each of the types Character, Wide_Character, and Wide_Wide_Character, the character literals for the
space character (position 32) and the non-breaking space character (position 160) correspond to different
values. Unless indicated otherwise, each occurrence of the character literal ' ' in this International Standard
refers to the space character. Similarly, the character literals for hyphen (position 45) and soft hyphen
(position 173) correspond to different values. Unless indicated otherwise, each occurrence of the character
literal '–' in this International Standard refers to the hyphen character.

Dynamic Semantics

Elaboration of the body of Standard has no effect.

Implementation Permissions

An implementation may provide additional predefined integer types and additional predefined floating
point types. Not all of these types need have names.

36.2/2

36.3/2

37

38

39

40

41

42

42.1/2

42.2/2

43

44

45

46

47

48

49/2

50

51

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

313 10 November 2006 The Package Standard A.1

Implementation Advice

If an implementation provides additional named predefined integer types, then the names should end with
“Integer” as in “Long_Integer”. If an implementation provides additional named predefined floating point
types, then the names should end with “Float” as in “Long_Float”.

NOTES
1 Certain aspects of the predefined entities cannot be completely described in the language itself. For example, although
the enumeration type Boolean can be written showing the two enumeration literals False and True, the short-circuit
control forms cannot be expressed in the language.

2 As explained in 8.1, “Declarative Region” and 10.1.4, “The Compilation Process”, the declarative region of the package
Standard encloses every library unit and consequently the main subprogram; the declaration of every library unit is
assumed to occur within this declarative region. Library_items are assumed to be ordered in such a way that there are no
forward semantic dependences. However, as explained in 8.3, “Visibility”, the only library units that are visible within a
given compilation unit are the library units named by all with_clauses that apply to the given unit, and moreover, within
the declarative region of a given library unit, that library unit itself.

3 If all block_statements of a program are named, then the name of each program unit can always be written as an
expanded name starting with Standard (unless Standard is itself hidden). The name of a library unit cannot be a
homograph of a name (such as Integer) that is already declared in Standard.

4 The exception Standard.Numeric_Error is defined in J.6.

A.2 The Package Ada
Static Semantics

The following language-defined library package exists:
package Ada is
 pragma Pure(Ada);
end Ada;

Ada serves as the parent of most of the other language-defined library units; its declaration is empty
(except for the pragma Pure).

Legality Rules

In the standard mode, it is illegal to compile a child of package Ada.

A.3 Character Handling
This clause presents the packages related to character processing: an empty pure package Characters and
child packages Characters.Handling and Characters.Latin_1. The package Characters.Handling provides
classification and conversion functions for Character data, and some simple functions for dealing with
Wide_Character and Wide_Wide_Character data. The child package Characters.Latin_1 declares a set of
constants initialized to values of type Character.

52

53

54

55

56

1

2

3

4

1/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.3.1 The Packages Characters, Wide_Characters, and Wide_Wide_Characters 10 November 2006 314

A.3.1 The Packages Characters, Wide_Characters, and
Wide_Wide_Characters

Static Semantics

The library package Characters has the following declaration:
package Ada.Characters is
 pragma Pure(Characters);
end Ada.Characters;

The library package Wide_Characters has the following declaration:
package Ada.Wide_Characters is
 pragma Pure(Wide_Characters);
end Ada.Wide_Characters;

The library package Wide_Wide_Characters has the following declaration:
package Ada.Wide_Wide_Characters is
 pragma Pure(Wide_Wide_Characters);
end Ada.Wide_Wide_Characters;

Implementation Advice

If an implementation chooses to provide implementation-defined operations on Wide_Character or
Wide_String (such as case mapping, classification, collating and sorting, etc.) it should do so by providing
child units of Wide_Characters. Similarly if it chooses to provide implementation-defined operations on
Wide_Wide_Character or Wide_Wide_String it should do so by providing child units of
Wide_Wide_Characters.

A.3.2 The Package Characters.Handling
Static Semantics

The library package Characters.Handling has the following declaration:
with Ada.Characters.Conversions;
package Ada.Characters.Handling is
 pragma Pure(Handling);

--Character classification functions
 function Is_Control (Item : in Character) return Boolean;
 function Is_Graphic (Item : in Character) return Boolean;
 function Is_Letter (Item : in Character) return Boolean;
 function Is_Lower (Item : in Character) return Boolean;
 function Is_Upper (Item : in Character) return Boolean;
 function Is_Basic (Item : in Character) return Boolean;
 function Is_Digit (Item : in Character) return Boolean;
 function Is_Decimal_Digit (Item : in Character) return Boolean
 renames Is_Digit;
 function Is_Hexadecimal_Digit (Item : in Character) return Boolean;
 function Is_Alphanumeric (Item : in Character) return Boolean;
 function Is_Special (Item : in Character) return Boolean;

--Conversion functions for Character and String
 function To_Lower (Item : in Character) return Character;
 function To_Upper (Item : in Character) return Character;
 function To_Basic (Item : in Character) return Character;

 function To_Lower (Item : in String) return String;
 function To_Upper (Item : in String) return String;
 function To_Basic (Item : in String) return String;

1

2

3/2

4/2

5/2

6/2

7/2

1

2/2

3

4

5

6

7

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

315 10 November 2006 The Package Characters.Handling A.3.2

--Classifications of and conversions between Character and ISO 646
 subtype ISO_646 is
 Character range Character'Val(0) .. Character'Val(127);

 function Is_ISO_646 (Item : in Character) return Boolean;
 function Is_ISO_646 (Item : in String) return Boolean;

 function To_ISO_646 (Item : in Character;
 Substitute : in ISO_646 := ' ')
 return ISO_646;

 function To_ISO_646 (Item : in String;
 Substitute : in ISO_646 := ' ')
 return String;

-- The functions Is_Character, Is_String, To_Character, To_String, To_Wide_Character,
-- and To_Wide_String are obsolescent; see J.14.
Paragraphs 14 through 18 were deleted.

end Ada.Characters.Handling;

In the description below for each function that returns a Boolean result, the effect is described in terms of
the conditions under which the value True is returned. If these conditions are not met, then the function
returns False.

Each of the following classification functions has a formal Character parameter, Item, and returns a
Boolean result.

Is_Control True if Item is a control character. A control character is a character whose position is in
one of the ranges 0..31 or 127..159.

Is_Graphic True if Item is a graphic character. A graphic character is a character whose position is in
one of the ranges 32..126 or 160..255.

Is_Letter True if Item is a letter. A letter is a character that is in one of the ranges 'A'..'Z' or 'a'..'z', or
whose position is in one of the ranges 192..214, 216..246, or 248..255.

Is_Lower True if Item is a lower-case letter. A lower-case letter is a character that is in the range
'a'..'z', or whose position is in one of the ranges 223..246 or 248..255.

Is_Upper True if Item is an upper-case letter. An upper-case letter is a character that is in the range
'A'..'Z' or whose position is in one of the ranges 192..214 or 216.. 222.

Is_Basic True if Item is a basic letter. A basic letter is a character that is in one of the ranges 'A'..'Z'
and 'a'..'z', or that is one of the following: 'Æ', 'æ', 'Ð', 'ð', 'Þ', 'þ', or 'ß'.

Is_Digit True if Item is a decimal digit. A decimal digit is a character in the range '0'..'9'.

Is_Decimal_Digit
 A renaming of Is_Digit.

Is_Hexadecimal_Digit
 True if Item is a hexadecimal digit. A hexadecimal digit is a character that is either a

decimal digit or that is in one of the ranges 'A' .. 'F' or 'a' .. 'f'.

Is_Alphanumeric
 True if Item is an alphanumeric character. An alphanumeric character is a character that is

either a letter or a decimal digit.

Is_Special True if Item is a special graphic character. A special graphic character is a graphic
character that is not alphanumeric.

Each of the names To_Lower, To_Upper, and To_Basic refers to two functions: one that converts from
Character to Character, and the other that converts from String to String. The result of each Character-to-
Character function is described below, in terms of the conversion applied to Item, its formal Character

8

9

10

11

12

13/2

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.3.2 The Package Characters.Handling 10 November 2006 316

parameter. The result of each String-to-String conversion is obtained by applying to each element of the
function's String parameter the corresponding Character-to-Character conversion; the result is the null
String if the value of the formal parameter is the null String. The lower bound of the result String is 1.

To_Lower Returns the corresponding lower-case value for Item if Is_Upper(Item), and returns Item
otherwise.

To_Upper Returns the corresponding upper-case value for Item if Is_Lower(Item) and Item has an
upper-case form, and returns Item otherwise. The lower case letters 'ß' and 'ÿ' do not have
upper case forms.

To_Basic Returns the letter corresponding to Item but with no diacritical mark, if Item is a letter but
not a basic letter; returns Item otherwise.

The following set of functions test for membership in the ISO 646 character range, or convert between ISO
646 and Character.

Is_ISO_646 The function whose formal parameter, Item, is of type Character returns True if Item is in
the subtype ISO_646.

Is_ISO_646 The function whose formal parameter, Item, is of type String returns True if
Is_ISO_646(Item(I)) is True for each I in Item'Range.

To_ISO_646
 The function whose first formal parameter, Item, is of type Character returns Item if

Is_ISO_646(Item), and returns the Substitute ISO_646 character otherwise.

To_ISO_646
 The function whose first formal parameter, Item, is of type String returns the String whose

Range is 1..Item'Length and each of whose elements is given by To_ISO_646 of the
corresponding element in Item.

Paragraphs 42 through 48 were deleted.

Implementation Advice

This paragraph was deleted.

NOTES
5 A basic letter is a letter without a diacritical mark.

6 Except for the hexadecimal digits, basic letters, and ISO_646 characters, the categories identified in the classification
functions form a strict hierarchy:

— Control characters
— Graphic characters
 — Alphanumeric characters
 — Letters
 — Upper-case letters
 — Lower-case letters
 — Decimal digits
 — Special graphic characters

34

35

36

37

38

39

40

41

49/2

50

51

52

53

54

55

56

57

58

59

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

317 10 November 2006 The Package Characters.Latin_1 A.3.3

A.3.3 The Package Characters.Latin_1
The package Characters.Latin_1 declares constants for characters in ISO 8859-1.

Static Semantics

The library package Characters.Latin_1 has the following declaration:
package Ada.Characters.Latin_1 is
 pragma Pure(Latin_1);

-- Control characters:
 NUL : constant Character := Character'Val(0);
 SOH : constant Character := Character'Val(1);
 STX : constant Character := Character'Val(2);
 ETX : constant Character := Character'Val(3);
 EOT : constant Character := Character'Val(4);
 ENQ : constant Character := Character'Val(5);
 ACK : constant Character := Character'Val(6);
 BEL : constant Character := Character'Val(7);
 BS : constant Character := Character'Val(8);
 HT : constant Character := Character'Val(9);
 LF : constant Character := Character'Val(10);
 VT : constant Character := Character'Val(11);
 FF : constant Character := Character'Val(12);
 CR : constant Character := Character'Val(13);
 SO : constant Character := Character'Val(14);
 SI : constant Character := Character'Val(15);

 DLE : constant Character := Character'Val(16);
 DC1 : constant Character := Character'Val(17);
 DC2 : constant Character := Character'Val(18);
 DC3 : constant Character := Character'Val(19);
 DC4 : constant Character := Character'Val(20);
 NAK : constant Character := Character'Val(21);
 SYN : constant Character := Character'Val(22);
 ETB : constant Character := Character'Val(23);
 CAN : constant Character := Character'Val(24);
 EM : constant Character := Character'Val(25);
 SUB : constant Character := Character'Val(26);
 ESC : constant Character := Character'Val(27);
 FS : constant Character := Character'Val(28);
 GS : constant Character := Character'Val(29);
 RS : constant Character := Character'Val(30);
 US : constant Character := Character'Val(31);

-- ISO 646 graphic characters:
 Space : constant Character := ' '; -- Character'Val(32)
 Exclamation : constant Character := '!'; -- Character'Val(33)
 Quotation : constant Character := '"'; -- Character'Val(34)
 Number_Sign : constant Character := '#'; -- Character'Val(35)
 Dollar_Sign : constant Character := '$'; -- Character'Val(36)
 Percent_Sign : constant Character := '%'; -- Character'Val(37)
 Ampersand : constant Character := '&'; -- Character'Val(38)
 Apostrophe : constant Character := '''; -- Character'Val(39)
 Left_Parenthesis : constant Character := '('; -- Character'Val(40)
 Right_Parenthesis : constant Character := ')'; -- Character'Val(41)
 Asterisk : constant Character := '*'; -- Character'Val(42)
 Plus_Sign : constant Character := '+'; -- Character'Val(43)
 Comma : constant Character := ','; -- Character'Val(44)
 Hyphen : constant Character := '-'; -- Character'Val(45)
 Minus_Sign : Character renames Hyphen;
 Full_Stop : constant Character := '.'; -- Character'Val(46)
 Solidus : constant Character := '/'; -- Character'Val(47)

1

2

3

4

5

6

7

8

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.3.3 The Package Characters.Latin_1 10 November 2006 318

 -- Decimal digits '0' though '9' are at positions 48 through 57
 Colon : constant Character := ':'; -- Character'Val(58)
 Semicolon : constant Character := ';'; -- Character'Val(59)
 Less_Than_Sign : constant Character := '<'; -- Character'Val(60)
 Equals_Sign : constant Character := '='; -- Character'Val(61)
 Greater_Than_Sign : constant Character := '>'; -- Character'Val(62)
 Question : constant Character := '?'; -- Character'Val(63)
 Commercial_At : constant Character := '@'; -- Character'Val(64)
 -- Letters 'A' through 'Z' are at positions 65 through 90
 Left_Square_Bracket : constant Character := '['; -- Character'Val(91)
 Reverse_Solidus : constant Character := '\'; -- Character'Val(92)
 Right_Square_Bracket : constant Character := ']'; -- Character'Val(93)
 Circumflex : constant Character := '^'; -- Character'Val(94)
 Low_Line : constant Character := '_'; -- Character'Val(95)
 Grave : constant Character := '`'; -- Character'Val(96)
 LC_A : constant Character := 'a'; -- Character'Val(97)
 LC_B : constant Character := 'b'; -- Character'Val(98)
 LC_C : constant Character := 'c'; -- Character'Val(99)
 LC_D : constant Character := 'd'; -- Character'Val(100)
 LC_E : constant Character := 'e'; -- Character'Val(101)
 LC_F : constant Character := 'f'; -- Character'Val(102)
 LC_G : constant Character := 'g'; -- Character'Val(103)
 LC_H : constant Character := 'h'; -- Character'Val(104)
 LC_I : constant Character := 'i'; -- Character'Val(105)
 LC_J : constant Character := 'j'; -- Character'Val(106)
 LC_K : constant Character := 'k'; -- Character'Val(107)
 LC_L : constant Character := 'l'; -- Character'Val(108)
 LC_M : constant Character := 'm'; -- Character'Val(109)
 LC_N : constant Character := 'n'; -- Character'Val(110)
 LC_O : constant Character := 'o'; -- Character'Val(111)
 LC_P : constant Character := 'p'; -- Character'Val(112)
 LC_Q : constant Character := 'q'; -- Character'Val(113)
 LC_R : constant Character := 'r'; -- Character'Val(114)
 LC_S : constant Character := 's'; -- Character'Val(115)
 LC_T : constant Character := 't'; -- Character'Val(116)
 LC_U : constant Character := 'u'; -- Character'Val(117)
 LC_V : constant Character := 'v'; -- Character'Val(118)
 LC_W : constant Character := 'w'; -- Character'Val(119)
 LC_X : constant Character := 'x'; -- Character'Val(120)
 LC_Y : constant Character := 'y'; -- Character'Val(121)
 LC_Z : constant Character := 'z'; -- Character'Val(122)
 Left_Curly_Bracket : constant Character := '{'; -- Character'Val(123)
 Vertical_Line : constant Character := '|'; -- Character'Val(124)
 Right_Curly_Bracket : constant Character := '}'; -- Character'Val(125)
 Tilde : constant Character := '~'; -- Character'Val(126)
 DEL : constant Character := Character'Val(127);

-- ISO 6429 control characters:
 IS4 : Character renames FS;
 IS3 : Character renames GS;
 IS2 : Character renames RS;
 IS1 : Character renames US;

9

10

11

12

13

14

15

16

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

319 10 November 2006 The Package Characters.Latin_1 A.3.3

 Reserved_128 : constant Character := Character'Val(128);
 Reserved_129 : constant Character := Character'Val(129);
 BPH : constant Character := Character'Val(130);
 NBH : constant Character := Character'Val(131);
 Reserved_132 : constant Character := Character'Val(132);
 NEL : constant Character := Character'Val(133);
 SSA : constant Character := Character'Val(134);
 ESA : constant Character := Character'Val(135);
 HTS : constant Character := Character'Val(136);
 HTJ : constant Character := Character'Val(137);
 VTS : constant Character := Character'Val(138);
 PLD : constant Character := Character'Val(139);
 PLU : constant Character := Character'Val(140);
 RI : constant Character := Character'Val(141);
 SS2 : constant Character := Character'Val(142);
 SS3 : constant Character := Character'Val(143);

 DCS : constant Character := Character'Val(144);
 PU1 : constant Character := Character'Val(145);
 PU2 : constant Character := Character'Val(146);
 STS : constant Character := Character'Val(147);
 CCH : constant Character := Character'Val(148);
 MW : constant Character := Character'Val(149);
 SPA : constant Character := Character'Val(150);
 EPA : constant Character := Character'Val(151);

 SOS : constant Character := Character'Val(152);
 Reserved_153 : constant Character := Character'Val(153);
 SCI : constant Character := Character'Val(154);
 CSI : constant Character := Character'Val(155);
 ST : constant Character := Character'Val(156);
 OSC : constant Character := Character'Val(157);
 PM : constant Character := Character'Val(158);
 APC : constant Character := Character'Val(159);

-- Other graphic characters:
-- Character positions 160 (16#A0#) .. 175 (16#AF#):
 No_Break_Space : constant Character := ' '; --Character'Val(160)
 NBSP : Character renames No_Break_Space;
 Inverted_Exclamation : constant Character := '¡'; --Character'Val(161)
 Cent_Sign : constant Character := '¢'; --Character'Val(162)
 Pound_Sign : constant Character := '£'; --Character'Val(163)
 Currency_Sign : constant Character := '¤'; --Character'Val(164)
 Yen_Sign : constant Character := '¥'; --Character'Val(165)
 Broken_Bar : constant Character := '¦'; --Character'Val(166)
 Section_Sign : constant Character := '§'; --Character'Val(167)
 Diaeresis : constant Character := '¨'; --Character'Val(168)
 Copyright_Sign : constant Character := '©'; --Character'Val(169)
 Feminine_Ordinal_Indicator : constant Character := 'ª'; --Character'Val(170)
 Left_Angle_Quotation : constant Character := '«'; --Character'Val(171)
 Not_Sign : constant Character := '¬'; --Character'Val(172)
 Soft_Hyphen : constant Character := '-'; --Character'Val(173)
 Registered_Trade_Mark_Sign : constant Character := '®'; --Character'Val(174)
 Macron : constant Character := '¯'; --Character'Val(175)

17

18

19

20

21

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.3.3 The Package Characters.Latin_1 10 November 2006 320

-- Character positions 176 (16#B0#) .. 191 (16#BF#):
 Degree_Sign : constant Character := '°'; --Character'Val(176)
 Ring_Above : Character renames Degree_Sign;
 Plus_Minus_Sign : constant Character := '±'; --Character'Val(177)
 Superscript_Two : constant Character := '²'; --Character'Val(178)
 Superscript_Three : constant Character := '³'; --Character'Val(179)
 Acute : constant Character := '´'; --Character'Val(180)
 Micro_Sign : constant Character := 'µ'; --Character'Val(181)
 Pilcrow_Sign : constant Character := '¶'; --Character'Val(182)
 Paragraph_Sign : Character renames Pilcrow_Sign;
 Middle_Dot : constant Character := '·'; --Character'Val(183)
 Cedilla : constant Character := '¸'; --Character'Val(184)
 Superscript_One : constant Character := '¹'; --Character'Val(185)
 Masculine_Ordinal_Indicator: constant Character := 'º'; --Character'Val(186)
 Right_Angle_Quotation : constant Character := '»'; --Character'Val(187)
 Fraction_One_Quarter : constant Character := '¼'; --Character'Val(188)
 Fraction_One_Half : constant Character := '½'; --Character'Val(189)
 Fraction_Three_Quarters : constant Character := '¾'; --Character'Val(190)
 Inverted_Question : constant Character := '¿'; --Character'Val(191)
-- Character positions 192 (16#C0#) .. 207 (16#CF#):
 UC_A_Grave : constant Character := 'À'; --Character'Val(192)
 UC_A_Acute : constant Character := 'Á'; --Character'Val(193)
 UC_A_Circumflex : constant Character := 'Â'; --Character'Val(194)
 UC_A_Tilde : constant Character := 'Ã'; --Character'Val(195)
 UC_A_Diaeresis : constant Character := 'Ä'; --Character'Val(196)
 UC_A_Ring : constant Character := 'Å'; --Character'Val(197)
 UC_AE_Diphthong : constant Character := 'Æ'; --Character'Val(198)
 UC_C_Cedilla : constant Character := 'Ç'; --Character'Val(199)
 UC_E_Grave : constant Character := 'È'; --Character'Val(200)
 UC_E_Acute : constant Character := 'É'; --Character'Val(201)
 UC_E_Circumflex : constant Character := 'Ê'; --Character'Val(202)
 UC_E_Diaeresis : constant Character := 'Ë'; --Character'Val(203)
 UC_I_Grave : constant Character := 'Ì'; --Character'Val(204)
 UC_I_Acute : constant Character := 'Í'; --Character'Val(205)
 UC_I_Circumflex : constant Character := 'Î'; --Character'Val(206)
 UC_I_Diaeresis : constant Character := 'Ï'; --Character'Val(207)
-- Character positions 208 (16#D0#) .. 223 (16#DF#):
 UC_Icelandic_Eth : constant Character := 'Ð'; --Character'Val(208)
 UC_N_Tilde : constant Character := 'Ñ'; --Character'Val(209)
 UC_O_Grave : constant Character := 'Ò'; --Character'Val(210)
 UC_O_Acute : constant Character := 'Ó'; --Character'Val(211)
 UC_O_Circumflex : constant Character := 'Ô'; --Character'Val(212)
 UC_O_Tilde : constant Character := 'Õ'; --Character'Val(213)
 UC_O_Diaeresis : constant Character := 'Ö'; --Character'Val(214)
 Multiplication_Sign : constant Character := '×'; --Character'Val(215)
 UC_O_Oblique_Stroke : constant Character := 'Ø'; --Character'Val(216)
 UC_U_Grave : constant Character := 'Ù'; --Character'Val(217)
 UC_U_Acute : constant Character := 'Ú'; --Character'Val(218)
 UC_U_Circumflex : constant Character := 'Û'; --Character'Val(219)
 UC_U_Diaeresis : constant Character := 'Ü'; --Character'Val(220)
 UC_Y_Acute : constant Character := 'Ý'; --Character'Val(221)
 UC_Icelandic_Thorn : constant Character := 'Þ'; --Character'Val(222)
 LC_German_Sharp_S : constant Character := 'ß'; --Character'Val(223)

22

23

24

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

321 10 November 2006 The Package Characters.Latin_1 A.3.3

-- Character positions 224 (16#E0#) .. 239 (16#EF#):
 LC_A_Grave : constant Character := 'à'; --Character'Val(224)
 LC_A_Acute : constant Character := 'á'; --Character'Val(225)
 LC_A_Circumflex : constant Character := 'â'; --Character'Val(226)
 LC_A_Tilde : constant Character := 'ã'; --Character'Val(227)
 LC_A_Diaeresis : constant Character := 'ä'; --Character'Val(228)
 LC_A_Ring : constant Character := 'å'; --Character'Val(229)
 LC_AE_Diphthong : constant Character := 'æ'; --Character'Val(230)
 LC_C_Cedilla : constant Character := 'ç'; --Character'Val(231)
 LC_E_Grave : constant Character := 'è'; --Character'Val(232)
 LC_E_Acute : constant Character := 'é'; --Character'Val(233)
 LC_E_Circumflex : constant Character := 'ê'; --Character'Val(234)
 LC_E_Diaeresis : constant Character := 'ë'; --Character'Val(235)
 LC_I_Grave : constant Character := 'ì'; --Character'Val(236)
 LC_I_Acute : constant Character := 'í'; --Character'Val(237)
 LC_I_Circumflex : constant Character := 'î'; --Character'Val(238)
 LC_I_Diaeresis : constant Character := 'ï'; --Character'Val(239)
-- Character positions 240 (16#F0#) .. 255 (16#FF#):
 LC_Icelandic_Eth : constant Character := 'ð'; --Character'Val(240)
 LC_N_Tilde : constant Character := 'ñ'; --Character'Val(241)
 LC_O_Grave : constant Character := 'ò'; --Character'Val(242)
 LC_O_Acute : constant Character := 'ó'; --Character'Val(243)
 LC_O_Circumflex : constant Character := 'ô'; --Character'Val(244)
 LC_O_Tilde : constant Character := 'õ'; --Character'Val(245)
 LC_O_Diaeresis : constant Character := 'ö'; --Character'Val(246)
 Division_Sign : constant Character := '÷'; --Character'Val(247)
 LC_O_Oblique_Stroke : constant Character := 'ø'; --Character'Val(248)
 LC_U_Grave : constant Character := 'ù'; --Character'Val(249)
 LC_U_Acute : constant Character := 'ú'; --Character'Val(250)
 LC_U_Circumflex : constant Character := 'û'; --Character'Val(251)
 LC_U_Diaeresis : constant Character := 'ü'; --Character'Val(252)
 LC_Y_Acute : constant Character := 'ý'; --Character'Val(253)
 LC_Icelandic_Thorn : constant Character := 'þ'; --Character'Val(254)
 LC_Y_Diaeresis : constant Character := 'ÿ'; --Character'Val(255)
end Ada.Characters.Latin_1;

Implementation Permissions

An implementation may provide additional packages as children of Ada.Characters, to declare names for
the symbols of the local character set or other character sets.

25

26

27

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.3.4 The Package Characters.Conversions 10 November 2006 322

A.3.4 The Package Characters.Conversions
Static Semantics

The library package Characters.Conversions has the following declaration:
package Ada.Characters.Conversions is
 pragma Pure(Conversions);

 function Is_Character (Item : in Wide_Character) return Boolean;
 function Is_String (Item : in Wide_String) return Boolean;
 function Is_Character (Item : in Wide_Wide_Character) return Boolean;
 function Is_String (Item : in Wide_Wide_String) return Boolean;
 function Is_Wide_Character (Item : in Wide_Wide_Character)
 return Boolean;
 function Is_Wide_String (Item : in Wide_Wide_String)
 return Boolean;

 function To_Wide_Character (Item : in Character) return Wide_Character;
 function To_Wide_String (Item : in String) return Wide_String;
 function To_Wide_Wide_Character (Item : in Character)
 return Wide_Wide_Character;
 function To_Wide_Wide_String (Item : in String)
 return Wide_Wide_String;
 function To_Wide_Wide_Character (Item : in Wide_Character)
 return Wide_Wide_Character;
 function To_Wide_Wide_String (Item : in Wide_String)
 return Wide_Wide_String;

 function To_Character (Item : in Wide_Character;
 Substitute : in Character := ' ')
 return Character;
 function To_String (Item : in Wide_String;
 Substitute : in Character := ' ')
 return String;
 function To_Character (Item : in Wide_Wide_Character;
 Substitute : in Character := ' ')
 return Character;
 function To_String (Item : in Wide_Wide_String;
 Substitute : in Character := ' ')
 return String;
 function To_Wide_Character (Item : in Wide_Wide_Character;
 Substitute : in Wide_Character := ' ')
 return Wide_Character;
 function To_Wide_String (Item : in Wide_Wide_String;
 Substitute : in Wide_Character := ' ')
 return Wide_String;

end Ada.Characters.Conversions;

The functions in package Characters.Conversions test Wide_Wide_Character or Wide_Character values
for membership in Wide_Character or Character, or convert between corresponding characters of
Wide_Wide_Character, Wide_Character, and Character.

function Is_Character (Item : in Wide_Character) return Boolean;

Returns True if Wide_Character'Pos(Item) <= Character'Pos(Character'Last).

function Is_Character (Item : in Wide_Wide_Character) return Boolean;

Returns True if Wide_Wide_Character'Pos(Item) <= Character'Pos(Character'Last).

function Is_Wide_Character (Item : in Wide_Wide_Character) return Boolean;

Returns True if Wide_Wide_Character'Pos(Item) <= Wide_Character'Pos(Wide_Character'Last).

1/2

2/2

3/2

4/2

5/2

6/2

7/2

8/2

9/2

10/2

11/2

12/2

13/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

323 10 November 2006 The Package Characters.Conversions A.3.4

function Is_String (Item : in Wide_String) return Boolean;
function Is_String (Item : in Wide_Wide_String) return Boolean;

Returns True if Is_Character(Item(I)) is True for each I in Item'Range.

function Is_Wide_String (Item : in Wide_Wide_String) return Boolean;

Returns True if Is_Wide_Character(Item(I)) is True for each I in Item'Range.

function To_Character (Item : in Wide_Character;
 Substitute : in Character := ' ') return Character;
function To_Character (Item : in Wide_Wide_Character;
 Substitute : in Character := ' ') return Character;

Returns the Character corresponding to Item if Is_Character(Item), and returns the Substitute
Character otherwise.

function To_Wide_Character (Item : in Character) return Wide_Character;

Returns the Wide_Character X such that Character'Pos(Item) = Wide_Character'Pos (X).

function To_Wide_Character (Item : in Wide_Wide_Character;
 Substitute : in Wide_Character := ' ')
 return Wide_Character;

Returns the Wide_Character corresponding to Item if Is_Wide_Character(Item), and returns the
Substitute Wide_Character otherwise.

function To_Wide_Wide_Character (Item : in Character)
 return Wide_Wide_Character;

Returns the Wide_Wide_Character X such that Character'Pos(Item) =
Wide_Wide_Character'Pos (X).

function To_Wide_Wide_Character (Item : in Wide_Character)
 return Wide_Wide_Character;

Returns the Wide_Wide_Character X such that Wide_Character'Pos(Item) =
Wide_Wide_Character'Pos (X).

function To_String (Item : in Wide_String;
 Substitute : in Character := ' ') return String;
function To_String (Item : in Wide_Wide_String;
 Substitute : in Character := ' ') return String;

Returns the String whose range is 1..Item'Length and each of whose elements is given by
To_Character of the corresponding element in Item.

function To_Wide_String (Item : in String) return Wide_String;

Returns the Wide_String whose range is 1..Item'Length and each of whose elements is given by
To_Wide_Character of the corresponding element in Item.

function To_Wide_String (Item : in Wide_Wide_String;
 Substitute : in Wide_Character := ' ')
 return Wide_String;

Returns the Wide_String whose range is 1..Item'Length and each of whose elements is given by
To_Wide_Character of the corresponding element in Item with the given Substitute
Wide_Character.

14/2

15/2

16/2

17/2

18/2

19/2

20/2

21/2

22/2

23/2

24/2

25/2

26/2

27/2

28/2

29/2

30/2

31/2

32/2

33/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.3.4 The Package Characters.Conversions 10 November 2006 324

function To_Wide_Wide_String (Item : in String) return Wide_Wide_String;
function To_Wide_Wide_String (Item : in Wide_String)
 return Wide_Wide_String;

Returns the Wide_Wide_String whose range is 1..Item'Length and each of whose elements is
given by To_Wide_Wide_Character of the corresponding element in Item.

A.4 String Handling
This clause presents the specifications of the package Strings and several child packages, which provide
facilities for dealing with string data. Fixed-length, bounded-length, and unbounded-length strings are
supported, for String, Wide_String, and Wide_Wide_String. The string-handling subprograms include
searches for pattern strings and for characters in program-specified sets, translation (via a character-to-
character mapping), and transformation (replacing, inserting, overwriting, and deleting of substrings).

A.4.1 The Package Strings
The package Strings provides declarations common to the string handling packages.

Static Semantics

The library package Strings has the following declaration:
package Ada.Strings is
 pragma Pure(Strings);

 Space : constant Character := ' ';
 Wide_Space : constant Wide_Character := ' ';
 Wide_Wide_Space : constant Wide_Wide_Character := ' ';

 Length_Error, Pattern_Error, Index_Error, Translation_Error : exception;

 type Alignment is (Left, Right, Center);
 type Truncation is (Left, Right, Error);
 type Membership is (Inside, Outside);
 type Direction is (Forward, Backward);
 type Trim_End is (Left, Right, Both);
end Ada.Strings;

A.4.2 The Package Strings.Maps
The package Strings.Maps defines the types, operations, and other entities needed for character sets and
character-to-character mappings.

Static Semantics

The library package Strings.Maps has the following declaration:
package Ada.Strings.Maps is
 pragma Pure(Maps);

 -- Representation for a set of character values:
 type Character_Set is private;
 pragma Preelaborable_Initialization(Character_Set);

 Null_Set : constant Character_Set;

 type Character_Range is
 record
 Low : Character;
 High : Character;
 end record;
 -- Represents Character range Low..High

34/2

35/2

1/2

1

2

3

4/2

5

6

1

2

3/2

4/2

5

6

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

325 10 November 2006 The Package Strings.Maps A.4.2

 type Character_Ranges is array (Positive range <>) of Character_Range;

 function To_Set (Ranges : in Character_Ranges)return Character_Set;

 function To_Set (Span : in Character_Range)return Character_Set;

 function To_Ranges (Set : in Character_Set) return Character_Ranges;

 function "=" (Left, Right : in Character_Set) return Boolean;

 function "not" (Right : in Character_Set) return Character_Set;
 function "and" (Left, Right : in Character_Set) return Character_Set;
 function "or" (Left, Right : in Character_Set) return Character_Set;
 function "xor" (Left, Right : in Character_Set) return Character_Set;
 function "-" (Left, Right : in Character_Set) return Character_Set;

 function Is_In (Element : in Character;
 Set : in Character_Set)
 return Boolean;

 function Is_Subset (Elements : in Character_Set;
 Set : in Character_Set)
 return Boolean;

 function "<=" (Left : in Character_Set;
 Right : in Character_Set)
 return Boolean renames Is_Subset;

 -- Alternative representation for a set of character values:
 subtype Character_Sequence is String;

 function To_Set (Sequence : in Character_Sequence)return Character_Set;

 function To_Set (Singleton : in Character) return Character_Set;

 function To_Sequence (Set : in Character_Set) return Character_Sequence;

 -- Representation for a character to character mapping:
 type Character_Mapping is private;
 pragma Preelaborable_Initialization(Character_Mapping);

 function Value (Map : in Character_Mapping;
 Element : in Character)
 return Character;

 Identity : constant Character_Mapping;

 function To_Mapping (From, To : in Character_Sequence)
 return Character_Mapping;

 function To_Domain (Map : in Character_Mapping)
 return Character_Sequence;
 function To_Range (Map : in Character_Mapping)
 return Character_Sequence;

 type Character_Mapping_Function is
 access function (From : in Character) return Character;

private
 ... -- not specified by the language
end Ada.Strings.Maps;

An object of type Character_Set represents a set of characters.

Null_Set represents the set containing no characters.

An object Obj of type Character_Range represents the set of characters in the range Obj.Low .. Obj.High.

An object Obj of type Character_Ranges represents the union of the sets corresponding to Obj(I) for I in
Obj'Range.

function To_Set (Ranges : in Character_Ranges) return Character_Set;

If Ranges'Length=0 then Null_Set is returned; otherwise the returned value represents the set
corresponding to Ranges.

7

8

9

10

11

12

13

14

15

16

17

18

19

20/2

21

22

23

24

25

26

27

28

29

30

31

32

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.4.2 The Package Strings.Maps 10 November 2006 326

function To_Set (Span : in Character_Range) return Character_Set;

The returned value represents the set containing each character in Span.
function To_Ranges (Set : in Character_Set) return Character_Ranges;

If Set = Null_Set then an empty Character_Ranges array is returned; otherwise the shortest array
of contiguous ranges of Character values in Set, in increasing order of Low, is returned.

function "=" (Left, Right : in Character_Set) return Boolean;

The function "=" returns True if Left and Right represent identical sets, and False otherwise.

Each of the logical operators "not", "and", "or", and "xor" returns a Character_Set value that represents
the set obtained by applying the corresponding operation to the set(s) represented by the parameter(s) of
the operator. "–"(Left, Right) is equivalent to "and"(Left, "not"(Right)).

function Is_In (Element : in Character;
 Set : in Character_Set);
 return Boolean;

Is_In returns True if Element is in Set, and False otherwise.

function Is_Subset (Elements : in Character_Set;
 Set : in Character_Set)
 return Boolean;

Is_Subset returns True if Elements is a subset of Set, and False otherwise.

subtype Character_Sequence is String;

The Character_Sequence subtype is used to portray a set of character values and also to identify
the domain and range of a character mapping.

function To_Set (Sequence : in Character_Sequence) return Character_Set;

function To_Set (Singleton : in Character) return Character_Set;

Sequence portrays the set of character values that it explicitly contains (ignoring duplicates).
Singleton portrays the set comprising a single Character. Each of the To_Set functions returns a
Character_Set value that represents the set portrayed by Sequence or Singleton.

function To_Sequence (Set : in Character_Set) return Character_Sequence;

The function To_Sequence returns a Character_Sequence value containing each of the characters
in the set represented by Set, in ascending order with no duplicates.

type Character_Mapping is private;

An object of type Character_Mapping represents a Character-to-Character mapping.

function Value (Map : in Character_Mapping;
 Element : in Character)
 return Character;

The function Value returns the Character value to which Element maps with respect to the
mapping represented by Map.

A character C matches a pattern character P with respect to a given Character_Mapping value Map if
Value(Map, C) = P. A string S matches a pattern string P with respect to a given Character_Mapping if
their lengths are the same and if each character in S matches its corresponding character in the pattern
string P.

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

327 10 November 2006 The Package Strings.Maps A.4.2

String handling subprograms that deal with character mappings have parameters whose type is
Character_Mapping.

Identity : constant Character_Mapping;

Identity maps each Character to itself.

function To_Mapping (From, To : in Character_Sequence)
 return Character_Mapping;

To_Mapping produces a Character_Mapping such that each element of From maps to the
corresponding element of To, and each other character maps to itself. If From'Length /=
To'Length, or if some character is repeated in From, then Translation_Error is propagated.

function To_Domain (Map : in Character_Mapping) return Character_Sequence;

To_Domain returns the shortest Character_Sequence value D such that each character not in D
maps to itself, and such that the characters in D are in ascending order. The lower bound of D is
1.

function To_Range (Map : in Character_Mapping) return Character_Sequence;

To_Range returns the Character_Sequence value R, such that if D = To_Domain(Map), then R
has the same bounds as D, and D(I) maps to R(I) for each I in D'Range.

An object F of type Character_Mapping_Function maps a Character value C to the Character value
F.all(C), which is said to match C with respect to mapping function F.

NOTES
7 Character_Mapping and Character_Mapping_Function are used both for character equivalence mappings in the search
subprograms (such as for case insensitivity) and as transformational mappings in the Translate subprograms.

8 To_Domain(Identity) and To_Range(Identity) each returns the null string.

Examples

To_Mapping("ABCD", "ZZAB") returns a Character_Mapping that maps 'A' and 'B' to 'Z', 'C' to 'A', 'D' to
'B', and each other Character to itself.

A.4.3 Fixed-Length String Handling
The language-defined package Strings.Fixed provides string-handling subprograms for fixed-length
strings; that is, for values of type Standard.String. Several of these subprograms are procedures that
modify the contents of a String that is passed as an out or an in out parameter; each has additional
parameters to control the effect when the logical length of the result differs from the parameter's length.

For each function that returns a String, the lower bound of the returned value is 1.

The basic model embodied in the package is that a fixed-length string comprises significant characters and
possibly padding (with space characters) on either or both ends. When a shorter string is copied to a longer
string, padding is inserted, and when a longer string is copied to a shorter one, padding is stripped. The
Move procedure in Strings.Fixed, which takes a String as an out parameter, allows the programmer to
control these effects. Similar control is provided by the string transformation procedures.

55

56

57

58

59

60

61

62

63/1

64

65

66

67

1

2

3

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.4.3 Fixed-Length String Handling 10 November 2006 328

Static Semantics

The library package Strings.Fixed has the following declaration:
with Ada.Strings.Maps;
package Ada.Strings.Fixed is
 pragma Preelaborate(Fixed);

-- "Copy" procedure for strings of possibly different lengths
 procedure Move (Source : in String;
 Target : out String;
 Drop : in Truncation := Error;
 Justify : in Alignment := Left;
 Pad : in Character := Space);

-- Search subprograms
 function Index (Source : in String;
 Pattern : in String;
 From : in Positive;
 Going : in Direction := Forward;
 Mapping : in Maps.Character_Mapping := Maps.Identity)
 return Natural;

 function Index (Source : in String;
 Pattern : in String;
 From : in Positive;
 Going : in Direction := Forward;
 Mapping : in Maps.Character_Mapping_Function)
 return Natural;

 function Index (Source : in String;
 Pattern : in String;
 Going : in Direction := Forward;
 Mapping : in Maps.Character_Mapping
 := Maps.Identity)
 return Natural;

 function Index (Source : in String;
 Pattern : in String;
 Going : in Direction := Forward;
 Mapping : in Maps.Character_Mapping_Function)
 return Natural;

 function Index (Source : in String;
 Set : in Maps.Character_Set;
 From : in Positive;
 Test : in Membership := Inside;
 Going : in Direction := Forward)
 return Natural;

 function Index (Source : in String;
 Set : in Maps.Character_Set;
 Test : in Membership := Inside;
 Going : in Direction := Forward)
 return Natural;

 function Index_Non_Blank (Source : in String;
 From : in Positive;
 Going : in Direction := Forward)
 return Natural;

 function Index_Non_Blank (Source : in String;
 Going : in Direction := Forward)
 return Natural;

 function Count (Source : in String;
 Pattern : in String;
 Mapping : in Maps.Character_Mapping
 := Maps.Identity)
 return Natural;

4

5

6

7

8

8.1/2

8.2/2

9

10

10.1/2

11

11.1/2

12

13

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

329 10 November 2006 Fixed-Length String Handling A.4.3

 function Count (Source : in String;
 Pattern : in String;
 Mapping : in Maps.Character_Mapping_Function)
 return Natural;

 function Count (Source : in String;
 Set : in Maps.Character_Set)
 return Natural;

 procedure Find_Token (Source : in String;
 Set : in Maps.Character_Set;
 Test : in Membership;
 First : out Positive;
 Last : out Natural);

-- String translation subprograms
 function Translate (Source : in String;
 Mapping : in Maps.Character_Mapping)
 return String;

 procedure Translate (Source : in out String;
 Mapping : in Maps.Character_Mapping);

 function Translate (Source : in String;
 Mapping : in Maps.Character_Mapping_Function)
 return String;

 procedure Translate (Source : in out String;
 Mapping : in Maps.Character_Mapping_Function);

-- String transformation subprograms
 function Replace_Slice (Source : in String;
 Low : in Positive;
 High : in Natural;
 By : in String)
 return String;

 procedure Replace_Slice (Source : in out String;
 Low : in Positive;
 High : in Natural;
 By : in String;
 Drop : in Truncation := Error;
 Justify : in Alignment := Left;
 Pad : in Character := Space);

 function Insert (Source : in String;
 Before : in Positive;
 New_Item : in String)
 return String;

 procedure Insert (Source : in out String;
 Before : in Positive;
 New_Item : in String;
 Drop : in Truncation := Error);

 function Overwrite (Source : in String;
 Position : in Positive;
 New_Item : in String)
 return String;

 procedure Overwrite (Source : in out String;
 Position : in Positive;
 New_Item : in String;
 Drop : in Truncation := Right);

 function Delete (Source : in String;
 From : in Positive;
 Through : in Natural)
 return String;

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.4.3 Fixed-Length String Handling 10 November 2006 330

 procedure Delete (Source : in out String;
 From : in Positive;
 Through : in Natural;
 Justify : in Alignment := Left;
 Pad : in Character := Space);

 --String selector subprograms
 function Trim (Source : in String;
 Side : in Trim_End)
 return String;

 procedure Trim (Source : in out String;
 Side : in Trim_End;
 Justify : in Alignment := Left;
 Pad : in Character := Space);

 function Trim (Source : in String;
 Left : in Maps.Character_Set;
 Right : in Maps.Character_Set)
 return String;

 procedure Trim (Source : in out String;
 Left : in Maps.Character_Set;
 Right : in Maps.Character_Set;
 Justify : in Alignment := Strings.Left;
 Pad : in Character := Space);

 function Head (Source : in String;
 Count : in Natural;
 Pad : in Character := Space)
 return String;

 procedure Head (Source : in out String;
 Count : in Natural;
 Justify : in Alignment := Left;
 Pad : in Character := Space);

 function Tail (Source : in String;
 Count : in Natural;
 Pad : in Character := Space)
 return String;

 procedure Tail (Source : in out String;
 Count : in Natural;
 Justify : in Alignment := Left;
 Pad : in Character := Space);

--String constructor functions
 function "*" (Left : in Natural;
 Right : in Character) return String;

 function "*" (Left : in Natural;
 Right : in String) return String;

end Ada.Strings.Fixed;

The effects of the above subprograms are as follows.
procedure Move (Source : in String;
 Target : out String;
 Drop : in Truncation := Error;
 Justify : in Alignment := Left;
 Pad : in Character := Space);

The Move procedure copies characters from Source to Target. If Source has the same length as
Target, then the effect is to assign Source to Target. If Source is shorter than Target then:

• If Justify=Left, then Source is copied into the first Source'Length characters of Target.

• If Justify=Right, then Source is copied into the last Source'Length characters of
Target.

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

331 10 November 2006 Fixed-Length String Handling A.4.3

• If Justify=Center, then Source is copied into the middle Source'Length characters of
Target. In this case, if the difference in length between Target and Source is odd, then
the extra Pad character is on the right.

• Pad is copied to each Target character not otherwise assigned.

If Source is longer than Target, then the effect is based on Drop.

• If Drop=Left, then the rightmost Target'Length characters of Source are copied into
Target.

• If Drop=Right, then the leftmost Target'Length characters of Source are copied into
Target.

• If Drop=Error, then the effect depends on the value of the Justify parameter and also
on whether any characters in Source other than Pad would fail to be copied:

• If Justify=Left, and if each of the rightmost Source'Length-Target'Length
characters in Source is Pad, then the leftmost Target'Length characters of Source
are copied to Target.

• If Justify=Right, and if each of the leftmost Source'Length-Target'Length
characters in Source is Pad, then the rightmost Target'Length characters of Source
are copied to Target.

• Otherwise, Length_Error is propagated.

function Index (Source : in String;
 Pattern : in String;
 From : in Positive;
 Going : in Direction := Forward;
 Mapping : in Maps.Character_Mapping := Maps.Identity)
 return Natural;

function Index (Source : in String;
 Pattern : in String;
 From : in Positive;
 Going : in Direction := Forward;
 Mapping : in Maps.Character_Mapping_Function)
 return Natural;

Each Index function searches, starting from From, for a slice of Source, with length
Pattern'Length, that matches Pattern with respect to Mapping; the parameter Going indicates the
direction of the lookup. If From is not in Source'Range, then Index_Error is propagated. If Going
= Forward, then Index returns the smallest index I which is greater than or equal to From such
that the slice of Source starting at I matches Pattern. If Going = Backward, then Index returns the
largest index I such that the slice of Source starting at I matches Pattern and has an upper bound
less than or equal to From. If there is no such slice, then 0 is returned. If Pattern is the null string,
then Pattern_Error is propagated.

48

49

50

51

52

53

54

55

56

56.1/2

56.2/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.4.3 Fixed-Length String Handling 10 November 2006 332

function Index (Source : in String;
 Pattern : in String;
 Going : in Direction := Forward;
 Mapping : in Maps.Character_Mapping
 := Maps.Identity)
 return Natural;

function Index (Source : in String;
 Pattern : in String;
 Going : in Direction := Forward;
 Mapping : in Maps.Character_Mapping_Function)
 return Natural;

If Going = Forward, returns
 Index (Source, Pattern, Source'First, Forward, Mapping);

otherwise returns
 Index (Source, Pattern, Source'Last, Backward, Mapping);

function Index (Source : in String;
 Set : in Maps.Character_Set;
 From : in Positive;
 Test : in Membership := Inside;
 Going : in Direction := Forward)
 return Natural;

Index searches for the first or last occurrence of any of a set of characters (when Test=Inside), or
any of the complement of a set of characters (when Test=Outside). If From is not in
Source'Range, then Index_Error is propagated. Otherwise, it returns the smallest index I >=
From (if Going=Forward) or the largest index I <= From (if Going=Backward) such that
Source(I) satisfies the Test condition with respect to Set; it returns 0 if there is no such Character
in Source.

function Index (Source : in String;
 Set : in Maps.Character_Set;
 Test : in Membership := Inside;
 Going : in Direction := Forward)
 return Natural;

If Going = Forward, returns
 Index (Source, Set, Source'First, Test, Forward);

otherwise returns
 Index (Source, Set, Source'Last, Test, Backward);

function Index_Non_Blank (Source : in String;
 From : in Positive;
 Going : in Direction := Forward)
 return Natural;

Returns Index (Source, Maps.To_Set(Space), From, Outside, Going);

function Index_Non_Blank (Source : in String;
 Going : in Direction := Forward)
 return Natural;

Returns Index(Source, Maps.To_Set(Space), Outside, Going)

57

58/2

58.1/2

58.2/2

58.3/2

58.4/2

58.5/2

59

60/2

60.1/2

60.2/2

60.3/2

60.4/2

60.5/2

61

62

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

333 10 November 2006 Fixed-Length String Handling A.4.3

function Count (Source : in String;
 Pattern : in String;
 Mapping : in Maps.Character_Mapping
 := Maps.Identity)
 return Natural;

function Count (Source : in String;
 Pattern : in String;
 Mapping : in Maps.Character_Mapping_Function)
 return Natural;

Returns the maximum number of nonoverlapping slices of Source that match Pattern with
respect to Mapping. If Pattern is the null string then Pattern_Error is propagated.

function Count (Source : in String;
 Set : in Maps.Character_Set)
 return Natural;

Returns the number of occurrences in Source of characters that are in Set.

procedure Find_Token (Source : in String;
 Set : in Maps.Character_Set;
 Test : in Membership;
 First : out Positive;
 Last : out Natural);

Find_Token returns in First and Last the indices of the beginning and end of the first slice of
Source all of whose elements satisfy the Test condition, and such that the elements (if any)
immediately before and after the slice do not satisfy the Test condition. If no such slice exists,
then the value returned for Last is zero, and the value returned for First is Source'First; however,
if Source'First is not in Positive then Constraint_Error is raised.

function Translate (Source : in String;
 Mapping : in Maps.Character_Mapping)
 return String;

function Translate (Source : in String;
 Mapping : in Maps.Character_Mapping_Function)
 return String;

Returns the string S whose length is Source'Length and such that S(I) is the character to which
Mapping maps the corresponding element of Source, for I in 1..Source'Length.

procedure Translate (Source : in out String;
 Mapping : in Maps.Character_Mapping);

procedure Translate (Source : in out String;
 Mapping : in Maps.Character_Mapping_Function);

Equivalent to Source := Translate(Source, Mapping).

function Replace_Slice (Source : in String;
 Low : in Positive;
 High : in Natural;
 By : in String)
 return String;

If Low > Source'Last+1, or High < Source'First–1, then Index_Error is propagated. Otherwise:
• If High >= Low, then the returned string comprises Source(Source'First..Low–1) & By

& Source(High+1..Source'Last), but with lower bound 1.

• If High < Low, then the returned string is Insert(Source, Before=>Low,
New_Item=>By).

63

64

65

66

67

68/1

69

70

71

72

73

74/1

74.1/1

74.2/1

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.4.3 Fixed-Length String Handling 10 November 2006 334

procedure Replace_Slice (Source : in out String;
 Low : in Positive;
 High : in Natural;
 By : in String;
 Drop : in Truncation := Error;
 Justify : in Alignment := Left;
 Pad : in Character := Space);

Equivalent to Move(Replace_Slice(Source, Low, High, By), Source, Drop, Justify, Pad).

function Insert (Source : in String;
 Before : in Positive;
 New_Item : in String)
 return String;

Propagates Index_Error if Before is not in Source'First .. Source'Last+1; otherwise returns
Source(Source'First..Before–1) & New_Item & Source(Before..Source'Last), but with lower
bound 1.

procedure Insert (Source : in out String;
 Before : in Positive;
 New_Item : in String;
 Drop : in Truncation := Error);

Equivalent to Move(Insert(Source, Before, New_Item), Source, Drop).

function Overwrite (Source : in String;
 Position : in Positive;
 New_Item : in String)
 return String;

Propagates Index_Error if Position is not in Source'First .. Source'Last+1; otherwise returns the
string obtained from Source by consecutively replacing characters starting at Position with
corresponding characters from New_Item. If the end of Source is reached before the characters
in New_Item are exhausted, the remaining characters from New_Item are appended to the string.

procedure Overwrite (Source : in out String;
 Position : in Positive;
 New_Item : in String;
 Drop : in Truncation := Right);

Equivalent to Move(Overwrite(Source, Position, New_Item), Source, Drop).

function Delete (Source : in String;
 From : in Positive;
 Through : in Natural)
 return String;

If From <= Through, the returned string is Replace_Slice(Source, From, Through, ""), otherwise
it is Source with lower bound 1.

procedure Delete (Source : in out String;
 From : in Positive;
 Through : in Natural;
 Justify : in Alignment := Left;
 Pad : in Character := Space);

Equivalent to Move(Delete(Source, From, Through), Source, Justify => Justify, Pad => Pad).

75

76

77

78

79

80

81

82

83

84

85

86/1

87

88

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

335 10 November 2006 Fixed-Length String Handling A.4.3

function Trim (Source : in String;
 Side : in Trim_End)
 return String;

Returns the string obtained by removing from Source all leading Space characters (if Side =
Left), all trailing Space characters (if Side = Right), or all leading and trailing Space characters
(if Side = Both).

procedure Trim (Source : in out String;
 Side : in Trim_End;
 Justify : in Alignment := Left;
 Pad : in Character := Space);

Equivalent to Move(Trim(Source, Side), Source, Justify=>Justify, Pad=>Pad).

function Trim (Source : in String;
 Left : in Maps.Character_Set;
 Right : in Maps.Character_Set)
 return String;

Returns the string obtained by removing from Source all leading characters in Left and all
trailing characters in Right.

procedure Trim (Source : in out String;
 Left : in Maps.Character_Set;
 Right : in Maps.Character_Set;
 Justify : in Alignment := Strings.Left;
 Pad : in Character := Space);

Equivalent to Move(Trim(Source, Left, Right), Source, Justify => Justify, Pad=>Pad).

function Head (Source : in String;
 Count : in Natural;
 Pad : in Character := Space)
 return String;

Returns a string of length Count. If Count <= Source'Length, the string comprises the first Count
characters of Source. Otherwise its contents are Source concatenated with Count–Source'Length
Pad characters.

procedure Head (Source : in out String;
 Count : in Natural;
 Justify : in Alignment := Left;
 Pad : in Character := Space);

Equivalent to Move(Head(Source, Count, Pad), Source, Drop=>Error, Justify=>Justify,
Pad=>Pad).

function Tail (Source : in String;
 Count : in Natural;
 Pad : in Character := Space)
 return String;

Returns a string of length Count. If Count <= Source'Length, the string comprises the last Count
characters of Source. Otherwise its contents are Count-Source'Length Pad characters
concatenated with Source.

procedure Tail (Source : in out String;
 Count : in Natural;
 Justify : in Alignment := Left;
 Pad : in Character := Space);

Equivalent to Move(Tail(Source, Count, Pad), Source, Drop=>Error, Justify=>Justify,
Pad=>Pad).

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.4.3 Fixed-Length String Handling 10 November 2006 336

function "*" (Left : in Natural;
 Right : in Character) return String;

function "*" (Left : in Natural;
 Right : in String) return String;

These functions replicate a character or string a specified number of times. The first function
returns a string whose length is Left and each of whose elements is Right. The second function
returns a string whose length is Left*Right'Length and whose value is the null string if Left = 0
and otherwise is (Left–1)*Right & Right with lower bound 1.

NOTES
9 In the Index and Count functions taking Pattern and Mapping parameters, the actual String parameter passed to Pattern
should comprise characters occurring as target characters of the mapping. Otherwise the pattern will not match.

10 In the Insert subprograms, inserting at the end of a string is obtained by passing Source'Last+1 as the Before
parameter.

11 If a null Character_Mapping_Function is passed to any of the string handling subprograms, Constraint_Error is
propagated.

A.4.4 Bounded-Length String Handling
The language-defined package Strings.Bounded provides a generic package each of whose instances yields
a private type Bounded_String and a set of operations. An object of a particular Bounded_String type
represents a String whose low bound is 1 and whose length can vary conceptually between 0 and a
maximum size established at the generic instantiation. The subprograms for fixed-length string handling
are either overloaded directly for Bounded_String, or are modified as needed to reflect the variability in
length. Additionally, since the Bounded_String type is private, appropriate constructor and selector
operations are provided.

Static Semantics

The library package Strings.Bounded has the following declaration:
with Ada.Strings.Maps;
package Ada.Strings.Bounded is
 pragma Preelaborate(Bounded);

 generic
 Max : Positive; -- Maximum length of a Bounded_String
 package Generic_Bounded_Length is

 Max_Length : constant Positive := Max;

 type Bounded_String is private;

 Null_Bounded_String : constant Bounded_String;

 subtype Length_Range is Natural range 0 .. Max_Length;

 function Length (Source : in Bounded_String) return Length_Range;

 -- Conversion, Concatenation, and Selection functions
 function To_Bounded_String (Source : in String;
 Drop : in Truncation := Error)
 return Bounded_String;

 function To_String (Source : in Bounded_String) return String;

 procedure Set_Bounded_String
 (Target : out Bounded_String;
 Source : in String;
 Drop : in Truncation := Error);

105

106/1

107

108

109

1

2

3

4

5

6

7

8

9

10

11

12

12.1/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

337 10 November 2006 Bounded-Length String Handling A.4.4

 function Append (Left, Right : in Bounded_String;
 Drop : in Truncation := Error)
 return Bounded_String;

 function Append (Left : in Bounded_String;
 Right : in String;
 Drop : in Truncation := Error)
 return Bounded_String;

 function Append (Left : in String;
 Right : in Bounded_String;
 Drop : in Truncation := Error)
 return Bounded_String;

 function Append (Left : in Bounded_String;
 Right : in Character;
 Drop : in Truncation := Error)
 return Bounded_String;

 function Append (Left : in Character;
 Right : in Bounded_String;
 Drop : in Truncation := Error)
 return Bounded_String;

 procedure Append (Source : in out Bounded_String;
 New_Item : in Bounded_String;
 Drop : in Truncation := Error);

 procedure Append (Source : in out Bounded_String;
 New_Item : in String;
 Drop : in Truncation := Error);

 procedure Append (Source : in out Bounded_String;
 New_Item : in Character;
 Drop : in Truncation := Error);

 function "&" (Left, Right : in Bounded_String)
 return Bounded_String;

 function "&" (Left : in Bounded_String; Right : in String)
 return Bounded_String;

 function "&" (Left : in String; Right : in Bounded_String)
 return Bounded_String;

 function "&" (Left : in Bounded_String; Right : in Character)
 return Bounded_String;

 function "&" (Left : in Character; Right : in Bounded_String)
 return Bounded_String;

 function Element (Source : in Bounded_String;
 Index : in Positive)
 return Character;

 procedure Replace_Element (Source : in out Bounded_String;
 Index : in Positive;
 By : in Character);

 function Slice (Source : in Bounded_String;
 Low : in Positive;
 High : in Natural)
 return String;

 function Bounded_Slice
 (Source : in Bounded_String;
 Low : in Positive;
 High : in Natural)
 return Bounded_String;

 procedure Bounded_Slice
 (Source : in Bounded_String;
 Target : out Bounded_String;
 Low : in Positive;
 High : in Natural);

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

28.1/2

28.2/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.4.4 Bounded-Length String Handling 10 November 2006 338

 function "=" (Left, Right : in Bounded_String) return Boolean;
 function "=" (Left : in Bounded_String; Right : in String)
 return Boolean;

 function "=" (Left : in String; Right : in Bounded_String)
 return Boolean;

 function "<" (Left, Right : in Bounded_String) return Boolean;

 function "<" (Left : in Bounded_String; Right : in String)
 return Boolean;

 function "<" (Left : in String; Right : in Bounded_String)
 return Boolean;

 function "<=" (Left, Right : in Bounded_String) return Boolean;

 function "<=" (Left : in Bounded_String; Right : in String)
 return Boolean;

 function "<=" (Left : in String; Right : in Bounded_String)
 return Boolean;

 function ">" (Left, Right : in Bounded_String) return Boolean;

 function ">" (Left : in Bounded_String; Right : in String)
 return Boolean;

 function ">" (Left : in String; Right : in Bounded_String)
 return Boolean;

 function ">=" (Left, Right : in Bounded_String) return Boolean;

 function ">=" (Left : in Bounded_String; Right : in String)
 return Boolean;

 function ">=" (Left : in String; Right : in Bounded_String)
 return Boolean;

 -- Search subprograms
 function Index (Source : in Bounded_String;
 Pattern : in String;
 From : in Positive;
 Going : in Direction := Forward;
 Mapping : in Maps.Character_Mapping := Maps.Identity)
 return Natural;

 function Index (Source : in Bounded_String;
 Pattern : in String;
 From : in Positive;
 Going : in Direction := Forward;
 Mapping : in Maps.Character_Mapping_Function)
 return Natural;

 function Index (Source : in Bounded_String;
 Pattern : in String;
 Going : in Direction := Forward;
 Mapping : in Maps.Character_Mapping
 := Maps.Identity)
 return Natural;

 function Index (Source : in Bounded_String;
 Pattern : in String;
 Going : in Direction := Forward;
 Mapping : in Maps.Character_Mapping_Function)
 return Natural;

 function Index (Source : in Bounded_String;
 Set : in Maps.Character_Set;
 From : in Positive;
 Test : in Membership := Inside;
 Going : in Direction := Forward)
 return Natural;

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43/2

43.1/2

43.2/2

44

45

45.1/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

339 10 November 2006 Bounded-Length String Handling A.4.4

 function Index (Source : in Bounded_String;
 Set : in Maps.Character_Set;
 Test : in Membership := Inside;
 Going : in Direction := Forward)
 return Natural;

 function Index_Non_Blank (Source : in Bounded_String;
 From : in Positive;
 Going : in Direction := Forward)
 return Natural;

 function Index_Non_Blank (Source : in Bounded_String;
 Going : in Direction := Forward)
 return Natural;

 function Count (Source : in Bounded_String;
 Pattern : in String;
 Mapping : in Maps.Character_Mapping
 := Maps.Identity)
 return Natural;

 function Count (Source : in Bounded_String;
 Pattern : in String;
 Mapping : in Maps.Character_Mapping_Function)
 return Natural;

 function Count (Source : in Bounded_String;
 Set : in Maps.Character_Set)
 return Natural;

 procedure Find_Token (Source : in Bounded_String;
 Set : in Maps.Character_Set;
 Test : in Membership;
 First : out Positive;
 Last : out Natural);

 -- String translation subprograms
 function Translate (Source : in Bounded_String;
 Mapping : in Maps.Character_Mapping)
 return Bounded_String;

 procedure Translate (Source : in out Bounded_String;
 Mapping : in Maps.Character_Mapping);

 function Translate (Source : in Bounded_String;
 Mapping : in Maps.Character_Mapping_Function)
 return Bounded_String;

 procedure Translate (Source : in out Bounded_String;
 Mapping : in Maps.Character_Mapping_Function);

 -- String transformation subprograms
 function Replace_Slice (Source : in Bounded_String;
 Low : in Positive;
 High : in Natural;
 By : in String;
 Drop : in Truncation := Error)
 return Bounded_String;

 procedure Replace_Slice (Source : in out Bounded_String;
 Low : in Positive;
 High : in Natural;
 By : in String;
 Drop : in Truncation := Error);

 function Insert (Source : in Bounded_String;
 Before : in Positive;
 New_Item : in String;
 Drop : in Truncation := Error)
 return Bounded_String;

46

46.1/2

47

48

49

50

51

52

53

54

55

56

57

58

59

60

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.4.4 Bounded-Length String Handling 10 November 2006 340

 procedure Insert (Source : in out Bounded_String;
 Before : in Positive;
 New_Item : in String;
 Drop : in Truncation := Error);

 function Overwrite (Source : in Bounded_String;
 Position : in Positive;
 New_Item : in String;
 Drop : in Truncation := Error)
 return Bounded_String;

 procedure Overwrite (Source : in out Bounded_String;
 Position : in Positive;
 New_Item : in String;
 Drop : in Truncation := Error);

 function Delete (Source : in Bounded_String;
 From : in Positive;
 Through : in Natural)
 return Bounded_String;

 procedure Delete (Source : in out Bounded_String;
 From : in Positive;
 Through : in Natural);

 --String selector subprograms
 function Trim (Source : in Bounded_String;
 Side : in Trim_End)
 return Bounded_String;
 procedure Trim (Source : in out Bounded_String;
 Side : in Trim_End);

 function Trim (Source : in Bounded_String;
 Left : in Maps.Character_Set;
 Right : in Maps.Character_Set)
 return Bounded_String;

 procedure Trim (Source : in out Bounded_String;
 Left : in Maps.Character_Set;
 Right : in Maps.Character_Set);

 function Head (Source : in Bounded_String;
 Count : in Natural;
 Pad : in Character := Space;
 Drop : in Truncation := Error)
 return Bounded_String;

 procedure Head (Source : in out Bounded_String;
 Count : in Natural;
 Pad : in Character := Space;
 Drop : in Truncation := Error);

 function Tail (Source : in Bounded_String;
 Count : in Natural;
 Pad : in Character := Space;
 Drop : in Truncation := Error)
 return Bounded_String;

 procedure Tail (Source : in out Bounded_String;
 Count : in Natural;
 Pad : in Character := Space;
 Drop : in Truncation := Error);

 --String constructor subprograms
 function "*" (Left : in Natural;
 Right : in Character)
 return Bounded_String;

 function "*" (Left : in Natural;
 Right : in String)
 return Bounded_String;

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

341 10 November 2006 Bounded-Length String Handling A.4.4

 function "*" (Left : in Natural;
 Right : in Bounded_String)
 return Bounded_String;

 function Replicate (Count : in Natural;
 Item : in Character;
 Drop : in Truncation := Error)
 return Bounded_String;

 function Replicate (Count : in Natural;
 Item : in String;
 Drop : in Truncation := Error)
 return Bounded_String;

 function Replicate (Count : in Natural;
 Item : in Bounded_String;
 Drop : in Truncation := Error)
 return Bounded_String;

 private
 ... -- not specified by the language
 end Generic_Bounded_Length;

end Ada.Strings.Bounded;

Null_Bounded_String represents the null string. If an object of type Bounded_String is not otherwise
initialized, it will be initialized to the same value as Null_Bounded_String.

function Length (Source : in Bounded_String) return Length_Range;

The Length function returns the length of the string represented by Source.

function To_Bounded_String (Source : in String;
 Drop : in Truncation := Error)
 return Bounded_String;

If Source'Length <= Max_Length then this function returns a Bounded_String that represents
Source. Otherwise the effect depends on the value of Drop:

• If Drop=Left, then the result is a Bounded_String that represents the string comprising
the rightmost Max_Length characters of Source.

• If Drop=Right, then the result is a Bounded_String that represents the string
comprising the leftmost Max_Length characters of Source.

• If Drop=Error, then Strings.Length_Error is propagated.

function To_String (Source : in Bounded_String) return String;

To_String returns the String value with lower bound 1 represented by Source. If B is a
Bounded_String, then B = To_Bounded_String(To_String(B)).

procedure Set_Bounded_String
 (Target : out Bounded_String;
 Source : in String;
 Drop : in Truncation := Error);

Equivalent to Target := To_Bounded_String (Source, Drop);

Each of the Append functions returns a Bounded_String obtained by concatenating the string or character
given or represented by one of the parameters, with the string or character given or represented by the
other parameter, and applying To_Bounded_String to the concatenation result string, with Drop as
provided to the Append function.

Each of the procedures Append(Source, New_Item, Drop) has the same effect as the corresponding
assignment Source := Append(Source, New_Item, Drop).

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

92.1/2

92.2/2

93

94

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.4.4 Bounded-Length String Handling 10 November 2006 342

Each of the "&" functions has the same effect as the corresponding Append function, with Error as the
Drop parameter.

function Element (Source : in Bounded_String;
 Index : in Positive)
 return Character;

Returns the character at position Index in the string represented by Source; propagates
Index_Error if Index > Length(Source).

procedure Replace_Element (Source : in out Bounded_String;
 Index : in Positive;
 By : in Character);

Updates Source such that the character at position Index in the string represented by Source is
By; propagates Index_Error if Index > Length(Source).

function Slice (Source : in Bounded_String;
 Low : in Positive;
 High : in Natural)
 return String;

Returns the slice at positions Low through High in the string represented by Source; propagates
Index_Error if Low > Length(Source)+1 or High > Length(Source). The bounds of the returned
string are Low and High..

function Bounded_Slice
 (Source : in Bounded_String;
 Low : in Positive;
 High : in Natural)
 return Bounded_String;

Returns the slice at positions Low through High in the string represented by Source as a bounded
string; propagates Index_Error if Low > Length(Source)+1 or High > Length(Source).

procedure Bounded_Slice
 (Source : in Bounded_String;
 Target : out Bounded_String;
 Low : in Positive;
 High : in Natural);

Equivalent to Target := Bounded_Slice (Source, Low, High);

Each of the functions "=", "<", ">", "<=", and ">=" returns the same result as the corresponding String
operation applied to the String values given or represented by the two parameters.

Each of the search subprograms (Index, Index_Non_Blank, Count, Find_Token) has the same effect as the
corresponding subprogram in Strings.Fixed applied to the string represented by the Bounded_String
parameter.

Each of the Translate subprograms, when applied to a Bounded_String, has an analogous effect to the
corresponding subprogram in Strings.Fixed. For the Translate function, the translation is applied to the
string represented by the Bounded_String parameter, and the result is converted (via To_Bounded_String)
to a Bounded_String. For the Translate procedure, the string represented by the Bounded_String parameter
after the translation is given by the Translate function for fixed-length strings applied to the string
represented by the original value of the parameter.

Each of the transformation subprograms (Replace_Slice, Insert, Overwrite, Delete), selector subprograms
(Trim, Head, Tail), and constructor functions ("*") has an effect based on its corresponding subprogram in
Strings.Fixed, and Replicate is based on Fixed."*". In the case of a function, the corresponding fixed-

95

96

97

98

99

100

101/1

101.1/2

101.2/2

101.3/2

101.4/2

102

103

104

105/1

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

343 10 November 2006 Bounded-Length String Handling A.4.4

length string subprogram is applied to the string represented by the Bounded_String parameter.
To_Bounded_String is applied the result string, with Drop (or Error in the case of
Generic_Bounded_Length."*") determining the effect when the string length exceeds Max_Length. In the
case of a procedure, the corresponding function in Strings.Bounded.Generic_Bounded_Length is applied,
with the result assigned into the Source parameter.

Implementation Advice

Bounded string objects should not be implemented by implicit pointers and dynamic allocation.

A.4.5 Unbounded-Length String Handling
The language-defined package Strings.Unbounded provides a private type Unbounded_String and a set of
operations. An object of type Unbounded_String represents a String whose low bound is 1 and whose
length can vary conceptually between 0 and Natural'Last. The subprograms for fixed-length string
handling are either overloaded directly for Unbounded_String, or are modified as needed to reflect the
flexibility in length. Since the Unbounded_String type is private, relevant constructor and selector
operations are provided.

Static Semantics

The library package Strings.Unbounded has the following declaration:
with Ada.Strings.Maps;
package Ada.Strings.Unbounded is
 pragma Preelaborate(Unbounded);

 type Unbounded_String is private;
 pragma Preelaborable_Initialization(Unbounded_String);

 Null_Unbounded_String : constant Unbounded_String;

 function Length (Source : in Unbounded_String) return Natural;

 type String_Access is access all String;
 procedure Free (X : in out String_Access);

-- Conversion, Concatenation, and Selection functions
 function To_Unbounded_String (Source : in String)
 return Unbounded_String;

 function To_Unbounded_String (Length : in Natural)
 return Unbounded_String;

 function To_String (Source : in Unbounded_String) return String;

 procedure Set_Unbounded_String
 (Target : out Unbounded_String;
 Source : in String);

 procedure Append (Source : in out Unbounded_String;
 New_Item : in Unbounded_String);

 procedure Append (Source : in out Unbounded_String;
 New_Item : in String);

 procedure Append (Source : in out Unbounded_String;
 New_Item : in Character);

 function "&" (Left, Right : in Unbounded_String)
 return Unbounded_String;

 function "&" (Left : in Unbounded_String; Right : in String)
 return Unbounded_String;

 function "&" (Left : in String; Right : in Unbounded_String)
 return Unbounded_String;

106

1

2

3

4/2

5

6

7

8

9

10

11

11.1/2

12

13

14

15

16

17

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.4.5 Unbounded-Length String Handling 10 November 2006 344

 function "&" (Left : in Unbounded_String; Right : in Character)
 return Unbounded_String;

 function "&" (Left : in Character; Right : in Unbounded_String)
 return Unbounded_String;

 function Element (Source : in Unbounded_String;
 Index : in Positive)
 return Character;

 procedure Replace_Element (Source : in out Unbounded_String;
 Index : in Positive;
 By : in Character);

 function Slice (Source : in Unbounded_String;
 Low : in Positive;
 High : in Natural)
 return String;

 function Unbounded_Slice
 (Source : in Unbounded_String;
 Low : in Positive;
 High : in Natural)
 return Unbounded_String;

 procedure Unbounded_Slice
 (Source : in Unbounded_String;
 Target : out Unbounded_String;
 Low : in Positive;
 High : in Natural);

 function "=" (Left, Right : in Unbounded_String) return Boolean;

 function "=" (Left : in Unbounded_String; Right : in String)
 return Boolean;

 function "=" (Left : in String; Right : in Unbounded_String)
 return Boolean;

 function "<" (Left, Right : in Unbounded_String) return Boolean;

 function "<" (Left : in Unbounded_String; Right : in String)
 return Boolean;

 function "<" (Left : in String; Right : in Unbounded_String)
 return Boolean;

 function "<=" (Left, Right : in Unbounded_String) return Boolean;

 function "<=" (Left : in Unbounded_String; Right : in String)
 return Boolean;

 function "<=" (Left : in String; Right : in Unbounded_String)
 return Boolean;

 function ">" (Left, Right : in Unbounded_String) return Boolean;

 function ">" (Left : in Unbounded_String; Right : in String)
 return Boolean;

 function ">" (Left : in String; Right : in Unbounded_String)
 return Boolean;

 function ">=" (Left, Right : in Unbounded_String) return Boolean;

 function ">=" (Left : in Unbounded_String; Right : in String)
 return Boolean;

 function ">=" (Left : in String; Right : in Unbounded_String)
 return Boolean;

-- Search subprograms
 function Index (Source : in Unbounded_String;
 Pattern : in String;
 From : in Positive;
 Going : in Direction := Forward;
 Mapping : in Maps.Character_Mapping := Maps.Identity)
 return Natural;

18

19

20

21

22

22.1/2

22.2/2

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

38.1/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

345 10 November 2006 Unbounded-Length String Handling A.4.5

 function Index (Source : in Unbounded_String;
 Pattern : in String;
 From : in Positive;
 Going : in Direction := Forward;
 Mapping : in Maps.Character_Mapping_Function)
 return Natural;

 function Index (Source : in Unbounded_String;
 Pattern : in String;
 Going : in Direction := Forward;
 Mapping : in Maps.Character_Mapping
 := Maps.Identity)
 return Natural;

 function Index (Source : in Unbounded_String;
 Pattern : in String;
 Going : in Direction := Forward;
 Mapping : in Maps.Character_Mapping_Function)
 return Natural;

 function Index (Source : in Unbounded_String;
 Set : in Maps.Character_Set;
 From : in Positive;
 Test : in Membership := Inside;
 Going : in Direction := Forward)
 return Natural;

 function Index (Source : in Unbounded_String;
 Set : in Maps.Character_Set;
 Test : in Membership := Inside;
 Going : in Direction := Forward) return Natural;

 function Index_Non_Blank (Source : in Unbounded_String;
 From : in Positive;
 Going : in Direction := Forward)
 return Natural;

 function Index_Non_Blank (Source : in Unbounded_String;
 Going : in Direction := Forward)
 return Natural;

 function Count (Source : in Unbounded_String;
 Pattern : in String;
 Mapping : in Maps.Character_Mapping
 := Maps.Identity)
 return Natural;

 function Count (Source : in Unbounded_String;
 Pattern : in String;
 Mapping : in Maps.Character_Mapping_Function)
 return Natural;

 function Count (Source : in Unbounded_String;
 Set : in Maps.Character_Set)
 return Natural;

 procedure Find_Token (Source : in Unbounded_String;
 Set : in Maps.Character_Set;
 Test : in Membership;
 First : out Positive;
 Last : out Natural);

-- String translation subprograms
 function Translate (Source : in Unbounded_String;
 Mapping : in Maps.Character_Mapping)
 return Unbounded_String;

 procedure Translate (Source : in out Unbounded_String;
 Mapping : in Maps.Character_Mapping);

 function Translate (Source : in Unbounded_String;
 Mapping : in Maps.Character_Mapping_Function)
 return Unbounded_String;

38.2/2

39

40

40.1/2

41

41.1/2

42

43

44

45

46

47

48

49

50

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.4.5 Unbounded-Length String Handling 10 November 2006 346

 procedure Translate (Source : in out Unbounded_String;
 Mapping : in Maps.Character_Mapping_Function);

-- String transformation subprograms
 function Replace_Slice (Source : in Unbounded_String;
 Low : in Positive;
 High : in Natural;
 By : in String)
 return Unbounded_String;

 procedure Replace_Slice (Source : in out Unbounded_String;
 Low : in Positive;
 High : in Natural;
 By : in String);

 function Insert (Source : in Unbounded_String;
 Before : in Positive;
 New_Item : in String)
 return Unbounded_String;

 procedure Insert (Source : in out Unbounded_String;
 Before : in Positive;
 New_Item : in String);

 function Overwrite (Source : in Unbounded_String;
 Position : in Positive;
 New_Item : in String)
 return Unbounded_String;

 procedure Overwrite (Source : in out Unbounded_String;
 Position : in Positive;
 New_Item : in String);

 function Delete (Source : in Unbounded_String;
 From : in Positive;
 Through : in Natural)
 return Unbounded_String;

 procedure Delete (Source : in out Unbounded_String;
 From : in Positive;
 Through : in Natural);

 function Trim (Source : in Unbounded_String;
 Side : in Trim_End)
 return Unbounded_String;

 procedure Trim (Source : in out Unbounded_String;
 Side : in Trim_End);

 function Trim (Source : in Unbounded_String;
 Left : in Maps.Character_Set;
 Right : in Maps.Character_Set)
 return Unbounded_String;

 procedure Trim (Source : in out Unbounded_String;
 Left : in Maps.Character_Set;
 Right : in Maps.Character_Set);

 function Head (Source : in Unbounded_String;
 Count : in Natural;
 Pad : in Character := Space)
 return Unbounded_String;

 procedure Head (Source : in out Unbounded_String;
 Count : in Natural;
 Pad : in Character := Space);

 function Tail (Source : in Unbounded_String;
 Count : in Natural;
 Pad : in Character := Space)
 return Unbounded_String;

 procedure Tail (Source : in out Unbounded_String;
 Count : in Natural;
 Pad : in Character := Space);

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

347 10 November 2006 Unbounded-Length String Handling A.4.5

 function "*" (Left : in Natural;
 Right : in Character)
 return Unbounded_String;

 function "*" (Left : in Natural;
 Right : in String)
 return Unbounded_String;

 function "*" (Left : in Natural;
 Right : in Unbounded_String)
 return Unbounded_String;

private
 ... -- not specified by the language
end Ada.Strings.Unbounded;

The type Unbounded_String needs finalization (see 7.6).

Null_Unbounded_String represents the null String. If an object of type Unbounded_String is not otherwise
initialized, it will be initialized to the same value as Null_Unbounded_String.

The function Length returns the length of the String represented by Source.

The type String_Access provides a (non-private) access type for explicit processing of unbounded-length
strings. The procedure Free performs an unchecked deallocation of an object of type String_Access.

The function To_Unbounded_String(Source : in String) returns an Unbounded_String that represents
Source. The function To_Unbounded_String(Length : in Natural) returns an Unbounded_String that
represents an uninitialized String whose length is Length.

The function To_String returns the String with lower bound 1 represented by Source. To_String and
To_Unbounded_String are related as follows:

• If S is a String, then To_String(To_Unbounded_String(S)) = S.

• If U is an Unbounded_String, then To_Unbounded_String(To_String(U)) = U.

The procedure Set_Unbounded_String sets Target to an Unbounded_String that represents Source.

For each of the Append procedures, the resulting string represented by the Source parameter is given by
the concatenation of the original value of Source and the value of New_Item.

Each of the "&" functions returns an Unbounded_String obtained by concatenating the string or character
given or represented by one of the parameters, with the string or character given or represented by the
other parameter, and applying To_Unbounded_String to the concatenation result string.

The Element, Replace_Element, and Slice subprograms have the same effect as the corresponding
bounded-length string subprograms.

The function Unbounded_Slice returns the slice at positions Low through High in the string represented by
Source as an Unbounded_String. The procedure Unbounded_Slice sets Target to the Unbounded_String
representing the slice at positions Low through High in the string represented by Source. Both routines
propagate Index_Error if Low > Length(Source)+1 or High > Length(Source).

Each of the functions "=", "<", ">", "<=", and ">=" returns the same result as the corresponding String
operation applied to the String values given or represented by Left and Right.

Each of the search subprograms (Index, Index_Non_Blank, Count, Find_Token) has the same effect as the
corresponding subprogram in Strings.Fixed applied to the string represented by the Unbounded_String
parameter.

69

70

71

72

72.1/2

73

74

75

76

77

78

79

79.1/2

80

81

82

82.1/2

83

84

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.4.5 Unbounded-Length String Handling 10 November 2006 348

The Translate function has an analogous effect to the corresponding subprogram in Strings.Fixed. The
translation is applied to the string represented by the Unbounded_String parameter, and the result is
converted (via To_Unbounded_String) to an Unbounded_String.

Each of the transformation functions (Replace_Slice, Insert, Overwrite, Delete), selector functions (Trim,
Head, Tail), and constructor functions ("*") is likewise analogous to its corresponding subprogram in
Strings.Fixed. For each of the subprograms, the corresponding fixed-length string subprogram is applied to
the string represented by the Unbounded_String parameter, and To_Unbounded_String is applied the
result string.

For each of the procedures Translate, Replace_Slice, Insert, Overwrite, Delete, Trim, Head, and Tail, the
resulting string represented by the Source parameter is given by the corresponding function for fixed-
length strings applied to the string represented by Source's original value.

Implementation Requirements

No storage associated with an Unbounded_String object shall be lost upon assignment or scope exit.

A.4.6 String-Handling Sets and Mappings
The language-defined package Strings.Maps.Constants declares Character_Set and Character_Mapping
constants corresponding to classification and conversion functions in package Characters.Handling.

Static Semantics

The library package Strings.Maps.Constants has the following declaration:
package Ada.Strings.Maps.Constants is
 pragma Pure(Constants);

 Control_Set : constant Character_Set;
 Graphic_Set : constant Character_Set;
 Letter_Set : constant Character_Set;
 Lower_Set : constant Character_Set;
 Upper_Set : constant Character_Set;
 Basic_Set : constant Character_Set;
 Decimal_Digit_Set : constant Character_Set;
 Hexadecimal_Digit_Set : constant Character_Set;
 Alphanumeric_Set : constant Character_Set;
 Special_Set : constant Character_Set;
 ISO_646_Set : constant Character_Set;

 Lower_Case_Map : constant Character_Mapping;
 --Maps to lower case for letters, else identity
 Upper_Case_Map : constant Character_Mapping;
 --Maps to upper case for letters, else identity
 Basic_Map : constant Character_Mapping;
 --Maps to basic letter for letters, else identity
private
 ... -- not specified by the language
end Ada.Strings.Maps.Constants;

Each of these constants represents a correspondingly named set of characters or character mapping in
Characters.Handling (see A.3.2).

A.4.7 Wide_String Handling
Facilities for handling strings of Wide_Character elements are found in the packages Strings.Wide_Maps,
Strings.Wide_Fixed, Strings.Wide_Bounded, Strings.Wide_Unbounded, and Strings.Wide_Maps.Wide_-

85

86

87

88

1

2

3/2

4

5

6

7

1/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

349 10 November 2006 Wide_String Handling A.4.7

Constants, and in the functions Strings.Wide_Hash, Strings.Wide_Fixed.Wide_Hash, Strings.-
Wide_Bounded.Wide_Hash, and Strings.Wide_Unbounded.Wide_Hash. They provide the same string-
handling operations as the corresponding packages and functions for strings of Character elements.

Static Semantics

The package Strings.Wide_Maps has the following declaration.
package Ada.Strings.Wide_Maps is
 pragma Preelaborate(Wide_Maps);

 -- Representation for a set of Wide_Character values:
 type Wide_Character_Set is private;
 pragma Preelaborable_Initialization(Wide_Character_Set);

 Null_Set : constant Wide_Character_Set;

 type Wide_Character_Range is
 record
 Low : Wide_Character;
 High : Wide_Character;
 end record;
 -- Represents Wide_Character range Low..High
 type Wide_Character_Ranges is array (Positive range <>)
 of Wide_Character_Range;

 function To_Set (Ranges : in Wide_Character_Ranges)
 return Wide_Character_Set;

 function To_Set (Span : in Wide_Character_Range)
 return Wide_Character_Set;

 function To_Ranges (Set : in Wide_Character_Set)
 return Wide_Character_Ranges;

 function "=" (Left, Right : in Wide_Character_Set) return Boolean;

 function "not" (Right : in Wide_Character_Set)
 return Wide_Character_Set;
 function "and" (Left, Right : in Wide_Character_Set)
 return Wide_Character_Set;
 function "or" (Left, Right : in Wide_Character_Set)
 return Wide_Character_Set;
 function "xor" (Left, Right : in Wide_Character_Set)
 return Wide_Character_Set;
 function "-" (Left, Right : in Wide_Character_Set)
 return Wide_Character_Set;

 function Is_In (Element : in Wide_Character;
 Set : in Wide_Character_Set)
 return Boolean;

 function Is_Subset (Elements : in Wide_Character_Set;
 Set : in Wide_Character_Set)
 return Boolean;

 function "<=" (Left : in Wide_Character_Set;
 Right : in Wide_Character_Set)
 return Boolean renames Is_Subset;

 -- Alternative representation for a set of Wide_Character values:
 subtype Wide_Character_Sequence is Wide_String;

 function To_Set (Sequence : in Wide_Character_Sequence)
 return Wide_Character_Set;

 function To_Set (Singleton : in Wide_Character)
 return Wide_Character_Set;

 function To_Sequence (Set : in Wide_Character_Set)
 return Wide_Character_Sequence;

2

3

4/2

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.4.7 Wide_String Handling 10 November 2006 350

 -- Representation for a Wide_Character to Wide_Character mapping:
 type Wide_Character_Mapping is private;
 pragma Preelaborable_Initialization(Wide_Character_Mapping);

 function Value (Map : in Wide_Character_Mapping;
 Element : in Wide_Character)
 return Wide_Character;

 Identity : constant Wide_Character_Mapping;

 function To_Mapping (From, To : in Wide_Character_Sequence)
 return Wide_Character_Mapping;

 function To_Domain (Map : in Wide_Character_Mapping)
 return Wide_Character_Sequence;

 function To_Range (Map : in Wide_Character_Mapping)
 return Wide_Character_Sequence;

 type Wide_Character_Mapping_Function is
 access function (From : in Wide_Character) return Wide_Character;

private
 ... -- not specified by the language
end Ada.Strings.Wide_Maps;

The context clause for each of the packages Strings.Wide_Fixed, Strings.Wide_Bounded, and
Strings.Wide_Unbounded identifies Strings.Wide_Maps instead of Strings.Maps.

For each of the packages Strings.Fixed, Strings.Bounded, Strings.Unbounded, and
Strings.Maps.Constants, and for functions Strings.Hash, Strings.Fixed.Hash, Strings.Bounded.Hash, and
Strings.Unbounded.Hash, the corresponding wide string package has the same contents except that

• Wide_Space replaces Space

• Wide_Character replaces Character

• Wide_String replaces String

• Wide_Character_Set replaces Character_Set

• Wide_Character_Mapping replaces Character_Mapping

• Wide_Character_Mapping_Function replaces Character_Mapping_Function

• Wide_Maps replaces Maps

• Bounded_Wide_String replaces Bounded_String

• Null_Bounded_Wide_String replaces Null_Bounded_String

• To_Bounded_Wide_String replaces To_Bounded_String

• To_Wide_String replaces To_String

• Set_Bounded_Wide_String replaces Set_Bounded_String

• Unbounded_Wide_String replaces Unbounded_String

• Null_Unbounded_Wide_String replaces Null_Unbounded_String

• Wide_String_Access replaces String_Access

• To_Unbounded_Wide_String replaces To_Unbounded_String

• Set_Unbounded_Wide_String replaces Set_Unbounded_String

The following additional declaration is present in Strings.Wide_Maps.Wide_Constants:
Character_Set : constant Wide_Maps.Wide_Character_Set;
--Contains each Wide_Character value WC such that
--Characters.Conversions.Is_Character(WC) is True

20/2

21

22

23

24

25

26

27

28

29/2

30

31

32

33

34

35

36

37

38

39

40

40.1/2

41

42

43

44

44.1/2

45

46/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

351 10 November 2006 Wide_String Handling A.4.7

Each Wide_Character_Set constant in the package Strings.Wide_Maps.Wide_Constants contains no
values outside the Character portion of Wide_Character. Similarly, each Wide_Character_Mapping
constant in this package is the identity mapping when applied to any element outside the Character portion
of Wide_Character.

Pragma Pure is replaced by pragma Preelaborate in Strings.Wide_Maps.Wide_Constants.

NOTES
12 If a null Wide_Character_Mapping_Function is passed to any of the Wide_String handling subprograms,
Constraint_Error is propagated.

This paragraph was deleted.

A.4.8 Wide_Wide_String Handling
Facilities for handling strings of Wide_Wide_Character elements are found in the packages Strings.-
Wide_Wide_Maps, Strings.Wide_Wide_Fixed, Strings.Wide_Wide_Bounded, Strings.Wide_Wide_-
Unbounded, and Strings.Wide_Wide_Maps.Wide_Wide_Constants, and in the functions Strings.-
Wide_Wide_Hash, Strings.Wide_Wide_Fixed.Wide_Wide_Hash, Strings.Wide_Wide_Bounded.Wide_-
Wide_Hash, and Strings.Wide_Wide_Unbounded.Wide_Wide_Hash. They provide the same string-
handling operations as the corresponding packages and functions for strings of Character elements.

Static Semantics

The library package Strings.Wide_Wide_Maps has the following declaration.
package Ada.Strings.Wide_Wide_Maps is
 pragma Preelaborate(Wide_Wide_Maps);

 -- Representation for a set of Wide_Wide_Character values:
 type Wide_Wide_Character_Set is private;
 pragma Preelaborable_Initialization(Wide_Wide_Character_Set);

 Null_Set : constant Wide_Wide_Character_Set;

 type Wide_Wide_Character_Range is
 record
 Low : Wide_Wide_Character;
 High : Wide_Wide_Character;
 end record;
 -- Represents Wide_Wide_Character range Low..High
 type Wide_Wide_Character_Ranges is array (Positive range <>)
 of Wide_Wide_Character_Range;

 function To_Set (Ranges : in Wide_Wide_Character_Ranges)
 return Wide_Wide_Character_Set;

 function To_Set (Span : in Wide_Wide_Character_Range)
 return Wide_Wide_Character_Set;

 function To_Ranges (Set : in Wide_Wide_Character_Set)
 return Wide_Wide_Character_Ranges;

 function "=" (Left, Right : in Wide_Wide_Character_Set) return Boolean;

 function "not" (Right : in Wide_Wide_Character_Set)
 return Wide_Wide_Character_Set;
 function "and" (Left, Right : in Wide_Wide_Character_Set)
 return Wide_Wide_Character_Set;
 function "or" (Left, Right : in Wide_Wide_Character_Set)
 return Wide_Wide_Character_Set;
 function "xor" (Left, Right : in Wide_Wide_Character_Set)
 return Wide_Wide_Character_Set;
 function "-" (Left, Right : in Wide_Wide_Character_Set)
 return Wide_Wide_Character_Set;

46.1/2

46.2/2

47

48/2

1/2

2/2

3/2

4/2

5/2

6/2

7/2

8/2

9/2

10/2

11/2

12/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.4.8 Wide_Wide_String Handling 10 November 2006 352

 function Is_In (Element : in Wide_Wide_Character;
 Set : in Wide_Wide_Character_Set)
 return Boolean;

 function Is_Subset (Elements : in Wide_Wide_Character_Set;
 Set : in Wide_Wide_Character_Set)
 return Boolean;

 function "<=" (Left : in Wide_Wide_Character_Set;
 Right : in Wide_Wide_Character_Set)
 return Boolean renames Is_Subset;

 -- Alternative representation for a set of Wide_Wide_Character values:
 subtype Wide_Wide_Character_Sequence is Wide_Wide_String;

 function To_Set (Sequence : in Wide_Wide_Character_Sequence)
 return Wide_Wide_Character_Set;

 function To_Set (Singleton : in Wide_Wide_Character)
 return Wide_Wide_Character_Set;

 function To_Sequence (Set : in Wide_Wide_Character_Set)
 return Wide_Wide_Character_Sequence;

 -- Representation for a Wide_Wide_Character to Wide_Wide_Character
 -- mapping:
 type Wide_Wide_Character_Mapping is private;
 pragma Preelaborable_Initialization(Wide_Wide_Character_Mapping);

 function Value (Map : in Wide_Wide_Character_Mapping;
 Element : in Wide_Wide_Character)
 return Wide_Wide_Character;

 Identity : constant Wide_Wide_Character_Mapping;

 function To_Mapping (From, To : in Wide_Wide_Character_Sequence)
 return Wide_Wide_Character_Mapping;

 function To_Domain (Map : in Wide_Wide_Character_Mapping)
 return Wide_Wide_Character_Sequence;

 function To_Range (Map : in Wide_Wide_Character_Mapping)
 return Wide_Wide_Character_Sequence;

 type Wide_Wide_Character_Mapping_Function is
 access function (From : in Wide_Wide_Character)
 return Wide_Wide_Character;

private
 ... -- not specified by the language
end Ada.Strings.Wide_Wide_Maps;

The context clause for each of the packages Strings.Wide_Wide_Fixed, Strings.Wide_Wide_Bounded, and
Strings.Wide_Wide_Unbounded identifies Strings.Wide_Wide_Maps instead of Strings.Maps.

For each of the packages Strings.Fixed, Strings.Bounded, Strings.Unbounded, and Strings.-
Maps.Constants, and for functions Strings.Hash, Strings.Fixed.Hash, Strings.Bounded.Hash, and Strings.-
Unbounded.Hash, the corresponding wide wide string package or function has the same contents except
that

• Wide_Wide_Space replaces Space

• Wide_Wide_Character replaces Character

• Wide_Wide_String replaces String

• Wide_Wide_Character_Set replaces Character_Set

• Wide_Wide_Character_Mapping replaces Character_Mapping

• Wide_Wide_Character_Mapping_Function replaces Character_Mapping_Function

• Wide_Wide_Maps replaces Maps

13/2

14/2

15/2

16/2

17/2

18/2

19/2

20/2

21/2

22/2

23/2

24/2

25/2

26/2

27/2

28/2

29/2

30/2

31/2

32/2

33/2

34/2

35/2

36/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

353 10 November 2006 Wide_Wide_String Handling A.4.8

• Bounded_Wide_Wide_String replaces Bounded_String

• Null_Bounded_Wide_Wide_String replaces Null_Bounded_String

• To_Bounded_Wide_Wide_String replaces To_Bounded_String

• To_Wide_Wide_String replaces To_String

• Set_Bounded_Wide_Wide_String replaces Set_Bounded_String

• Unbounded_Wide_Wide_String replaces Unbounded_String

• Null_Unbounded_Wide_Wide_String replaces Null_Unbounded_String

• Wide_Wide_String_Access replaces String_Access

• To_Unbounded_Wide_Wide_String replaces To_Unbounded_String

• Set_Unbounded_Wide_Wide_String replaces Set_Unbounded_String

The following additional declarations are present in Strings.Wide_Wide_Maps.Wide_Wide_Constants:
Character_Set : constant Wide_Wide_Maps.Wide_Wide_Character_Set;
-- Contains each Wide_Wide_Character value WWC such that
-- Characters.Conversions.Is_Character(WWC) is True
Wide_Character_Set : constant Wide_Wide_Maps.Wide_Wide_Character_Set;
-- Contains each Wide_Wide_Character value WWC such that
-- Characters.Conversions.Is_Wide_Character(WWC) is True

Each Wide_Wide_Character_Set constant in the package Strings.Wide_Wide_Maps.Wide_Wide_-
Constants contains no values outside the Character portion of Wide_Wide_Character. Similarly, each
Wide_Wide_Character_Mapping constant in this package is the identity mapping when applied to any
element outside the Character portion of Wide_Wide_Character.

Pragma Pure is replaced by pragma Preelaborate in Strings.Wide_Wide_Maps.Wide_Wide_Constants.

NOTES
13 If a null Wide_Wide_Character_Mapping_Function is passed to any of the Wide_Wide_String handling subprograms,
Constraint_Error is propagated.

A.4.9 String Hashing
Static Semantics

The library function Strings.Hash has the following declaration:
with Ada.Containers;
function Ada.Strings.Hash (Key : String) return Containers.Hash_Type;
pragma Pure(Hash);

Returns an implementation-defined value which is a function of the value of Key. If A and B are
strings such that A equals B, Hash(A) equals Hash(B).

The library function Strings.Fixed.Hash has the following declaration:
with Ada.Containers, Ada.Strings.Hash;
function Ada.Strings.Fixed.Hash (Key : String) return Containers.Hash_Type
 renames Ada.Strings.Hash;
pragma Pure(Hash);

37/2

38/2

39/2

40/2

41/2

42/2

43/2

44/2

45/2

46/2

47/2

48/2

49/2

50/2

51/2

1/2

2/2

3/2

4/2

5/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.4.9 String Hashing 10 November 2006 354

The generic library function Strings.Bounded.Hash has the following declaration:
with Ada.Containers;
generic
 with package Bounded is
 new Ada.Strings.Bounded.Generic_Bounded_Length (<>);
function Ada.Strings.Bounded.Hash (Key : Bounded.Bounded_String)
 return Containers.Hash_Type;
pragma Preelaborate(Hash);

Strings.Bounded.Hash is equivalent to the function call Strings.Hash (Bounded.To_String
(Key));

The library function Strings.Unbounded.Hash has the following declaration:
with Ada.Containers;
function Ada.Strings.Unbounded.Hash (Key : Unbounded_String)
 return Containers.Hash_Type;
pragma Preelaborate(Hash);

Strings.Unbounded.Hash is equivalent to the function call Strings.Hash (To_String (Key));

Implementation Advice

The Hash functions should be good hash functions, returning a wide spread of values for different string
values. It should be unlikely for similar strings to return the same value.

A.5 The Numerics Packages
The library package Numerics is the parent of several child units that provide facilities for mathematical
computation. One child, the generic package Generic_Elementary_Functions, is defined in A.5.1, together
with nongeneric equivalents; two others, the package Float_Random and the generic package
Discrete_Random, are defined in A.5.2. Additional (optional) children are defined in Annex G,
“Numerics”.

Static Semantics

This paragraph was deleted.
package Ada.Numerics is
 pragma Pure(Numerics);
 Argument_Error : exception;
 Pi : constant :=
 3.14159_26535_89793_23846_26433_83279_50288_41971_69399_37511;
 π : constant := Pi;
 e : constant :=
 2.71828_18284_59045_23536_02874_71352_66249_77572_47093_69996;
end Ada.Numerics;

The Argument_Error exception is raised by a subprogram in a child unit of Numerics to signal that one or
more of the actual subprogram parameters are outside the domain of the corresponding mathematical
function.

Implementation Permissions

The implementation may specify the values of Pi and e to a larger number of significant digits.

6/2

7/2

8/2

9/2

10/2

11/2

12/2

1

2/1

3/2

4

5

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

355 10 November 2006 Elementary Functions A.5.1

A.5.1 Elementary Functions
Implementation-defined approximations to the mathematical functions known as the “elementary
functions” are provided by the subprograms in Numerics.Generic_Elementary_Functions. Nongeneric
equivalents of this generic package for each of the predefined floating point types are also provided as
children of Numerics.

Static Semantics

The generic library package Numerics.Generic_Elementary_Functions has the following declaration:
generic
 type Float_Type is digits <>;

package Ada.Numerics.Generic_Elementary_Functions is
 pragma Pure(Generic_Elementary_Functions);

 function Sqrt (X : Float_Type'Base) return Float_Type'Base;
 function Log (X : Float_Type'Base) return Float_Type'Base;
 function Log (X, Base : Float_Type'Base) return Float_Type'Base;
 function Exp (X : Float_Type'Base) return Float_Type'Base;
 function "**" (Left, Right : Float_Type'Base) return Float_Type'Base;

 function Sin (X : Float_Type'Base) return Float_Type'Base;
 function Sin (X, Cycle : Float_Type'Base) return Float_Type'Base;
 function Cos (X : Float_Type'Base) return Float_Type'Base;
 function Cos (X, Cycle : Float_Type'Base) return Float_Type'Base;
 function Tan (X : Float_Type'Base) return Float_Type'Base;
 function Tan (X, Cycle : Float_Type'Base) return Float_Type'Base;
 function Cot (X : Float_Type'Base) return Float_Type'Base;
 function Cot (X, Cycle : Float_Type'Base) return Float_Type'Base;

 function Arcsin (X : Float_Type'Base) return Float_Type'Base;
 function Arcsin (X, Cycle : Float_Type'Base) return Float_Type'Base;
 function Arccos (X : Float_Type'Base) return Float_Type'Base;
 function Arccos (X, Cycle : Float_Type'Base) return Float_Type'Base;
 function Arctan (Y : Float_Type'Base;
 X : Float_Type'Base := 1.0)
 return Float_Type'Base;
 function Arctan (Y : Float_Type'Base;
 X : Float_Type'Base := 1.0;
 Cycle : Float_Type'Base) return Float_Type'Base;
 function Arccot (X : Float_Type'Base;
 Y : Float_Type'Base := 1.0)
 return Float_Type'Base;
 function Arccot (X : Float_Type'Base;
 Y : Float_Type'Base := 1.0;
 Cycle : Float_Type'Base) return Float_Type'Base;

 function Sinh (X : Float_Type'Base) return Float_Type'Base;
 function Cosh (X : Float_Type'Base) return Float_Type'Base;
 function Tanh (X : Float_Type'Base) return Float_Type'Base;
 function Coth (X : Float_Type'Base) return Float_Type'Base;
 function Arcsinh (X : Float_Type'Base) return Float_Type'Base;
 function Arccosh (X : Float_Type'Base) return Float_Type'Base;
 function Arctanh (X : Float_Type'Base) return Float_Type'Base;
 function Arccoth (X : Float_Type'Base) return Float_Type'Base;

end Ada.Numerics.Generic_Elementary_Functions;

The library package Numerics.Elementary_Functions is declared pure and defines the same subprograms
as Numerics.Generic_Elementary_Functions, except that the predefined type Float is systematically
substituted for Float_Type'Base throughout. Nongeneric equivalents of Numerics.Generic_Elementary_-
Functions for each of the other predefined floating point types are defined similarly, with the names
Numerics.Short_Elementary_Functions, Numerics.Long_Elementary_Functions, etc.

1

2

3

4

5

6

7

8

9/1

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.5.1 Elementary Functions 10 November 2006 356

The functions have their usual mathematical meanings. When the Base parameter is specified, the Log
function computes the logarithm to the given base; otherwise, it computes the natural logarithm. When the
Cycle parameter is specified, the parameter X of the forward trigonometric functions (Sin, Cos, Tan, and
Cot) and the results of the inverse trigonometric functions (Arcsin, Arccos, Arctan, and Arccot) are
measured in units such that a full cycle of revolution has the given value; otherwise, they are measured in
radians.

The computed results of the mathematically multivalued functions are rendered single-valued by the
following conventions, which are meant to imply the principal branch:

• The results of the Sqrt and Arccosh functions and that of the exponentiation operator are
nonnegative.

• The result of the Arcsin function is in the quadrant containing the point (1.0, x), where x is the
value of the parameter X. This quadrant is I or IV; thus, the range of the Arcsin function is
approximately –π/2.0 to π/2.0 (–Cycle/4.0 to Cycle/4.0, if the parameter Cycle is specified).

• The result of the Arccos function is in the quadrant containing the point (x, 1.0), where x is the
value of the parameter X. This quadrant is I or II; thus, the Arccos function ranges from 0.0 to
approximately π (Cycle/2.0, if the parameter Cycle is specified).

• The results of the Arctan and Arccot functions are in the quadrant containing the point (x, y),
where x and y are the values of the parameters X and Y, respectively. This may be any quadrant
(I through IV) when the parameter X (resp., Y) of Arctan (resp., Arccot) is specified, but it is
restricted to quadrants I and IV (resp., I and II) when that parameter is omitted. Thus, the range
when that parameter is specified is approximately –π to π (–Cycle/2.0 to Cycle/2.0, if the
parameter Cycle is specified); when omitted, the range of Arctan (resp., Arccot) is that of Arcsin
(resp., Arccos), as given above. When the point (x, y) lies on the negative x-axis, the result
approximates

• π (resp., –π) when the sign of the parameter Y is positive (resp., negative), if
Float_Type'Signed_Zeros is True;

• π, if Float_Type'Signed_Zeros is False.

(In the case of the inverse trigonometric functions, in which a result lying on or near one of the axes may
not be exactly representable, the approximation inherent in computing the result may place it in an
adjacent quadrant, close to but on the wrong side of the axis.)

Dynamic Semantics

The exception Numerics.Argument_Error is raised, signaling a parameter value outside the domain of the
corresponding mathematical function, in the following cases:

• by any forward or inverse trigonometric function with specified cycle, when the value of the
parameter Cycle is zero or negative;

• by the Log function with specified base, when the value of the parameter Base is zero, one, or
negative;

• by the Sqrt and Log functions, when the value of the parameter X is negative;

• by the exponentiation operator, when the value of the left operand is negative or when both
operands have the value zero;

• by the Arcsin, Arccos, and Arctanh functions, when the absolute value of the parameter X
exceeds one;

• by the Arctan and Arccot functions, when the parameters X and Y both have the value zero;

• by the Arccosh function, when the value of the parameter X is less than one; and

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

357 10 November 2006 Elementary Functions A.5.1

• by the Arccoth function, when the absolute value of the parameter X is less than one.

The exception Constraint_Error is raised, signaling a pole of the mathematical function (analogous to
dividing by zero), in the following cases, provided that Float_Type'Machine_Overflows is True:

• by the Log, Cot, and Coth functions, when the value of the parameter X is zero;

• by the exponentiation operator, when the value of the left operand is zero and the value of the
exponent is negative;

• by the Tan function with specified cycle, when the value of the parameter X is an odd multiple
of the quarter cycle;

• by the Cot function with specified cycle, when the value of the parameter X is zero or a multiple
of the half cycle; and

• by the Arctanh and Arccoth functions, when the absolute value of the parameter X is one.

Constraint_Error can also be raised when a finite result overflows (see G.2.4); this may occur for
parameter values sufficiently near poles, and, in the case of some of the functions, for parameter values
with sufficiently large magnitudes. When Float_Type'Machine_Overflows is False, the result at poles is
unspecified.

When one parameter of a function with multiple parameters represents a pole and another is outside the
function's domain, the latter takes precedence (i.e., Numerics.Argument_Error is raised).

Implementation Requirements

In the implementation of Numerics.Generic_Elementary_Functions, the range of intermediate values
allowed during the calculation of a final result shall not be affected by any range constraint of the subtype
Float_Type.

In the following cases, evaluation of an elementary function shall yield the prescribed result, provided that
the preceding rules do not call for an exception to be raised:

• When the parameter X has the value zero, the Sqrt, Sin, Arcsin, Tan, Sinh, Arcsinh, Tanh, and
Arctanh functions yield a result of zero, and the Exp, Cos, and Cosh functions yield a result of
one.

• When the parameter X has the value one, the Sqrt function yields a result of one, and the Log,
Arccos, and Arccosh functions yield a result of zero.

• When the parameter Y has the value zero and the parameter X has a positive value, the Arctan
and Arccot functions yield a result of zero.

• The results of the Sin, Cos, Tan, and Cot functions with specified cycle are exact when the
mathematical result is zero; those of the first two are also exact when the mathematical result is
± 1.0.

• Exponentiation by a zero exponent yields the value one. Exponentiation by a unit exponent
yields the value of the left operand. Exponentiation of the value one yields the value one.
Exponentiation of the value zero yields the value zero.

Other accuracy requirements for the elementary functions, which apply only in implementations
conforming to the Numerics Annex, and then only in the “strict” mode defined there (see G.2), are given
in G.2.4.

When Float_Type'Signed_Zeros is True, the sign of a zero result shall be as follows:

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.5.1 Elementary Functions 10 November 2006 358

• A prescribed zero result delivered at the origin by one of the odd functions (Sin, Arcsin, Sinh,
Arcsinh, Tan, Arctan or Arccot as a function of Y when X is fixed and positive, Tanh, and
Arctanh) has the sign of the parameter X (Y, in the case of Arctan or Arccot).

• A prescribed zero result delivered by one of the odd functions away from the origin, or by some
other elementary function, has an implementation-defined sign.

• A zero result that is not a prescribed result (i.e., one that results from rounding or underflow) has
the correct mathematical sign.

Implementation Permissions

The nongeneric equivalent packages may, but need not, be actual instantiations of the generic package for
the appropriate predefined type.

A.5.2 Random Number Generation
Facilities for the generation of pseudo-random floating point numbers are provided in the package
Numerics.Float_Random; the generic package Numerics.Discrete_Random provides similar facilities for
the generation of pseudo-random integers and pseudo-random values of enumeration types. For brevity,
pseudo-random values of any of these types are called random numbers.

Some of the facilities provided are basic to all applications of random numbers. These include a limited
private type each of whose objects serves as the generator of a (possibly distinct) sequence of random
numbers; a function to obtain the “next” random number from a given sequence of random numbers (that
is, from its generator); and subprograms to initialize or reinitialize a given generator to a time-dependent
state or a state denoted by a single integer.

Other facilities are provided specifically for advanced applications. These include subprograms to save
and restore the state of a given generator; a private type whose objects can be used to hold the saved state
of a generator; and subprograms to obtain a string representation of a given generator state, or, given such
a string representation, the corresponding state.

Static Semantics

The library package Numerics.Float_Random has the following declaration:
package Ada.Numerics.Float_Random is

 -- Basic facilities
 type Generator is limited private;

 subtype Uniformly_Distributed is Float range 0.0 .. 1.0;
 function Random (Gen : Generator) return Uniformly_Distributed;

 procedure Reset (Gen : in Generator;
 Initiator : in Integer);
 procedure Reset (Gen : in Generator);

 -- Advanced facilities
 type State is private;

 procedure Save (Gen : in Generator;
 To_State : out State);
 procedure Reset (Gen : in Generator;
 From_State : in State);

 Max_Image_Width : constant := implementation-defined integer value;
 function Image (Of_State : State) return String;
 function Value (Coded_State : String) return State;

45

46

47

48

1

2

3

4

5

6

7

8

9

10

11

12

13

14

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

359 10 November 2006 Random Number Generation A.5.2

private
 ... -- not specified by the language
end Ada.Numerics.Float_Random;

The type Generator needs finalization (see 7.6).

The generic library package Numerics.Discrete_Random has the following declaration:

generic
 type Result_Subtype is (<>);
package Ada.Numerics.Discrete_Random is

 -- Basic facilities
 type Generator is limited private;

 function Random (Gen : Generator) return Result_Subtype;

 procedure Reset (Gen : in Generator;
 Initiator : in Integer);
 procedure Reset (Gen : in Generator);

 -- Advanced facilities
 type State is private;

 procedure Save (Gen : in Generator;
 To_State : out State);
 procedure Reset (Gen : in Generator;
 From_State : in State);

 Max_Image_Width : constant := implementation-defined integer value;
 function Image (Of_State : State) return String;
 function Value (Coded_State : String) return State;

private
 ... -- not specified by the language
end Ada.Numerics.Discrete_Random;

The type Generator needs finalization (see 7.6) in every instantiation of Numerics.Discrete_Random.

An object of the limited private type Generator is associated with a sequence of random numbers. Each
generator has a hidden (internal) state, which the operations on generators use to determine the position in
the associated sequence. All generators are implicitly initialized to an unspecified state that does not vary
from one program execution to another; they may also be explicitly initialized, or reinitialized, to a time-
dependent state, to a previously saved state, or to a state uniquely denoted by an integer value.

An object of the private type State can be used to hold the internal state of a generator. Such objects are
only needed if the application is designed to save and restore generator states or to examine or
manufacture them.

The operations on generators affect the state and therefore the future values of the associated sequence.
The semantics of the operations on generators and states are defined below.

function Random (Gen : Generator) return Uniformly_Distributed;
function Random (Gen : Generator) return Result_Subtype;

Obtains the “next” random number from the given generator, relative to its current state,
according to an implementation-defined algorithm. The result of the function in
Numerics.Float_Random is delivered as a value of the subtype Uniformly_Distributed, which is
a subtype of the predefined type Float having a range of 0.0 .. 1.0. The result of the function in
an instantiation of Numerics.Discrete_Random is delivered as a value of the generic formal
subtype Result_Subtype.

15

15.1/2

16

17

18

19

20

21

22

23

24

25

26

27

27.1/2

28

29

30

31

32

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.5.2 Random Number Generation 10 November 2006 360

procedure Reset (Gen : in Generator;
 Initiator : in Integer);
procedure Reset (Gen : in Generator);

Sets the state of the specified generator to one that is an unspecified function of the value of the
parameter Initiator (or to a time-dependent state, if only a generator parameter is specified). The
latter form of the procedure is known as the time-dependent Reset procedure.

procedure Save (Gen : in Generator;
 To_State : out State);
procedure Reset (Gen : in Generator;
 From_State : in State);

Save obtains the current state of a generator. Reset gives a generator the specified state. A
generator that is reset to a state previously obtained by invoking Save is restored to the state it
had when Save was invoked.

function Image (Of_State : State) return String;
function Value (Coded_State : String) return State;

Image provides a representation of a state coded (in an implementation-defined way) as a string
whose length is bounded by the value of Max_Image_Width. Value is the inverse of Image:
Value(Image(S)) = S for each state S that can be obtained from a generator by invoking Save.

Dynamic Semantics

Instantiation of Numerics.Discrete_Random with a subtype having a null range raises Constraint_Error.

This paragraph was deleted.

Bounded (Run-Time) Errors

It is a bounded error to invoke Value with a string that is not the image of any generator state. If the error
is detected, Constraint_Error or Program_Error is raised. Otherwise, a call to Reset with the resulting state
will produce a generator such that calls to Random with this generator will produce a sequence of values
of the appropriate subtype, but which might not be random in character. That is, the sequence of values
might not fulfill the implementation requirements of this subclause.

Implementation Requirements

A sufficiently long sequence of random numbers obtained by successive calls to Random is approximately
uniformly distributed over the range of the result subtype.

The Random function in an instantiation of Numerics.Discrete_Random is guaranteed to yield each value
in its result subtype in a finite number of calls, provided that the number of such values does not exceed 2
15.

Other performance requirements for the random number generator, which apply only in implementations
conforming to the Numerics Annex, and then only in the “strict” mode defined there (see G.2), are given
in G.2.5.

Documentation Requirements

No one algorithm for random number generation is best for all applications. To enable the user to
determine the suitability of the random number generators for the intended application, the implementation
shall describe the algorithm used and shall give its period, if known exactly, or a lower bound on the
period, if the exact period is unknown. Periods that are so long that the periodicity is unobservable in
practice can be described in such terms, without giving a numerical bound.

33

34

35

36

37

38

39

40/1

40.1/1

41

42

43

44

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

361 10 November 2006 Random Number Generation A.5.2

The implementation also shall document the minimum time interval between calls to the time-dependent
Reset procedure that are guaranteed to initiate different sequences, and it shall document the nature of the
strings that Value will accept without raising Constraint_Error.

Implementation Advice

Any storage associated with an object of type Generator should be reclaimed on exit from the scope of the
object.

If the generator period is sufficiently long in relation to the number of distinct initiator values, then each
possible value of Initiator passed to Reset should initiate a sequence of random numbers that does not, in a
practical sense, overlap the sequence initiated by any other value. If this is not possible, then the mapping
between initiator values and generator states should be a rapidly varying function of the initiator value.

NOTES
14 If two or more tasks are to share the same generator, then the tasks have to synchronize their access to the generator as
for any shared variable (see 9.10).

15 Within a given implementation, a repeatable random number sequence can be obtained by relying on the implicit
initialization of generators or by explicitly initializing a generator with a repeatable initiator value. Different sequences of
random numbers can be obtained from a given generator in different program executions by explicitly initializing the
generator to a time-dependent state.

16 A given implementation of the Random function in Numerics.Float_Random may or may not be capable of delivering
the values 0.0 or 1.0. Portable applications should assume that these values, or values sufficiently close to them to behave
indistinguishably from them, can occur. If a sequence of random integers from some fixed range is needed, the application
should use the Random function in an appropriate instantiation of Numerics.Discrete_Random, rather than transforming
the result of the Random function in Numerics.Float_Random. However, some applications with unusual requirements,
such as for a sequence of random integers each drawn from a different range, will find it more convenient to transform the
result of the floating point Random function. For M ≥ 1, the expression

 Integer(Float(M) * Random(G)) mod M

transforms the result of Random(G) to an integer uniformly distributed over the range 0 .. M–1; it is valid even if Random
delivers 0.0 or 1.0. Each value of the result range is possible, provided that M is not too large. Exponentially distributed
(floating point) random numbers with mean and standard deviation 1.0 can be obtained by the transformation

 -Log(Random(G) + Float'Model_Small)

where Log comes from Numerics.Elementary_Functions (see A.5.1); in this expression, the addition of
Float'Model_Small avoids the exception that would be raised were Log to be given the value zero, without affecting the
result (in most implementations) when Random returns a nonzero value.

Examples

Example of a program that plays a simulated dice game:
with Ada.Numerics.Discrete_Random;
procedure Dice_Game is
 subtype Die is Integer range 1 .. 6;
 subtype Dice is Integer range 2*Die'First .. 2*Die'Last;
 package Random_Die is new Ada.Numerics.Discrete_Random (Die);
 use Random_Die;
 G : Generator;
 D : Dice;
begin
 Reset (G); -- Start the generator in a unique state in each run
 loop
 -- Roll a pair of dice; sum and process the results
 D := Random(G) + Random(G);
 ...
 end loop;
end Dice_Game;

45

46

47

48

49

50

51

52

53/2

54

55

56

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.5.2 Random Number Generation 10 November 2006 362

Example of a program that simulates coin tosses:
with Ada.Numerics.Discrete_Random;
procedure Flip_A_Coin is
 type Coin is (Heads, Tails);
 package Random_Coin is new Ada.Numerics.Discrete_Random (Coin);
 use Random_Coin;
 G : Generator;
begin
 Reset (G); -- Start the generator in a unique state in each run
 loop
 -- Toss a coin and process the result
 case Random(G) is
 when Heads =>
 ...
 when Tails =>
 ...
 end case;
 ...
 end loop;
end Flip_A_Coin;

Example of a parallel simulation of a physical system, with a separate generator of event probabilities in
each task:

with Ada.Numerics.Float_Random;
procedure Parallel_Simulation is
 use Ada.Numerics.Float_Random;
 task type Worker is
 entry Initialize_Generator (Initiator : in Integer);
 ...
 end Worker;
 W : array (1 .. 10) of Worker;
 task body Worker is
 G : Generator;
 Probability_Of_Event : Uniformly_Distributed;
 begin
 accept Initialize_Generator (Initiator : in Integer) do
 Reset (G, Initiator);
 end Initialize_Generator;
 loop
 ...
 Probability_Of_Event := Random(G);
 ...
 end loop;
 end Worker;
begin
 -- Initialize the generators in the Worker tasks to different states
 for I in W'Range loop
 W(I).Initialize_Generator (I);
 end loop;
 ... -- Wait for the Worker tasks to terminate
end Parallel_Simulation;

NOTES
17 Notes on the last example: Although each Worker task initializes its generator to a different state, those states will be
the same in every execution of the program. The generator states can be initialized uniquely in each program execution by
instantiating Ada.Numerics.Discrete_Random for the type Integer in the main procedure, resetting the generator obtained
from that instance to a time-dependent state, and then using random integers obtained from that generator to initialize the
generators in each Worker task.

57

58

59

60

61

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

363 10 November 2006 Attributes of Floating Point Types A.5.3

A.5.3 Attributes of Floating Point Types
Static Semantics

The following representation-oriented attributes are defined for every subtype S of a floating point type T.
S'Machine_Radix
 Yields the radix of the hardware representation of the type T. The value of this attribute is

of the type universal_integer.

The values of other representation-oriented attributes of a floating point subtype, and of the “primitive
function” attributes of a floating point subtype described later, are defined in terms of a particular
representation of nonzero values called the canonical form. The canonical form (for the type T) is the form
 ± mantissa · T'Machine_Radixexponent
where

• mantissa is a fraction in the number base T'Machine_Radix, the first digit of which is nonzero,
and

• exponent is an integer.

S'Machine_Mantissa
 Yields the largest value of p such that every value expressible in the canonical form (for the

type T), having a p-digit mantissa and an exponent between T'Machine_Emin and
T'Machine_Emax, is a machine number (see 3.5.7) of the type T. This attribute yields a
value of the type universal_integer.

S'Machine_Emin
 Yields the smallest (most negative) value of exponent such that every value expressible in

the canonical form (for the type T), having a mantissa of T'Machine_Mantissa digits, is a
machine number (see 3.5.7) of the type T. This attribute yields a value of the type
universal_integer.

S'Machine_Emax
 Yields the largest (most positive) value of exponent such that every value expressible in the

canonical form (for the type T), having a mantissa of T'Machine_Mantissa digits, is a
machine number (see 3.5.7) of the type T. This attribute yields a value of the type
universal_integer.

S'Denorm Yields the value True if every value expressible in the form
 ± mantissa · T'Machine_RadixT'Machine_Emin
 where mantissa is a nonzero T'Machine_Mantissa-digit fraction in the number base

T'Machine_Radix, the first digit of which is zero, is a machine number (see 3.5.7) of the
type T; yields the value False otherwise. The value of this attribute is of the predefined type
Boolean.

The values described by the formula in the definition of S'Denorm are called denormalized numbers. A
nonzero machine number that is not a denormalized number is a normalized number. A normalized
number x of a given type T is said to be represented in canonical form when it is expressed in the
canonical form (for the type T) with a mantissa having T'Machine_Mantissa digits; the resulting form is
the canonical-form representation of x.

S'Machine_Rounds
 Yields the value True if rounding is performed on inexact results of every predefined

operation that yields a result of the type T; yields the value False otherwise. The value of
this attribute is of the predefined type Boolean.

1

2

3

4

5

6

7

8

9

10

11

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.5.3 Attributes of Floating Point Types 10 November 2006 364

S'Machine_Overflows
 Yields the value True if overflow and divide-by-zero are detected and reported by raising

Constraint_Error for every predefined operation that yields a result of the type T; yields the
value False otherwise. The value of this attribute is of the predefined type Boolean.

S'Signed_Zeros
 Yields the value True if the hardware representation for the type T has the capability of

representing both positively and negatively signed zeros, these being generated and used by
the predefined operations of the type T as specified in IEC 559:1989; yields the value False
otherwise. The value of this attribute is of the predefined type Boolean.

For every value x of a floating point type T, the normalized exponent of x is defined as follows:
• the normalized exponent of zero is (by convention) zero;

• for nonzero x, the normalized exponent of x is the unique integer k such that T'Machine_Radixk–1
≤ |x| < T'Machine_Radixk.

The following primitive function attributes are defined for any subtype S of a floating point type T.
S'Exponent S'Exponent denotes a function with the following specification:

function S'Exponent (X : T)
 return universal_integer

 The function yields the normalized exponent of X.

S'Fraction S'Fraction denotes a function with the following specification:
function S'Fraction (X : T)
 return T

 The function yields the value X · T'Machine_Radix–k, where k is the normalized exponent of
X. A zero result, which can only occur when X is zero, has the sign of X.

S'Compose S'Compose denotes a function with the following specification:
function S'Compose (Fraction : T;
 Exponent : universal_integer)
 return T

 Let v be the value Fraction · T'Machine_RadixExponent–k, where k is the normalized exponent
of Fraction. If v is a machine number of the type T, or if |v| ≥ T'Model_Small, the function
yields v; otherwise, it yields either one of the machine numbers of the type T adjacent to v.
Constraint_Error is optionally raised if v is outside the base range of S. A zero result has the
sign of Fraction when S'Signed_Zeros is True.

S'Scaling S'Scaling denotes a function with the following specification:
function S'Scaling (X : T;
 Adjustment : universal_integer)
 return T

 Let v be the value X · T'Machine_RadixAdjustment. If v is a machine number of the type T, or if
|v| ≥ T'Model_Small, the function yields v; otherwise, it yields either one of the machine
numbers of the type T adjacent to v. Constraint_Error is optionally raised if v is outside the
base range of S. A zero result has the sign of X when S'Signed_Zeros is True.

S'Floor S'Floor denotes a function with the following specification:
function S'Floor (X : T)
 return T

 The function yields the value X, i.e., the largest (most positive) integral value less than or
equal to X. When X is zero, the result has the sign of X; a zero result otherwise has a
positive sign.

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

365 10 November 2006 Attributes of Floating Point Types A.5.3

S'Ceiling S'Ceiling denotes a function with the following specification:
function S'Ceiling (X : T)
 return T

 The function yields the value X, i.e., the smallest (most negative) integral value greater
than or equal to X. When X is zero, the result has the sign of X; a zero result otherwise has a
negative sign when S'Signed_Zeros is True.

S'Rounding S'Rounding denotes a function with the following specification:
function S'Rounding (X : T)
 return T

 The function yields the integral value nearest to X, rounding away from zero if X lies
exactly halfway between two integers. A zero result has the sign of X when S'Signed_Zeros
is True.

S'Unbiased_Rounding
 S'Unbiased_Rounding denotes a function with the following specification:

function S'Unbiased_Rounding (X : T)
 return T

 The function yields the integral value nearest to X, rounding toward the even integer if X
lies exactly halfway between two integers. A zero result has the sign of X when
S'Signed_Zeros is True.

S'Machine_Rounding
 S'Machine_Rounding denotes a function with the following specification:

function S'Machine_Rounding (X : T)
 return T

 The function yields the integral value nearest to X. If X lies exactly halfway between two
integers, one of those integers is returned, but which of them is returned is unspecified. A
zero result has the sign of X when S'Signed_Zeros is True. This function provides access to
the rounding behavior which is most efficient on the target processor.

S'Truncation S'Truncation denotes a function with the following specification:
function S'Truncation (X : T)
 return T

 The function yields the value X when X is negative, and X otherwise. A zero result has
the sign of X when S'Signed_Zeros is True.

S'Remainder S'Remainder denotes a function with the following specification:
function S'Remainder (X, Y : T)
 return T

 For nonzero Y, let v be the value X – n · Y, where n is the integer nearest to the exact value
of X/Y; if |n – X/Y| = 1/2, then n is chosen to be even. If v is a machine number of the type
T, the function yields v; otherwise, it yields zero. Constraint_Error is raised if Y is zero. A
zero result has the sign of X when S'Signed_Zeros is True.

S'Adjacent S'Adjacent denotes a function with the following specification:
function S'Adjacent (X, Towards : T)
 return T

 If Towards = X, the function yields X; otherwise, it yields the machine number of the type T
adjacent to X in the direction of Towards, if that machine number exists. If the result would
be outside the base range of S, Constraint_Error is raised. When T'Signed_Zeros is True, a
zero result has the sign of X. When Towards is zero, its sign has no bearing on the result.

S'Copy_Sign S'Copy_Sign denotes a function with the following specification:

33

34

35

36

37

38

39

40

41

41.1/2

41.2/2

41.3/2

42

43

44

45

46

47

48

49

50

51

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.5.3 Attributes of Floating Point Types 10 November 2006 366

function S'Copy_Sign (Value, Sign : T)
 return T

 If the value of Value is nonzero, the function yields a result whose magnitude is that of
Value and whose sign is that of Sign; otherwise, it yields the value zero. Constraint_Error is
optionally raised if the result is outside the base range of S. A zero result has the sign of
Sign when S'Signed_Zeros is True.

S'Leading_Part
 S'Leading_Part denotes a function with the following specification:

function S'Leading_Part (X : T;
 Radix_Digits : universal_integer)
 return T

 Let v be the value T'Machine_Radixk–Radix_Digits, where k is the normalized exponent of X. The
function yields the value

• X/v · v, when X is nonnegative and Radix_Digits is positive;

• X/v · v, when X is negative and Radix_Digits is positive.

 Constraint_Error is raised when Radix_Digits is zero or negative. A zero result, which can
only occur when X is zero, has the sign of X.

S'Machine S'Machine denotes a function with the following specification:
function S'Machine (X : T)
 return T

 If X is a machine number of the type T, the function yields X; otherwise, it yields the value
obtained by rounding or truncating X to either one of the adjacent machine numbers of the
type T. Constraint_Error is raised if rounding or truncating X to the precision of the
machine numbers results in a value outside the base range of S. A zero result has the sign of
X when S'Signed_Zeros is True.

The following model-oriented attributes are defined for any subtype S of a floating point type T.
S'Model_Mantissa
 If the Numerics Annex is not supported, this attribute yields an implementation defined

value that is greater than or equal to d · log(10) / log(T'Machine_Radix) + 1, where d is
the requested decimal precision of T, and less than or equal to the value of
T'Machine_Mantissa. See G.2.2 for further requirements that apply to implementations
supporting the Numerics Annex. The value of this attribute is of the type universal_integer.

S'Model_Emin
 If the Numerics Annex is not supported, this attribute yields an implementation defined

value that is greater than or equal to the value of T'Machine_Emin. See G.2.2 for further
requirements that apply to implementations supporting the Numerics Annex. The value of
this attribute is of the type universal_integer.

S'Model_Epsilon
 Yields the value T'Machine_Radix1 – T'Model_Mantissa. The value of this attribute is of the type

universal_real.

S'Model_Small
 Yields the value T'Machine_RadixT'Model_Emin – 1. The value of this attribute is of the type

universal_real.

S'Model S'Model denotes a function with the following specification:
function S'Model (X : T)
 return T

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

367 10 November 2006 Attributes of Floating Point Types A.5.3

 If the Numerics Annex is not supported, the meaning of this attribute is implementation
defined; see G.2.2 for the definition that applies to implementations supporting the
Numerics Annex.

S'Safe_First
 Yields the lower bound of the safe range (see 3.5.7) of the type T. If the Numerics Annex is

not supported, the value of this attribute is implementation defined; see G.2.2 for the
definition that applies to implementations supporting the Numerics Annex. The value of
this attribute is of the type universal_real.

S'Safe_Last Yields the upper bound of the safe range (see 3.5.7) of the type T. If the Numerics Annex is
not supported, the value of this attribute is implementation defined; see G.2.2 for the
definition that applies to implementations supporting the Numerics Annex. The value of
this attribute is of the type universal_real.

A.5.4 Attributes of Fixed Point Types
Static Semantics

The following representation-oriented attributes are defined for every subtype S of a fixed point type T.
S'Machine_Radix
 Yields the radix of the hardware representation of the type T. The value of this attribute is

of the type universal_integer.

S'Machine_Rounds
 Yields the value True if rounding is performed on inexact results of every predefined

operation that yields a result of the type T; yields the value False otherwise. The value of
this attribute is of the predefined type Boolean.

S'Machine_Overflows
 Yields the value True if overflow and divide-by-zero are detected and reported by raising

Constraint_Error for every predefined operation that yields a result of the type T; yields the
value False otherwise. The value of this attribute is of the predefined type Boolean.

A.6 Input-Output
Input-output is provided through language-defined packages, each of which is a child of the root package
Ada. The generic packages Sequential_IO and Direct_IO define input-output operations applicable to files
containing elements of a given type. The generic package Storage_IO supports reading from and writing to
an in-memory buffer. Additional operations for text input-output are supplied in the packages Text_IO,
Wide_Text_IO, and Wide_Wide_Text_IO. Heterogeneous input-output is provided through the child
packages Streams.Stream_IO and Text_IO.Text_Streams (see also 13.13). The package IO_Exceptions
defines the exceptions needed by the predefined input-output packages.

A.7 External Files and File Objects
Static Semantics

Values input from the external environment of the program, or output to the external environment, are
considered to occupy external files. An external file can be anything external to the program that can
produce a value to be read or receive a value to be written. An external file is identified by a string (the
name). A second string (the form) gives further system-dependent characteristics that may be associated

70

71

72

1

2

3

4

1/2

1

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.7 External Files and File Objects 10 November 2006 368

with the file, such as the physical organization or access rights. The conventions governing the
interpretation of such strings shall be documented.

Input and output operations are expressed as operations on objects of some file type, rather than directly in
terms of the external files. In the remainder of this section, the term file is always used to refer to a file
object; the term external file is used otherwise.

Input-output for sequential files of values of a single element type is defined by means of the generic
package Sequential_IO. In order to define sequential input-output for a given element type, an
instantiation of this generic unit, with the given type as actual parameter, has to be declared. The resulting
package contains the declaration of a file type (called File_Type) for files of such elements, as well as the
operations applicable to these files, such as the Open, Read, and Write procedures.

Input-output for direct access files is likewise defined by a generic package called Direct_IO. Input-output
in human-readable form is defined by the (nongeneric) packages Text_IO for Character and String data,
Wide_Text_IO for Wide_Character and Wide_String data, and Wide_Wide_Text_IO for
Wide_Wide_Character and Wide_Wide_String data. Input-output for files containing streams of elements
representing values of possibly different types is defined by means of the (nongeneric) package
Streams.Stream_IO.

Before input or output operations can be performed on a file, the file first has to be associated with an
external file. While such an association is in effect, the file is said to be open, and otherwise the file is said
to be closed.

The language does not define what happens to external files after the completion of the main program and
all the library tasks (in particular, if corresponding files have not been closed). The effect of input-output
for access types is unspecified.

An open file has a current mode, which is a value of one of the following enumeration types:
type File_Mode is (In_File, Inout_File, Out_File); -- for Direct_IO

These values correspond respectively to the cases where only reading, both reading and writing,
or only writing are to be performed.

type File_Mode is (In_File, Out_File, Append_File);
-- for Sequential_IO, Text_IO, Wide_Text_IO, Wide_Wide_Text_IO, and Stream_IO

These values correspond respectively to the cases where only reading, only writing, or only
appending are to be performed.

The mode of a file can be changed.

Several file management operations are common to Sequential_IO, Direct_IO, Text_IO, Wide_Text_IO,
and Wide_Wide_Text_IO. These operations are described in subclause A.8.2 for sequential and direct
files. Any additional effects concerning text input-output are described in subclause A.10.2.

The exceptions that can be propagated by the execution of an input-output subprogram are defined in the
package IO_Exceptions; the situations in which they can be propagated are described following the
description of the subprogram (and in clause A.13). The exceptions Storage_Error and Program_Error may
be propagated. (Program_Error can only be propagated due to errors made by the caller of the
subprogram.) Finally, exceptions can be propagated in certain implementation-defined situations.

NOTES
18 Each instantiation of the generic packages Sequential_IO and Direct_IO declares a different type File_Type. In the
case of Text_IO, Wide_Text_IO, Wide_Wide_Text_IO, and Streams.Stream_IO, the corresponding type File_Type is
unique.

2

3

4/2

5

6

7

8

9

10/2

11

12

13/2

14

15/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

369 10 November 2006 External Files and File Objects A.7

19 A bidirectional device can often be modeled as two sequential files associated with the device, one of mode In_File,
and one of mode Out_File. An implementation may restrict the number of files that may be associated with a given
external file.

A.8 Sequential and Direct Files
Static Semantics

Two kinds of access to external files are defined in this subclause: sequential access and direct access.
The corresponding file types and the associated operations are provided by the generic packages
Sequential_IO and Direct_IO. A file object to be used for sequential access is called a sequential file, and
one to be used for direct access is called a direct file. Access to stream files is described in A.12.1.

For sequential access, the file is viewed as a sequence of values that are transferred in the order of their
appearance (as produced by the program or by the external environment). When the file is opened with
mode In_File or Out_File, transfer starts respectively from or to the beginning of the file. When the file is
opened with mode Append_File, transfer to the file starts after the last element of the file.

For direct access, the file is viewed as a set of elements occupying consecutive positions in linear order; a
value can be transferred to or from an element of the file at any selected position. The position of an
element is specified by its index, which is a number, greater than zero, of the implementation-defined
integer type Count. The first element, if any, has index one; the index of the last element, if any, is called
the current size; the current size is zero if there are no elements. The current size is a property of the
external file.

An open direct file has a current index, which is the index that will be used by the next read or write
operation. When a direct file is opened, the current index is set to one. The current index of a direct file is
a property of a file object, not of an external file.

A.8.1 The Generic Package Sequential_IO
Static Semantics

The generic library package Sequential_IO has the following declaration:
with Ada.IO_Exceptions;
generic
 type Element_Type(<>) is private;
package Ada.Sequential_IO is

 type File_Type is limited private;

 type File_Mode is (In_File, Out_File, Append_File);

 -- File management
 procedure Create(File : in out File_Type;
 Mode : in File_Mode := Out_File;
 Name : in String := "";
 Form : in String := "");

 procedure Open (File : in out File_Type;
 Mode : in File_Mode;
 Name : in String;
 Form : in String := "");

 procedure Close (File : in out File_Type);
 procedure Delete(File : in out File_Type);
 procedure Reset (File : in out File_Type; Mode : in File_Mode);
 procedure Reset (File : in out File_Type);

16

1/2

2

3

4

1

2

3

4

5

6

7

8

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.8.1 The Generic Package Sequential_IO 10 November 2006 370

 function Mode (File : in File_Type) return File_Mode;
 function Name (File : in File_Type) return String;
 function Form (File : in File_Type) return String;

 function Is_Open(File : in File_Type) return Boolean;

 -- Input and output operations
 procedure Read (File : in File_Type; Item : out Element_Type);
 procedure Write (File : in File_Type; Item : in Element_Type);

 function End_Of_File(File : in File_Type) return Boolean;

 -- Exceptions
 Status_Error : exception renames IO_Exceptions.Status_Error;
 Mode_Error : exception renames IO_Exceptions.Mode_Error;
 Name_Error : exception renames IO_Exceptions.Name_Error;
 Use_Error : exception renames IO_Exceptions.Use_Error;
 Device_Error : exception renames IO_Exceptions.Device_Error;
 End_Error : exception renames IO_Exceptions.End_Error;
 Data_Error : exception renames IO_Exceptions.Data_Error;

private
 ... -- not specified by the language
end Ada.Sequential_IO;

The type File_Type needs finalization (see 7.6) in every instantiation of Sequential_IO.

A.8.2 File Management
Static Semantics

The procedures and functions described in this subclause provide for the control of external files; their
declarations are repeated in each of the packages for sequential, direct, text, and stream input-output. For
text input-output, the procedures Create, Open, and Reset have additional effects described in subclause
A.10.2.

procedure Create(File : in out File_Type;
 Mode : in File_Mode := default_mode;
 Name : in String := "";
 Form : in String := "");

Establishes a new external file, with the given name and form, and associates this external file
with the given file. The given file is left open. The current mode of the given file is set to the
given access mode. The default access mode is the mode Out_File for sequential, stream, and
text input-output; it is the mode Inout_File for direct input-output. For direct access, the size of
the created file is implementation defined.

A null string for Name specifies an external file that is not accessible after the completion of the
main program (a temporary file). A null string for Form specifies the use of the default options
of the implementation for the external file.

The exception Status_Error is propagated if the given file is already open. The exception
Name_Error is propagated if the string given as Name does not allow the identification of an
external file. The exception Use_Error is propagated if, for the specified mode, the external
environment does not support creation of an external file with the given name (in the absence of
Name_Error) and form.

9

10

11

12

13

14

15

16

17/2

1

2

3/2

4

5

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

371 10 November 2006 File Management A.8.2

procedure Open(File : in out File_Type;
 Mode : in File_Mode;
 Name : in String;
 Form : in String := "");

Associates the given file with an existing external file having the given name and form, and sets
the current mode of the given file to the given mode. The given file is left open.

The exception Status_Error is propagated if the given file is already open. The exception
Name_Error is propagated if the string given as Name does not allow the identification of an
external file; in particular, this exception is propagated if no external file with the given name
exists. The exception Use_Error is propagated if, for the specified mode, the external
environment does not support opening for an external file with the given name (in the absence of
Name_Error) and form.

procedure Close(File : in out File_Type);

Severs the association between the given file and its associated external file. The given file is
left closed. In addition, for sequential files, if the file being closed has mode Out_File or
Append_File, then the last element written since the most recent open or reset is the last element
that can be read from the file. If no elements have been written and the file mode is Out_File,
then the closed file is empty. If no elements have been written and the file mode is Append_File,
then the closed file is unchanged.

The exception Status_Error is propagated if the given file is not open.

procedure Delete(File : in out File_Type);

Deletes the external file associated with the given file. The given file is closed, and the external
file ceases to exist.

The exception Status_Error is propagated if the given file is not open. The exception Use_Error
is propagated if deletion of the external file is not supported by the external environment.

procedure Reset(File : in out File_Type; Mode : in File_Mode);
procedure Reset(File : in out File_Type);

Resets the given file so that reading from its elements can be restarted from the beginning of the
external file (for modes In_File and Inout_File), and so that writing to its elements can be
restarted at the beginning of the external file (for modes Out_File and Inout_File) or after the
last element of the external file (for mode Append_File). In particular, for direct access this
means that the current index is set to one. If a Mode parameter is supplied, the current mode of
the given file is set to the given mode. In addition, for sequential files, if the given file has mode
Out_File or Append_File when Reset is called, the last element written since the most recent
open or reset is the last element that can be read from the external file. If no elements have been
written and the file mode is Out_File, the reset file is empty. If no elements have been written
and the file mode is Append_File, then the reset file is unchanged.

The exception Status_Error is propagated if the file is not open. The exception Use_Error is
propagated if the external environment does not support resetting for the external file and, also,
if the external environment does not support resetting to the specified mode for the external file.

function Mode(File : in File_Type) return File_Mode;

Returns the current mode of the given file.

The exception Status_Error is propagated if the file is not open.

6

7

8

9

10

11

12

13

14

15

16/2

17

18

19

20

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.8.2 File Management 10 November 2006 372

function Name(File : in File_Type) return String;

Returns a string which uniquely identifies the external file currently associated with the given
file (and may thus be used in an Open operation).

The exception Status_Error is propagated if the given file is not open. The exception Use_Error
is propagated if the associated external file is a temporary file that cannot be opened by any
name.

function Form(File : in File_Type) return String;

Returns the form string for the external file currently associated with the given file. If an
external environment allows alternative specifications of the form (for example, abbreviations
using default options), the string returned by the function should correspond to a full
specification (that is, it should indicate explicitly all options selected, including default options).

The exception Status_Error is propagated if the given file is not open.

function Is_Open(File : in File_Type) return Boolean;

Returns True if the file is open (that is, if it is associated with an external file), otherwise returns
False.

Implementation Permissions

An implementation may propagate Name_Error or Use_Error if an attempt is made to use an I/O feature
that cannot be supported by the implementation due to limitations in the external environment. Any such
restriction should be documented.

A.8.3 Sequential Input-Output Operations
Static Semantics

The operations available for sequential input and output are described in this subclause. The exception
Status_Error is propagated if any of these operations is attempted for a file that is not open.

procedure Read(File : in File_Type; Item : out Element_Type);

Operates on a file of mode In_File. Reads an element from the given file, and returns the value
of this element in the Item parameter.

The exception Mode_Error is propagated if the mode is not In_File. The exception End_Error is
propagated if no more elements can be read from the given file. The exception Data_Error can
be propagated if the element read cannot be interpreted as a value of the subtype Element_Type
(see A.13, “Exceptions in Input-Output”).

procedure Write(File : in File_Type; Item : in Element_Type);

Operates on a file of mode Out_File or Append_File. Writes the value of Item to the given file.

The exception Mode_Error is propagated if the mode is not Out_File or Append_File. The
exception Use_Error is propagated if the capacity of the external file is exceeded.

function End_Of_File(File : in File_Type) return Boolean;

Operates on a file of mode In_File. Returns True if no more elements can be read from the given
file; otherwise returns False.

The exception Mode_Error is propagated if the mode is not In_File.

21

22/2

23

24

25

26

27

28

29

1

2

3

4

5

6

7

8

9

10

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

373 10 November 2006 The Generic Package Direct_IO A.8.4

A.8.4 The Generic Package Direct_IO
Static Semantics

The generic library package Direct_IO has the following declaration:
with Ada.IO_Exceptions;
generic
 type Element_Type is private;
package Ada.Direct_IO is

 type File_Type is limited private;

 type File_Mode is (In_File, Inout_File, Out_File);
 type Count is range 0 .. implementation-defined;
 subtype Positive_Count is Count range 1 .. Count'Last;

 -- File management
 procedure Create(File : in out File_Type;
 Mode : in File_Mode := Inout_File;
 Name : in String := "";
 Form : in String := "");

 procedure Open (File : in out File_Type;
 Mode : in File_Mode;
 Name : in String;
 Form : in String := "");

 procedure Close (File : in out File_Type);
 procedure Delete(File : in out File_Type);
 procedure Reset (File : in out File_Type; Mode : in File_Mode);
 procedure Reset (File : in out File_Type);

 function Mode (File : in File_Type) return File_Mode;
 function Name (File : in File_Type) return String;
 function Form (File : in File_Type) return String;

 function Is_Open(File : in File_Type) return Boolean;

 -- Input and output operations
 procedure Read (File : in File_Type; Item : out Element_Type;
 From : in Positive_Count);
 procedure Read (File : in File_Type; Item : out Element_Type);

 procedure Write(File : in File_Type; Item : in Element_Type;
 To : in Positive_Count);
 procedure Write(File : in File_Type; Item : in Element_Type);

 procedure Set_Index(File : in File_Type; To : in Positive_Count);

 function Index(File : in File_Type) return Positive_Count;
 function Size (File : in File_Type) return Count;

 function End_Of_File(File : in File_Type) return Boolean;

 -- Exceptions
 Status_Error : exception renames IO_Exceptions.Status_Error;
 Mode_Error : exception renames IO_Exceptions.Mode_Error;
 Name_Error : exception renames IO_Exceptions.Name_Error;
 Use_Error : exception renames IO_Exceptions.Use_Error;
 Device_Error : exception renames IO_Exceptions.Device_Error;
 End_Error : exception renames IO_Exceptions.End_Error;
 Data_Error : exception renames IO_Exceptions.Data_Error;

private
 ... -- not specified by the language
end Ada.Direct_IO;

The type File_Type needs finalization (see 7.6) in every instantiation of Direct_IO.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.8.5 Direct Input-Output Operations 10 November 2006 374

A.8.5 Direct Input-Output Operations
Static Semantics

The operations available for direct input and output are described in this subclause. The exception
Status_Error is propagated if any of these operations is attempted for a file that is not open.

procedure Read(File : in File_Type; Item : out Element_Type;
 From : in Positive_Count);
procedure Read(File : in File_Type; Item : out Element_Type);

Operates on a file of mode In_File or Inout_File. In the case of the first form, sets the current
index of the given file to the index value given by the parameter From. Then (for both forms)
returns, in the parameter Item, the value of the element whose position in the given file is
specified by the current index of the file; finally, increases the current index by one.

The exception Mode_Error is propagated if the mode of the given file is Out_File. The exception
End_Error is propagated if the index to be used exceeds the size of the external file. The
exception Data_Error can be propagated if the element read cannot be interpreted as a value of
the subtype Element_Type (see A.13).

procedure Write(File : in File_Type; Item : in Element_Type;
 To : in Positive_Count);
procedure Write(File : in File_Type; Item : in Element_Type);

Operates on a file of mode Inout_File or Out_File. In the case of the first form, sets the index of
the given file to the index value given by the parameter To. Then (for both forms) gives the
value of the parameter Item to the element whose position in the given file is specified by the
current index of the file; finally, increases the current index by one.

The exception Mode_Error is propagated if the mode of the given file is In_File. The exception
Use_Error is propagated if the capacity of the external file is exceeded.

procedure Set_Index(File : in File_Type; To : in Positive_Count);

Operates on a file of any mode. Sets the current index of the given file to the given index value
(which may exceed the current size of the file).

function Index(File : in File_Type) return Positive_Count;

Operates on a file of any mode. Returns the current index of the given file.

function Size(File : in File_Type) return Count;

Operates on a file of any mode. Returns the current size of the external file that is associated
with the given file.

function End_Of_File(File : in File_Type) return Boolean;

Operates on a file of mode In_File or Inout_File. Returns True if the current index exceeds the
size of the external file; otherwise returns False.

The exception Mode_Error is propagated if the mode of the given file is Out_File.

NOTES
20 Append_File mode is not supported for the generic package Direct_IO.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

375 10 November 2006 The Generic Package Storage_IO A.9

A.9 The Generic Package Storage_IO
The generic package Storage_IO provides for reading from and writing to an in-memory buffer. This
generic package supports the construction of user-defined input-output packages.

Static Semantics

The generic library package Storage_IO has the following declaration:
with Ada.IO_Exceptions;
with System.Storage_Elements;
generic
 type Element_Type is private;
package Ada.Storage_IO is
 pragma Preelaborate(Storage_IO);

 Buffer_Size : constant System.Storage_Elements.Storage_Count :=
 implementation-defined;
 subtype Buffer_Type is
 System.Storage_Elements.Storage_Array(1..Buffer_Size);

 -- Input and output operations
 procedure Read (Buffer : in Buffer_Type; Item : out Element_Type);

 procedure Write(Buffer : out Buffer_Type; Item : in Element_Type);

 -- Exceptions
 Data_Error : exception renames IO_Exceptions.Data_Error;
end Ada.Storage_IO;

In each instance, the constant Buffer_Size has a value that is the size (in storage elements) of the buffer
required to represent the content of an object of subtype Element_Type, including any implicit levels of
indirection used by the implementation. The Read and Write procedures of Storage_IO correspond to the
Read and Write procedures of Direct_IO (see A.8.4), but with the content of the Item parameter being read
from or written into the specified Buffer, rather than an external file.

NOTES
21 A buffer used for Storage_IO holds only one element at a time; an external file used for Direct_IO holds a sequence of
elements.

A.10 Text Input-Output
Static Semantics

This clause describes the package Text_IO, which provides facilities for input and output in human-
readable form. Each file is read or written sequentially, as a sequence of characters grouped into lines, and
as a sequence of lines grouped into pages. The specification of the package is given below in subclause
A.10.1.

The facilities for file management given above, in subclauses A.8.2 and A.8.3, are available for text input-
output. In place of Read and Write, however, there are procedures Get and Put that input values of suitable
types from text files, and output values to them. These values are provided to the Put procedures, and
returned by the Get procedures, in a parameter Item. Several overloaded procedures of these names exist,
for different types of Item. These Get procedures analyze the input sequences of characters based on
lexical elements (see Section 2) and return the corresponding values; the Put procedures output the given
values as appropriate lexical elements. Procedures Get and Put are also available that input and output
individual characters treated as character values rather than as lexical elements. Related to character input

1

2

3

4

5

6

7

8

9

10

11

1

2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.10 Text Input-Output 10 November 2006 376

are procedures to look ahead at the next character without reading it, and to read a character
“immediately” without waiting for an end-of-line to signal availability.

In addition to the procedures Get and Put for numeric and enumeration types of Item that operate on text
files, analogous procedures are provided that read from and write to a parameter of type String. These
procedures perform the same analysis and composition of character sequences as their counterparts which
have a file parameter.

For all Get and Put procedures that operate on text files, and for many other subprograms, there are forms
with and without a file parameter. Each such Get procedure operates on an input file, and each such Put
procedure operates on an output file. If no file is specified, a default input file or a default output file is
used.

At the beginning of program execution the default input and output files are the so-called standard input
file and standard output file. These files are open, have respectively the current modes In_File and
Out_File, and are associated with two implementation-defined external files. Procedures are provided to
change the current default input file and the current default output file.

At the beginning of program execution a default file for program-dependent error-related text output is the
so-called standard error file. This file is open, has the current mode Out_File, and is associated with an
implementation-defined external file. A procedure is provided to change the current default error file.

From a logical point of view, a text file is a sequence of pages, a page is a sequence of lines, and a line is a
sequence of characters; the end of a line is marked by a line terminator; the end of a page is marked by the
combination of a line terminator immediately followed by a page terminator; and the end of a file is
marked by the combination of a line terminator immediately followed by a page terminator and then a file
terminator. Terminators are generated during output; either by calls of procedures provided expressly for
that purpose; or implicitly as part of other operations, for example, when a bounded line length, a bounded
page length, or both, have been specified for a file.

The actual nature of terminators is not defined by the language and hence depends on the implementation.
Although terminators are recognized or generated by certain of the procedures that follow, they are not
necessarily implemented as characters or as sequences of characters. Whether they are characters (and if
so which ones) in any particular implementation need not concern a user who neither explicitly outputs nor
explicitly inputs control characters. The effect of input (Get) or output (Put) of control characters (other
than horizontal tabulation) is not specified by the language.

The characters of a line are numbered, starting from one; the number of a character is called its column
number. For a line terminator, a column number is also defined: it is one more than the number of
characters in the line. The lines of a page, and the pages of a file, are similarly numbered. The current
column number is the column number of the next character or line terminator to be transferred. The
current line number is the number of the current line. The current page number is the number of the
current page. These numbers are values of the subtype Positive_Count of the type Count (by convention,
the value zero of the type Count is used to indicate special conditions).

type Count is range 0 .. implementation-defined;
subtype Positive_Count is Count range 1 .. Count'Last;

For an output file or an append file, a maximum line length can be specified and a maximum page length
can be specified. If a value to be output cannot fit on the current line, for a specified maximum line length,
then a new line is automatically started before the value is output; if, further, this new line cannot fit on the
current page, for a specified maximum page length, then a new page is automatically started before the
value is output. Functions are provided to determine the maximum line length and the maximum page

3

4

5

6

7

8

9

10

11

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

377 10 November 2006 Text Input-Output A.10

length. When a file is opened with mode Out_File or Append_File, both values are zero: by convention,
this means that the line lengths and page lengths are unbounded. (Consequently, output consists of a single
line if the subprograms for explicit control of line and page structure are not used.) The constant
Unbounded is provided for this purpose.

A.10.1 The Package Text_IO
Static Semantics

The library package Text_IO has the following declaration:
with Ada.IO_Exceptions;
package Ada.Text_IO is

 type File_Type is limited private;

 type File_Mode is (In_File, Out_File, Append_File);

 type Count is range 0 .. implementation-defined;
 subtype Positive_Count is Count range 1 .. Count'Last;
 Unbounded : constant Count := 0; -- line and page length
 subtype Field is Integer range 0 .. implementation-defined;
 subtype Number_Base is Integer range 2 .. 16;

 type Type_Set is (Lower_Case, Upper_Case);

 -- File Management
 procedure Create (File : in out File_Type;
 Mode : in File_Mode := Out_File;
 Name : in String := "";
 Form : in String := "");

 procedure Open (File : in out File_Type;
 Mode : in File_Mode;
 Name : in String;
 Form : in String := "");

 procedure Close (File : in out File_Type);
 procedure Delete (File : in out File_Type);
 procedure Reset (File : in out File_Type; Mode : in File_Mode);
 procedure Reset (File : in out File_Type);

 function Mode (File : in File_Type) return File_Mode;
 function Name (File : in File_Type) return String;
 function Form (File : in File_Type) return String;

 function Is_Open(File : in File_Type) return Boolean;

 -- Control of default input and output files
 procedure Set_Input (File : in File_Type);
 procedure Set_Output(File : in File_Type);
 procedure Set_Error (File : in File_Type);

 function Standard_Input return File_Type;
 function Standard_Output return File_Type;
 function Standard_Error return File_Type;

 function Current_Input return File_Type;
 function Current_Output return File_Type;
 function Current_Error return File_Type;

 type File_Access is access constant File_Type;

 function Standard_Input return File_Access;
 function Standard_Output return File_Access;
 function Standard_Error return File_Access;

 function Current_Input return File_Access;
 function Current_Output return File_Access;
 function Current_Error return File_Access;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.10.1 The Package Text_IO 10 November 2006 378

--Buffer control
 procedure Flush (File : in File_Type);
 procedure Flush;

 -- Specification of line and page lengths
 procedure Set_Line_Length(File : in File_Type; To : in Count);
 procedure Set_Line_Length(To : in Count);

 procedure Set_Page_Length(File : in File_Type; To : in Count);
 procedure Set_Page_Length(To : in Count);

 function Line_Length(File : in File_Type) return Count;
 function Line_Length return Count;

 function Page_Length(File : in File_Type) return Count;
 function Page_Length return Count;

 -- Column, Line, and Page Control
 procedure New_Line (File : in File_Type;
 Spacing : in Positive_Count := 1);
 procedure New_Line (Spacing : in Positive_Count := 1);

 procedure Skip_Line (File : in File_Type;
 Spacing : in Positive_Count := 1);
 procedure Skip_Line (Spacing : in Positive_Count := 1);

 function End_Of_Line(File : in File_Type) return Boolean;
 function End_Of_Line return Boolean;

 procedure New_Page (File : in File_Type);
 procedure New_Page;

 procedure Skip_Page (File : in File_Type);
 procedure Skip_Page;

 function End_Of_Page(File : in File_Type) return Boolean;
 function End_Of_Page return Boolean;

 function End_Of_File(File : in File_Type) return Boolean;
 function End_Of_File return Boolean;

 procedure Set_Col (File : in File_Type; To : in Positive_Count);
 procedure Set_Col (To : in Positive_Count);

 procedure Set_Line(File : in File_Type; To : in Positive_Count);
 procedure Set_Line(To : in Positive_Count);

 function Col (File : in File_Type) return Positive_Count;
 function Col return Positive_Count;

 function Line(File : in File_Type) return Positive_Count;
 function Line return Positive_Count;

 function Page(File : in File_Type) return Positive_Count;
 function Page return Positive_Count;

 -- Character Input-Output
 procedure Get(File : in File_Type; Item : out Character);
 procedure Get(Item : out Character);

 procedure Put(File : in File_Type; Item : in Character);
 procedure Put(Item : in Character);

 procedure Look_Ahead (File : in File_Type;
 Item : out Character;
 End_Of_Line : out Boolean);
 procedure Look_Ahead (Item : out Character;
 End_Of_Line : out Boolean);

 procedure Get_Immediate(File : in File_Type;
 Item : out Character);
 procedure Get_Immediate(Item : out Character);

21/1

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

379 10 November 2006 The Package Text_IO A.10.1

 procedure Get_Immediate(File : in File_Type;
 Item : out Character;
 Available : out Boolean);
 procedure Get_Immediate(Item : out Character;
 Available : out Boolean);

 -- String Input-Output
 procedure Get(File : in File_Type; Item : out String);
 procedure Get(Item : out String);

 procedure Put(File : in File_Type; Item : in String);
 procedure Put(Item : in String);

 procedure Get_Line(File : in File_Type;
 Item : out String;
 Last : out Natural);
 procedure Get_Line(Item : out String; Last : out Natural);

 function Get_Line(File : in File_Type) return String;
 function Get_Line return String;

 procedure Put_Line(File : in File_Type; Item : in String);
 procedure Put_Line(Item : in String);

-- Generic packages for Input-Output of Integer Types
 generic
 type Num is range <>;
 package Integer_IO is

 Default_Width : Field := Num'Width;
 Default_Base : Number_Base := 10;

 procedure Get(File : in File_Type;
 Item : out Num;
 Width : in Field := 0);
 procedure Get(Item : out Num;
 Width : in Field := 0);

 procedure Put(File : in File_Type;
 Item : in Num;
 Width : in Field := Default_Width;
 Base : in Number_Base := Default_Base);
 procedure Put(Item : in Num;
 Width : in Field := Default_Width;
 Base : in Number_Base := Default_Base);
 procedure Get(From : in String;
 Item : out Num;
 Last : out Positive);
 procedure Put(To : out String;
 Item : in Num;
 Base : in Number_Base := Default_Base);

 end Integer_IO;

 generic
 type Num is mod <>;
 package Modular_IO is

 Default_Width : Field := Num'Width;
 Default_Base : Number_Base := 10;

 procedure Get(File : in File_Type;
 Item : out Num;
 Width : in Field := 0);
 procedure Get(Item : out Num;
 Width : in Field := 0);

45

46

47

48

49

49.1/2

50

51

52

53

54

55

56

57

58

59

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.10.1 The Package Text_IO 10 November 2006 380

 procedure Put(File : in File_Type;
 Item : in Num;
 Width : in Field := Default_Width;
 Base : in Number_Base := Default_Base);
 procedure Put(Item : in Num;
 Width : in Field := Default_Width;
 Base : in Number_Base := Default_Base);
 procedure Get(From : in String;
 Item : out Num;
 Last : out Positive);
 procedure Put(To : out String;
 Item : in Num;
 Base : in Number_Base := Default_Base);

 end Modular_IO;

 -- Generic packages for Input-Output of Real Types
 generic
 type Num is digits <>;
 package Float_IO is

 Default_Fore : Field := 2;
 Default_Aft : Field := Num'Digits-1;
 Default_Exp : Field := 3;

 procedure Get(File : in File_Type;
 Item : out Num;
 Width : in Field := 0);
 procedure Get(Item : out Num;
 Width : in Field := 0);

 procedure Put(File : in File_Type;
 Item : in Num;
 Fore : in Field := Default_Fore;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);
 procedure Put(Item : in Num;
 Fore : in Field := Default_Fore;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);

 procedure Get(From : in String;
 Item : out Num;
 Last : out Positive);
 procedure Put(To : out String;
 Item : in Num;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);
 end Float_IO;

 generic
 type Num is delta <>;
 package Fixed_IO is

 Default_Fore : Field := Num'Fore;
 Default_Aft : Field := Num'Aft;
 Default_Exp : Field := 0;

 procedure Get(File : in File_Type;
 Item : out Num;
 Width : in Field := 0);
 procedure Get(Item : out Num;
 Width : in Field := 0);

60

61

62

63

64

65

66

67

68

69

70

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

381 10 November 2006 The Package Text_IO A.10.1

 procedure Put(File : in File_Type;
 Item : in Num;
 Fore : in Field := Default_Fore;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);
 procedure Put(Item : in Num;
 Fore : in Field := Default_Fore;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);

 procedure Get(From : in String;
 Item : out Num;
 Last : out Positive);
 procedure Put(To : out String;
 Item : in Num;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);
 end Fixed_IO;

 generic
 type Num is delta <> digits <>;
 package Decimal_IO is

 Default_Fore : Field := Num'Fore;
 Default_Aft : Field := Num'Aft;
 Default_Exp : Field := 0;

 procedure Get(File : in File_Type;
 Item : out Num;
 Width : in Field := 0);
 procedure Get(Item : out Num;
 Width : in Field := 0);

 procedure Put(File : in File_Type;
 Item : in Num;
 Fore : in Field := Default_Fore;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);
 procedure Put(Item : in Num;
 Fore : in Field := Default_Fore;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);

 procedure Get(From : in String;
 Item : out Num;
 Last : out Positive);
 procedure Put(To : out String;
 Item : in Num;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);
 end Decimal_IO;

 -- Generic package for Input-Output of Enumeration Types
 generic
 type Enum is (<>);
 package Enumeration_IO is

 Default_Width : Field := 0;
 Default_Setting : Type_Set := Upper_Case;

 procedure Get(File : in File_Type;
 Item : out Enum);
 procedure Get(Item : out Enum);

 procedure Put(File : in File_Type;
 Item : in Enum;
 Width : in Field := Default_Width;
 Set : in Type_Set := Default_Setting);
 procedure Put(Item : in Enum;
 Width : in Field := Default_Width;
 Set : in Type_Set := Default_Setting);

71

72

73

74

75

76

77

78

79

80

81

82

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.10.1 The Package Text_IO 10 November 2006 382

 procedure Get(From : in String;
 Item : out Enum;
 Last : out Positive);
 procedure Put(To : out String;
 Item : in Enum;
 Set : in Type_Set := Default_Setting);
 end Enumeration_IO;

-- Exceptions
 Status_Error : exception renames IO_Exceptions.Status_Error;
 Mode_Error : exception renames IO_Exceptions.Mode_Error;
 Name_Error : exception renames IO_Exceptions.Name_Error;
 Use_Error : exception renames IO_Exceptions.Use_Error;
 Device_Error : exception renames IO_Exceptions.Device_Error;
 End_Error : exception renames IO_Exceptions.End_Error;
 Data_Error : exception renames IO_Exceptions.Data_Error;
 Layout_Error : exception renames IO_Exceptions.Layout_Error;
private
 ... -- not specified by the language
end Ada.Text_IO;

The type File_Type needs finalization (see 7.6).

A.10.2 Text File Management
Static Semantics

The only allowed file modes for text files are the modes In_File, Out_File, and Append_File. The
subprograms given in subclause A.8.2 for the control of external files, and the function End_Of_File given
in subclause A.8.3 for sequential input-output, are also available for text files. There is also a version of
End_Of_File that refers to the current default input file. For text files, the procedures have the following
additional effects:

• For the procedures Create and Open: After a file with mode Out_File or Append_File is opened,
the page length and line length are unbounded (both have the conventional value zero). After a
file (of any mode) is opened, the current column, current line, and current page numbers are set
to one. If the mode is Append_File, it is implementation defined whether a page terminator will
separate preexisting text in the file from the new text to be written.

• For the procedure Close: If the file has the current mode Out_File or Append_File, has the effect
of calling New_Page, unless the current page is already terminated; then outputs a file
terminator.

• For the procedure Reset: If the file has the current mode Out_File or Append_File, has the effect
of calling New_Page, unless the current page is already terminated; then outputs a file
terminator. The current column, line, and page numbers are set to one, and the line and page
lengths to Unbounded. If the new mode is Append_File, it is implementation defined whether a
page terminator will separate preexisting text in the file from the new text to be written.

The exception Mode_Error is propagated by the procedure Reset upon an attempt to change the mode of a
file that is the current default input file, the current default output file, or the current default error file.

NOTES
22 An implementation can define the Form parameter of Create and Open to control effects including the following:

• the interpretation of line and column numbers for an interactive file, and
• the interpretation of text formats in a file created by a foreign program.

83

84

85

86/2

1

2

3

4

5

6

7

8

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

383 10 November 2006 Default Input, Output, and Error Files A.10.3

A.10.3 Default Input, Output, and Error Files
Static Semantics

The following subprograms provide for the control of the particular default files that are used when a file
parameter is omitted from a Get, Put, or other operation of text input-output described below, or when
application-dependent error-related text is to be output.

procedure Set_Input(File : in File_Type);

Operates on a file of mode In_File. Sets the current default input file to File.

The exception Status_Error is propagated if the given file is not open. The exception
Mode_Error is propagated if the mode of the given file is not In_File.

procedure Set_Output(File : in File_Type);
procedure Set_Error (File : in File_Type);

Each operates on a file of mode Out_File or Append_File. Set_Output sets the current default
output file to File. Set_Error sets the current default error file to File. The exception Status_Error
is propagated if the given file is not open. The exception Mode_Error is propagated if the mode
of the given file is not Out_File or Append_File.

function Standard_Input return File_Type;
function Standard_Input return File_Access;

Returns the standard input file (see A.10), or an access value designating the standard input file,
respectively.

function Standard_Output return File_Type;
function Standard_Output return File_Access;

Returns the standard output file (see A.10) or an access value designating the standard output
file, respectively.

function Standard_Error return File_Type;
function Standard_Error return File_Access;

Returns the standard error file (see A.10), or an access value designating the standard error file,
respectively.

The Form strings implicitly associated with the opening of Standard_Input, Standard_Output, and
Standard_Error at the start of program execution are implementation defined.

function Current_Input return File_Type;
function Current_Input return File_Access;

Returns the current default input file, or an access value designating the current default input
file, respectively.

function Current_Output return File_Type;
function Current_Output return File_Access;

Returns the current default output file, or an access value designating the current default output
file, respectively.

1

2

3

4

5

6

7

8

9

10

11

12/1

13

14

15

16

17

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.10.3 Default Input, Output, and Error Files 10 November 2006 384

function Current_Error return File_Type;
function Current_Error return File_Access;

Returns the current default error file, or an access value designating the current default error file,
respectively.

procedure Flush (File : in File_Type);
procedure Flush;

The effect of Flush is the same as the corresponding subprogram in Streams.Stream_IO (see
A.12.1). If File is not explicitly specified, Current_Output is used.

Erroneous Execution

The execution of a program is erroneous if it invokes an operation on a current default input, default
output, or default error file, and if the corresponding file object is closed or no longer exists.

This paragraph was deleted.

NOTES
23 The standard input, standard output, and standard error files cannot be opened, closed, reset, or deleted, because the
parameter File of the corresponding procedures has the mode in out.

24 The standard input, standard output, and standard error files are different file objects, but not necessarily different
external files.

A.10.4 Specification of Line and Page Lengths
Static Semantics

The subprograms described in this subclause are concerned with the line and page structure of a file of
mode Out_File or Append_File. They operate either on the file given as the first parameter, or, in the
absence of such a file parameter, on the current default output file. They provide for output of text with a
specified maximum line length or page length. In these cases, line and page terminators are output
implicitly and automatically when needed. When line and page lengths are unbounded (that is, when they
have the conventional value zero), as in the case of a newly opened file, new lines and new pages are only
started when explicitly called for.

In all cases, the exception Status_Error is propagated if the file to be used is not open; the exception
Mode_Error is propagated if the mode of the file is not Out_File or Append_File.

procedure Set_Line_Length(File : in File_Type; To : in Count);
procedure Set_Line_Length(To : in Count);

Sets the maximum line length of the specified output or append file to the number of characters
specified by To. The value zero for To specifies an unbounded line length.

The exception Use_Error is propagated if the specified line length is inappropriate for the
associated external file.

procedure Set_Page_Length(File : in File_Type; To : in Count);
procedure Set_Page_Length(To : in Count);

Sets the maximum page length of the specified output or append file to the number of lines
specified by To. The value zero for To specifies an unbounded page length.

The exception Use_Error is propagated if the specified page length is inappropriate for the
associated external file.

18

19

20/1

21

22/1

23/1

24

25

1

2

3

4

5

6

7

8

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

385 10 November 2006 Specification of Line and Page Lengths A.10.4

function Line_Length(File : in File_Type) return Count;
function Line_Length return Count;

Returns the maximum line length currently set for the specified output or append file, or zero if
the line length is unbounded.

function Page_Length(File : in File_Type) return Count;
function Page_Length return Count;

Returns the maximum page length currently set for the specified output or append file, or zero if
the page length is unbounded.

A.10.5 Operations on Columns, Lines, and Pages
Static Semantics

The subprograms described in this subclause provide for explicit control of line and page structure; they
operate either on the file given as the first parameter, or, in the absence of such a file parameter, on the
appropriate (input or output) current default file. The exception Status_Error is propagated by any of these
subprograms if the file to be used is not open.

procedure New_Line(File : in File_Type; Spacing : in Positive_Count := 1);
procedure New_Line(Spacing : in Positive_Count := 1);

Operates on a file of mode Out_File or Append_File.

For a Spacing of one: Outputs a line terminator and sets the current column number to one. Then
increments the current line number by one, except in the case that the current line number is
already greater than or equal to the maximum page length, for a bounded page length; in that
case a page terminator is output, the current page number is incremented by one, and the current
line number is set to one.

For a Spacing greater than one, the above actions are performed Spacing times.

The exception Mode_Error is propagated if the mode is not Out_File or Append_File.

procedure Skip_Line(File : in File_Type; Spacing : in Positive_Count := 1);
procedure Skip_Line(Spacing : in Positive_Count := 1);

Operates on a file of mode In_File.

For a Spacing of one: Reads and discards all characters until a line terminator has been read, and
then sets the current column number to one. If the line terminator is not immediately followed by
a page terminator, the current line number is incremented by one. Otherwise, if the line
terminator is immediately followed by a page terminator, then the page terminator is skipped,
the current page number is incremented by one, and the current line number is set to one.

For a Spacing greater than one, the above actions are performed Spacing times.

The exception Mode_Error is propagated if the mode is not In_File. The exception End_Error is
propagated if an attempt is made to read a file terminator.

function End_Of_Line(File : in File_Type) return Boolean;
function End_Of_Line return Boolean;

Operates on a file of mode In_File. Returns True if a line terminator or a file terminator is next;
otherwise returns False.

The exception Mode_Error is propagated if the mode is not In_File.

9

10

11

12

1

2

3

4

5

6

7

8

9

10

11

12

13

14

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.10.5 Operations on Columns, Lines, and Pages 10 November 2006 386

procedure New_Page(File : in File_Type);
procedure New_Page;

Operates on a file of mode Out_File or Append_File. Outputs a line terminator if the current line
is not terminated, or if the current page is empty (that is, if the current column and line numbers
are both equal to one). Then outputs a page terminator, which terminates the current page. Adds
one to the current page number and sets the current column and line numbers to one.

The exception Mode_Error is propagated if the mode is not Out_File or Append_File.

procedure Skip_Page(File : in File_Type);
procedure Skip_Page;

Operates on a file of mode In_File. Reads and discards all characters and line terminators until a
page terminator has been read. Then adds one to the current page number, and sets the current
column and line numbers to one.

The exception Mode_Error is propagated if the mode is not In_File. The exception End_Error is
propagated if an attempt is made to read a file terminator.

function End_Of_Page(File : in File_Type) return Boolean;
function End_Of_Page return Boolean;

Operates on a file of mode In_File. Returns True if the combination of a line terminator and a
page terminator is next, or if a file terminator is next; otherwise returns False.

The exception Mode_Error is propagated if the mode is not In_File.

function End_Of_File(File : in File_Type) return Boolean;
function End_Of_File return Boolean;

Operates on a file of mode In_File. Returns True if a file terminator is next, or if the
combination of a line, a page, and a file terminator is next; otherwise returns False.

The exception Mode_Error is propagated if the mode is not In_File.

The following subprograms provide for the control of the current position of reading or writing in a file. In
all cases, the default file is the current output file.

procedure Set_Col(File : in File_Type; To : in Positive_Count);
procedure Set_Col(To : in Positive_Count);

If the file mode is Out_File or Append_File:
• If the value specified by To is greater than the current column number, outputs spaces,

adding one to the current column number after each space, until the current column
number equals the specified value. If the value specified by To is equal to the current
column number, there is no effect. If the value specified by To is less than the current
column number, has the effect of calling New_Line (with a spacing of one), then
outputs (To – 1) spaces, and sets the current column number to the specified value.

• The exception Layout_Error is propagated if the value specified by To exceeds
Line_Length when the line length is bounded (that is, when it does not have the
conventional value zero).

If the file mode is In_File:
• Reads (and discards) individual characters, line terminators, and page terminators,

until the next character to be read has a column number that equals the value specified
by To; there is no effect if the current column number already equals this value. Each
transfer of a character or terminator maintains the current column, line, and page

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

387 10 November 2006 Operations on Columns, Lines, and Pages A.10.5

numbers in the same way as a Get procedure (see A.10.6). (Short lines will be skipped
until a line is reached that has a character at the specified column position.)

• The exception End_Error is propagated if an attempt is made to read a file terminator.

procedure Set_Line(File : in File_Type; To : in Positive_Count);
procedure Set_Line(To : in Positive_Count);

If the file mode is Out_File or Append_File:
• If the value specified by To is greater than the current line number, has the effect of

repeatedly calling New_Line (with a spacing of one), until the current line number
equals the specified value. If the value specified by To is equal to the current line
number, there is no effect. If the value specified by To is less than the current line
number, has the effect of calling New_Page followed by a call of New_Line with a
spacing equal to (To – 1).

• The exception Layout_Error is propagated if the value specified by To exceeds
Page_Length when the page length is bounded (that is, when it does not have the
conventional value zero).

If the mode is In_File:
• Has the effect of repeatedly calling Skip_Line (with a spacing of one), until the current

line number equals the value specified by To; there is no effect if the current line
number already equals this value. (Short pages will be skipped until a page is reached
that has a line at the specified line position.)

• The exception End_Error is propagated if an attempt is made to read a file terminator.

function Col(File : in File_Type) return Positive_Count;
function Col return Positive_Count;

Returns the current column number.

The exception Layout_Error is propagated if this number exceeds Count'Last.

function Line(File : in File_Type) return Positive_Count;
function Line return Positive_Count;

Returns the current line number.

The exception Layout_Error is propagated if this number exceeds Count'Last.

function Page(File : in File_Type) return Positive_Count;
function Page return Positive_Count;

Returns the current page number.

The exception Layout_Error is propagated if this number exceeds Count'Last.

The column number, line number, or page number are allowed to exceed Count'Last (as a consequence of
the input or output of sufficiently many characters, lines, or pages). These events do not cause any
exception to be propagated. However, a call of Col, Line, or Page propagates the exception Layout_Error
if the corresponding number exceeds Count'Last.

NOTES
25 A page terminator is always skipped whenever the preceding line terminator is skipped. An implementation may
represent the combination of these terminators by a single character, provided that it is properly recognized on input.

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.10.6 Get and Put Procedures 10 November 2006 388

A.10.6 Get and Put Procedures
Static Semantics

The procedures Get and Put for items of the type Character, String, numeric types, and enumeration types
are described in subsequent subclauses. Features of these procedures that are common to most of these
types are described in this subclause. The Get and Put procedures for items of type Character and String
deal with individual character values; the Get and Put procedures for numeric and enumeration types treat
the items as lexical elements.

All procedures Get and Put have forms with a file parameter, written first. Where this parameter is
omitted, the appropriate (input or output) current default file is understood to be specified. Each procedure
Get operates on a file of mode In_File. Each procedure Put operates on a file of mode Out_File or
Append_File.

All procedures Get and Put maintain the current column, line, and page numbers of the specified file: the
effect of each of these procedures upon these numbers is the result of the effects of individual transfers of
characters and of individual output or skipping of terminators. Each transfer of a character adds one to the
current column number. Each output of a line terminator sets the current column number to one and adds
one to the current line number. Each output of a page terminator sets the current column and line numbers
to one and adds one to the current page number. For input, each skipping of a line terminator sets the
current column number to one and adds one to the current line number; each skipping of a page terminator
sets the current column and line numbers to one and adds one to the current page number. Similar
considerations apply to the procedures Get_Line, Put_Line, and Set_Col.

Several Get and Put procedures, for numeric and enumeration types, have format parameters which
specify field lengths; these parameters are of the nonnegative subtype Field of the type Integer.

Input-output of enumeration values uses the syntax of the corresponding lexical elements. Any Get
procedure for an enumeration type begins by skipping any leading blanks, or line or page terminators. A
blank is defined as a space or a horizontal tabulation character. Next, characters are input only so long as
the sequence input is an initial sequence of an identifier or of a character literal (in particular, input ceases
when a line terminator is encountered). The character or line terminator that causes input to cease remains
available for subsequent input.

For a numeric type, the Get procedures have a format parameter called Width. If the value given for this
parameter is zero, the Get procedure proceeds in the same manner as for enumeration types, but using the
syntax of numeric literals instead of that of enumeration literals. If a nonzero value is given, then exactly
Width characters are input, or the characters up to a line terminator, whichever comes first; any skipped
leading blanks are included in the count. The syntax used for numeric literals is an extended syntax that
allows a leading sign (but no intervening blanks, or line or page terminators) and that also allows (for real
types) an integer literal as well as forms that have digits only before the point or only after the point.

Any Put procedure, for an item of a numeric or an enumeration type, outputs the value of the item as a
numeric literal, identifier, or character literal, as appropriate. This is preceded by leading spaces if required
by the format parameters Width or Fore (as described in later subclauses), and then a minus sign for a
negative value; for an enumeration type, the spaces follow instead of leading. The format given for a Put
procedure is overridden if it is insufficiently wide, by using the minimum needed width.

Two further cases arise for Put procedures for numeric and enumeration types, if the line length of the
specified output file is bounded (that is, if it does not have the conventional value zero). If the number of
characters to be output does not exceed the maximum line length, but is such that they cannot fit on the

1

2

3

4

5/2

6

7

8

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

389 10 November 2006 Get and Put Procedures A.10.6

current line, starting from the current column, then (in effect) New_Line is called (with a spacing of one)
before output of the item. Otherwise, if the number of characters exceeds the maximum line length, then
the exception Layout_Error is propagated and nothing is output.

The exception Status_Error is propagated by any of the procedures Get, Get_Line, Put, and Put_Line if the
file to be used is not open. The exception Mode_Error is propagated by the procedures Get and Get_Line
if the mode of the file to be used is not In_File; and by the procedures Put and Put_Line, if the mode is not
Out_File or Append_File.

The exception End_Error is propagated by a Get procedure if an attempt is made to skip a file terminator.
The exception Data_Error is propagated by a Get procedure if the sequence finally input is not a lexical
element corresponding to the type, in particular if no characters were input; for this test, leading blanks are
ignored; for an item of a numeric type, when a sign is input, this rule applies to the succeeding numeric
literal. The exception Layout_Error is propagated by a Put procedure that outputs to a parameter of type
String, if the length of the actual string is insufficient for the output of the item.

Examples

In the examples, here and in subclauses A.10.8 and A.10.9, the string quotes and the lower case letter b are
not transferred: they are shown only to reveal the layout and spaces.

N : Integer;
 ...
Get(N);

-- Characters at input Sequence input Value of N

-- bb–12535b –12535 –12535
-- bb12_535e1b 12_535e1 125350
-- bb12_535e; 12_535e (none) Data_Error raised

Example of overridden width parameter:
Put(Item => -23, Width => 2); -- "–23"

A.10.7 Input-Output of Characters and Strings
Static Semantics

For an item of type Character the following procedures are provided:
procedure Get(File : in File_Type; Item : out Character);
procedure Get(Item : out Character);

After skipping any line terminators and any page terminators, reads the next character from the
specified input file and returns the value of this character in the out parameter Item.

The exception End_Error is propagated if an attempt is made to skip a file terminator.

procedure Put(File : in File_Type; Item : in Character);
procedure Put(Item : in Character);

If the line length of the specified output file is bounded (that is, does not have the conventional
value zero), and the current column number exceeds it, has the effect of calling New_Line with a
spacing of one. Then, or otherwise, outputs the given character to the file.

9

10

11

12

13

14

15

1

2

3

4

5

6

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.10.7 Input-Output of Characters and Strings 10 November 2006 390

procedure Look_Ahead (File : in File_Type;
 Item : out Character;
 End_Of_Line : out Boolean);
procedure Look_Ahead (Item : out Character;
 End_Of_Line : out Boolean);

Mode_Error is propagated if the mode of the file is not In_File. Sets End_Of_Line to True if at
end of line, including if at end of page or at end of file; in each of these cases the value of Item is
not specified. Otherwise End_Of_Line is set to False and Item is set to the next character
(without consuming it) from the file.

procedure Get_Immediate(File : in File_Type;
 Item : out Character);
procedure Get_Immediate(Item : out Character);

Reads the next character, either control or graphic, from the specified File or the default input
file. Mode_Error is propagated if the mode of the file is not In_File. End_Error is propagated if
at the end of the file. The current column, line and page numbers for the file are not affected.

procedure Get_Immediate(File : in File_Type;
 Item : out Character;
 Available : out Boolean);
procedure Get_Immediate(Item : out Character;
 Available : out Boolean);

If a character, either control or graphic, is available from the specified File or the default input
file, then the character is read; Available is True and Item contains the value of this character. If
a character is not available, then Available is False and the value of Item is not specified.
Mode_Error is propagated if the mode of the file is not In_File. End_Error is propagated if at the
end of the file. The current column, line and page numbers for the file are not affected.

For an item of type String the following subprograms are provided:
procedure Get(File : in File_Type; Item : out String);
procedure Get(Item : out String);

Determines the length of the given string and attempts that number of Get operations for
successive characters of the string (in particular, no operation is performed if the string is null).

procedure Put(File : in File_Type; Item : in String);
procedure Put(Item : in String);

Determines the length of the given string and attempts that number of Put operations for
successive characters of the string (in particular, no operation is performed if the string is null).

function Get_Line(File : in File_Type) return String;
function Get_Line return String;

Returns a result string constructed by reading successive characters from the specified input file,
and assigning them to successive characters of the result string. The result string has a lower
bound of 1 and an upper bound of the number of characters read. Reading stops when the end of
the line is met; Skip_Line is then (in effect) called with a spacing of 1.

Constraint_Error is raised if the length of the line exceeds Positive'Last; in this case, the line
number and page number are unchanged, and the column number is unspecified but no less than
it was before the call. The exception End_Error is propagated if an attempt is made to skip a file
terminator.

7

8/1

9

10

11

12

13/2

14

15

16

17

17.1/2

17.2/2

17.3/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

391 10 November 2006 Input-Output of Characters and Strings A.10.7

procedure Get_Line(File : in File_Type;
 Item : out String;
 Last : out Natural);
procedure Get_Line(Item : out String; Last : out Natural);

Reads successive characters from the specified input file and assigns them to successive
characters of the specified string. Reading stops if the end of the string is met. Reading also
stops if the end of the line is met before meeting the end of the string; in this case Skip_Line is
(in effect) called with a spacing of 1. The values of characters not assigned are not specified.

If characters are read, returns in Last the index value such that Item(Last) is the last character
assigned (the index of the first character assigned is Item'First). If no characters are read, returns
in Last an index value that is one less than Item'First. The exception End_Error is propagated if
an attempt is made to skip a file terminator.

procedure Put_Line(File : in File_Type; Item : in String);
procedure Put_Line(Item : in String);

Calls the procedure Put for the given string, and then the procedure New_Line with a spacing of
one.

Implementation Advice

The Get_Immediate procedures should be implemented with unbuffered input. For a device such as a
keyboard, input should be “available” if a key has already been typed, whereas for a disk file, input should
always be available except at end of file. For a file associated with a keyboard-like device, any line-editing
features of the underlying operating system should be disabled during the execution of Get_Immediate.

NOTES
26 Get_Immediate can be used to read a single key from the keyboard “immediately”; that is, without waiting for an end
of line. In a call of Get_Immediate without the parameter Available, the caller will wait until a character is available.

27 In a literal string parameter of Put, the enclosing string bracket characters are not output. Each doubled string bracket
character in the enclosed string is output as a single string bracket character, as a consequence of the rule for string literals
(see 2.6).

28 A string read by Get or written by Put can extend over several lines. An implementation is allowed to assume that
certain external files do not contain page terminators, in which case Get_Line and Skip_Line can return as soon as a line
terminator is read.

A.10.8 Input-Output for Integer Types
Static Semantics

The following procedures are defined in the generic packages Integer_IO and Modular_IO, which have to
be instantiated for the appropriate signed integer or modular type respectively (indicated by Num in the
specifications).

Values are output as decimal or based literals, without low line characters or exponent, and, for
Integer_IO, preceded by a minus sign if negative. The format (which includes any leading spaces and
minus sign) can be specified by an optional field width parameter. Values of widths of fields in output
formats are of the nonnegative integer subtype Field. Values of bases are of the integer subtype
Number_Base.

subtype Number_Base is Integer range 2 .. 16;

The default field width and base to be used by output procedures are defined by the following variables
that are declared in the generic packages Integer_IO and Modular_IO:

18

19

20

21

22

23

24

25

26

1

2

3

4

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.10.8 Input-Output for Integer Types 10 November 2006 392

Default_Width : Field := Num'Width;
Default_Base : Number_Base := 10;

The following procedures are provided:
procedure Get(File : in File_Type; Item : out Num; Width : in Field := 0);
procedure Get(Item : out Num; Width : in Field := 0);

If the value of the parameter Width is zero, skips any leading blanks, line terminators, or page
terminators, then reads a plus sign if present or (for a signed type only) a minus sign if present,
then reads the longest possible sequence of characters matching the syntax of a numeric literal
without a point. If a nonzero value of Width is supplied, then exactly Width characters are input,
or the characters (possibly none) up to a line terminator, whichever comes first; any skipped
leading blanks are included in the count.

Returns, in the parameter Item, the value of type Num that corresponds to the sequence input.

The exception Data_Error is propagated if the sequence of characters read does not form a legal
integer literal or if the value obtained is not of the subtype Num (for Integer_IO) or is not in the
base range of Num (for Modular_IO).

procedure Put(File : in File_Type;
 Item : in Num;
 Width : in Field := Default_Width;
 Base : in Number_Base := Default_Base);

procedure Put(Item : in Num;
 Width : in Field := Default_Width;
 Base : in Number_Base := Default_Base);

Outputs the value of the parameter Item as an integer literal, with no low lines, no exponent, and
no leading zeros (but a single zero for the value zero), and a preceding minus sign for a negative
value.

If the resulting sequence of characters to be output has fewer than Width characters, then leading
spaces are first output to make up the difference.

Uses the syntax for decimal literal if the parameter Base has the value ten (either explicitly or
through Default_Base); otherwise, uses the syntax for based literal, with any letters in upper
case.

procedure Get(From : in String; Item : out Num; Last : out Positive);

Reads an integer value from the beginning of the given string, following the same rules as the
Get procedure that reads an integer value from a file, but treating the end of the string as a file
terminator. Returns, in the parameter Item, the value of type Num that corresponds to the
sequence input. Returns in Last the index value such that From(Last) is the last character read.

The exception Data_Error is propagated if the sequence input does not have the required syntax
or if the value obtained is not of the subtype Num.

procedure Put(To : out String;
 Item : in Num;
 Base : in Number_Base := Default_Base);

Outputs the value of the parameter Item to the given string, following the same rule as for output
to a file, using the length of the given string as the value for Width.

Integer_Text_IO is a library package that is a nongeneric equivalent to Text_IO.Integer_IO for the
predefined type Integer:

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

393 10 November 2006 Input-Output for Integer Types A.10.8

with Ada.Text_IO;
package Ada.Integer_Text_IO is new Ada.Text_IO.Integer_IO(Integer);

For each predefined signed integer type, a nongeneric equivalent to Text_IO.Integer_IO is provided, with
names such as Ada.Long_Integer_Text_IO.

Implementation Permissions

The nongeneric equivalent packages may, but need not, be actual instantiations of the generic package for
the appropriate predefined type.

NOTES
29 For Modular_IO, execution of Get propagates Data_Error if the sequence of characters read forms an integer literal
outside the range 0..Num'Last.

Examples
This paragraph was deleted.

package Int_IO is new Integer_IO(Small_Int); use Int_IO;
-- default format used at instantiation,
-- Default_Width = 4, Default_Base = 10
Put(126); -- "b126"
Put(-126, 7); -- "bbb–126"
Put(126, Width => 13, Base => 2); -- "bbb2#1111110#"

A.10.9 Input-Output for Real Types
Static Semantics

The following procedures are defined in the generic packages Float_IO, Fixed_IO, and Decimal_IO,
which have to be instantiated for the appropriate floating point, ordinary fixed point, or decimal fixed
point type respectively (indicated by Num in the specifications).

Values are output as decimal literals without low line characters. The format of each value output consists
of a Fore field, a decimal point, an Aft field, and (if a nonzero Exp parameter is supplied) the letter E and
an Exp field. The two possible formats thus correspond to:

Fore . Aft

and to:
Fore . Aft E Exp

without any spaces between these fields. The Fore field may include leading spaces, and a minus sign for
negative values. The Aft field includes only decimal digits (possibly with trailing zeros). The Exp field
includes the sign (plus or minus) and the exponent (possibly with leading zeros).

For floating point types, the default lengths of these fields are defined by the following variables that are
declared in the generic package Float_IO:

Default_Fore : Field := 2;
Default_Aft : Field := Num'Digits-1;
Default_Exp : Field := 3;

For ordinary or decimal fixed point types, the default lengths of these fields are defined by the following
variables that are declared in the generic packages Fixed_IO and Decimal_IO, respectively:

Default_Fore : Field := Num'Fore;
Default_Aft : Field := Num'Aft;
Default_Exp : Field := 0;

21

22

23

24

25/1

26

27

1

2

3

4

5

6

7

8

9

10

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.10.9 Input-Output for Real Types 10 November 2006 394

The following procedures are provided:
procedure Get(File : in File_Type; Item : out Num; Width : in Field := 0);
procedure Get(Item : out Num; Width : in Field := 0);

If the value of the parameter Width is zero, skips any leading blanks, line terminators, or page
terminators, then reads the longest possible sequence of characters matching the syntax of any of
the following (see 2.4):

• [+|–]numeric_literal

• [+|–]numeral.[exponent]

• [+|–].numeral[exponent]

• [+|–]base#based_numeral.#[exponent]

• [+|–]base#.based_numeral#[exponent]

If a nonzero value of Width is supplied, then exactly Width characters are input, or the
characters (possibly none) up to a line terminator, whichever comes first; any skipped leading
blanks are included in the count.

Returns in the parameter Item the value of type Num that corresponds to the sequence input,
preserving the sign (positive if none has been specified) of a zero value if Num is a floating
point type and Num'Signed_Zeros is True.

The exception Data_Error is propagated if the sequence input does not have the required syntax
or if the value obtained is not of the subtype Num.

procedure Put(File : in File_Type;
 Item : in Num;
 Fore : in Field := Default_Fore;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);

procedure Put(Item : in Num;
 Fore : in Field := Default_Fore;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);

Outputs the value of the parameter Item as a decimal literal with the format defined by Fore, Aft
and Exp. If the value is negative, or if Num is a floating point type where Num'Signed_Zeros is
True and the value is a negatively signed zero, then a minus sign is included in the integer part.
If Exp has the value zero, then the integer part to be output has as many digits as are needed to
represent the integer part of the value of Item, overriding Fore if necessary, or consists of the
digit zero if the value of Item has no integer part.

If Exp has a value greater than zero, then the integer part to be output has a single digit, which is
nonzero except for the value 0.0 of Item.

In both cases, however, if the integer part to be output has fewer than Fore characters, including
any minus sign, then leading spaces are first output to make up the difference. The number of
digits of the fractional part is given by Aft, or is one if Aft equals zero. The value is rounded; a
value of exactly one half in the last place is rounded away from zero.

If Exp has the value zero, there is no exponent part. If Exp has a value greater than zero, then the
exponent part to be output has as many digits as are needed to represent the exponent part of the
value of Item (for which a single digit integer part is used), and includes an initial sign (plus or
minus). If the exponent part to be output has fewer than Exp characters, including the sign, then

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

395 10 November 2006 Input-Output for Real Types A.10.9

leading zeros precede the digits, to make up the difference. For the value 0.0 of Item, the
exponent has the value zero.

procedure Get(From : in String; Item : out Num; Last : out Positive);

Reads a real value from the beginning of the given string, following the same rule as the Get
procedure that reads a real value from a file, but treating the end of the string as a file terminator.
Returns, in the parameter Item, the value of type Num that corresponds to the sequence input.
Returns in Last the index value such that From(Last) is the last character read.

The exception Data_Error is propagated if the sequence input does not have the required syntax,
or if the value obtained is not of the subtype Num.

procedure Put(To : out String;
 Item : in Num;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);

Outputs the value of the parameter Item to the given string, following the same rule as for output
to a file, using a value for Fore such that the sequence of characters output exactly fills the
string, including any leading spaces.

Float_Text_IO is a library package that is a nongeneric equivalent to Text_IO.Float_IO for the predefined
type Float:

with Ada.Text_IO;
package Ada.Float_Text_IO is new Ada.Text_IO.Float_IO(Float);

For each predefined floating point type, a nongeneric equivalent to Text_IO.Float_IO is provided, with
names such as Ada.Long_Float_Text_IO.

Implementation Permissions

An implementation may extend Get and Put for floating point types to support special values such as
infinities and NaNs.

The implementation of Put need not produce an output value with greater accuracy than is supported for
the base subtype. The additional accuracy, if any, of the value produced by Put when the number of
requested digits in the integer and fractional parts exceeds the required accuracy is implementation
defined.

The nongeneric equivalent packages may, but need not, be actual instantiations of the generic package for
the appropriate predefined type.

NOTES
30 For an item with a positive value, if output to a string exactly fills the string without leading spaces, then output of the
corresponding negative value will propagate Layout_Error.

31 The rules for the Value attribute (see 3.5) and the rules for Get are based on the same set of formats.

Examples
This paragraph was deleted.

package Real_IO is new Float_IO(Real); use Real_IO;
-- default format used at instantiation, Default_Exp = 3
X : Real := -123.4567; -- digits 8 (see 3.5.7)
Put(X); -- default format "–1.2345670E+02"
Put(X, Fore => 5, Aft => 3, Exp => 2); -- "bbb–1.235E+2"
Put(X, 5, 3, 0); -- "b–123.457"

27

28

29

30

31

32

33

34

35

36

37

38

39

40/1

41

42

43

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.10.10 Input-Output for Enumeration Types 10 November 2006 396

A.10.10 Input-Output for Enumeration Types
Static Semantics

The following procedures are defined in the generic package Enumeration_IO, which has to be instantiated
for the appropriate enumeration type (indicated by Enum in the specification).

Values are output using either upper or lower case letters for identifiers. This is specified by the parameter
Set, which is of the enumeration type Type_Set.

type Type_Set is (Lower_Case, Upper_Case);

The format (which includes any trailing spaces) can be specified by an optional field width parameter. The
default field width and letter case are defined by the following variables that are declared in the generic
package Enumeration_IO:

Default_Width : Field := 0;
Default_Setting : Type_Set := Upper_Case;

The following procedures are provided:
procedure Get(File : in File_Type; Item : out Enum);
procedure Get(Item : out Enum);

After skipping any leading blanks, line terminators, or page terminators, reads an identifier
according to the syntax of this lexical element (lower and upper case being considered
equivalent), or a character literal according to the syntax of this lexical element (including the
apostrophes). Returns, in the parameter Item, the value of type Enum that corresponds to the
sequence input.

The exception Data_Error is propagated if the sequence input does not have the required syntax,
or if the identifier or character literal does not correspond to a value of the subtype Enum.

procedure Put(File : in File_Type;
 Item : in Enum;
 Width : in Field := Default_Width;
 Set : in Type_Set := Default_Setting);

procedure Put(Item : in Enum;
 Width : in Field := Default_Width;
 Set : in Type_Set := Default_Setting);

Outputs the value of the parameter Item as an enumeration literal (either an identifier or a
character literal). The optional parameter Set indicates whether lower case or upper case is used
for identifiers; it has no effect for character literals. If the sequence of characters produced has
fewer than Width characters, then trailing spaces are finally output to make up the difference. If
Enum is a character type, the sequence of characters produced is as for Enum'Image(Item), as
modified by the Width and Set parameters.

procedure Get(From : in String; Item : out Enum; Last : out Positive);

Reads an enumeration value from the beginning of the given string, following the same rule as
the Get procedure that reads an enumeration value from a file, but treating the end of the string
as a file terminator. Returns, in the parameter Item, the value of type Enum that corresponds to
the sequence input. Returns in Last the index value such that From(Last) is the last character
read.

The exception Data_Error is propagated if the sequence input does not have the required syntax,
or if the identifier or character literal does not correspond to a value of the subtype Enum.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

397 10 November 2006 Input-Output for Enumeration Types A.10.10

procedure Put(To : out String;
 Item : in Enum;
 Set : in Type_Set := Default_Setting);

Outputs the value of the parameter Item to the given string, following the same rule as for output
to a file, using the length of the given string as the value for Width.

Although the specification of the generic package Enumeration_IO would allow instantiation for an
integer type, this is not the intended purpose of this generic package, and the effect of such instantiations is
not defined by the language.

NOTES
32 There is a difference between Put defined for characters, and for enumeration values. Thus

 Ada.Text_IO.Put('A'); -- outputs the character A
 package Char_IO is new Ada.Text_IO.Enumeration_IO(Character);
 Char_IO.Put('A'); -- outputs the character 'A', between apostrophes
33 The type Boolean is an enumeration type, hence Enumeration_IO can be instantiated for this type.

A.10.11 Input-Output for Bounded Strings
The package Text_IO.Bounded_IO provides input-output in human-readable form for Bounded_Strings.

Static Semantics

The generic library package Text_IO.Bounded_IO has the following declaration:
with Ada.Strings.Bounded;
generic
 with package Bounded is
 new Ada.Strings.Bounded.Generic_Bounded_Length (<>);
package Ada.Text_IO.Bounded_IO is

 procedure Put
 (File : in File_Type;
 Item : in Bounded.Bounded_String);

 procedure Put
 (Item : in Bounded.Bounded_String);

 procedure Put_Line
 (File : in File_Type;
 Item : in Bounded.Bounded_String);

 procedure Put_Line
 (Item : in Bounded.Bounded_String);

 function Get_Line
 (File : in File_Type)
 return Bounded.Bounded_String;

 function Get_Line
 return Bounded.Bounded_String;

 procedure Get_Line
 (File : in File_Type; Item : out Bounded.Bounded_String);

 procedure Get_Line
 (Item : out Bounded.Bounded_String);

end Ada.Text_IO.Bounded_IO;

For an item of type Bounded_String, the following subprograms are provided:
procedure Put
 (File : in File_Type;
 Item : in Bounded.Bounded_String);

Equivalent to Text_IO.Put (File, Bounded.To_String(Item));

15

16

17/1

18

19

20

21

1/2

2/2

3/2

4/2

5/2

6/2

7/2

8/2

9/2

10/2

11/2

12/2

13/2

14/2

15/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.10.11 Input-Output for Bounded Strings 10 November 2006 398

procedure Put
 (Item : in Bounded.Bounded_String);

Equivalent to Text_IO.Put (Bounded.To_String(Item));
procedure Put_Line
 (File : in File_Type;
 Item : in Bounded.Bounded_String);

Equivalent to Text_IO.Put_Line (File, Bounded.To_String(Item));
procedure Put_Line
 (Item : in Bounded.Bounded_String);

Equivalent to Text_IO.Put_Line (Bounded.To_String(Item));
function Get_Line
 (File : in File_Type)
 return Bounded.Bounded_String;

Returns Bounded.To_Bounded_String(Text_IO.Get_Line(File));
function Get_Line
 return Bounded.Bounded_String;

Returns Bounded.To_Bounded_String(Text_IO.Get_Line);
procedure Get_Line
 (File : in File_Type; Item : out Bounded.Bounded_String);

Equivalent to Item := Get_Line (File);
procedure Get_Line
 (Item : out Bounded.Bounded_String);

Equivalent to Item := Get_Line;

A.10.12 Input-Output for Unbounded Strings
The package Text_IO.Unbounded_IO provides input-output in human-readable form for
Unbounded_Strings.

Static Semantics

The library package Text_IO.Unbounded_IO has the following declaration:
with Ada.Strings.Unbounded;
package Ada.Text_IO.Unbounded_IO is

 procedure Put
 (File : in File_Type;
 Item : in Strings.Unbounded.Unbounded_String);

 procedure Put
 (Item : in Strings.Unbounded.Unbounded_String);

 procedure Put_Line
 (File : in File_Type;
 Item : in Strings.Unbounded.Unbounded_String);

 procedure Put_Line
 (Item : in Strings.Unbounded.Unbounded_String);

 function Get_Line
 (File : in File_Type)
 return Strings.Unbounded.Unbounded_String;

 function Get_Line
 return Strings.Unbounded.Unbounded_String;

16/2

17/2

18/2

19/2

20/2

21/2

22/2

23/2

24/2

25/2

26/2

27/2

28/2

29/2

1/2

2/2

3/2

4/2

5/2

6/2

7/2

8/2

9/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

399 10 November 2006 Input-Output for Unbounded Strings A.10.12

 procedure Get_Line
 (File : in File_Type; Item : out Strings.Unbounded.Unbounded_String);

 procedure Get_Line
 (Item : out Strings.Unbounded.Unbounded_String);

end Ada.Text_IO.Unbounded_IO;

For an item of type Unbounded_String, the following subprograms are provided:
procedure Put
 (File : in File_Type;
 Item : in Strings.Unbounded.Unbounded_String);

Equivalent to Text_IO.Put (File, Strings.Unbounded.To_String(Item));
procedure Put
 (Item : in Strings.Unbounded.Unbounded_String);

Equivalent to Text_IO.Put (Strings.Unbounded.To_String(Item));
procedure Put_Line
 (File : in File_Type;
 Item : in Strings.Unbounded.Unbounded_String);

Equivalent to Text_IO.Put_Line (File, Strings.Unbounded.To_String(Item));
procedure Put_Line
 (Item : in Strings.Unbounded.Unbounded_String);

Equivalent to Text_IO.Put_Line (Strings.Unbounded.To_String(Item));
function Get_Line
 (File : in File_Type)
 return Strings.Unbounded.Unbounded_String;

Returns Strings.Unbounded.To_Unbounded_String(Text_IO.Get_Line(File));
function Get_Line
 return Strings.Unbounded.Unbounded_String;

Returns Strings.Unbounded.To_Unbounded_String(Text_IO.Get_Line);
procedure Get_Line
 (File : in File_Type; Item : out Strings.Unbounded.Unbounded_String);

Equivalent to Item := Get_Line (File);
procedure Get_Line
 (Item : out Strings.Unbounded.Unbounded_String);

Equivalent to Item := Get_Line;

A.11 Wide Text Input-Output and Wide Wide Text Input-Output
The packages Wide_Text_IO and Wide_Wide_Text_IO provide facilities for input and output in human-
readable form. Each file is read or written sequentially, as a sequence of wide characters (or wide wide
characters) grouped into lines, and as a sequence of lines grouped into pages.

Static Semantics

The specification of package Wide_Text_IO is the same as that for Text_IO, except that in each Get,
Look_Ahead, Get_Immediate, Get_Line, Put, and Put_Line subprogram, any occurrence of Character is
replaced by Wide_Character, and any occurrence of String is replaced by Wide_String. Nongeneric
equivalents of Wide_Text_IO.Integer_IO and Wide_Text_IO.Float_IO are provided (as for Text_IO) for
each predefined numeric type, with names such as Ada.Integer_Wide_Text_IO, Ada.Long_Integer_-
Wide_Text_IO, Ada.Float_Wide_Text_IO, Ada.Long_Float_Wide_Text_IO.

10/2

11/2

12/2

13/2

14/2

15/2

16/2

17/2

18/2

19/2

20/2

21/2

22/2

23/2

24/2

25/2

26/2

27/2

28/2

29/2

1/2

2/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.11 Wide Text Input-Output and Wide Wide Text Input-Output 10 November 2006 400

The specification of package Wide_Wide_Text_IO is the same as that for Text_IO, except that in each
Get, Look_Ahead, Get_Immediate, Get_Line, Put, and Put_Line subprogram, any occurrence of Character
is replaced by Wide_Wide_Character, and any occurrence of String is replaced by Wide_Wide_String.
Nongeneric equivalents of Wide_Wide_Text_IO.Integer_IO and Wide_Wide_Text_IO.Float_IO are
provided (as for Text_IO) for each predefined numeric type, with names such as Ada.Integer_-
Wide_Wide_Text_IO, Ada.Long_Integer_Wide_Wide_Text_IO, Ada.Float_Wide_Wide_Text_IO,
Ada.Long_Float_Wide_Wide_Text_IO.

The specification of package Wide_Text_IO.Wide_Bounded_IO is the same as that for
Text_IO.Bounded_IO, except that any occurrence of Bounded_String is replaced by Wide_Bounded_-
String, and any occurrence of package Bounded is replaced by Wide_Bounded. The specification of
package Wide_Wide_Text_IO.Wide_Wide_Bounded_IO is the same as that for Text_IO.Bounded_IO,
except that any occurrence of Bounded_String is replaced by Wide_Wide_Bounded_String, and any
occurrence of package Bounded is replaced by Wide_Wide_Bounded.

The specification of package Wide_Text_IO.Wide_Unbounded_IO is the same as that for Text_IO.-
Unbounded_IO, except that any occurrence of Unbounded_String is replaced by Wide_Unbounded_-
String, and any occurrence of package Unbounded is replaced by Wide_Unbounded. The specification of
package Wide_Wide_Text_IO.Wide_Wide_Unbounded_IO is the same as that for
Text_IO.Unbounded_IO, except that any occurrence of Unbounded_String is replaced by Wide_Wide_-
Unbounded_String, and any occurrence of package Unbounded is replaced by Wide_Wide_Unbounded.

A.12 Stream Input-Output
The packages Streams.Stream_IO, Text_IO.Text_Streams, Wide_Text_IO.Text_Streams, and
Wide_Wide_Text_IO.Text_Streams provide stream-oriented operations on files.

A.12.1 The Package Streams.Stream_IO
The subprograms in the child package Streams.Stream_IO provide control over stream files. Access to a
stream file is either sequential, via a call on Read or Write to transfer an array of stream elements, or
positional (if supported by the implementation for the given file), by specifying a relative index for an
element. Since a stream file can be converted to a Stream_Access value, calling stream-oriented attribute
subprograms of different element types with the same Stream_Access value provides heterogeneous input-
output. See 13.13 for a general discussion of streams.

Static Semantics

The elements of a stream file are stream elements. If positioning is supported for the specified external
file, a current index and current size are maintained for the file as described in A.8. If positioning is not
supported, a current index is not maintained, and the current size is implementation defined.

The library package Streams.Stream_IO has the following declaration:
with Ada.IO_Exceptions;
package Ada.Streams.Stream_IO is

 type Stream_Access is access all Root_Stream_Type'Class;

 type File_Type is limited private;

 type File_Mode is (In_File, Out_File, Append_File);

 type Count is range 0 .. implementation-defined;
 subtype Positive_Count is Count range 1 .. Count'Last;
 -- Index into file, in stream elements.

3/2

4/2

5/2

1/2

1

1.1/1

2

3

4

5

6

7

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

401 10 November 2006 The Package Streams.Stream_IO A.12.1

 procedure Create (File : in out File_Type;
 Mode : in File_Mode := Out_File;
 Name : in String := "";
 Form : in String := "");

 procedure Open (File : in out File_Type;
 Mode : in File_Mode;
 Name : in String;
 Form : in String := "");

 procedure Close (File : in out File_Type);
 procedure Delete (File : in out File_Type);
 procedure Reset (File : in out File_Type; Mode : in File_Mode);
 procedure Reset (File : in out File_Type);

 function Mode (File : in File_Type) return File_Mode;
 function Name (File : in File_Type) return String;
 function Form (File : in File_Type) return String;

 function Is_Open (File : in File_Type) return Boolean;
 function End_Of_File (File : in File_Type) return Boolean;

 function Stream (File : in File_Type) return Stream_Access;
 -- Return stream access for use with T'Input and T'Output
This paragraph was deleted.

 -- Read array of stream elements from file
 procedure Read (File : in File_Type;
 Item : out Stream_Element_Array;
 Last : out Stream_Element_Offset;
 From : in Positive_Count);

 procedure Read (File : in File_Type;
 Item : out Stream_Element_Array;
 Last : out Stream_Element_Offset);

This paragraph was deleted.

 -- Write array of stream elements into file
 procedure Write (File : in File_Type;
 Item : in Stream_Element_Array;
 To : in Positive_Count);

 procedure Write (File : in File_Type;
 Item : in Stream_Element_Array);

This paragraph was deleted.

 -- Operations on position within file
 procedure Set_Index(File : in File_Type; To : in Positive_Count);

 function Index(File : in File_Type) return Positive_Count;
 function Size (File : in File_Type) return Count;

 procedure Set_Mode(File : in out File_Type; Mode : in File_Mode);

 procedure Flush(File : in File_Type);

 -- exceptions
 Status_Error : exception renames IO_Exceptions.Status_Error;
 Mode_Error : exception renames IO_Exceptions.Mode_Error;
 Name_Error : exception renames IO_Exceptions.Name_Error;
 Use_Error : exception renames IO_Exceptions.Use_Error;
 Device_Error : exception renames IO_Exceptions.Device_Error;
 End_Error : exception renames IO_Exceptions.End_Error;
 Data_Error : exception renames IO_Exceptions.Data_Error;

private
 ... -- not specified by the language
end Ada.Streams.Stream_IO;

The type File_Type needs finalization (see 7.6).

8

9

10

11

12

13

14/1

15

16

17/1

18

19

20/1

21

22

23

24

25/1

26

27

27.1/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.12.1 The Package Streams.Stream_IO 10 November 2006 402

The subprograms given in subclause A.8.2 for the control of external files (Create, Open, Close, Delete,
Reset, Mode, Name, Form, and Is_Open) are available for stream files.

The End_Of_File function:
• Propagates Mode_Error if the mode of the file is not In_File;

• If positioning is supported for the given external file, the function returns True if the current
index exceeds the size of the external file; otherwise it returns False;

• If positioning is not supported for the given external file, the function returns True if no more
elements can be read from the given file; otherwise it returns False.

The Set_Mode procedure sets the mode of the file. If the new mode is Append_File, the file is positioned
to its end; otherwise, the position in the file is unchanged.

The Flush procedure synchronizes the external file with the internal file (by flushing any internal buffers)
without closing the file or changing the position. Mode_Error is propagated if the mode of the file is
In_File.

The Stream function returns a Stream_Access result from a File_Type object, thus allowing the stream-
oriented attributes Read, Write, Input, and Output to be used on the same file for multiple types. Stream
propagates Status_Error if File is not open.

The procedures Read and Write are equivalent to the corresponding operations in the package Streams.
Read propagates Mode_Error if the mode of File is not In_File. Write propagates Mode_Error if the mode
of File is not Out_File or Append_File. The Read procedure with a Positive_Count parameter starts
reading at the specified index. The Write procedure with a Positive_Count parameter starts writing at the
specified index. For a file that supports positioning, Read without a Positive_Count parameter starts
reading at the current index, and Write without a Positive_Count parameter starts writing at the current
index.

The Size function returns the current size of the file.

The Index function returns the current index.

The Set_Index procedure sets the current index to the specified value.

If positioning is supported for the external file, the current index is maintained as follows:
• For Open and Create, if the Mode parameter is Append_File, the current index is set to the

current size of the file plus one; otherwise, the current index is set to one.

• For Reset, if the Mode parameter is Append_File, or no Mode parameter is given and the current
mode is Append_File, the current index is set to the current size of the file plus one; otherwise,
the current index is set to one.

• For Set_Mode, if the new mode is Append_File, the current index is set to current size plus one;
otherwise, the current index is unchanged.

• For Read and Write without a Positive_Count parameter, the current index is incremented by the
number of stream elements read or written.

• For Read and Write with a Positive_Count parameter, the value of the current index is set to the
value of the Positive_Count parameter plus the number of stream elements read or written.

If positioning is not supported for the given file, then a call of Index or Set_Index propagates Use_Error.
Similarly, a call of Read or Write with a Positive_Count parameter propagates Use_Error.

Paragraphs 34 through 36 were deleted.

28/2

28.1/2

28.2/2

28.3/2

28.4/2

28.5/2

28.6/1

29/1

30/2

30.1/1

31/1

32

32.1/1

32.2/1

32.3/1

32.4/1

32.5/1

32.6/1

33

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

403 10 November 2006 The Package Streams.Stream_IO A.12.1

Erroneous Execution

If the File_Type object passed to the Stream function is later closed or finalized, and the stream-oriented
attributes are subsequently called (explicitly or implicitly) on the Stream_Access value returned by
Stream, execution is erroneous. This rule applies even if the File_Type object was opened again after it
had been closed.

A.12.2 The Package Text_IO.Text_Streams
The package Text_IO.Text_Streams provides a function for treating a text file as a stream.

Static Semantics

The library package Text_IO.Text_Streams has the following declaration:
with Ada.Streams;
package Ada.Text_IO.Text_Streams is
 type Stream_Access is access all Streams.Root_Stream_Type'Class;

 function Stream (File : in File_Type) return Stream_Access;
end Ada.Text_IO.Text_Streams;

The Stream function has the same effect as the corresponding function in Streams.Stream_IO.

NOTES
34 The ability to obtain a stream for a text file allows Current_Input, Current_Output, and Current_Error to be processed
with the functionality of streams, including the mixing of text and binary input-output, and the mixing of binary input-
output for different types.

35 Performing operations on the stream associated with a text file does not affect the column, line, or page counts.

A.12.3 The Package Wide_Text_IO.Text_Streams
The package Wide_Text_IO.Text_Streams provides a function for treating a wide text file as a stream.

Static Semantics

The library package Wide_Text_IO.Text_Streams has the following declaration:
with Ada.Streams;
package Ada.Wide_Text_IO.Text_Streams is
 type Stream_Access is access all Streams.Root_Stream_Type'Class;

 function Stream (File : in File_Type) return Stream_Access;
end Ada.Wide_Text_IO.Text_Streams;

The Stream function has the same effect as the corresponding function in Streams.Stream_IO.

A.12.4 The Package Wide_Wide_Text_IO.Text_Streams
The package Wide_Wide_Text_IO.Text_Streams provides a function for treating a wide wide text file as a
stream.

Static Semantics

The library package Wide_Wide_Text_IO.Text_Streams has the following declaration:
with Ada.Streams;
package Ada.Wide_Wide_Text_IO.Text_Streams is
 type Stream_Access is access all Streams.Root_Stream_Type'Class;

 function Stream (File : in File_Type) return Stream_Access;
end Ada.Wide_Wide_Text_IO.Text_Streams;

36.1/1

1

2

3

4

5

6

7

1

2

3

4

5

1/2

2/2

3/2

4/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.12.4 The Package Wide_Wide_Text_IO.Text_Streams 10 November 2006 404

The Stream function has the same effect as the corresponding function in Streams.Stream_IO.

A.13 Exceptions in Input-Output
The package IO_Exceptions defines the exceptions needed by the predefined input-output packages.

Static Semantics

The library package IO_Exceptions has the following declaration:
package Ada.IO_Exceptions is
 pragma Pure(IO_Exceptions);

 Status_Error : exception;
 Mode_Error : exception;
 Name_Error : exception;
 Use_Error : exception;
 Device_Error : exception;
 End_Error : exception;
 Data_Error : exception;
 Layout_Error : exception;

end Ada.IO_Exceptions;

If more than one error condition exists, the corresponding exception that appears earliest in the following
list is the one that is propagated.

The exception Status_Error is propagated by an attempt to operate upon a file that is not open, and by an
attempt to open a file that is already open.

The exception Mode_Error is propagated by an attempt to read from, or test for the end of, a file whose
current mode is Out_File or Append_File, and also by an attempt to write to a file whose current mode is
In_File. In the case of Text_IO, the exception Mode_Error is also propagated by specifying a file whose
current mode is Out_File or Append_File in a call of Set_Input, Skip_Line, End_Of_Line, Skip_Page, or
End_Of_Page; and by specifying a file whose current mode is In_File in a call of Set_Output,
Set_Line_Length, Set_Page_Length, Line_Length, Page_Length, New_Line, or New_Page.

The exception Name_Error is propagated by a call of Create or Open if the string given for the parameter
Name does not allow the identification of an external file. For example, this exception is propagated if the
string is improper, or, alternatively, if either none or more than one external file corresponds to the string.

The exception Use_Error is propagated if an operation is attempted that is not possible for reasons that
depend on characteristics of the external file. For example, this exception is propagated by the procedure
Create, among other circumstances, if the given mode is Out_File but the form specifies an input only
device, if the parameter Form specifies invalid access rights, or if an external file with the given name
already exists and overwriting is not allowed.

The exception Device_Error is propagated if an input-output operation cannot be completed because of a
malfunction of the underlying system.

The exception End_Error is propagated by an attempt to skip (read past) the end of a file.

The exception Data_Error can be propagated by the procedure Read (or by the Read attribute) if the
element read cannot be interpreted as a value of the required subtype. This exception is also propagated by
a procedure Get (defined in the package Text_IO) if the input character sequence fails to satisfy the
required syntax, or if the value input does not belong to the range of the required subtype.

5/2

1

2

3

4

5

6

7

8

9

10

11

12

13

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

405 10 November 2006 Exceptions in Input-Output A.13

The exception Layout_Error is propagated (in text input-output) by Col, Line, or Page if the value returned
exceeds Count'Last. The exception Layout_Error is also propagated on output by an attempt to set column
or line numbers in excess of specified maximum line or page lengths, respectively (excluding the
unbounded cases). It is also propagated by an attempt to Put too many characters to a string.

Documentation Requirements

The implementation shall document the conditions under which Name_Error, Use_Error and Device_Error
are propagated.

Implementation Permissions

If the associated check is too complex, an implementation need not propagate Data_Error as part of a
procedure Read (or the Read attribute) if the value read cannot be interpreted as a value of the required
subtype.

Erroneous Execution

If the element read by the procedure Read (or by the Read attribute) cannot be interpreted as a value of the
required subtype, but this is not detected and Data_Error is not propagated, then the resulting value can be
abnormal, and subsequent references to the value can lead to erroneous execution, as explained in 13.9.1.

A.14 File Sharing
Dynamic Semantics

It is not specified by the language whether the same external file can be associated with more than one file
object. If such sharing is supported by the implementation, the following effects are defined:

• Operations on one text file object do not affect the column, line, and page numbers of any other
file object.

• This paragraph was deleted.

• For direct and stream files, the current index is a property of each file object; an operation on
one file object does not affect the current index of any other file object.

• For direct and stream files, the current size of the file is a property of the external file.

All other effects are identical.

A.15 The Package Command_Line
The package Command_Line allows a program to obtain the values of its arguments and to set the exit
status code to be returned on normal termination.

Static Semantics

The library package Ada.Command_Line has the following declaration:
package Ada.Command_Line is
 pragma Preelaborate(Command_Line);

 function Argument_Count return Natural;

 function Argument (Number : in Positive) return String;

 function Command_Name return String;

 type Exit_Status is implementation-defined integer type;

14

15

16

17

1

2

3/1

4

5

6

1

2

3

4

5

6

7

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.15 The Package Command_Line 10 November 2006 406

 Success : constant Exit_Status;
 Failure : constant Exit_Status;

 procedure Set_Exit_Status (Code : in Exit_Status);

private
 ... -- not specified by the language
end Ada.Command_Line;

function Argument_Count return Natural;

If the external execution environment supports passing arguments to a program, then
Argument_Count returns the number of arguments passed to the program invoking the function.
Otherwise it returns 0. The meaning of “number of arguments” is implementation defined.

function Argument (Number : in Positive) return String;

If the external execution environment supports passing arguments to a program, then Argument
returns an implementation-defined value corresponding to the argument at relative position
Number. If Number is outside the range 1..Argument_Count, then Constraint_Error is
propagated.

function Command_Name return String;

If the external execution environment supports passing arguments to a program, then
Command_Name returns an implementation-defined value corresponding to the name of the
command invoking the program; otherwise Command_Name returns the null string.

type Exit_Status is implementation-defined integer type;

The type Exit_Status represents the range of exit status values supported by the external
execution environment. The constants Success and Failure correspond to success and failure,
respectively.

procedure Set_Exit_Status (Code : in Exit_Status);

If the external execution environment supports returning an exit status from a program, then
Set_Exit_Status sets Code as the status. Normal termination of a program returns as the exit
status the value most recently set by Set_Exit_Status, or, if no such value has been set, then the
value Success. If a program terminates abnormally, the status set by Set_Exit_Status is ignored,
and an implementation-defined exit status value is set.

If the external execution environment does not support returning an exit value from a program,
then Set_Exit_Status does nothing.

Implementation Permissions

An alternative declaration is allowed for package Command_Line if different functionality is appropriate
for the external execution environment.

NOTES
36 Argument_Count, Argument, and Command_Name correspond to the C language's argc, argv[n] (for n>0) and
argv[0], respectively.

8

9

10

11

12

13

14

15

16

16.1/1

17

18

19

20

21

22

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

407 10 November 2006 The Package Directories A.16

A.16 The Package Directories
The package Directories provides operations for manipulating files and directories, and their names.

Static Semantics

The library package Directories has the following declaration:
with Ada.IO_Exceptions;
with Ada.Calendar;
package Ada.Directories is

 -- Directory and file operations:
 function Current_Directory return String;

 procedure Set_Directory (Directory : in String);

 procedure Create_Directory (New_Directory : in String;
 Form : in String := "");

 procedure Delete_Directory (Directory : in String);

 procedure Create_Path (New_Directory : in String;
 Form : in String := "");

 procedure Delete_Tree (Directory : in String);

 procedure Delete_File (Name : in String);

 procedure Rename (Old_Name, New_Name : in String);

 procedure Copy_File (Source_Name,
 Target_Name : in String;
 Form : in String := "");

 -- File and directory name operations:
 function Full_Name (Name : in String) return String;

 function Simple_Name (Name : in String) return String;

 function Containing_Directory (Name : in String) return String;

 function Extension (Name : in String) return String;

 function Base_Name (Name : in String) return String;

 function Compose (Containing_Directory : in String := "";
 Name : in String;
 Extension : in String := "") return String;

 -- File and directory queries:
 type File_Kind is (Directory, Ordinary_File, Special_File);

 type File_Size is range 0 .. implementation-defined;
 function Exists (Name : in String) return Boolean;

 function Kind (Name : in String) return File_Kind;

 function Size (Name : in String) return File_Size;

 function Modification_Time (Name : in String) return Ada.Calendar.Time;

 -- Directory searching:
 type Directory_Entry_Type is limited private;

 type Filter_Type is array (File_Kind) of Boolean;

 type Search_Type is limited private;

 procedure Start_Search (Search : in out Search_Type;
 Directory : in String;
 Pattern : in String;
 Filter : in Filter_Type := (others => True));

 procedure End_Search (Search : in out Search_Type);

1/2

2/2

3/2

4/2

5/2

6/2

7/2

8/2

9/2

10/2

11/2

12/2

13/2

14/2

15/2

16/2

17/2

18/2

19/2

20/2

21/2

22/2

23/2

24/2

25/2

26/2

27/2

28/2

29/2

30/2

31/2

32/2

33/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.16 The Package Directories 10 November 2006 408

 function More_Entries (Search : in Search_Type) return Boolean;

 procedure Get_Next_Entry (Search : in out Search_Type;
 Directory_Entry : out Directory_Entry_Type);

 procedure Search (
 Directory : in String;
 Pattern : in String;
 Filter : in Filter_Type := (others => True);
 Process : not null access procedure (
 Directory_Entry : in Directory_Entry_Type));

 -- Operations on Directory Entries:
 function Simple_Name (Directory_Entry : in Directory_Entry_Type)
 return String;

 function Full_Name (Directory_Entry : in Directory_Entry_Type)
 return String;

 function Kind (Directory_Entry : in Directory_Entry_Type)
 return File_Kind;

 function Size (Directory_Entry : in Directory_Entry_Type)
 return File_Size;

 function Modification_Time (Directory_Entry : in Directory_Entry_Type)
 return Ada.Calendar.Time;

 Status_Error : exception renames Ada.IO_Exceptions.Status_Error;
 Name_Error : exception renames Ada.IO_Exceptions.Name_Error;
 Use_Error : exception renames Ada.IO_Exceptions.Use_Error;
 Device_Error : exception renames Ada.IO_Exceptions.Device_Error;

private
 -- Not specified by the language.
end Ada.Directories;

External files may be classified as directories, special files, or ordinary files. A directory is an external file
that is a container for files on the target system. A special file is an external file that cannot be created or
read by a predefined Ada input-output package. External files that are not special files or directories are
called ordinary files.

A file name is a string identifying an external file. Similarly, a directory name is a string identifying a
directory. The interpretation of file names and directory names is implementation-defined.

The full name of an external file is a full specification of the name of the file. If the external environment
allows alternative specifications of the name (for example, abbreviations), the full name should not use
such alternatives. A full name typically will include the names of all of the directories that contain the
item. The simple name of an external file is the name of the item, not including any containing directory
names. Unless otherwise specified, a file name or directory name parameter in a call to a predefined Ada
input-output subprogram can be a full name, a simple name, or any other form of name supported by the
implementation.

The default directory is the directory that is used if a directory or file name is not a full name (that is,
when the name does not fully identify all of the containing directories).

A directory entry is a single item in a directory, identifying a single external file (including directories and
special files).

For each function that returns a string, the lower bound of the returned value is 1.

The following file and directory operations are provided:

34/2

35/2

36/2

37/2

38/2

39/2

40/2

41/2

42/2

43/2

44/2

45/2

46/2

47/2

48/2

49/2

50/2

51/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

409 10 November 2006 The Package Directories A.16

function Current_Directory return String;

Returns the full directory name for the current default directory. The name returned shall be
suitable for a future call to Set_Directory. The exception Use_Error is propagated if a default
directory is not supported by the external environment.

procedure Set_Directory (Directory : in String);

Sets the current default directory. The exception Name_Error is propagated if the string given as
Directory does not identify an existing directory. The exception Use_Error is propagated if the
external environment does not support making Directory (in the absence of Name_Error) a
default directory.

procedure Create_Directory (New_Directory : in String;
 Form : in String := "");

Creates a directory with name New_Directory. The Form parameter can be used to give system-
dependent characteristics of the directory; the interpretation of the Form parameter is
implementation-defined. A null string for Form specifies the use of the default options of the
implementation of the new directory. The exception Name_Error is propagated if the string
given as New_Directory does not allow the identification of a directory. The exception
Use_Error is propagated if the external environment does not support the creation of a directory
with the given name (in the absence of Name_Error) and form.

procedure Delete_Directory (Directory : in String);

Deletes an existing empty directory with name Directory. The exception Name_Error is
propagated if the string given as Directory does not identify an existing directory. The exception
Use_Error is propagated if the external environment does not support the deletion of the
directory (or some portion of its contents) with the given name (in the absence of Name_Error).

procedure Create_Path (New_Directory : in String;
 Form : in String := "");

Creates zero or more directories with name New_Directory. Each non-existent directory named
by New_Directory is created. For example, on a typical Unix system, Create_Path
("/usr/me/my"); would create directory "me" in directory "usr", then create directory "my" in
directory "me". The Form parameter can be used to give system-dependent characteristics of the
directory; the interpretation of the Form parameter is implementation-defined. A null string for
Form specifies the use of the default options of the implementation of the new directory. The
exception Name_Error is propagated if the string given as New_Directory does not allow the
identification of any directory. The exception Use_Error is propagated if the external
environment does not support the creation of any directories with the given name (in the absence
of Name_Error) and form.

procedure Delete_Tree (Directory : in String);

Deletes an existing directory with name Directory. The directory and all of its contents (possibly
including other directories) are deleted. The exception Name_Error is propagated if the string
given as Directory does not identify an existing directory. The exception Use_Error is
propagated if the external environment does not support the deletion of the directory or some
portion of its contents with the given name (in the absence of Name_Error). If Use_Error is
propagated, it is unspecified whether a portion of the contents of the directory is deleted.

52/2

53/2

54/2

55/2

56/2

57/2

58/2

59/2

60/2

61/2

62/2

63/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.16 The Package Directories 10 November 2006 410

procedure Delete_File (Name : in String);

Deletes an existing ordinary or special file with name Name. The exception Name_Error is
propagated if the string given as Name does not identify an existing ordinary or special external
file. The exception Use_Error is propagated if the external environment does not support the
deletion of the file with the given name (in the absence of Name_Error).

procedure Rename (Old_Name, New_Name : in String);

Renames an existing external file (including directories) with name Old_Name to New_Name.
The exception Name_Error is propagated if the string given as Old_Name does not identify an
existing external file. The exception Use_Error is propagated if the external environment does
not support the renaming of the file with the given name (in the absence of Name_Error). In
particular, Use_Error is propagated if a file or directory already exists with name New_Name.

procedure Copy_File (Source_Name,
 Target_Name : in String;
 Form : in String);

Copies the contents of the existing external file with name Source_Name to an external file with
name Target_Name. The resulting external file is a duplicate of the source external file. The
Form parameter can be used to give system-dependent characteristics of the resulting external
file; the interpretation of the Form parameter is implementation-defined. Exception Name_Error
is propagated if the string given as Source_Name does not identify an existing external ordinary
or special file, or if the string given as Target_Name does not allow the identification of an
external file. The exception Use_Error is propagated if the external environment does not
support creating the file with the name given by Target_Name and form given by Form, or
copying of the file with the name given by Source_Name (in the absence of Name_Error).

The following file and directory name operations are provided:
function Full_Name (Name : in String) return String;

Returns the full name corresponding to the file name specified by Name. The exception
Name_Error is propagated if the string given as Name does not allow the identification of an
external file (including directories and special files).

function Simple_Name (Name : in String) return String;

Returns the simple name portion of the file name specified by Name. The exception Name_Error
is propagated if the string given as Name does not allow the identification of an external file
(including directories and special files).

function Containing_Directory (Name : in String) return String;

Returns the name of the containing directory of the external file (including directories) identified
by Name. (If more than one directory can contain Name, the directory name returned is
implementation-defined.) The exception Name_Error is propagated if the string given as Name
does not allow the identification of an external file. The exception Use_Error is propagated if the
external file does not have a containing directory.

function Extension (Name : in String) return String;

Returns the extension name corresponding to Name. The extension name is a portion of a simple
name (not including any separator characters), typically used to identify the file class. If the
external environment does not have extension names, then the null string is returned. The

64/2

65/2

66/2

67/2

68/2

69/2

70/2

71/2

72/2

73/2

74/2

75/2

76/2

77/2

78/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

411 10 November 2006 The Package Directories A.16

exception Name_Error is propagated if the string given as Name does not allow the
identification of an external file.

function Base_Name (Name : in String) return String;

Returns the base name corresponding to Name. The base name is the remainder of a simple
name after removing any extension and extension separators. The exception Name_Error is
propagated if the string given as Name does not allow the identification of an external file
(including directories and special files).

function Compose (Containing_Directory : in String := "";
 Name : in String;
 Extension : in String := "") return String;

Returns the name of the external file with the specified Containing_Directory, Name, and
Extension. If Extension is the null string, then Name is interpreted as a simple name; otherwise
Name is interpreted as a base name. The exception Name_Error is propagated if the string given
as Containing_Directory is not null and does not allow the identification of a directory, or if the
string given as Extension is not null and is not a possible extension, or if the string given as
Name is not a possible simple name (if Extension is null) or base name (if Extension is non-
null).

The following file and directory queries and types are provided:
type File_Kind is (Directory, Ordinary_File, Special_File);

The type File_Kind represents the kind of file represented by an external file or directory.

type File_Size is range 0 .. implementation-defined;

The type File_Size represents the size of an external file.

function Exists (Name : in String) return Boolean;

Returns True if an external file represented by Name exists, and False otherwise. The exception
Name_Error is propagated if the string given as Name does not allow the identification of an
external file (including directories and special files).

function Kind (Name : in String) return File_Kind;

Returns the kind of external file represented by Name. The exception Name_Error is propagated
if the string given as Name does not allow the identification of an existing external file.

function Size (Name : in String) return File_Size;

Returns the size of the external file represented by Name. The size of an external file is the
number of stream elements contained in the file. If the external file is not an ordinary file, the
result is implementation-defined. The exception Name_Error is propagated if the string given as
Name does not allow the identification of an existing external file. The exception
Constraint_Error is propagated if the file size is not a value of type File_Size.

function Modification_Time (Name : in String) return Ada.Calendar.Time;

Returns the time that the external file represented by Name was most recently modified. If the
external file is not an ordinary file, the result is implementation-defined. The exception
Name_Error is propagated if the string given as Name does not allow the identification of an
existing external file. The exception Use_Error is propagated if the external environment does
not support reading the modification time of the file with the name given by Name (in the
absence of Name_Error).

79/2

80/2

81/2

82/2

83/2

84/2

85/2

86/2

87/2

88/2

89/2

90/2

91/2

92/2

93/2

94/2

95/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.16 The Package Directories 10 November 2006 412

The following directory searching operations and types are provided:
type Directory_Entry_Type is limited private;

The type Directory_Entry_Type represents a single item in a directory. These items can only be
created by the Get_Next_Entry procedure in this package. Information about the item can be
obtained from the functions declared in this package. A default-initialized object of this type is
invalid; objects returned from Get_Next_Entry are valid.

type Filter_Type is array (File_Kind) of Boolean;

The type Filter_Type specifies which directory entries are provided from a search operation. If
the Directory component is True, directory entries representing directories are provided. If the
Ordinary_File component is True, directory entries representing ordinary files are provided. If
the Special_File component is True, directory entries representing special files are provided.

type Search_Type is limited private;

The type Search_Type contains the state of a directory search. A default-initialized Search_Type
object has no entries available (function More_Entries returns False). Type Search_Type needs
finalization (see 7.6).

procedure Start_Search (Search : in out Search_Type;
 Directory : in String;
 Pattern : in String;
 Filter : in Filter_Type := (others => True));

Starts a search in the directory named by Directory for entries matching Pattern. Pattern
represents a pattern for matching file names. If Pattern is null, all items in the directory are
matched; otherwise, the interpretation of Pattern is implementation-defined. Only items that
match Filter will be returned. After a successful call on Start_Search, the object Search may
have entries available, but it may have no entries available if no files or directories match Pattern
and Filter. The exception Name_Error is propagated if the string given by Directory does not
identify an existing directory, or if Pattern does not allow the identification of any possible
external file or directory. The exception Use_Error is propagated if the external environment
does not support the searching of the directory with the given name (in the absence of
Name_Error). When Start_Search propagates Name_Error or Use_Error, the object Search will
have no entries available.

procedure End_Search (Search : in out Search_Type);

Ends the search represented by Search. After a successful call on End_Search, the object Search
will have no entries available.

function More_Entries (Search : in Search_Type) return Boolean;

Returns True if more entries are available to be returned by a call to Get_Next_Entry for the
specified search object, and False otherwise.

procedure Get_Next_Entry (Search : in out Search_Type;
 Directory_Entry : out Directory_Entry_Type);

Returns the next Directory_Entry for the search described by Search that matches the pattern and
filter. If no further matches are available, Status_Error is raised. It is implementation-defined as
to whether the results returned by this routine are altered if the contents of the directory are
altered while the Search object is valid (for example, by another program). The exception
Use_Error is propagated if the external environment does not support continued searching of the
directory represented by Search.

96/2

97/2

98/2

99/2

100/2

101/2

102/2

103/2

104/2

105/2

106/2

107/2

108/2

109/2

110/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

413 10 November 2006 The Package Directories A.16

procedure Search (
 Directory : in String;
 Pattern : in String;
 Filter : in Filter_Type := (others => True);
 Process : not null access procedure (
 Directory_Entry : in Directory_Entry_Type));

Searches in the directory named by Directory for entries matching Pattern. The subprogram
designated by Process is called with each matching entry in turn. Pattern represents a pattern for
matching file names. If Pattern is null, all items in the directory are matched; otherwise, the
interpretation of Pattern is implementation-defined. Only items that match Filter will be
returned. The exception Name_Error is propagated if the string given by Directory does not
identify an existing directory, or if Pattern does not allow the identification of any possible
external file or directory. The exception Use_Error is propagated if the external environment
does not support the searching of the directory with the given name (in the absence of
Name_Error).

function Simple_Name (Directory_Entry : in Directory_Entry_Type)
 return String;

Returns the simple external name of the external file (including directories) represented by
Directory_Entry. The format of the name returned is implementation-defined. The exception
Status_Error is propagated if Directory_Entry is invalid.

function Full_Name (Directory_Entry : in Directory_Entry_Type)
 return String;

Returns the full external name of the external file (including directories) represented by
Directory_Entry. The format of the name returned is implementation-defined. The exception
Status_Error is propagated if Directory_Entry is invalid.

function Kind (Directory_Entry : in Directory_Entry_Type)
 return File_Kind;

Returns the kind of external file represented by Directory_Entry. The exception Status_Error is
propagated if Directory_Entry is invalid.

function Size (Directory_Entry : in Directory_Entry_Type)
 return File_Size;

Returns the size of the external file represented by Directory_Entry. The size of an external file
is the number of stream elements contained in the file. If the external file represented by
Directory_Entry is not an ordinary file, the result is implementation-defined. The exception
Status_Error is propagated if Directory_Entry is invalid. The exception Constraint_Error is
propagated if the file size is not a value of type File_Size.

function Modification_Time (Directory_Entry : in Directory_Entry_Type)
 return Ada.Calendar.Time;

Returns the time that the external file represented by Directory_Entry was most recently
modified. If the external file represented by Directory_Entry is not an ordinary file, the result is
implementation-defined. The exception Status_Error is propagated if Directory_Entry is invalid.
The exception Use_Error is propagated if the external environment does not support reading the
modification time of the file represented by Directory_Entry.

111/2

112/2

113/2

114/2

115/2

116/2

117/2

118/2

119/2

120/2

121/2

122/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.16 The Package Directories 10 November 2006 414

Implementation Requirements

For Copy_File, if Source_Name identifies an existing external ordinary file created by a predefined Ada
input-output package, and Target_Name and Form can be used in the Create operation of that input-output
package with mode Out_File without raising an exception, then Copy_File shall not propagate Use_Error.

Implementation Advice

If other information about a file (such as the owner or creation date) is available in a directory entry, the
implementation should provide functions in a child package Directories.Information to retrieve it.

Start_Search and Search should raise Use_Error if Pattern is malformed, but not if it could represent a file
in the directory but does not actually do so.

Rename should be supported at least when both New_Name and Old_Name are simple names and
New_Name does not identify an existing external file.

NOTES
37 The operations Containing_Directory, Full_Name, Simple_Name, Base_Name, Extension, and Compose operate on
file names, not external files. The files identified by these operations do not need to exist. Name_Error is raised only if the
file name is malformed and cannot possibly identify a file. Of these operations, only the result of Full_Name depends on
the current default directory; the result of the others depends only on their parameters.

38 Using access types, values of Search_Type and Directory_Entry_Type can be saved and queried later. However,
another task or application can modify or delete the file represented by a Directory_Entry_Type value or the directory
represented by a Search_Type value; such a value can only give the information valid at the time it is created. Therefore,
long-term storage of these values is not recommended.

39 If the target system does not support directories inside of directories, then Kind will never return Directory and
Containing_Directory will always raise Use_Error.

40 If the target system does not support creation or deletion of directories, then Create_Directory, Create_Path,
Delete_Directory, and Delete_Tree will always propagate Use_Error.

41 To move a file or directory to a different location, use Rename. Most target systems will allow renaming of files from
one directory to another. If the target file or directory might already exist, it should be deleted first.

A.17 The Package Environment_Variables
The package Environment_Variables allows a program to read or modify environment variables.
Environment variables are name-value pairs, where both the name and value are strings. The definition of
what constitutes an environment variable, and the meaning of the name and value, are implementation
defined.

Static Semantics

The library package Environment_Variables has the following declaration:
package Ada.Environment_Variables is
 pragma Preelaborate(Environment_Variables);

 function Value (Name : in String) return String;

 function Exists (Name : in String) return Boolean;

 procedure Set (Name : in String; Value : in String);

 procedure Clear (Name : in String);
 procedure Clear;

 procedure Iterate (
 Process : not null access procedure (Name, Value : in String));

end Ada.Environment_Variables;

123/2

124/2

125/2

126/2

127/2

128/2

129/2

130/2

131/2

1/2

2/2

3/2

4/2

5/2

6/2

7/2

8/2

9/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

415 10 November 2006 The Package Environment_Variables A.17

function Value (Name : in String) return String;

If the external execution environment supports environment variables, then Value returns the
value of the environment variable with the given name. If no environment variable with the
given name exists, then Constraint_Error is propagated. If the execution environment does not
support environment variables, then Program_Error is propagated.

function Exists (Name : in String) return Boolean;

If the external execution environment supports environment variables and an environment
variable with the given name currently exists, then Exists returns True; otherwise it returns
False.

procedure Set (Name : in String; Value : in String);

If the external execution environment supports environment variables, then Set first clears any
existing environment variable with the given name, and then defines a single new environment
variable with the given name and value. Otherwise Program_Error is propagated.

If implementation-defined circumstances prohibit the definition of an environment variable with
the given name and value, then Constraint_Error is propagated.

It is implementation defined whether there exist values for which the call Set(Name, Value) has
the same effect as Clear (Name).

procedure Clear (Name : in String);

If the external execution environment supports environment variables, then Clear deletes all
existing environment variable with the given name. Otherwise Program_Error is propagated.

procedure Clear;

If the external execution environment supports environment variables, then Clear deletes all
existing environment variables. Otherwise Program_Error is propagated.

procedure Iterate (
 Process : not null access procedure (Name, Value : in String));

If the external execution environment supports environment variables, then Iterate calls the
subprogram designated by Process for each existing environment variable, passing the name and
value of that environment variable. Otherwise Program_Error is propagated.

If several environment variables exist that have the same name, Process is called once for each
such variable.

Bounded (Run-Time) Errors

It is a bounded error to call Value if more than one environment variable exists with the given name; the
possible outcomes are that:

• one of the values is returned, and that same value is returned in subsequent calls in the absence
of changes to the environment; or

• Program_Error is propagated.

Erroneous Execution

Making calls to the procedures Set or Clear concurrently with calls to any subprogram of package
Environment_Variables, or to any instantiation of Iterate, results in erroneous execution.

10/2

11/2

12/2

13/2

14/2

15/2

16/2

17/2

18/2

19/2

20/2

21/2

22/2

23/2

24/2

25/2

26/2

27/2

28/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.17 The Package Environment_Variables 10 November 2006 416

Making calls to the procedures Set or Clear in the actual subprogram corresponding to the Process
parameter of Iterate results in erroneous execution.

Documentation Requirements

An implementation shall document how the operations of this package behave if environment variables are
changed by external mechanisms (for instance, calling operating system services).

Implementation Permissions

An implementation running on a system that does not support environment variables is permitted to define
the operations of package Environment_Variables with the semantics corresponding to the case where the
external execution environment does support environment variables. In this case, it shall provide a
mechanism to initialize a nonempty set of environment variables prior to the execution of a partition.

Implementation Advice

If the execution environment supports subprocesses, the currently defined environment variables should be
used to initialize the environment variables of a subprocess.

Changes to the environment variables made outside the control of this package should be reflected
immediately in the effect of the operations of this package. Changes to the environment variables made
using this package should be reflected immediately in the external execution environment. This package
should not perform any buffering of the environment variables.

29/2

30/2

31/2

32/2

33/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

417 10 November 2006 Containers A.18

A.18 Containers
This clause presents the specifications of the package Containers and several child packages, which
provide facilities for storing collections of elements.

A variety of sequence and associative containers are provided. Each container includes a cursor type. A
cursor is a reference to an element within a container. Many operations on cursors are common to all of
the containers. A cursor referencing an element in a container is considered to be overlapping with the
container object itself.

Within this clause we provide Implementation Advice for the desired average or worst case time
complexity of certain operations on a container. This advice is expressed using the Landau symbol O(X).
Presuming f is some function of a length parameter N and t(N) is the time the operation takes (on average
or worst case, as specified) for the length N, a complexity of O(f(N)) means that there exists a finite A
such that for any N, t(N)/f(N) < A.

If the advice suggests that the complexity should be less than O(f(N)), then for any arbitrarily small
positive real D, there should exist a positive integer M such that for all N > M, t(N)/f(N) < D.

A.18.1 The Package Containers
The package Containers is the root of the containers subsystem.

Static Semantics

The library package Containers has the following declaration:
package Ada.Containers is
 pragma Pure(Containers);

 type Hash_Type is mod implementation-defined;

 type Count_Type is range 0 .. implementation-defined;

end Ada.Containers;

Hash_Type represents the range of the result of a hash function. Count_Type represents the (potential or
actual) number of elements of a container.

Implementation Advice

Hash_Type'Modulus should be at least 2**32. Count_Type'Last should be at least 2**31–1.

A.18.2 The Package Containers.Vectors
The language-defined generic package Containers.Vectors provides private types Vector and Cursor, and a
set of operations for each type. A vector container allows insertion and deletion at any position, but it is
specifically optimized for insertion and deletion at the high end (the end with the higher index) of the
container. A vector container also provides random access to its elements.

A vector container behaves conceptually as an array that expands as necessary as items are inserted. The
length of a vector is the number of elements that the vector contains. The capacity of a vector is the
maximum number of elements that can be inserted into the vector prior to it being automatically expanded.

Elements in a vector container can be referred to by an index value of a generic formal type. The first
element of a vector always has its index value equal to the lower bound of the formal type.

1/2

2/2

3/2

4/2

1/2

2/2

3/2

4/2

5/2

6/2

7/2

8/2

1/2

2/2

3/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.18.2 The Package Containers.Vectors 10 November 2006 418

A vector container may contain empty elements. Empty elements do not have a specified value.

Static Semantics

The generic library package Containers.Vectors has the following declaration:
generic
 type Index_Type is range <>;
 type Element_Type is private;
 with function "=" (Left, Right : Element_Type)
 return Boolean is <>;
package Ada.Containers.Vectors is
 pragma Preelaborate(Vectors);

 subtype Extended_Index is
 Index_Type'Base range
 Index_Type'First-1 ..
 Index_Type'Min (Index_Type'Base'Last - 1, Index_Type'Last) + 1;
 No_Index : constant Extended_Index := Extended_Index'First;

 type Vector is tagged private;
 pragma Preelaborable_Initialization(Vector);

 type Cursor is private;
 pragma Preelaborable_Initialization(Cursor);

 Empty_Vector : constant Vector;

 No_Element : constant Cursor;

 function "=" (Left, Right : Vector) return Boolean;

 function To_Vector (Length : Count_Type) return Vector;

 function To_Vector
 (New_Item : Element_Type;
 Length : Count_Type) return Vector;

 function "&" (Left, Right : Vector) return Vector;

 function "&" (Left : Vector;
 Right : Element_Type) return Vector;

 function "&" (Left : Element_Type;
 Right : Vector) return Vector;

 function "&" (Left, Right : Element_Type) return Vector;

 function Capacity (Container : Vector) return Count_Type;

 procedure Reserve_Capacity (Container : in out Vector;
 Capacity : in Count_Type);

 function Length (Container : Vector) return Count_Type;

 procedure Set_Length (Container : in out Vector;
 Length : in Count_Type);

 function Is_Empty (Container : Vector) return Boolean;

 procedure Clear (Container : in out Vector);

 function To_Cursor (Container : Vector;
 Index : Extended_Index) return Cursor;

 function To_Index (Position : Cursor) return Extended_Index;

 function Element (Container : Vector;
 Index : Index_Type)
 return Element_Type;

 function Element (Position : Cursor) return Element_Type;

 procedure Replace_Element (Container : in out Vector;
 Index : in Index_Type;
 New_Item : in Element_Type);

4/2

5/2

6/2

7/2

8/2

9/2

10/2

11/2

12/2

13/2

14/2

15/2

16/2

17/2

18/2

19/2

20/2

21/2

22/2

23/2

24/2

25/2

26/2

27/2

28/2

29/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

419 10 November 2006 The Package Containers.Vectors A.18.2

 procedure Replace_Element (Container : in out Vector;
 Position : in Cursor;
 New_item : in Element_Type);

 procedure Query_Element
 (Container : in Vector;
 Index : in Index_Type;
 Process : not null access procedure (Element : in Element_Type));

 procedure Query_Element
 (Position : in Cursor;
 Process : not null access procedure (Element : in Element_Type));

 procedure Update_Element
 (Container : in out Vector;
 Index : in Index_Type;
 Process : not null access procedure
 (Element : in out Element_Type));

 procedure Update_Element
 (Container : in out Vector;
 Position : in Cursor;
 Process : not null access procedure
 (Element : in out Element_Type));

 procedure Move (Target : in out Vector;
 Source : in out Vector);

 procedure Insert (Container : in out Vector;
 Before : in Extended_Index;
 New_Item : in Vector);

 procedure Insert (Container : in out Vector;
 Before : in Cursor;
 New_Item : in Vector);

 procedure Insert (Container : in out Vector;
 Before : in Cursor;
 New_Item : in Vector;
 Position : out Cursor);

 procedure Insert (Container : in out Vector;
 Before : in Extended_Index;
 New_Item : in Element_Type;
 Count : in Count_Type := 1);

 procedure Insert (Container : in out Vector;
 Before : in Cursor;
 New_Item : in Element_Type;
 Count : in Count_Type := 1);

 procedure Insert (Container : in out Vector;
 Before : in Cursor;
 New_Item : in Element_Type;
 Position : out Cursor;
 Count : in Count_Type := 1);

 procedure Insert (Container : in out Vector;
 Before : in Extended_Index;
 Count : in Count_Type := 1);

 procedure Insert (Container : in out Vector;
 Before : in Cursor;
 Position : out Cursor;
 Count : in Count_Type := 1);

 procedure Prepend (Container : in out Vector;
 New_Item : in Vector);

 procedure Prepend (Container : in out Vector;
 New_Item : in Element_Type;
 Count : in Count_Type := 1);

 procedure Append (Container : in out Vector;
 New_Item : in Vector);

30/2

31/2

32/2

33/2

34/2

35/2

36/2

37/2

38/2

39/2

40/2

41/2

42/2

43/2

44/2

45/2

46/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.18.2 The Package Containers.Vectors 10 November 2006 420

 procedure Append (Container : in out Vector;
 New_Item : in Element_Type;
 Count : in Count_Type := 1);

 procedure Insert_Space (Container : in out Vector;
 Before : in Extended_Index;
 Count : in Count_Type := 1);

 procedure Insert_Space (Container : in out Vector;
 Before : in Cursor;
 Position : out Cursor;
 Count : in Count_Type := 1);

 procedure Delete (Container : in out Vector;
 Index : in Extended_Index;
 Count : in Count_Type := 1);

 procedure Delete (Container : in out Vector;
 Position : in out Cursor;
 Count : in Count_Type := 1);

 procedure Delete_First (Container : in out Vector;
 Count : in Count_Type := 1);

 procedure Delete_Last (Container : in out Vector;
 Count : in Count_Type := 1);

 procedure Reverse_Elements (Container : in out Vector);

 procedure Swap (Container : in out Vector;
 I, J : in Index_Type);

 procedure Swap (Container : in out Vector;
 I, J : in Cursor);

 function First_Index (Container : Vector) return Index_Type;

 function First (Container : Vector) return Cursor;

 function First_Element (Container : Vector)
 return Element_Type;

 function Last_Index (Container : Vector) return Extended_Index;

 function Last (Container : Vector) return Cursor;

 function Last_Element (Container : Vector)
 return Element_Type;

 function Next (Position : Cursor) return Cursor;

 procedure Next (Position : in out Cursor);

 function Previous (Position : Cursor) return Cursor;

 procedure Previous (Position : in out Cursor);

 function Find_Index (Container : Vector;
 Item : Element_Type;
 Index : Index_Type := Index_Type'First)
 return Extended_Index;

 function Find (Container : Vector;
 Item : Element_Type;
 Position : Cursor := No_Element)
 return Cursor;

 function Reverse_Find_Index (Container : Vector;
 Item : Element_Type;
 Index : Index_Type := Index_Type'Last)
 return Extended_Index;

 function Reverse_Find (Container : Vector;
 Item : Element_Type;
 Position : Cursor := No_Element)
 return Cursor;

 function Contains (Container : Vector;
 Item : Element_Type) return Boolean;

47/2

48/2

49/2

50/2

51/2

52/2

53/2

54/2

55/2

56/2

57/2

58/2

59/2

60/2

61/2

62/2

63/2

64/2

65/2

66/2

67/2

68/2

69/2

70/2

71/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

421 10 November 2006 The Package Containers.Vectors A.18.2

 function Has_Element (Position : Cursor) return Boolean;

 procedure Iterate
 (Container : in Vector;
 Process : not null access procedure (Position : in Cursor));

 procedure Reverse_Iterate
 (Container : in Vector;
 Process : not null access procedure (Position : in Cursor));

 generic
 with function "<" (Left, Right : Element_Type)
 return Boolean is <>;
 package Generic_Sorting is

 function Is_Sorted (Container : Vector) return Boolean;

 procedure Sort (Container : in out Vector);

 procedure Merge (Target : in out Vector;
 Source : in out Vector);

 end Generic_Sorting;

private

 ... -- not specified by the language
end Ada.Containers.Vectors;

The actual function for the generic formal function "=" on Element_Type values is expected to define a
reflexive and symmetric relationship and return the same result value each time it is called with a
particular pair of values. If it behaves in some other manner, the functions defined to use it return an
unspecified value. The exact arguments and number of calls of this generic formal function by the
functions defined to use it are unspecified.

The type Vector is used to represent vectors. The type Vector needs finalization (see 7.6).

Empty_Vector represents the empty vector object. It has a length of 0. If an object of type Vector is not
otherwise initialized, it is initialized to the same value as Empty_Vector.

No_Element represents a cursor that designates no element. If an object of type Cursor is not otherwise
initialized, it is initialized to the same value as No_Element.

The predefined "=" operator for type Cursor returns True if both cursors are No_Element, or designate the
same element in the same container.

Execution of the default implementation of the Input, Output, Read, or Write attribute of type Cursor
raises Program_Error.

No_Index represents a position that does not correspond to any element. The subtype Extended_Index
includes the indices covered by Index_Type plus the value No_Index and, if it exists, the successor to the
Index_Type'Last.

Some operations of this generic package have access-to-subprogram parameters. To ensure such
operations are well-defined, they guard against certain actions by the designated subprogram. In particular,
some operations check for “tampering with cursors” of a container because they depend on the set of
elements of the container remaining constant, and others check for “tampering with elements” of a
container because they depend on elements of the container not being replaced.

A subprogram is said to tamper with cursors of a vector object V if:
• it inserts or deletes elements of V, that is, it calls the Insert, Insert_Space, Clear, Delete, or

Set_Length procedures with V as a parameter; or

• it finalizes V; or

72/2

73/2

74/2

75/2

76/2

77/2

78/2

79/2

80/2

81/2

82/2

83/2

84/2

85/2

86/2

87/2

88/2

89/2

90/2

91/2

92/2

93/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.18.2 The Package Containers.Vectors 10 November 2006 422

• it calls the Move procedure with V as a parameter.

A subprogram is said to tamper with elements of a vector object V if:
• it tampers with cursors of V; or

• it replaces one or more elements of V, that is, it calls the Replace_Element, Reverse_Elements,
or Swap procedures or the Sort or Merge procedures of an instance of Generic_Sorting with V as
a parameter.
function "=" (Left, Right : Vector) return Boolean;

If Left and Right denote the same vector object, then the function returns True. If Left and Right
have different lengths, then the function returns False. Otherwise, it compares each element in
Left to the corresponding element in Right using the generic formal equality operator. If any
such comparison returns False, the function returns False; otherwise it returns True. Any
exception raised during evaluation of element equality is propagated.

function To_Vector (Length : Count_Type) return Vector;

Returns a vector with a length of Length, filled with empty elements.

function To_Vector
 (New_Item : Element_Type;
 Length : Count_Type) return Vector;

Returns a vector with a length of Length, filled with elements initialized to the value New_Item.

function "&" (Left, Right : Vector) return Vector;

Returns a vector comprising the elements of Left followed by the elements of Right.

function "&" (Left : Vector;
 Right : Element_Type) return Vector;

Returns a vector comprising the elements of Left followed by the element Right.

function "&" (Left : Element_Type;
 Right : Vector) return Vector;

Returns a vector comprising the element Left followed by the elements of Right.

function "&" (Left, Right : Element_Type) return Vector;

Returns a vector comprising the element Left followed by the element Right.

function Capacity (Container : Vector) return Count_Type;

Returns the capacity of Container.

procedure Reserve_Capacity (Container : in out Vector;
 Capacity : in Count_Type);

Reserve_Capacity allocates new internal data structures such that the length of the resulting
vector can become at least the value Capacity without requiring an additional call to
Reserve_Capacity, and is large enough to hold the current length of Container.
Reserve_Capacity then copies the elements into the new data structures and deallocates the old
data structures. Any exception raised during allocation is propagated and Container is not
modified.

function Length (Container : Vector) return Count_Type;

Returns the number of elements in Container.

94/2

95/2

96/2

97/2

98/2

99/2

100/2

101/2

102/2

103/2

104/2

105/2

106/2

107/2

108/2

109/2

110/2

111/2

112/2

113/2

114/2

115/2

116/2

117/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

423 10 November 2006 The Package Containers.Vectors A.18.2

procedure Set_Length (Container : in out Vector;
 Length : in Count_Type);

If Length is larger than the capacity of Container, Set_Length calls Reserve_Capacity
(Container, Length), then sets the length of the Container to Length. If Length is greater than the
original length of Container, empty elements are added to Container; otherwise elements are
removed from Container.

function Is_Empty (Container : Vector) return Boolean;

Equivalent to Length (Container) = 0.

procedure Clear (Container : in out Vector);

Removes all the elements from Container. The capacity of Container does not change.

function To_Cursor (Container : Vector;
 Index : Extended_Index) return Cursor;

If Index is not in the range First_Index (Container) .. Last_Index (Container), then No_Element
is returned. Otherwise, a cursor designating the element at position Index in Container is
returned.

function To_Index (Position : Cursor) return Extended_Index;

If Position is No_Element, No_Index is returned. Otherwise, the index (within its containing
vector) of the element designated by Position is returned.

function Element (Container : Vector;
 Index : Index_Type)
 return Element_Type;

If Index is not in the range First_Index (Container) .. Last_Index (Container), then
Constraint_Error is propagated. Otherwise, Element returns the element at position Index.

function Element (Position : Cursor) return Element_Type;

If Position equals No_Element, then Constraint_Error is propagated. Otherwise, Element returns
the element designated by Position.

procedure Replace_Element (Container : in out Vector;
 Index : in Index_Type;
 New_Item : in Element_Type);

If Index is not in the range First_Index (Container) .. Last_Index (Container), then
Constraint_Error is propagated. Otherwise Replace_Element assigns the value New_Item to the
element at position Index. Any exception raised during the assignment is propagated. The
element at position Index is not an empty element after successful call to Replace_Element.

procedure Replace_Element (Container : in out Vector;
 Position : in Cursor;
 New_Item : in Element_Type);

If Position equals No_Element, then Constraint_Error is propagated; if Position does not
designate an element in Container, then Program_Error is propagated. Otherwise
Replace_Element assigns New_Item to the element designated by Position. Any exception
raised during the assignment is propagated. The element at Position is not an empty element
after successful call to Replace_Element.

118/2

119/2

120/2

121/2

122/2

123/2

124/2

125/2

126/2

127/2

128/2

129/2

130/2

131/2

132/2

133/2

134/2

135/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.18.2 The Package Containers.Vectors 10 November 2006 424

procedure Query_Element
 (Container : in Vector;
 Index : in Index_Type;
 Process : not null access procedure (Element : in Element_Type));

If Index is not in the range First_Index (Container) .. Last_Index (Container), then
Constraint_Error is propagated. Otherwise, Query_Element calls Process.all with the element at
position Index as the argument. Program_Error is propagated if Process.all tampers with the
elements of Container. Any exception raised by Process.all is propagated.

procedure Query_Element
 (Position : in Cursor;
 Process : not null access procedure (Element : in Element_Type));

If Position equals No_Element, then Constraint_Error is propagated. Otherwise, Query_Element
calls Process.all with the element designated by Position as the argument. Program_Error is
propagated if Process.all tampers with the elements of Container. Any exception raised by
Process.all is propagated.

procedure Update_Element
 (Container : in out Vector;
 Index : in Index_Type;
 Process : not null access procedure (Element : in out Element_Type));

If Index is not in the range First_Index (Container) .. Last_Index (Container), then
Constraint_Error is propagated. Otherwise, Update_Element calls Process.all with the element at
position Index as the argument. Program_Error is propagated if Process.all tampers with the
elements of Container. Any exception raised by Process.all is propagated.

If Element_Type is unconstrained and definite, then the actual Element parameter of Process.all
shall be unconstrained.

The element at position Index is not an empty element after successful completion of this
operation.

procedure Update_Element
 (Container : in out Vector;
 Position : in Cursor;
 Process : not null access procedure (Element : in out Element_Type));

If Position equals No_Element, then Constraint_Error is propagated; if Position does not
designate an element in Container, then Program_Error is propagated. Otherwise
Update_Element calls Process.all with the element designated by Position as the argument.
Program_Error is propagated if Process.all tampers with the elements of Container. Any
exception raised by Process.all is propagated.

If Element_Type is unconstrained and definite, then the actual Element parameter of Process.all
shall be unconstrained.

The element designated by Position is not an empty element after successful completion of this
operation.

procedure Move (Target : in out Vector;
 Source : in out Vector);

If Target denotes the same object as Source, then Move has no effect. Otherwise, Move first
calls Clear (Target); then, each element from Source is removed from Source and inserted into
Target in the original order. The length of Source is 0 after a successful call to Move.

136/2

137/2

138/2

139/2

140/2

141/2

142/2

143/2

144/2

145/2

146/2

147/2

148/2

149/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

425 10 November 2006 The Package Containers.Vectors A.18.2

procedure Insert (Container : in out Vector;
 Before : in Extended_Index;
 New_Item : in Vector);

If Before is not in the range First_Index (Container) .. Last_Index (Container) + 1, then
Constraint_Error is propagated. If Length(New_Item) is 0, then Insert does nothing. Otherwise,
it computes the new length NL as the sum of the current length and Length (New_Item); if the
value of Last appropriate for length NL would be greater than Index_Type'Last then
Constraint_Error is propagated.

If the current vector capacity is less than NL, Reserve_Capacity (Container, NL) is called to
increase the vector capacity. Then Insert slides the elements in the range Before .. Last_Index
(Container) up by Length(New_Item) positions, and then copies the elements of New_Item to
the positions starting at Before. Any exception raised during the copying is propagated.

procedure Insert (Container : in out Vector;
 Before : in Cursor;
 New_Item : in Vector);

If Before is not No_Element, and does not designate an element in Container, then
Program_Error is propagated. Otherwise, if Length(New_Item) is 0, then Insert does nothing. If
Before is No_Element, then the call is equivalent to Insert (Container, Last_Index (Container) +
1, New_Item); otherwise the call is equivalent to Insert (Container, To_Index (Before),
New_Item);

procedure Insert (Container : in out Vector;
 Before : in Cursor;
 New_Item : in Vector;
 Position : out Cursor);

If Before is not No_Element, and does not designate an element in Container, then
Program_Error is propagated. If Before equals No_Element, then let T be Last_Index
(Container) + 1; otherwise, let T be To_Index (Before). Insert (Container, T, New_Item) is
called, and then Position is set to To_Cursor (Container, T).

procedure Insert (Container : in out Vector;
 Before : in Extended_Index;
 New_Item : in Element_Type;
 Count : in Count_Type := 1);

Equivalent to Insert (Container, Before, To_Vector (New_Item, Count));

procedure Insert (Container : in out Vector;
 Before : in Cursor;
 New_Item : in Element_Type;
 Count : in Count_Type := 1);

Equivalent to Insert (Container, Before, To_Vector (New_Item, Count));

procedure Insert (Container : in out Vector;
 Before : in Cursor;
 New_Item : in Element_Type;
 Position : out Cursor;
 Count : in Count_Type := 1);

Equivalent to Insert (Container, Before, To_Vector (New_Item, Count), Position);

150/2

151/2

152/2

153/2

154/2

155/2

156/2

157/2

158/2

159/2

160/2

161/2

162/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.18.2 The Package Containers.Vectors 10 November 2006 426

procedure Insert (Container : in out Vector;
 Before : in Extended_Index;
 Count : in Count_Type := 1);

If Before is not in the range First_Index (Container) .. Last_Index (Container) + 1, then
Constraint_Error is propagated. If Count is 0, then Insert does nothing. Otherwise, it computes
the new length NL as the sum of the current length and Count; if the value of Last appropriate
for length NL would be greater than Index_Type'Last then Constraint_Error is propagated.

If the current vector capacity is less than NL, Reserve_Capacity (Container, NL) is called to
increase the vector capacity. Then Insert slides the elements in the range Before .. Last_Index
(Container) up by Count positions, and then inserts elements that are initialized by default (see
3.3.1) in the positions starting at Before.

procedure Insert (Container : in out Vector;
 Before : in Cursor;
 Position : out Cursor;
 Count : in Count_Type := 1);

If Before is not No_Element, and does not designate an element in Container, then
Program_Error is propagated. If Before equals No_Element, then let T be Last_Index
(Container) + 1; otherwise, let T be To_Index (Before). Insert (Container, T, Count) is called,
and then Position is set to To_Cursor (Container, T).

procedure Prepend (Container : in out Vector;
 New_Item : in Vector;
 Count : in Count_Type := 1);

Equivalent to Insert (Container, First_Index (Container), New_Item).

procedure Prepend (Container : in out Vector;
 New_Item : in Element_Type;
 Count : in Count_Type := 1);

Equivalent to Insert (Container, First_Index (Container), New_Item, Count).

procedure Append (Container : in out Vector;
 New_Item : in Vector);

Equivalent to Insert (Container, Last_Index (Container) + 1, New_Item).

procedure Append (Container : in out Vector;
 New_Item : in Element_Type;
 Count : in Count_Type := 1);

Equivalent to Insert (Container, Last_Index (Container) + 1, New_Item, Count).

procedure Insert_Space (Container : in out Vector;
 Before : in Extended_Index;
 Count : in Count_Type := 1);

If Before is not in the range First_Index (Container) .. Last_Index (Container) + 1, then
Constraint_Error is propagated. If Count is 0, then Insert_Space does nothing. Otherwise, it
computes the new length NL as the sum of the current length and Count; if the value of Last
appropriate for length NL would be greater than Index_Type'Last then Constraint_Error is
propagated.

If the current vector capacity is less than NL, Reserve_Capacity (Container, NL) is called to
increase the vector capacity. Then Insert_Space slides the elements in the range Before ..
Last_Index (Container) up by Count positions, and then inserts empty elements in the positions
starting at Before.

163/2

164/2

165/2

166/2

167/2

168/2

169/2

170/2

171/2

172/2

173/2

174/2

175/2

176/2

177/2

178/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

427 10 November 2006 The Package Containers.Vectors A.18.2

procedure Insert_Space (Container : in out Vector;
 Before : in Cursor;
 Position : out Cursor;
 Count : in Count_Type := 1);

If Before is not No_Element, and does not designate an element in Container, then
Program_Error is propagated. If Before equals No_Element, then let T be Last_Index
(Container) + 1; otherwise, let T be To_Index (Before). Insert_Space (Container, T, Count) is
called, and then Position is set to To_Cursor (Container, T).

procedure Delete (Container : in out Vector;
 Index : in Extended_Index;
 Count : in Count_Type := 1);

If Index is not in the range First_Index (Container) .. Last_Index (Container) + 1, then
Constraint_Error is propagated. If Count is 0, Delete has no effect. Otherwise Delete slides the
elements (if any) starting at position Index + Count down to Index. Any exception raised during
element assignment is propagated.

procedure Delete (Container : in out Vector;
 Position : in out Cursor;
 Count : in Count_Type := 1);

If Position equals No_Element, then Constraint_Error is propagated. If Position does not
designate an element in Container, then Program_Error is propagated. Otherwise, Delete
(Container, To_Index (Position), Count) is called, and then Position is set to No_Element.

procedure Delete_First (Container : in out Vector;
 Count : in Count_Type := 1);

Equivalent to Delete (Container, First_Index (Container), Count).

procedure Delete_Last (Container : in out Vector;
 Count : in Count_Type := 1);

If Length (Container) <= Count then Delete_Last is equivalent to Clear (Container). Otherwise it
is equivalent to Delete (Container, Index_Type'Val(Index_Type'Pos(Last_Index (Container)) –
Count + 1), Count).

procedure Reverse_Elements (Container : in out List);

Reorders the elements of Container in reverse order.

procedure Swap (Container : in out Vector;
 I, J : in Index_Type);

If either I or J is not in the range First_Index (Container) .. Last_Index (Container), then
Constraint_Error is propagated. Otherwise, Swap exchanges the values of the elements at
positions I and J.

procedure Swap (Container : in out Vector;
 I, J : in Cursor);

If either I or J is No_Element, then Constraint_Error is propagated. If either I or J do not
designate an element in Container, then Program_Error is propagated. Otherwise, Swap
exchanges the values of the elements designated by I and J.

function First_Index (Container : Vector) return Index_Type;

Returns the value Index_Type'First.

179/2

180/2

181/2

182/2

183/2

184/2

185/2

186/2

187/2

188/2

189/2

190/2

191/2

192/2

193/2

194/2

195/2

196/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.18.2 The Package Containers.Vectors 10 November 2006 428

function First (Container : Vector) return Cursor;

If Container is empty, First returns No_Element. Otherwise, it returns a cursor that designates
the first element in Container.

function First_Element (Container : Vector) return Element_Type;

Equivalent to Element (Container, First_Index (Container)).

function Last_Index (Container : Vector) return Extended_Index;

If Container is empty, Last_Index returns No_Index. Otherwise, it returns the position of the last
element in Container.

function Last (Container : Vector) return Cursor;

If Container is empty, Last returns No_Element. Otherwise, it returns a cursor that designates the
last element in Container.

function Last_Element (Container : Vector) return Element_Type;

Equivalent to Element (Container, Last_Index (Container)).

function Next (Position : Cursor) return Cursor;

If Position equals No_Element or designates the last element of the container, then Next returns
the value No_Element. Otherwise, it returns a cursor that designates the element with index
To_Index (Position) + 1 in the same vector as Position.

procedure Next (Position : in out Cursor);

Equivalent to Position := Next (Position).

function Previous (Position : Cursor) return Cursor;

If Position equals No_Element or designates the first element of the container, then Previous
returns the value No_Element. Otherwise, it returns a cursor that designates the element with
index To_Index (Position) – 1 in the same vector as Position.

procedure Previous (Position : in out Cursor);

Equivalent to Position := Previous (Position).

function Find_Index (Container : Vector;
 Item : Element_Type;
 Index : Index_Type := Index_Type'First)
 return Extended_Index;

Searches the elements of Container for an element equal to Item (using the generic formal
equality operator). The search starts at position Index and proceeds towards Last_Index
(Container). If no equal element is found, then Find_Index returns No_Index. Otherwise, it
returns the index of the first equal element encountered.

function Find (Container : Vector;
 Item : Element_Type;
 Position : Cursor := No_Element)
 return Cursor;

If Position is not No_Element, and does not designate an element in Container, then
Program_Error is propagated. Otherwise Find searches the elements of Container for an element
equal to Item (using the generic formal equality operator). The search starts at the first element if
Position equals No_Element, and at the element designated by Position otherwise. It proceeds

197/2

198/2

199/2

200/2

201/2

202/2

203/2

204/2

205/2

206/2

207/2

208/2

209/2

210/2

211/2

212/2

213/2

214/2

215/2

216/2

217/2

218/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

429 10 November 2006 The Package Containers.Vectors A.18.2

towards the last element of Container. If no equal element is found, then Find returns
No_Element. Otherwise, it returns a cursor designating the first equal element encountered.

function Reverse_Find_Index (Container : Vector;
 Item : Element_Type;
 Index : Index_Type := Index_Type'Last)
 return Extended_Index;

Searches the elements of Container for an element equal to Item (using the generic formal
equality operator). The search starts at position Index or, if Index is greater than Last_Index
(Container), at position Last_Index (Container). It proceeds towards First_Index (Container). If
no equal element is found, then Reverse_Find_Index returns No_Index. Otherwise, it returns the
index of the first equal element encountered.

function Reverse_Find (Container : Vector;
 Item : Element_Type;
 Position : Cursor := No_Element)
 return Cursor;

If Position is not No_Element, and does not designate an element in Container, then
Program_Error is propagated. Otherwise Reverse_Find searches the elements of Container for an
element equal to Item (using the generic formal equality operator). The search starts at the last
element if Position equals No_Element, and at the element designated by Position otherwise. It
proceeds towards the first element of Container. If no equal element is found, then Reverse_Find
returns No_Element. Otherwise, it returns a cursor designating the first equal element
encountered.

function Contains (Container : Vector;
 Item : Element_Type) return Boolean;

Equivalent to Has_Element (Find (Container, Item)).

function Has_Element (Position : Cursor) return Boolean;

Returns True if Position designates an element, and returns False otherwise.

procedure Iterate
 (Container : in Vector;
 Process : not null access procedure (Position : in Cursor));

Invokes Process.all with a cursor that designates each element in Container, in index order.
Program_Error is propagated if Process.all tampers with the cursors of Container. Any exception
raised by Process is propagated.

procedure Reverse_Iterate
 (Container : in Vector;
 Process : not null access procedure (Position : in Cursor));

Iterates over the elements in Container as per Iterate, except that elements are traversed in
reverse index order.

The actual function for the generic formal function "<" of Generic_Sorting is expected to return the same
value each time it is called with a particular pair of element values. It should define a strict ordering
relationship, that is, be irreflexive, asymmetric, and transitive; it should not modify Container. If the actual
for "<" behaves in some other manner, the behavior of the subprograms of Generic_Sorting are
unspecified. How many times the subprograms of Generic_Sorting call "<" is unspecified.

219/2

220/2

221/2

222/2

223/2

224/2

225/2

226/2

227/2

228/2

229/2

230/2

231/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.18.2 The Package Containers.Vectors 10 November 2006 430

function Is_Sorted (Container : Vector) return Boolean;

Returns True if the elements are sorted smallest first as determined by the generic formal "<"
operator; otherwise, Is_Sorted returns False. Any exception raised during evaluation of "<" is
propagated.

procedure Sort (Container : in out Vector);

Reorders the elements of Container such that the elements are sorted smallest first as determined
by the generic formal "<" operator provided. Any exception raised during evaluation of "<" is
propagated.

procedure Merge (Target : in out Vector;
 Source : in out Vector);

Merge removes elements from Source and inserts them into Target; afterwards, Target contains
the union of the elements that were initially in Source and Target; Source is left empty. If Target
and Source are initially sorted smallest first, then Target is ordered smallest first as determined
by the generic formal "<" operator; otherwise, the order of elements in Target is unspecified.
Any exception raised during evaluation of "<" is propagated.

Bounded (Run-Time) Errors

Reading the value of an empty element by calling Element, Query_Element, Update_Element, Swap,
Is_Sorted, Sort, Merge, "=", Find, or Reverse_Find is a bounded error. The implementation may treat the
element as having any normal value (see 13.9.1) of the element type, or raise Constraint_Error or
Program_Error before modifying the vector.

Calling Merge in an instance of Generic_Sorting with either Source or Target not ordered smallest first
using the provided generic formal "<" operator is a bounded error. Either Program_Error is raised after
Target is updated as described for Merge, or the operation works as defined.

A Cursor value is ambiguous if any of the following have occurred since it was created:
• Insert, Insert_Space, or Delete has been called on the vector that contains the element the cursor

designates with an index value (or a cursor designating an element at such an index value) less
than or equal to the index value of the element designated by the cursor; or

• The vector that contains the element it designates has been passed to the Sort or Merge
procedures of an instance of Generic_Sorting, or to the Reverse_Elements procedure.

 It is a bounded error to call any subprogram other than "=" or Has_Element declared in
Containers.Vectors with an ambiguous (but not invalid, see below) cursor parameter. Possible results are:

• The cursor may be treated as if it were No_Element;

• The cursor may designate some element in the vector (but not necessarily the element that it
originally designated);

• Constraint_Error may be raised; or

• Program_Error may be raised.

Erroneous Execution

A Cursor value is invalid if any of the following have occurred since it was created:
• The vector that contains the element it designates has been finalized;

• The vector that contains the element it designates has been used as the Source or Target of a call
to Move; or

232/2

233/2

234/2

235/2

236/2

237/2

238/2

239/2

240/2

241/2

242/2

243/2

244/2

245/2

246/2

247/2

248/2

249/2

250/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

431 10 November 2006 The Package Containers.Vectors A.18.2

• The element it designates has been deleted.

The result of "=" or Has_Element is unspecified if it is called with an invalid cursor parameter. Execution
is erroneous if any other subprogram declared in Containers.Vectors is called with an invalid cursor
parameter.

Implementation Requirements

No storage associated with a vector object shall be lost upon assignment or scope exit.

The execution of an assignment_statement for a vector shall have the effect of copying the elements
from the source vector object to the target vector object.

Implementation Advice

Containers.Vectors should be implemented similarly to an array. In particular, if the length of a vector is
N, then

• the worst-case time complexity of Element should be O(log N);

• the worst-case time complexity of Append with Count=1 when N is less than the capacity of the
vector should be O(log N); and

• the worst-case time complexity of Prepend with Count=1 and Delete_First with Count=1 should
be O(N log N).

The worst-case time complexity of a call on procedure Sort of an instance of
Containers.Vectors.Generic_Sorting should be O(N**2), and the average time complexity should be better
than O(N**2).

Containers.Vectors.Generic_Sorting.Sort and Containers.Vectors.Generic_Sorting.Merge should minimize
copying of elements.

Move should not copy elements, and should minimize copying of internal data structures.

If an exception is propagated from a vector operation, no storage should be lost, nor any elements removed
from a vector unless specified by the operation.

NOTES
42 All elements of a vector occupy locations in the internal array. If a sparse container is required, a Hashed_Map should
be used rather than a vector.

43 If Index_Type'Base'First = Index_Type'First an instance of Ada.Containers.Vectors will raise Constraint_Error. A
value below Index_Type'First is required so that an empty vector has a meaningful value of Last_Index.

A.18.3 The Package Containers.Doubly_Linked_Lists
The language-defined generic package Containers.Doubly_Linked_Lists provides private types List and
Cursor, and a set of operations for each type. A list container is optimized for insertion and deletion at any
position.

A doubly-linked list container object manages a linked list of internal nodes, each of which contains an
element and pointers to the next (successor) and previous (predecessor) internal nodes. A cursor designates
a particular node within a list (and by extension the element contained in that node). A cursor keeps
designating the same node (and element) as long as the node is part of the container, even if the node is
moved in the container.

The length of a list is the number of elements it contains.

251/2

252/2

253/2

254/2

255/2

256/2

257

258/2

259/2

260/2

261/2

262/2

263/2

264/2

1/2

2/2

3/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.18.3 The Package Containers.Doubly_Linked_Lists 10 November 2006 432

Static Semantics

The generic library package Containers.Doubly_Linked_Lists has the following declaration:
generic
 type Element_Type is private;
 with function "=" (Left, Right : Element_Type)
 return Boolean is <>;
package Ada.Containers.Doubly_Linked_Lists is
 pragma Preelaborate(Doubly_Linked_Lists);

 type List is tagged private;
 pragma Preelaborable_Initialization(List);

 type Cursor is private;
 pragma Preelaborable_Initialization(Cursor);

 Empty_List : constant List;

 No_Element : constant Cursor;

 function "=" (Left, Right : List) return Boolean;

 function Length (Container : List) return Count_Type;

 function Is_Empty (Container : List) return Boolean;

 procedure Clear (Container : in out List);

 function Element (Position : Cursor)
 return Element_Type;

 procedure Replace_Element (Container : in out List;
 Position : in Cursor;
 New_Item : in Element_Type);

 procedure Query_Element
 (Position : in Cursor;
 Process : not null access procedure (Element : in Element_Type));

 procedure Update_Element
 (Container : in out List;
 Position : in Cursor;
 Process : not null access procedure
 (Element : in out Element_Type));

 procedure Move (Target : in out List;
 Source : in out List);

 procedure Insert (Container : in out List;
 Before : in Cursor;
 New_Item : in Element_Type;
 Count : in Count_Type := 1);

 procedure Insert (Container : in out List;
 Before : in Cursor;
 New_Item : in Element_Type;
 Position : out Cursor;
 Count : in Count_Type := 1);

 procedure Insert (Container : in out List;
 Before : in Cursor;
 Position : out Cursor;
 Count : in Count_Type := 1);

 procedure Prepend (Container : in out List;
 New_Item : in Element_Type;
 Count : in Count_Type := 1);

 procedure Append (Container : in out List;
 New_Item : in Element_Type;
 Count : in Count_Type := 1);

 procedure Delete (Container : in out List;
 Position : in out Cursor;
 Count : in Count_Type := 1);

4/2

5/2

6/2

7/2

8/2

9/2

10/2

11/2

12/2

13/2

14/2

15/2

16/2

17/2

18/2

19/2

20/2

21/2

22/2

23/2

24/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

433 10 November 2006 The Package Containers.Doubly_Linked_Lists A.18.3

 procedure Delete_First (Container : in out List;
 Count : in Count_Type := 1);

 procedure Delete_Last (Container : in out List;
 Count : in Count_Type := 1);

 procedure Reverse_Elements (Container : in out List);

 procedure Swap (Container : in out List;
 I, J : in Cursor);

 procedure Swap_Links (Container : in out List;
 I, J : in Cursor);

 procedure Splice (Target : in out List;
 Before : in Cursor;
 Source : in out List);

 procedure Splice (Target : in out List;
 Before : in Cursor;
 Source : in out List;
 Position : in out Cursor);

 procedure Splice (Container: in out List;
 Before : in Cursor;
 Position : in Cursor);

 function First (Container : List) return Cursor;

 function First_Element (Container : List)
 return Element_Type;

 function Last (Container : List) return Cursor;

 function Last_Element (Container : List)
 return Element_Type;

 function Next (Position : Cursor) return Cursor;

 function Previous (Position : Cursor) return Cursor;

 procedure Next (Position : in out Cursor);

 procedure Previous (Position : in out Cursor);

 function Find (Container : List;
 Item : Element_Type;
 Position : Cursor := No_Element)
 return Cursor;

 function Reverse_Find (Container : List;
 Item : Element_Type;
 Position : Cursor := No_Element)
 return Cursor;

 function Contains (Container : List;
 Item : Element_Type) return Boolean;

 function Has_Element (Position : Cursor) return Boolean;

 procedure Iterate
 (Container : in List;
 Process : not null access procedure (Position : in Cursor));

 procedure Reverse_Iterate
 (Container : in List;
 Process : not null access procedure (Position : in Cursor));

 generic
 with function "<" (Left, Right : Element_Type)
 return Boolean is <>;
 package Generic_Sorting is

 function Is_Sorted (Container : List) return Boolean;

 procedure Sort (Container : in out List);

 procedure Merge (Target : in out List;
 Source : in out List);

25/2

26/2

27/2

28/2

29/2

30/2

31/2

32/2

33/2

34/2

35/2

36/2

37/2

38/2

39/2

40/2

41/2

42/2

43/2

44/2

45/2

46/2

47/2

48/2

49/2

50/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.18.3 The Package Containers.Doubly_Linked_Lists 10 November 2006 434

 end Generic_Sorting;

private

 ... -- not specified by the language
end Ada.Containers.Doubly_Linked_Lists;

The actual function for the generic formal function "=" on Element_Type values is expected to define a
reflexive and symmetric relationship and return the same result value each time it is called with a
particular pair of values. If it behaves in some other manner, the functions Find, Reverse_Find, and "=" on
list values return an unspecified value. The exact arguments and number of calls of this generic formal
function by the functions Find, Reverse_Find, and "=" on list values are unspecified.

The type List is used to represent lists. The type List needs finalization (see 7.6).

Empty_List represents the empty List object. It has a length of 0. If an object of type List is not otherwise
initialized, it is initialized to the same value as Empty_List.

No_Element represents a cursor that designates no element. If an object of type Cursor is not otherwise
initialized, it is initialized to the same value as No_Element.

The predefined "=" operator for type Cursor returns True if both cursors are No_Element, or designate the
same element in the same container.

Execution of the default implementation of the Input, Output, Read, or Write attribute of type Cursor
raises Program_Error.

Some operations of this generic package have access-to-subprogram parameters. To ensure such
operations are well-defined, they guard against certain actions by the designated subprogram. In particular,
some operations check for “tampering with cursors” of a container because they depend on the set of
elements of the container remaining constant, and others check for “tampering with elements” of a
container because they depend on elements of the container not being replaced.

A subprogram is said to tamper with cursors of a list object L if:
• it inserts or deletes elements of L, that is, it calls the Insert, Clear, Delete, or Delete_Last

procedures with L as a parameter; or

• it reorders the elements of L, that is, it calls the Splice, Swap_Links, or Reverse_Elements
procedures or the Sort or Merge procedures of an instance of Generic_Sorting with L as a
parameter; or

• it finalizes L; or

• it calls the Move procedure with L as a parameter.

A subprogram is said to tamper with elements of a list object L if:
• it tampers with cursors of L; or

• it replaces one or more elements of L, that is, it calls the Replace_Element or Swap procedures
with L as a parameter.
function "=" (Left, Right : List) return Boolean;

If Left and Right denote the same list object, then the function returns True. If Left and Right
have different lengths, then the function returns False. Otherwise, it compares each element in
Left to the corresponding element in Right using the generic formal equality operator. If any
such comparison returns False, the function returns False; otherwise it returns True. Any
exception raised during evaluation of element equality is propagated.

51/2

52/2

53/2

54/2

55/2

56/2

57/2

58/2

59/2

60/2

61/2

62/2

63/2

64/2

65/2

66/2

67/2

68/2

69/2

70/2

71/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

435 10 November 2006 The Package Containers.Doubly_Linked_Lists A.18.3

function Length (Container : List) return Count_Type;

Returns the number of elements in Container.

function Is_Empty (Container : List) return Boolean;

Equivalent to Length (Container) = 0.

procedure Clear (Container : in out List);

Removes all the elements from Container.

function Element (Position : Cursor) return Element_Type;

If Position equals No_Element, then Constraint_Error is propagated. Otherwise, Element returns
the element designated by Position.

procedure Replace_Element (Container : in out List;
 Position : in Cursor;
 New_Item : in Element_Type);

If Position equals No_Element, then Constraint_Error is propagated; if Position does not
designate an element in Container, then Program_Error is propagated. Otherwise
Replace_Element assigns the value New_Item to the element designated by Position.

procedure Query_Element
 (Position : in Cursor;
 Process : not null access procedure (Element : in Element_Type));

If Position equals No_Element, then Constraint_Error is propagated. Otherwise, Query_Element
calls Process.all with the element designated by Position as the argument. Program_Error is
propagated if Process.all tampers with the elements of Container. Any exception raised by
Process.all is propagated.

procedure Update_Element
 (Container : in out List;
 Position : in Cursor;
 Process : not null access procedure (Element : in out Element_Type));

If Position equals No_Element, then Constraint_Error is propagated; if Position does not
designate an element in Container, then Program_Error is propagated. Otherwise
Update_Element calls Process.all with the element designated by Position as the argument.
Program_Error is propagated if Process.all tampers with the elements of Container. Any
exception raised by Process.all is propagated.

If Element_Type is unconstrained and definite, then the actual Element parameter of Process.all
shall be unconstrained.

procedure Move (Target : in out List;
 Source : in out List);

If Target denotes the same object as Source, then Move has no effect. Otherwise, Move first
calls Clear (Target). Then, the nodes in Source are moved to Target (in the original order). The
length of Target is set to the length of Source, and the length of Source is set to 0.

procedure Insert (Container : in out List;
 Before : in Cursor;
 New_Item : in Element_Type;
 Count : in Count_Type := 1);

If Before is not No_Element, and does not designate an element in Container, then
Program_Error is propagated. Otherwise, Insert inserts Count copies of New_Item prior to the

72/2

73/2

74/2

75/2

76/2

77/2

78/2

79/2

80/2

81/2

82/2

83/2

84/2

85/2

86/2

87/2

88/2

89/2

90/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.18.3 The Package Containers.Doubly_Linked_Lists 10 November 2006 436

element designated by Before. If Before equals No_Element, the new elements are inserted after
the last node (if any). Any exception raised during allocation of internal storage is propagated,
and Container is not modified.

procedure Insert (Container : in out List;
 Before : in Cursor;
 New_Item : in Element_Type;
 Position : out Cursor;
 Count : in Count_Type := 1);

If Before is not No_Element, and does not designate an element in Container, then
Program_Error is propagated. Otherwise, Insert allocates Count copies of New_Item, and inserts
them prior to the element designated by Before. If Before equals No_Element, the new elements
are inserted after the last element (if any). Position designates the first newly-inserted element.
Any exception raised during allocation of internal storage is propagated, and Container is not
modified.

procedure Insert (Container : in out List;
 Before : in Cursor;
 Position : out Cursor;
 Count : in Count_Type := 1);

If Before is not No_Element, and does not designate an element in Container, then
Program_Error is propagated. Otherwise, Insert inserts Count new elements prior to the element
designated by Before. If Before equals No_Element, the new elements are inserted after the last
node (if any). The new elements are initialized by default (see 3.3.1). Any exception raised
during allocation of internal storage is propagated, and Container is not modified.

procedure Prepend (Container : in out List;
 New_Item : in Element_Type;
 Count : in Count_Type := 1);

Equivalent to Insert (Container, First (Container), New_Item, Count).

procedure Append (Container : in out List;
 New_Item : in Element_Type;
 Count : in Count_Type := 1);

Equivalent to Insert (Container, No_Element, New_Item, Count).

procedure Delete (Container : in out List;
 Position : in out Cursor;
 Count : in Count_Type := 1);

If Position equals No_Element, then Constraint_Error is propagated. If Position does not
designate an element in Container, then Program_Error is propagated. Otherwise Delete removes
(from Container) Count elements starting at the element designated by Position (or all of the
elements starting at Position if there are fewer than Count elements starting at Position). Finally,
Position is set to No_Element.

procedure Delete_First (Container : in out List;
 Count : in Count_Type := 1);

Equivalent to Delete (Container, First (Container), Count).

procedure Delete_Last (Container : in out List;
 Count : in Count_Type := 1);

If Length (Container) <= Count then Delete_Last is equivalent to Clear (Container). Otherwise it
removes the last Count nodes from Container.

91/2

92/2

93/2

94/2

95/2

96/2

97/2

98/2

99/2

100/2

101/2

102/2

103/2

104/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

437 10 November 2006 The Package Containers.Doubly_Linked_Lists A.18.3

procedure Reverse_Elements (Container : in out List);

Reorders the elements of Container in reverse order.

procedure Swap (Container : in out List;
 I, J : in Cursor);

If either I or J is No_Element, then Constraint_Error is propagated. If either I or J do not
designate an element in Container, then Program_Error is propagated. Otherwise, Swap
exchanges the values of the elements designated by I and J.

procedure Swap_Links (Container : in out List;
 I, J : in Cursor);

If either I or J is No_Element, then Constraint_Error is propagated. If either I or J do not
designate an element in Container, then Program_Error is propagated. Otherwise, Swap_Links
exchanges the nodes designated by I and J.

procedure Splice (Target : in out List;
 Before : in Cursor;
 Source : in out List);

If Before is not No_Element, and does not designate an element in Target, then Program_Error
is propagated. Otherwise, if Source denotes the same object as Target, the operation has no
effect. Otherwise, Splice reorders elements such that they are removed from Source and moved
to Target, immediately prior to Before. If Before equals No_Element, the nodes of Source are
spliced after the last node of Target. The length of Target is incremented by the number of nodes
in Source, and the length of Source is set to 0.

procedure Splice (Target : in out List;
 Before : in Cursor;
 Source : in out List;
 Position : in out Cursor);

If Position is No_Element then Constraint_Error is propagated. If Before does not equal
No_Element, and does not designate an element in Target, then Program_Error is propagated. If
Position does not equal No_Element, and does not designate a node in Source, then
Program_Error is propagated. If Source denotes the same object as Target, then there is no effect
if Position equals Before, else the element designated by Position is moved immediately prior to
Before, or, if Before equals No_Element, after the last element. In both cases, Position and the
length of Target are unchanged. Otherwise the element designated by Position is removed from
Source and moved to Target, immediately prior to Before, or, if Before equals No_Element,
after the last element of Target. The length of Target is incremented, the length of Source is
decremented, and Position is updated to represent an element in Target.

procedure Splice (Container: in out List;
 Before : in Cursor;
 Position : in Cursor);

If Position is No_Element then Constraint_Error is propagated. If Before does not equal
No_Element, and does not designate an element in Container, then Program_Error is propagated.
If Position does not equal No_Element, and does not designate a node in Container, then
Program_Error is propagated. If Position equals Before there is no effect. Otherwise, the element
designated by Position is moved immediately prior to Before, or, if Before equals No_Element,
after the last element. The length of Container is unchanged.

105/2

106/2

107/2

108/2

109/2

110/2

111/2

112/2

113/2

114/2

115/2

116/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.18.3 The Package Containers.Doubly_Linked_Lists 10 November 2006 438

function First (Container : List) return Cursor;

If Container is empty, First returns the value No_Element. Otherwise it returns a cursor that
designates the first node in Container.

function First_Element (Container : List) return Element_Type;

Equivalent to Element (First (Container)).

function Last (Container : List) return Cursor;

If Container is empty, Last returns the value No_Element. Otherwise it returns a cursor that
designates the last node in Container.

function Last_Element (Container : List) return Element_Type;

Equivalent to Element (Last (Container)).

function Next (Position : Cursor) return Cursor;

If Position equals No_Element or designates the last element of the container, then Next returns
the value No_Element. Otherwise, it returns a cursor that designates the successor of the element
designated by Position.

function Previous (Position : Cursor) return Cursor;

If Position equals No_Element or designates the first element of the container, then Previous
returns the value No_Element. Otherwise, it returns a cursor that designates the predecessor of
the element designated by Position.

procedure Next (Position : in out Cursor);

Equivalent to Position := Next (Position).

procedure Previous (Position : in out Cursor);

Equivalent to Position := Previous (Position).

function Find (Container : List;
 Item : Element_Type;
 Position : Cursor := No_Element)
 return Cursor;

If Position is not No_Element, and does not designate an element in Container, then
Program_Error is propagated. Find searches the elements of Container for an element equal to
Item (using the generic formal equality operator). The search starts at the element designated by
Position, or at the first element if Position equals No_Element. It proceeds towards Last
(Container). If no equal element is found, then Find returns No_Element. Otherwise, it returns a
cursor designating the first equal element encountered.

function Reverse_Find (Container : List;
 Item : Element_Type;
 Position : Cursor := No_Element)
 return Cursor;

If Position is not No_Element, and does not designate an element in Container, then
Program_Error is propagated. Find searches the elements of Container for an element equal to
Item (using the generic formal equality operator). The search starts at the element designated by
Position, or at the last element if Position equals No_Element. It proceeds towards First
(Container). If no equal element is found, then Reverse_Find returns No_Element. Otherwise, it
returns a cursor designating the first equal element encountered.

117/2

118/2

119/2

120/2

121/2

122/2

123/2

124/2

125/2

126/2

127/2

128/2

129/2

130/2

131/2

132/2

133/2

134/2

135/2

136/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

439 10 November 2006 The Package Containers.Doubly_Linked_Lists A.18.3

function Contains (Container : List;
 Item : Element_Type) return Boolean;

Equivalent to Find (Container, Item) /= No_Element.

function Has_Element (Position : Cursor) return Boolean;

Returns True if Position designates an element, and returns False otherwise.

procedure Iterate
 (Container : in List;
 Process : not null access procedure (Position : in Cursor));

Iterate calls Process.all with a cursor that designates each node in Container, starting with the
first node and moving the cursor as per the Next function. Program_Error is propagated if
Process.all tampers with the cursors of Container. Any exception raised by Process.all is
propagated.

procedure Reverse_Iterate
 (Container : in List;
 Process : not null access procedure (Position : in Cursor));

Iterates over the nodes in Container as per Iterate, except that elements are traversed in reverse
order, starting with the last node and moving the cursor as per the Previous function.

The actual function for the generic formal function "<" of Generic_Sorting is expected to return the same
value each time it is called with a particular pair of element values. It should define a strict ordering
relationship, that is, be irreflexive, asymmetric, and transitive; it should not modify Container. If the actual
for "<" behaves in some other manner, the behavior of the subprograms of Generic_Sorting are
unspecified. How many times the subprograms of Generic_Sorting call "<" is unspecified.

function Is_Sorted (Container : List) return Boolean;

Returns True if the elements are sorted smallest first as determined by the generic formal "<"
operator; otherwise, Is_Sorted returns False. Any exception raised during evaluation of "<" is
propagated.

procedure Sort (Container : in out List);

Reorders the nodes of Container such that the elements are sorted smallest first as determined by
the generic formal "<" operator provided. The sort is stable. Any exception raised during
evaluation of "<" is propagated.

procedure Merge (Target : in out List;
 Source : in out List);

Merge removes elements from Source and inserts them into Target; afterwards, Target contains
the union of the elements that were initially in Source and Target; Source is left empty. If Target
and Source are initially sorted smallest first, then Target is ordered smallest first as determined
by the generic formal "<" operator; otherwise, the order of elements in Target is unspecified.
Any exception raised during evaluation of "<" is propagated.

Bounded (Run-Time) Errors

Calling Merge in an instance of Generic_Sorting with either Source or Target not ordered smallest first
using the provided generic formal "<" operator is a bounded error. Either Program_Error is raised after
Target is updated as described for Merge, or the operation works as defined.

137/2

138/2

139/2

140/2

141/2

142/2

143/2

144/2

145/2

146/2

147/2

148/2

149/2

150/2

151/2

152/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.18.3 The Package Containers.Doubly_Linked_Lists 10 November 2006 440

Erroneous Execution

A Cursor value is invalid if any of the following have occurred since it was created:
• The list that contains the element it designates has been finalized;

• The list that contains the element it designates has been used as the Source or Target of a call to
Move; or

• The element it designates has been deleted.

The result of "=" or Has_Element is unspecified if it is called with an invalid cursor parameter. Execution
is erroneous if any other subprogram declared in Containers.Doubly_Linked_Lists is called with an invalid
cursor parameter.

Implementation Requirements

No storage associated with a doubly-linked List object shall be lost upon assignment or scope exit.

The execution of an assignment_statement for a list shall have the effect of copying the elements from
the source list object to the target list object.

Implementation Advice

Containers.Doubly_Linked_Lists should be implemented similarly to a linked list. In particular, if N is the
length of a list, then the worst-case time complexity of Element, Insert with Count=1, and Delete with
Count=1 should be O(log N).

The worst-case time complexity of a call on procedure Sort of an instance of
Containers.Doubly_Linked_Lists.Generic_Sorting should be O(N**2), and the average time complexity
should be better than O(N**2).

Move should not copy elements, and should minimize copying of internal data structures.

If an exception is propagated from a list operation, no storage should be lost, nor any elements removed
from a list unless specified by the operation.

NOTES
44 Sorting a list never copies elements, and is a stable sort (equal elements remain in the original order). This is different
than sorting an array or vector, which may need to copy elements, and is probably not a stable sort.

A.18.4 Maps
The language-defined generic packages Containers.Hashed_Maps and Containers.Ordered_Maps provide
private types Map and Cursor, and a set of operations for each type. A map container allows an arbitrary
type to be used as a key to find the element associated with that key. A hashed map uses a hash function to
organize the keys, while an ordered map orders the keys per a specified relation.

This section describes the declarations that are common to both kinds of maps. See A.18.5 for a
description of the semantics specific to Containers.Hashed_Maps and A.18.6 for a description of the
semantics specific to Containers.Ordered_Maps.

Static Semantics

The actual function for the generic formal function "=" on Element_Type values is expected to define a
reflexive and symmetric relationship and return the same result value each time it is called with a
particular pair of values. If it behaves in some other manner, the function "=" on map values returns an

153/2

154/2

155/2

156/2

157/2

158/2

159/2

160/2

161/2

162/2

163/2

164/2

1/2

2/2

3/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

441 10 November 2006 Maps A.18.4

unspecified value. The exact arguments and number of calls of this generic formal function by the function
"=" on map values are unspecified.

The type Map is used to represent maps. The type Map needs finalization (see 7.6).

A map contains pairs of keys and elements, called nodes. Map cursors designate nodes, but also can be
thought of as designating an element (the element contained in the node) for consistency with the other
containers. There exists an equivalence relation on keys, whose definition is different for hashed maps and
ordered maps. A map never contains two or more nodes with equivalent keys. The length of a map is the
number of nodes it contains.

Each nonempty map has two particular nodes called the first node and the last node (which may be the
same). Each node except for the last node has a successor node. If there are no other intervening
operations, starting with the first node and repeatedly going to the successor node will visit each node in
the map exactly once until the last node is reached. The exact definition of these terms is different for
hashed maps and ordered maps.

Some operations of these generic packages have access-to-subprogram parameters. To ensure such
operations are well-defined, they guard against certain actions by the designated subprogram. In particular,
some operations check for “tampering with cursors” of a container because they depend on the set of
elements of the container remaining constant, and others check for “tampering with elements” of a
container because they depend on elements of the container not being replaced.

A subprogram is said to tamper with cursors of a map object M if:
• it inserts or deletes elements of M, that is, it calls the Insert, Include, Clear, Delete, or Exclude

procedures with M as a parameter; or

• it finalizes M; or

• it calls the Move procedure with M as a parameter; or

• it calls one of the operations defined to tamper with the cursors of M.

A subprogram is said to tamper with elements of a map object M if:
• it tampers with cursors of M; or

• it replaces one or more elements of M, that is, it calls the Replace or Replace_Element
procedures with M as a parameter.

Empty_Map represents the empty Map object. It has a length of 0. If an object of type Map is not
otherwise initialized, it is initialized to the same value as Empty_Map.

No_Element represents a cursor that designates no node. If an object of type Cursor is not otherwise
initialized, it is initialized to the same value as No_Element.

The predefined "=" operator for type Cursor returns True if both cursors are No_Element, or designate the
same element in the same container.

Execution of the default implementation of the Input, Output, Read, or Write attribute of type Cursor
raises Program_Error.

function "=" (Left, Right : Map) return Boolean;

If Left and Right denote the same map object, then the function returns True. If Left and Right
have different lengths, then the function returns False. Otherwise, for each key K in Left, the
function returns False if:

• a key equivalent to K is not present in Right; or

4/2

5/2

6/2

7/2

8/2

9/2

10/2

11/2

12/2

13/2

14/2

15/2

16/2

17/2

18/2

19/2

20/2

21/2

22/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.18.4 Maps 10 November 2006 442

• the element associated with K in Left is not equal to the element associated with K in
Right (using the generic formal equality operator for elements).

If the function has not returned a result after checking all of the keys, it returns True. Any
exception raised during evaluation of key equivalence or element equality is propagated.

function Length (Container : Map) return Count_Type;

Returns the number of nodes in Container.

function Is_Empty (Container : Map) return Boolean;

Equivalent to Length (Container) = 0.

procedure Clear (Container : in out Map);

Removes all the nodes from Container.

function Key (Position : Cursor) return Key_Type;

If Position equals No_Element, then Constraint_Error is propagated. Otherwise, Key returns the
key component of the node designated by Position.

function Element (Position : Cursor) return Element_Type;

If Position equals No_Element, then Constraint_Error is propagated. Otherwise, Element returns
the element component of the node designated by Position.

procedure Replace_Element (Container : in out Map;
 Position : in Cursor;
 New_Item : in Element_Type);

If Position equals No_Element, then Constraint_Error is propagated; if Position does not
designate an element in Container, then Program_Error is propagated. Otherwise
Replace_Element assigns New_Item to the element of the node designated by Position.

procedure Query_Element
 (Position : in Cursor;
 Process : not null access procedure (Key : in Key_Type;
 Element : in Element_Type));

If Position equals No_Element, then Constraint_Error is propagated. Otherwise, Query_Element
calls Process.all with the key and element from the node designated by Position as the
arguments. Program_Error is propagated if Process.all tampers with the elements of Container.
Any exception raised by Process.all is propagated.

procedure Update_Element
 (Container : in out Map;
 Position : in Cursor;
 Process : not null access procedure (Key : in Key_Type;
 Element : in out Element_Type));

If Position equals No_Element, then Constraint_Error is propagated; if Position does not
designate an element in Container, then Program_Error is propagated. Otherwise
Update_Element calls Process.all with the key and element from the node designated by
Position as the arguments. Program_Error is propagated if Process.all tampers with the elements
of Container. Any exception raised by Process.all is propagated.

If Element_Type is unconstrained and definite, then the actual Element parameter of Process.all
shall be unconstrained.

23/2

24/2

25/2

26/2

27/2

28/2

29/2

30/2

31/2

32/2

33/2

34/2

35/2

36/2

37/2

38/2

39/2

40/2

41/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

443 10 November 2006 Maps A.18.4

procedure Move (Target : in out Map;
 Source : in out Map);

If Target denotes the same object as Source, then Move has no effect. Otherwise, Move first
calls Clear (Target). Then, each node from Source is removed from Source and inserted into
Target. The length of Source is 0 after a successful call to Move.

procedure Insert (Container : in out Map;
 Key : in Key_Type;
 New_Item : in Element_Type;
 Position : out Cursor;
 Inserted : out Boolean);

Insert checks if a node with a key equivalent to Key is already present in Container. If a match is
found, Inserted is set to False and Position designates the element with the matching key.
Otherwise, Insert allocates a new node, initializes it to Key and New_Item, and adds it to
Container; Inserted is set to True and Position designates the newly-inserted node. Any
exception raised during allocation is propagated and Container is not modified.

procedure Insert (Container : in out Map;
 Key : in Key_Type;
 Position : out Cursor;
 Inserted : out Boolean);

Insert inserts Key into Container as per the five-parameter Insert, with the difference that an
element initialized by default (see 3.3.1) is inserted.

procedure Insert (Container : in out Map;
 Key : in Key_Type;
 New_Item : in Element_Type);

Insert inserts Key and New_Item into Container as per the five-parameter Insert, with the
difference that if a node with a key equivalent to Key is already in the map, then
Constraint_Error is propagated.

procedure Include (Container : in out Map;
 Key : in Key_Type;
 New_Item : in Element_Type);

Include inserts Key and New_Item into Container as per the five-parameter Insert, with the
difference that if a node with a key equivalent to Key is already in the map, then this operation
assigns Key and New_Item to the matching node. Any exception raised during assignment is
propagated.

procedure Replace (Container : in out Map;
 Key : in Key_Type;
 New_Item : in Element_Type);

Replace checks if a node with a key equivalent to Key is present in Container. If a match is
found, Replace assigns Key and New_Item to the matching node; otherwise, Constraint_Error is
propagated.

procedure Exclude (Container : in out Map;
 Key : in Key_Type);

Exclude checks if a node with a key equivalent to Key is present in Container. If a match is
found, Exclude removes the node from the map.

42/2

43/2

44/2

45/2

46/2

47/2

48/2

49/2

50/2

51/2

52/2

53/2

54/2

55/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.18.4 Maps 10 November 2006 444

procedure Delete (Container : in out Map;
 Key : in Key_Type);

Delete checks if a node with a key equivalent to Key is present in Container. If a match is found,
Delete removes the node from the map; otherwise, Constraint_Error is propagated.

procedure Delete (Container : in out Map;
 Position : in out Cursor);

If Position equals No_Element, then Constraint_Error is propagated. If Position does not
designate an element in Container, then Program_Error is propagated. Otherwise, Delete
removes the node designated by Position from the map. Position is set to No_Element on return.

function First (Container : Map) return Cursor;

If Length (Container) = 0, then First returns No_Element. Otherwise, First returns a cursor that
designates the first node in Container.

function Next (Position : Cursor) return Cursor;

Returns a cursor that designates the successor of the node designated by Position. If Position
designates the last node, then No_Element is returned. If Position equals No_Element, then
No_Element is returned.

procedure Next (Position : in out Cursor);

Equivalent to Position := Next (Position).

function Find (Container : Map;
 Key : Key_Type) return Cursor;

If Length (Container) equals 0, then Find returns No_Element. Otherwise, Find checks if a node
with a key equivalent to Key is present in Container. If a match is found, a cursor designating
the matching node is returned; otherwise, No_Element is returned.

function Element (Container : Map;
 Key : Key_Type) return Element_Type;

Equivalent to Element (Find (Container, Key)).

function Contains (Container : Map;
 Key : Key_Type) return Boolean;

Equivalent to Find (Container, Key) /= No_Element.

function Has_Element (Position : Cursor) return Boolean;

Returns True if Position designates a node, and returns False otherwise.

procedure Iterate
 (Container : in Map;
 Process : not null access procedure (Position : in Cursor));

Iterate calls Process.all with a cursor that designates each node in Container, starting with the
first node and moving the cursor according to the successor relation. Program_Error is
propagated if Process.all tampers with the cursors of Container. Any exception raised by
Process.all is propagated.

Erroneous Execution

A Cursor value is invalid if any of the following have occurred since it was created:
• The map that contains the node it designates has been finalized;

56/2

57/2

58/2

59/2

60/2

61/2

62/2

63/2

64/2

65/2

66/2

67/2

68/2

69/2

70/2

71/2

72/2

73/2

74/2

75/2

76/2

77/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

445 10 November 2006 Maps A.18.4

• The map that contains the node it designates has been used as the Source or Target of a call to
Move; or

• The node it designates has been deleted from the map.

The result of "=" or Has_Element is unspecified if these functions are called with an invalid cursor
parameter. Execution is erroneous if any other subprogram declared in Containers.Hashed_Maps or
Containers.Ordered_Maps is called with an invalid cursor parameter.

Implementation Requirements

No storage associated with a Map object shall be lost upon assignment or scope exit.

The execution of an assignment_statement for a map shall have the effect of copying the elements from
the source map object to the target map object.

Implementation Advice

Move should not copy elements, and should minimize copying of internal data structures.

If an exception is propagated from a map operation, no storage should be lost, nor any elements removed
from a map unless specified by the operation.

A.18.5 The Package Containers.Hashed_Maps
Static Semantics

The generic library package Containers.Hashed_Maps has the following declaration:
generic
 type Key_Type is private;
 type Element_Type is private;
 with function Hash (Key : Key_Type) return Hash_Type;
 with function Equivalent_Keys (Left, Right : Key_Type)
 return Boolean;
 with function "=" (Left, Right : Element_Type)
 return Boolean is <>;
package Ada.Containers.Hashed_Maps is
 pragma Preelaborate(Hashed_Maps);

 type Map is tagged private;
 pragma Preelaborable_Initialization(Map);

 type Cursor is private;
 pragma Preelaborable_Initialization(Cursor);

 Empty_Map : constant Map;

 No_Element : constant Cursor;

 function "=" (Left, Right : Map) return Boolean;

 function Capacity (Container : Map) return Count_Type;

 procedure Reserve_Capacity (Container : in out Map;
 Capacity : in Count_Type);

 function Length (Container : Map) return Count_Type;

 function Is_Empty (Container : Map) return Boolean;

 procedure Clear (Container : in out Map);

 function Key (Position : Cursor) return Key_Type;

 function Element (Position : Cursor) return Element_Type;

 procedure Replace_Element (Container : in out Map;
 Position : in Cursor;
 New_Item : in Element_Type);

78/2

79/2

80/2

81/2

82/2

83/2

84/2

1/2

2/2

3/2

4/2

5/2

6/2

7/2

8/2

9/2

10/2

11/2

12/2

13/2

14/2

15/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.18.5 The Package Containers.Hashed_Maps 10 November 2006 446

 procedure Query_Element
 (Position : in Cursor;
 Process : not null access procedure (Key : in Key_Type;
 Element : in Element_Type));

 procedure Update_Element
 (Container : in out Map;
 Position : in Cursor;
 Process : not null access procedure
 (Key : in Key_Type;
 Element : in out Element_Type));

 procedure Move (Target : in out Map;
 Source : in out Map);

 procedure Insert (Container : in out Map;
 Key : in Key_Type;
 New_Item : in Element_Type;
 Position : out Cursor;
 Inserted : out Boolean);

 procedure Insert (Container : in out Map;
 Key : in Key_Type;
 Position : out Cursor;
 Inserted : out Boolean);

 procedure Insert (Container : in out Map;
 Key : in Key_Type;
 New_Item : in Element_Type);

 procedure Include (Container : in out Map;
 Key : in Key_Type;
 New_Item : in Element_Type);

 procedure Replace (Container : in out Map;
 Key : in Key_Type;
 New_Item : in Element_Type);

 procedure Exclude (Container : in out Map;
 Key : in Key_Type);

 procedure Delete (Container : in out Map;
 Key : in Key_Type);

 procedure Delete (Container : in out Map;
 Position : in out Cursor);

 function First (Container : Map)
 return Cursor;

 function Next (Position : Cursor) return Cursor;

 procedure Next (Position : in out Cursor);

 function Find (Container : Map;
 Key : Key_Type)
 return Cursor;

 function Element (Container : Map;
 Key : Key_Type)
 return Element_Type;

 function Contains (Container : Map;
 Key : Key_Type) return Boolean;

 function Has_Element (Position : Cursor) return Boolean;

 function Equivalent_Keys (Left, Right : Cursor)
 return Boolean;

 function Equivalent_Keys (Left : Cursor;
 Right : Key_Type)
 return Boolean;

 function Equivalent_Keys (Left : Key_Type;
 Right : Cursor)
 return Boolean;

16/2

17/2

18/2

19/2

20/2

21/2

22/2

23/2

24/2

25/2

26/2

27/2

28/2

29/2

30/2

31/2

32/2

33/2

34/2

35/2

36/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

447 10 November 2006 The Package Containers.Hashed_Maps A.18.5

 procedure Iterate
 (Container : in Map;
 Process : not null access procedure (Position : in Cursor));

private

 ... -- not specified by the language
end Ada.Containers.Hashed_Maps;

An object of type Map contains an expandable hash table, which is used to provide direct access to nodes.
The capacity of an object of type Map is the maximum number of nodes that can be inserted into the hash
table prior to it being automatically expanded.

Two keys K1 and K2 are defined to be equivalent if Equivalent_Keys (K1, K2) returns True.

The actual function for the generic formal function Hash is expected to return the same value each time it
is called with a particular key value. For any two equivalent key values, the actual for Hash is expected to
return the same value. If the actual for Hash behaves in some other manner, the behavior of this package is
unspecified. Which subprograms of this package call Hash, and how many times they call it, is
unspecified.

The actual function for the generic formal function Equivalent_Keys on Key_Type values is expected to
return the same value each time it is called with a particular pair of key values. It should define an
equivalence relationship, that is, be reflexive, symmetric, and transitive. If the actual for Equivalent_Keys
behaves in some other manner, the behavior of this package is unspecified. Which subprograms of this
package call Equivalent_Keys, and how many times they call it, is unspecified.

If the value of a key stored in a node of a map is changed other than by an operation in this package such
that at least one of Hash or Equivalent_Keys give different results, the behavior of this package is
unspecified.

Which nodes are the first node and the last node of a map, and which node is the successor of a given
node, are unspecified, other than the general semantics described in A.18.4.

function Capacity (Container : Map) return Count_Type;

Returns the capacity of Container.

procedure Reserve_Capacity (Container : in out Map;
 Capacity : in Count_Type);

Reserve_Capacity allocates a new hash table such that the length of the resulting map can
become at least the value Capacity without requiring an additional call to Reserve_Capacity, and
is large enough to hold the current length of Container. Reserve_Capacity then rehashes the
nodes in Container onto the new hash table. It replaces the old hash table with the new hash
table, and then deallocates the old hash table. Any exception raised during allocation is
propagated and Container is not modified.

Reserve_Capacity tampers with the cursors of Container.

procedure Clear (Container : in out Map);

In addition to the semantics described in A.18.4, Clear does not affect the capacity of Container.

37/2

38/2

39/2

40/2

41/2

42/2

43/2

44/2

45/2

46/2

47/2

48/2

49/2

50/2

51/2

52/2

53/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.18.5 The Package Containers.Hashed_Maps 10 November 2006 448

procedure Insert (Container : in out Map;
 Key : in Key_Type;
 New_Item : in Element_Type;
 Position : out Cursor;
 Inserted : out Boolean);

In addition to the semantics described in A.18.4, if Length (Container) equals Capacity
(Container), then Insert first calls Reserve_Capacity to increase the capacity of Container to
some larger value.

function Equivalent_Keys (Left, Right : Cursor)
 return Boolean;

Equivalent to Equivalent_Keys (Key (Left), Key (Right)).

function Equivalent_Keys (Left : Cursor;
 Right : Key_Type) return Boolean;

Equivalent to Equivalent_Keys (Key (Left), Right).

function Equivalent_Keys (Left : Key_Type;
 Right : Cursor) return Boolean;

Equivalent to Equivalent_Keys (Left, Key (Right)).

Implementation Advice

If N is the length of a map, the average time complexity of the subprograms Element, Insert, Include,
Replace, Delete, Exclude and Find that take a key parameter should be O(log N). The average time
complexity of the subprograms that take a cursor parameter should be O(1). The average time complexity
of Reserve_Capacity should be O(N).

A.18.6 The Package Containers.Ordered_Maps
Static Semantics

The generic library package Containers.Ordered_Maps has the following declaration:
generic
 type Key_Type is private;
 type Element_Type is private;
 with function "<" (Left, Right : Key_Type) return Boolean is <>;
 with function "=" (Left, Right : Element_Type) return Boolean is <>;
package Ada.Containers.Ordered_Maps is
 pragma Preelaborate(Ordered_Maps);

 function Equivalent_Keys (Left, Right : Key_Type) return Boolean;

 type Map is tagged private;
 pragma Preelaborable_Initialization(Map);

 type Cursor is private;
 pragma Preelaborable_Initialization(Cursor);

 Empty_Map : constant Map;

 No_Element : constant Cursor;

 function "=" (Left, Right : Map) return Boolean;

 function Length (Container : Map) return Count_Type;

 function Is_Empty (Container : Map) return Boolean;

 procedure Clear (Container : in out Map);

 function Key (Position : Cursor) return Key_Type;

 function Element (Position : Cursor) return Element_Type;

54/2

55/2

56/2

57/2

58/2

59/2

60/2

61/2

62/2

1/2

2/2

3/2

4/2

5/2

6/2

7/2

8/2

9/2

10/2

11/2

12/2

13/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

449 10 November 2006 The Package Containers.Ordered_Maps A.18.6

 procedure Replace_Element (Container : in out Map;
 Position : in Cursor;
 New_Item : in Element_Type);

 procedure Query_Element
 (Position : in Cursor;
 Process : not null access procedure (Key : in Key_Type;
 Element : in Element_Type));

 procedure Update_Element
 (Container : in out Map;
 Position : in Cursor;
 Process : not null access procedure
 (Key : in Key_Type;
 Element : in out Element_Type));

 procedure Move (Target : in out Map;
 Source : in out Map);

 procedure Insert (Container : in out Map;
 Key : in Key_Type;
 New_Item : in Element_Type;
 Position : out Cursor;
 Inserted : out Boolean);

 procedure Insert (Container : in out Map;
 Key : in Key_Type;
 Position : out Cursor;
 Inserted : out Boolean);

 procedure Insert (Container : in out Map;
 Key : in Key_Type;
 New_Item : in Element_Type);

 procedure Include (Container : in out Map;
 Key : in Key_Type;
 New_Item : in Element_Type);

 procedure Replace (Container : in out Map;
 Key : in Key_Type;
 New_Item : in Element_Type);

 procedure Exclude (Container : in out Map;
 Key : in Key_Type);

 procedure Delete (Container : in out Map;
 Key : in Key_Type);

 procedure Delete (Container : in out Map;
 Position : in out Cursor);

 procedure Delete_First (Container : in out Map);

 procedure Delete_Last (Container : in out Map);

 function First (Container : Map) return Cursor;

 function First_Element (Container : Map) return Element_Type;

 function First_Key (Container : Map) return Key_Type;

 function Last (Container : Map) return Cursor;

 function Last_Element (Container : Map) return Element_Type;

 function Last_Key (Container : Map) return Key_Type;

 function Next (Position : Cursor) return Cursor;

 procedure Next (Position : in out Cursor);

 function Previous (Position : Cursor) return Cursor;

 procedure Previous (Position : in out Cursor);

 function Find (Container : Map;
 Key : Key_Type) return Cursor;

 function Element (Container : Map;
 Key : Key_Type) return Element_Type;

14/2

15/2

16/2

17/2

18/2

19/2

20/2

21/2

22/2

23/2

24/2

25/2

26/2

27/2

28/2

29/2

30/2

31/2

32/2

33/2

34/2

35/2

36/2

37/2

38/2

39/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.18.6 The Package Containers.Ordered_Maps 10 November 2006 450

 function Floor (Container : Map;
 Key : Key_Type) return Cursor;

 function Ceiling (Container : Map;
 Key : Key_Type) return Cursor;

 function Contains (Container : Map;
 Key : Key_Type) return Boolean;

 function Has_Element (Position : Cursor) return Boolean;

 function "<" (Left, Right : Cursor) return Boolean;

 function ">" (Left, Right : Cursor) return Boolean;

 function "<" (Left : Cursor; Right : Key_Type) return Boolean;

 function ">" (Left : Cursor; Right : Key_Type) return Boolean;

 function "<" (Left : Key_Type; Right : Cursor) return Boolean;

 function ">" (Left : Key_Type; Right : Cursor) return Boolean;

 procedure Iterate
 (Container : in Map;
 Process : not null access procedure (Position : in Cursor));

 procedure Reverse_Iterate
 (Container : in Map;
 Process : not null access procedure (Position : in Cursor));

private

 ... -- not specified by the language
end Ada.Containers.Ordered_Maps;

Two keys K1 and K2 are equivalent if both K1 < K2 and K2 < K1 return False, using the generic formal
"<" operator for keys. Function Equivalent_Keys returns True if Left and Right are equivalent, and False
otherwise.

The actual function for the generic formal function "<" on Key_Type values is expected to return the same
value each time it is called with a particular pair of key values. It should define a strict ordering
relationship, that is, be irreflexive, asymmetric, and transitive. If the actual for "<" behaves in some other
manner, the behavior of this package is unspecified. Which subprograms of this package call "<" and how
many times they call it, is unspecified.

If the value of a key stored in a map is changed other than by an operation in this package such that at least
one of "<" or "=" give different results, the behavior of this package is unspecified.

The first node of a nonempty map is the one whose key is less than the key of all the other nodes in the
map. The last node of a nonempty map is the one whose key is greater than the key of all the other
elements in the map. The successor of a node is the node with the smallest key that is larger than the key
of the given node. The predecessor of a node is the node with the largest key that is smaller than the key of
the given node. All comparisons are done using the generic formal "<" operator for keys.

procedure Delete_First (Container : in out Map);

If Container is empty, Delete_First has no effect. Otherwise the node designated by First
(Container) is removed from Container. Delete_First tampers with the cursors of Container.

procedure Delete_Last (Container : in out Map);

If Container is empty, Delete_Last has no effect. Otherwise the node designated by Last
(Container) is removed from Container. Delete_Last tampers with the cursors of Container.

function First_Element (Container : Map) return Element_Type;

Equivalent to Element (First (Container)).

40/2

41/2

42/2

43/2

44/2

45/2

46/2

47/2

48/2

49/2

50/2

51/2

52/2

53/2

54/2

55/2

56/2

57/2

58/2

59/2

60/2

61/2

62/2

63/2

64/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

451 10 November 2006 The Package Containers.Ordered_Maps A.18.6

function First_Key (Container : Map) return Key_Type;

Equivalent to Key (First (Container)).

function Last (Container : Map) return Cursor;

Returns a cursor that designates the last node in Container. If Container is empty, returns
No_Element.

function Last_Element (Container : Map) return Element_Type;

Equivalent to Element (Last (Container)).

function Last_Key (Container : Map) return Key_Type;

Equivalent to Key (Last (Container)).

function Previous (Position : Cursor) return Cursor;

If Position equals No_Element, then Previous returns No_Element. Otherwise Previous returns a
cursor designating the node that precedes the one designated by Position. If Position designates
the first element, then Previous returns No_Element.

procedure Previous (Position : in out Cursor);

Equivalent to Position := Previous (Position).

function Floor (Container : Map;
 Key : Key_Type) return Cursor;

Floor searches for the last node whose key is not greater than Key, using the generic formal "<"
operator for keys. If such a node is found, a cursor that designates it is returned. Otherwise
No_Element is returned.

function Ceiling (Container : Map;
 Key : Key_Type) return Cursor;

Ceiling searches for the first node whose key is not less than Key, using the generic formal "<"
operator for keys. If such a node is found, a cursor that designates it is returned. Otherwise
No_Element is returned.

function "<" (Left, Right : Cursor) return Boolean;

Equivalent to Key (Left) < Key (Right).

function ">" (Left, Right : Cursor) return Boolean;

Equivalent to Key (Right) < Key (Left).

function "<" (Left : Cursor; Right : Key_Type) return Boolean;

Equivalent to Key (Left) < Right.

function ">" (Left : Cursor; Right : Key_Type) return Boolean;

Equivalent to Right < Key (Left).

function "<" (Left : Key_Type; Right : Cursor) return Boolean;

Equivalent to Left < Key (Right).

function ">" (Left : Key_Type; Right : Cursor) return Boolean;

Equivalent to Key (Right) < Left.

65/2

66/2

67/2

68/2

69/2

70/2

71/2

72/2

73/2

74/2

75/2

76/2

77/2

78/2

79/2

80/2

81/2

82/2

83/2

84/2

85/2

86/2

87/2

88/2

89/2

90/2

91/2

92/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.18.6 The Package Containers.Ordered_Maps 10 November 2006 452

procedure Reverse_Iterate
 (Container : in Map;
 Process : not null access procedure (Position : in Cursor));

Iterates over the nodes in Container as per Iterate, with the difference that the nodes are
traversed in predecessor order, starting with the last node.

Implementation Advice

If N is the length of a map, then the worst-case time complexity of the Element, Insert, Include, Replace,
Delete, Exclude and Find operations that take a key parameter should be O((log N)**2) or better. The
worst-case time complexity of the subprograms that take a cursor parameter should be O(1).

A.18.7 Sets
The language-defined generic packages Containers.Hashed_Sets and Containers.Ordered_Sets provide
private types Set and Cursor, and a set of operations for each type. A set container allows elements of an
arbitrary type to be stored without duplication. A hashed set uses a hash function to organize elements,
while an ordered set orders its element per a specified relation.

This section describes the declarations that are common to both kinds of sets. See A.18.8 for a description
of the semantics specific to Containers.Hashed_Sets and A.18.9 for a description of the semantics specific
to Containers.Ordered_Sets.

Static Semantics

The actual function for the generic formal function "=" on Element_Type values is expected to define a
reflexive and symmetric relationship and return the same result value each time it is called with a
particular pair of values. If it behaves in some other manner, the function "=" on set values returns an
unspecified value. The exact arguments and number of calls of this generic formal function by the function
"=" on set values are unspecified.

The type Set is used to represent sets. The type Set needs finalization (see 7.6).

A set contains elements. Set cursors designate elements. There exists an equivalence relation on elements,
whose definition is different for hashed sets and ordered sets. A set never contains two or more equivalent
elements. The length of a set is the number of elements it contains.

Each nonempty set has two particular elements called the first element and the last element (which may be
the same). Each element except for the last element has a successor element. If there are no other
intervening operations, starting with the first element and repeatedly going to the successor element will
visit each element in the set exactly once until the last element is reached. The exact definition of these
terms is different for hashed sets and ordered sets.

Some operations of these generic packages have access-to-subprogram parameters. To ensure such
operations are well-defined, they guard against certain actions by the designated subprogram. In particular,
some operations check for “tampering with cursors” of a container because they depend on the set of
elements of the container remaining constant, and others check for “tampering with elements” of a
container because they depend on elements of the container not being replaced.

A subprogram is said to tamper with cursors of a set object S if:
• it inserts or deletes elements of S, that is, it calls the Insert, Include, Clear, Delete, Exclude, or

Replace_Element procedures with S as a parameter; or

• it finalizes S; or

93/2

94/2

95/2

1/2

2/2

3/2

4/2

5/2

6/2

7/2

8/2

9/2

10/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

453 10 November 2006 Sets A.18.7

• it calls the Move procedure with S as a parameter; or

• it calls one of the operations defined to tamper with cursors of S.

A subprogram is said to tamper with elements of a set object S if:
• it tampers with cursors of S.

Empty_Set represents the empty Set object. It has a length of 0. If an object of type Set is not otherwise
initialized, it is initialized to the same value as Empty_Set.

No_Element represents a cursor that designates no element. If an object of type Cursor is not otherwise
initialized, it is initialized to the same value as No_Element.

The predefined "=" operator for type Cursor returns True if both cursors are No_Element, or designate the
same element in the same container.

Execution of the default implementation of the Input, Output, Read, or Write attribute of type Cursor
raises Program_Error.

function "=" (Left, Right : Set) return Boolean;

If Left and Right denote the same set object, then the function returns True. If Left and Right
have different lengths, then the function returns False. Otherwise, for each element E in Left, the
function returns False if an element equal to E (using the generic formal equality operator) is not
present in Right. If the function has not returned a result after checking all of the elements, it
returns True. Any exception raised during evaluation of element equality is propagated.

function Equivalent_Sets (Left, Right : Set) return Boolean;

If Left and Right denote the same set object, then the function returns True. If Left and Right
have different lengths, then the function returns False. Otherwise, for each element E in Left, the
function returns False if an element equivalent to E is not present in Right. If the function has
not returned a result after checking all of the elements, it returns True. Any exception raised
during evaluation of element equivalence is propagated.

function To_Set (New_Item : Element_Type) return Set;

Returns a set containing the single element New_Item.

function Length (Container : Set) return Count_Type;

Returns the number of elements in Container.

function Is_Empty (Container : Set) return Boolean;

Equivalent to Length (Container) = 0.

procedure Clear (Container : in out Set);

Removes all the elements from Container.

function Element (Position : Cursor) return Element_Type;

If Position equals No_Element, then Constraint_Error is propagated. Otherwise, Element returns
the element designated by Position.

11/2

12/2

13/2

14/2

15/2

16/2

17/2

18/2

19/2

20/2

21/2

22/2

23/2

24/2

25/2

26/2

27/2

28/2

29/2

30/2

31/2

32/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.18.7 Sets 10 November 2006 454

procedure Replace_Element (Container : in out Set;
 Position : in Cursor;
 New_Item : in Element_Type);

If Position equals No_Element, then Constraint_Error is propagated; if Position does not
designate an element in Container, then Program_Error is propagated. If an element equivalent
to New_Item is already present in Container at a position other than Position, Program_Error is
propagated. Otherwise, Replace_Element assigns New_Item to the element designated by
Position. Any exception raised by the assignment is propagated.

procedure Query_Element
 (Position : in Cursor;
 Process : not null access procedure (Element : in Element_Type));

If Position equals No_Element, then Constraint_Error is propagated. Otherwise, Query_Element
calls Process.all with the element designated by Position as the argument. Program_Error is
propagated if Process.all tampers with the elements of Container. Any exception raised by
Process.all is propagated.

procedure Move (Target : in out Set;
 Source : in out Set);

If Target denotes the same object as Source, then Move has no effect. Otherwise, Move first
clears Target. Then, each element from Source is removed from Source and inserted into Target.
The length of Source is 0 after a successful call to Move.

procedure Insert (Container : in out Set;
 New_Item : in Element_Type;
 Position : out Cursor;
 Inserted : out Boolean);

Insert checks if an element equivalent to New_Item is already present in Container. If a match is
found, Inserted is set to False and Position designates the matching element. Otherwise, Insert
adds New_Item to Container; Inserted is set to True and Position designates the newly-inserted
element. Any exception raised during allocation is propagated and Container is not modified.

procedure Insert (Container : in out Set;
 New_Item : in Element_Type);

Insert inserts New_Item into Container as per the four-parameter Insert, with the difference that
if an element equivalent to New_Item is already in the set, then Constraint_Error is propagated.

procedure Include (Container : in out Set;
 New_Item : in Element_Type);

Include inserts New_Item into Container as per the four-parameter Insert, with the difference
that if an element equivalent to New_Item is already in the set, then it is replaced. Any exception
raised during assignment is propagated.

procedure Replace (Container : in out Set;
 New_Item : in Element_Type);

Replace checks if an element equivalent to New_Item is already in the set. If a match is found,
that element is replaced with New_Item; otherwise, Constraint_Error is propagated.

procedure Exclude (Container : in out Set;
 Item : in Element_Type);

Exclude checks if an element equivalent to Item is present in Container. If a match is found,
Exclude removes the element from the set.

33/2

34/2

35/2

36/2

37/2

38/2

39/2

40/2

41/2

42/2

43/2

44/2

45/2

46/2

47/2

48/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

455 10 November 2006 Sets A.18.7

procedure Delete (Container : in out Set;
 Item : in Element_Type);

Delete checks if an element equivalent to Item is present in Container. If a match is found,
Delete removes the element from the set; otherwise, Constraint_Error is propagated.

procedure Delete (Container : in out Set;
 Position : in out Cursor);

If Position equals No_Element, then Constraint_Error is propagated. If Position does not
designate an element in Container, then Program_Error is propagated. Otherwise, Delete
removes the element designated by Position from the set. Position is set to No_Element on
return.

procedure Union (Target : in out Set;
 Source : in Set);

Union inserts into Target the elements of Source that are not equivalent to some element already
in Target.

function Union (Left, Right : Set) return Set;

Returns a set comprising all of the elements of Left, and the elements of Right that are not
equivalent to some element of Left.

procedure Intersection (Target : in out Set;
 Source : in Set);

Union deletes from Target the elements of Target that are not equivalent to some element of
Source.

function Intersection (Left, Right : Set) return Set;

Returns a set comprising all the elements of Left that are equivalent to the some element of
Right.

procedure Difference (Target : in out Set;
 Source : in Set);

If Target denotes the same object as Source, then Difference clears Target. Otherwise, it deletes
from Target the elements that are equivalent to some element of Source.

function Difference (Left, Right : Set) return Set;

Returns a set comprising the elements of Left that are not equivalent to some element of Right.

procedure Symmetric_Difference (Target : in out Set;
 Source : in Set);

If Target denotes the same object as Source, then Symmetric_Difference clears Target.
Otherwise, it deletes from Target the elements that are equivalent to some element of Source,
and inserts into Target the elements of Source that are not equivalent to some element of Target.

function Symmetric_Difference (Left, Right : Set) return Set;

Returns a set comprising the elements of Left that are not equivalent to some element of Right,
and the elements of Right that are not equivalent to some element of Left.

function Overlap (Left, Right : Set) return Boolean;

If an element of Left is equivalent to some element of Right, then Overlap returns True.
Otherwise it returns False.

49/2

50/2

51/2

52/2

53/2

54/2

55/2

56/2

57/2

58/2

59/2

60/2

61/2

62/2

63/2

64/2

65/2

66/2

67/2

68/2

69/2

70/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.18.7 Sets 10 November 2006 456

function Is_Subset (Subset : Set;
 Of_Set : Set) return Boolean;

If an element of Subset is not equivalent to some element of Of_Set, then Is_Subset returns
False. Otherwise it returns True.

function First (Container : Set) return Cursor;

If Length (Container) = 0, then First returns No_Element. Otherwise, First returns a cursor that
designates the first element in Container.

function Next (Position : Cursor) return Cursor;

Returns a cursor that designates the successor of the element designated by Position. If Position
designates the last element, then No_Element is returned. If Position equals No_Element, then
No_Element is returned.

procedure Next (Position : in out Cursor);

Equivalent to Position := Next (Position).

Equivalent to Find (Container, Item) /= No_Element.

function Find (Container : Set;
 Item : Element_Type) return Cursor;

If Length (Container) equals 0, then Find returns No_Element. Otherwise, Find checks if an
element equivalent to Item is present in Container. If a match is found, a cursor designating the
matching element is returned; otherwise, No_Element is returned.

function Contains (Container : Set;
 Item : Element_Type) return Boolean;

function Has_Element (Position : Cursor) return Boolean;

Returns True if Position designates an element, and returns False otherwise.

procedure Iterate
 (Container : in Set;
 Process : not null access procedure (Position : in Cursor));

Iterate calls Process.all with a cursor that designates each element in Container, starting with the
first element and moving the cursor according to the successor relation. Program_Error is
propagated if Process.all tampers with the cursors of Container. Any exception raised by
Process.all is propagated.

Both Containers.Hashed_Set and Containers.Ordered_Set declare a nested generic package Generic_Keys,
which provides operations that allow set manipulation in terms of a key (typically, a portion of an element)
instead of a complete element. The formal function Key of Generic_Keys extracts a key value from an
element. It is expected to return the same value each time it is called with a particular element. The
behavior of Generic_Keys is unspecified if Key behaves in some other manner.

A key is expected to unambiguously determine a single equivalence class for elements. The behavior of
Generic_Keys is unspecified if the formal parameters of this package behave in some other manner.

function Key (Position : Cursor) return Key_Type;

Equivalent to Key (Element (Position)).

71/2

72/2

73/2

74/2

75/2

76/2

77/2

78/2

79/2

80/2

81/2

82/2

83/2

84/2

85/2

86/2

87/2

88/2

89/2

90/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

457 10 November 2006 Sets A.18.7

The subprograms in package Generic_Keys named Contains, Find, Element, Delete, and Exclude, are
equivalent to the corresponding subprograms in the parent package, with the difference that the Key
parameter is used to locate an element in the set.

procedure Replace (Container : in out Set;
 Key : in Key_Type;
 New_Item : in Element_Type);

Equivalent to Replace_Element (Container, Find (Container, Key), New_Item).

procedure Update_Element_Preserving_Key
 (Container : in out Set;
 Position : in Cursor;
 Process : not null access procedure
 (Element : in out Element_Type));

If Position equals No_Element, then Constraint_Error is propagated; if Position does not
designate an element in Container, then Program_Error is propagated. Otherwise, Update_-
Element_Preserving_Key uses Key to save the key value K of the element designated by
Position. Update_Element_Preserving_Key then calls Process.all with that element as the
argument. Program_Error is propagated if Process.all tampers with the elements of Container.
Any exception raised by Process.all is propagated. After Process.all returns, Update_Element_-
Preserving_Key checks if K determines the same equivalence class as that for the new element;
if not, the element is removed from the set and Program_Error is propagated.

If Element_Type is unconstrained and definite, then the actual Element parameter of Process.all
shall be unconstrained.

Erroneous Execution

A Cursor value is invalid if any of the following have occurred since it was created:
• The set that contains the element it designates has been finalized;

• The set that contains the element it designates has been used as the Source or Target of a call to
Move; or

• The element it designates has been deleted from the set.

The result of "=" or Has_Element is unspecified if these functions are called with an invalid cursor
parameter. Execution is erroneous if any other subprogram declared in Containers.Hashed_Sets or
Containers.Ordered_Sets is called with an invalid cursor parameter.

Implementation Requirements

No storage associated with a Set object shall be lost upon assignment or scope exit.

The execution of an assignment_statement for a set shall have the effect of copying the elements from
the source set object to the target set object.

Implementation Advice

Move should not copy elements, and should minimize copying of internal data structures.

If an exception is propagated from a set operation, no storage should be lost, nor any elements removed
from a set unless specified by the operation.

91/2

92/2

93/2

94/2

95/2

96/2

97/2

98/2

99/2

100/2

101/2

102/2

103/2

104/2

105/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.18.8 The Package Containers.Hashed_Sets 10 November 2006 458

A.18.8 The Package Containers.Hashed_Sets
Static Semantics

The generic library package Containers.Hashed_Sets has the following declaration:
generic
 type Element_Type is private;
 with function Hash (Element : Element_Type) return Hash_Type;
 with function Equivalent_Elements (Left, Right : Element_Type)
 return Boolean;
 with function "=" (Left, Right : Element_Type) return Boolean is <>;
package Ada.Containers.Hashed_Sets is
 pragma Preelaborate(Hashed_Sets);

 type Set is tagged private;
 pragma Preelaborable_Initialization(Set);

 type Cursor is private;
 pragma Preelaborable_Initialization(Cursor);

 Empty_Set : constant Set;

 No_Element : constant Cursor;

 function "=" (Left, Right : Set) return Boolean;

 function Equivalent_Sets (Left, Right : Set) return Boolean;

 function To_Set (New_Item : Element_Type) return Set;

 function Capacity (Container : Set) return Count_Type;

 procedure Reserve_Capacity (Container : in out Set;
 Capacity : in Count_Type);

 function Length (Container : Set) return Count_Type;

 function Is_Empty (Container : Set) return Boolean;

 procedure Clear (Container : in out Set);

 function Element (Position : Cursor) return Element_Type;

 procedure Replace_Element (Container : in out Set;
 Position : in Cursor;
 New_Item : in Element_Type);

 procedure Query_Element
 (Position : in Cursor;
 Process : not null access procedure (Element : in Element_Type));

 procedure Move (Target : in out Set;
 Source : in out Set);

 procedure Insert (Container : in out Set;
 New_Item : in Element_Type;
 Position : out Cursor;
 Inserted : out Boolean);

 procedure Insert (Container : in out Set;
 New_Item : in Element_Type);

 procedure Include (Container : in out Set;
 New_Item : in Element_Type);

 procedure Replace (Container : in out Set;
 New_Item : in Element_Type);

 procedure Exclude (Container : in out Set;
 Item : in Element_Type);

 procedure Delete (Container : in out Set;
 Item : in Element_Type);

 procedure Delete (Container : in out Set;
 Position : in out Cursor);

1/2

2/2

3/2

4/2

5/2

6/2

7/2

8/2

9/2

10/2

11/2

12/2

13/2

14/2

15/2

16/2

17/2

18/2

19/2

20/2

21/2

22/2

23/2

24/2

25/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

459 10 November 2006 The Package Containers.Hashed_Sets A.18.8

 procedure Union (Target : in out Set;
 Source : in Set);

 function Union (Left, Right : Set) return Set;

 function "or" (Left, Right : Set) return Set renames Union;

 procedure Intersection (Target : in out Set;
 Source : in Set);

 function Intersection (Left, Right : Set) return Set;

 function "and" (Left, Right : Set) return Set renames Intersection;

 procedure Difference (Target : in out Set;
 Source : in Set);

 function Difference (Left, Right : Set) return Set;

 function "-" (Left, Right : Set) return Set renames Difference;

 procedure Symmetric_Difference (Target : in out Set;
 Source : in Set);

 function Symmetric_Difference (Left, Right : Set) return Set;

 function "xor" (Left, Right : Set) return Set
 renames Symmetric_Difference;

 function Overlap (Left, Right : Set) return Boolean;

 function Is_Subset (Subset : Set;
 Of_Set : Set) return Boolean;

 function First (Container : Set) return Cursor;

 function Next (Position : Cursor) return Cursor;

 procedure Next (Position : in out Cursor);

 function Find (Container : Set;
 Item : Element_Type) return Cursor;

 function Contains (Container : Set;
 Item : Element_Type) return Boolean;

 function Has_Element (Position : Cursor) return Boolean;

 function Equivalent_Elements (Left, Right : Cursor)
 return Boolean;

 function Equivalent_Elements (Left : Cursor;
 Right : Element_Type)
 return Boolean;

 function Equivalent_Elements (Left : Element_Type;
 Right : Cursor)
 return Boolean;

 procedure Iterate
 (Container : in Set;
 Process : not null access procedure (Position : in Cursor));

 generic
 type Key_Type (<>) is private;
 with function Key (Element : Element_Type) return Key_Type;
 with function Hash (Key : Key_Type) return Hash_Type;
 with function Equivalent_Keys (Left, Right : Key_Type)
 return Boolean;
 package Generic_Keys is

 function Key (Position : Cursor) return Key_Type;

 function Element (Container : Set;
 Key : Key_Type)
 return Element_Type;

 procedure Replace (Container : in out Set;
 Key : in Key_Type;
 New_Item : in Element_Type);

26/2

27/2

28/2

29/2

30/2

31/2

32/2

33/2

34/2

35/2

36/2

37/2

38/2

39/2

40/2

41/2

42/2

43/2

44/2

45/2

46/2

47/2

48/2

49/2

50/2

51/2

52/2

53/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.18.8 The Package Containers.Hashed_Sets 10 November 2006 460

 procedure Exclude (Container : in out Set;
 Key : in Key_Type);

 procedure Delete (Container : in out Set;
 Key : in Key_Type);

 function Find (Container : Set;
 Key : Key_Type)
 return Cursor;

 function Contains (Container : Set;
 Key : Key_Type)
 return Boolean;

 procedure Update_Element_Preserving_Key
 (Container : in out Set;
 Position : in Cursor;
 Process : not null access procedure
 (Element : in out Element_Type));

 end Generic_Keys;

private

 ... -- not specified by the language
end Ada.Containers.Hashed_Sets;

An object of type Set contains an expandable hash table, which is used to provide direct access to
elements. The capacity of an object of type Set is the maximum number of elements that can be inserted
into the hash table prior to it being automatically expanded.

Two elements E1 and E2 are defined to be equivalent if Equivalent_Elements (E1, E2) returns True.

The actual function for the generic formal function Hash is expected to return the same value each time it
is called with a particular element value. For any two equivalent elements, the actual for Hash is expected
to return the same value. If the actual for Hash behaves in some other manner, the behavior of this package
is unspecified. Which subprograms of this package call Hash, and how many times they call it, is
unspecified.

The actual function for the generic formal function Equivalent_Elements is expected to return the same
value each time it is called with a particular pair of Element values. It should define an equivalence
relationship, that is, be reflexive, symmetric, and transitive. If the actual for Equivalent_Elements behaves
in some other manner, the behavior of this package is unspecified. Which subprograms of this package call
Equivalent_Elements, and how many times they call it, is unspecified.

If the value of an element stored in a set is changed other than by an operation in this package such that at
least one of Hash or Equivalent_Elements give different results, the behavior of this package is
unspecified.

Which elements are the first element and the last element of a set, and which element is the successor of a
given element, are unspecified, other than the general semantics described in A.18.7.

function Capacity (Container : Set) return Count_Type;

Returns the capacity of Container.

procedure Reserve_Capacity (Container : in out Set;
 Capacity : in Count_Type);

Reserve_Capacity allocates a new hash table such that the length of the resulting set can become
at least the value Capacity without requiring an additional call to Reserve_Capacity, and is large
enough to hold the current length of Container. Reserve_Capacity then rehashes the elements in
Container onto the new hash table. It replaces the old hash table with the new hash table, and

54/2

55/2

56/2

57/2

58/2

59/2

60/2

61/2

62/2

63/2

64/2

65/2

66/2

67/2

68/2

69/2

70/2

71/2

72/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

461 10 November 2006 The Package Containers.Hashed_Sets A.18.8

then deallocates the old hash table. Any exception raised during allocation is propagated and
Container is not modified.

Reserve_Capacity tampers with the cursors of Container.

procedure Clear (Container : in out Set);

In addition to the semantics described in A.18.7, Clear does not affect the capacity of Container.

procedure Insert (Container : in out Set;
 New_Item : in Element_Type;
 Position : out Cursor;
 Inserted : out Boolean);

In addition to the semantics described in A.18.7, if Length (Container) equals Capacity
(Container), then Insert first calls Reserve_Capacity to increase the capacity of Container to
some larger value.

function First (Container : Set) return Cursor;

If Length (Container) = 0, then First returns No_Element. Otherwise, First returns a cursor that
designates the first hashed element in Container.

function Equivalent_Elements (Left, Right : Cursor)
 return Boolean;

Equivalent to Equivalent_Elements (Element (Left), Element (Right)).

function Equivalent_Elements (Left : Cursor;
 Right : Element_Type) return Boolean;

Equivalent to Equivalent_Elements (Element (Left), Right).

function Equivalent_Elements (Left : Element_Type;
 Right : Cursor) return Boolean;

Equivalent to Equivalent_Elements (Left, Element (Right)).

For any element E, the actual function for the generic formal function Generic_Keys.Hash is expected to
be such that Hash (E) = Generic_Keys.Hash (Key (E)). If the actuals for Key or Generic_Keys.Hash
behave in some other manner, the behavior of Generic_Keys is unspecified. Which subprograms of
Generic_Keys call Generic_Keys.Hash, and how many times they call it, is unspecified.

For any two elements E1 and E2, the boolean values Equivalent_Elements (E1, E2) and Equivalent_Keys
(Key (E1), Key (E2)) are expected to be equal. If the actuals for Key or Equivalent_Keys behave in some
other manner, the behavior of Generic_Keys is unspecified. Which subprograms of Generic_Keys call
Equivalent_Keys, and how many times they call it, is unspecified.

Implementation Advice

If N is the length of a set, the average time complexity of the subprograms Insert, Include, Replace, Delete,
Exclude and Find that take an element parameter should be O(log N). The average time complexity of the
subprograms that take a cursor parameter should be O(1). The average time complexity of
Reserve_Capacity should be O(N).

73/2

74/2

75/2

76/2

77/2

78/2

79/2

80/2

81/2

82/2

83/2

84/2

85/2

86/2

87/2

88/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.18.9 The Package Containers.Ordered_Sets 10 November 2006 462

A.18.9 The Package Containers.Ordered_Sets
Static Semantics

The generic library package Containers.Ordered_Sets has the following declaration:
generic
 type Element_Type is private;
 with function "<" (Left, Right : Element_Type) return Boolean is <>;
 with function "=" (Left, Right : Element_Type) return Boolean is <>;
package Ada.Containers.Ordered_Sets is
 pragma Preelaborate(Ordered_Sets);

 function Equivalent_Elements (Left, Right : Element_Type) return Boolean;

 type Set is tagged private;
 pragma Preelaborable_Initialization(Set);

 type Cursor is private;
 pragma Preelaborable_Initialization(Cursor);

 Empty_Set : constant Set;

 No_Element : constant Cursor;

 function "=" (Left, Right : Set) return Boolean;

 function Equivalent_Sets (Left, Right : Set) return Boolean;

 function To_Set (New_Item : Element_Type) return Set;

 function Length (Container : Set) return Count_Type;

 function Is_Empty (Container : Set) return Boolean;

 procedure Clear (Container : in out Set);

 function Element (Position : Cursor) return Element_Type;

 procedure Replace_Element (Container : in out Set;
 Position : in Cursor;
 New_Item : in Element_Type);

 procedure Query_Element
 (Position : in Cursor;
 Process : not null access procedure (Element : in Element_Type));

 procedure Move (Target : in out Set;
 Source : in out Set);

 procedure Insert (Container : in out Set;
 New_Item : in Element_Type;
 Position : out Cursor;
 Inserted : out Boolean);

 procedure Insert (Container : in out Set;
 New_Item : in Element_Type);

 procedure Include (Container : in out Set;
 New_Item : in Element_Type);

 procedure Replace (Container : in out Set;
 New_Item : in Element_Type);

 procedure Exclude (Container : in out Set;
 Item : in Element_Type);

 procedure Delete (Container : in out Set;
 Item : in Element_Type);

 procedure Delete (Container : in out Set;
 Position : in out Cursor);

 procedure Delete_First (Container : in out Set);

 procedure Delete_Last (Container : in out Set);

1/2

2/2

3/2

4/2

5/2

6/2

7/2

8/2

9/2

10/2

11/2

12/2

13/2

14/2

15/2

16/2

17/2

18/2

19/2

20/2

21/2

22/2

23/2

24/2

25/2

26/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

463 10 November 2006 The Package Containers.Ordered_Sets A.18.9

 procedure Union (Target : in out Set;
 Source : in Set);

 function Union (Left, Right : Set) return Set;

 function "or" (Left, Right : Set) return Set renames Union;

 procedure Intersection (Target : in out Set;
 Source : in Set);

 function Intersection (Left, Right : Set) return Set;

 function "and" (Left, Right : Set) return Set renames Intersection;

 procedure Difference (Target : in out Set;
 Source : in Set);

 function Difference (Left, Right : Set) return Set;

 function "-" (Left, Right : Set) return Set renames Difference;

 procedure Symmetric_Difference (Target : in out Set;
 Source : in Set);

 function Symmetric_Difference (Left, Right : Set) return Set;

 function "xor" (Left, Right : Set) return Set renames
 Symmetric_Difference;

 function Overlap (Left, Right : Set) return Boolean;

 function Is_Subset (Subset : Set;
 Of_Set : Set) return Boolean;

 function First (Container : Set) return Cursor;

 function First_Element (Container : Set) return Element_Type;

 function Last (Container : Set) return Cursor;

 function Last_Element (Container : Set) return Element_Type;

 function Next (Position : Cursor) return Cursor;

 procedure Next (Position : in out Cursor);

 function Previous (Position : Cursor) return Cursor;

 procedure Previous (Position : in out Cursor);

 function Find (Container : Set;
 Item : Element_Type)
 return Cursor;

 function Floor (Container : Set;
 Item : Element_Type)
 return Cursor;

 function Ceiling (Container : Set;
 Item : Element_Type)
 return Cursor;

 function Contains (Container : Set;
 Item : Element_Type) return Boolean;

 function Has_Element (Position : Cursor) return Boolean;

 function "<" (Left, Right : Cursor) return Boolean;

 function ">" (Left, Right : Cursor) return Boolean;

 function "<" (Left : Cursor; Right : Element_Type)
 return Boolean;

 function ">" (Left : Cursor; Right : Element_Type)
 return Boolean;

 function "<" (Left : Element_Type; Right : Cursor)
 return Boolean;

 function ">" (Left : Element_Type; Right : Cursor)
 return Boolean;

27/2

28/2

29/2

30/2

31/2

32/2

33/2

34/2

35/2

36/2

37/2

38/2

39/2

40/2

41/2

42/2

43/2

44/2

45/2

46/2

47/2

48/2

49/2

50/2

51/2

52/2

53/2

54/2

55/2

56/2

57/2

58/2

59/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.18.9 The Package Containers.Ordered_Sets 10 November 2006 464

 procedure Iterate
 (Container : in Set;
 Process : not null access procedure (Position : in Cursor));

 procedure Reverse_Iterate
 (Container : in Set;
 Process : not null access procedure (Position : in Cursor));

 generic
 type Key_Type (<>) is private;
 with function Key (Element : Element_Type) return Key_Type;
 with function "<" (Left, Right : Key_Type)
 return Boolean is <>;
 package Generic_Keys is

 function Equivalent_Keys (Left, Right : Key_Type)
 return Boolean;

 function Key (Position : Cursor) return Key_Type;

 function Element (Container : Set;
 Key : Key_Type)
 return Element_Type;

 procedure Replace (Container : in out Set;
 Key : in Key_Type;
 New_Item : in Element_Type);

 procedure Exclude (Container : in out Set;
 Key : in Key_Type);

 procedure Delete (Container : in out Set;
 Key : in Key_Type);

 function Find (Container : Set;
 Key : Key_Type)
 return Cursor;

 function Floor (Container : Set;
 Key : Key_Type)
 return Cursor;

 function Ceiling (Container : Set;
 Key : Key_Type)
 return Cursor;

 function Contains (Container : Set;
 Key : Key_Type) return Boolean;

 procedure Update_Element_Preserving_Key
 (Container : in out Set;
 Position : in Cursor;
 Process : not null access procedure
 (Element : in out Element_Type));

 end Generic_Keys;

private

 ... -- not specified by the language
end Ada.Containers.Ordered_Sets;

Two elements E1 and E2 are equivalent if both E1 < E2 and E2 < E1 return False, using the generic formal
"<" operator for elements. Function Equivalent_Elements returns True if Left and Right are equivalent,
and False otherwise.

The actual function for the generic formal function "<" on Element_Type values is expected to return the
same value each time it is called with a particular pair of key values. It should define a strict ordering
relationship, that is, be irreflexive, asymmetric, and transitive. If the actual for "<" behaves in some other
manner, the behavior of this package is unspecified. Which subprograms of this package call "<" and how
many times they call it, is unspecified.

60/2

61/2

62/2

63/2

64/2

65/2

66/2

67/2

68/2

69/2

70/2

71/2

72/2

73/2

74/2

75/2

76/2

77/2

78/2

79/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

465 10 November 2006 The Package Containers.Ordered_Sets A.18.9

If the value of an element stored in a set is changed other than by an operation in this package such that at
least one of "<" or "=" give different results, the behavior of this package is unspecified.

The first element of a nonempty set is the one which is less than all the other elements in the set. The last
element of a nonempty set is the one which is greater than all the other elements in the set. The successor
of an element is the smallest element that is larger than the given element. The predecessor of an element
is the largest element that is smaller than the given element. All comparisons are done using the generic
formal "<" operator for elements.

procedure Delete_First (Container : in out Set);

If Container is empty, Delete_First has no effect. Otherwise the element designated by First
(Container) is removed from Container. Delete_First tampers with the cursors of Container.

procedure Delete_Last (Container : in out Set);

If Container is empty, Delete_Last has no effect. Otherwise the element designated by Last
(Container) is removed from Container. Delete_Last tampers with the cursors of Container.

function First_Element (Container : Set) return Element_Type;

Equivalent to Element (First (Container)).

function Last (Container : Set) return Cursor;

Returns a cursor that designates the last element in Container. If Container is empty, returns
No_Element.

function Last_Element (Container : Set) return Element_Type;

Equivalent to Element (Last (Container)).

function Previous (Position : Cursor) return Cursor;

If Position equals No_Element, then Previous returns No_Element. Otherwise Previous returns a
cursor designating the element that precedes the one designated by Position. If Position
designates the first element, then Previous returns No_Element.

procedure Previous (Position : in out Cursor);

Equivalent to Position := Previous (Position).

function Floor (Container : Set;
 Item : Element_Type) return Cursor;

Floor searches for the last element which is not greater than Item. If such an element is found, a
cursor that designates it is returned. Otherwise No_Element is returned.

function Ceiling (Container : Set;
 Item : Element_Type) return Cursor;

Ceiling searches for the first element which is not less than Item. If such an element is found, a
cursor that designates it is returned. Otherwise No_Element is returned.

function "<" (Left, Right : Cursor) return Boolean;

Equivalent to Element (Left) < Element (Right).

function ">" (Left, Right : Cursor) return Boolean;

Equivalent to Element (Right) < Element (Left).

80/2

81/2

82/2

83/2

84/2

85/2

86/2

87/2

88/2

89/2

90/2

91/2

92/2

93/2

94/2

95/2

96/2

97/2

98/2

99/2

100/2

101/2

102/2

103/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.18.9 The Package Containers.Ordered_Sets 10 November 2006 466

function "<" (Left : Cursor; Right : Element_Type) return Boolean;

Equivalent to Element (Left) < Right.

function ">" (Left : Cursor; Right : Element_Type) return Boolean;

Equivalent to Right < Element (Left).

function "<" (Left : Element_Type; Right : Cursor) return Boolean;

Equivalent to Left < Element (Right).

function ">" (Left : Element_Type; Right : Cursor) return Boolean;

Equivalent to Element (Right) < Left.

procedure Reverse_Iterate
 (Container : in Set;
 Process : not null access procedure (Position : in Cursor));

Iterates over the elements in Container as per Iterate, with the difference that the elements are
traversed in predecessor order, starting with the last element.

For any two elements E1 and E2, the boolean values (E1 < E2) and (Key(E1) < Key(E2)) are expected to
be equal. If the actuals for Key or Generic_Keys."<" behave in some other manner, the behavior of this
package is unspecified. Which subprograms of this package call Key and Generic_Keys."<", and how
many times the functions are called, is unspecified.

In addition to the semantics described in A.18.7, the subprograms in package Generic_Keys named Floor
and Ceiling, are equivalent to the corresponding subprograms in the parent package, with the difference
that the Key subprogram parameter is compared to elements in the container using the Key and "<"
generic formal functions. The function named Equivalent_Keys in package Generic_Keys returns True if
both Left < Right and Right < Left return False using the generic formal "<" operator, and returns True
otherwise.

Implementation Advice

If N is the length of a set, then the worst-case time complexity of the Insert, Include, Replace, Delete,
Exclude and Find operations that take an element parameter should be O((log N)**2) or better. The worst-
case time complexity of the subprograms that take a cursor parameter should be O(1).

A.18.10 The Package Containers.Indefinite_Vectors
The language-defined generic package Containers.Indefinite_Vectors provides a private type Vector and a
set of operations. It provides the same operations as the package Containers.Vectors (see A.18.2), with the
difference that the generic formal Element_Type is indefinite.

Static Semantics

The declaration of the generic library package Containers.Indefinite_Vectors has the same contents as
Containers.Vectors except:

• The generic formal Element_Type is indefinite.

• The procedures with the profiles:
procedure Insert (Container : in out Vector;
 Before : in Extended_Index;
 Count : in Count_Type := 1);

104/2

105/2

106/2

107/2

108/2

109/2

110/2

111/2

112/2

113/2

114/2

115/2

116/2

1/2

2/2

3/2

4/2

5/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

467 10 November 2006 The Package Containers.Indefinite_Vectors A.18.10

procedure Insert (Container : in out Vector;
 Before : in Cursor;
 Position : out Cursor;
 Count : in Count_Type := 1);

 are omitted.

• The actual Element parameter of access subprogram Process of Update_Element may be
constrained even if Element_Type is unconstrained.

A.18.11 The Package Containers.Indefinite_Doubly_Linked_Lists
The language-defined generic package Containers.Indefinite_Doubly_Linked_Lists provides private types
List and Cursor, and a set of operations for each type. It provides the same operations as the package
Containers.Doubly_Linked_Lists (see A.18.3), with the difference that the generic formal Element_Type
is indefinite.

Static Semantics

The declaration of the generic library package Containers.Indefinite_Doubly_Linked_Lists has the same
contents as Containers.Doubly_Linked_Lists except:

• The generic formal Element_Type is indefinite.

• The procedure with the profile:
procedure Insert (Container : in out List;
 Before : in Cursor;
 Position : out Cursor;
 Count : in Count_Type := 1);

 is omitted.

• The actual Element parameter of access subprogram Process of Update_Element may be
constrained even if Element_Type is unconstrained.

A.18.12 The Package Containers.Indefinite_Hashed_Maps
The language-defined generic package Containers.Indefinite_Hashed_Maps provides a map with the same
operations as the package Containers.Hashed_Maps (see A.18.5), with the difference that the generic
formal types Key_Type and Element_Type are indefinite.

Static Semantics

The declaration of the generic library package Containers.Indefinite_Hashed_Maps has the same contents
as Containers.Hashed_Maps except:

• The generic formal Key_Type is indefinite.

• The generic formal Element_Type is indefinite.

• The procedure with the profile:
procedure Insert (Container : in out Map;
 Key : in Key_Type;
 Position : out Cursor;
 Inserted : out Boolean);

 is omitted.

• The actual Element parameter of access subprogram Process of Update_Element may be
constrained even if Element_Type is unconstrained.

6

7/2

8/2

1/2

2/2

3/2

4/2

5/2

6/2

7/2

1/2

2/2

3/2

4/2

5/2

6/2

7/2

8/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.18.13 The Package Containers.Indefinite_Ordered_Maps 10 November 2006 468

A.18.13 The Package Containers.Indefinite_Ordered_Maps
The language-defined generic package Containers.Indefinite_Ordered_Maps provides a map with the same
operations as the package Containers.Ordered_Maps (see A.18.6), with the difference that the generic
formal types Key_Type and Element_Type are indefinite.

Static Semantics

The declaration of the generic library package Containers.Indefinite_Ordered_Maps has the same contents
as Containers.Ordered_Maps except:

• The generic formal Key_Type is indefinite.

• The generic formal Element_Type is indefinite.

• The procedure with the profile:
procedure Insert (Container : in out Map;
 Key : in Key_Type;
 Position : out Cursor;
 Inserted : out Boolean);

 is omitted.

• The actual Element parameter of access subprogram Process of Update_Element may be
constrained even if Element_Type is unconstrained.

A.18.14 The Package Containers.Indefinite_Hashed_Sets
The language-defined generic package Containers.Indefinite_Hashed_Sets provides a set with the same
operations as the package Containers.Hashed_Sets (see A.18.8), with the difference that the generic formal
type Element_Type is indefinite.

Static Semantics

The declaration of the generic library package Containers.Indefinite_Hashed_Sets has the same contents as
Containers.Hashed_Sets except:

• The generic formal Element_Type is indefinite.

• The actual Element parameter of access subprogram Process of Update_Element_-
Preserving_Key may be constrained even if Element_Type is unconstrained.

A.18.15 The Package Containers.Indefinite_Ordered_Sets
The language-defined generic package Containers.Indefinite_Ordered_Sets provides a set with the same
operations as the package Containers.Ordered_Sets (see A.18.9), with the difference that the generic
formal type Element_Type is indefinite.

Static Semantics

The declaration of the generic library package Containers.Indefinite_Ordered_Sets has the same contents
as Containers.Ordered_Sets except:

• The generic formal Element_Type is indefinite.

• The actual Element parameter of access subprogram Process of Update_Element_-
Preserving_Key may be constrained even if Element_Type is unconstrained.

1/2

2/2

3/2

4/2

5/2

6/2

7/2

8/2

1/2

2/2

3/2

4/2

1/2

2/2

3/2

4/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

469 10 November 2006 Array Sorting A.18.16

A.18.16 Array Sorting
The language-defined generic procedures Containers.Generic_Array_Sort and
Containers.Generic_Constrained_Array_Sort provide sorting on arbitrary array types.

Static Semantics

The generic library procedure Containers.Generic_Array_Sort has the following declaration:
generic
 type Index_Type is (<>);
 type Element_Type is private;
 type Array_Type is array (Index_Type range <>) of Element_Type;
 with function "<" (Left, Right : Element_Type)
 return Boolean is <>;
procedure Ada.Containers.Generic_Array_Sort (Container : in out Array_Type);
pragma Pure(Ada.Containers.Generic_Array_Sort);

Reorders the elements of Container such that the elements are sorted smallest first as determined
by the generic formal "<" operator provided. Any exception raised during evaluation of "<" is
propagated.

The actual function for the generic formal function "<" of Generic_Array_Sort is expected to
return the same value each time it is called with a particular pair of element values. It should
define a strict ordering relationship, that is, be irreflexive, asymmetric, and transitive; it should
not modify Container. If the actual for "<" behaves in some other manner, the behavior of the
instance of Generic_Array_Sort is unspecified. How many times Generic_Array_Sort calls "<"
is unspecified.

The generic library procedure Containers.Generic_Constrained_Array_Sort has the following declaration:
generic
 type Index_Type is (<>);
 type Element_Type is private;
 type Array_Type is array (Index_Type) of Element_Type;
 with function "<" (Left, Right : Element_Type)
 return Boolean is <>;
procedure Ada.Containers.Generic_Constrained_Array_Sort
 (Container : in out Array_Type);
pragma Pure(Ada.Containers.Generic_Constrained_Array_Sort);

Reorders the elements of Container such that the elements are sorted smallest first as determined
by the generic formal "<" operator provided. Any exception raised during evaluation of "<" is
propagated.

The actual function for the generic formal function "<" of Generic_Constrained_Array_Sort is
expected to return the same value each time it is called with a particular pair of element values.
It should define a strict ordering relationship, that is, be irreflexive, asymmetric, and transitive; it
should not modify Container. If the actual for "<" behaves in some other manner, the behavior of
the instance of Generic_Constrained_Array_Sort is unspecified. How many times
Generic_Constrained_Array_Sort calls "<" is unspecified.

Implementation Advice

The worst-case time complexity of a call on an instance of Containers.Generic_Array_Sort or
Containers.Generic_Constrained_Array_Sort should be O(N**2) or better, and the average time
complexity should be better than O(N**2), where N is the length of the Container parameter.

1/2

2/2

3/2

4/2

5/2

6/2

7/2

8/2

9/2

10/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

A.18.16 Array Sorting 10 November 2006 470

Containers.Generic_Array_Sort and Containers.Generic_Constrained_Array_Sort should minimize
copying of elements.

11/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

471 10 November 2006 Interface to Other Languages B

Annex B
(normative)

Interface to Other Languages
This Annex describes features for writing mixed-language programs. General interface support is
presented first; then specific support for C, COBOL, and Fortran is defined, in terms of language interface
packages for each of these languages.

B.1 Interfacing Pragmas
A pragma Import is used to import an entity defined in a foreign language into an Ada program, thus
allowing a foreign-language subprogram to be called from Ada, or a foreign-language variable to be
accessed from Ada. In contrast, a pragma Export is used to export an Ada entity to a foreign language,
thus allowing an Ada subprogram to be called from a foreign language, or an Ada object to be accessed
from a foreign language. The pragmas Import and Export are intended primarily for objects and
subprograms, although implementations are allowed to support other entities.

A pragma Convention is used to specify that an Ada entity should use the conventions of another
language. It is intended primarily for types and “callback” subprograms. For example, “pragma
Convention(Fortran, Matrix);” implies that Matrix should be represented according to the conventions of
the supported Fortran implementation, namely column-major order.

A pragma Linker_Options is used to specify the system linker parameters needed when a given
compilation unit is included in a partition.

Syntax

An interfacing pragma is a representation pragma that is one of the pragmas Import, Export, or
Convention. Their forms, together with that of the related pragma Linker_Options, are as follows:
 pragma Import(
 [Convention =>] convention_identifier, [Entity =>] local_name
 [, [External_Name =>] string_expression] [, [Link_Name =>] string_expression]);
 pragma Export(
 [Convention =>] convention_identifier, [Entity =>] local_name
 [, [External_Name =>] string_expression] [, [Link_Name =>] string_expression]);
 pragma Convention([Convention =>] convention_identifier,[Entity =>] local_name);
 pragma Linker_Options(string_expression);
A pragma Linker_Options is allowed only at the place of a declarative_item.
For pragmas Import and Export, the argument for Link_Name shall not be given without the
pragma_argument_identifier unless the argument for External_Name is given.

Name Resolution Rules

The expected type for a string_expression in an interfacing pragma or in pragma Linker_Options is
String.

Legality Rules

The convention_identifier of an interfacing pragma shall be the name of a convention. The convention
names are implementation defined, except for certain language-defined ones, such as Ada and Intrinsic, as

1

1

2

3

4

5

6

7

8

9

9.1/1

10

11

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

B.1 Interfacing Pragmas 10 November 2006 472

explained in 6.3.1, “Conformance Rules”. Additional convention names generally represent the calling
conventions of foreign languages, language implementations, or specific run-time models. The convention
of a callable entity is its calling convention.

If L is a convention_identifier for a language, then a type T is said to be compatible with convention L,
(alternatively, is said to be an L-compatible type) if any of the following conditions are met:

• T is declared in a language interface package corresponding to L and is defined to be L-
compatible (see B.3, B.3.1, B.3.2, B.4, B.5),

• Convention L has been specified for T in a pragma Convention, and T is eligible for convention
L; that is:

• T is an array type with either an unconstrained or statically-constrained first subtype, and
its component type is L-compatible,

• T is a record type that has no discriminants and that only has components with statically-
constrained subtypes, and each component type is L-compatible,

• T is an access-to-object type, and its designated type is L-compatible,

• T is an access-to-subprogram type, and its designated profile's parameter and result types
are all L-compatible.

• T is derived from an L-compatible type,

• The implementation permits T as an L-compatible type.

If pragma Convention applies to a type, then the type shall either be compatible with or eligible for the
convention specified in the pragma.

A pragma Import shall be the completion of a declaration. Notwithstanding any rule to the contrary, a
pragma Import may serve as the completion of any kind of (explicit) declaration if supported by an
implementation for that kind of declaration. If a completion is a pragma Import, then it shall appear in the
same declarative_part, package_specification, task_definition or protected_definition as the declaration.
For a library unit, it shall appear in the same compilation, before any subsequent compilation_units other
than pragmas. If the local_name denotes more than one entity, then the pragma Import is the completion
of all of them.

 An entity specified as the Entity argument to a pragma Import (or pragma Export) is said to be imported
(respectively, exported).

The declaration of an imported object shall not include an explicit initialization expression. Default
initializations are not performed.

The type of an imported or exported object shall be compatible with the convention specified in the
corresponding pragma.

For an imported or exported subprogram, the result and parameter types shall each be compatible with the
convention specified in the corresponding pragma.

The external name and link name string_expressions of a pragma Import or Export, and the
string_expression of a pragma Linker_Options, shall be static.

Static Semantics

Import, Export, and Convention pragmas are representation pragmas that specify the convention aspect of
representation. In addition, Import and Export pragmas specify the imported and exported aspects of
representation, respectively.

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

473 10 November 2006 Interfacing Pragmas B.1

An interfacing pragma is a program unit pragma when applied to a program unit (see 10.1.5).

An interfacing pragma defines the convention of the entity denoted by the local_name. The convention
represents the calling convention or representation convention of the entity. For an access-to-subprogram
type, it represents the calling convention of designated subprograms. In addition:

• A pragma Import specifies that the entity is defined externally (that is, outside the Ada
program).

• A pragma Export specifies that the entity is used externally.

• A pragma Import or Export optionally specifies an entity's external name, link name, or both.

An external name is a string value for the name used by a foreign language program either for an entity
that an Ada program imports, or for referring to an entity that an Ada program exports.

A link name is a string value for the name of an exported or imported entity, based on the conventions of
the foreign language's compiler in interfacing with the system's linker tool.

The meaning of link names is implementation defined. If neither a link name nor the Address attribute of
an imported or exported entity is specified, then a link name is chosen in an implementation-defined
manner, based on the external name if one is specified.

Pragma Linker_Options has the effect of passing its string argument as a parameter to the system linker (if
one exists), if the immediately enclosing compilation unit is included in the partition being linked. The
interpretation of the string argument, and the way in which the string arguments from multiple
Linker_Options pragmas are combined, is implementation defined.

Dynamic Semantics

Notwithstanding what this International Standard says elsewhere, the elaboration of a declaration denoted
by the local_name of a pragma Import does not create the entity. Such an elaboration has no other effect
than to allow the defining name to denote the external entity.

Erroneous Execution

It is the programmer's responsibility to ensure that the use of interfacing pragmas does not violate Ada
semantics; otherwise, program execution is erroneous.

Implementation Advice

If an implementation supports pragma Export to a given language, then it should also allow the main
subprogram to be written in that language. It should support some mechanism for invoking the elaboration
of the Ada library units included in the system, and for invoking the finalization of the environment task.
On typical systems, the recommended mechanism is to provide two subprograms whose link names are
"adainit" and "adafinal". Adainit should contain the elaboration code for library units. Adafinal should
contain the finalization code. These subprograms should have no effect the second and subsequent time
they are called.

Automatic elaboration of preelaborated packages should be provided when pragma Export is supported.

For each supported convention L other than Intrinsic, an implementation should support Import and Export
pragmas for objects of L-compatible types and for subprograms, and pragma Convention for L-eligible
types and for subprograms, presuming the other language has corresponding features. Pragma Convention
need not be supported for scalar types.

29

30

31

32

33

34

35

36

37

38

38.1/2

39

40

41

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

B.1 Interfacing Pragmas 10 November 2006 474

NOTES
1 Implementations may place restrictions on interfacing pragmas; for example, requiring each exported entity to be
declared at the library level.

2 A pragma Import specifies the conventions for accessing external entities. It is possible that the actual entity is written
in assembly language, but reflects the conventions of a particular language. For example, pragma Import(Ada, ...) can be
used to interface to an assembly language routine that obeys the Ada compiler's calling conventions.

3 To obtain “call-back” to an Ada subprogram from a foreign language environment, pragma Convention should be
specified both for the access-to-subprogram type and the specific subprogram(s) to which 'Access is applied.

4 It is illegal to specify more than one of Import, Export, or Convention for a given entity.

5 The local_name in an interfacing pragma can denote more than one entity in the case of overloading. Such a pragma
applies to all of the denoted entities.

6 See also 13.8, “Machine Code Insertions”.

7 If both External_Name and Link_Name are specified for an Import or Export pragma, then the External_Name is
ignored.

This paragraph was deleted.

Examples

Example of interfacing pragmas:
package Fortran_Library is
 function Sqrt (X : Float) return Float;
 function Exp (X : Float) return Float;
private
 pragma Import(Fortran, Sqrt);
 pragma Import(Fortran, Exp);
end Fortran_Library;

B.2 The Package Interfaces
Package Interfaces is the parent of several library packages that declare types and other entities useful for
interfacing to foreign languages. It also contains some implementation-defined types that are useful across
more than one language (in particular for interfacing to assembly language).

Static Semantics

The library package Interfaces has the following skeletal declaration:

package Interfaces is
 pragma Pure(Interfaces);

 type Integer_n is range -2**(n-1) .. 2**(n-1) - 1; --2's complement
 type Unsigned_n is mod 2**n;
 function Shift_Left (Value : Unsigned_n; Amount : Natural)
 return Unsigned_n;
 function Shift_Right (Value : Unsigned_n; Amount : Natural)
 return Unsigned_n;
 function Shift_Right_Arithmetic (Value : Unsigned_n; Amount : Natural)
 return Unsigned_n;
 function Rotate_Left (Value : Unsigned_n; Amount : Natural)
 return Unsigned_n;
 function Rotate_Right (Value : Unsigned_n; Amount : Natural)
 return Unsigned_n;
 ...
end Interfaces;

42

43

44

45

46

47

48

49/2

50

51

1

2

3

4

5

6

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

475 10 November 2006 The Package Interfaces B.2

Implementation Requirements

An implementation shall provide the following declarations in the visible part of package Interfaces:
• Signed and modular integer types of n bits, if supported by the target architecture, for each n that

is at least the size of a storage element and that is a factor of the word size. The names of these
types are of the form Integer_n for the signed types, and Unsigned_n for the modular types;

• For each such modular type in Interfaces, shifting and rotating subprograms as specified in the
declaration of Interfaces above. These subprograms are Intrinsic. They operate on a bit-by-bit
basis, using the binary representation of the value of the operands to yield a binary
representation for the result. The Amount parameter gives the number of bits by which to shift or
rotate. For shifting, zero bits are shifted in, except in the case of Shift_Right_Arithmetic, where
one bits are shifted in if Value is at least half the modulus.

• Floating point types corresponding to each floating point format fully supported by the
hardware.

Support for interfacing to any foreign language is optional. However, an implementation shall not provide
any attribute, library unit, or pragma having the same name as an attribute, library unit, or pragma
(respectively) specified in the following clauses of this Annex unless the provided construct is either as
specified in those clauses or is more limited in capability than that required by those clauses. A program
that attempts to use an unsupported capability of this Annex shall either be identified by the
implementation before run time or shall raise an exception at run time.

Implementation Permissions

An implementation may provide implementation-defined library units that are children of Interfaces, and
may add declarations to the visible part of Interfaces in addition to the ones defined above.

A child package of package Interfaces with the name of a convention may be provided independently of
whether the convention is supported by the pragma Convention and vice versa. Such a child package
should contain any declarations that would be useful for interfacing to the language (implementation)
represented by the convention. Any declarations useful for interfacing to any language on the given
hardware architecture should be provided directly in Interfaces.

Implementation Advice

This paragraph was deleted.

An implementation supporting an interface to C, COBOL, or Fortran should provide the corresponding
package or packages described in the following clauses.

B.3 Interfacing with C and C++
The facilities relevant to interfacing with the C language and the corresponding subset of the C++
language are the package Interfaces.C and its children; support for the Import, Export, and Convention
pragmas with convention_identifier C; and support for the Convention pragma with convention_identifier
C_Pass_By_Copy.

The package Interfaces.C contains the basic types, constants and subprograms that allow an Ada program
to pass scalars and strings to C and C++ functions. When this clause mentions a C entity, the reference
also applies to the corresponding entity in C++.

7

8

9

10

10.1/2

11

11.1/2

12/2

13

1/2

2/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

B.3 Interfacing with C and C++ 10 November 2006 476

Static Semantics

The library package Interfaces.C has the following declaration:
package Interfaces.C is
 pragma Pure(C);

 -- Declarations based on C's <limits.h>
 CHAR_BIT : constant := implementation-defined; -- typically 8
 SCHAR_MIN : constant := implementation-defined; -- typically –128
 SCHAR_MAX : constant := implementation-defined; -- typically 127
 UCHAR_MAX : constant := implementation-defined; -- typically 255
 -- Signed and Unsigned Integers
 type int is range implementation-defined;
 type short is range implementation-defined;
 type long is range implementation-defined;
 type signed_char is range SCHAR_MIN .. SCHAR_MAX;
 for signed_char'Size use CHAR_BIT;

 type unsigned is mod implementation-defined;
 type unsigned_short is mod implementation-defined;
 type unsigned_long is mod implementation-defined;
 type unsigned_char is mod (UCHAR_MAX+1);
 for unsigned_char'Size use CHAR_BIT;

 subtype plain_char is implementation-defined;
 type ptrdiff_t is range implementation-defined;
 type size_t is mod implementation-defined;
 -- Floating Point
 type C_float is digits implementation-defined;
 type double is digits implementation-defined;
 type long_double is digits implementation-defined;
 -- Characters and Strings
 type char is <implementation-defined character type>;
 nul : constant char := implementation-defined;
 function To_C (Item : in Character) return char;

 function To_Ada (Item : in char) return Character;

 type char_array is array (size_t range <>) of aliased char;
 pragma Pack(char_array);
 for char_array'Component_Size use CHAR_BIT;

 function Is_Nul_Terminated (Item : in char_array) return Boolean;

 function To_C (Item : in String;
 Append_Nul : in Boolean := True)
 return char_array;

 function To_Ada (Item : in char_array;
 Trim_Nul : in Boolean := True)
 return String;

 procedure To_C (Item : in String;
 Target : out char_array;
 Count : out size_t;
 Append_Nul : in Boolean := True);

 procedure To_Ada (Item : in char_array;
 Target : out String;
 Count : out Natural;
 Trim_Nul : in Boolean := True);

 -- Wide Character and Wide String
 type wchar_t is <implementation-defined character type>;

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20/1

21

22

23

24

25

26

27

28

29

30/1

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

477 10 November 2006 Interfacing with C and C++ B.3

 wide_nul : constant wchar_t := implementation-defined;
 function To_C (Item : in Wide_Character) return wchar_t;
 function To_Ada (Item : in wchar_t) return Wide_Character;

 type wchar_array is array (size_t range <>) of aliased wchar_t;

 pragma Pack(wchar_array);

 function Is_Nul_Terminated (Item : in wchar_array) return Boolean;

 function To_C (Item : in Wide_String;
 Append_Nul : in Boolean := True)
 return wchar_array;

 function To_Ada (Item : in wchar_array;
 Trim_Nul : in Boolean := True)
 return Wide_String;

 procedure To_C (Item : in Wide_String;
 Target : out wchar_array;
 Count : out size_t;
 Append_Nul : in Boolean := True);

 procedure To_Ada (Item : in wchar_array;
 Target : out Wide_String;
 Count : out Natural;
 Trim_Nul : in Boolean := True);

 -- ISO/IEC 10646:2003 compatible types defined by ISO/IEC TR 19769:2004.
 type char16_t is <implementation-defined character type>;
 char16_nul : constant char16_t := implementation-defined;
 function To_C (Item : in Wide_Character) return char16_t;
 function To_Ada (Item : in char16_t) return Wide_Character;

 type char16_array is array (size_t range <>) of aliased char16_t;

 pragma Pack(char16_array);

 function Is_Nul_Terminated (Item : in char16_array) return Boolean;
 function To_C (Item : in Wide_String;
 Append_Nul : in Boolean := True)
 return char16_array;

 function To_Ada (Item : in char16_array;
 Trim_Nul : in Boolean := True)
 return Wide_String;

 procedure To_C (Item : in Wide_String;
 Target : out char16_array;
 Count : out size_t;
 Append_Nul : in Boolean := True);

 procedure To_Ada (Item : in char16_array;
 Target : out Wide_String;
 Count : out Natural;
 Trim_Nul : in Boolean := True);

 type char32_t is <implementation-defined character type>;
 char32_nul : constant char32_t := implementation-defined;
 function To_C (Item : in Wide_Wide_Character) return char32_t;
 function To_Ada (Item : in char32_t) return Wide_Wide_Character;

 type char32_array is array (size_t range <>) of aliased char32_t;

 pragma Pack(char32_array);

 function Is_Nul_Terminated (Item : in char32_array) return Boolean;
 function To_C (Item : in Wide_Wide_String;
 Append_Nul : in Boolean := True)
 return char32_array;

 function To_Ada (Item : in char32_array;
 Trim_Nul : in Boolean := True)
 return Wide_Wide_String;

31/1

32

33

34

35

36

37

38

39

39.1/2

39.2/2

39.3/2

39.4/2

39.5/2

39.6/2

39.7/2

39.8/2

39.9/2

39.10/2

39.11/2

39.12/2

39.13/2

39.14/2

39.15/2

39.16/2

39.17/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

B.3 Interfacing with C and C++ 10 November 2006 478

 procedure To_C (Item : in Wide_Wide_String;
 Target : out char32_array;
 Count : out size_t;
 Append_Nul : in Boolean := True);

 procedure To_Ada (Item : in char32_array;
 Target : out Wide_Wide_String;
 Count : out Natural;
 Trim_Nul : in Boolean := True);

 Terminator_Error : exception;

end Interfaces.C;

Each of the types declared in Interfaces.C is C-compatible.

The types int, short, long, unsigned, ptrdiff_t, size_t, double, char, wchar_t, char16_t, and char32_t
correspond respectively to the C types having the same names. The types signed_char, unsigned_short,
unsigned_long, unsigned_char, C_float, and long_double correspond respectively to the C types signed
char, unsigned short, unsigned long, unsigned char, float, and long double.

The type of the subtype plain_char is either signed_char or unsigned_char, depending on the C
implementation.

function To_C (Item : in Character) return char;
function To_Ada (Item : in char) return Character;

The functions To_C and To_Ada map between the Ada type Character and the C type char.

function Is_Nul_Terminated (Item : in char_array) return Boolean;

The result of Is_Nul_Terminated is True if Item contains nul, and is False otherwise.

function To_C (Item : in String; Append_Nul : in Boolean := True)
 return char_array;

function To_Ada (Item : in char_array; Trim_Nul : in Boolean := True)
 return String;

The result of To_C is a char_array value of length Item'Length (if Append_Nul is False) or
Item'Length+1 (if Append_Nul is True). The lower bound is 0. For each component Item(I), the
corresponding component in the result is To_C applied to Item(I). The value nul is appended if
Append_Nul is True. If Append_Nul is False and Item'Length is 0, then To_C propagates
Constraint_Error.

The result of To_Ada is a String whose length is Item'Length (if Trim_Nul is False) or the length
of the slice of Item preceding the first nul (if Trim_Nul is True). The lower bound of the result is
1. If Trim_Nul is False, then for each component Item(I) the corresponding component in the
result is To_Ada applied to Item(I). If Trim_Nul is True, then for each component Item(I) before
the first nul the corresponding component in the result is To_Ada applied to Item(I). The
function propagates Terminator_Error if Trim_Nul is True and Item does not contain nul.

39.18/2

39.19/2

40

41

42

43/2

44

45

46

47

48

49

50/2

51

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

479 10 November 2006 Interfacing with C and C++ B.3

procedure To_C (Item : in String;
 Target : out char_array;
 Count : out size_t;
 Append_Nul : in Boolean := True);

procedure To_Ada (Item : in char_array;
 Target : out String;
 Count : out Natural;
 Trim_Nul : in Boolean := True);

For procedure To_C, each element of Item is converted (via the To_C function) to a char, which
is assigned to the corresponding element of Target. If Append_Nul is True, nul is then assigned
to the next element of Target. In either case, Count is set to the number of Target elements
assigned. If Target is not long enough, Constraint_Error is propagated.

For procedure To_Ada, each element of Item (if Trim_Nul is False) or each element of Item
preceding the first nul (if Trim_Nul is True) is converted (via the To_Ada function) to a
Character, which is assigned to the corresponding element of Target. Count is set to the number
of Target elements assigned. If Target is not long enough, Constraint_Error is propagated. If
Trim_Nul is True and Item does not contain nul, then Terminator_Error is propagated.

function Is_Nul_Terminated (Item : in wchar_array) return Boolean;

The result of Is_Nul_Terminated is True if Item contains wide_nul, and is False otherwise.

function To_C (Item : in Wide_Character) return wchar_t;
function To_Ada (Item : in wchar_t) return Wide_Character;

To_C and To_Ada provide the mappings between the Ada and C wide character types.

function To_C (Item : in Wide_String;
 Append_Nul : in Boolean := True)
 return wchar_array;

function To_Ada (Item : in wchar_array;
 Trim_Nul : in Boolean := True)
 return Wide_String;

procedure To_C (Item : in Wide_String;
 Target : out wchar_array;
 Count : out size_t;
 Append_Nul : in Boolean := True);

procedure To_Ada (Item : in wchar_array;
 Target : out Wide_String;
 Count : out Natural;
 Trim_Nul : in Boolean := True);

The To_C and To_Ada subprograms that convert between Wide_String and wchar_array have
analogous effects to the To_C and To_Ada subprograms that convert between String and
char_array, except that wide_nul is used instead of nul.

function Is_Nul_Terminated (Item : in char16_array) return Boolean;

The result of Is_Nul_Terminated is True if Item contains char16_nul, and is False otherwise.

function To_C (Item : in Wide_Character) return char16_t;
function To_Ada (Item : in char16_t) return Wide_Character;

To_C and To_Ada provide mappings between the Ada and C 16-bit character types.

52

53

54

55

56

57

58

59

60

60.1/2

60.2/2

60.3/2

60.4/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

B.3 Interfacing with C and C++ 10 November 2006 480

function To_C (Item : in Wide_String;
 Append_Nul : in Boolean := True)
 return char16_array;

function To_Ada (Item : in char16_array;
 Trim_Nul : in Boolean := True)
 return Wide_String;

procedure To_C (Item : in Wide_String;
 Target : out char16_array;
 Count : out size_t;
 Append_Nul : in Boolean := True);

procedure To_Ada (Item : in char16_array;
 Target : out Wide_String;
 Count : out Natural;
 Trim_Nul : in Boolean := True);

The To_C and To_Ada subprograms that convert between Wide_String and char16_array have
analogous effects to the To_C and To_Ada subprograms that convert between String and
char_array, except that char16_nul is used instead of nul.

function Is_Nul_Terminated (Item : in char32_array) return Boolean;

The result of Is_Nul_Terminated is True if Item contains char16_nul, and is False otherwise.

function To_C (Item : in Wide_Wide_Character) return char32_t;
function To_Ada (Item : in char32_t) return Wide_Wide_Character;

To_C and To_Ada provide mappings between the Ada and C 32-bit character types.

function To_C (Item : in Wide_Wide_String;
 Append_Nul : in Boolean := True)
 return char32_array;

function To_Ada (Item : in char32_array;
 Trim_Nul : in Boolean := True)
 return Wide_Wide_String;

procedure To_C (Item : in Wide_Wide_String;
 Target : out char32_array;
 Count : out size_t;
 Append_Nul : in Boolean := True);

procedure To_Ada (Item : in char32_array;
 Target : out Wide_Wide_String;
 Count : out Natural;
 Trim_Nul : in Boolean := True);

The To_C and To_Ada subprograms that convert between Wide_Wide_String and char32_array
have analogous effects to the To_C and To_Ada subprograms that convert between String and
char_array, except that char32_nul is used instead of nul.

A Convention pragma with convention_identifier C_Pass_By_Copy shall only be applied to a type.

The eligibility rules in B.1 do not apply to convention C_Pass_By_Copy. Instead, a type T is eligible for
convention C_Pass_By_Copy if T is an unchecked union type or if T is a record type that has no
discriminants and that only has components with statically constrained subtypes, and each component is
C-compatible.

If a type is C_Pass_By_Copy-compatible then it is also C-compatible.

60.5/2

60.6/2

60.7/2

60.8/2

60.9/2

60.10/2

60.11/2

60.12/2

60.13/1

60.14/2

60.15/1

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

481 10 November 2006 Interfacing with C and C++ B.3

Implementation Requirements

An implementation shall support pragma Convention with a C convention_identifier for a C-eligible type
(see B.1). An implementation shall support pragma Convention with a C_Pass_By_Copy
convention_identifier for a C_Pass_By_Copy-eligible type.

Implementation Permissions

An implementation may provide additional declarations in the C interface packages.

Implementation Advice

The constants nul, wide_nul, char16_nul, and char32_nul should have a representation of zero.

An implementation should support the following interface correspondences between Ada and C.

• An Ada procedure corresponds to a void-returning C function.

• An Ada function corresponds to a non-void C function.

• An Ada in scalar parameter is passed as a scalar argument to a C function.

• An Ada in parameter of an access-to-object type with designated type T is passed as a t*
argument to a C function, where t is the C type corresponding to the Ada type T.

• An Ada access T parameter, or an Ada out or in out parameter of an elementary type T, is
passed as a t* argument to a C function, where t is the C type corresponding to the Ada type T.
In the case of an elementary out or in out parameter, a pointer to a temporary copy is used to
preserve by-copy semantics.

• An Ada parameter of a (record) type T of convention C_Pass_By_Copy, of mode in, is passed as
a t argument to a C function, where t is the C struct corresponding to the Ada type T.

• An Ada parameter of a record type T, of any mode, other than an in parameter of a type of
convention C_Pass_By_Copy, is passed as a t* argument to a C function, where t is the C struct
corresponding to the Ada type T.

• An Ada parameter of an array type with component type T, of any mode, is passed as a t*
argument to a C function, where t is the C type corresponding to the Ada type T.

• An Ada parameter of an access-to-subprogram type is passed as a pointer to a C function whose
prototype corresponds to the designated subprogram's specification.

An Ada parameter of a private type is passed as specified for the full view of the type.

NOTES
8 Values of type char_array are not implicitly terminated with nul. If a char_array is to be passed as a parameter to an
imported C function requiring nul termination, it is the programmer's responsibility to obtain this effect.

9 To obtain the effect of C's sizeof(item_type), where Item_Type is the corresponding Ada type, evaluate the expression:
size_t(Item_Type'Size/CHAR_BIT).

This paragraph was deleted.

10 A C function that takes a variable number of arguments can correspond to several Ada subprograms, taking various
specific numbers and types of parameters.

61/1

62

62.1/2

63

64

65

66

67

68

68.1/2

69/2

70

71

71.1/2

72

73

74/2

75

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

B.3 Interfacing with C and C++ 10 November 2006 482

Examples

Example of using the Interfaces.C package:
--Calling the C Library Function strcpy
with Interfaces.C;
procedure Test is
 package C renames Interfaces.C;
 use type C.char_array;
 -- Call <string.h>strcpy:
 -- C definition of strcpy: char *strcpy(char *s1, const char *s2);
 -- This function copies the string pointed to by s2 (including the terminating null character)
 -- into the array pointed to by s1. If copying takes place between objects that overlap,
 -- the behavior is undefined. The strcpy function returns the value of s1.
 -- Note: since the C function's return value is of no interest, the Ada interface is a procedure
 procedure Strcpy (Target : out C.char_array;
 Source : in C.char_array);

 pragma Import(C, Strcpy, "strcpy");

 Chars1 : C.char_array(1..20);
 Chars2 : C.char_array(1..20);

begin
 Chars2(1..6) := "qwert" & C.nul;

 Strcpy(Chars1, Chars2);

-- Now Chars1(1..6) = "qwert" & C.Nul
end Test;

B.3.1 The Package Interfaces.C.Strings
The package Interfaces.C.Strings declares types and subprograms allowing an Ada program to allocate,
reference, update, and free C-style strings. In particular, the private type chars_ptr corresponds to a
common use of “char *” in C programs, and an object of this type can be passed to a subprogram to which
pragma Import(C,...) has been applied, and for which “char *” is the type of the argument of the C
function.

Static Semantics

The library package Interfaces.C.Strings has the following declaration:
package Interfaces.C.Strings is
 pragma Preelaborate(Strings);

 type char_array_access is access all char_array;

 type chars_ptr is private;
 pragma Preelaborable_Initialization(chars_ptr);

 type chars_ptr_array is array (size_t range <>) of aliased chars_ptr;

 Null_Ptr : constant chars_ptr;

 function To_Chars_Ptr (Item : in char_array_access;
 Nul_Check : in Boolean := False)
 return chars_ptr;

 function New_Char_Array (Chars : in char_array) return chars_ptr;

 function New_String (Str : in String) return chars_ptr;

 procedure Free (Item : in out chars_ptr);

 Dereference_Error : exception;

 function Value (Item : in chars_ptr) return char_array;

 function Value (Item : in chars_ptr; Length : in size_t)
 return char_array;

 function Value (Item : in chars_ptr) return String;

76

77

78

79

80

81

82

83

84

1

2

3

4

5/2

6/2

7

8

9

10

11

12

13

14

15

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

483 10 November 2006 The Package Interfaces.C.Strings B.3.1

 function Value (Item : in chars_ptr; Length : in size_t)
 return String;

 function Strlen (Item : in chars_ptr) return size_t;

 procedure Update (Item : in chars_ptr;
 Offset : in size_t;
 Chars : in char_array;
 Check : in Boolean := True);

 procedure Update (Item : in chars_ptr;
 Offset : in size_t;
 Str : in String;
 Check : in Boolean := True);

 Update_Error : exception;

private
 ... -- not specified by the language
end Interfaces.C.Strings;

The type chars_ptr is C-compatible and corresponds to the use of C's “char *” for a pointer to the first char
in a char array terminated by nul. When an object of type chars_ptr is declared, its value is by default set
to Null_Ptr, unless the object is imported (see B.1).

function To_Chars_Ptr (Item : in char_array_access;
 Nul_Check : in Boolean := False)
 return chars_ptr;

If Item is null, then To_Chars_Ptr returns Null_Ptr. If Item is not null, Nul_Check is True, and
Item.all does not contain nul, then the function propagates Terminator_Error; otherwise
To_Chars_Ptr performs a pointer conversion with no allocation of memory.

function New_Char_Array (Chars : in char_array) return chars_ptr;

This function returns a pointer to an allocated object initialized to Chars(Chars'First .. Index) &
nul, where

• Index = Chars'Last if Chars does not contain nul, or

• Index is the smallest size_t value I such that Chars(I+1) = nul.

Storage_Error is propagated if the allocation fails.

function New_String (Str : in String) return chars_ptr;

This function is equivalent to New_Char_Array(To_C(Str)).

procedure Free (Item : in out chars_ptr);

If Item is Null_Ptr, then Free has no effect. Otherwise, Free releases the storage occupied by
Value(Item), and resets Item to Null_Ptr.

function Value (Item : in chars_ptr) return char_array;

If Item = Null_Ptr then Value propagates Dereference_Error. Otherwise Value returns the prefix
of the array of chars pointed to by Item, up to and including the first nul. The lower bound of the
result is 0. If Item does not point to a nul-terminated string, then execution of Value is
erroneous.

function Value (Item : in chars_ptr; Length : in size_t)
 return char_array;

If Item = Null_Ptr then Value propagates Dereference_Error. Otherwise Value returns the
shorter of two arrays, either the first Length chars pointed to by Item, or Value(Item). The lower
bound of the result is 0. If Length is 0, then Value propagates Constraint_Error.

16

17

18

19

20

21

22

23

24/1

25

26

27

28

28.1

29

30

31

32

33

34

35

36/1

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

B.3.1 The Package Interfaces.C.Strings 10 November 2006 484

function Value (Item : in chars_ptr) return String;

Equivalent to To_Ada(Value(Item), Trim_Nul=>True).

function Value (Item : in chars_ptr; Length : in size_t)
 return String;

Equivalent to To_Ada(Value(Item, Length) & nul, Trim_Nul=>True).

function Strlen (Item : in chars_ptr) return size_t;

Returns Val'Length–1 where Val = Value(Item); propagates Dereference_Error if Item =
Null_Ptr.

procedure Update (Item : in chars_ptr;
 Offset : in size_t;
 Chars : in char_array;
 Check : Boolean := True);

If Item = Null_Ptr, then Update propagates Dereference_Error. Otherwise, this procedure
updates the value pointed to by Item, starting at position Offset, using Chars as the data to be
copied into the array. Overwriting the nul terminator, and skipping with the Offset past the nul
terminator, are both prevented if Check is True, as follows:

• Let N = Strlen(Item). If Check is True, then:

• If Offset+Chars'Length>N, propagate Update_Error.

• Otherwise, overwrite the data in the array pointed to by Item, starting at the char
at position Offset, with the data in Chars.

• If Check is False, then processing is as above, but with no check that
Offset+Chars'Length>N.

procedure Update (Item : in chars_ptr;
 Offset : in size_t;
 Str : in String;
 Check : in Boolean := True);

Equivalent to Update(Item, Offset, To_C(Str, Append_Nul => False), Check).

Erroneous Execution

Execution of any of the following is erroneous if the Item parameter is not null_ptr and Item does not point
to a nul-terminated array of chars.

• a Value function not taking a Length parameter,

• the Free procedure,

• the Strlen function.

Execution of Free(X) is also erroneous if the chars_ptr X was not returned by New_Char_Array or
New_String.

Reading or updating a freed char_array is erroneous.

Execution of Update is erroneous if Check is False and a call with Check equal to True would have
propagated Update_Error.

NOTES
11 New_Char_Array and New_String might be implemented either through the allocation function from the C
environment (“malloc”) or through Ada dynamic memory allocation (“new”). The key points are

• the returned value (a chars_ptr) is represented as a C “char *” so that it may be passed to C functions;

37

38

39

40/1

41

42

43

44/1

45

46

47

48

49

50/2

51

52

53

54

55

56

57

58

59

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

485 10 November 2006 The Package Interfaces.C.Strings B.3.1

• the allocated object should be freed by the programmer via a call of Free, not by a called C function.

B.3.2 The Generic Package Interfaces.C.Pointers
The generic package Interfaces.C.Pointers allows the Ada programmer to perform C-style operations on
pointers. It includes an access type Pointer, Value functions that dereference a Pointer and deliver the
designated array, several pointer arithmetic operations, and “copy” procedures that copy the contents of a
source pointer into the array designated by a destination pointer. As in C, it treats an object Ptr of type
Pointer as a pointer to the first element of an array, so that for example, adding 1 to Ptr yields a pointer to
the second element of the array.

The generic allows two styles of usage: one in which the array is terminated by a special terminator
element; and another in which the programmer needs to keep track of the length.

Static Semantics

The generic library package Interfaces.C.Pointers has the following declaration:
generic
 type Index is (<>);
 type Element is private;
 type Element_Array is array (Index range <>) of aliased Element;
 Default_Terminator : Element;
package Interfaces.C.Pointers is
 pragma Preelaborate(Pointers);

 type Pointer is access all Element;

 function Value(Ref : in Pointer;
 Terminator : in Element := Default_Terminator)
 return Element_Array;

 function Value(Ref : in Pointer;
 Length : in ptrdiff_t)
 return Element_Array;

 Pointer_Error : exception;

 -- C-style Pointer arithmetic
 function "+" (Left : in Pointer; Right : in ptrdiff_t) return Pointer;
 function "+" (Left : in ptrdiff_t; Right : in Pointer) return Pointer;
 function "-" (Left : in Pointer; Right : in ptrdiff_t) return Pointer;
 function "-" (Left : in Pointer; Right : in Pointer) return ptrdiff_t;

 procedure Increment (Ref : in out Pointer);
 procedure Decrement (Ref : in out Pointer);

 pragma Convention (Intrinsic, "+");
 pragma Convention (Intrinsic, "-");
 pragma Convention (Intrinsic, Increment);
 pragma Convention (Intrinsic, Decrement);

 function Virtual_Length (Ref : in Pointer;
 Terminator : in Element := Default_Terminator)
 return ptrdiff_t;

 procedure Copy_Terminated_Array
 (Source : in Pointer;
 Target : in Pointer;
 Limit : in ptrdiff_t := ptrdiff_t'Last;
 Terminator : in Element := Default_Terminator);

 procedure Copy_Array (Source : in Pointer;
 Target : in Pointer;
 Length : in ptrdiff_t);

end Interfaces.C.Pointers;

60

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

B.3.2 The Generic Package Interfaces.C.Pointers 10 November 2006 486

The type Pointer is C-compatible and corresponds to one use of C's “Element *”. An object of type Pointer
is interpreted as a pointer to the initial Element in an Element_Array. Two styles are supported:

• Explicit termination of an array value with Default_Terminator (a special terminator value);

• Programmer-managed length, with Default_Terminator treated simply as a data element.

function Value(Ref : in Pointer;
 Terminator : in Element := Default_Terminator)
 return Element_Array;

This function returns an Element_Array whose value is the array pointed to by Ref, up to and
including the first Terminator; the lower bound of the array is Index'First.
Interfaces.C.Strings.Dereference_Error is propagated if Ref is null.

function Value(Ref : in Pointer;
 Length : in ptrdiff_t)
 return Element_Array;

This function returns an Element_Array comprising the first Length elements pointed to by Ref.
The exception Interfaces.C.Strings.Dereference_Error is propagated if Ref is null.

The "+" and "–" functions perform arithmetic on Pointer values, based on the Size of the array elements. In
each of these functions, Pointer_Error is propagated if a Pointer parameter is null.

procedure Increment (Ref : in out Pointer);

Equivalent to Ref := Ref+1.

procedure Decrement (Ref : in out Pointer);

Equivalent to Ref := Ref–1.

function Virtual_Length (Ref : in Pointer;
 Terminator : in Element := Default_Terminator)
 return ptrdiff_t;

Returns the number of Elements, up to the one just before the first Terminator, in Value(Ref,
Terminator).

procedure Copy_Terminated_Array
 (Source : in Pointer;
 Target : in Pointer;
 Limit : in ptrdiff_t := ptrdiff_t'Last;
 Terminator : in Element := Default_Terminator);

This procedure copies Value(Source, Terminator) into the array pointed to by Target; it stops
either after Terminator has been copied, or the number of elements copied is Limit, whichever
occurs first. Dereference_Error is propagated if either Source or Target is null.

procedure Copy_Array (Source : in Pointer;
 Target : in Pointer;
 Length : in ptrdiff_t);

This procedure copies the first Length elements from the array pointed to by Source, into the
array pointed to by Target. Dereference_Error is propagated if either Source or Target is null.

Erroneous Execution

It is erroneous to dereference a Pointer that does not designate an aliased Element.

Execution of Value(Ref, Terminator) is erroneous if Ref does not designate an aliased Element in an
Element_Array terminated by Terminator.

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

487 10 November 2006 The Generic Package Interfaces.C.Pointers B.3.2

Execution of Value(Ref, Length) is erroneous if Ref does not designate an aliased Element in an
Element_Array containing at least Length Elements between the designated Element and the end of the
array, inclusive.

Execution of Virtual_Length(Ref, Terminator) is erroneous if Ref does not designate an aliased Element in
an Element_Array terminated by Terminator.

Execution of Copy_Terminated_Array(Source, Target, Limit, Terminator) is erroneous in either of the
following situations:

• Execution of both Value(Source, Terminator) and Value(Source, Limit) are erroneous, or

• Copying writes past the end of the array containing the Element designated by Target.

Execution of Copy_Array(Source, Target, Length) is erroneous if either Value(Source, Length) is
erroneous, or copying writes past the end of the array containing the Element designated by Target.

NOTES
12 To compose a Pointer from an Element_Array, use 'Access on the first element. For example (assuming appropriate
instantiations):
Some_Array : Element_Array(0..5) ;
Some_Pointer : Pointer := Some_Array(0)'Access;

Examples

Example of Interfaces.C.Pointers:
with Interfaces.C.Pointers;
with Interfaces.C.Strings;
procedure Test_Pointers is
 package C renames Interfaces.C;
 package Char_Ptrs is
 new C.Pointers (Index => C.size_t,
 Element => C.char,
 Element_Array => C.char_array,
 Default_Terminator => C.nul);

 use type Char_Ptrs.Pointer;
 subtype Char_Star is Char_Ptrs.Pointer;

 procedure Strcpy (Target_Ptr, Source_Ptr : Char_Star) is
 Target_Temp_Ptr : Char_Star := Target_Ptr;
 Source_Temp_Ptr : Char_Star := Source_Ptr;
 Element : C.char;
 begin
 if Target_Temp_Ptr = null or Source_Temp_Ptr = null then
 raise C.Strings.Dereference_Error;
 end if;

 loop
 Element := Source_Temp_Ptr.all;
 Target_Temp_Ptr.all := Element;
 exit when C."="(Element, C.nul);
 Char_Ptrs.Increment(Target_Temp_Ptr);
 Char_Ptrs.Increment(Source_Temp_Ptr);
 end loop;
 end Strcpy;
begin
 ...
end Test_Pointers;

37

38

39

40

41

42

43

44

45

46

47

48

49/1

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

B.3.3 Pragma Unchecked_Union 10 November 2006 488

B.3.3 Pragma Unchecked_Union
A pragma Unchecked_Union specifies an interface correspondence between a given discriminated type
and some C union. The pragma specifies that the associated type shall be given a representation that leaves
no space for its discriminant(s).

Syntax

The form of a pragma Unchecked_Union is as follows:
 pragma Unchecked_Union (first_subtype_local_name);

Legality Rules

Unchecked_Union is a representation pragma, specifying the unchecked union aspect of representation.

The first_subtype_local_name of a pragma Unchecked_Union shall denote an unconstrained
discriminated record subtype having a variant_part.

A type to which a pragma Unchecked_Union applies is called an unchecked union type. A subtype of an
unchecked union type is defined to be an unchecked union subtype. An object of an unchecked union type
is defined to be an unchecked union object.

All component subtypes of an unchecked union type shall be C-compatible.

If a component subtype of an unchecked union type is subject to a per-object constraint, then the
component subtype shall be an unchecked union subtype.

Any name that denotes a discriminant of an object of an unchecked union type shall occur within the
declarative region of the type.

A component declared in a variant_part of an unchecked union type shall not have a controlled, protected,
or task part.

The completion of an incomplete or private type declaration having a known_discriminant_part shall not
be an unchecked union type.

An unchecked union subtype shall only be passed as a generic actual parameter if the corresponding
formal type has no known discriminants or is an unchecked union type.

Static Semantics

An unchecked union type is eligible for convention C.

All objects of an unchecked union type have the same size.

Discriminants of objects of an unchecked union type are of size zero.

Any check which would require reading a discriminant of an unchecked union object is suppressed (see
11.5). These checks include:

• The check performed when addressing a variant component (i.e., a component that was declared
in a variant part) of an unchecked union object that the object has this component (see 4.1.3).

• Any checks associated with a type or subtype conversion of a value of an unchecked union type
(see 4.6). This includes, for example, the check associated with the implicit subtype conversion
of an assignment statement.

1/2

2/2

3/2

4/2

5/2

6/2

7/2

8/2

9/2

10/2

11/2

12/2

13/2

14/2

15/2

16/2

17/2

18/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

489 10 November 2006 Pragma Unchecked_Union B.3.3

• The subtype membership check associated with the evaluation of a qualified expression (see 4.7)
or an uninitialized allocator (see 4.8).

Dynamic Semantics

A view of an unchecked union object (including a type conversion or function call) has inferable
discriminants if it has a constrained nominal subtype, unless the object is a component of an enclosing
unchecked union object that is subject to a per-object constraint and the enclosing object lacks inferable
discriminants.

An expression of an unchecked union type has inferable discriminants if it is either a name of an object
with inferable discriminants or a qualified expression whose subtype_mark denotes a constrained subtype.

Program_Error is raised in the following cases:
• Evaluation of the predefined equality operator for an unchecked union type if either of the

operands lacks inferable discriminants.

• Evaluation of the predefined equality operator for a type which has a subcomponent of an
unchecked union type whose nominal subtype is unconstrained.

• Evaluation of a membership test if the subtype_mark denotes a constrained unchecked union
subtype and the expression lacks inferable discriminants.

• Conversion from a derived unchecked union type to an unconstrained non-unchecked-union type
if the operand of the conversion lacks inferable discriminants.

• Execution of the default implementation of the Write or Read attribute of an unchecked union
type.

• Execution of the default implementation of the Output or Input attribute of an unchecked union
type if the type lacks default discriminant values.

Implementation Permissions

An implementation may require that pragma Controlled be specified for the type of an access
subcomponent of an unchecked union type.

NOTES
13 The use of an unchecked union to obtain the effect of an unchecked conversion results in erroneous execution (see
11.5). Execution of the following example is erroneous even if Float'Size = Integer'Size:
type T (Flag : Boolean := False) is
 record
 case Flag is
 when False =>
 F1 : Float := 0.0;
 when True =>
 F2 : Integer := 0;
 end case;
 end record;
pragma Unchecked_Union (T);

X : T;
Y : Integer := X.F2; -- erroneous

19/2

20/2

21/2

22/2

23/2

24/2

25/2

26/2

27/2

28/2

29/2

30/2

31/2

32/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

B.4 Interfacing with COBOL 10 November 2006 490

B.4 Interfacing with COBOL
The facilities relevant to interfacing with the COBOL language are the package Interfaces.COBOL and
support for the Import, Export and Convention pragmas with convention_identifier COBOL.

The COBOL interface package supplies several sets of facilities:
• A set of types corresponding to the native COBOL types of the supported COBOL

implementation (so-called “internal COBOL representations”), allowing Ada data to be passed
as parameters to COBOL programs

• A set of types and constants reflecting external data representations such as might be found in
files or databases, allowing COBOL-generated data to be read by an Ada program, and Ada-
generated data to be read by COBOL programs

• A generic package for converting between an Ada decimal type value and either an internal or
external COBOL representation

Static Semantics

The library package Interfaces.COBOL has the following declaration:
package Interfaces.COBOL is
 pragma Preelaborate(COBOL);

-- Types and operations for internal data representations
 type Floating is digits implementation-defined;
 type Long_Floating is digits implementation-defined;
 type Binary is range implementation-defined;
 type Long_Binary is range implementation-defined;
 Max_Digits_Binary : constant := implementation-defined;
 Max_Digits_Long_Binary : constant := implementation-defined;
 type Decimal_Element is mod implementation-defined;
 type Packed_Decimal is array (Positive range <>) of Decimal_Element;
 pragma Pack(Packed_Decimal);

 type COBOL_Character is implementation-defined character type;
 Ada_To_COBOL : array (Character) of COBOL_Character := implementation-defined;
 COBOL_To_Ada : array (COBOL_Character) of Character := implementation-defined;
 type Alphanumeric is array (Positive range <>) of COBOL_Character;
 pragma Pack(Alphanumeric);

 function To_COBOL (Item : in String) return Alphanumeric;
 function To_Ada (Item : in Alphanumeric) return String;

 procedure To_COBOL (Item : in String;
 Target : out Alphanumeric;
 Last : out Natural);

 procedure To_Ada (Item : in Alphanumeric;
 Target : out String;
 Last : out Natural);

 type Numeric is array (Positive range <>) of COBOL_Character;
 pragma Pack(Numeric);

-- Formats for COBOL data representations
 type Display_Format is private;

 Unsigned : constant Display_Format;
 Leading_Separate : constant Display_Format;
 Trailing_Separate : constant Display_Format;
 Leading_Nonseparate : constant Display_Format;
 Trailing_Nonseparate : constant Display_Format;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

491 10 November 2006 Interfacing with COBOL B.4

 type Binary_Format is private;

 High_Order_First : constant Binary_Format;
 Low_Order_First : constant Binary_Format;
 Native_Binary : constant Binary_Format;

 type Packed_Format is private;

 Packed_Unsigned : constant Packed_Format;
 Packed_Signed : constant Packed_Format;

-- Types for external representation of COBOL binary data
 type Byte is mod 2**COBOL_Character'Size;
 type Byte_Array is array (Positive range <>) of Byte;
 pragma Pack (Byte_Array);

 Conversion_Error : exception;

 generic
 type Num is delta <> digits <>;
 package Decimal_Conversions is

 -- Display Formats: data values are represented as Numeric
 function Valid (Item : in Numeric;
 Format : in Display_Format) return Boolean;

 function Length (Format : in Display_Format) return Natural;

 function To_Decimal (Item : in Numeric;
 Format : in Display_Format) return Num;

 function To_Display (Item : in Num;
 Format : in Display_Format) return Numeric;

 -- Packed Formats: data values are represented as Packed_Decimal
 function Valid (Item : in Packed_Decimal;
 Format : in Packed_Format) return Boolean;

 function Length (Format : in Packed_Format) return Natural;

 function To_Decimal (Item : in Packed_Decimal;
 Format : in Packed_Format) return Num;

 function To_Packed (Item : in Num;
 Format : in Packed_Format) return Packed_Decimal;

 -- Binary Formats: external data values are represented as Byte_Array
 function Valid (Item : in Byte_Array;
 Format : in Binary_Format) return Boolean;

 function Length (Format : in Binary_Format) return Natural;
 function To_Decimal (Item : in Byte_Array;
 Format : in Binary_Format) return Num;

 function To_Binary (Item : in Num;
 Format : in Binary_Format) return Byte_Array;

 -- Internal Binary formats: data values are of type Binary or Long_Binary
 function To_Decimal (Item : in Binary) return Num;
 function To_Decimal (Item : in Long_Binary) return Num;

 function To_Binary (Item : in Num) return Binary;
 function To_Long_Binary (Item : in Num) return Long_Binary;

 end Decimal_Conversions;

private
 ... -- not specified by the language
end Interfaces.COBOL;

Each of the types in Interfaces.COBOL is COBOL-compatible.

The types Floating and Long_Floating correspond to the native types in COBOL for data items with
computational usage implemented by floating point. The types Binary and Long_Binary correspond to the

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

B.4 Interfacing with COBOL 10 November 2006 492

native types in COBOL for data items with binary usage, or with computational usage implemented by
binary.

Max_Digits_Binary is the largest number of decimal digits in a numeric value that is represented as
Binary. Max_Digits_Long_Binary is the largest number of decimal digits in a numeric value that is
represented as Long_Binary.

The type Packed_Decimal corresponds to COBOL's packed-decimal usage.

The type COBOL_Character defines the run-time character set used in the COBOL implementation.
Ada_To_COBOL and COBOL_To_Ada are the mappings between the Ada and COBOL run-time
character sets.

Type Alphanumeric corresponds to COBOL's alphanumeric data category.

Each of the functions To_COBOL and To_Ada converts its parameter based on the mappings
Ada_To_COBOL and COBOL_To_Ada, respectively. The length of the result for each is the length of the
parameter, and the lower bound of the result is 1. Each component of the result is obtained by applying the
relevant mapping to the corresponding component of the parameter.

Each of the procedures To_COBOL and To_Ada copies converted elements from Item to Target, using the
appropriate mapping (Ada_To_COBOL or COBOL_To_Ada, respectively). The index in Target of the last
element assigned is returned in Last (0 if Item is a null array). If Item'Length exceeds Target'Length,
Constraint_Error is propagated.

Type Numeric corresponds to COBOL's numeric data category with display usage.

The types Display_Format, Binary_Format, and Packed_Format are used in conversions between Ada
decimal type values and COBOL internal or external data representations. The value of the constant
Native_Binary is either High_Order_First or Low_Order_First, depending on the implementation.

function Valid (Item : in Numeric;
 Format : in Display_Format) return Boolean;

The function Valid checks that the Item parameter has a value consistent with the value of
Format. If the value of Format is other than Unsigned, Leading_Separate, and Trailing_Separate,
the effect is implementation defined. If Format does have one of these values, the following
rules apply:

• Format=Unsigned: if Item comprises one or more decimal digit characters then Valid
returns True, else it returns False.

• Format=Leading_Separate: if Item comprises a single occurrence of the plus or minus
sign character, and then one or more decimal digit characters, then Valid returns True,
else it returns False.

• Format=Trailing_Separate: if Item comprises one or more decimal digit characters and
finally a plus or minus sign character, then Valid returns True, else it returns False.

function Length (Format : in Display_Format) return Natural;

The Length function returns the minimal length of a Numeric value sufficient to hold any value
of type Num when represented as Format.

53

54

55

56

57

58

59

60

61

62

63/1

64/1

65/1

66

67

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

493 10 November 2006 Interfacing with COBOL B.4

function To_Decimal (Item : in Numeric;
 Format : in Display_Format) return Num;

Produces a value of type Num corresponding to Item as represented by Format. The number of
digits after the assumed radix point in Item is Num'Scale. Conversion_Error is propagated if the
value represented by Item is outside the range of Num.

function To_Display (Item : in Num;
 Format : in Display_Format) return Numeric;

This function returns the Numeric value for Item, represented in accordance with Format. The
length of the returned value is Length(Format), and the lower bound is 1. Conversion_Error is
propagated if Num is negative and Format is Unsigned.

function Valid (Item : in Packed_Decimal;
 Format : in Packed_Format) return Boolean;

This function returns True if Item has a value consistent with Format, and False otherwise. The
rules for the formation of Packed_Decimal values are implementation defined.

function Length (Format : in Packed_Format) return Natural;

This function returns the minimal length of a Packed_Decimal value sufficient to hold any value
of type Num when represented as Format.

function To_Decimal (Item : in Packed_Decimal;
 Format : in Packed_Format) return Num;

Produces a value of type Num corresponding to Item as represented by Format. Num'Scale is the
number of digits after the assumed radix point in Item. Conversion_Error is propagated if the
value represented by Item is outside the range of Num.

function To_Packed (Item : in Num;
 Format : in Packed_Format) return Packed_Decimal;

This function returns the Packed_Decimal value for Item, represented in accordance with
Format. The length of the returned value is Length(Format), and the lower bound is 1.
Conversion_Error is propagated if Num is negative and Format is Packed_Unsigned.

function Valid (Item : in Byte_Array;
 Format : in Binary_Format) return Boolean;

This function returns True if Item has a value consistent with Format, and False otherwise.

function Length (Format : in Binary_Format) return Natural;

This function returns the minimal length of a Byte_Array value sufficient to hold any value of
type Num when represented as Format.

function To_Decimal (Item : in Byte_Array;
 Format : in Binary_Format) return Num;

Produces a value of type Num corresponding to Item as represented by Format. Num'Scale is the
number of digits after the assumed radix point in Item. Conversion_Error is propagated if the
value represented by Item is outside the range of Num.

function To_Binary (Item : in Num;
 Format : in Binary_Format) return Byte_Array;

This function returns the Byte_Array value for Item, represented in accordance with Format. The
length of the returned value is Length(Format), and the lower bound is 1.

68

69

70

71/1

72

73

74

75

76

77

78

79/1

80

81

82

83

84

85

86

87/1

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

B.4 Interfacing with COBOL 10 November 2006 494

function To_Decimal (Item : in Binary) return Num;

function To_Decimal (Item : in Long_Binary) return Num;

These functions convert from COBOL binary format to a corresponding value of the decimal
type Num. Conversion_Error is propagated if Item is too large for Num.

function To_Binary (Item : in Num) return Binary;

function To_Long_Binary (Item : in Num) return Long_Binary;

These functions convert from Ada decimal to COBOL binary format. Conversion_Error is
propagated if the value of Item is too large to be represented in the result type.

Implementation Requirements

An implementation shall support pragma Convention with a COBOL convention_identifier for a COBOL-
eligible type (see B.1).

Implementation Permissions

An implementation may provide additional constants of the private types Display_Format, Binary_Format,
or Packed_Format.

An implementation may provide further floating point and integer types in Interfaces.COBOL to match
additional native COBOL types, and may also supply corresponding conversion functions in the generic
package Decimal_Conversions.

Implementation Advice

An Ada implementation should support the following interface correspondences between Ada and
COBOL.

• An Ada access T parameter is passed as a “BY REFERENCE” data item of the COBOL type
corresponding to T.

• An Ada in scalar parameter is passed as a “BY CONTENT” data item of the corresponding
COBOL type.

• Any other Ada parameter is passed as a “BY REFERENCE” data item of the COBOL type
corresponding to the Ada parameter type; for scalars, a local copy is used if necessary to ensure
by-copy semantics.
NOTES
14 An implementation is not required to support pragma Convention for access types, nor is it required to support pragma
Import, Export or Convention for functions.

15 If an Ada subprogram is exported to COBOL, then a call from COBOL call may specify either “BY CONTENT” or
“BY REFERENCE”.

Examples

Examples of Interfaces.COBOL:
with Interfaces.COBOL;
procedure Test_Call is

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

495 10 November 2006 Interfacing with COBOL B.4

 -- Calling a foreign COBOL program
 -- Assume that a COBOL program PROG has the following declaration
 -- in its LINKAGE section:
 -- 01 Parameter-Area
 -- 05 NAME PIC X(20).
 -- 05 SSN PIC X(9).
 -- 05 SALARY PIC 99999V99 USAGE COMP.
 -- The effect of PROG is to update SALARY based on some algorithm
 package COBOL renames Interfaces.COBOL;

 type Salary_Type is delta 0.01 digits 7;

 type COBOL_Record is
 record
 Name : COBOL.Numeric(1..20);
 SSN : COBOL.Numeric(1..9);
 Salary : COBOL.Binary; -- Assume Binary = 32 bits
 end record;
 pragma Convention (COBOL, COBOL_Record);

 procedure Prog (Item : in out COBOL_Record);
 pragma Import (COBOL, Prog, "PROG");

 package Salary_Conversions is
 new COBOL.Decimal_Conversions(Salary_Type);

 Some_Salary : Salary_Type := 12_345.67;
 Some_Record : COBOL_Record :=
 (Name => "Johnson, John ",
 SSN => "111223333",
 Salary => Salary_Conversions.To_Binary(Some_Salary));

begin
 Prog (Some_Record);
 ...
end Test_Call;

with Interfaces.COBOL;
with COBOL_Sequential_IO; -- Assumed to be supplied by implementation
procedure Test_External_Formats is

 -- Using data created by a COBOL program
 -- Assume that a COBOL program has created a sequential file with
 -- the following record structure, and that we need to
 -- process the records in an Ada program
 -- 01 EMPLOYEE-RECORD
 -- 05 NAME PIC X(20).
 -- 05 SSN PIC X(9).
 -- 05 SALARY PIC 99999V99 USAGE COMP.
 -- 05 ADJUST PIC S999V999 SIGN LEADING SEPARATE.
 -- The COMP data is binary (32 bits), high-order byte first
 package COBOL renames Interfaces.COBOL;

 type Salary_Type is delta 0.01 digits 7;
 type Adjustments_Type is delta 0.001 digits 6;

 type COBOL_Employee_Record_Type is -- External representation
 record
 Name : COBOL.Alphanumeric(1..20);
 SSN : COBOL.Alphanumeric(1..9);
 Salary : COBOL.Byte_Array(1..4);
 Adjust : COBOL.Numeric(1..7); -- Sign and 6 digits
 end record;
 pragma Convention (COBOL, COBOL_Employee_Record_Type);

 package COBOL_Employee_IO is
 new COBOL_Sequential_IO(COBOL_Employee_Record_Type);
 use COBOL_Employee_IO;

 COBOL_File : File_Type;

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

B.4 Interfacing with COBOL 10 November 2006 496

 type Ada_Employee_Record_Type is -- Internal representation
 record
 Name : String(1..20);
 SSN : String(1..9);
 Salary : Salary_Type;
 Adjust : Adjustments_Type;
 end record;

 COBOL_Record : COBOL_Employee_Record_Type;
 Ada_Record : Ada_Employee_Record_Type;

 package Salary_Conversions is
 new COBOL.Decimal_Conversions(Salary_Type);
 use Salary_Conversions;

 package Adjustments_Conversions is
 new COBOL.Decimal_Conversions(Adjustments_Type);
 use Adjustments_Conversions;

begin
 Open (COBOL_File, Name => "Some_File");

 loop
 Read (COBOL_File, COBOL_Record);

 Ada_Record.Name := To_Ada(COBOL_Record.Name);
 Ada_Record.SSN := To_Ada(COBOL_Record.SSN);
 Ada_Record.Salary :=
 To_Decimal(COBOL_Record.Salary, COBOL.High_Order_First);
 Ada_Record.Adjust :=
 To_Decimal(COBOL_Record.Adjust, COBOL.Leading_Separate);
 ... -- Process Ada_Record
 end loop;
exception
 when End_Error => ...
end Test_External_Formats;

B.5 Interfacing with Fortran
The facilities relevant to interfacing with the Fortran language are the package Interfaces.Fortran and
support for the Import, Export and Convention pragmas with convention_identifier Fortran.

The package Interfaces.Fortran defines Ada types whose representations are identical to the default
representations of the Fortran intrinsic types Integer, Real, Double Precision, Complex, Logical, and
Character in a supported Fortran implementation. These Ada types can therefore be used to pass objects
between Ada and Fortran programs.

Static Semantics

The library package Interfaces.Fortran has the following declaration:
with Ada.Numerics.Generic_Complex_Types; -- see G.1.1
pragma Elaborate_All(Ada.Numerics.Generic_Complex_Types);
package Interfaces.Fortran is
 pragma Pure(Fortran);

 type Fortran_Integer is range implementation-defined;
 type Real is digits implementation-defined;
 type Double_Precision is digits implementation-defined;
 type Logical is new Boolean;

 package Single_Precision_Complex_Types is
 new Ada.Numerics.Generic_Complex_Types (Real);

 type Complex is new Single_Precision_Complex_Types.Complex;

118

119

120

121

122

123

124

1

2

3

4

5

6

7

8

9

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

497 10 November 2006 Interfacing with Fortran B.5

 subtype Imaginary is Single_Precision_Complex_Types.Imaginary;
 i : Imaginary renames Single_Precision_Complex_Types.i;
 j : Imaginary renames Single_Precision_Complex_Types.j;

 type Character_Set is implementation-defined character type;
 type Fortran_Character is array (Positive range <>) of Character_Set;
 pragma Pack (Fortran_Character);

 function To_Fortran (Item : in Character) return Character_Set;
 function To_Ada (Item : in Character_Set) return Character;

 function To_Fortran (Item : in String) return Fortran_Character;
 function To_Ada (Item : in Fortran_Character) return String;

 procedure To_Fortran (Item : in String;
 Target : out Fortran_Character;
 Last : out Natural);

 procedure To_Ada (Item : in Fortran_Character;
 Target : out String;
 Last : out Natural);

end Interfaces.Fortran;

The types Fortran_Integer, Real, Double_Precision, Logical, Complex, and Fortran_Character are Fortran-
compatible.

The To_Fortran and To_Ada functions map between the Ada type Character and the Fortran type
Character_Set, and also between the Ada type String and the Fortran type Fortran_Character. The
To_Fortran and To_Ada procedures have analogous effects to the string conversion subprograms found in
Interfaces.COBOL.

Implementation Requirements

An implementation shall support pragma Convention with a Fortran convention_identifier for a Fortran-
eligible type (see B.1).

Implementation Permissions

An implementation may add additional declarations to the Fortran interface packages. For example, the
Fortran interface package for an implementation of Fortran 77 (ANSI X3.9-1978) that defines types like
Integer*n, Real*n, Logical*n, and Complex*n may contain the declarations of types named Integer_-
Star_n, Real_Star_n, Logical_Star_n, and Complex_Star_n. (This convention should not apply to
Character*n, for which the Ada analog is the constrained array subtype Fortran_Character (1..n).)
Similarly, the Fortran interface package for an implementation of Fortran 90 that provides multiple kinds
of intrinsic types, e.g. Integer (Kind=n), Real (Kind=n), Logical (Kind=n), Complex (Kind=n), and
Character (Kind=n), may contain the declarations of types with the recommended names Integer_Kind_n,
Real_Kind_n, Logical_Kind_n, Complex_Kind_n, and Character_Kind_n.

Implementation Advice

An Ada implementation should support the following interface correspondences between Ada and Fortran:
• An Ada procedure corresponds to a Fortran subroutine.

• An Ada function corresponds to a Fortran function.

• An Ada parameter of an elementary, array, or record type T is passed as a TF argument to a
Fortran procedure, where TF is the Fortran type corresponding to the Ada type T, and where the
INTENT attribute of the corresponding dummy argument matches the Ada formal parameter
mode; the Fortran implementation's parameter passing conventions are used. For elementary
types, a local copy is used if necessary to ensure by-copy semantics.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

B.5 Interfacing with Fortran 10 November 2006 498

• An Ada parameter of an access-to-subprogram type is passed as a reference to a Fortran
procedure whose interface corresponds to the designated subprogram's specification.
NOTES
16 An object of a Fortran-compatible record type, declared in a library package or subprogram, can correspond to a
Fortran common block; the type also corresponds to a Fortran “derived type”.

Examples

Example of Interfaces.Fortran:
with Interfaces.Fortran;
use Interfaces.Fortran;
procedure Ada_Application is

 type Fortran_Matrix is array (Integer range <>,
 Integer range <>) of Double_Precision;
 pragma Convention (Fortran, Fortran_Matrix); -- stored in Fortran's
 -- column-major order
 procedure Invert (Rank : in Fortran_Integer; X : in out Fortran_Matrix);
 pragma Import (Fortran, Invert); -- a Fortran subroutine
 Rank : constant Fortran_Integer := 100;
 My_Matrix : Fortran_Matrix (1 .. Rank, 1 .. Rank);

begin

 ...
 My_Matrix := ...;
 ...
 Invert (Rank, My_Matrix);
 ...

end Ada_Application;

26

27

28

29

30

31

32

33

34

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

499 10 November 2006 Systems Programming C

Annex C
(normative)

Systems Programming
The Systems Programming Annex specifies additional capabilities provided for low-level programming.
These capabilities are also required in many real-time, embedded, distributed, and information systems.

C.1 Access to Machine Operations
This clause specifies rules regarding access to machine instructions from within an Ada program.

Implementation Requirements

The implementation shall support machine code insertions (see 13.8) or intrinsic subprograms (see 6.3.1)
(or both). Implementation-defined attributes shall be provided to allow the use of Ada entities as operands.

Implementation Advice

The machine code or intrinsics support should allow access to all operations normally available to
assembly language programmers for the target environment, including privileged instructions, if any.

The interfacing pragmas (see Annex B) should support interface to assembler; the default assembler
should be associated with the convention identifier Assembler.

If an entity is exported to assembly language, then the implementation should allocate it at an addressable
location, and should ensure that it is retained by the linking process, even if not otherwise referenced from
the Ada code. The implementation should assume that any call to a machine code or assembler
subprogram is allowed to read or update every object that is specified as exported.

Documentation Requirements

The implementation shall document the overhead associated with calling machine-code or intrinsic
subprograms, as compared to a fully-inlined call, and to a regular out-of-line call.

The implementation shall document the types of the package System.Machine_Code usable for machine
code insertions, and the attributes to be used in machine code insertions for references to Ada entities.

The implementation shall document the subprogram calling conventions associated with the convention
identifiers available for use with the interfacing pragmas (Ada and Assembler, at a minimum), including
register saving, exception propagation, parameter passing, and function value returning.

For exported and imported subprograms, the implementation shall document the mapping between the
Link_Name string, if specified, or the Ada designator, if not, and the external link name used for such a
subprogram.

Implementation Advice

The implementation should ensure that little or no overhead is associated with calling intrinsic and
machine-code subprograms.

It is recommended that intrinsic subprograms be provided for convenient access to any machine operations
that provide special capabilities or efficiency and that are not otherwise available through the language
constructs. Examples of such instructions include:

1

1

2

3

4

5

6

7

8

9

10

11

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

C.1 Access to Machine Operations 10 November 2006 500

• Atomic read-modify-write operations — e.g., test and set, compare and swap, decrement and
test, enqueue/dequeue.

• Standard numeric functions — e.g., sin, log.

• String manipulation operations — e.g., translate and test.

• Vector operations — e.g., compare vector against thresholds.

• Direct operations on I/O ports.

C.2 Required Representation Support
This clause specifies minimal requirements on the support for representation items and related features.

Implementation Requirements

The implementation shall support at least the functionality defined by the recommended levels of support
in Section 13.

C.3 Interrupt Support
This clause specifies the language-defined model for hardware interrupts in addition to mechanisms for
handling interrupts.

Dynamic Semantics

An interrupt represents a class of events that are detected by the hardware or the system software.
Interrupts are said to occur. An occurrence of an interrupt is separable into generation and delivery.
Generation of an interrupt is the event in the underlying hardware or system that makes the interrupt
available to the program. Delivery is the action that invokes part of the program as response to the
interrupt occurrence. Between generation and delivery, the interrupt occurrence (or interrupt) is pending.
Some or all interrupts may be blocked. When an interrupt is blocked, all occurrences of that interrupt are
prevented from being delivered. Certain interrupts are reserved. The set of reserved interrupts is
implementation defined. A reserved interrupt is either an interrupt for which user-defined handlers are not
supported, or one which already has an attached handler by some other implementation-defined means.
Program units can be connected to non-reserved interrupts. While connected, the program unit is said to be
attached to that interrupt. The execution of that program unit, the interrupt handler, is invoked upon
delivery of the interrupt occurrence.

While a handler is attached to an interrupt, it is called once for each delivered occurrence of that interrupt.
While the handler executes, the corresponding interrupt is blocked.

While an interrupt is blocked, all occurrences of that interrupt are prevented from being delivered.
Whether such occurrences remain pending or are lost is implementation defined.

Each interrupt has a default treatment which determines the system's response to an occurrence of that
interrupt when no user-defined handler is attached. The set of possible default treatments is
implementation defined, as is the method (if one exists) for configuring the default treatments for
interrupts.

An interrupt is delivered to the handler (or default treatment) that is in effect for that interrupt at the time
of delivery.

An exception propagated from a handler that is invoked by an interrupt has no effect.

12

13

14

15

16

1/2

2

1

2

3

4

5

6

7

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

501 10 November 2006 Interrupt Support C.3

If the Ceiling_Locking policy (see D.3) is in effect, the interrupt handler executes with the active priority
that is the ceiling priority of the corresponding protected object.

Implementation Requirements

The implementation shall provide a mechanism to determine the minimum stack space that is needed for
each interrupt handler and to reserve that space for the execution of the handler. This space should
accommodate nested invocations of the handler where the system permits this.

If the hardware or the underlying system holds pending interrupt occurrences, the implementation shall
provide for later delivery of these occurrences to the program.

If the Ceiling_Locking policy is not in effect, the implementation shall provide means for the application
to specify whether interrupts are to be blocked during protected actions.

Documentation Requirements

The implementation shall document the following items:
1. For each interrupt, which interrupts are blocked from delivery when a handler attached to that

interrupt executes (either as a result of an interrupt delivery or of an ordinary call on a procedure
of the corresponding protected object).

2. Any interrupts that cannot be blocked, and the effect of attaching handlers to such interrupts, if
this is permitted.

3. Which run-time stack an interrupt handler uses when it executes as a result of an interrupt
delivery; if this is configurable, what is the mechanism to do so; how to specify how much space
to reserve on that stack.

4. Any implementation- or hardware-specific activity that happens before a user-defined interrupt
handler gets control (e.g., reading device registers, acknowledging devices).

5. Any timing or other limitations imposed on the execution of interrupt handlers.

6. The state (blocked/unblocked) of the non-reserved interrupts when the program starts; if some
interrupts are unblocked, what is the mechanism a program can use to protect itself before it can
attach the corresponding handlers.

7. Whether the interrupted task is allowed to resume execution before the interrupt handler returns.

8. The treatment of interrupt occurrences that are generated while the interrupt is blocked; i.e.,
whether one or more occurrences are held for later delivery, or all are lost.

9. Whether predefined or implementation-defined exceptions are raised as a result of the
occurrence of any interrupt, and the mapping between the machine interrupts (or traps) and the
predefined exceptions.

10.
 On a multi-processor, the rules governing the delivery of an interrupt to a particular processor.

Implementation Permissions

If the underlying system or hardware does not allow interrupts to be blocked, then no blocking is required
as part of the execution of subprograms of a protected object for which one of its subprograms is an
interrupt handler.

In a multi-processor with more than one interrupt subsystem, it is implementation defined whether (and
how) interrupt sources from separate subsystems share the same Interrupt_ID type (see C.3.2). In
particular, the meaning of a blocked or pending interrupt may then be applicable to one processor only.

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23/2

24

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

C.3 Interrupt Support 10 November 2006 502

Implementations are allowed to impose timing or other limitations on the execution of interrupt handlers.

Other forms of handlers are allowed to be supported, in which case the rules of this clause should be
adhered to.

The active priority of the execution of an interrupt handler is allowed to vary from one occurrence of the
same interrupt to another.

Implementation Advice

If the Ceiling_Locking policy is not in effect, the implementation should provide means for the application
to specify which interrupts are to be blocked during protected actions, if the underlying system allows for
finer-grained control of interrupt blocking.

NOTES
1 The default treatment for an interrupt can be to keep the interrupt pending or to deliver it to an implementation-defined
handler. Examples of actions that an implementation-defined handler is allowed to perform include aborting the partition,
ignoring (i.e., discarding occurrences of) the interrupt, or queuing one or more occurrences of the interrupt for possible
later delivery when a user-defined handler is attached to that interrupt.

2 It is a bounded error to call Task_Identification.Current_Task (see C.7.1) from an interrupt handler.

3 The rule that an exception propagated from an interrupt handler has no effect is modeled after the rule about exceptions
propagated out of task bodies.

C.3.1 Protected Procedure Handlers
Syntax

The form of a pragma Interrupt_Handler is as follows:
 pragma Interrupt_Handler(handler_name);
The form of a pragma Attach_Handler is as follows:
 pragma Attach_Handler(handler_name, expression);

Name Resolution Rules

For the Interrupt_Handler and Attach_Handler pragmas, the handler_name shall resolve to denote a
protected procedure with a parameterless profile.

For the Attach_Handler pragma, the expected type for the expression is Interrupts.Interrupt_ID (see
C.3.2).

Legality Rules

The Attach_Handler pragma is only allowed immediately within the protected_definition where the
corresponding subprogram is declared. The corresponding protected_type_declaration or single_-
protected_declaration shall be a library-level declaration.

The Interrupt_Handler pragma is only allowed immediately within the protected_definition where the
corresponding subprogram is declared. The corresponding protected_type_declaration or single_-
protected_declaration shall be a library-level declaration.

Dynamic Semantics

If the pragma Interrupt_Handler appears in a protected_definition, then the corresponding procedure can
be attached dynamically, as a handler, to interrupts (see C.3.2). Such procedures are allowed to be attached
to multiple interrupts.

25

26/2

27

28/2

29

30

31

1

2

3

4

5

6

7/2

8/2

9

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

503 10 November 2006 Protected Procedure Handlers C.3.1

The expression in the Attach_Handler pragma as evaluated at object creation time specifies an interrupt.
As part of the initialization of that object, if the Attach_Handler pragma is specified, the handler
procedure is attached to the specified interrupt. A check is made that the corresponding interrupt is not
reserved. Program_Error is raised if the check fails, and the existing treatment for the interrupt is not
affected.

If the Ceiling_Locking policy (see D.3) is in effect, then upon the initialization of a protected object for
which either an Attach_Handler or Interrupt_Handler pragma applies to one of its procedures, a check is
made that the ceiling priority defined in the protected_definition is in the range of System.-
Interrupt_Priority. If the check fails, Program_Error is raised.

When a protected object is finalized, for any of its procedures that are attached to interrupts, the handler is
detached. If the handler was attached by a procedure in the Interrupts package or if no user handler was
previously attached to the interrupt, the default treatment is restored. If an Attach_Handler pragma was
used and the most recently attached handler for the same interrupt is the same as the one that was attached
at the time the protected object was initialized, the previous handler is restored.

When a handler is attached to an interrupt, the interrupt is blocked (subject to the Implementation
Permission in C.3) during the execution of every protected action on the protected object containing the
handler.

Erroneous Execution

If the Ceiling_Locking policy (see D.3) is in effect and an interrupt is delivered to a handler, and the
interrupt hardware priority is higher than the ceiling priority of the corresponding protected object, the
execution of the program is erroneous.

If the handlers for a given interrupt attached via pragma Attach_Handler are not attached and detached in a
stack-like (LIFO) order, program execution is erroneous. In particular, when a protected object is
finalized, the execution is erroneous if any of the procedures of the protected object are attached to
interrupts via pragma Attach_Handler and the most recently attached handler for the same interrupt is not
the same as the one that was attached at the time the protected object was initialized.

Metrics

The following metric shall be documented by the implementation:
• The worst-case overhead for an interrupt handler that is a parameterless protected procedure, in

clock cycles. This is the execution time not directly attributable to the handler procedure or the
interrupted execution. It is estimated as C – (A+B), where A is how long it takes to complete a
given sequence of instructions without any interrupt, B is how long it takes to complete a normal
call to a given protected procedure, and C is how long it takes to complete the same sequence of
instructions when it is interrupted by one execution of the same procedure called via an
interrupt.

Implementation Permissions

When the pragmas Attach_Handler or Interrupt_Handler apply to a protected procedure, the implemen-
tation is allowed to impose implementation-defined restrictions on the corresponding protected_type_-
declaration and protected_body.

An implementation may use a different mechanism for invoking a protected procedure in response to a
hardware interrupt than is used for a call to that protected procedure from a task.

Notwithstanding what this subclause says elsewhere, the Attach_Handler and Interrupt_Handler pragmas
are allowed to be used for other, implementation defined, forms of interrupt handlers.

10

11/2

12/1

13

14

14.1/1

15

16/2

17

18

19

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

C.3.1 Protected Procedure Handlers 10 November 2006 504

Implementation Advice

Whenever possible, the implementation should allow interrupt handlers to be called directly by the
hardware.

Whenever practical, the implementation should detect violations of any implementation-defined
restrictions before run time.

NOTES
4 The Attach_Handler pragma can provide static attachment of handlers to interrupts if the implementation supports
preelaboration of protected objects. (See C.4.)

5 A protected object that has a (protected) procedure attached to an interrupt should have a ceiling priority at least as high
as the highest processor priority at which that interrupt will ever be delivered.

6 Protected procedures can also be attached dynamically to interrupts via operations declared in the predefined package
Interrupts.

7 An example of a possible implementation-defined restriction is disallowing the use of the standard storage pools within
the body of a protected procedure that is an interrupt handler.

C.3.2 The Package Interrupts
Static Semantics

The following language-defined packages exist:
with System;
package Ada.Interrupts is
 type Interrupt_ID is implementation-defined;
 type Parameterless_Handler is
 access protected procedure;

This paragraph was deleted.

 function Is_Reserved (Interrupt : Interrupt_ID)
 return Boolean;

 function Is_Attached (Interrupt : Interrupt_ID)
 return Boolean;

 function Current_Handler (Interrupt : Interrupt_ID)
 return Parameterless_Handler;

 procedure Attach_Handler
 (New_Handler : in Parameterless_Handler;
 Interrupt : in Interrupt_ID);

 procedure Exchange_Handler
 (Old_Handler : out Parameterless_Handler;
 New_Handler : in Parameterless_Handler;
 Interrupt : in Interrupt_ID);

 procedure Detach_Handler
 (Interrupt : in Interrupt_ID);

 function Reference(Interrupt : Interrupt_ID)
 return System.Address;

private
 ... -- not specified by the language
end Ada.Interrupts;

package Ada.Interrupts.Names is
 implementation-defined : constant Interrupt_ID :=
 implementation-defined;
 . . .
 implementation-defined : constant Interrupt_ID :=
 implementation-defined;
end Ada.Interrupts.Names;

20

21

22

23/2

24

25

1

2

3/1

4

5

6

7

8

9

10

11

12

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

505 10 November 2006 The Package Interrupts C.3.2

Dynamic Semantics

The Interrupt_ID type is an implementation-defined discrete type used to identify interrupts.

The Is_Reserved function returns True if and only if the specified interrupt is reserved.

The Is_Attached function returns True if and only if a user-specified interrupt handler is attached to the
interrupt.

The Current_Handler function returns a value that represents the attached handler of the interrupt. If no
user-defined handler is attached to the interrupt, Current_Handler returns null.

The Attach_Handler procedure attaches the specified handler to the interrupt, overriding any existing
treatment (including a user handler) in effect for that interrupt. If New_Handler is null, the default
treatment is restored. If New_Handler designates a protected procedure to which the pragma Interrupt_-
Handler does not apply, Program_Error is raised. In this case, the operation does not modify the existing
interrupt treatment.

The Exchange_Handler procedure operates in the same manner as Attach_Handler with the addition that
the value returned in Old_Handler designates the previous treatment for the specified interrupt. If the
previous treatment is not a user-defined handler, null is returned.

The Detach_Handler procedure restores the default treatment for the specified interrupt.

For all operations defined in this package that take a parameter of type Interrupt_ID, with the exception of
Is_Reserved and Reference, a check is made that the specified interrupt is not reserved. Program_Error is
raised if this check fails.

If, by using the Attach_Handler, Detach_Handler, or Exchange_Handler procedures, an attempt is made to
detach a handler that was attached statically (using the pragma Attach_Handler), the handler is not
detached and Program_Error is raised.

The Reference function returns a value of type System.Address that can be used to attach a task entry via
an address clause (see J.7.1) to the interrupt specified by Interrupt. This function raises Program_Error if
attaching task entries to interrupts (or to this particular interrupt) is not supported.

Implementation Requirements

At no time during attachment or exchange of handlers shall the current handler of the corresponding
interrupt be undefined.

Documentation Requirements

If the Ceiling_Locking policy (see D.3) is in effect, the implementation shall document the default ceiling
priority assigned to a protected object that contains either the Attach_Handler or Interrupt_Handler
pragmas, but not the Interrupt_Priority pragma. This default need not be the same for all interrupts.

Implementation Advice

If implementation-defined forms of interrupt handler procedures are supported, such as protected
procedures with parameters, then for each such form of a handler, a type analogous to Parameterless_-
Handler should be specified in a child package of Interrupts, with the same operations as in the predefined
package Interrupts.

NOTES
8 The package Interrupts.Names contains implementation-defined names (and constant values) for the interrupts that are
supported by the implementation.

13

14

15

16/1

17

18/1

19

20

21

22/2

23

24/2

25

26

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

C.3.2 The Package Interrupts 10 November 2006 506

Examples

Example of interrupt handlers:
Device_Priority : constant
 array (1..5) of System.Interrupt_Priority := (...);
protected type Device_Interface
 (Int_ID : Ada.Interrupts.Interrupt_ID) is
 procedure Handler;
 pragma Attach_Handler(Handler, Int_ID);
 ...
 pragma Interrupt_Priority(Device_Priority(Int_ID));
end Device_Interface;
 ...
Device_1_Driver : Device_Interface(1);
 ...
Device_5_Driver : Device_Interface(5);
 ...

C.4 Preelaboration Requirements
This clause specifies additional implementation and documentation requirements for the Preelaborate
pragma (see 10.2.1).

Implementation Requirements

The implementation shall not incur any run-time overhead for the elaboration checks of subprograms and
protected_bodies declared in preelaborated library units.

The implementation shall not execute any memory write operations after load time for the elaboration of
constant objects declared immediately within the declarative region of a preelaborated library package, so
long as the subtype and initial expression (or default initial expressions if initialized by default) of the
object_declaration satisfy the following restrictions. The meaning of load time is implementation defined.

• Any subtype_mark denotes a statically constrained subtype, with statically constrained
subcomponents, if any;

• no subtype_mark denotes a controlled type, a private type, a private extension, a generic formal
private type, a generic formal derived type, or a descendant of such a type;

• any constraint is a static constraint;

• any allocator is for an access-to-constant type;

• any uses of predefined operators appear only within static expressions;

• any primaries that are names, other than attribute_references for the Access or Address
attributes, appear only within static expressions;

• any name that is not part of a static expression is an expanded name or direct_name that
statically denotes some entity;

• any discrete_choice of an array_aggregate is static;

• no language-defined check associated with the elaboration of the object_declaration can fail.

Documentation Requirements

The implementation shall document any circumstances under which the elaboration of a preelaborated
package causes code to be executed at run time.

The implementation shall document whether the method used for initialization of preelaborated variables
allows a partition to be restarted without reloading.

27

28

1

2

3

4

4.1/2

5

6

7

8

9

10

11

12

13

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

507 10 November 2006 Preelaboration Requirements C.4

Implementation Advice

It is recommended that preelaborated packages be implemented in such a way that there should be little or
no code executed at run time for the elaboration of entities not already covered by the Implementation
Requirements.

C.5 Pragma Discard_Names
A pragma Discard_Names may be used to request a reduction in storage used for the names of certain
entities.

Syntax

The form of a pragma Discard_Names is as follows:
 pragma Discard_Names[([On =>] local_name)];
A pragma Discard_Names is allowed only immediately within a declarative_part, immediately
within a package_specification, or as a configuration pragma.

Legality Rules

The local_name (if present) shall denote a non-derived enumeration first subtype, a tagged first subtype,
or an exception. The pragma applies to the type or exception. Without a local_name, the pragma applies
to all such entities declared after the pragma, within the same declarative region. Alternatively, the pragma
can be used as a configuration pragma. If the pragma applies to a type, then it applies also to all
descendants of the type.

Static Semantics

If a local_name is given, then a pragma Discard_Names is a representation pragma.

If the pragma applies to an enumeration type, then the semantics of the Wide_Wide_Image and
Wide_Wide_Value attributes are implementation defined for that type; the semantics of Image,
Wide_Image, Value, and Wide_Value are still defined in terms of Wide_Wide_Image and
Wide_Wide_Value. In addition, the semantics of Text_IO.Enumeration_IO are implementation defined. If
the pragma applies to a tagged type, then the semantics of the Tags.Wide_Wide_Expanded_Name function
are implementation defined for that type; the semantics of Tags.Expanded_Name and Tags.Wide_-
Expanded_Name are still defined in terms of Tags.Wide_Wide_Expanded_Name. If the pragma applies to
an exception, then the semantics of the Exceptions.Wide_Wide_Exception_Name function are
implementation defined for that exception; the semantics of Exceptions.Exception_Name and Exceptions.-
Wide_Exception_Name are still defined in terms of Exceptions.Wide_Wide_Exception_Name.

Implementation Advice

If the pragma applies to an entity, then the implementation should reduce the amount of storage used for
storing names associated with that entity.

C.6 Shared Variable Control
This clause specifies representation pragmas that control the use of shared variables.

Syntax

The form for pragmas Atomic, Volatile, Atomic_Components, and Volatile_Components is as
follows:

14

1

2

3

4

5

6

7/2

8

1

2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

C.6 Shared Variable Control 10 November 2006 508

 pragma Atomic(local_name);
 pragma Volatile(local_name);
 pragma Atomic_Components(array_local_name);
 pragma Volatile_Components(array_local_name);

An atomic type is one to which a pragma Atomic applies. An atomic object (including a component) is one
to which a pragma Atomic applies, or a component of an array to which a pragma Atomic_Components
applies, or any object of an atomic type, other than objects obtained by evaluating a slice.

A volatile type is one to which a pragma Volatile applies. A volatile object (including a component) is one
to which a pragma Volatile applies, or a component of an array to which a pragma Volatile_Components
applies, or any object of a volatile type. In addition, every atomic type or object is also defined to be
volatile. Finally, if an object is volatile, then so are all of its subcomponents (the same does not apply to
atomic).

Name Resolution Rules

The local_name in an Atomic or Volatile pragma shall resolve to denote either an object_declaration, a
non-inherited component_declaration, or a full_type_declaration. The array_local_name in an Atomic_-
Components or Volatile_Components pragma shall resolve to denote the declaration of an array type or an
array object of an anonymous type.

Legality Rules

It is illegal to apply either an Atomic or Atomic_Components pragma to an object or type if the
implementation cannot support the indivisible reads and updates required by the pragma (see below).

It is illegal to specify the Size attribute of an atomic object, the Component_Size attribute for an array type
with atomic components, or the layout attributes of an atomic component, in a way that prevents the
implementation from performing the required indivisible reads and updates.

If an atomic object is passed as a parameter, then the type of the formal parameter shall either be atomic or
allow pass by copy (that is, not be a nonatomic by-reference type). If an atomic object is used as an actual
for a generic formal object of mode in out, then the type of the generic formal object shall be atomic. If
the prefix of an attribute_reference for an Access attribute denotes an atomic object (including a
component), then the designated type of the resulting access type shall be atomic. If an atomic type is used
as an actual for a generic formal derived type, then the ancestor of the formal type shall be atomic or allow
pass by copy. Corresponding rules apply to volatile objects and types.

If a pragma Volatile, Volatile_Components, Atomic, or Atomic_Components applies to a stand-alone
constant object, then a pragma Import shall also apply to it.

Static Semantics

These pragmas are representation pragmas (see 13.1).

Dynamic Semantics

For an atomic object (including an atomic component) all reads and updates of the object as a whole are
indivisible.

For a volatile object all reads and updates of the object as a whole are performed directly to memory.

Two actions are sequential (see 9.10) if each is the read or update of the same atomic object.

3

4

5

6

7/2

8

9

10

11

12

13

14

15

16

17

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

509 10 November 2006 Shared Variable Control C.6

If a type is atomic or volatile and it is not a by-copy type, then the type is defined to be a by-reference
type. If any subcomponent of a type is atomic or volatile, then the type is defined to be a by-reference
type.

If an actual parameter is atomic or volatile, and the corresponding formal parameter is not, then the
parameter is passed by copy.

Implementation Requirements

The external effect of a program (see 1.1.3) is defined to include each read and update of a volatile or
atomic object. The implementation shall not generate any memory reads or updates of atomic or volatile
objects other than those specified by the program.

If a pragma Pack applies to a type any of whose subcomponents are atomic, the implementation shall not
pack the atomic subcomponents more tightly than that for which it can support indivisible reads and
updates.

Implementation Advice

A load or store of a volatile object whose size is a multiple of System.Storage_Unit and whose alignment
is nonzero, should be implemented by accessing exactly the bits of the object and no others.

A load or store of an atomic object should, where possible, be implemented by a single load or store
instruction.

NOTES
9 An imported volatile or atomic constant behaves as a constant (i.e. read-only) with respect to other parts of the Ada
program, but can still be modified by an “external source.”

C.7 Task Information
This clause describes operations and attributes that can be used to obtain the identity of a task. In addition,
a package that associates user-defined information with a task is defined. Finally, a package that associates
termination procedures with a task or set of tasks is defined.

C.7.1 The Package Task_Identification
Static Semantics

The following language-defined library package exists:
package Ada.Task_Identification is
 pragma Preelaborate(Task_Identification);
 type Task_Id is private;
 pragma Preelaborable_Initialization (Task_Id);
 Null_Task_Id : constant Task_Id;
 function "=" (Left, Right : Task_Id) return Boolean;

 function Image (T : Task_Id) return String;
 function Current_Task return Task_Id;
 procedure Abort_Task (T : in Task_Id);

 function Is_Terminated(T : Task_Id) return Boolean;
 function Is_Callable (T : Task_Id) return Boolean;
private
 ... -- not specified by the language
end Ada.Task_Identification;

18

19

20

21

22/2

23/2

24

1/2

1

2/2

3/1

4

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

C.7.1 The Package Task_Identification 10 November 2006 510

Dynamic Semantics

A value of the type Task_Id identifies an existent task. The constant Null_Task_Id does not identify any
task. Each object of the type Task_Id is default initialized to the value of Null_Task_Id.

The function "=" returns True if and only if Left and Right identify the same task or both have the value
Null_Task_Id.

The function Image returns an implementation-defined string that identifies T. If T equals Null_Task_Id,
Image returns an empty string.

The function Current_Task returns a value that identifies the calling task.

The effect of Abort_Task is the same as the abort_statement for the task identified by T. In addition, if T
identifies the environment task, the entire partition is aborted, See E.1.

The functions Is_Terminated and Is_Callable return the value of the corresponding attribute of the task
identified by T.

For a prefix T that is of a task type (after any implicit dereference), the following attribute is defined:
T'Identity Yields a value of the type Task_Id that identifies the task denoted by T.

For a prefix E that denotes an entry_declaration, the following attribute is defined:
E'Caller Yields a value of the type Task_Id that identifies the task whose call is now being serviced.

Use of this attribute is allowed only inside an entry_body or accept_statement
corresponding to the entry_declaration denoted by E.

Program_Error is raised if a value of Null_Task_Id is passed as a parameter to Abort_Task,
Is_Terminated, and Is_Callable.

Abort_Task is a potentially blocking operation (see 9.5.1).

Bounded (Run-Time) Errors

It is a bounded error to call the Current_Task function from an entry body, interrupt handler, or
finalization of a task attribute. Program_Error is raised, or an implementation-defined value of the type
Task_Id is returned.

Erroneous Execution

If a value of Task_Id is passed as a parameter to any of the operations declared in this package (or any
language-defined child of this package), and the corresponding task object no longer exists, the execution
of the program is erroneous.

Documentation Requirements

The implementation shall document the effect of calling Current_Task from an entry body or interrupt
handler.

NOTES
10 This package is intended for use in writing user-defined task scheduling packages and constructing server tasks.
Current_Task can be used in conjunction with other operations requiring a task as an argument such as Set_Priority (see
D.5).

11 The function Current_Task and the attribute Caller can return a Task_Id value that identifies the environment task.

5

6

7

8

9

10

11

12

13

14

15

16

17/2

18

19

20

21

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

511 10 November 2006 The Package Task_Attributes C.7.2

C.7.2 The Package Task_Attributes
Static Semantics

The following language-defined generic library package exists:
with Ada.Task_Identification; use Ada.Task_Identification;
generic
 type Attribute is private;
 Initial_Value : in Attribute;
package Ada.Task_Attributes is

 type Attribute_Handle is access all Attribute;

 function Value(T : Task_Id := Current_Task)
 return Attribute;

 function Reference(T : Task_Id := Current_Task)
 return Attribute_Handle;

 procedure Set_Value(Val : in Attribute;
 T : in Task_Id := Current_Task);
 procedure Reinitialize(T : in Task_Id := Current_Task);

end Ada.Task_Attributes;

Dynamic Semantics

When an instance of Task_Attributes is elaborated in a given active partition, an object of the actual type
corresponding to the formal type Attribute is implicitly created for each task (of that partition) that exists
and is not yet terminated. This object acts as a user-defined attribute of the task. A task created previously
in the partition and not yet terminated has this attribute from that point on. Each task subsequently created
in the partition will have this attribute when created. In all these cases, the initial value of the given
attribute is Initial_Value.

The Value operation returns the value of the corresponding attribute of T.

The Reference operation returns an access value that designates the corresponding attribute of T.

The Set_Value operation performs any finalization on the old value of the attribute of T and assigns Val to
that attribute (see 5.2 and 7.6).

The effect of the Reinitialize operation is the same as Set_Value where the Val parameter is replaced with
Initial_Value.

For all the operations declared in this package, Tasking_Error is raised if the task identified by T is
terminated. Program_Error is raised if the value of T is Null_Task_Id.

After a task has terminated, all of its attributes are finalized, unless they have been finalized earlier. When
the master of an instantiation of Ada.Task_Attributes is finalized, the corresponding attribute of each task
is finalized, unless it has been finalized earlier.

Bounded (Run-Time) Errors

If the package Ada.Task_Attributes is instantiated with a controlled type and the controlled type has user-
defined Adjust or Finalize operations that in turn access task attributes by any of the above operations,
then a call of Set_Value of the instantiated package constitutes a bounded error. The call may perform as
expected or may result in forever blocking the calling task and subsequently some or all tasks of the
partition.

1

2

3

4

5

6

7

8

9

10

11

12

13

13.1/2

13.2/1

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

C.7.2 The Package Task_Attributes 10 November 2006 512

Erroneous Execution

It is erroneous to dereference the access value returned by a given call on Reference after a subsequent call
on Reinitialize for the same task attribute, or after the associated task terminates.

If a value of Task_Id is passed as a parameter to any of the operations declared in this package and the
corresponding task object no longer exists, the execution of the program is erroneous.

An access to a task attribute via a value of type Attribute_Handle is erroneous if executed concurrently
with another such access or a call of any of the operations declared in package Task_Attributes. An access
to a task attribute is erroneous if executed concurrently with or after the finalization of the task attribute.

Implementation Requirements

For a given attribute of a given task, the implementation shall perform the operations declared in this
package atomically with respect to any of these operations of the same attribute of the same task. The
granularity of any locking mechanism necessary to achieve such atomicity is implementation defined.

After task attributes are finalized, the implementation shall reclaim any storage associated with the
attributes.

Documentation Requirements

The implementation shall document the limit on the number of attributes per task, if any, and the limit on
the total storage for attribute values per task, if such a limit exists.

In addition, if these limits can be configured, the implementation shall document how to configure them.

Metrics

The implementation shall document the following metrics: A task calling the following subprograms shall
execute at a sufficiently high priority as to not be preempted during the measurement period. This period
shall start just before issuing the call and end just after the call completes. If the attributes of task T are
accessed by the measurement tests, no other task shall access attributes of that task during the
measurement period. For all measurements described here, the Attribute type shall be a scalar type whose
size is equal to the size of the predefined type Integer. For each measurement, two cases shall be
documented: one where the accessed attributes are of the calling task (that is, the default value for the T
parameter is used), and the other, where T identifies another, non-terminated, task.

The following calls (to subprograms in the Task_Attributes package) shall be measured:
• a call to Value, where the return value is Initial_Value;

• a call to Value, where the return value is not equal to Initial_Value;

• a call to Reference, where the return value designates a value equal to Initial_Value;

• a call to Reference, where the return value designates a value not equal to Initial_Value;

• a call to Set_Value where the Val parameter is not equal to Initial_Value and the old attribute
value is equal to Initial_Value;

• a call to Set_Value where the Val parameter is not equal to Initial_Value and the old attribute
value is not equal to Initial_Value.

Implementation Permissions

An implementation need not actually create the object corresponding to a task attribute until its value is set
to something other than that of Initial_Value, or until Reference is called for the task attribute. Similarly,
when the value of the attribute is to be reinitialized to that of Initial_Value, the object may instead be

14

15

15.1/2

16/1

17/2

18

19

20/2

21

22

23

24

25

26/2

27

28

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

513 10 November 2006 The Package Task_Attributes C.7.2

finalized and its storage reclaimed, to be recreated when needed later. While the object does not exist, the
function Value may simply return Initial_Value, rather than implicitly creating the object.

An implementation is allowed to place restrictions on the maximum number of attributes a task may have,
the maximum size of each attribute, and the total storage size allocated for all the attributes of a task.

Implementation Advice

Some implementations are targeted to domains in which memory use at run time must be completely
deterministic. For such implementations, it is recommended that the storage for task attributes will be pre-
allocated statically and not from the heap. This can be accomplished by either placing restrictions on the
number and the size of the attributes of a task, or by using the pre-allocated storage for the first N attribute
objects, and the heap for the others. In the latter case, N should be documented.

Finalization of task attributes and reclamation of associated storage should be performed as soon as
possible after task termination.

NOTES
12 An attribute always exists (after instantiation), and has the initial value. It need not occupy memory until the first
operation that potentially changes the attribute value. The same holds true after Reinitialize.

13 The result of the Reference function should be used with care; it is always safe to use that result in the task body
whose attribute is being accessed. However, when the result is being used by another task, the programmer must make
sure that the task whose attribute is being accessed is not yet terminated. Failing to do so could make the program
execution erroneous.

This paragraph was deleted.

C.7.3 The Package Task_Termination
Static Semantics

The following language-defined library package exists:
with Ada.Task_Identification;
with Ada.Exceptions;
package Ada.Task_Termination is
 pragma Preelaborate(Task_Termination);

 type Cause_Of_Termination is (Normal, Abnormal, Unhandled_Exception);

 type Termination_Handler is access protected procedure
 (Cause : in Cause_Of_Termination;
 T : in Ada.Task_Identification.Task_Id;
 X : in Ada.Exceptions.Exception_Occurrence);

 procedure Set_Dependents_Fallback_Handler
 (Handler: in Termination_Handler);
 function Current_Task_Fallback_Handler return Termination_Handler;

 procedure Set_Specific_Handler
 (T : in Ada.Task_Identification.Task_Id;
 Handler : in Termination_Handler);
 function Specific_Handler (T : Ada.Task_Identification.Task_Id)
 return Termination_Handler;

end Ada.Task_Termination;

Dynamic Semantics

The type Termination_Handler identifies a protected procedure to be executed by the implementation
when a task terminates. Such a protected procedure is called a handler. In all cases T identifies the task
that is terminating. If the task terminates due to completing the last statement of its body, or as a result of
waiting on a terminate alternative, then Cause is set to Normal and X is set to Null_Occurrence. If the task

29

30/2

30.1/2

31

32

33/2

1/2

2/2

3/2

4/2

5/2

6/2

7/2

8/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

C.7.3 The Package Task_Termination 10 November 2006 514

terminates because it is being aborted, then Cause is set to Abnormal and X is set to Null_Occurrence. If
the task terminates because of an exception raised by the execution of its task_body, then Cause is set to
Unhandled_Exception and X is set to the associated exception occurrence.

Each task has two termination handlers, a fall-back handler and a specific handler. The specific handler
applies only to the task itself, while the fall-back handler applies only to the dependent tasks of the task. A
handler is said to be set if it is associated with a non-null value of type Termination_Handler, and cleared
otherwise. When a task is created, its specific handler and fall-back handler are cleared.

The procedure Set_Dependents_Fallback_Handler changes the fall-back handler for the calling task; if
Handler is null, that fall-back handler is cleared, otherwise it is set to be Handler.all. If a fall-back handler
had previously been set it is replaced.

The function Current_Task_Fallback_Handler returns the fall-back handler that is currently set for the
calling task, if one is set; otherwise it returns null.

The procedure Set_Specific_Handler changes the specific handler for the task identified by T; if Handler
is null, that specific handler is cleared, otherwise it is set to be Handler.all. If a specific handler had
previously been set it is replaced.

The function Specific_Handler returns the specific handler that is currently set for the task identified by T,
if one is set; otherwise it returns null.

As part of the finalization of a task_body, after performing the actions specified in 7.6 for finalization of a
master, the specific handler for the task, if one is set, is executed. If the specific handler is cleared, a
search for a fall-back handler proceeds by recursively following the master relationship for the task. If a
task is found whose fall-back handler is set, that handler is executed; otherwise, no handler is executed.

For Set_Specific_Handler or Specific_Handler, Tasking_Error is raised if the task identified by T has
already terminated. Program_Error is raised if the value of T is Ada.Task_Identification.Null_Task_Id.

An exception propagated from a handler that is invoked as part of the termination of a task has no effect.

Erroneous Execution

For a call of Set_Specific_Handler or Specific_Handler, if the task identified by T no longer exists, the
execution of the program is erroneous.

9/2

10/2

11/2

12/2

13/2

14/2

15/2

16/2

17/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

515 10 November 2006 Real-Time Systems D

Annex D
(normative)

Real-Time Systems
This Annex specifies additional characteristics of Ada implementations intended for real-time systems
software. To conform to this Annex, an implementation shall also conform to the Systems Programming
Annex.

Metrics

The metrics are documentation requirements; an implementation shall document the values of the
language-defined metrics for at least one configuration of hardware or an underlying system supported by
the implementation, and shall document the details of that configuration.

The metrics do not necessarily yield a simple number. For some, a range is more suitable, for others a
formula dependent on some parameter is appropriate, and for others, it may be more suitable to break the
metric into several cases. Unless specified otherwise, the metrics in this annex are expressed in processor
clock cycles. For metrics that require documentation of an upper bound, if there is no upper bound, the
implementation shall report that the metric is unbounded.

NOTES
1 The specification of the metrics makes a distinction between upper bounds and simple execution times. Where
something is just specified as “the execution time of” a piece of code, this leaves one the freedom to choose a
nonpathological case. This kind of metric is of the form “there exists a program such that the value of the metric is V”.
Conversely, the meaning of upper bounds is “there is no program such that the value of the metric is greater than V”. This
kind of metric can only be partially tested, by finding the value of V for one or more test programs.

2 The metrics do not cover the whole language; they are limited to features that are specified in Annex C, “Systems
Programming” and in this Annex. The metrics are intended to provide guidance to potential users as to whether a
particular implementation of such a feature is going to be adequate for a particular real-time application. As such, the
metrics are aimed at known implementation choices that can result in significant performance differences.

3 The purpose of the metrics is not necessarily to provide fine-grained quantitative results or to serve as a comparison
between different implementations on the same or different platforms. Instead, their goal is rather qualitative; to define a
standard set of approximate values that can be measured and used to estimate the general suitability of an implementation,
or to evaluate the comparative utility of certain features of an implementation for a particular real-time application.

D.1 Task Priorities
This clause specifies the priority model for real-time systems. In addition, the methods for specifying
priorities are defined.

Syntax

The form of a pragma Priority is as follows:
 pragma Priority(expression);
The form of a pragma Interrupt_Priority is as follows:
 pragma Interrupt_Priority[(expression)];

Name Resolution Rules

The expected type for the expression in a Priority or Interrupt_Priority pragma is Integer.

1

2

3

4

5

6

1

2

3

4

5

6

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

D.1 Task Priorities 10 November 2006 516

Legality Rules

A Priority pragma is allowed only immediately within a task_definition, a protected_definition, or the
declarative_part of a subprogram_body. An Interrupt_Priority pragma is allowed only immediately
within a task_definition or a protected_definition. At most one such pragma shall appear within a given
construct.

For a Priority pragma that appears in the declarative_part of a subprogram_body, the expression shall be
static, and its value shall be in the range of System.Priority.

Static Semantics

The following declarations exist in package System:
subtype Any_Priority is Integer range implementation-defined;
subtype Priority is Any_Priority
 range Any_Priority'First .. implementation-defined;
subtype Interrupt_Priority is Any_Priority
 range Priority'Last+1 .. Any_Priority'Last;

Default_Priority : constant Priority := (Priority'First + Priority'Last)/2;

The full range of priority values supported by an implementation is specified by the subtype Any_Priority.
The subrange of priority values that are high enough to require the blocking of one or more interrupts is
specified by the subtype Interrupt_Priority. The subrange of priority values below System.Interrupt_-
Priority'First is specified by the subtype System.Priority.

The priority specified by a Priority or Interrupt_Priority pragma is the value of the expression in the
pragma, if any. If there is no expression in an Interrupt_Priority pragma, the priority value is
Interrupt_Priority'Last.

Dynamic Semantics

A Priority pragma has no effect if it occurs in the declarative_part of the subprogram_body of a
subprogram other than the main subprogram.

A task priority is an integer value that indicates a degree of urgency and is the basis for resolving
competing demands of tasks for resources. Unless otherwise specified, whenever tasks compete for
processors or other implementation-defined resources, the resources are allocated to the task with the
highest priority value. The base priority of a task is the priority with which it was created, or to which it
was later set by Dynamic_Priorities.Set_Priority (see D.5). At all times, a task also has an active priority,
which generally reflects its base priority as well as any priority it inherits from other sources. Priority
inheritance is the process by which the priority of a task or other entity (e.g. a protected object; see D.3) is
used in the evaluation of another task's active priority.

The effect of specifying such a pragma in a protected_definition is discussed in D.3.

The expression in a Priority or Interrupt_Priority pragma that appears in a task_definition is evaluated for
each task object (see 9.1). For a Priority pragma, the value of the expression is converted to the subtype
Priority; for an Interrupt_Priority pragma, this value is converted to the subtype Any_Priority. The priority
value is then associated with the task object whose task_definition contains the pragma.

Likewise, the priority value is associated with the environment task if the pragma appears in the
declarative_part of the main subprogram.

The initial value of a task's base priority is specified by default or by means of a Priority or
Interrupt_Priority pragma. After a task is created, its base priority can be changed only by a call to
Dynamic_Priorities.Set_Priority (see D.5). The initial base priority of a task in the absence of a pragma is

7

8

9

10

11

12

13

14

15

16

17

18

19

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

517 10 November 2006 Task Priorities D.1

the base priority of the task that creates it at the time of creation (see 9.1). If a pragma Priority does not
apply to the main subprogram, the initial base priority of the environment task is System.Default_Priority.
The task's active priority is used when the task competes for processors. Similarly, the task's active priority
is used to determine the task's position in any queue when Priority_Queuing is specified (see D.4).

At any time, the active priority of a task is the maximum of all the priorities the task is inheriting at that
instant. For a task that is not held (see D.11), its base priority is a source of priority inheritance unless
otherwise specified for a particular task dispatching policy. Other sources of priority inheritance are
specified under the following conditions:

• During activation, a task being activated inherits the active priority that its activator (see 9.2)
had at the time the activation was initiated.

• During rendezvous, the task accepting the entry call inherits the priority of the entry call (see
9.5.3 and D.4).

• During a protected action on a protected object, a task inherits the ceiling priority of the
protected object (see 9.5 and D.3).

In all of these cases, the priority ceases to be inherited as soon as the condition calling for the inheritance
no longer exists.

Implementation Requirements

The range of System.Interrupt_Priority shall include at least one value.

The range of System.Priority shall include at least 30 values.

NOTES
4 The priority expression can include references to discriminants of the enclosing type.

5 It is a consequence of the active priority rules that at the point when a task stops inheriting a priority from another
source, its active priority is re-evaluated. This is in addition to other instances described in this Annex for such re-
evaluation.

6 An implementation may provide a non-standard mode in which tasks inherit priorities under conditions other than those
specified above.

D.2 Priority Scheduling
This clause describes the rules that determine which task is selected for execution when more than one
task is ready (see 9).

D.2.1 The Task Dispatching Model
The task dispatching model specifies task scheduling, based on conceptual priority-ordered ready queues.

Static Semantics

The following language-defined library package exists:
package Ada.Dispatching is
 pragma Pure(Dispatching);
 Dispatching_Policy_Error : exception;
end Ada.Dispatching;

Dispatching serves as the parent of other language-defined library units concerned with task dispatching.

20/2

21/1

22/1

23

24

25

26

27

28

29

1/2

1/2

1.1/2

1.2/2

1.3/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

D.2.1 The Task Dispatching Model 10 November 2006 518

Dynamic Semantics

A task can become a running task only if it is ready (see 9) and the execution resources required by that
task are available. Processors are allocated to tasks based on each task's active priority.

It is implementation defined whether, on a multiprocessor, a task that is waiting for access to a protected
object keeps its processor busy.

Task dispatching is the process by which one ready task is selected for execution on a processor. This
selection is done at certain points during the execution of a task called task dispatching points. A task
reaches a task dispatching point whenever it becomes blocked, and when it terminates. Other task
dispatching points are defined throughout this Annex for specific policies.

Task dispatching policies are specified in terms of conceptual ready queues and task states. A ready queue
is an ordered list of ready tasks. The first position in a queue is called the head of the queue, and the last
position is called the tail of the queue. A task is ready if it is in a ready queue, or if it is running. Each
processor has one ready queue for each priority value. At any instant, each ready queue of a processor
contains exactly the set of tasks of that priority that are ready for execution on that processor, but are not
running on any processor; that is, those tasks that are ready, are not running on any processor, and can be
executed using that processor and other available resources. A task can be on the ready queues of more
than one processor.

Each processor also has one running task, which is the task currently being executed by that processor.
Whenever a task running on a processor reaches a task dispatching point it goes back to one or more ready
queues; a task (possibly the same task) is then selected to run on that processor. The task selected is the
one at the head of the highest priority nonempty ready queue; this task is then removed from all ready
queues to which it belongs.

This paragraph was deleted.

This paragraph was deleted.

Implementation Permissions

An implementation is allowed to define additional resources as execution resources, and to define the
corresponding allocation policies for them. Such resources may have an implementation-defined effect on
task dispatching.

An implementation may place implementation-defined restrictions on tasks whose active priority is in the
Interrupt_Priority range.

For optimization purposes, an implementation may alter the points at which task dispatching occurs, in an
implementation-defined manner. However, a delay_statement always corresponds to at least one task
dispatching point.

NOTES
7 Section 9 specifies under which circumstances a task becomes ready. The ready state is affected by the rules for task
activation and termination, delay statements, and entry calls. When a task is not ready, it is said to be blocked.

8 An example of a possible implementation-defined execution resource is a page of physical memory, which needs to be
loaded with a particular page of virtual memory before a task can continue execution.

9 The ready queues are purely conceptual; there is no requirement that such lists physically exist in an implementation.

10 While a task is running, it is not on any ready queue. Any time the task that is running on a processor is added to a
ready queue, a new running task is selected for that processor.

11 In a multiprocessor system, a task can be on the ready queues of more than one processor. At the extreme, if several
processors share the same set of ready tasks, the contents of their ready queues is identical, and so they can be viewed as

2/2

3

4/2

5/2

6/2

7/2

8/2

9/2

10

10.1/2

11

12

13

14

15

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

519 10 November 2006 The Task Dispatching Model D.2.1

sharing one ready queue, and can be implemented that way. Thus, the dispatching model covers multiprocessors where
dispatching is implemented using a single ready queue, as well as those with separate dispatching domains.

12 The priority of a task is determined by rules specified in this subclause, and under D.1, “Task Priorities”, D.3,
“Priority Ceiling Locking”, and D.5, “Dynamic Priorities”.

13 The setting of a task's base priority as a result of a call to Set_Priority does not always take effect immediately when
Set_Priority is called. The effect of setting the task's base priority is deferred while the affected task performs a protected
action.

D.2.2 Task Dispatching Pragmas
This clause allows a single task dispatching policy to be defined for all priorities, or the range of priorities
to be split into subranges that are assigned individual dispatching policies.

Syntax

The form of a pragma Task_Dispatching_Policy is as follows:
 pragma Task_Dispatching_Policy(policy_identifier);
The form of a pragma Priority_Specific_Dispatching is as follows:
 pragma Priority_Specific_Dispatching (
 policy_identifier, first_priority_expression, last_priority_expression);

Name Resolution Rules

The expected type for first_priority_expression and last_priority_expression is Integer.

Legality Rules

The policy_identifier used in a pragma Task_Dispatching_Policy shall be the name of a task dispatching
policy.

The policy_identifier used in a pragma Priority_Specific_Dispatching shall be the name of a task
dispatching policy.

Both first_priority_expression and last_priority_expression shall be static expressions in the range of
System.Any_Priority; last_priority_expression shall have a value greater than or equal to first_priority_-
expression.

Static Semantics

Pragma Task_Dispatching_Policy specifies the single task dispatching policy.

Pragma Priority_Specific_Dispatching specifies the task dispatching policy for the specified range of
priorities. Tasks with base priorities within the range of priorities specified in a
Priority_Specific_Dispatching pragma have their active priorities determined according to the specified
dispatching policy. Tasks with active priorities within the range of priorities specified in a
Priority_Specific_Dispatching pragma are dispatched according to the specified dispatching policy.

If a partition contains one or more Priority_Specific_Dispatching pragmas the dispatching policy for
priorities not covered by any Priority_Specific_Dispatching pragmas is FIFO_Within_Priorities.

Post-Compilation Rules

A Task_Dispatching_Policy pragma is a configuration pragma. A Priority_Specific_Dispatching pragma is
a configuration pragma.

16

17/2

0.1/2

1

2

2.1/2

2.2/2

2.3/2

3/2

3.1/2

3.2/2

3.3/2

3.4/2

3.5/2

4/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

D.2.2 Task Dispatching Pragmas 10 November 2006 520

The priority ranges specified in more than one Priority_Specific_Dispatching pragma within the same
partition shall not be overlapping.

If a partition contains one or more Priority_Specific_Dispatching pragmas it shall not contain a
Task_Dispatching_Policy pragma.

This paragraph was deleted.

Dynamic Semantics

A task dispatching policy specifies the details of task dispatching that are not covered by the basic task
dispatching model. These rules govern when tasks are inserted into and deleted from the ready queues. A
single task dispatching policy is specified by a Task_Dispatching_Policy pragma. Pragma
Priority_Specific_Dispatching assigns distinct dispatching policies to subranges of System.Any_Priority.

If neither pragma applies to any of the program units comprising a partition, the task dispatching policy
for that partition is unspecified.

If a partition contains one or more Priority_Specific_Dispatching pragmas a task dispatching point occurs
for the currently running task of a processor whenever there is a non-empty ready queue for that processor
with a higher priority than the priority of the running task.

A task that has its base priority changed may move from one dispatching policy to another. It is
immediately subject to the new dispatching policy.

Paragraphs 7 through 13 were moved to D.2.3.

Implementation Requirements

An implementation shall allow, for a single partition, both the locking policy (see D.3) to be specified as
Ceiling_Locking and also one or more Priority_Specific_Dispatching pragmas to be given.

Documentation Requirements

Paragraphs 14 through 16 were moved to D.2.3.

Implementation Permissions

Implementations are allowed to define other task dispatching policies, but need not support more than one
task dispatching policy per partition.

An implementation need not support pragma Priority_Specific_Dispatching if it is infeasible to support it
in the target environment.

NOTES
Paragraphs 19 through 21 were deleted.

D.2.3 Preemptive Dispatching
This clause defines a preemptive task dispatching policy.

Static Semantics

The policy_identifier FIFO_Within_Priorities is a task dispatching policy.

Dynamic Semantics

When FIFO_Within_Priorities is in effect, modifications to the ready queues occur only as follows:

4.1/2

4.2/2

5/2

6/2

6.1/2

6.2/2

6.3/2

13.1/2

17/2

18/2

1/2

2/2

3/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

521 10 November 2006 Preemptive Dispatching D.2.3

• When a blocked task becomes ready, it is added at the tail of the ready queue for its active
priority.

• When the active priority of a ready task that is not running changes, or the setting of its base
priority takes effect, the task is removed from the ready queue for its old active priority and is
added at the tail of the ready queue for its new active priority, except in the case where the
active priority is lowered due to the loss of inherited priority, in which case the task is added at
the head of the ready queue for its new active priority.

• When the setting of the base priority of a running task takes effect, the task is added to the tail of
the ready queue for its active priority.

• When a task executes a delay_statement that does not result in blocking, it is added to the tail of
the ready queue for its active priority.

Each of the events specified above is a task dispatching point (see D.2.1).

A task dispatching point occurs for the currently running task of a processor whenever there is a nonempty
ready queue for that processor with a higher priority than the priority of the running task. The currently
running task is said to be preempted and it is added at the head of the ready queue for its active priority.

Implementation Requirements

An implementation shall allow, for a single partition, both the task dispatching policy to be specified as
FIFO_Within_Priorities and also the locking policy (see D.3) to be specified as Ceiling_Locking.

Documentation Requirements

Priority inversion is the duration for which a task remains at the head of the highest priority nonempty
ready queue while the processor executes a lower priority task. The implementation shall document:

• The maximum priority inversion a user task can experience due to activity of the implementation
(on behalf of lower priority tasks), and

• whether execution of a task can be preempted by the implementation processing of delay
expirations for lower priority tasks, and if so, for how long.
NOTES
14 If the active priority of a running task is lowered due to loss of inherited priority (as it is on completion of a protected
operation) and there is a ready task of the same active priority that is not running, the running task continues to run
(provided that there is no higher priority task).

15 Setting the base priority of a ready task causes the task to move to the tail of the queue for its active priority,
regardless of whether the active priority of the task actually changes.

D.2.4 Non-Preemptive Dispatching
This clause defines a non-preemptive task dispatching policy.

Static Semantics

The policy_identifier Non_Preemptive_FIFO_Within_Priorities is a task dispatching policy.

Legality Rules

Non_Preemptive_FIFO_Within_Priorities shall not be specified as the policy_identifier of pragma
Priority_Specific_Dispatching (see D.2.2).

4/2

5/2

6/2

7/2

8/2

9/2

10/2

11/2

12/2

13/2

14/2

15/2

1/2

2/2

3/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

D.2.4 Non-Preemptive Dispatching 10 November 2006 522

Dynamic Semantics

When Non_Preemptive_FIFO_Within_Priorities is in effect, modifications to the ready queues occur only
as follows:

• When a blocked task becomes ready, it is added at the tail of the ready queue for its active
priority.

• When the active priority of a ready task that is not running changes, or the setting of its base
priority takes effect, the task is removed from the ready queue for its old active priority and is
added at the tail of the ready queue for its new active priority.

• When the setting of the base priority of a running task takes effect, the task is added to the tail of
the ready queue for its active priority.

• When a task executes a delay_statement that does not result in blocking, it is added to the tail of
the ready queue for its active priority.

For this policy, a non-blocking delay_statement is the only non-blocking event that is a task dispatching
point (see D.2.1).

Implementation Requirements

An implementation shall allow, for a single partition, both the task dispatching policy to be specified as
Non_Preemptive_FIFO_Within_Priorities and also the locking policy (see D.3) to be specified as
Ceiling_Locking.

Implementation Permissions

Since implementations are allowed to round all ceiling priorities in subrange System.Priority to
System.Priority'Last (see D.3), an implementation may allow a task to execute within a protected object
without raising its active priority provided the associated protected unit does not contain pragma
Interrupt_Priority, Interrupt_Handler, or Attach_Handler.

D.2.5 Round Robin Dispatching
This clause defines the task dispatching policy Round_Robin_Within_Priorities and the package
Round_Robin.

Static Semantics

The policy_identifier Round_Robin_Within_Priorities is a task dispatching policy.

The following language-defined library package exists:
with System;
with Ada.Real_Time;
package Ada.Dispatching.Round_Robin is
 Default_Quantum : constant Ada.Real_Time.Time_Span :=
 implementation-defined;
 procedure Set_Quantum (Pri : in System.Priority;
 Quantum : in Ada.Real_Time.Time_Span);
 procedure Set_Quantum (Low, High : in System.Priority;
 Quantum : in Ada.Real_Time.Time_Span);
 function Actual_Quantum (Pri : System.Priority) return
Ada.Real_Time.Time_Span;
 function Is_Round_Robin (Pri : System.Priority) return Boolean;
end Ada.Dispatching.Round_Robin;

4/2

5/2

6/2

7/2

8/2

9/2

10/2

11/2

1/2

2/2

3/2

4/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

523 10 November 2006 Round Robin Dispatching D.2.5

When task dispatching policy Round_Robin_Within_Priorities is the single policy in effect for a partition,
each task with priority in the range of System.Interrupt_Priority is dispatched according to policy
FIFO_Within_Priorities.

Dynamic Semantics

The procedures Set_Quantum set the required Quantum value for a single priority level Pri or a range of
priority levels Low .. High. If no quantum is set for a Round Robin priority level, Default_Quantum is
used.

The function Actual_Quantum returns the actual quantum used by the implementation for the priority level
Pri.

The function Is_Round_Robin returns True if priority Pri is covered by task dispatching policy
Round_Robin_Within_Priorities; otherwise it returns False.

A call of Actual_Quantum or Set_Quantum raises exception Dispatching.Dispatching_Policy_Error if a
predefined policy other than Round_Robin_Within_Priorities applies to the specified priority or any of the
priorities in the specified range.

For Round_Robin_Within_Priorities, the dispatching rules for FIFO_Within_Priorities apply with the
following additional rules:

• When a task is added or moved to the tail of the ready queue for its base priority, it has an
execution time budget equal to the quantum for that priority level. This will also occur when a
blocked task becomes executable again.

• When a task is preempted (by a higher priority task) and is added to the head of the ready queue
for its priority level, it retains its remaining budget.

• While a task is executing, its budget is decreased by the amount of execution time it uses. The
accuracy of this accounting is the same as that for execution time clocks (see D.14).

• When a task has exhausted its budget and is without an inherited priority (and is not executing
within a protected operation), it is moved to the tail of the ready queue for its priority level. This
is a task dispatching point.

Implementation Requirements

An implementation shall allow, for a single partition, both the task dispatching policy to be specified as
Round_Robin_Within_Priorities and also the locking policy (see D.3) to be specified as Ceiling_Locking.

Documentation Requirements

An implementation shall document the quantum values supported.

An implementation shall document the accuracy with which it detects the exhaustion of the budget of a
task.

NOTES
16 Due to implementation constraints, the quantum value returned by Actual_Quantum might not be identical to that set
with Set_Quantum.

17 A task that executes continuously with an inherited priority will not be subject to round robin dispatching.

5/2

6/2

7/2

8/2

9/2

10/2

11/2

12/2

13/2

14/2

15/2

16/2

17/2

18/2

19/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

D.2.6 Earliest Deadline First Dispatching 10 November 2006 524

D.2.6 Earliest Deadline First Dispatching
The deadline of a task is an indication of the urgency of the task; it represents a point on an ideal physical
time line. The deadline might affect how resources are allocated to the task.

This clause defines a package for representing the deadline of a task and a dispatching policy that defines
Earliest Deadline First (EDF) dispatching. A pragma is defined to assign an initial deadline to a task.

Syntax

The form of a pragma Relative_Deadline is as follows:
 pragma Relative_Deadline (relative_deadline_expression);

Name Resolution Rules

The expected type for relative_deadline_expression is Real_Time.Time_Span.

Legality Rules

A Relative_Deadline pragma is allowed only immediately within a task_definition or the declarative_part
of a subprogram_body. At most one such pragma shall appear within a given construct.

Static Semantics

The policy_identifier EDF_Across_Priorities is a task dispatching policy.

The following language-defined library package exists:
with Ada.Real_Time;
with Ada.Task_Identification;
package Ada.Dispatching.EDF is
 subtype Deadline is Ada.Real_Time.Time;
 Default_Deadline : constant Deadline :=
 Ada.Real_Time.Time_Last;
 procedure Set_Deadline (D : in Deadline;
 T : in Ada.Task_Identification.Task_Id :=
 Ada.Task_Identification.Current_Task);
 procedure Delay_Until_And_Set_Deadline (
 Delay_Until_Time : in Ada.Real_Time.Time;
 Deadline_Offset : in Ada.Real_Time.Time_Span);
 function Get_Deadline (T : Ada.Task_Identification.Task_Id :=
 Ada.Task_Identification.Current_Task) return Deadline;
end Ada.Dispatching.EDF;

Post-Compilation Rules

If the EDF_Across_Priorities policy is specified for a partition, then the Ceiling_Locking policy (see D.3)
shall also be specified for the partition.

If the EDF_Across_Priorities policy appears in a Priority_Specific_Dispatching pragma (see D.2.2) in a
partition, then the Ceiling_Locking policy (see D.3) shall also be specified for the partition.

Dynamic Semantics

A Relative_Deadline pragma has no effect if it occurs in the declarative_part of the subprogram_body of
a subprogram other than the main subprogram.

The initial absolute deadline of a task containing pragma Relative_Deadline is the value of
Real_Time.Clock + relative_deadline_expression, where the call of Real_Time.Clock is made between
task creation and the start of its activation. If there is no Relative_Deadline pragma then the initial absolute

1/2

2/2

3/2

4/2

5/2

6/2

7/2

8/2

9/2

10/2

11/2

12/2

13/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

525 10 November 2006 Earliest Deadline First Dispatching D.2.6

deadline of a task is the value of Default_Deadline. The environment task is also given an initial deadline
by this rule.

The procedure Set_Deadline changes the absolute deadline of the task to D. The function Get_Deadline
returns the absolute deadline of the task.

The procedure Delay_Until_And_Set_Deadline delays the calling task until time Delay_Until_Time.
When the task becomes runnable again it will have deadline Delay_Until_Time + Deadline_Offset.

On a system with a single processor, the setting of the deadline of a task to the new value occurs
immediately at the first point that is outside the execution of a protected action. If the task is currently on a
ready queue it is removed and re-entered on to the ready queue determined by the rules defined below.

When EDF_Across_Priorities is specified for priority range Low..High all ready queues in this range are
ordered by deadline. The task at the head of a queue is the one with the earliest deadline.

A task dispatching point occurs for the currently running task T to which policy EDF_Across_Priorities
applies:

• when a change to the deadline of T occurs;

• there is a task on the ready queue for the active priority of T with a deadline earlier than the
deadline of T; or

• there is a non-empty ready queue for that processor with a higher priority than the active priority
of the running task.

In these cases, the currently running task is said to be preempted and is returned to the ready queue for its
active priority.

For a task T to which policy EDF_Across_Priorities applies, the base priority is not a source of priority
inheritance; the active priority when first activated or while it is blocked is defined as the maximum of the
following:

• the lowest priority in the range specified as EDF_Across_Priorities that includes the base
priority of T;

• the priorities, if any, currently inherited by T;

• the highest priority P, if any, less than the base priority of T such that one or more tasks are
executing within a protected object with ceiling priority P and task T has an earlier deadline than
all such tasks.

When a task T is first activated or becomes unblocked, it is added to the ready queue corresponding to this
active priority. Until it becomes blocked again, the active priority of T remains no less than this value; it
will exceed this value only while it is inheriting a higher priority.

When the setting of the base priority of a ready task takes effect and the new priority is in a range
specified as EDF_Across_Priorities, the task is added to the ready queue corresponding to its new active
priority, as determined above.

For all the operations defined in Dispatching.EDF, Tasking_Error is raised if the task identified by T has
terminated. Program_Error is raised if the value of T is Null_Task_Id.

Bounded (Run-Time) Errors

If EDF_Across_Priorities is specified for priority range Low..High, it is a bounded error to declare a
protected object with ceiling priority Low or to assign the value Low to attribute 'Priority. In either case
either Program_Error is raised or the ceiling of the protected object is assigned the value Low+1.

14/2

15/2

16/2

17/2

18/2

19/2

20/2

21/2

22/2

23/2

24/2

25/2

26/2

27/2

28/2

29/2

30/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

D.2.6 Earliest Deadline First Dispatching 10 November 2006 526

Erroneous Execution

If a value of Task_Id is passed as a parameter to any of the subprograms of this package and the
corresponding task object no longer exists, the execution of the program is erroneous.

Documentation Requirements

On a multiprocessor, the implementation shall document any conditions that cause the completion of the
setting of the deadline of a task to be delayed later than what is specified for a single processor.

NOTES
18 If two adjacent priority ranges, A..B and B+1..C are specified to have policy EDF_Across_Priorities then this is not
equivalent to this policy being specified for the single range, A..C.

19 The above rules implement the preemption-level protocol (also called Stack Resource Policy protocol) for resource
sharing under EDF dispatching. The preemption-level for a task is denoted by its base priority. The definition of a ceiling
preemption-level for a protected object follows the existing rules for ceiling locking.

D.3 Priority Ceiling Locking
This clause specifies the interactions between priority task scheduling and protected object ceilings. This
interaction is based on the concept of the ceiling priority of a protected object.

Syntax

The form of a pragma Locking_Policy is as follows:
 pragma Locking_Policy(policy_identifier);

Legality Rules

The policy_identifier shall either be Ceiling_Locking or an implementation-defined identifier.

Post-Compilation Rules

A Locking_Policy pragma is a configuration pragma.

Dynamic Semantics

A locking policy specifies the details of protected object locking. All protected objects have a priority. The
locking policy specifies the meaning of the priority of a protected object, and the relationships between
these priorities and task priorities. In addition, the policy specifies the state of a task when it executes a
protected action, and how its active priority is affected by the locking. The locking policy is specified by a
Locking_Policy pragma. For implementation-defined locking policies, the meaning of the priority of a
protected object is implementation defined. If no Locking_Policy pragma applies to any of the program
units comprising a partition, the locking policy for that partition, as well as the meaning of the priority of a
protected object, are implementation defined.

The expression of a Priority or Interrupt_Priority pragma (see D.1) is evaluated as part of the creation of
the corresponding protected object and converted to the subtype System.Any_Priority or
System.Interrupt_Priority, respectively. The value of the expression is the initial priority of the
corresponding protected object. If no Priority or Interrupt_Priority pragma applies to a protected object,
the initial priority is specified by the locking policy.

There is one predefined locking policy, Ceiling_Locking; this policy is defined as follows:
• Every protected object has a ceiling priority, which is determined by either a Priority or

Interrupt_Priority pragma as defined in D.1, or by assignment to the Priority attribute as
described in D.5.2. The ceiling priority of a protected object (or ceiling, for short) is an upper

31/2

32/2

33/2

34/2

1

2

3

4

5

6/2

6.1/2

7

8/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

527 10 November 2006 Priority Ceiling Locking D.3

bound on the active priority a task can have when it calls protected operations of that protected
object.

• The initial ceiling priority of a protected object is equal to the initial priority for that object.

• If an Interrupt_Handler or Attach_Handler pragma (see C.3.1) appears in a protected_definition
without an Interrupt_Priority pragma, the initial priority of protected objects of that type is
implementation defined, but in the range of the subtype System.Interrupt_Priority.

• If no pragma Priority, Interrupt_Priority, Interrupt_Handler, or Attach_Handler is specified in
the protected_definition, then the initial priority of the corresponding protected object is
System.Priority'Last.

• While a task executes a protected action, it inherits the ceiling priority of the corresponding
protected object.

• When a task calls a protected operation, a check is made that its active priority is not higher than
the ceiling of the corresponding protected object; Program_Error is raised if this check fails.

Bounded (Run-Time) Errors

Following any change of priority, it is a bounded error for the active priority of any task with a call queued
on an entry of a protected object to be higher than the ceiling priority of the protected object. In this case
one of the following applies:

• at any time prior to executing the entry body Program_Error is raised in the calling task;

• when the entry is open the entry body is executed at the ceiling priority of the protected object;

• when the entry is open the entry body is executed at the ceiling priority of the protected object
and then Program_Error is raised in the calling task; or

• when the entry is open the entry body is executed at the ceiling priority of the protected object
that was in effect when the entry call was queued.

Implementation Permissions

The implementation is allowed to round all ceilings in a certain subrange of System.Priority or
System.Interrupt_Priority up to the top of that subrange, uniformly.

Implementations are allowed to define other locking policies, but need not support more than one locking
policy per partition.

Since implementations are allowed to place restrictions on code that runs at an interrupt-level active
priority (see C.3.1 and D.2.1), the implementation may implement a language feature in terms of a
protected object with an implementation-defined ceiling, but the ceiling shall be no less than Priority'Last.

Implementation Advice

The implementation should use names that end with “_Locking” for implementation-defined locking
policies.

NOTES
20 While a task executes in a protected action, it can be preempted only by tasks whose active priorities are higher than
the ceiling priority of the protected object.

21 If a protected object has a ceiling priority in the range of Interrupt_Priority, certain interrupts are blocked while
protected actions of that object execute. In the extreme, if the ceiling is Interrupt_Priority'Last, all blockable interrupts are
blocked during that time.

22 The ceiling priority of a protected object has to be in the Interrupt_Priority range if one of its procedures is to be used
as an interrupt handler (see C.3).

9/2

10/2

11/2

12

13

13.1/2

13.2/2

13.3/2

13.4/2

13.5/2

14

15/2

16

17

18

19

20

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

D.3 Priority Ceiling Locking 10 November 2006 528

23 When specifying the ceiling of a protected object, one should choose a value that is at least as high as the highest
active priority at which tasks can be executing when they call protected operations of that object. In determining this value
the following factors, which can affect active priority, should be considered: the effect of Set_Priority, nested protected
operations, entry calls, task activation, and other implementation-defined factors.

24 Attaching a protected procedure whose ceiling is below the interrupt hardware priority to an interrupt causes the
execution of the program to be erroneous (see C.3.1).

25 On a single processor implementation, the ceiling priority rules guarantee that there is no possibility of deadlock
involving only protected subprograms (excluding the case where a protected operation calls another protected operation
on the same protected object).

D.4 Entry Queuing Policies
This clause specifies a mechanism for a user to choose an entry queuing policy. It also defines two such
policies. Other policies are implementation defined.

Syntax

The form of a pragma Queuing_Policy is as follows:
 pragma Queuing_Policy(policy_identifier);

Legality Rules

The policy_identifier shall be either FIFO_Queuing, Priority_Queuing or an implementation-defined
identifier.

Post-Compilation Rules

A Queuing_Policy pragma is a configuration pragma.

Dynamic Semantics

A queuing policy governs the order in which tasks are queued for entry service, and the order in which
different entry queues are considered for service. The queuing policy is specified by a Queuing_Policy
pragma.

Two queuing policies, FIFO_Queuing and Priority_Queuing, are language defined. If no Queuing_Policy
pragma applies to any of the program units comprising the partition, the queuing policy for that partition is
FIFO_Queuing. The rules for this policy are specified in 9.5.3 and 9.7.1.

The Priority_Queuing policy is defined as follows:
• The calls to an entry (including a member of an entry family) are queued in an order consistent

with the priorities of the calls. The priority of an entry call is initialized from the active priority
of the calling task at the time the call is made, but can change later. Within the same priority, the
order is consistent with the calling (or requeuing, or priority setting) time (that is, a FIFO order).

• After a call is first queued, changes to the active priority of a task do not affect the priority of the
call, unless the base priority of the task is set while the task is blocked on an entry call.

• When the base priority of a task is set (see D.5), if the task is blocked on an entry call, and the
call is queued, the priority of the call is updated to the new active priority of the calling task.
This causes the call to be removed from and then reinserted in the queue at the new active
priority.

• When more than one condition of an entry_barrier of a protected object becomes True, and more
than one of the respective queues is nonempty, the call with the highest priority is selected. If
more than one such call has the same priority, the call that is queued on the entry whose

21

22

23

1/1

2

3

4

5

6

7/2

8

9

10/1

11

12

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

529 10 November 2006 Entry Queuing Policies D.4

declaration is first in textual order in the protected_definition is selected. For members of the
same entry family, the one with the lower family index is selected.

• If the expiration time of two or more open delay_alternatives is the same and no other
accept_alternatives are open, the sequence_of_statements of the delay_alternative that is first
in textual order in the selective_accept is executed.

• When more than one alternative of a selective_accept is open and has queued calls, an
alternative whose queue has the highest-priority call at its head is selected. If two or more open
alternatives have equal-priority queued calls, then a call on the entry in the accept_alternative
that is first in textual order in the selective_accept is selected.

Implementation Permissions

Implementations are allowed to define other queuing policies, but need not support more than one queuing
policy per partition.

Implementations are allowed to defer the reordering of entry queues following a change of base priority of
a task blocked on the entry call if it is not practical to reorder the queue immediately.

Implementation Advice

The implementation should use names that end with “_Queuing” for implementation-defined queuing
policies.

D.5 Dynamic Priorities
This clause describes how the priority of an entity can be modified or queried at run time.

D.5.1 Dynamic Priorities for Tasks
This clause describes how the base priority of a task can be modified or queried at run time.

Static Semantics

The following language-defined library package exists:
with System;
with Ada.Task_Identification; -- See C.7.1
package Ada.Dynamic_Priorities is
 pragma Preelaborate(Dynamic_Priorities);

 procedure Set_Priority(Priority : in System.Any_Priority;
 T : in Ada.Task_Identification.Task_Id :=
 Ada.Task_Identification.Current_Task);

 function Get_Priority (T : Ada.Task_Identification.Task_Id :=
 Ada.Task_Identification.Current_Task)
 return System.Any_Priority;

end Ada.Dynamic_Priorities;

Dynamic Semantics

The procedure Set_Priority sets the base priority of the specified task to the specified Priority value.
Set_Priority has no effect if the task is terminated.

The function Get_Priority returns T's current base priority. Tasking_Error is raised if the task is
terminated.

Program_Error is raised by Set_Priority and Get_Priority if T is equal to Null_Task_Id.

13

14

15/2

15.1/2

16

1/2

1

2

3/2

4

5

6

7

8

9

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

D.5.1 Dynamic Priorities for Tasks 10 November 2006 530

On a system with a single processor, the setting of the base priority of a task T to the new value occurs
immediately at the first point when T is outside the execution of a protected action.

Bounded (Run-Time) Errors

This paragraph was deleted.

Erroneous Execution

If any subprogram in this package is called with a parameter T that specifies a task object that no longer
exists, the execution of the program is erroneous.

Documentation Requirements

On a multiprocessor, the implementation shall document any conditions that cause the completion of the
setting of the priority of a task to be delayed later than what is specified for a single processor.

Metrics

The implementation shall document the following metric:
• The execution time of a call to Set_Priority, for the nonpreempting case, in processor clock

cycles. This is measured for a call that modifies the priority of a ready task that is not running
(which cannot be the calling one), where the new base priority of the affected task is lower than
the active priority of the calling task, and the affected task is not on any entry queue and is not
executing a protected operation.
NOTES
26 Setting a task's base priority affects task dispatching. First, it can change the task's active priority. Second, under the
FIFO_Within_Priorities policy it always causes the task to move to the tail of the ready queue corresponding to its active
priority, even if the new base priority is unchanged.

27 Under the priority queuing policy, setting a task's base priority has an effect on a queued entry call if the task is
blocked waiting for the call. That is, setting the base priority of a task causes the priority of a queued entry call from that
task to be updated and the call to be removed and then reinserted in the entry queue at the new priority (see D.4), unless
the call originated from the triggering_statement of an asynchronous_select.

28 The effect of two or more Set_Priority calls executed in parallel on the same task is defined as executing these calls in
some serial order.

29 The rule for when Tasking_Error is raised for Set_Priority or Get_Priority is different from the rule for when
Tasking_Error is raised on an entry call (see 9.5.3). In particular, setting or querying the priority of a completed or an
abnormal task is allowed, so long as the task is not yet terminated.

30 Changing the priorities of a set of tasks can be performed by a series of calls to Set_Priority for each task separately.
For this to work reliably, it should be done within a protected operation that has high enough ceiling priority to guarantee
that the operation completes without being preempted by any of the affected tasks.

10/2

11/2

12

12.1/2

13

14

15/2

16

17

18

19

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

531 10 November 2006 Dynamic Priorities for Protected Objects D.5.2

D.5.2 Dynamic Priorities for Protected Objects
This clause specifies how the priority of a protected object can be modified or queried at run time.

Static Semantics

The following attribute is defined for a prefix P that denotes a protected object:
P'Priority Denotes a non-aliased component of the protected object P. This component is of type

System.Any_Priority and its value is the priority of P. P'Priority denotes a variable if and
only if P denotes a variable. A reference to this attribute shall appear only within the body
of P.

The initial value of this attribute is the initial value of the priority of the protected object, and can be
changed by an assignment.

Dynamic Semantics

If the locking policy Ceiling_Locking (see D.3) is in effect then the ceiling priority of a protected object P
is set to the value of P'Priority at the end of each protected action of P.

If the locking policy Ceiling_Locking is in effect, then for a protected object P with either an
Attach_Handler or Interrupt_Handler pragma applying to one of its procedures, a check is made that the
value to be assigned to P'Priority is in the range System.Interrupt_Priority. If the check fails,
Program_Error is raised.

Metrics

The implementation shall document the following metric:
• The difference in execution time of calls to the following procedures in protected object P:

protected P is
 procedure Do_Not_Set_Ceiling (Pr : System.Any_Priority);
 procedure Set_Ceiling (Pr : System.Any_Priority);
end P;

protected body P is
 procedure Do_Not_Set_Ceiling (Pr : System.Any_Priority) is
 begin
 null;
 end;
 procedure Set_Ceiling (Pr : System.Any_Priority) is
 begin
 P'Priority := Pr;
 end;
end P;

NOTES
31 Since P'Priority is a normal variable, the value following an assignment to the attribute immediately reflects the new
value even though its impact on the ceiling priority of P is postponed until completion of the protected action in which it
is executed.

1/2

2/2

3/2

4/2

5/2

6/2

7/2

8/2

9/2

10/2

11/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

D.6 Preemptive Abort 10 November 2006 532

D.6 Preemptive Abort
This clause specifies requirements on the immediacy with which an aborted construct is completed.

Dynamic Semantics

On a system with a single processor, an aborted construct is completed immediately at the first point that
is outside the execution of an abort-deferred operation.

Documentation Requirements

On a multiprocessor, the implementation shall document any conditions that cause the completion of an
aborted construct to be delayed later than what is specified for a single processor.

Metrics

The implementation shall document the following metrics:
• The execution time, in processor clock cycles, that it takes for an abort_statement to cause the

completion of the aborted task. This is measured in a situation where a task T2 preempts task T1
and aborts T1. T1 does not have any finalization code. T2 shall verify that T1 has terminated, by
means of the Terminated attribute.

• On a multiprocessor, an upper bound in seconds, on the time that the completion of an aborted
task can be delayed beyond the point that it is required for a single processor.

• An upper bound on the execution time of an asynchronous_select, in processor clock cycles.
This is measured between a point immediately before a task T1 executes a protected operation
Pr.Set that makes the condition of an entry_barrier Pr.Wait True, and the point where task T2
resumes execution immediately after an entry call to Pr.Wait in an asynchronous_select. T1
preempts T2 while T2 is executing the abortable part, and then blocks itself so that T2 can
execute. The execution time of T1 is measured separately, and subtracted.

• An upper bound on the execution time of an asynchronous_select, in the case that no
asynchronous transfer of control takes place. This is measured between a point immediately
before a task executes the asynchronous_select with a nonnull abortable part, and the point
where the task continues execution immediately after it. The execution time of the abortable part
is subtracted.

Implementation Advice

Even though the abort_statement is included in the list of potentially blocking operations (see 9.5.1), it is
recommended that this statement be implemented in a way that never requires the task executing the
abort_statement to block.

On a multi-processor, the delay associated with aborting a task on another processor should be bounded;
the implementation should use periodic polling, if necessary, to achieve this.

NOTES
32 Abortion does not change the active or base priority of the aborted task.

33 Abortion cannot be more immediate than is allowed by the rules for deferral of abortion during finalization and in
protected actions.

1

2

3

4

5

6

7/2

8

9

10

11

12

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

533 10 November 2006 Tasking Restrictions D.7

D.7 Tasking Restrictions
This clause defines restrictions that can be used with a pragma Restrictions (see 13.12) to facilitate the
construction of highly efficient tasking run-time systems.

Static Semantics

The following restriction_identifiers are language defined:
No_Task_Hierarchy
 All (nonenvironment) tasks depend directly on the environment task of the partition.

No_Nested_Finalization
 Objects of a type that needs finalization (see 7.6) and access types that designate a type that

needs finalization shall be declared only at library level.

No_Abort_Statements
 There are no abort_statements, and there are no calls on Task_Identification.Abort_Task.

No_Terminate_Alternatives
 There are no selective_accepts with terminate_alternatives.

No_Task_Allocators
 There are no allocators for task types or types containing task subcomponents.

No_Implicit_Heap_Allocations
 There are no operations that implicitly require heap storage allocation to be performed by

the implementation. The operations that implicitly require heap storage allocation are
implementation defined.

No_Dynamic_Priorities
 There are no semantic dependences on the package Dynamic_Priorities, and no occurrences

of the attribute Priority.

No_Dynamic_Attachment
 There is no call to any of the operations defined in package Interrupts (Is_Reserved,

Is_Attached, Current_Handler, Attach_Handler, Exchange_Handler, Detach_Handler, and
Reference).

No_Local_Protected_Objects
 Protected objects shall be declared only at library level.

No_Local_Timing_Events
 Timing_Events shall be declared only at library level.

No_Protected_Type_Allocators
 There are no allocators for protected types or types containing protected type

subcomponents.

No_Relative_Delay
 There are no delay_relative_statements.

No_Requeue_Statements
 There are no requeue_statements.

No_Select_Statements
 There are no select_statements.

1

2

3

4/2

5

6

7

8

9/2

10/2

10.1/2

10.2/2

10.3/2

10.4/2

10.5/2

10.6/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

D.7 Tasking Restrictions 10 November 2006 534

No_Specific_Termination_Handlers
 There are no calls to the Set_Specific_Handler and Specific_Handler subprograms in

Task_Termination.

Simple_Barriers
 The Boolean expression in an entry barrier shall be either a static Boolean expression or a

Boolean component of the enclosing protected object.

The following restriction_parameter_identifiers are language defined:
Max_Select_Alternatives
 Specifies the maximum number of alternatives in a selective_accept.

Max_Task_Entries
 Specifies the maximum number of entries per task. The bounds of every entry family of a

task unit shall be static, or shall be defined by a discriminant of a subtype whose
corresponding bound is static. A value of zero indicates that no rendezvous are possible.

Max_Protected_Entries
 Specifies the maximum number of entries per protected type. The bounds of every entry

family of a protected unit shall be static, or shall be defined by a discriminant of a subtype
whose corresponding bound is static.

Dynamic Semantics

The following restriction_identifier is language defined:
No_Task_Termination
 All tasks are non-terminating. It is implementation-defined what happens if a task attempts

to terminate. If there is a fall-back handler (see C.7.3) set for the partition it should be
called when the first task attempts to terminate.

The following restriction_parameter_identifiers are language defined:
Max_Storage_At_Blocking
 Specifies the maximum portion (in storage elements) of a task's Storage_Size that can be

retained by a blocked task. If an implementation chooses to detect a violation of this
restriction, Storage_Error should be raised; otherwise, the behavior is implementation
defined.

Max_Asynchronous_Select_Nesting
 Specifies the maximum dynamic nesting level of asynchronous_selects. A value of zero

prevents the use of any asynchronous_select and, if a program contains an
asynchronous_select, it is illegal. If an implementation chooses to detect a violation of this
restriction for values other than zero, Storage_Error should be raised; otherwise, the
behavior is implementation defined.

Max_Tasks Specifies the maximum number of task creations that may be executed over the lifetime of
a partition, not counting the creation of the environment task. A value of zero prevents any
task creation and, if a program contains a task creation, it is illegal. If an implementation
chooses to detect a violation of this restriction, Storage_Error should be raised; otherwise,
the behavior is implementation defined.

Max_Entry_Queue_Length
 Max_Entry_Queue_Length defines the maximum number of calls that are queued on an

entry. Violation of this restriction results in the raising of Program_Error at the point of the
call or requeue.

10.7/2

10.8/2

11

12

13

14

15/2

15.1/2

16

17/1

18/1

19/1

19.1/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

535 10 November 2006 Tasking Restrictions D.7

It is implementation defined whether the use of pragma Restrictions results in a reduction in executable
program size, storage requirements, or execution time. If possible, the implementation should provide
quantitative descriptions of such effects for each restriction.

Implementation Advice

When feasible, the implementation should take advantage of the specified restrictions to produce a more
efficient implementation.

NOTES
34 The above Storage_Checks can be suppressed with pragma Suppress.

D.8 Monotonic Time
This clause specifies a high-resolution, monotonic clock package.

Static Semantics

The following language-defined library package exists:
package Ada.Real_Time is

 type Time is private;
 Time_First : constant Time;
 Time_Last : constant Time;
 Time_Unit : constant := implementation-defined-real-number;
 type Time_Span is private;
 Time_Span_First : constant Time_Span;
 Time_Span_Last : constant Time_Span;
 Time_Span_Zero : constant Time_Span;
 Time_Span_Unit : constant Time_Span;

 Tick : constant Time_Span;
 function Clock return Time;

 function "+" (Left : Time; Right : Time_Span) return Time;
 function "+" (Left : Time_Span; Right : Time) return Time;
 function "-" (Left : Time; Right : Time_Span) return Time;
 function "-" (Left : Time; Right : Time) return Time_Span;

 function "<" (Left, Right : Time) return Boolean;
 function "<="(Left, Right : Time) return Boolean;
 function ">" (Left, Right : Time) return Boolean;
 function ">="(Left, Right : Time) return Boolean;

 function "+" (Left, Right : Time_Span) return Time_Span;
 function "-" (Left, Right : Time_Span) return Time_Span;
 function "-" (Right : Time_Span) return Time_Span;
 function "*" (Left : Time_Span; Right : Integer) return Time_Span;
 function "*" (Left : Integer; Right : Time_Span) return Time_Span;
 function "/" (Left, Right : Time_Span) return Integer;
 function "/" (Left : Time_Span; Right : Integer) return Time_Span;

 function "abs"(Right : Time_Span) return Time_Span;

This paragraph was deleted.

 function "<" (Left, Right : Time_Span) return Boolean;
 function "<="(Left, Right : Time_Span) return Boolean;
 function ">" (Left, Right : Time_Span) return Boolean;
 function ">="(Left, Right : Time_Span) return Boolean;

 function To_Duration (TS : Time_Span) return Duration;
 function To_Time_Span (D : Duration) return Time_Span;

20

21

22

1

2

3

4

5

6

7

8

9

10

11/1

12

13

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

D.8 Monotonic Time 10 November 2006 536

 function Nanoseconds (NS : Integer) return Time_Span;
 function Microseconds (US : Integer) return Time_Span;
 function Milliseconds (MS : Integer) return Time_Span;
 function Seconds (S : Integer) return Time_Span;
 function Minutes (M : Integer) return Time_Span;

 type Seconds_Count is range implementation-defined;
 procedure Split(T : in Time; SC : out Seconds_Count; TS : out Time_Span);
 function Time_Of(SC : Seconds_Count; TS : Time_Span) return Time;

private
 ... -- not specified by the language
end Ada.Real_Time;

In this Annex, real time is defined to be the physical time as observed in the external environment. The
type Time is a time type as defined by 9.6; values of this type may be used in a delay_until_statement.
Values of this type represent segments of an ideal time line. The set of values of the type Time
corresponds one-to-one with an implementation-defined range of mathematical integers.

The Time value I represents the half-open real time interval that starts with E+I*Time_Unit and is limited
by E+(I+1)*Time_Unit, where Time_Unit is an implementation-defined real number and E is an
unspecified origin point, the epoch, that is the same for all values of the type Time. It is not specified by
the language whether the time values are synchronized with any standard time reference. For example, E
can correspond to the time of system initialization or it can correspond to the epoch of some time standard.

Values of the type Time_Span represent length of real time duration. The set of values of this type
corresponds one-to-one with an implementation-defined range of mathematical integers. The Time_Span
value corresponding to the integer I represents the real-time duration I*Time_Unit.

Time_First and Time_Last are the smallest and largest values of the Time type, respectively. Similarly,
Time_Span_First and Time_Span_Last are the smallest and largest values of the Time_Span type,
respectively.

A value of type Seconds_Count represents an elapsed time, measured in seconds, since the epoch.

Dynamic Semantics

Time_Unit is the smallest amount of real time representable by the Time type; it is expressed in seconds.
Time_Span_Unit is the difference between two successive values of the Time type. It is also the smallest
positive value of type Time_Span. Time_Unit and Time_Span_Unit represent the same real time duration.
A clock tick is a real time interval during which the clock value (as observed by calling the Clock
function) remains constant. Tick is the average length of such intervals.

The function To_Duration converts the value TS to a value of type Duration. Similarly, the function
To_Time_Span converts the value D to a value of type Time_Span. For To_Duration, the result is rounded
to the nearest value of type Duration (away from zero if exactly halfway between two values). If the result
is outside the range of Duration, Constraint_Error is raised. For To_Time_Span, the value of D is first
rounded to the nearest integral multiple of Time_Unit, away from zero if exactly halfway between two
multiples. If the rounded value is outside the range of Time_Span, Constraint_Error is raised. Otherwise,
the value is converted to the type Time_Span.

To_Duration(Time_Span_Zero) returns 0.0, and To_Time_Span(0.0) returns Time_Span_Zero.

The functions Nanoseconds, Microseconds, Milliseconds, Seconds, and Minutes convert the input
parameter to a value of the type Time_Span. NS, US, MS, S, and M are interpreted as a number of
nanoseconds, microseconds, milliseconds, seconds, and minutes respectively. The input parameter is first
converted to seconds and rounded to the nearest integral multiple of Time_Unit, away from zero if exactly

14/2

15

16

17

18

19

20

21

22

23

24/2

25

26/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

537 10 November 2006 Monotonic Time D.8

halfway between two multiples. If the rounded value is outside the range of Time_Span, Constraint_Error
is raised. Otherwise, the rounded value is converted to the type Time_Span.

The effects of the operators on Time and Time_Span are as for the operators defined for integer types.

The function Clock returns the amount of time since the epoch.

The effects of the Split and Time_Of operations are defined as follows, treating values of type Time,
Time_Span, and Seconds_Count as mathematical integers. The effect of Split(T,SC,TS) is to set SC and
TS to values such that T*Time_Unit = SC*1.0 + TS*Time_Unit, and 0.0 <= TS*Time_Unit < 1.0. The
value returned by Time_Of(SC,TS) is the value T such that T*Time_Unit = SC*1.0 + TS*Time_Unit.

Implementation Requirements

The range of Time values shall be sufficient to uniquely represent the range of real times from program
start-up to 50 years later. Tick shall be no greater than 1 millisecond. Time_Unit shall be less than or equal
to 20 microseconds.

Time_Span_First shall be no greater than –3600 seconds, and Time_Span_Last shall be no less than 3600
seconds.

A clock jump is the difference between two successive distinct values of the clock (as observed by calling
the Clock function). There shall be no backward clock jumps.

Documentation Requirements

The implementation shall document the values of Time_First, Time_Last, Time_Span_First, Time_Span_-
Last, Time_Span_Unit, and Tick.

The implementation shall document the properties of the underlying time base used for the clock and for
type Time, such as the range of values supported and any relevant aspects of the underlying hardware or
operating system facilities used.

The implementation shall document whether or not there is any synchronization with external time
references, and if such synchronization exists, the sources of synchronization information, the frequency
of synchronization, and the synchronization method applied.

The implementation shall document any aspects of the external environment that could interfere with the
clock behavior as defined in this clause.

Metrics

For the purpose of the metrics defined in this clause, real time is defined to be the International Atomic
Time (TAI).

The implementation shall document the following metrics:
• An upper bound on the real-time duration of a clock tick. This is a value D such that if t1 and t2

are any real times such that t1 < t2 and Clockt1 = Clockt2 then t2 – t1 <= D.

• An upper bound on the size of a clock jump.

• An upper bound on the drift rate of Clock with respect to real time. This is a real number D such
that

E*(1–D) <= (Clockt+E – Clockt) <= E*(1+D)
 provided that: Clockt + E*(1+D) <= Time_Last.

27

28

29

30

31

32

33

34

35

36/1

37

38

39

40

41

42

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

D.8 Monotonic Time 10 November 2006 538

• where Clockt is the value of Clock at time t, and E is a real time duration not less than 24 hours.
The value of E used for this metric shall be reported.

• An upper bound on the execution time of a call to the Clock function, in processor clock cycles.

• Upper bounds on the execution times of the operators of the types Time and Time_Span, in
processor clock cycles.

Implementation Permissions

Implementations targeted to machines with word size smaller than 32 bits need not support the full range
and granularity of the Time and Time_Span types.

Implementation Advice

When appropriate, implementations should provide configuration mechanisms to change the value of Tick.

It is recommended that Calendar.Clock and Real_Time.Clock be implemented as transformations of the
same time base.

It is recommended that the “best” time base which exists in the underlying system be available to the
application through Clock. “Best” may mean highest accuracy or largest range.

NOTES
35 The rules in this clause do not imply that the implementation can protect the user from operator or installation errors
which could result in the clock being set incorrectly.

36 Time_Unit is the granularity of the Time type. In contrast, Tick represents the granularity of Real_Time.Clock. There
is no requirement that these be the same.

D.9 Delay Accuracy
This clause specifies performance requirements for the delay_statement. The rules apply both to delay_-
relative_statement and to delay_until_statement. Similarly, they apply equally to a simple delay_-
statement and to one which appears in a delay_alternative.

Dynamic Semantics

The effect of the delay_statement for Real_Time.Time is defined in terms of Real_Time.Clock:
• If C1 is a value of Clock read before a task executes a delay_relative_statement with duration D,

and C2 is a value of Clock read after the task resumes execution following that delay_statement,
then C2 – C1 >= D.

• If C is a value of Clock read after a task resumes execution following a delay_until_statement
with Real_Time.Time value T, then C >= T.

A simple delay_statement with a negative or zero value for the expiration time does not cause the calling
task to be blocked; it is nevertheless a potentially blocking operation (see 9.5.1).

When a delay_statement appears in a delay_alternative of a timed_entry_call the selection of the entry
call is attempted, regardless of the specified expiration time. When a delay_statement appears in a
select_alternative, and a call is queued on one of the open entries, the selection of that entry call proceeds,
regardless of the value of the delay expression.

Documentation Requirements

The implementation shall document the minimum value of the delay expression of a
delay_relative_statement that causes the task to actually be blocked.

43

44

45

46

47

48

49

50

51

1

2

3

4

5

6/2

7

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

539 10 November 2006 Delay Accuracy D.9

The implementation shall document the minimum difference between the value of the delay expression of
a delay_until_statement and the value of Real_Time.Clock, that causes the task to actually be blocked.

Metrics

The implementation shall document the following metrics:
• An upper bound on the execution time, in processor clock cycles, of a delay_relative_statement

whose requested value of the delay expression is less than or equal to zero.

• An upper bound on the execution time, in processor clock cycles, of a delay_until_statement
whose requested value of the delay expression is less than or equal to the value of
Real_Time.Clock at the time of executing the statement. Similarly, for Calendar.Clock.

• An upper bound on the lateness of a delay_relative_statement, for a positive value of the delay
expression, in a situation where the task has sufficient priority to preempt the processor as soon
as it becomes ready, and does not need to wait for any other execution resources. The upper
bound is expressed as a function of the value of the delay expression. The lateness is obtained by
subtracting the value of the delay expression from the actual duration. The actual duration is
measured from a point immediately before a task executes the delay_statement to a point
immediately after the task resumes execution following this statement.

• An upper bound on the lateness of a delay_until_statement, in a situation where the value of the
requested expiration time is after the time the task begins executing the statement, the task has
sufficient priority to preempt the processor as soon as it becomes ready, and it does not need to
wait for any other execution resources. The upper bound is expressed as a function of the
difference between the requested expiration time and the clock value at the time the statement
begins execution. The lateness of a delay_until_statement is obtained by subtracting the
requested expiration time from the real time that the task resumes execution following this
statement.
NOTES
This paragraph was deleted.

D.10 Synchronous Task Control
This clause describes a language-defined private semaphore (suspension object), which can be used for
two-stage suspend operations and as a simple building block for implementing higher-level queues.

Static Semantics

The following language-defined package exists:
package Ada.Synchronous_Task_Control is
 pragma Preelaborate(Synchronous_Task_Control);

 type Suspension_Object is limited private;
 procedure Set_True(S : in out Suspension_Object);
 procedure Set_False(S : in out Suspension_Object);
 function Current_State(S : Suspension_Object) return Boolean;
 procedure Suspend_Until_True(S : in out Suspension_Object);
private
 ... -- not specified by the language
end Ada.Synchronous_Task_Control;

The type Suspension_Object is a by-reference type.

Dynamic Semantics

An object of the type Suspension_Object has two visible states: True and False. Upon initialization, its
value is set to False.

8

9

10

11

12

13

14/2

1

2

3/2

4

5

6/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

D.10 Synchronous Task Control 10 November 2006 540

The operations Set_True and Set_False are atomic with respect to each other and with respect to
Suspend_Until_True; they set the state to True and False respectively.

Current_State returns the current state of the object.

The procedure Suspend_Until_True blocks the calling task until the state of the object S is True; at that
point the task becomes ready and the state of the object becomes False.

Program_Error is raised upon calling Suspend_Until_True if another task is already waiting on that
suspension object. Suspend_Until_True is a potentially blocking operation (see 9.5.1).

Implementation Requirements

The implementation is required to allow the calling of Set_False and Set_True during any protected action,
even one that has its ceiling priority in the Interrupt_Priority range.

D.11 Asynchronous Task Control
This clause introduces a language-defined package to do asynchronous suspend/resume on tasks. It uses a
conceptual held priority value to represent the task's held state.

Static Semantics

The following language-defined library package exists:
with Ada.Task_Identification;
package Ada.Asynchronous_Task_Control is
 pragma Preelaborate(Asynchronous_Task_Control);
 procedure Hold(T : in Ada.Task_Identification.Task_Id);
 procedure Continue(T : in Ada.Task_Identification.Task_Id);
 function Is_Held(T : Ada.Task_Identification.Task_Id)
 return Boolean;
end Ada.Asynchronous_Task_Control;

Dynamic Semantics

After the Hold operation has been applied to a task, the task becomes held. For each processor there is a
conceptual idle task, which is always ready. The base priority of the idle task is below System.Any_-
Priority'First. The held priority is a constant of the type Integer whose value is below the base priority of
the idle task.

For any priority below System.Any_Priority'First, the task dispatching policy is FIFO_Within_Priorities.

The Hold operation sets the state of T to held. For a held task, the active priority is reevaluated as if the
base priority of the task were the held priority.

The Continue operation resets the state of T to not-held; its active priority is then reevaluated as
determined by the task dispatching policy associated with its base priority.

The Is_Held function returns True if and only if T is in the held state.

As part of these operations, a check is made that the task identified by T is not terminated. Tasking_Error
is raised if the check fails. Program_Error is raised if the value of T is Null_Task_Id.

Erroneous Execution

If any operation in this package is called with a parameter T that specifies a task object that no longer
exists, the execution of the program is erroneous.

7/2

8

9/2

10

11

1

2

3/2

4/2

4.1/2

5/2

6/2

7

8

9

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

541 10 November 2006 Asynchronous Task Control D.11

Implementation Permissions

An implementation need not support Asynchronous_Task_Control if it is infeasible to support it in the
target environment.

NOTES
37 It is a consequence of the priority rules that held tasks cannot be dispatched on any processor in a partition (unless
they are inheriting priorities) since their priorities are defined to be below the priority of any idle task.

38 The effect of calling Get_Priority and Set_Priority on a Held task is the same as on any other task.

39 Calling Hold on a held task or Continue on a non-held task has no effect.

40 The rules affecting queuing are derived from the above rules, in addition to the normal priority rules:
• When a held task is on the ready queue, its priority is so low as to never reach the top of the queue as long as

there are other tasks on that queue.
• If a task is executing in a protected action, inside a rendezvous, or is inheriting priorities from other sources

(e.g. when activated), it continues to execute until it is no longer executing the corresponding construct.
• If a task becomes held while waiting (as a caller) for a rendezvous to complete, the active priority of the

accepting task is not affected.
• If a task becomes held while waiting in a selective_accept, and an entry call is issued to one of the open

entries, the corresponding accept_alternative executes. When the rendezvous completes, the active priority of
the accepting task is lowered to the held priority (unless it is still inheriting from other sources), and the task
does not execute until another Continue.

• The same holds if the held task is the only task on a protected entry queue whose barrier becomes open. The
corresponding entry body executes.

D.12 Other Optimizations and Determinism Rules
This clause describes various requirements for improving the response and determinism in a real-time
system.

Implementation Requirements

If the implementation blocks interrupts (see C.3) not as a result of direct user action (e.g. an execution of a
protected action) there shall be an upper bound on the duration of this blocking.

The implementation shall recognize entry-less protected types. The overhead of acquiring the execution
resource of an object of such a type (see 9.5.1) shall be minimized. In particular, there should not be any
overhead due to evaluating entry_barrier conditions.

Unchecked_Deallocation shall be supported for terminated tasks that are designated by access types, and
shall have the effect of releasing all the storage associated with the task. This includes any run-time system
or heap storage that has been implicitly allocated for the task by the implementation.

Documentation Requirements

The implementation shall document the upper bound on the duration of interrupt blocking caused by the
implementation. If this is different for different interrupts or interrupt priority levels, it should be
documented for each case.

Metrics

The implementation shall document the following metric:
• The overhead associated with obtaining a mutual-exclusive access to an entry-less protected

object. This shall be measured in the following way:

10

11

12

13

14

15

16

17

18/1

19

1

2

3

4

5

6

7

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

D.12 Other Optimizations and Determinism Rules 10 November 2006 542

 For a protected object of the form:
protected Lock is
 procedure Set;
 function Read return Boolean;
private
 Flag : Boolean := False;
end Lock;

protected body Lock is
 procedure Set is
 begin
 Flag := True;
 end Set;
 function Read return Boolean
 Begin
 return Flag;
 end Read;
end Lock;

 The execution time, in processor clock cycles, of a call to Set. This shall be measured between
the point just before issuing the call, and the point just after the call completes. The function
Read shall be called later to verify that Set was indeed called (and not optimized away). The
calling task shall have sufficiently high priority as to not be preempted during the measurement
period. The protected object shall have sufficiently high ceiling priority to allow the task to call
Set.

 For a multiprocessor, if supported, the metric shall be reported for the case where no contention
(on the execution resource) exists from tasks executing on other processors.

D.13 Run-time Profiles
This clause specifies a mechanism for defining run-time profiles.

Syntax

The form of a pragma Profile is as follows:
 pragma Profile (profile_identifier {, profile_pragma_argument_association});

Legality Rules

The profile_identifier shall be the name of a run-time profile. The semantics of any profile_pragma_-
argument_associations are defined by the run-time profile specified by the profile_identifier.

Static Semantics

A profile is equivalent to the set of configuration pragmas that is defined for each run-time profile.

Post-Compilation Rules

A pragma Profile is a configuration pragma. There may be more than one pragma Profile for a partition.

8

9

10

11

12

1/2

2/2

3/2

4/2

5/2

6/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

543 10 November 2006 The Ravenscar Profile D.13.1

D.13.1 The Ravenscar Profile
This clause defines the Ravenscar profile.

Legality Rules

The profile_identifier Ravenscar is a run-time profile. For run-time profile Ravenscar, there shall be no
profile_pragma_argument_associations.

Static Semantics

The run-time profile Ravenscar is equivalent to the following set of pragmas:
pragma Task_Dispatching_Policy (FIFO_Within_Priorities);
pragma Locking_Policy (Ceiling_Locking);
pragma Detect_Blocking;
pragma Restrictions (
 No_Abort_Statements,
 No_Dynamic_Attachment,
 No_Dynamic_Priorities,
 No_Implicit_Heap_Allocations,
 No_Local_Protected_Objects,
 No_Local_Timing_Events,
 No_Protected_Type_Allocators,
 No_Relative_Delay,
 No_Requeue_Statements,
 No_Select_Statements,
 No_Specific_Termination_Handlers,
 No_Task_Allocators,
 No_Task_Hierarchy,
 No_Task_Termination,
 Simple_Barriers,
 Max_Entry_Queue_Length => 1,
 Max_Protected_Entries => 1,
 Max_Task_Entries => 0,
 No_Dependence => Ada.Asynchronous_Task_Control,
 No_Dependence => Ada.Calendar,
 No_Dependence => Ada.Execution_Time.Group_Budget,
 No_Dependence => Ada.Execution_Time.Timers,
 No_Dependence => Ada.Task_Attributes);

NOTES
41 The effect of the Max_Entry_Queue_Length => 1 restriction applies only to protected entry queues due to the
accompanying restriction of Max_Task_Entries => 0.

1/2

2/2

3/2

4/2

5/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

D.14 Execution Time 10 November 2006 544

D.14 Execution Time
This clause describes a language-defined package to measure execution time.

Static Semantics

The following language-defined library package exists:
with Ada.Task_Identification;
with Ada.Real_Time; use Ada.Real_Time;
package Ada.Execution_Time is

 type CPU_Time is private;
 CPU_Time_First : constant CPU_Time;
 CPU_Time_Last : constant CPU_Time;
 CPU_Time_Unit : constant := implementation-defined-real-number;
 CPU_Tick : constant Time_Span;

 function Clock
 (T : Ada.Task_Identification.Task_Id
 := Ada.Task_Identification.Current_Task)
 return CPU_Time;

 function "+" (Left : CPU_Time; Right : Time_Span) return CPU_Time;
 function "+" (Left : Time_Span; Right : CPU_Time) return CPU_Time;
 function "-" (Left : CPU_Time; Right : Time_Span) return CPU_Time;
 function "-" (Left : CPU_Time; Right : CPU_Time) return Time_Span;

 function "<" (Left, Right : CPU_Time) return Boolean;
 function "<=" (Left, Right : CPU_Time) return Boolean;
 function ">" (Left, Right : CPU_Time) return Boolean;
 function ">=" (Left, Right : CPU_Time) return Boolean;

 procedure Split
 (T : in CPU_Time; SC : out Seconds_Count; TS : out Time_Span);

 function Time_Of (SC : Seconds_Count;
 TS : Time_Span := Time_Span_Zero) return CPU_Time;

private
 ... -- not specified by the language
end Ada.Execution_Time;

The execution time or CPU time of a given task is defined as the time spent by the system executing that
task, including the time spent executing run-time or system services on its behalf. The mechanism used to
measure execution time is implementation defined. It is implementation defined which task, if any, is
charged the execution time that is consumed by interrupt handlers and run-time services on behalf of the
system.

The type CPU_Time represents the execution time of a task. The set of values of this type corresponds
one-to-one with an implementation-defined range of mathematical integers.

The CPU_Time value I represents the half-open execution-time interval that starts with I*CPU_Time_Unit
and is limited by (I+1)*CPU_Time_Unit, where CPU_Time_Unit is an implementation-defined real
number. For each task, the execution time value is set to zero at the creation of the task.

CPU_Time_First and CPU_Time_Last are the smallest and largest values of the CPU_Time type,
respectively.

Dynamic Semantics

CPU_Time_Unit is the smallest amount of execution time representable by the CPU_Time type; it is
expressed in seconds. A CPU clock tick is an execution time interval during which the clock value (as

1/2

2/2

3/2

4/2

5/2

6/2

7/2

8/2

9/2

10/2

11/2

12/2

13/2

14/2

15/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

545 10 November 2006 Execution Time D.14

observed by calling the Clock function) remains constant. CPU_Tick is the average length of such
intervals.

The effects of the operators on CPU_Time and Time_Span are as for the operators defined for integer
types.

The function Clock returns the current execution time of the task identified by T; Tasking_Error is raised
if that task has terminated; Program_Error is raised if the value of T is Task_Identification.Null_Task_Id.

The effects of the Split and Time_Of operations are defined as follows, treating values of type CPU_Time,
Time_Span, and Seconds_Count as mathematical integers. The effect of Split (T, SC, TS) is to set SC and
TS to values such that T*CPU_Time_Unit = SC*1.0 + TS*CPU_Time_Unit, and 0.0 <=
TS*CPU_Time_Unit < 1.0. The value returned by Time_Of(SC,TS) is the execution-time value T such
that T*CPU_Time_Unit=SC*1.0 + TS*CPU_Time_Unit.

Erroneous Execution

For a call of Clock, if the task identified by T no longer exists, the execution of the program is erroneous.

Implementation Requirements

The range of CPU_Time values shall be sufficient to uniquely represent the range of execution times from
the task start-up to 50 years of execution time later. CPU_Tick shall be no greater than 1 millisecond.

Documentation Requirements

The implementation shall document the values of CPU_Time_First, CPU_Time_Last, CPU_Time_Unit,
and CPU_Tick.

The implementation shall document the properties of the underlying mechanism used to measure
execution times, such as the range of values supported and any relevant aspects of the underlying
hardware or operating system facilities used.

Metrics

The implementation shall document the following metrics:
• An upper bound on the execution-time duration of a clock tick. This is a value D such that if t1

and t2 are any execution times of a given task such that t1 < t2 and Clockt1 = Clockt2 then t2 – t1
<= D.

• An upper bound on the size of a clock jump. A clock jump is the difference between two
successive distinct values of an execution-time clock (as observed by calling the Clock function
with the same Task_Id).

• An upper bound on the execution time of a call to the Clock function, in processor clock cycles.

• Upper bounds on the execution times of the operators of the type CPU_Time, in processor clock
cycles.

Implementation Permissions

Implementations targeted to machines with word size smaller than 32 bits need not support the full range
and granularity of the CPU_Time type.

Implementation Advice

When appropriate, implementations should provide configuration mechanisms to change the value of
CPU_Tick.

16/2

17/2

18/2

19/2

20/2

21/2

22/2

23/2

24/2

25/2

26/2

27/2

28/2

29/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

D.14.1 Execution Time Timers 10 November 2006 546

D.14.1 Execution Time Timers
This clause describes a language-defined package that provides a facility for calling a handler when a task
has used a defined amount of CPU time.

Static Semantics

The following language-defined library package exists:
with System;
package Ada.Execution_Time.Timers is

 type Timer (T : not null access constant
 Ada.Task_Identification.Task_Id) is
 tagged limited private;

 type Timer_Handler is
 access protected procedure (TM : in out Timer);

 Min_Handler_Ceiling : constant System.Any_Priority :=
 implementation-defined;
 procedure Set_Handler (TM : in out Timer;
 In_Time : in Time_Span;
 Handler : in Timer_Handler);
 procedure Set_Handler (TM : in out Timer;
 At_Time : in CPU_Time;
 Handler : in Timer_Handler);
 function Current_Handler (TM : Timer) return Timer_Handler;
 procedure Cancel_Handler (TM : in out Timer;
 Cancelled : out Boolean);

 function Time_Remaining (TM : Timer) return Time_Span;

 Timer_Resource_Error : exception;

private
 ... -- not specified by the language
end Ada.Execution_Time.Timers;

The type Timer represents an execution-time event for a single task and is capable of detecting execution-
time overruns. The access discriminant T identifies the task concerned. The type Timer needs finalization
(see 7.6).

An object of type Timer is said to be set if it is associated with a non-null value of type Timer_Handler
and cleared otherwise. All Timer objects are initially cleared.

The type Timer_Handler identifies a protected procedure to be executed by the implementation when the
timer expires. Such a protected procedure is called a handler.

Dynamic Semantics

When a Timer object is created, or upon the first call of a Set_Handler procedure with the timer as
parameter, the resources required to operate an execution-time timer based on the associated execution-
time clock are allocated and initialized. If this operation would exceed the available resources,
Timer_Resource_Error is raised.

The procedures Set_Handler associate the handler Handler with the timer TM; if Handler is null, the timer
is cleared, otherwise it is set. The first procedure Set_Handler loads the timer TM with an interval
specified by the Time_Span parameter. In this mode, the timer TM expires when the execution time of the
task identified by TM.T.all has increased by In_Time; if In_Time is less than or equal to zero, the timer
expires immediately. The second procedure Set_Handler loads the timer TM with the absolute value
specified by At_Time. In this mode, the timer TM expires when the execution time of the task identified

1/2

2/2

3/2

4/2

5/2

6/2

7/2

8/2

9/2

10/2

11/2

12/2

13/2

14/2

15/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

547 10 November 2006 Execution Time Timers D.14.1

by TM.T.all reaches At_Time; if the value of At_Time has already been reached when Set_Handler is
called, the timer expires immediately.

A call of a procedure Set_Handler for a timer that is already set replaces the handler and the (absolute or
relative) execution time; if Handler is not null, the timer remains set.

When a timer expires, the associated handler is executed, passing the timer as parameter. The initial action
of the execution of the handler is to clear the event.

The function Current_Handler returns the handler associated with the timer TM if that timer is set;
otherwise it returns null.

The procedure Cancel_Handler clears the timer if it is set. Cancelled is assigned True if the timer was set
prior to it being cleared; otherwise it is assigned False.

The function Time_Remaining returns the execution time interval that remains until the timer TM would
expire, if that timer is set; otherwise it returns Time_Span_Zero.

The constant Min_Handler_Ceiling is the minimum ceiling priority required for a protected object with a
handler to ensure that no ceiling violation will occur when that handler is invoked.

As part of the finalization of an object of type Timer, the timer is cleared.

For all the subprograms defined in this package, Tasking_Error is raised if the task identified by TM.T.all
has terminated, and Program_Error is raised if the value of TM.T.all is Task_Identification.Null_Task_Id.

An exception propagated from a handler invoked as part of the expiration of a timer has no effect.

Erroneous Execution

For a call of any of the subprograms defined in this package, if the task identified by TM.T.all no longer
exists, the execution of the program is erroneous.

Implementation Requirements

For a given Timer object, the implementation shall perform the operations declared in this package
atomically with respect to any of these operations on the same Timer object. The replacement of a handler
by a call of Set_Handler shall be performed atomically with respect to the execution of the handler.

When an object of type Timer is finalized, the system resources used by the timer shall be deallocated.

Implementation Permissions

Implementations may limit the number of timers that can be defined for each task. If this limit is exceeded
then Timer_Resource_Error is raised.

NOTES
42 A Timer_Handler can be associated with several Timer objects.

16/2

17/2

18/2

19/2

20/2

21/2

22/2

23/2

24/2

25/2

26/2

27/2

28/2

29/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

D.14.2 Group Execution Time Budgets 10 November 2006 548

D.14.2 Group Execution Time Budgets
This clause describes a language-defined package to assign execution time budgets to groups of tasks.

Static Semantics

The following language-defined library package exists:
with System;
package Ada.Execution_Time.Group_Budgets is

 type Group_Budget is tagged limited private;

 type Group_Budget_Handler is access
 protected procedure (GB : in out Group_Budget);

 type Task_Array is array (Positive range <>) of
 Ada.Task_Identification.Task_Id;

 Min_Handler_Ceiling : constant System.Any_Priority :=
 implementation-defined;
 procedure Add_Task (GB : in out Group_Budget;
 T : in Ada.Task_Identification.Task_Id);
 procedure Remove_Task (GB: in out Group_Budget;
 T : in Ada.Task_Identification.Task_Id);
 function Is_Member (GB : Group_Budget;
 T : Ada.Task_Identification.Task_Id) return Boolean;
 function Is_A_Group_Member
 (T : Ada.Task_Identification.Task_Id) return Boolean;
 function Members (GB : Group_Budget) return Task_Array;

 procedure Replenish (GB : in out Group_Budget; To : in Time_Span);
 procedure Add (GB : in out Group_Budget; Interval : in Time_Span);
 function Budget_Has_Expired (GB : Group_Budget) return Boolean;
 function Budget_Remaining (GB : Group_Budget) return Time_Span;

 procedure Set_Handler (GB : in out Group_Budget;
 Handler : in Group_Budget_Handler);
 function Current_Handler (GB : Group_Budget)
 return Group_Budget_Handler;
 procedure Cancel_Handler (GB : in out Group_Budget;
 Cancelled : out Boolean);

 Group_Budget_Error : exception;

private
 -- not specified by the language
end Ada.Execution_Time.Group_Budgets;

The type Group_Budget represents an execution time budget to be used by a group of tasks. The type
Group_Budget needs finalization (see 7.6). A task can belong to at most one group. Tasks of any priority
can be added to a group.

An object of type Group_Budget has an associated nonnegative value of type Time_Span known as its
budget, which is initially Time_Span_Zero. The type Group_Budget_Handler identifies a protected
procedure to be executed by the implementation when the budget is exhausted, that is, reaches zero. Such
a protected procedure is called a handler.

An object of type Group_Budget also includes a handler, which is a value of type Group_Budget_Handler.
The handler of the object is said to be set if it is not null and cleared otherwise. The handler of all
Group_Budget objects is initially cleared.

Dynamic Semantics

The procedure Add_Task adds the task identified by T to the group GB; if that task is already a member of
some other group, Group_Budget_Error is raised.

1/2

2/2

3/2

4/2

5/2

6/2

7/2

8/2

9/2

10/2

11/2

12/2

13/2

14/2

15/2

16/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

549 10 November 2006 Group Execution Time Budgets D.14.2

The procedure Remove_Task removes the task identified by T from the group GB; if that task is not a
member of the group GB, Group_Budget_Error is raised. After successful execution of this procedure, the
task is no longer a member of any group.

The function Is_Member returns True if the task identified by T is a member of the group GB; otherwise it
return False.

The function Is_A_Group_Member returns True if the task identified by T is a member of some group;
otherwise it returns False.

The function Members returns an array of values of type Task_Identification.Task_Id identifying the
members of the group GB. The order of the components of the array is unspecified.

The procedure Replenish loads the group budget GB with To as the Time_Span value. The exception
Group_Budget_Error is raised if the Time_Span value To is non-positive. Any execution of any member
of the group of tasks results in the budget counting down, unless exhausted. When the budget becomes
exhausted (reaches Time_Span_Zero), the associated handler is executed if the handler of group budget
GB is set. Nevertheless, the tasks continue to execute.

The procedure Add modifies the budget of the group GB. A positive value for Interval increases the
budget. A negative value for Interval reduces the budget, but never below Time_Span_Zero. A zero value
for Interval has no effect. A call of procedure Add that results in the value of the budget going to
Time_Span_Zero causes the associated handler to be executed if the handler of the group budget GB is set.

The function Budget_Has_Expired returns True if the budget of group GB is exhausted (equal to
Time_Span_Zero); otherwise it returns False.

The function Budget_Remaining returns the remaining budget for the group GB. If the budget is exhausted
it returns Time_Span_Zero. This is the minimum value for a budget.

The procedure Set_Handler associates the handler Handler with the Group_Budget GB; if Handler is null,
the handler of Group_Budget is cleared, otherwise it is set.

A call of Set_Handler for a Group_Budget that already has a handler set replaces the handler; if Handler is
not null, the handler for Group_Budget remains set.

The function Current_Handler returns the handler associated with the group budget GB if the handler for
that group budget is set; otherwise it returns null.

The procedure Cancel_Handler clears the handler for the group budget if it is set. Cancelled is assigned
True if the handler for the group budget was set prior to it being cleared; otherwise it is assigned False.

The constant Min_Handler_Ceiling is the minimum ceiling priority required for a protected object with a
handler to ensure that no ceiling violation will occur when that handler is invoked.

The precision of the accounting of task execution time to a Group_Budget is the same as that defined for
execution-time clocks from the parent package.

As part of the finalization of an object of type Group_Budget all member tasks are removed from the
group identified by that object.

If a task is a member of a Group_Budget when it terminates then as part of the finalization of the task it is
removed from the group.

For all the operations defined in this package, Tasking_Error is raised if the task identified by T has
terminated, and Program_Error is raised if the value of T is Task_Identification.Null_Task_Id.

17/2

18/2

19/2

20/2

21/2

22/2

23/2

24/2

25/2

26/2

27/2

28/2

29/2

30/2

31/2

32/2

33/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

D.14.2 Group Execution Time Budgets 10 November 2006 550

An exception propagated from a handler invoked when the budget of a group of tasks becomes exhausted
has no effect.

Erroneous Execution

For a call of any of the subprograms defined in this package, if the task identified by T no longer exists,
the execution of the program is erroneous.

Implementation Requirements

For a given Group_Budget object, the implementation shall perform the operations declared in this
package atomically with respect to any of these operations on the same Group_Budget object. The
replacement of a handler, by a call of Set_Handler, shall be performed atomically with respect to the
execution of the handler.

NOTES
43 Clearing or setting of the handler of a group budget does not change the current value of the budget. Exhaustion or
loading of a budget does not change whether the handler of the group budget is set or cleared.

44 A Group_Budget_Handler can be associated with several Group_Budget objects.

D.15 Timing Events
This clause describes a language-defined package to allow user-defined protected procedures to be
executed at a specified time without the need for a task or a delay statement.

Static Semantics

The following language-defined library package exists:
package Ada.Real_Time.Timing_Events is

 type Timing_Event is tagged limited private;
 type Timing_Event_Handler
 is access protected procedure (Event : in out Timing_Event);

 procedure Set_Handler (Event : in out Timing_Event;
 At_Time : in Time;
 Handler : in Timing_Event_Handler);
 procedure Set_Handler (Event : in out Timing_Event;
 In_Time : in Time_Span;
 Handler : in Timing_Event_Handler);
 function Current_Handler (Event : Timing_Event)
 return Timing_Event_Handler;
 procedure Cancel_Handler (Event : in out Timing_Event;
 Cancelled : out Boolean);

 function Time_Of_Event (Event : Timing_Event) return Time;

private
 ... -- not specified by the language
end Ada.Real_Time.Timing_Events;

The type Timing_Event represents a time in the future when an event is to occur. The type Timing_Event
needs finalization (see 7.6).

An object of type Timing_Event is said to be set if it is associated with a non-null value of type
Timing_Event_Handler and cleared otherwise. All Timing_Event objects are initially cleared.

The type Timing_Event_Handler identifies a protected procedure to be executed by the implementation
when the timing event occurs. Such a protected procedure is called a handler.

34/2

35/2

36/2

37/2

38/2

1/2

2/2

3/2

4/2

5/2

6/2

7/2

8/2

9/2

10/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

551 10 November 2006 Timing Events D.15

Dynamic Semantics

The procedures Set_Handler associate the handler Handler with the event Event; if Handler is null, the
event is cleared, otherwise it is set. The first procedure Set_Handler sets the execution time for the event to
be At_Time. The second procedure Set_Handler sets the execution time for the event to be
Real_Time.Clock + In_Time.

A call of a procedure Set_Handler for an event that is already set replaces the handler and the time of
execution; if Handler is not null, the event remains set.

As soon as possible after the time set for the event, the handler is executed, passing the event as parameter.
The handler is only executed if the timing event is in the set state at the time of execution. The initial
action of the execution of the handler is to clear the event.

If the Ceiling_Locking policy (see D.3) is in effect when a procedure Set_Handler is called, a check is
made that the ceiling priority of Handler.all is Interrupt_Priority'Last. If the check fails, Program_Error is
raised.

If a procedure Set_Handler is called with zero or negative In_Time or with At_Time indicating a time in
the past then the handler is executed immediately by the task executing the call of Set_Handler. The
timing event Event is cleared.

The function Current_Handler returns the handler associated with the event Event if that event is set;
otherwise it returns null.

The procedure Cancel_Handler clears the event if it is set. Cancelled is assigned True if the event was set
prior to it being cleared; otherwise it is assigned False.

The function Time_Of_Event returns the time of the event if the event is set; otherwise it returns
Real_Time.Time_First.

As part of the finalization of an object of type Timing_Event, the Timing_Event is cleared.

If several timing events are set for the same time, they are executed in FIFO order of being set.

An exception propagated from a handler invoked by a timing event has no effect.

Implementation Requirements

For a given Timing_Event object, the implementation shall perform the operations declared in this
package atomically with respect to any of these operations on the same Timing_Event object. The
replacement of a handler by a call of Set_Handler shall be performed atomically with respect to the
execution of the handler.

Metrics

The implementation shall document the following metric:
• An upper bound on the lateness of the execution of a handler. That is, the maximum time

between when a handler is actually executed and the time specified when the event was set.

Implementation Advice

The protected handler procedure should be executed directly by the real-time clock interrupt mechanism.

NOTES
45 Since a call of Set_Handler is not a potentially blocking operation, it can be called from within a handler.

46 A Timing_Event_Handler can be associated with several Timing_Event objects.

11/2

12/2

13/2

14/2

15/2

16/2

17/2

18/2

19/2

20/2

21/2

22/2

23/2

24/2

25/2

26/2

27/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

553 10 November 2006 Distributed Systems E

Annex E
(normative)

Distributed Systems
This Annex defines facilities for supporting the implementation of distributed systems using multiple
partitions working cooperatively as part of a single Ada program.

Post-Compilation Rules

A distributed system is an interconnection of one or more processing nodes (a system resource that has
both computational and storage capabilities), and zero or more storage nodes (a system resource that has
only storage capabilities, with the storage addressable by one or more processing nodes).

A distributed program comprises one or more partitions that execute independently (except when they
communicate) in a distributed system.

The process of mapping the partitions of a program to the nodes in a distributed system is called
configuring the partitions of the program.

Implementation Requirements

The implementation shall provide means for explicitly assigning library units to a partition and for the
configuring and execution of a program consisting of multiple partitions on a distributed system; the
means are implementation defined.

Implementation Permissions

An implementation may require that the set of processing nodes of a distributed system be homogeneous.

NOTES
1 The partitions comprising a program may be executed on differently configured distributed systems or on a non-
distributed system without requiring recompilation. A distributed program may be partitioned differently from the same
set of library units without recompilation. The resulting execution is semantically equivalent.

2 A distributed program retains the same type safety as the equivalent single partition program.

E.1 Partitions
The partitions of a distributed program are classified as either active or passive.

Post-Compilation Rules

An active partition is a partition as defined in 10.2. A passive partition is a partition that has no thread of
control of its own, whose library units are all preelaborated, and whose data and subprograms are
accessible to one or more active partitions.

A passive partition shall include only library_items that either are declared pure or are shared passive (see
10.2.1 and E.2.1).

An active partition shall be configured on a processing node. A passive partition shall be configured either
on a storage node or on a processing node.

The configuration of the partitions of a program onto a distributed system shall be consistent with the
possibility for data references or calls between the partitions implied by their semantic dependences. Any
reference to data or call of a subprogram across partitions is called a remote access.

1

2

3

4

5

6

7

8

1

2

3

4

5

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

E.1 Partitions 10 November 2006 554

Dynamic Semantics

A library_item is elaborated as part of the elaboration of each partition that includes it. If a normal library
unit (see E.2) has state, then a separate copy of the state exists in each active partition that elaborates it.
The state evolves independently in each such partition.

An active partition terminates when its environment task terminates. A partition becomes inaccessible if it
terminates or if it is aborted. An active partition is aborted when its environment task is aborted. In
addition, if a partition fails during its elaboration, it becomes inaccessible to other partitions. Other
implementation-defined events can also result in a partition becoming inaccessible.

For a prefix D that denotes a library-level declaration, excepting a declaration of or within a declared-pure
library unit, the following attribute is defined:
D'Partition_Id
 Denotes a value of the type universal_integer that identifies the partition in which D was

elaborated. If D denotes the declaration of a remote call interface library unit (see E.2.3) the
given partition is the one where the body of D was elaborated.

Bounded (Run-Time) Errors

It is a bounded error for there to be cyclic elaboration dependences between the active partitions of a
single distributed program. The possible effects, in each of the partitions involved, are deadlock during
elaboration, or the raising of Communication_Error or Program_Error.

Implementation Permissions

An implementation may allow multiple active or passive partitions to be configured on a single processing
node, and multiple passive partitions to be configured on a single storage node. In these cases, the
scheduling policies, treatment of priorities, and management of shared resources between these partitions
are implementation defined.

An implementation may allow separate copies of an active partition to be configured on different
processing nodes, and to provide appropriate interactions between the copies to present a consistent state
of the partition to other active partitions.

In an implementation, the partitions of a distributed program need not be loaded and elaborated all at the
same time; they may be loaded and elaborated one at a time over an extended period of time. An
implementation may provide facilities to abort and reload a partition during the execution of a distributed
program.

An implementation may allow the state of some of the partitions of a distributed program to persist while
other partitions of the program terminate and are later reinvoked.

NOTES
3 Library units are grouped into partitions after compile time, but before run time. At compile time, only the relevant
library unit properties are identified using categorization pragmas.

4 The value returned by the Partition_Id attribute can be used as a parameter to implementation-provided subprograms in
order to query information about the partition.

E.2 Categorization of Library Units
Library units can be categorized according to the role they play in a distributed program. Certain
restrictions are associated with each category to ensure that the semantics of a distributed program remain
close to the semantics for a nondistributed program.

6

7

8/1

9

10

11

12

13

14

15

16

1

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

555 10 November 2006 Categorization of Library Units E.2

A categorization pragma is a library unit pragma (see 10.1.5) that restricts the declarations, child units, or
semantic dependences of the library unit to which it applies. A categorized library unit is a library unit to
which a categorization pragma applies.

The pragmas Shared_Passive, Remote_Types, and Remote_Call_Interface are categorization pragmas. In
addition, for the purposes of this Annex, the pragma Pure (see 10.2.1) is considered a categorization
pragma.

A library package or generic library package is called a shared passive library unit if a Shared_Passive
pragma applies to it. A library package or generic library package is called a remote types library unit if a
Remote_Types pragma applies to it. A library unit is called a remote call interface if a
Remote_Call_Interface pragma applies to it. A normal library unit is one to which no categorization
pragma applies.

The various categories of library units and the associated restrictions are described in this clause and its
subclauses. The categories are related hierarchically in that the library units of one category can depend
semantically only on library units of that category or an earlier one, except that the body of a remote types
or remote call interface library unit is unrestricted.

The overall hierarchy (including declared pure) is as follows:
Declared Pure
 Can depend only on other declared pure library units;

Shared Passive
 Can depend only on other shared passive or declared pure library units;

Remote Types
 The declaration of the library unit can depend only on other remote types library units, or

one of the above; the body of the library unit is unrestricted;

Remote Call Interface
 The declaration of the library unit can depend only on other remote call interfaces, or one

of the above; the body of the library unit is unrestricted;

Normal Unrestricted.

Declared pure and shared passive library units are preelaborated. The declaration of a remote types or
remote call interface library unit is required to be preelaborable.

Implementation Requirements

This paragraph was deleted.

Implementation Permissions

Implementations are allowed to define other categorization pragmas.

E.2.1 Shared Passive Library Units
A shared passive library unit is used for managing global data shared between active partitions. The
restrictions on shared passive library units prevent the data or tasks of one active partition from being
accessible to another active partition through references implicit in objects declared in the shared passive
library unit.

Syntax

The form of a pragma Shared_Passive is as follows:

2

3

4/1

5

6

7

8

9

10

11

12

13/1

14

1

2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

E.2.1 Shared Passive Library Units 10 November 2006 556

 pragma Shared_Passive[(library_unit_name)];

Legality Rules

A shared passive library unit is a library unit to which a Shared_Passive pragma applies. The following
restrictions apply to such a library unit:

• it shall be preelaborable (see 10.2.1);

• it shall depend semantically only upon declared pure or shared passive library units;

• it shall not contain a library-level declaration of an access type that designates a class-wide type,
task type, or protected type with entry_declarations.

Notwithstanding the definition of accessibility given in 3.10.2, the declaration of a library unit P1 is not
accessible from within the declarative region of a shared passive library unit P2, unless the shared passive
library unit P2 depends semantically on P1.

Static Semantics

A shared passive library unit is preelaborated.

Post-Compilation Rules

A shared passive library unit shall be assigned to at most one partition within a given program.

Notwithstanding the rule given in 10.2, a compilation unit in a given partition does not need (in the sense
of 10.2) the shared passive library units on which it depends semantically to be included in that same
partition; they will typically reside in separate passive partitions.

E.2.2 Remote Types Library Units
A remote types library unit supports the definition of types intended for use in communication between
active partitions.

Syntax

The form of a pragma Remote_Types is as follows:
 pragma Remote_Types[(library_unit_name)];

Legality Rules

A remote types library unit is a library unit to which the pragma Remote_Types applies. The following
restrictions apply to the declaration of such a library unit:

• it shall be preelaborable;

• it shall depend semantically only on declared pure, shared passive, or other remote types library
units;

• it shall not contain the declaration of any variable within the visible part of the library unit;

• the full view of each type declared in the visible part of the library unit that has any available
stream attributes shall support external streaming (see 13.13.2).

An access type declared in the visible part of a remote types or remote call interface library unit is called a
remote access type. Such a type shall be:

• an access-to-subprogram type, or

• a general access type that designates a class-wide limited private type or a class-wide private
type extension all of whose ancestors are either private type extensions or limited private types.

3

4

5

6

7/1

8

9

10

11

1

2

3

4

5

6

7

8/2

9/1

9.1/1

9.2/1

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

557 10 November 2006 Remote Types Library Units E.2.2

A type that is derived from a remote access type is also a remote access type.

The following restrictions apply to the use of a remote access-to-subprogram type:
• A value of a remote access-to-subprogram type shall be converted only to or from another

(subtype-conformant) remote access-to-subprogram type;

• The prefix of an Access attribute_reference that yields a value of a remote access-to-
subprogram type shall statically denote a (subtype-conformant) remote subprogram.

The following restrictions apply to the use of a remote access-to-class-wide type:
• The primitive subprograms of the corresponding specific limited private type shall only have

access parameters if they are controlling formal parameters; each non-controlling formal
parameter shall support external streaming (see 13.13.2);

• A value of a remote access-to-class-wide type shall be explicitly converted only to another
remote access-to-class-wide type;

• A value of a remote access-to-class-wide type shall be dereferenced (or implicitly converted to
an anonymous access type) only as part of a dispatching call where the value designates a
controlling operand of the call (see E.4, “Remote Subprogram Calls”).

• The Storage_Pool attribute is not defined for a remote access-to-class-wide type; the expected
type for an allocator shall not be a remote access-to-class-wide type. A remote access-to-class-
wide type shall not be an actual parameter for a generic formal access type. The Storage_Size
attribute of a remote access-to-class-wide type yields 0; it is not allowed in an
attribute_definition_clause.
NOTES
5 A remote types library unit need not be pure, and the types it defines may include levels of indirection implemented by
using access types. User-specified Read and Write attributes (see 13.13.2) provide for sending values of such a type
between active partitions, with Write marshalling the representation, and Read unmarshalling any levels of indirection.

E.2.3 Remote Call Interface Library Units
A remote call interface library unit can be used as an interface for remote procedure calls (RPCs) (or
remote function calls) between active partitions.

Syntax

The form of a pragma Remote_Call_Interface is as follows:
 pragma Remote_Call_Interface[(library_unit_name)];
The form of a pragma All_Calls_Remote is as follows:
 pragma All_Calls_Remote[(library_unit_name)];
A pragma All_Calls_Remote is a library unit pragma.

Legality Rules

A remote call interface (RCI) is a library unit to which the pragma Remote_Call_Interface applies. A
subprogram declared in the visible part of such a library unit, or declared by such a library unit, is called a
remote subprogram.

The declaration of an RCI library unit shall be preelaborable (see 10.2.1), and shall depend semantically
only upon declared pure, shared passive, remote types, or other remote call interface library units.

In addition, the following restrictions apply to an RCI library unit:
• its visible part shall not contain the declaration of a variable;

9.3/1

10

11/2

12

13

14/2

15

16/1

17/2

18

1

2

3

4

5

6

7/1

8

9/1

10/1

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

E.2.3 Remote Call Interface Library Units 10 November 2006 558

• its visible part shall not contain the declaration of a limited type;

• its visible part shall not contain a nested generic_declaration;

• it shall not be, nor shall its visible part contain, the declaration of a subprogram to which a
pragma Inline applies;

• it shall not be, nor shall its visible part contain, a subprogram (or access-to-subprogram)
declaration whose profile has an access parameter or a parameter of a type that does not support
external streaming (see 13.13.2);

• any public child of the library unit shall be a remote call interface library unit.

If a pragma All_Calls_Remote applies to a library unit, the library unit shall be a remote call interface.

Post-Compilation Rules

A remote call interface library unit shall be assigned to at most one partition of a given program. A remote
call interface library unit whose parent is also an RCI library unit shall be assigned only to the same
partition as its parent.

Notwithstanding the rule given in 10.2, a compilation unit in a given partition that semantically depends
on the declaration of an RCI library unit, needs (in the sense of 10.2) only the declaration of the RCI
library unit, not the body, to be included in that same partition. Therefore, the body of an RCI library unit
is included only in the partition to which the RCI library unit is explicitly assigned.

Implementation Requirements

If a pragma All_Calls_Remote applies to a given RCI library unit, then the implementation shall route any
call to a subprogram of the RCI unit from outside the declarative region of the unit through the Partition
Communication Subsystem (PCS); see E.5. Calls to such subprograms from within the declarative region
of the unit are defined to be local and shall not go through the PCS.

Implementation Permissions

An implementation need not support the Remote_Call_Interface pragma nor the All_Calls_Remote
pragma. Explicit message-based communication between active partitions can be supported as an
alternative to RPC.

E.3 Consistency of a Distributed System
This clause defines attributes and rules associated with verifying the consistency of a distributed program.

Static Semantics

For a prefix P that statically denotes a program unit, the following attributes are defined:
P'Version Yields a value of the predefined type String that identifies the version of the compilation

unit that contains the declaration of the program unit.

P'Body_Version
 Yields a value of the predefined type String that identifies the version of the compilation

unit that contains the body (but not any subunits) of the program unit.

The version of a compilation unit changes whenever the compilation unit changes in a semantically
significant way. This International Standard does not define the exact meaning of "semantically
significant". It is unspecified whether there are other events (such as recompilation) that result in the
version of a compilation unit changing.

11/1

12/1

13/1

14/2

15

16

17

18

19/1

20

1

2/1

3

4

5/1

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

559 10 November 2006 Consistency of a Distributed System E.3

If P is not a library unit, and P has no completion, then P'Body_Version returns the Body_Version of the
innermost program unit enclosing the declaration of P. If P is a library unit, and P has no completion, then
P'Body_Version returns a value that is different from Body_Version of any version of P that has a
completion.

Bounded (Run-Time) Errors

In a distributed program, a library unit is consistent if the same version of its declaration is used
throughout. It is a bounded error to elaborate a partition of a distributed program that contains a
compilation unit that depends on a different version of the declaration of a shared passive or RCI library
unit than that included in the partition to which the shared passive or RCI library unit was assigned. As a
result of this error, Program_Error can be raised in one or both partitions during elaboration; in any case,
the partitions become inaccessible to one another.

E.4 Remote Subprogram Calls
A remote subprogram call is a subprogram call that invokes the execution of a subprogram in another
partition. The partition that originates the remote subprogram call is the calling partition, and the partition
that executes the corresponding subprogram body is the called partition. Some remote procedure calls are
allowed to return prior to the completion of subprogram execution. These are called asynchronous remote
procedure calls.

There are three different ways of performing a remote subprogram call:
• As a direct call on a (remote) subprogram explicitly declared in a remote call interface;

• As an indirect call through a value of a remote access-to-subprogram type;

• As a dispatching call with a controlling operand designated by a value of a remote access-to-
class-wide type.

The first way of calling corresponds to a static binding between the calling and the called partition. The
latter two ways correspond to a dynamic binding between the calling and the called partition.

A remote call interface library unit (see E.2.3) defines the remote subprograms or remote access types
used for remote subprogram calls.

Legality Rules

In a dispatching call with two or more controlling operands, if one controlling operand is designated by a
value of a remote access-to-class-wide type, then all shall be.

Dynamic Semantics

For the execution of a remote subprogram call, subprogram parameters (and later the results, if any) are
passed using a stream-oriented representation (see 13.13.1) which is suitable for transmission between
partitions. This action is called marshalling. Unmarshalling is the reverse action of reconstructing the
parameters or results from the stream-oriented representation. Marshalling is performed initially as part of
the remote subprogram call in the calling partition; unmarshalling is done in the called partition. After the
remote subprogram completes, marshalling is performed in the called partition, and finally unmarshalling
is done in the calling partition.

A calling stub is the sequence of code that replaces the subprogram body of a remotely called subprogram
in the calling partition. A receiving stub is the sequence of code (the “wrapper”) that receives a remote
subprogram call on the called partition and invokes the appropriate subprogram body.

5.1/1

6

1

2

3

4

5

6

7

8

9

10

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

E.4 Remote Subprogram Calls 10 November 2006 560

Remote subprogram calls are executed at most once, that is, if the subprogram call returns normally, then
the called subprogram's body was executed exactly once.

The task executing a remote subprogram call blocks until the subprogram in the called partition returns,
unless the call is asynchronous. For an asynchronous remote procedure call, the calling task can become
ready before the procedure in the called partition returns.

If a construct containing a remote call is aborted, the remote subprogram call is cancelled. Whether the
execution of the remote subprogram is immediately aborted as a result of the cancellation is implemen-
tation defined.

If a remote subprogram call is received by a called partition before the partition has completed its
elaboration, the call is kept pending until the called partition completes its elaboration (unless the call is
cancelled by the calling partition prior to that).

If an exception is propagated by a remotely called subprogram, and the call is not an asynchronous call,
the corresponding exception is reraised at the point of the remote subprogram call. For an asynchronous
call, if the remote procedure call returns prior to the completion of the remotely called subprogram, any
exception is lost.

The exception Communication_Error (see E.5) is raised if a remote call cannot be completed due to
difficulties in communicating with the called partition.

All forms of remote subprogram calls are potentially blocking operations (see 9.5.1).

In a remote subprogram call with a formal parameter of a class-wide type, a check is made that the tag of
the actual parameter identifies a tagged type declared in a declared-pure or shared passive library unit, or
in the visible part of a remote types or remote call interface library unit. Program_Error is raised if this
check fails. In a remote function call which returns a class-wide type, the same check is made on the
function result.

In a dispatching call with two or more controlling operands that are designated by values of a remote
access-to-class-wide type, a check is made (in addition to the normal Tag_Check — see 11.5) that all the
remote access-to-class-wide values originated from Access attribute_references that were evaluated by
tasks of the same active partition. Constraint_Error is raised if this check fails.

Implementation Requirements

The implementation of remote subprogram calls shall conform to the PCS interface as defined by the
specification of the language-defined package System.RPC (see E.5). The calling stub shall use the
Do_RPC procedure unless the remote procedure call is asynchronous in which case Do_APC shall be
used. On the receiving side, the corresponding receiving stub shall be invoked by the RPC-receiver.

With respect to shared variables in shared passive library units, the execution of the corresponding
subprogram body of a synchronous remote procedure call is considered to be part of the execution of the
calling task. The execution of the corresponding subprogram body of an asynchronous remote procedure
call proceeds in parallel with the calling task and does not signal the next action of the calling task (see
9.10).

NOTES
6 A given active partition can both make and receive remote subprogram calls. Thus, an active partition can act as both a
client and a server.

7 If a given exception is propagated by a remote subprogram call, but the exception does not exist in the calling partition,
the exception can be handled by an others choice or be propagated to and handled by a third partition.

11

12

13

14

15

16

17

18/1

19

20

20.1/1

21

22

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

561 10 November 2006 Pragma Asynchronous E.4.1

E.4.1 Pragma Asynchronous
This subclause introduces the pragma Asynchronous which allows a remote subprogram call to return
prior to completion of the execution of the corresponding remote subprogram body.

Syntax

The form of a pragma Asynchronous is as follows:
 pragma Asynchronous(local_name);

Legality Rules

The local_name of a pragma Asynchronous shall denote either:
• One or more remote procedures; the formal parameters of the procedure(s) shall all be of mode

in;

• The first subtype of a remote access-to-procedure type; the formal parameters of the designated
profile of the type shall all be of mode in;

• The first subtype of a remote access-to-class-wide type.

Static Semantics

A pragma Asynchronous is a representation pragma. When applied to a type, it specifies the type-related
asynchronous aspect of the type.

Dynamic Semantics

A remote call is asynchronous if it is a call to a procedure, or a call through a value of an access-to-
procedure type, to which a pragma Asynchronous applies. In addition, if a pragma Asynchronous applies
to a remote access-to-class-wide type, then a dispatching call on a procedure with a controlling operand
designated by a value of the type is asynchronous if the formal parameters of the procedure are all of mode
in.

Implementation Requirements

Asynchronous remote procedure calls shall be implemented such that the corresponding body executes at
most once as a result of the call.

E.4.2 Example of Use of a Remote Access-to-Class-Wide Type
Examples

Example of using a remote access-to-class-wide type to achieve dynamic binding across active partitions:
package Tapes is
 pragma Pure(Tapes);
 type Tape is abstract tagged limited private;
 -- Primitive dispatching operations where
 -- Tape is controlling operand
 procedure Copy (From, To : access Tape; Num_Recs : in Natural) is
abstract;
 procedure Rewind (T : access Tape) is abstract;
 -- More operations
private
 type Tape is ...
end Tapes;

1

2

3

4

5

6

7

8

9

10

1

2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

E.4.2 Example of Use of a Remote Access-to-Class-Wide Type 10 November 2006 562

with Tapes;
package Name_Server is
 pragma Remote_Call_Interface;
 -- Dynamic binding to remote operations is achieved
 -- using the access-to-limited-class-wide type Tape_Ptr
 type Tape_Ptr is access all Tapes.Tape'Class;
 -- The following statically bound remote operations
 -- allow for a name-server capability in this example
 function Find (Name : String) return Tape_Ptr;
 procedure Register (Name : in String; T : in Tape_Ptr);
 procedure Remove (T : in Tape_Ptr);
 -- More operations
end Name_Server;

package Tape_Driver is
 -- Declarations are not shown, they are irrelevant here
end Tape_Driver;

with Tapes, Name_Server;
package body Tape_Driver is
 type New_Tape is new Tapes.Tape with ...
 procedure Copy
 (From, To : access New_Tape; Num_Recs: in Natural) is
 begin
 . . .
 end Copy;
 procedure Rewind (T : access New_Tape) is
 begin
 . . .
 end Rewind;
 -- Objects remotely accessible through use
 -- of Name_Server operations
 Tape1, Tape2 : aliased New_Tape;
begin
 Name_Server.Register ("NINE-TRACK", Tape1'Access);
 Name_Server.Register ("SEVEN-TRACK", Tape2'Access);
end Tape_Driver;

with Tapes, Name_Server;
-- Tape_Driver is not needed and thus not mentioned in the with_clause
procedure Tape_Client is
 T1, T2 : Name_Server.Tape_Ptr;
begin
 T1 := Name_Server.Find ("NINE-TRACK");
 T2 := Name_Server.Find ("SEVEN-TRACK");
 Tapes.Rewind (T1);
 Tapes.Rewind (T2);
 Tapes.Copy (T1, T2, 3);
end Tape_Client;

Notes on the example:

This paragraph was deleted.

• The package Tapes provides the necessary declarations of the type and its primitive operations.

• Name_Server is a remote call interface package and is elaborated in a separate active partition to
provide the necessary naming services (such as Register and Find) to the entire distributed
program through remote subprogram calls.

• Tape_Driver is a normal package that is elaborated in a partition configured on the processing
node that is connected to the tape device(s). The abstract operations are overridden to support
the locally declared tape devices (Tape1, Tape2). The package is not visible to its clients, but it
exports the tape devices (as remote objects) through the services of the Name_Server. This
allows for tape devices to be dynamically added, removed or replaced without requiring the
modification of the clients' code.

3

4

5

6

7

8/1

9

10

11

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

563 10 November 2006 Example of Use of a Remote Access-to-Class-Wide Type E.4.2

• The Tape_Client procedure references only declarations in the Tapes and Name_Server
packages. Before using a tape for the first time, it needs to query the Name_Server for a system-
wide identity for that tape. From then on, it can use that identity to access the tape device.

• Values of remote access type Tape_Ptr include the necessary information to complete the remote
dispatching operations that result from dereferencing the controlling operands T1 and T2.

E.5 Partition Communication Subsystem
The Partition Communication Subsystem (PCS) provides facilities for supporting communication between
the active partitions of a distributed program. The package System.RPC is a language-defined interface to
the PCS.

Static Semantics

The following language-defined library package exists:
with Ada.Streams; -- see 13.13.1
package System.RPC is

 type Partition_Id is range 0 .. implementation-defined;
 Communication_Error : exception;

 type Params_Stream_Type (
 Initial_Size : Ada.Streams.Stream_Element_Count) is new
 Ada.Streams.Root_Stream_Type with private;

 procedure Read(
 Stream : in out Params_Stream_Type;
 Item : out Ada.Streams.Stream_Element_Array;
 Last : out Ada.Streams.Stream_Element_Offset);

 procedure Write(
 Stream : in out Params_Stream_Type;
 Item : in Ada.Streams.Stream_Element_Array);

 -- Synchronous call
 procedure Do_RPC(
 Partition : in Partition_Id;
 Params : access Params_Stream_Type;
 Result : access Params_Stream_Type);

 -- Asynchronous call
 procedure Do_APC(
 Partition : in Partition_Id;
 Params : access Params_Stream_Type);

 -- The handler for incoming RPCs
 type RPC_Receiver is access procedure(
 Params : access Params_Stream_Type;
 Result : access Params_Stream_Type);

 procedure Establish_RPC_Receiver(
 Partition : in Partition_Id;
 Receiver : in RPC_Receiver);

private
 ... -- not specified by the language
end System.RPC;

A value of the type Partition_Id is used to identify a partition.

An object of the type Params_Stream_Type is used for identifying the particular remote subprogram that is
being called, as well as marshalling and unmarshalling the parameters or result of a remote subprogram
call, as part of sending them between partitions.

12

13

1/2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

E.5 Partition Communication Subsystem 10 November 2006 564

The Read and Write procedures override the corresponding abstract operations for the type
Params_Stream_Type.

Dynamic Semantics

The Do_RPC and Do_APC procedures send a message to the active partition identified by the Partition
parameter.

After sending the message, Do_RPC blocks the calling task until a reply message comes back from the
called partition or some error is detected by the underlying communication system in which case
Communication_Error is raised at the point of the call to Do_RPC.

Do_APC operates in the same way as Do_RPC except that it is allowed to return immediately after
sending the message.

Upon normal return, the stream designated by the Result parameter of Do_RPC contains the reply
message.

The procedure System.RPC.Establish_RPC_Receiver is called once, immediately after elaborating the
library units of an active partition (that is, right after the elaboration of the partition) if the partition
includes an RCI library unit, but prior to invoking the main subprogram, if any. The Partition parameter is
the Partition_Id of the active partition being elaborated. The Receiver parameter designates an
implementation-provided procedure called the RPC-receiver which will handle all RPCs received by the
partition from the PCS. Establish_RPC_Receiver saves a reference to the RPC-receiver; when a message
is received at the called partition, the RPC-receiver is called with the Params stream containing the
message. When the RPC-receiver returns, the contents of the stream designated by Result is placed in a
message and sent back to the calling partition.

If a call on Do_RPC is aborted, a cancellation message is sent to the called partition, to request that the
execution of the remotely called subprogram be aborted.

The subprograms declared in System.RPC are potentially blocking operations.

Implementation Requirements

The implementation of the RPC-receiver shall be reentrant, thereby allowing concurrent calls on it from
the PCS to service concurrent remote subprogram calls into the partition.

An implementation shall not restrict the replacement of the body of System.RPC. An implementation shall
not restrict children of System.RPC. The related implementation permissions in the introduction to Annex
A do not apply.

If the implementation of System.RPC is provided by the user, an implementation shall support remote
subprogram calls as specified.

Documentation Requirements

The implementation of the PCS shall document whether the RPC-receiver is invoked from concurrent
tasks. If there is an upper limit on the number of such tasks, this limit shall be documented as well,
together with the mechanisms to configure it (if this is supported).

Implementation Permissions

The PCS is allowed to contain implementation-defined interfaces for explicit message passing,
broadcasting, etc. Similarly, it is allowed to provide additional interfaces to query the state of some remote

16

17

18

19

20

21

22

23

24

24.1/1

24.2/1

25

26

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

565 10 November 2006 Partition Communication Subsystem E.5

partition (given its partition ID) or of the PCS itself, to set timeouts and retry parameters, to get more
detailed error status, etc. These additional interfaces should be provided in child packages of System.RPC.

A body for the package System.RPC need not be supplied by the implementation.

An alternative declaration is allowed for package System.RPC as long as it provides a set of operations
that is substantially equivalent to the specification defined in this clause.

Implementation Advice

Whenever possible, the PCS on the called partition should allow for multiple tasks to call the RPC-
receiver with different messages and should allow them to block until the corresponding subprogram body
returns.

The Write operation on a stream of type Params_Stream_Type should raise Storage_Error if it runs out of
space trying to write the Item into the stream.

NOTES
8 The package System.RPC is not designed for direct calls by user programs. It is instead designed for use in the
implementation of remote subprograms calls, being called by the calling stubs generated for a remote call interface library
unit to initiate a remote call, and in turn calling back to an RPC-receiver that dispatches to the receiving stubs generated
for the body of a remote call interface, to handle a remote call received from elsewhere.

27

27.1/2

28

29

30

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

567 10 November 2006 Information Systems F

Annex F
(normative)

Information Systems
This Annex provides a set of facilities relevant to Information Systems programming. These fall into
several categories:

• an attribute definition clause specifying Machine_Radix for a decimal subtype;
• the package Decimal, which declares a set of constants defining the implementation's capacity

for decimal types, and a generic procedure for decimal division; and

• the child packages Text_IO.Editing, Wide_Text_IO.Editing, and Wide_Wide_Text_IO.Editing,
which support formatted and localized output of decimal data, based on “picture String” values.

See also: 3.5.9, “Fixed Point Types”; 3.5.10, “Operations of Fixed Point Types”; 4.6, “Type Conversions”;
13.3, “Operational and Representation Attributes”; A.10.9, “Input-Output for Real Types”; B.3,
“Interfacing with C and C++”; B.4, “Interfacing with COBOL”; Annex G, “Numerics”.

The character and string handling packages in Annex A, “Predefined Language Environment” are also
relevant for Information Systems.

Implementation Advice

If COBOL (respectively, C) is widely supported in the target environment, implementations supporting the
Information Systems Annex should provide the child package Interfaces.COBOL (respectively,
Interfaces.C) specified in Annex B and should support a convention_identifier of COBOL (respectively, C)
in the interfacing pragmas (see Annex B), thus allowing Ada programs to interface with programs written
in that language.

F.1 Machine_Radix Attribute Definition Clause
Static Semantics

Machine_Radix may be specified for a decimal first subtype (see 3.5.9) via an attribute_definition_clause;
the expression of such a clause shall be static, and its value shall be 2 or 10. A value of 2 implies a binary
base range; a value of 10 implies a decimal base range.

Implementation Advice

Packed decimal should be used as the internal representation for objects of subtype S when
S'Machine_Radix = 10.

Examples

Example of Machine_Radix attribute definition clause:
type Money is delta 0.01 digits 15;
for Money'Machine_Radix use 10;

1

2

3

4/2

5/2

6

7

1

2

3

4

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

F.2 The Package Decimal 10 November 2006 568

F.2 The Package Decimal
Static Semantics

The library package Decimal has the following declaration:
package Ada.Decimal is
 pragma Pure(Decimal);

 Max_Scale : constant := implementation-defined;
 Min_Scale : constant := implementation-defined;
 Min_Delta : constant := 10.0**(-Max_Scale);
 Max_Delta : constant := 10.0**(-Min_Scale);

 Max_Decimal_Digits : constant := implementation-defined;
 generic
 type Dividend_Type is delta <> digits <>;
 type Divisor_Type is delta <> digits <>;
 type Quotient_Type is delta <> digits <>;
 type Remainder_Type is delta <> digits <>;
 procedure Divide (Dividend : in Dividend_Type;
 Divisor : in Divisor_Type;
 Quotient : out Quotient_Type;
 Remainder : out Remainder_Type);
 pragma Convention(Intrinsic, Divide);

end Ada.Decimal;

Max_Scale is the largest N such that 10.0**(–N) is allowed as a decimal type's delta. Its type is
universal_integer.

Min_Scale is the smallest N such that 10.0**(–N) is allowed as a decimal type's delta. Its type is
universal_integer.

Min_Delta is the smallest value allowed for delta in a decimal_fixed_point_definition. Its type is
universal_real.

Max_Delta is the largest value allowed for delta in a decimal_fixed_point_definition. Its type is
universal_real.

Max_Decimal_Digits is the largest value allowed for digits in a decimal_fixed_point_definition. Its type is
universal_integer.

Static Semantics

The effect of Divide is as follows. The value of Quotient is Quotient_Type(Dividend/Divisor). The value
of Remainder is Remainder_Type(Intermediate), where Intermediate is the difference between Dividend
and the product of Divisor and Quotient; this result is computed exactly.

Implementation Requirements

Decimal.Max_Decimal_Digits shall be at least 18.

Decimal.Max_Scale shall be at least 18.

Decimal.Min_Scale shall be at most 0.

NOTES
1 The effect of division yielding a quotient with control over rounding versus truncation is obtained by applying either
the function attribute Quotient_Type'Round or the conversion Quotient_Type to the expression Dividend/Divisor.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

569 10 November 2006 Edited Output for Decimal Types F.3

F.3 Edited Output for Decimal Types
The child packages Text_IO.Editing, Wide_Text_IO.Editing, and Wide_Wide_Text_IO.Editing provide
localizable formatted text output, known as edited output, for decimal types. An edited output string is a
function of a numeric value, program-specifiable locale elements, and a format control value. The numeric
value is of some decimal type. The locale elements are:

• the currency string;

• the digits group separator character;

• the radix mark character; and

• the fill character that replaces leading zeros of the numeric value.

For Text_IO.Editing the edited output and currency strings are of type String, and the locale characters are
of type Character. For Wide_Text_IO.Editing their types are Wide_String and Wide_Character,
respectively. For Wide_Wide_Text_IO.Editing their types are Wide_Wide_String and Wide_Wide_-
Character, respectively.

Each of the locale elements has a default value that can be replaced or explicitly overridden.

A format-control value is of the private type Picture; it determines the composition of the edited output
string and controls the form and placement of the sign, the position of the locale elements and the decimal
digits, the presence or absence of a radix mark, suppression of leading zeros, and insertion of particular
character values.

A Picture object is composed from a String value, known as a picture String, that serves as a template for
the edited output string, and a Boolean value that controls whether a string of all space characters is
produced when the number's value is zero. A picture String comprises a sequence of one- or two-Character
symbols, each serving as a placeholder for a character or string at a corresponding position in the edited
output string. The picture String symbols fall into several categories based on their effect on the edited
output string:

 Decimal Digit: '9'
 Radix Control: '.' 'V'
 Sign Control: '+' '–' '<' '>' "CR" "DB"
 Currency Control: '$' '#'
 Zero Suppression: 'Z' '*'
 Simple Insertion: '_' 'B' '0' '/'

The entries are not case-sensitive. Mixed- or lower-case forms for "CR" and "DB", and lower-case forms
for 'V', 'Z', and 'B', have the same effect as the upper-case symbols shown.

An occurrence of a '9' Character in the picture String represents a decimal digit position in the edited
output string.

A radix control Character in the picture String indicates the position of the radix mark in the edited output
string: an actual character position for '.', or an assumed position for 'V'.

A sign control Character in the picture String affects the form of the sign in the edited output string. The
'<' and '>' Character values indicate parentheses for negative values. A Character '+', '–', or '<' appears
either singly, signifying a fixed-position sign in the edited output, or repeated, signifying a floating-
position sign that is preceded by zero or more space characters and that replaces a leading 0.

1/2

2

3

4

5

6/2

7

8

9

10

11

12

13

14

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

F.3 Edited Output for Decimal Types 10 November 2006 570

A currency control Character in the picture String indicates an occurrence of the currency string in the
edited output string. The '$' Character represents the complete currency string; the '#' Character represents
one character of the currency string. A '$' Character appears either singly, indicating a fixed-position
currency string in the edited output, or repeated, indicating a floating-position currency string that occurs
in place of a leading 0. A sequence of '#' Character values indicates either a fixed- or floating-position
currency string, depending on context.

A zero suppression Character in the picture String allows a leading zero to be replaced by either the space
character (for 'Z') or the fill character (for '*').

A simple insertion Character in the picture String represents, in general, either itself (if '/' or '0'), the space
character (if 'B'), or the digits group separator character (if '_'). In some contexts it is treated as part of a
floating sign, floating currency, or zero suppression string.

An example of a picture String is "<###Z_ZZ9.99>". If the currency string is "kr", the separator character
is ',', and the radix mark is '.' then the edited output string values for the decimal values 32.10 and –
5432.10 are "bbkrbbb32.10b" and "(bkr5,432.10)", respectively, where 'b' indicates the space character.

The generic packages Text_IO.Decimal_IO, Wide_Text_IO.Decimal_IO, and
Wide_Wide_Text_IO.Decimal_IO (see A.10.9, “Input-Output for Real Types”) provide text input and
non-edited text output for decimal types.

NOTES
2 A picture String is of type Standard.String, for all of Text_IO.Editing, Wide_Text_IO.Editing, and
Wide_Wide_Text_IO.Editing.

F.3.1 Picture String Formation
A well-formed picture String, or simply picture String, is a String value that conforms to the syntactic
rules, composition constraints, and character replication conventions specified in this clause.

Dynamic Semantics

This paragraph was deleted.

picture_string ::=
 fixed_$_picture_string
 | fixed_#_picture_string
 | floating_currency_picture_string
 | non_currency_picture_string

15

16

17

18/2

19/2

20/2

1

2/1

3

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

571 10 November 2006 Picture String Formation F.3.1

fixed_$_picture_string ::=
 [fixed_LHS_sign] fixed_$_char {direct_insertion} [zero_suppression]
 number [RHS_sign]

 | [fixed_LHS_sign {direct_insertion}] [zero_suppression]
 number fixed_$_char {direct_insertion} [RHS_sign]

 | floating_LHS_sign number fixed_$_char {direct_insertion} [RHS_sign]

 | [fixed_LHS_sign] fixed_$_char {direct_insertion}
 all_zero_suppression_number {direct_insertion} [RHS_sign]

 | [fixed_LHS_sign {direct_insertion}] all_zero_suppression_number {direct_insertion}
 fixed_$_char {direct_insertion} [RHS_sign]

 | all_sign_number {direct_insertion} fixed_$_char {direct_insertion} [RHS_sign]

fixed_#_picture_string ::=
 [fixed_LHS_sign] single_#_currency {direct_insertion}
 [zero_suppression] number [RHS_sign]

 | [fixed_LHS_sign] multiple_#_currency {direct_insertion}
 zero_suppression number [RHS_sign]

 | [fixed_LHS_sign {direct_insertion}] [zero_suppression]
 number fixed_#_currency {direct_insertion} [RHS_sign]

 | floating_LHS_sign number fixed_#_currency {direct_insertion} [RHS_sign]

 | [fixed_LHS_sign] single_#_currency {direct_insertion}
 all_zero_suppression_number {direct_insertion} [RHS_sign]

 | [fixed_LHS_sign] multiple_#_currency {direct_insertion}
 all_zero_suppression_number {direct_insertion} [RHS_sign]

 | [fixed_LHS_sign {direct_insertion}] all_zero_suppression_number {direct_insertion}
 fixed_#_currency {direct_insertion} [RHS_sign]

 | all_sign_number {direct_insertion} fixed_#_currency {direct_insertion} [RHS_sign]

floating_currency_picture_string ::=
 [fixed_LHS_sign] {direct_insertion} floating_$_currency number [RHS_sign]
 | [fixed_LHS_sign] {direct_insertion} floating_#_currency number [RHS_sign]
 | [fixed_LHS_sign] {direct_insertion} all_currency_number {direct_insertion} [RHS_sign]

4

5

6

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

F.3.1 Picture String Formation 10 November 2006 572

non_currency_picture_string ::=
 [fixed_LHS_sign {direct_insertion}] zero_suppression number [RHS_sign]
 | [floating_LHS_sign] number [RHS_sign]
 | [fixed_LHS_sign {direct_insertion}] all_zero_suppression_number {direct_insertion}
 [RHS_sign]
 | all_sign_number {direct_insertion}
 | fixed_LHS_sign direct_insertion {direct_insertion} number [RHS_sign]

fixed_LHS_sign ::= LHS_Sign
LHS_Sign ::= + | – | <

fixed_$_char ::= $

direct_insertion ::= simple_insertion
simple_insertion ::= _ | B | 0 | /

zero_suppression ::= Z {Z | context_sensitive_insertion} | fill_string
context_sensitive_insertion ::= simple_insertion

fill_string ::= * {* | context_sensitive_insertion}

number ::=
 fore_digits [radix [aft_digits] {direct_insertion}]
 | radix aft_digits {direct_insertion}
fore_digits ::= 9 {9 | direct_insertion}
aft_digits ::= {9 | direct_insertion} 9
radix ::= . | V

RHS_sign ::= + | – | > | CR | DB

floating_LHS_sign ::=
 LHS_Sign {context_sensitive_insertion} LHS_Sign {LHS_Sign | context_sensitive_insertion}

single_#_currency ::= #
multiple_#_currency ::= ## {#}

fixed_#_currency ::= single_#_currency | multiple_#_currency

floating_$_currency ::=
 $ {context_sensitive_insertion} $ {$ | context_sensitive_insertion}

floating_#_currency ::=
 # {context_sensitive_insertion} # {# | context_sensitive_insertion}

all_sign_number ::= all_sign_fore [radix [all_sign_aft]] [>]

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

573 10 November 2006 Picture String Formation F.3.1

all_sign_fore ::=
 sign_char {context_sensitive_insertion} sign_char {sign_char | context_sensitive_insertion}
all_sign_aft ::= {all_sign_aft_char} sign_char

all_sign_aft_char ::= sign_char | context_sensitive_insertion
sign_char ::= + | – | <

all_currency_number ::= all_currency_fore [radix [all_currency_aft]]
all_currency_fore ::=
 currency_char {context_sensitive_insertion}
 currency_char {currency_char | context_sensitive_insertion}
all_currency_aft ::= {all_currency_aft_char} currency_char

all_currency_aft_char ::= currency_char | context_sensitive_insertion
currency_char ::= $ | #

all_zero_suppression_number ::= all_zero_suppression_fore [radix [all_zero_suppression_aft]]
all_zero_suppression_fore ::=
 zero_suppression_char {zero_suppression_char | context_sensitive_insertion}
all_zero_suppression_aft ::= {all_zero_suppression_aft_char} zero_suppression_char

all_zero_suppression_aft_char ::= zero_suppression_char | context_sensitive_insertion
zero_suppression_char ::= Z | *

The following composition constraints apply to a picture String:
• A floating_LHS_sign does not have occurrences of different LHS_Sign Character values.

• If a picture String has '<' as fixed_LHS_sign, then it has '>' as RHS_sign.

• If a picture String has '<' in a floating_LHS_sign or in an all_sign_number, then it has an
occurrence of '>'.

• If a picture String has '+' or '–' as fixed_LHS_sign, in a floating_LHS_sign, or in an
all_sign_number, then it has no RHS_sign or '>' character.

• An instance of all_sign_number does not have occurrences of different sign_char Character
values.

• An instance of all_currency_number does not have occurrences of different currency_char
Character values.

• An instance of all_zero_suppression_number does not have occurrences of different zero_-
suppression_char Character values, except for possible case differences between 'Z' and 'z'.

A replicable Character is a Character that, by the above rules, can occur in two consecutive positions in a
picture String.

A Character replication is a String
char & '(' & spaces & count_string & ')'

where char is a replicable Character, spaces is a String (possibly empty) comprising only space Character
values, and count_string is a String of one or more decimal digit Character values. A Character replication

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43/1

44

45

46

47

48

49

50

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

F.3.1 Picture String Formation 10 November 2006 574

in a picture String has the same effect as (and is said to be equivalent to) a String comprising n consecutive
occurrences of char, where n=Integer'Value(count_string).

An expanded picture String is a picture String containing no Character replications.

NOTES
3 Although a sign to the left of the number can float, a sign to the right of the number is in a fixed position.

F.3.2 Edited Output Generation
Dynamic Semantics

The contents of an edited output string are based on:
• A value, Item, of some decimal type Num,

• An expanded picture String Pic_String,

• A Boolean value, Blank_When_Zero,

• A Currency string,

• A Fill character,

• A Separator character, and

• A Radix_Mark character.

The combination of a True value for Blank_When_Zero and a '*' character in Pic_String is inconsistent; no
edited output string is defined.

A layout error is identified in the rules below if leading non-zero digits of Item, character values of the
Currency string, or a negative sign would be truncated; in such cases no edited output string is defined.

The edited output string has lower bound 1 and upper bound N where N = Pic_String'Length +
Currency_Length_Adjustment – Radix_Adjustment, and

• Currency_Length_Adjustment = Currency'Length – 1 if there is some occurrence of '$' in
Pic_String, and 0 otherwise.

• Radix_Adjustment = 1 if there is an occurrence of 'V' or 'v' in Pic_Str, and 0 otherwise.

Let the magnitude of Item be expressed as a base-10 number Ip···I1.F1···Fq, called the displayed magnitude
of Item, where:

• q = Min(Max(Num'Scale, 0), n) where n is 0 if Pic_String has no radix and is otherwise the
number of digit positions following radix in Pic_String, where a digit position corresponds to an
occurrence of '9', a zero_suppression_char (for an all_zero_suppression_number), a
currency_char (for an all_currency_number), or a sign_char (for an all_sign_number).

• Ip /= 0 if p>0.

If n < Num'Scale, then the above number is the result of rounding (away from 0 if exactly midway
between values).

If Blank_When_Zero = True and the displayed magnitude of Item is zero, then the edited output string
comprises all space character values. Otherwise, the picture String is treated as a sequence of instances of
syntactic categories based on the rules in F.3.1, and the edited output string is the concatenation of string
values derived from these categories according to the following mapping rules.

51

52

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

575 10 November 2006 Edited Output Generation F.3.2

Table F-1 shows the mapping from a sign control symbol to a corresponding character or string in the
edited output. In the columns showing the edited output, a lower-case 'b' represents the space character. If
there is no sign control symbol but the value of Item is negative, a layout error occurs and no edited output
string is produced.

 Table F-1: Edited Output for Sign Control Symbols

 Sign Control
Symbol

Edited Output for
Non-Negative

Number

Edited Output for
Negative Number

 '+' '+' '–'

 '–' 'b' '–'

 '<' 'b' '('

 '>' 'b' ')'

 "CR" "bb" "CR"

 "DB" "bb" "DB"

An instance of fixed_LHS_sign maps to a character as shown in Table F-1.

An instance of fixed_$_char maps to Currency.

An instance of direct_insertion maps to Separator if direct_insertion = '_', and to the direct_insertion
Character otherwise.

An instance of number maps to a string integer_part & radix_part & fraction_part where:
• The string for integer_part is obtained as follows:

1. Occurrences of '9' in fore_digits of number are replaced from right to left with the decimal
digit character values for I1, ..., Ip, respectively.

2. Each occurrence of '9' in fore_digits to the left of the leftmost '9' replaced according to rule
1 is replaced with '0'.

3. If p exceeds the number of occurrences of '9' in fore_digits of number, then the excess
leftmost digits are eligible for use in the mapping of an instance of zero_suppression,
floating_LHS_sign, floating_$_currency, or floating_#_currency to the left of number; if
there is no such instance, then a layout error occurs and no edited output string is produced.

• The radix_part is:
• "" if number does not include a radix, if radix = 'V', or if radix = 'v'

• Radix_Mark if number includes '.' as radix

• The string for fraction_part is obtained as follows:
1. Occurrences of '9' in aft_digits of number are replaced from left to right with the decimal

digit character values for F1, ... Fq.

2. Each occurrence of '9' in aft_digits to the right of the rightmost '9' replaced according to
rule 1 is replaced by '0'.

An instance of zero_suppression maps to the string obtained as follows:

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

F.3.2 Edited Output Generation 10 November 2006 576

1. The rightmost 'Z', 'z', or '*' Character values are replaced with the excess digits (if any) from the
integer_part of the mapping of the number to the right of the zero_suppression instance,

2. A context_sensitive_insertion Character is replaced as though it were a direct_insertion
Character, if it occurs to the right of some 'Z', 'z', or '*' in zero_suppression that has been
mapped to an excess digit,

3. Each Character to the left of the leftmost Character replaced according to rule 1 above is
replaced by:

• the space character if the zero suppression Character is 'Z' or 'z', or

• the Fill character if the zero suppression Character is '*'.

4. A layout error occurs if some excess digits remain after all 'Z', 'z', and '*' Character values in
zero_suppression have been replaced via rule 1; no edited output string is produced.

An instance of RHS_sign maps to a character or string as shown in Table F-1.

An instance of floating_LHS_sign maps to the string obtained as follows.

1. Up to all but one of the rightmost LHS_Sign Character values are replaced by the excess digits
(if any) from the integer_part of the mapping of the number to the right of the
floating_LHS_sign instance.

2. The next Character to the left is replaced with the character given by the entry in Table F-1
corresponding to the LHS_Sign Character.

3. A context_sensitive_insertion Character is replaced as though it were a direct_insertion
Character, if it occurs to the right of the leftmost LHS_Sign character replaced according to rule
1.

4. Any other Character is replaced by the space character..

5. A layout error occurs if some excess digits remain after replacement via rule 1; no edited output
string is produced.

An instance of fixed_#_currency maps to the Currency string with n space character values concatenated
on the left (if the instance does not follow a radix) or on the right (if the instance does follow a radix),
where n is the difference between the length of the fixed_#_currency instance and Currency'Length. A
layout error occurs if Currency'Length exceeds the length of the fixed_#_currency instance; no edited
output string is produced.

An instance of floating_$_currency maps to the string obtained as follows:
1. Up to all but one of the rightmost '$' Character values are replaced with the excess digits (if any)

from the integer_part of the mapping of the number to the right of the floating_$_currency
instance.

2. The next Character to the left is replaced by the Currency string.

3. A context_sensitive_insertion Character is replaced as though it were a direct_insertion
Character, if it occurs to the right of the leftmost '$' Character replaced via rule 1.

4. Each other Character is replaced by the space character.

5. A layout error occurs if some excess digits remain after replacement by rule 1; no edited output
string is produced.

An instance of floating_#_currency maps to the string obtained as follows:

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

577 10 November 2006 Edited Output Generation F.3.2

1. Up to all but one of the rightmost '#' Character values are replaced with the excess digits (if any)
from the integer_part of the mapping of the number to the right of the floating_#_currency
instance.

2. The substring whose last Character occurs at the position immediately preceding the leftmost
Character replaced via rule 1, and whose length is Currency'Length, is replaced by the Currency
string.

3. A context_sensitive_insertion Character is replaced as though it were a direct_insertion
Character, if it occurs to the right of the leftmost '#' replaced via rule 1.

4. Any other Character is replaced by the space character.

5. A layout error occurs if some excess digits remain after replacement rule 1, or if there is no
substring with the required length for replacement rule 2; no edited output string is produced.

An instance of all_zero_suppression_number maps to:
• a string of all spaces if the displayed magnitude of Item is zero, the zero_suppression_char is

'Z' or 'z', and the instance of all_zero_suppression_number does not have a radix at its last
character position;

• a string containing the Fill character in each position except for the character (if any)
corresponding to radix, if zero_suppression_char = '*' and the displayed magnitude of Item is
zero;

• otherwise, the same result as if each zero_suppression_char in all_zero_suppression_aft were
'9', interpreting the instance of all_zero_suppression_number as either zero_suppression
number (if a radix and all_zero_suppression_aft are present), or as zero_suppression
otherwise.

An instance of all_sign_number maps to:
• a string of all spaces if the displayed magnitude of Item is zero and the instance of

all_sign_number does not have a radix at its last character position;

• otherwise, the same result as if each sign_char in all_sign_number_aft were '9', interpreting the
instance of all_sign_number as either floating_LHS_sign number (if a radix and
all_sign_number_aft are present), or as floating_LHS_sign otherwise.

An instance of all_currency_number maps to:
• a string of all spaces if the displayed magnitude of Item is zero and the instance of

all_currency_number does not have a radix at its last character position;

• otherwise, the same result as if each currency_char in all_currency_number_aft were '9',
interpreting the instance of all_currency_number as floating_$_currency number or
floating_#_currency number (if a radix and all_currency_number_aft are present), or as
floating_$_currency or floating_#_currency otherwise.

Examples

In the result string values shown below, 'b' represents the space character.
Item: Picture and Result Strings:

123456.78 Picture: "-###**_***_**9.99"
 "bbb$***123,456.78"
 "bbFF***123.456,78" (currency = "FF",
 separator = '.',
 radix mark = ',')

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

F.3.2 Edited Output Generation 10 November 2006 578

123456.78 Picture: "-$**_***_**9.99"
 Result: "b$***123,456.78"
 "bFF***123.456,78" (currency = "FF",
 separator = '.',
 radix mark = ',')

0.0 Picture: "-$$$$$$.$$"
 Result: "bbbbbbbbbb"

0.20 Picture: "-$$$$$$.$$"
 Result: "bbbbbb$.20"

-1234.565 Picture: "<<<<_<<<.<<###>"
 Result: "bb(1,234.57DMb)" (currency = "DM")

12345.67 Picture: "###_###_##9.99"
 Result: "bbCHF12,345.67" (currency = "CHF")

F.3.3 The Package Text_IO.Editing
The package Text_IO.Editing provides a private type Picture with associated operations, and a generic
package Decimal_Output. An object of type Picture is composed from a well-formed picture String (see
F.3.1) and a Boolean item indicating whether a zero numeric value will result in an edited output string of
all space characters. The package Decimal_Output contains edited output subprograms implementing the
effects defined in F.3.2.

Static Semantics

The library package Text_IO.Editing has the following declaration:
package Ada.Text_IO.Editing is

 type Picture is private;

 function Valid (Pic_String : in String;
 Blank_When_Zero : in Boolean := False) return Boolean;

 function To_Picture (Pic_String : in String;
 Blank_When_Zero : in Boolean := False)
 return Picture;

 function Pic_String (Pic : in Picture) return String;
 function Blank_When_Zero (Pic : in Picture) return Boolean;

 Max_Picture_Length : constant := implementation_defined;
 Picture_Error : exception;

 Default_Currency : constant String := "$";
 Default_Fill : constant Character := '*';
 Default_Separator : constant Character := ',';
 Default_Radix_Mark : constant Character := '.';

 generic
 type Num is delta <> digits <>;
 Default_Currency : in String := Text_IO.Editing.Default_Currency;
 Default_Fill : in Character := Text_IO.Editing.Default_Fill;
 Default_Separator : in Character :=
 Text_IO.Editing.Default_Separator;
 Default_Radix_Mark : in Character :=
 Text_IO.Editing.Default_Radix_Mark;
 package Decimal_Output is
 function Length (Pic : in Picture;
 Currency : in String := Default_Currency)
 return Natural;

 function Valid (Item : in Num;
 Pic : in Picture;
 Currency : in String := Default_Currency)
 return Boolean;

74/1

75

76

77

78

1

2

3

4

5

6

7

8

9

10

11

12

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

579 10 November 2006 The Package Text_IO.Editing F.3.3

 function Image (Item : in Num;
 Pic : in Picture;
 Currency : in String := Default_Currency;
 Fill : in Character := Default_Fill;
 Separator : in Character := Default_Separator;
 Radix_Mark : in Character := Default_Radix_Mark)
 return String;

 procedure Put (File : in File_Type;
 Item : in Num;
 Pic : in Picture;
 Currency : in String := Default_Currency;
 Fill : in Character := Default_Fill;
 Separator : in Character := Default_Separator;
 Radix_Mark : in Character := Default_Radix_Mark);

 procedure Put (Item : in Num;
 Pic : in Picture;
 Currency : in String := Default_Currency;
 Fill : in Character := Default_Fill;
 Separator : in Character := Default_Separator;
 Radix_Mark : in Character := Default_Radix_Mark);

 procedure Put (To : out String;
 Item : in Num;
 Pic : in Picture;
 Currency : in String := Default_Currency;
 Fill : in Character := Default_Fill;
 Separator : in Character := Default_Separator;
 Radix_Mark : in Character := Default_Radix_Mark);
 end Decimal_Output;
private
 ... -- not specified by the language
end Ada.Text_IO.Editing;

The exception Constraint_Error is raised if the Image function or any of the Put procedures is invoked
with a null string for Currency.

function Valid (Pic_String : in String;
 Blank_When_Zero : in Boolean := False) return Boolean;

Valid returns True if Pic_String is a well-formed picture String (see F.3.1) the length of whose
expansion does not exceed Max_Picture_Length, and if either Blank_When_Zero is False or
Pic_String contains no '*'.

function To_Picture (Pic_String : in String;
 Blank_When_Zero : in Boolean := False)
 return Picture;

To_Picture returns a result Picture such that the application of the function Pic_String to this
result yields an expanded picture String equivalent to Pic_String, and such that
Blank_When_Zero applied to the result Picture is the same value as the parameter
Blank_When_Zero. Picture_Error is raised if not Valid(Pic_String, Blank_When_Zero).

function Pic_String (Pic : in Picture) return String;

function Blank_When_Zero (Pic : in Picture) return Boolean;

If Pic is To_Picture(String_Item, Boolean_Item) for some String_Item and Boolean_Item, then:
• Pic_String(Pic) returns an expanded picture String equivalent to String_Item and with

any lower-case letter replaced with its corresponding upper-case form, and

• Blank_When_Zero(Pic) returns Boolean_Item.

If Pic_1 and Pic_2 are objects of type Picture, then "="(Pic_1, Pic_2) is True when

13

14

15

16

17

18

19

20

21

22

23

24

25

26

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

F.3.3 The Package Text_IO.Editing 10 November 2006 580

• Pic_String(Pic_1) = Pic_String(Pic_2), and

• Blank_When_Zero(Pic_1) = Blank_When_Zero(Pic_2).

function Length (Pic : in Picture;
 Currency : in String := Default_Currency)
 return Natural;

Length returns Pic_String(Pic)'Length + Currency_Length_Adjustment – Radix_Adjustment
where

• Currency_Length_Adjustment =
• Currency'Length – 1 if there is some occurrence of '$' in Pic_String(Pic), and

• 0 otherwise.

• Radix_Adjustment =
• 1 if there is an occurrence of 'V' or 'v' in Pic_Str(Pic), and

• 0 otherwise.

function Valid (Item : in Num;
 Pic : in Picture;
 Currency : in String := Default_Currency)
 return Boolean;

Valid returns True if Image(Item, Pic, Currency) does not raise Layout_Error, and returns False
otherwise.

function Image (Item : in Num;
 Pic : in Picture;
 Currency : in String := Default_Currency;
 Fill : in Character := Default_Fill;
 Separator : in Character := Default_Separator;
 Radix_Mark : in Character := Default_Radix_Mark)
 return String;

Image returns the edited output String as defined in F.3.2 for Item, Pic_String(Pic),
Blank_When_Zero(Pic), Currency, Fill, Separator, and Radix_Mark. If these rules identify a
layout error, then Image raises the exception Layout_Error.

procedure Put (File : in File_Type;
 Item : in Num;
 Pic : in Picture;
 Currency : in String := Default_Currency;
 Fill : in Character := Default_Fill;
 Separator : in Character := Default_Separator;
 Radix_Mark : in Character := Default_Radix_Mark);

procedure Put (Item : in Num;
 Pic : in Picture;
 Currency : in String := Default_Currency;
 Fill : in Character := Default_Fill;
 Separator : in Character := Default_Separator;
 Radix_Mark : in Character := Default_Radix_Mark);

Each of these Put procedures outputs Image(Item, Pic, Currency, Fill, Separator, Radix_Mark)
consistent with the conventions for Put for other real types in case of bounded line length (see
A.10.6, “Get and Put Procedures”).

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

581 10 November 2006 The Package Text_IO.Editing F.3.3

procedure Put (To : out String;
 Item : in Num;
 Pic : in Picture;
 Currency : in String := Default_Currency;
 Fill : in Character := Default_Fill;
 Separator : in Character := Default_Separator;
 Radix_Mark : in Character := Default_Radix_Mark);

Put copies Image(Item, Pic, Currency, Fill, Separator, Radix_Mark) to the given string, right
justified. Otherwise unassigned Character values in To are assigned the space character. If
To'Length is less than the length of the string resulting from Image, then Layout_Error is raised.

Implementation Requirements

Max_Picture_Length shall be at least 30. The implementation shall support currency strings of length up
to at least 10, both for Default_Currency in an instantiation of Decimal_Output, and for Currency in an
invocation of Image or any of the Put procedures.

NOTES
4 The rules for edited output are based on COBOL (ANSI X3.23:1985, endorsed by ISO as ISO 1989-1985), with the
following differences:

• The COBOL provisions for picture string localization and for 'P' format are absent from Ada.
• The following Ada facilities are not in COBOL:

• currency symbol placement after the number,
• localization of edited output string for multi-character currency string values, including support for both

length-preserving and length-expanding currency symbols in picture strings
• localization of the radix mark, digits separator, and fill character, and
• parenthesization of negative values.

The value of 30 for Max_Picture_Length is the same limit as in COBOL.

F.3.4 The Package Wide_Text_IO.Editing
Static Semantics

The child package Wide_Text_IO.Editing has the same contents as Text_IO.Editing, except that:
• each occurrence of Character is replaced by Wide_Character,

• each occurrence of Text_IO is replaced by Wide_Text_IO,

• the subtype of Default_Currency is Wide_String rather than String, and

• each occurrence of String in the generic package Decimal_Output is replaced by Wide_String.
NOTES
5 Each of the functions Wide_Text_IO.Editing.Valid, To_Picture, and Pic_String has String (versus Wide_String) as its
parameter or result subtype, since a picture String is not localizable.

F.3.5 The Package Wide_Wide_Text_IO.Editing
Static Semantics

The child package Wide_Wide_Text_IO.Editing has the same contents as Text_IO.Editing, except that:
• each occurrence of Character is replaced by Wide_Wide_Character,

• each occurrence of Text_IO is replaced by Wide_Wide_Text_IO,

• the subtype of Default_Currency is Wide_Wide_String rather than String, and

43

44

45

46

47

48

49

50

51

52

52.1

1

2

3

4

5

6

1/2

2/2

3/2

4/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

F.3.5 The Package Wide_Wide_Text_IO.Editing 10 November 2006 582

• each occurrence of String in the generic package Decimal_Output is replaced by
Wide_Wide_String.
NOTES
6 Each of the functions Wide_Wide_Text_IO.Editing.Valid, To_Picture, and Pic_String has String (versus
Wide_Wide_String) as its parameter or result subtype, since a picture String is not localizable.

5/2

6/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

583 10 November 2006 Numerics G

Annex G
(normative)
Numerics

The Numerics Annex specifies

• features for complex arithmetic, including complex I/O;

• a mode (“strict mode”), in which the predefined arithmetic operations of floating point and fixed
point types and the functions and operations of various predefined packages have to provide
guaranteed accuracy or conform to other numeric performance requirements, which the
Numerics Annex also specifies;

• a mode (“relaxed mode”), in which no accuracy or other numeric performance requirements
need be satisfied, as for implementations not conforming to the Numerics Annex;

• models of floating point and fixed point arithmetic on which the accuracy requirements of strict
mode are based;

• the definitions of the model-oriented attributes of floating point types that apply in the strict
mode; and

• features for the manipulation of real and complex vectors and matrices.

Implementation Advice

If Fortran (respectively, C) is widely supported in the target environment, implementations supporting the
Numerics Annex should provide the child package Interfaces.Fortran (respectively, Interfaces.C) specified
in Annex B and should support a convention_identifier of Fortran (respectively, C) in the interfacing
pragmas (see Annex B), thus allowing Ada programs to interface with programs written in that language.

G.1 Complex Arithmetic
Types and arithmetic operations for complex arithmetic are provided in Generic_Complex_Types, which
is defined in G.1.1. Implementation-defined approximations to the complex analogs of the mathematical
functions known as the “elementary functions” are provided by the subprograms in Generic_Complex_-
Elementary_Functions, which is defined in G.1.2. Both of these library units are generic children of the
predefined package Numerics (see A.5). Nongeneric equivalents of these generic packages for each of the
predefined floating point types are also provided as children of Numerics.

G.1.1 Complex Types
Static Semantics

The generic library package Numerics.Generic_Complex_Types has the following declaration:
generic
 type Real is digits <>;
package Ada.Numerics.Generic_Complex_Types is
 pragma Pure(Generic_Complex_Types);

 type Complex is
 record
 Re, Im : Real'Base;
 end record;

1

2

3

4

5/2

6/2

6.1/2

7

1

1

2/1

3

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

G.1.1 Complex Types 10 November 2006 584

 type Imaginary is private;
 pragma Preelaborable_Initialization(Imaginary);

 i : constant Imaginary;
 j : constant Imaginary;

 function Re (X : Complex) return Real'Base;
 function Im (X : Complex) return Real'Base;
 function Im (X : Imaginary) return Real'Base;

 procedure Set_Re (X : in out Complex;
 Re : in Real'Base);
 procedure Set_Im (X : in out Complex;
 Im : in Real'Base);
 procedure Set_Im (X : out Imaginary;
 Im : in Real'Base);

 function Compose_From_Cartesian (Re, Im : Real'Base) return Complex;
 function Compose_From_Cartesian (Re : Real'Base) return Complex;
 function Compose_From_Cartesian (Im : Imaginary) return Complex;

 function Modulus (X : Complex) return Real'Base;
 function "abs" (Right : Complex) return Real'Base renames Modulus;

 function Argument (X : Complex) return Real'Base;
 function Argument (X : Complex;
 Cycle : Real'Base) return Real'Base;

 function Compose_From_Polar (Modulus, Argument : Real'Base)
 return Complex;
 function Compose_From_Polar (Modulus, Argument, Cycle : Real'Base)
 return Complex;

 function "+" (Right : Complex) return Complex;
 function "-" (Right : Complex) return Complex;
 function Conjugate (X : Complex) return Complex;

 function "+" (Left, Right : Complex) return Complex;
 function "-" (Left, Right : Complex) return Complex;
 function "*" (Left, Right : Complex) return Complex;
 function "/" (Left, Right : Complex) return Complex;

 function "**" (Left : Complex; Right : Integer) return Complex;

 function "+" (Right : Imaginary) return Imaginary;
 function "-" (Right : Imaginary) return Imaginary;
 function Conjugate (X : Imaginary) return Imaginary renames "-";
 function "abs" (Right : Imaginary) return Real'Base;

 function "+" (Left, Right : Imaginary) return Imaginary;
 function "-" (Left, Right : Imaginary) return Imaginary;
 function "*" (Left, Right : Imaginary) return Real'Base;
 function "/" (Left, Right : Imaginary) return Real'Base;

 function "**" (Left : Imaginary; Right : Integer) return Complex;

 function "<" (Left, Right : Imaginary) return Boolean;
 function "<=" (Left, Right : Imaginary) return Boolean;
 function ">" (Left, Right : Imaginary) return Boolean;
 function ">=" (Left, Right : Imaginary) return Boolean;

 function "+" (Left : Complex; Right : Real'Base) return Complex;
 function "+" (Left : Real'Base; Right : Complex) return Complex;
 function "-" (Left : Complex; Right : Real'Base) return Complex;
 function "-" (Left : Real'Base; Right : Complex) return Complex;
 function "*" (Left : Complex; Right : Real'Base) return Complex;
 function "*" (Left : Real'Base; Right : Complex) return Complex;
 function "/" (Left : Complex; Right : Real'Base) return Complex;
 function "/" (Left : Real'Base; Right : Complex) return Complex;

4/2

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

585 10 November 2006 Complex Types G.1.1

 function "+" (Left : Complex; Right : Imaginary) return Complex;
 function "+" (Left : Imaginary; Right : Complex) return Complex;
 function "-" (Left : Complex; Right : Imaginary) return Complex;
 function "-" (Left : Imaginary; Right : Complex) return Complex;
 function "*" (Left : Complex; Right : Imaginary) return Complex;
 function "*" (Left : Imaginary; Right : Complex) return Complex;
 function "/" (Left : Complex; Right : Imaginary) return Complex;
 function "/" (Left : Imaginary; Right : Complex) return Complex;

 function "+" (Left : Imaginary; Right : Real'Base) return Complex;
 function "+" (Left : Real'Base; Right : Imaginary) return Complex;
 function "-" (Left : Imaginary; Right : Real'Base) return Complex;
 function "-" (Left : Real'Base; Right : Imaginary) return Complex;
 function "*" (Left : Imaginary; Right : Real'Base) return Imaginary;
 function "*" (Left : Real'Base; Right : Imaginary) return Imaginary;
 function "/" (Left : Imaginary; Right : Real'Base) return Imaginary;
 function "/" (Left : Real'Base; Right : Imaginary) return Imaginary;

private

 type Imaginary is new Real'Base;
 i : constant Imaginary := 1.0;
 j : constant Imaginary := 1.0;

end Ada.Numerics.Generic_Complex_Types;

The library package Numerics.Complex_Types is declared pure and defines the same types, constants, and
subprograms as Numerics.Generic_Complex_Types, except that the predefined type Float is
systematically substituted for Real'Base throughout. Nongeneric equivalents of
Numerics.Generic_Complex_Types for each of the other predefined floating point types are defined
similarly, with the names Numerics.Short_Complex_Types, Numerics.Long_Complex_Types, etc.

Complex is a visible type with Cartesian components.

Imaginary is a private type; its full type is derived from Real'Base.

The arithmetic operations and the Re, Im, Modulus, Argument, and Conjugate functions have their usual
mathematical meanings. When applied to a parameter of pure-imaginary type, the “imaginary-part”
function Im yields the value of its parameter, as the corresponding real value. The remaining subprograms
have the following meanings:

• The Set_Re and Set_Im procedures replace the designated component of a complex parameter
with the given real value; applied to a parameter of pure-imaginary type, the Set_Im procedure
replaces the value of that parameter with the imaginary value corresponding to the given real
value.

• The Compose_From_Cartesian function constructs a complex value from the given real and
imaginary components. If only one component is given, the other component is implicitly zero.

• The Compose_From_Polar function constructs a complex value from the given modulus (radius)
and argument (angle). When the value of the parameter Modulus is positive (resp., negative), the
result is the complex value represented by the point in the complex plane lying at a distance
from the origin given by the absolute value of Modulus and forming an angle measured
counterclockwise from the positive (resp., negative) real axis given by the value of the parameter
Argument.

When the Cycle parameter is specified, the result of the Argument function and the parameter Argument
of the Compose_From_Polar function are measured in units such that a full cycle of revolution has the
given value; otherwise, they are measured in radians.

The computed results of the mathematically multivalued functions are rendered single-valued by the
following conventions, which are meant to imply the principal branch:

20

21

22

23

24

25/1

26/2

27

28

29

30

31

32

33

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

G.1.1 Complex Types 10 November 2006 586

• The result of the Modulus function is nonnegative.

• The result of the Argument function is in the quadrant containing the point in the complex plane
represented by the parameter X. This may be any quadrant (I through IV); thus, the range of the
Argument function is approximately –π to π (–Cycle/2.0 to Cycle/2.0, if the parameter Cycle is
specified). When the point represented by the parameter X lies on the negative real axis, the
result approximates

• π (resp., –π) when the sign of the imaginary component of X is positive (resp., negative), if
Real'Signed_Zeros is True;

• π, if Real'Signed_Zeros is False.

• Because a result lying on or near one of the axes may not be exactly representable, the
approximation inherent in computing the result may place it in an adjacent quadrant, close to but
on the wrong side of the axis.

Dynamic Semantics

The exception Numerics.Argument_Error is raised by the Argument and Compose_From_Polar functions
with specified cycle, signaling a parameter value outside the domain of the corresponding mathematical
function, when the value of the parameter Cycle is zero or negative.

The exception Constraint_Error is raised by the division operator when the value of the right operand is
zero, and by the exponentiation operator when the value of the left operand is zero and the value of the
exponent is negative, provided that Real'Machine_Overflows is True; when Real'Machine_Overflows is
False, the result is unspecified. Constraint_Error can also be raised when a finite result overflows (see
G.2.6).

Implementation Requirements

In the implementation of Numerics.Generic_Complex_Types, the range of intermediate values allowed
during the calculation of a final result shall not be affected by any range constraint of the subtype Real.

In the following cases, evaluation of a complex arithmetic operation shall yield the prescribed result,
provided that the preceding rules do not call for an exception to be raised:

• The results of the Re, Im, and Compose_From_Cartesian functions are exact.

• The real (resp., imaginary) component of the result of a binary addition operator that yields a
result of complex type is exact when either of its operands is of pure-imaginary (resp., real) type.

• The real (resp., imaginary) component of the result of a binary subtraction operator that yields a
result of complex type is exact when its right operand is of pure-imaginary (resp., real) type.

• The real component of the result of the Conjugate function for the complex type is exact.

• When the point in the complex plane represented by the parameter X lies on the nonnegative real
axis, the Argument function yields a result of zero.

• When the value of the parameter Modulus is zero, the Compose_From_Polar function yields a
result of zero.

• When the value of the parameter Argument is equal to a multiple of the quarter cycle, the result
of the Compose_From_Polar function with specified cycle lies on one of the axes. In this case,
one of its components is zero, and the other has the magnitude of the parameter Modulus.

• Exponentiation by a zero exponent yields the value one. Exponentiation by a unit exponent
yields the value of the left operand. Exponentiation of the value one yields the value one.
Exponentiation of the value zero yields the value zero, provided that the exponent is nonzero.

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

587 10 November 2006 Complex Types G.1.1

When the left operand is of pure-imaginary type, one component of the result of the
exponentiation operator is zero.

When the result, or a result component, of any operator of Numerics.Generic_Complex_Types has a
mathematical definition in terms of a single arithmetic or relational operation, that result or result
component exhibits the accuracy of the corresponding operation of the type Real.

Other accuracy requirements for the Modulus, Argument, and Compose_From_Polar functions, and
accuracy requirements for the multiplication of a pair of complex operands or for division by a complex
operand, all of which apply only in the strict mode, are given in G.2.6.

The sign of a zero result or zero result component yielded by a complex arithmetic operation or function is
implementation defined when Real'Signed_Zeros is True.

Implementation Permissions

The nongeneric equivalent packages may, but need not, be actual instantiations of the generic package for
the appropriate predefined type.

Implementations may obtain the result of exponentiation of a complex or pure-imaginary operand by
repeated complex multiplication, with arbitrary association of the factors and with a possible final complex
reciprocation (when the exponent is negative). Implementations are also permitted to obtain the result of
exponentiation of a complex operand, but not of a pure-imaginary operand, by converting the left operand
to a polar representation; exponentiating the modulus by the given exponent; multiplying the argument by
the given exponent; and reconverting to a Cartesian representation. Because of this implementation
freedom, no accuracy requirement is imposed on complex exponentiation (except for the prescribed results
given above, which apply regardless of the implementation method chosen).

Implementation Advice

Because the usual mathematical meaning of multiplication of a complex operand and a real operand is that
of the scaling of both components of the former by the latter, an implementation should not perform this
operation by first promoting the real operand to complex type and then performing a full complex
multiplication. In systems that, in the future, support an Ada binding to IEC 559:1989, the latter technique
will not generate the required result when one of the components of the complex operand is infinite.
(Explicit multiplication of the infinite component by the zero component obtained during promotion yields
a NaN that propagates into the final result.) Analogous advice applies in the case of multiplication of a
complex operand and a pure-imaginary operand, and in the case of division of a complex operand by a real
or pure-imaginary operand.

Likewise, because the usual mathematical meaning of addition of a complex operand and a real operand is
that the imaginary operand remains unchanged, an implementation should not perform this operation by
first promoting the real operand to complex type and then performing a full complex addition. In
implementations in which the Signed_Zeros attribute of the component type is True (and which therefore
conform to IEC 559:1989 in regard to the handling of the sign of zero in predefined arithmetic operations),
the latter technique will not generate the required result when the imaginary component of the complex
operand is a negatively signed zero. (Explicit addition of the negative zero to the zero obtained during
promotion yields a positive zero.) Analogous advice applies in the case of addition of a complex operand
and a pure-imaginary operand, and in the case of subtraction of a complex operand and a real or pure-
imaginary operand.

Implementations in which Real'Signed_Zeros is True should attempt to provide a rational treatment of the
signs of zero results and result components. As one example, the result of the Argument function should
have the sign of the imaginary component of the parameter X when the point represented by that

51

52

53

54

55/2

56

57

58

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

G.1.1 Complex Types 10 November 2006 588

parameter lies on the positive real axis; as another, the sign of the imaginary component of the Compose_-
From_Polar function should be the same as (resp., the opposite of) that of the Argument parameter when
that parameter has a value of zero and the Modulus parameter has a nonnegative (resp., negative) value.

G.1.2 Complex Elementary Functions
Static Semantics

The generic library package Numerics.Generic_Complex_Elementary_Functions has the following
declaration:

with Ada.Numerics.Generic_Complex_Types;
generic
 with package Complex_Types is
 new Ada.Numerics.Generic_Complex_Types (<>);
 use Complex_Types;
package Ada.Numerics.Generic_Complex_Elementary_Functions is
 pragma Pure(Generic_Complex_Elementary_Functions);

 function Sqrt (X : Complex) return Complex;
 function Log (X : Complex) return Complex;
 function Exp (X : Complex) return Complex;
 function Exp (X : Imaginary) return Complex;
 function "**" (Left : Complex; Right : Complex) return Complex;
 function "**" (Left : Complex; Right : Real'Base) return Complex;
 function "**" (Left : Real'Base; Right : Complex) return Complex;

 function Sin (X : Complex) return Complex;
 function Cos (X : Complex) return Complex;
 function Tan (X : Complex) return Complex;
 function Cot (X : Complex) return Complex;

 function Arcsin (X : Complex) return Complex;
 function Arccos (X : Complex) return Complex;
 function Arctan (X : Complex) return Complex;
 function Arccot (X : Complex) return Complex;

 function Sinh (X : Complex) return Complex;
 function Cosh (X : Complex) return Complex;
 function Tanh (X : Complex) return Complex;
 function Coth (X : Complex) return Complex;

 function Arcsinh (X : Complex) return Complex;
 function Arccosh (X : Complex) return Complex;
 function Arctanh (X : Complex) return Complex;
 function Arccoth (X : Complex) return Complex;

end Ada.Numerics.Generic_Complex_Elementary_Functions;

The library package Numerics.Complex_Elementary_Functions is declared pure and defines the same
subprograms as Numerics.Generic_Complex_Elementary_Functions, except that the predefined type Float
is systematically substituted for Real'Base, and the Complex and Imaginary types exported by Numerics.-
Complex_Types are systematically substituted for Complex and Imaginary, throughout. Nongeneric
equivalents of Numerics.Generic_Complex_Elementary_Functions corresponding to each of the other
predefined floating point types are defined similarly, with the names Numerics.Short_Complex_-
Elementary_Functions, Numerics.Long_Complex_Elementary_Functions, etc.

The overloading of the Exp function for the pure-imaginary type is provided to give the user an alternate
way to compose a complex value from a given modulus and argument. In addition to Compose_From_-
Polar(Rho, Theta) (see G.1.1), the programmer may write Rho * Exp(i * Theta).

The imaginary (resp., real) component of the parameter X of the forward hyperbolic (resp., trigonometric)
functions and of the Exp function (and the parameter X, itself, in the case of the overloading of the Exp

1

2/2

3

4

5

6

7

8

9/1

10

11

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

589 10 November 2006 Complex Elementary Functions G.1.2

function for the pure-imaginary type) represents an angle measured in radians, as does the imaginary
(resp., real) component of the result of the Log and inverse hyperbolic (resp., trigonometric) functions.

The functions have their usual mathematical meanings. However, the arbitrariness inherent in the
placement of branch cuts, across which some of the complex elementary functions exhibit discontinuities,
is eliminated by the following conventions:

• The imaginary component of the result of the Sqrt and Log functions is discontinuous as the
parameter X crosses the negative real axis.

• The result of the exponentiation operator when the left operand is of complex type is
discontinuous as that operand crosses the negative real axis.

• The imaginary component of the result of the Arcsin, Arccos, and Arctanh functions is
discontinuous as the parameter X crosses the real axis to the left of –1.0 or the right of 1.0.

• The real component of the result of the Arctan and Arcsinh functions is discontinuous as the
parameter X crosses the imaginary axis below –i or above i.

• The real component of the result of the Arccot function is discontinuous as the parameter X
crosses the imaginary axis below –i or above i.

• The imaginary component of the Arccosh function is discontinuous as the parameter X crosses
the real axis to the left of 1.0.

• The imaginary component of the result of the Arccoth function is discontinuous as the parameter
X crosses the real axis between –1.0 and 1.0.

The computed results of the mathematically multivalued functions are rendered single-valued by the
following conventions, which are meant to imply that the principal branch is an analytic continuation of
the corresponding real-valued function in Numerics.Generic_Elementary_Functions. (For Arctan and
Arccot, the single-argument function in question is that obtained from the two-argument version by fixing
the second argument to be its default value.)

• The real component of the result of the Sqrt and Arccosh functions is nonnegative.

• The same convention applies to the imaginary component of the result of the Log function as
applies to the result of the natural-cycle version of the Argument function of
Numerics.Generic_Complex_Types (see G.1.1).

• The range of the real (resp., imaginary) component of the result of the Arcsin and Arctan (resp.,
Arcsinh and Arctanh) functions is approximately –π/2.0 to π/2.0.

• The real (resp., imaginary) component of the result of the Arccos and Arccot (resp., Arccoth)
functions ranges from 0.0 to approximately π.

• The range of the imaginary component of the result of the Arccosh function is approximately –π
to π.

In addition, the exponentiation operator inherits the single-valuedness of the Log function.

Dynamic Semantics

The exception Numerics.Argument_Error is raised by the exponentiation operator, signaling a parameter
value outside the domain of the corresponding mathematical function, when the value of the left operand is
zero and the real component of the exponent (or the exponent itself, when it is of real type) is zero.

The exception Constraint_Error is raised, signaling a pole of the mathematical function (analogous to
dividing by zero), in the following cases, provided that Complex_Types.Real'Machine_Overflows is True:

• by the Log, Cot, and Coth functions, when the value of the parameter X is zero;

12

13

14

15/2

16/2

17/2

18

19

20/2

21

22

23

24

25

26

27

28

29

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

G.1.2 Complex Elementary Functions 10 November 2006 590

• by the exponentiation operator, when the value of the left operand is zero and the real
component of the exponent (or the exponent itself, when it is of real type) is negative;

• by the Arctan and Arccot functions, when the value of the parameter X is ± i;

• by the Arctanh and Arccoth functions, when the value of the parameter X is ± 1.0.

Constraint_Error can also be raised when a finite result overflows (see G.2.6); this may occur for
parameter values sufficiently near poles, and, in the case of some of the functions, for parameter values
having components of sufficiently large magnitude. When Complex_Types.Real'Machine_Overflows is
False, the result at poles is unspecified.

Implementation Requirements

In the implementation of Numerics.Generic_Complex_Elementary_Functions, the range of intermediate
values allowed during the calculation of a final result shall not be affected by any range constraint of the
subtype Complex_Types.Real.

In the following cases, evaluation of a complex elementary function shall yield the prescribed result (or a
result having the prescribed component), provided that the preceding rules do not call for an exception to
be raised:

• When the parameter X has the value zero, the Sqrt, Sin, Arcsin, Tan, Arctan, Sinh, Arcsinh,
Tanh, and Arctanh functions yield a result of zero; the Exp, Cos, and Cosh functions yield a
result of one; the Arccos and Arccot functions yield a real result; and the Arccoth function yields
an imaginary result.

• When the parameter X has the value one, the Sqrt function yields a result of one; the Log,
Arccos, and Arccosh functions yield a result of zero; and the Arcsin function yields a real result.

• When the parameter X has the value –1.0, the Sqrt function yields the result

• i (resp., –i), when the sign of the imaginary component of X is positive (resp., negative), if
Complex_Types.Real'Signed_Zeros is True;

• i, if Complex_Types.Real'Signed_Zeros is False;

• When the parameter X has the value –1.0, the Log function yields an imaginary result; and the
Arcsin and Arccos functions yield a real result.

• When the parameter X has the value ± i, the Log function yields an imaginary result.

• Exponentiation by a zero exponent yields the value one. Exponentiation by a unit exponent
yields the value of the left operand (as a complex value). Exponentiation of the value one yields
the value one. Exponentiation of the value zero yields the value zero.

Other accuracy requirements for the complex elementary functions, which apply only in the strict mode,
are given in G.2.6.

The sign of a zero result or zero result component yielded by a complex elementary function is
implementation defined when Complex_Types.Real'Signed_Zeros is True.

Implementation Permissions

The nongeneric equivalent packages may, but need not, be actual instantiations of the generic package
with the appropriate predefined nongeneric equivalent of Numerics.Generic_Complex_Types; if they are,
then the latter shall have been obtained by actual instantiation of Numerics.Generic_Complex_Types.

30

31

32

33

34

35

36

37

38

39

40

41/2

42

43

44

45

46

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

591 10 November 2006 Complex Elementary Functions G.1.2

The exponentiation operator may be implemented in terms of the Exp and Log functions. Because this
implementation yields poor accuracy in some parts of the domain, no accuracy requirement is imposed on
complex exponentiation.

The implementation of the Exp function of a complex parameter X is allowed to raise the exception
Constraint_Error, signaling overflow, when the real component of X exceeds an unspecified threshold that
is approximately log(Complex_Types.Real'Safe_Last). This permission recognizes the impracticality of
avoiding overflow in the marginal case that the exponential of the real component of X exceeds the safe
range of Complex_Types.Real but both components of the final result do not. Similarly, the Sin and Cos
(resp., Sinh and Cosh) functions are allowed to raise the exception Constraint_Error, signaling overflow,
when the absolute value of the imaginary (resp., real) component of the parameter X exceeds an
unspecified threshold that is approximately log(Complex_Types.Real'Safe_Last) + log(2.0). This
permission recognizes the impracticality of avoiding overflow in the marginal case that the hyperbolic sine
or cosine of the imaginary (resp., real) component of X exceeds the safe range of Complex_Types.Real but
both components of the final result do not.

Implementation Advice

Implementations in which Complex_Types.Real'Signed_Zeros is True should attempt to provide a rational
treatment of the signs of zero results and result components. For example, many of the complex
elementary functions have components that are odd functions of one of the parameter components; in these
cases, the result component should have the sign of the parameter component at the origin. Other complex
elementary functions have zero components whose sign is opposite that of a parameter component at the
origin, or is always positive or always negative.

G.1.3 Complex Input-Output
The generic package Text_IO.Complex_IO defines procedures for the formatted input and output of
complex values. The generic actual parameter in an instantiation of Text_IO.Complex_IO is an instance of
Numerics.Generic_Complex_Types for some floating point subtype. Exceptional conditions are reported
by raising the appropriate exception defined in Text_IO.

Static Semantics

The generic library package Text_IO.Complex_IO has the following declaration:
with Ada.Numerics.Generic_Complex_Types;
generic
 with package Complex_Types is
 new Ada.Numerics.Generic_Complex_Types (<>);
package Ada.Text_IO.Complex_IO is

 use Complex_Types;

 Default_Fore : Field := 2;
 Default_Aft : Field := Real'Digits - 1;
 Default_Exp : Field := 3;

 procedure Get (File : in File_Type;
 Item : out Complex;
 Width : in Field := 0);
 procedure Get (Item : out Complex;
 Width : in Field := 0);

47

48

49

1

2

3

4

5

6

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

G.1.3 Complex Input-Output 10 November 2006 592

 procedure Put (File : in File_Type;
 Item : in Complex;
 Fore : in Field := Default_Fore;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);
 procedure Put (Item : in Complex;
 Fore : in Field := Default_Fore;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);

 procedure Get (From : in String;
 Item : out Complex;
 Last : out Positive);
 procedure Put (To : out String;
 Item : in Complex;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);

end Ada.Text_IO.Complex_IO;

The library package Complex_Text_IO defines the same subprograms as Text_IO.Complex_IO, except
that the predefined type Float is systematically substituted for Real, and the type
Numerics.Complex_Types.Complex is systematically substituted for Complex throughout. Non-generic
equivalents of Text_IO.Complex_IO corresponding to each of the other predefined floating point types are
defined similarly, with the names Short_Complex_Text_IO, Long_Complex_Text_IO, etc.

The semantics of the Get and Put procedures are as follows:
procedure Get (File : in File_Type;
 Item : out Complex;
 Width : in Field := 0);
procedure Get (Item : out Complex;
 Width : in Field := 0);

The input sequence is a pair of optionally signed real literals representing the real and imaginary
components of a complex value These components have the format defined for the
corresponding Get procedure of an instance of Text_IO.Float_IO (see A.10.9) for the base
subtype of Complex_Types.Real. The pair of components may be separated by a comma or
surrounded by a pair of parentheses or both. Blanks are freely allowed before each of the
components and before the parentheses and comma, if either is used. If the value of the
parameter Width is zero, then

• line and page terminators are also allowed in these places;

• the components shall be separated by at least one blank or line terminator if the
comma is omitted; and

• reading stops when the right parenthesis has been read, if the input sequence includes a
left parenthesis, or when the imaginary component has been read, otherwise.

If a nonzero value of Width is supplied, then
• the components shall be separated by at least one blank if the comma is omitted; and

• exactly Width characters are read, or the characters (possibly none) up to a line
terminator, whichever comes first (blanks are included in the count).

Returns, in the parameter Item, the value of type Complex that corresponds to the input
sequence.

The exception Text_IO.Data_Error is raised if the input sequence does not have the required
syntax or if the components of the complex value obtained are not of the base subtype of
Complex_Types.Real.

7

8

9

9.1/2

10

11

12/1

13

14

15

15.1

16

17

18

19

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

593 10 November 2006 Complex Input-Output G.1.3

procedure Put (File : in File_Type;
 Item : in Complex;
 Fore : in Field := Default_Fore;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);
procedure Put (Item : in Complex;
 Fore : in Field := Default_Fore;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);

Outputs the value of the parameter Item as a pair of decimal literals representing the real and
imaginary components of the complex value, using the syntax of an aggregate. More
specifically,

• outputs a left parenthesis;

• outputs the value of the real component of the parameter Item with the format defined
by the corresponding Put procedure of an instance of Text_IO.Float_IO for the base
subtype of Complex_Types.Real, using the given values of Fore, Aft, and Exp;

• outputs a comma;

• outputs the value of the imaginary component of the parameter Item with the format
defined by the corresponding Put procedure of an instance of Text_IO.Float_IO for the
base subtype of Complex_Types.Real, using the given values of Fore, Aft, and Exp;

• outputs a right parenthesis.

procedure Get (From : in String;
 Item : out Complex;
 Last : out Positive);

Reads a complex value from the beginning of the given string, following the same rule as the
Get procedure that reads a complex value from a file, but treating the end of the string as a file
terminator. Returns, in the parameter Item, the value of type Complex that corresponds to the
input sequence. Returns in Last the index value such that From(Last) is the last character read.

The exception Text_IO.Data_Error is raised if the input sequence does not have the required
syntax or if the components of the complex value obtained are not of the base subtype of
Complex_Types.Real.

procedure Put (To : out String;
 Item : in Complex;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);

Outputs the value of the parameter Item to the given string as a pair of decimal literals
representing the real and imaginary components of the complex value, using the syntax of an
aggregate. More specifically,

• a left parenthesis, the real component, and a comma are left justified in the given
string, with the real component having the format defined by the Put procedure (for
output to a file) of an instance of Text_IO.Float_IO for the base subtype of
Complex_Types.Real, using a value of zero for Fore and the given values of Aft and
Exp;

• the imaginary component and a right parenthesis are right justified in the given string,
with the imaginary component having the format defined by the Put procedure (for
output to a file) of an instance of Text_IO.Float_IO for the base subtype of
Complex_Types.Real, using a value for Fore that completely fills the remainder of the
string, together with the given values of Aft and Exp.

20

21

22

23

24

25

26

27

28/2

29

30

31

32

33

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

G.1.3 Complex Input-Output 10 November 2006 594

The exception Text_IO.Layout_Error is raised if the given string is too short to hold the
formatted output.

Implementation Permissions

Other exceptions declared (by renaming) in Text_IO may be raised by the preceding procedures in the
appropriate circumstances, as for the corresponding procedures of Text_IO.Float_IO.

G.1.4 The Package Wide_Text_IO.Complex_IO
Static Semantics

Implementations shall also provide the generic library package Wide_Text_IO.Complex_IO. Its
declaration is obtained from that of Text_IO.Complex_IO by systematically replacing Text_IO by
Wide_Text_IO and String by Wide_String; the description of its behavior is obtained by additionally
replacing references to particular characters (commas, parentheses, etc.) by those for the corresponding
wide characters.

G.1.5 The Package Wide_Wide_Text_IO.Complex_IO
Static Semantics

Implementations shall also provide the generic library package Wide_Wide_Text_IO.Complex_IO. Its
declaration is obtained from that of Text_IO.Complex_IO by systematically replacing Text_IO by
Wide_Wide_Text_IO and String by Wide_Wide_String; the description of its behavior is obtained by
additionally replacing references to particular characters (commas, parentheses, etc.) by those for the
corresponding wide wide characters.

G.2 Numeric Performance Requirements
Implementation Requirements

Implementations shall provide a user-selectable mode in which the accuracy and other numeric
performance requirements detailed in the following subclauses are observed. This mode, referred to as the
strict mode, may or may not be the default mode; it directly affects the results of the predefined arithmetic
operations of real types and the results of the subprograms in children of the Numerics package, and
indirectly affects the operations in other language defined packages. Implementations shall also provide
the opposing mode, which is known as the relaxed mode.

Implementation Permissions

Either mode may be the default mode.

The two modes need not actually be different.

34

35

1

1/2

1

2

3

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

595 10 November 2006 Model of Floating Point Arithmetic G.2.1

G.2.1 Model of Floating Point Arithmetic
In the strict mode, the predefined operations of a floating point type shall satisfy the accuracy
requirements specified here and shall avoid or signal overflow in the situations described. This behavior is
presented in terms of a model of floating point arithmetic that builds on the concept of the canonical form
(see A.5.3).

Static Semantics

Associated with each floating point type is an infinite set of model numbers. The model numbers of a type
are used to define the accuracy requirements that have to be satisfied by certain predefined operations of
the type; through certain attributes of the model numbers, they are also used to explain the meaning of a
user-declared floating point type declaration. The model numbers of a derived type are those of the parent
type; the model numbers of a subtype are those of its type.

The model numbers of a floating point type T are zero and all the values expressible in the canonical form
(for the type T), in which mantissa has T'Model_Mantissa digits and exponent has a value greater than or
equal to T'Model_Emin. (These attributes are defined in G.2.2.)

A model interval of a floating point type is any interval whose bounds are model numbers of the type. The
model interval of a type T associated with a value v is the smallest model interval of T that includes v.
(The model interval associated with a model number of a type consists of that number only.)

Implementation Requirements

The accuracy requirements for the evaluation of certain predefined operations of floating point types are as
follows.

An operand interval is the model interval, of the type specified for the operand of an operation, associated
with the value of the operand.

For any predefined arithmetic operation that yields a result of a floating point type T, the required bounds
on the result are given by a model interval of T (called the result interval) defined in terms of the operand
values as follows:

• The result interval is the smallest model interval of T that includes the minimum and the
maximum of all the values obtained by applying the (exact) mathematical operation to values
arbitrarily selected from the respective operand intervals.

The result interval of an exponentiation is obtained by applying the above rule to the sequence of
multiplications defined by the exponent, assuming arbitrary association of the factors, and to the final
division in the case of a negative exponent.

The result interval of a conversion of a numeric value to a floating point type T is the model interval of T
associated with the operand value, except when the source expression is of a fixed point type with a small
that is not a power of T'Machine_Radix or is a fixed point multiplication or division either of whose
operands has a small that is not a power of T'Machine_Radix; in these cases, the result interval is
implementation defined.

For any of the foregoing operations, the implementation shall deliver a value that belongs to the result
interval when both bounds of the result interval are in the safe range of the result type T, as determined by
the values of T'Safe_First and T'Safe_Last; otherwise,

• if T'Machine_Overflows is True, the implementation shall either deliver a value that belongs to
the result interval or raise Constraint_Error;

1

2

3

4

5

6

7

8

9

10

11

12

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

G.2.1 Model of Floating Point Arithmetic 10 November 2006 596

• if T'Machine_Overflows is False, the result is implementation defined.

For any predefined relation on operands of a floating point type T, the implementation may deliver any
value (i.e., either True or False) obtained by applying the (exact) mathematical comparison to values
arbitrarily chosen from the respective operand intervals.

The result of a membership test is defined in terms of comparisons of the operand value with the lower and
upper bounds of the given range or type mark (the usual rules apply to these comparisons).

Implementation Permissions

If the underlying floating point hardware implements division as multiplication by a reciprocal, the result
interval for division (and exponentiation by a negative exponent) is implementation defined.

G.2.2 Model-Oriented Attributes of Floating Point Types
In implementations that support the Numerics Annex, the model-oriented attributes of floating point types
shall yield the values defined here, in both the strict and the relaxed modes. These definitions add
conditions to those in A.5.3.

Static Semantics

For every subtype S of a floating point type T:
S'Model_Mantissa
 Yields the number of digits in the mantissa of the canonical form of the model numbers of T

(see A.5.3). The value of this attribute shall be greater than or equal to

d · log(10) / log(T'Machine_Radix) + g

 where d is the requested decimal precision of T, and g is 0 if T'Machine_Radix is a positive
power of 10 and 1 otherwise. In addition, T'Model_Mantissa shall be less than or equal to
the value of T'Machine_Mantissa. This attribute yields a value of the type
universal_integer.

S'Model_Emin
 Yields the minimum exponent of the canonical form of the model numbers of T (see A.5.3).

The value of this attribute shall be greater than or equal to the value of T'Machine_Emin.
This attribute yields a value of the type universal_integer.

S'Safe_First
 Yields the lower bound of the safe range of T. The value of this attribute shall be a model

number of T and greater than or equal to the lower bound of the base range of T. In
addition, if T is declared by a floating_point_definition or is derived from such a type, and
the floating_point_definition includes a real_range_specification specifying a lower bound
of lb, then the value of this attribute shall be less than or equal to lb; otherwise, it shall be
less than or equal to –10.0 4 · d, where d is the requested decimal precision of T. This
attribute yields a value of the type universal_real.

S'Safe_Last
 Yields the upper bound of the safe range of T. The value of this attribute shall be a model

number of T and less than or equal to the upper bound of the base range of T. In addition, if
T is declared by a floating_point_definition or is derived from such a type, and the
floating_point_definition includes a real_range_specification specifying an upper bound of
ub, then the value of this attribute shall be greater than or equal to ub; otherwise, it shall be
greater than or equal to 10.0 4 · d, where d is the requested decimal precision of T. This
attribute yields a value of the type universal_real.

13

14

15

16

1

2

3/2

3.1/2

3.2/2

4

5

6

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

597 10 November 2006 Model-Oriented Attributes of Floating Point Types G.2.2

S'Model Denotes a function (of a parameter X) whose specification is given in A.5.3. If X is a model
number of T, the function yields X; otherwise, it yields the value obtained by rounding or
truncating X to either one of the adjacent model numbers of T. Constraint_Error is raised if
the resulting model number is outside the safe range of S. A zero result has the sign of X
when S'Signed_Zeros is True.

Subject to the constraints given above, the values of S'Model_Mantissa and S'Safe_Last are to be
maximized, and the values of S'Model_Emin and S'Safe_First minimized, by the implementation as
follows:

• First, S'Model_Mantissa is set to the largest value for which values of S'Model_Emin,
S'Safe_First, and S'Safe_Last can be chosen so that the implementation satisfies the strict-mode
requirements of G.2.1 in terms of the model numbers and safe range induced by these attributes.

• Next, S'Model_Emin is set to the smallest value for which values of S'Safe_First and
S'Safe_Last can be chosen so that the implementation satisfies the strict-mode requirements of
G.2.1 in terms of the model numbers and safe range induced by these attributes and the
previously determined value of S'Model_Mantissa.

• Finally, S'Safe_First and S'Safe_last are set (in either order) to the smallest and largest values,
respectively, for which the implementation satisfies the strict-mode requirements of G.2.1 in
terms of the model numbers and safe range induced by these attributes and the previously
determined values of S'Model_Mantissa and S'Model_Emin.

G.2.3 Model of Fixed Point Arithmetic
In the strict mode, the predefined arithmetic operations of a fixed point type shall satisfy the accuracy
requirements specified here and shall avoid or signal overflow in the situations described.

Implementation Requirements

The accuracy requirements for the predefined fixed point arithmetic operations and conversions, and the
results of relations on fixed point operands, are given below.

The operands of the fixed point adding operators, absolute value, and comparisons have the same type.
These operations are required to yield exact results, unless they overflow.

Multiplications and divisions are allowed between operands of any two fixed point types; the result has to
be (implicitly or explicitly) converted to some other numeric type. For purposes of defining the accuracy
rules, the multiplication or division and the conversion are treated as a single operation whose accuracy
depends on three types (those of the operands and the result). For decimal fixed point types, the attribute
T'Round may be used to imply explicit conversion with rounding (see 3.5.10).

When the result type is a floating point type, the accuracy is as given in G.2.1. For some combinations of
the operand and result types in the remaining cases, the result is required to belong to a small set of values
called the perfect result set; for other combinations, it is required merely to belong to a generally larger
and implementation-defined set of values called the close result set. When the result type is a decimal
fixed point type, the perfect result set contains a single value; thus, operations on decimal types are always
fully specified.

When one operand of a fixed-fixed multiplication or division is of type universal_real, that operand is not
implicitly converted in the usual sense, since the context does not determine a unique target type, but the
accuracy of the result of the multiplication or division (i.e., whether the result has to belong to the perfect
result set or merely the close result set) depends on the value of the operand of type universal_real and on
the types of the other operand and of the result.

7

8

9

10

11

1

2

3

4

5

6

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

G.2.3 Model of Fixed Point Arithmetic 10 November 2006 598

For a fixed point multiplication or division whose (exact) mathematical result is v, and for the conversion
of a value v to a fixed point type, the perfect result set and close result set are defined as follows:

• If the result type is an ordinary fixed point type with a small of s,
• if v is an integer multiple of s, then the perfect result set contains only the value v;

• otherwise, it contains the integer multiple of s just below v and the integer multiple of s just
above v.

 The close result set is an implementation-defined set of consecutive integer multiples of s
containing the perfect result set as a subset.

• If the result type is a decimal type with a small of s,
• if v is an integer multiple of s, then the perfect result set contains only the value v;

• otherwise, if truncation applies then it contains only the integer multiple of s in the
direction toward zero, whereas if rounding applies then it contains only the nearest integer
multiple of s (with ties broken by rounding away from zero).

 The close result set is an implementation-defined set of consecutive integer multiples of s
containing the perfect result set as a subset.

• If the result type is an integer type,
• if v is an integer, then the perfect result set contains only the value v;

• otherwise, it contains the integer nearest to the value v (if v lies equally distant from two
consecutive integers, the perfect result set contains the one that is further from zero).

 The close result set is an implementation-defined set of consecutive integers containing the
perfect result set as a subset.

The result of a fixed point multiplication or division shall belong either to the perfect result set or to the
close result set, as described below, if overflow does not occur. In the following cases, if the result type is
a fixed point type, let s be its small; otherwise, i.e. when the result type is an integer type, let s be 1.0.

• For a multiplication or division neither of whose operands is of type universal_real, let l and r
be the smalls of the left and right operands. For a multiplication, if (l · r) / s is an integer or the
reciprocal of an integer (the smalls are said to be “compatible” in this case), the result shall
belong to the perfect result set; otherwise, it belongs to the close result set. For a division, if l / (r
· s) is an integer or the reciprocal of an integer (i.e., the smalls are compatible), the result shall
belong to the perfect result set; otherwise, it belongs to the close result set.

• For a multiplication or division having one universal_real operand with a value of v, note that it
is always possible to factor v as an integer multiple of a “compatible” small, but the integer
multiple may be “too big.” If there exists a factorization in which that multiple is less than some
implementation-defined limit, the result shall belong to the perfect result set; otherwise, it
belongs to the close result set.

A multiplication P * Q of an operand of a fixed point type F by an operand of an integer type I, or vice-
versa, and a division P / Q of an operand of a fixed point type F by an operand of an integer type I, are also
allowed. In these cases, the result has a type of F; explicit conversion of the result is never required. The
accuracy required in these cases is the same as that required for a multiplication F(P * Q) or a division F(P
/ Q) obtained by interpreting the operand of the integer type to have a fixed point type with a small of 1.0.

The accuracy of the result of a conversion from an integer or fixed point type to a fixed point type, or from
a fixed point type to an integer type, is the same as that of a fixed point multiplication of the source value
by a fixed point operand having a small of 1.0 and a value of 1.0, as given by the foregoing rules. The
result of a conversion from a floating point type to a fixed point type shall belong to the close result set.

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

599 10 November 2006 Model of Fixed Point Arithmetic G.2.3

The result of a conversion of a universal_real operand to a fixed point type shall belong to the perfect
result set.

The possibility of overflow in the result of a predefined arithmetic operation or conversion yielding a
result of a fixed point type T is analogous to that for floating point types, except for being related to the
base range instead of the safe range. If all of the permitted results belong to the base range of T, then the
implementation shall deliver one of the permitted results; otherwise,

• if T'Machine_Overflows is True, the implementation shall either deliver one of the permitted
results or raise Constraint_Error;

• if T'Machine_Overflows is False, the result is implementation defined.

G.2.4 Accuracy Requirements for the Elementary Functions
In the strict mode, the performance of Numerics.Generic_Elementary_Functions shall be as specified here.

Implementation Requirements

When an exception is not raised, the result of evaluating a function in an instance EF of
Numerics.Generic_Elementary_Functions belongs to a result interval, defined as the smallest model
interval of EF.Float_Type that contains all the values of the form f · (1.0 + d), where f is the exact value of
the corresponding mathematical function at the given parameter values, d is a real number, and |d| is less
than or equal to the function's maximum relative error. The function delivers a value that belongs to the
result interval when both of its bounds belong to the safe range of EF.Float_Type; otherwise,

• if EF.Float_Type'Machine_Overflows is True, the function either delivers a value that belongs
to the result interval or raises Constraint_Error, signaling overflow;

• if EF.Float_Type'Machine_Overflows is False, the result is implementation defined.

The maximum relative error exhibited by each function is as follows:
• 2.0 · EF.Float_Type'Model_Epsilon, in the case of the Sqrt, Sin, and Cos functions;

• 4.0 · EF.Float_Type'Model_Epsilon, in the case of the Log, Exp, Tan, Cot, and inverse
trigonometric functions; and

• 8.0 · EF.Float_Type'Model_Epsilon, in the case of the forward and inverse hyperbolic functions.

The maximum relative error exhibited by the exponentiation operator, which depends on the values of the
operands, is (4.0 + |Right · log(Left)| / 32.0) · EF.Float_Type'Model_Epsilon.

The maximum relative error given above applies throughout the domain of the forward trigonometric
functions when the Cycle parameter is specified. When the Cycle parameter is omitted, the maximum
relative error given above applies only when the absolute value of the angle parameter X is less than or
equal to some implementation-defined angle threshold, which shall be at least EF.Float_Type'Machine_-
Radix EF.Float_Type'Machine_Mantissa/2. Beyond the angle threshold, the accuracy of the forward trigonometric
functions is implementation defined.

The prescribed results specified in A.5.1 for certain functions at particular parameter values take
precedence over the maximum relative error bounds; effectively, they narrow to a single value the result
interval allowed by the maximum relative error bounds. Additional rules with a similar effect are given by
table G-1 for the inverse trigonometric functions, at particular parameter values for which the
mathematical result is possibly not a model number of EF.Float_Type (or is, indeed, even transcendental).
In each table entry, the values of the parameters are such that the result lies on the axis between two

25

26

27

1

2

3

4

5

6

7

8

9

10

11/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

G.2.4 Accuracy Requirements for the Elementary Functions 10 November 2006 600

quadrants; the corresponding accuracy rule, which takes precedence over the maximum relative error
bounds, is that the result interval is the model interval of EF.Float_Type associated with the exact
mathematical result given in the table.

This paragraph was deleted.

The last line of the table is meant to apply when EF.Float_Type'Signed_Zeros is False; the two lines just
above it, when EF.Float_Type'Signed_Zeros is True and the parameter Y has a zero value with the
indicated sign.

 Table G-1: Tightly Approximated Elementary Function Results

 Function Value of X Value of Y

Exact
Result

when Cycle
Specified

Exact
Result

when Cycle
Omitted

 Arcsin 1.0 n.a. Cycle/4.0 π/2.0
 Arcsin –1.0 n.a. –Cycle/4.0 –π/2.0
 Arccos 0.0 n.a. Cycle/4.0 π/2.0
 Arccos –1.0 n.a. Cycle/2.0 π

 Arctan and Arccot 0.0 positive Cycle/4.0 π/2.0
 Arctan and Arccot 0.0 negative –Cycle/4.0 –π/2.0
 Arctan and Arccot negative +0.0 Cycle/2.0 π
 Arctan and Arccot negative –0.0 –Cycle/2.0 –π
 Arctan and Arccot negative 0.0 Cycle/2.0 π

The amount by which the result of an inverse trigonometric function is allowed to spill over into a
quadrant adjacent to the one corresponding to the principal branch, as given in A.5.1, is limited. The rule
is that the result belongs to the smallest model interval of EF.Float_Type that contains both boundaries of
the quadrant corresponding to the principal branch. This rule also takes precedence over the maximum
relative error bounds, effectively narrowing the result interval allowed by them.

Finally, the following specifications also take precedence over the maximum relative error bounds:
• The absolute value of the result of the Sin, Cos, and Tanh functions never exceeds one.

• The absolute value of the result of the Coth function is never less than one.

• The result of the Cosh function is never less than one.

Implementation Advice

The versions of the forward trigonometric functions without a Cycle parameter should not be implemented
by calling the corresponding version with a Cycle parameter of 2.0*Numerics.Pi, since this will not
provide the required accuracy in some portions of the domain. For the same reason, the version of Log
without a Base parameter should not be implemented by calling the corresponding version with a Base
parameter of Numerics.e.

12/1

13

14

15

16

17

18

19

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

601 10 November 2006 Performance Requirements for Random Number Generation G.2.5

G.2.5 Performance Requirements for Random Number Generation
In the strict mode, the performance of Numerics.Float_Random and Numerics.Discrete_Random shall be
as specified here.

Implementation Requirements

Two different calls to the time-dependent Reset procedure shall reset the generator to different states,
provided that the calls are separated in time by at least one second and not more than fifty years.

The implementation's representations of generator states and its algorithms for generating random numbers
shall yield a period of at least 231–2; much longer periods are desirable but not required.

The implementations of Numerics.Float_Random.Random and Numerics.Discrete_Random.Random shall
pass at least 85% of the individual trials in a suite of statistical tests. For Numerics.Float_Random, the
tests are applied directly to the floating point values generated (i.e., they are not converted to integers
first), while for Numerics.Discrete_Random they are applied to the generated values of various discrete
types. Each test suite performs 6 different tests, with each test repeated 10 times, yielding a total of 60
individual trials. An individual trial is deemed to pass if the chi-square value (or other statistic) calculated
for the observed counts or distribution falls within the range of values corresponding to the 2.5 and 97.5
percentage points for the relevant degrees of freedom (i.e., it shall be neither too high nor too low). For the
purpose of determining the degrees of freedom, measurement categories are combined whenever the
expected counts are fewer than 5.

G.2.6 Accuracy Requirements for Complex Arithmetic
In the strict mode, the performance of Numerics.Generic_Complex_Types and Numerics.Generic_-
Complex_Elementary_Functions shall be as specified here.

Implementation Requirements

When an exception is not raised, the result of evaluating a real function of an instance CT of
Numerics.Generic_Complex_Types (i.e., a function that yields a value of subtype CT.Real'Base or
CT.Imaginary) belongs to a result interval defined as for a real elementary function (see G.2.4).

When an exception is not raised, each component of the result of evaluating a complex function of such an
instance, or of an instance of Numerics.Generic_Complex_Elementary_Functions obtained by
instantiating the latter with CT (i.e., a function that yields a value of subtype CT.Complex), also belongs to
a result interval. The result intervals for the components of the result are either defined by a maximum
relative error bound or by a maximum box error bound. When the result interval for the real (resp.,
imaginary) component is defined by maximum relative error, it is defined as for that of a real function,
relative to the exact value of the real (resp., imaginary) part of the result of the corresponding
mathematical function. When defined by maximum box error, the result interval for a component of the
result is the smallest model interval of CT.Real that contains all the values of the corresponding part of f ·
(1.0 + d), where f is the exact complex value of the corresponding mathematical function at the given
parameter values, d is complex, and |d| is less than or equal to the given maximum box error. The function
delivers a value that belongs to the result interval (or a value both of whose components belong to their
respective result intervals) when both bounds of the result interval(s) belong to the safe range of CT.Real;
otherwise,

1

2

3

4

1

2

3

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

G.2.6 Accuracy Requirements for Complex Arithmetic 10 November 2006 602

• if CT.Real'Machine_Overflows is True, the function either delivers a value that belongs to the
result interval (or a value both of whose components belong to their respective result intervals)
or raises Constraint_Error, signaling overflow;

• if CT.Real'Machine_Overflows is False, the result is implementation defined.

The error bounds for particular complex functions are tabulated in table G-2. In the table, the error bound
is given as the coefficient of CT.Real'Model_Epsilon.

This paragraph was deleted.

 Table G-2: Error Bounds for Particular Complex Functions

 Function or Operator Nature of
Result

Nature of
Bound Error Bound

 Modulus real max. rel. error 3.0

 Argument real max. rel. error 4.0

 Compose_From_Polar complex max. rel. error 3.0

 "*" (both operands complex) complex max. box error 5.0

 "/" (right operand complex) complex max. box error 13.0

 Sqrt complex max. rel. error 6.0

 Log complex max. box error 13.0

 Exp (complex parameter) complex max. rel. error 7.0

 Exp (imaginary parameter) complex max. rel. error 2.0

 Sin, Cos, Sinh, and Cosh complex max. rel. error 11.0

 Tan, Cot, Tanh, and Coth complex max. rel. error 35.0

 inverse trigonometric complex max. rel. error 14.0

 inverse hyperbolic complex max. rel. error 14.0

The maximum relative error given above applies throughout the domain of the Compose_From_Polar
function when the Cycle parameter is specified. When the Cycle parameter is omitted, the maximum
relative error applies only when the absolute value of the parameter Argument is less than or equal to the
angle threshold (see G.2.4). For the Exp function, and for the forward hyperbolic (resp., trigonometric)
functions, the maximum relative error given above likewise applies only when the absolute value of the
imaginary (resp., real) component of the parameter X (or the absolute value of the parameter itself, in the
case of the Exp function with a parameter of pure-imaginary type) is less than or equal to the angle
threshold. For larger angles, the accuracy is implementation defined.

The prescribed results specified in G.1.2 for certain functions at particular parameter values take
precedence over the error bounds; effectively, they narrow to a single value the result interval allowed by
the error bounds for a component of the result. Additional rules with a similar effect are given below for
certain inverse trigonometric and inverse hyperbolic functions, at particular parameter values for which a
component of the mathematical result is transcendental. In each case, the accuracy rule, which takes
precedence over the error bounds, is that the result interval for the stated result component is the model
interval of CT.Real associated with the component's exact mathematical value. The cases in question are
as follows:

4

5

6/2

7/1

8

9

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

603 10 November 2006 Accuracy Requirements for Complex Arithmetic G.2.6

• When the parameter X has the value zero, the real (resp., imaginary) component of the result of
the Arccot (resp., Arccoth) function is in the model interval of CT.Real associated with the value
π/2.0.

• When the parameter X has the value one, the real component of the result of the Arcsin function
is in the model interval of CT.Real associated with the value π/2.0.

• When the parameter X has the value –1.0, the real component of the result of the Arcsin (resp.,
Arccos) function is in the model interval of CT.Real associated with the value –π/2.0 (resp., π).

The amount by which a component of the result of an inverse trigonometric or inverse hyperbolic function
is allowed to spill over into a quadrant adjacent to the one corresponding to the principal branch, as given
in G.1.2, is limited. The rule is that the result belongs to the smallest model interval of CT.Real that
contains both boundaries of the quadrant corresponding to the principal branch. This rule also takes
precedence over the maximum error bounds, effectively narrowing the result interval allowed by them.

Finally, the results allowed by the error bounds are narrowed by one further rule: The absolute value of
each component of the result of the Exp function, for a pure-imaginary parameter, never exceeds one.

Implementation Advice

The version of the Compose_From_Polar function without a Cycle parameter should not be implemented
by calling the corresponding version with a Cycle parameter of 2.0*Numerics.Pi, since this will not
provide the required accuracy in some portions of the domain.

G.3 Vector and Matrix Manipulation
Types and operations for the manipulation of real vectors and matrices are provided in
Generic_Real_Arrays, which is defined in G.3.1. Types and operations for the manipulation of complex
vectors and matrices are provided in Generic_Complex_Arrays, which is defined in G.3.2. Both of these
library units are generic children of the predefined package Numerics (see A.5). Nongeneric equivalents of
these packages for each of the predefined floating point types are also provided as children of Numerics.

G.3.1 Real Vectors and Matrices
Static Semantics

The generic library package Numerics.Generic_Real_Arrays has the following declaration:
generic
 type Real is digits <>;
package Ada.Numerics.Generic_Real_Arrays is
 pragma Pure(Generic_Real_Arrays);

 -- Types
 type Real_Vector is array (Integer range <>) of Real'Base;
 type Real_Matrix is array (Integer range <>, Integer range <>)
 of Real'Base;

 -- Subprograms for Real_Vector types
 -- Real_Vector arithmetic operations
 function "+" (Right : Real_Vector) return Real_Vector;
 function "-" (Right : Real_Vector) return Real_Vector;
 function "abs" (Right : Real_Vector) return Real_Vector;

 function "+" (Left, Right : Real_Vector) return Real_Vector;
 function "-" (Left, Right : Real_Vector) return Real_Vector;

 function "*" (Left, Right : Real_Vector) return Real'Base;

10

11

12

13/2

14

15

1/2

1/2

2/2

3/2

4/2

5/2

6/2

7/2

8/2

9/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

G.3.1 Real Vectors and Matrices 10 November 2006 604

 function "abs" (Right : Real_Vector) return Real'Base;

 -- Real_Vector scaling operations
 function "*" (Left : Real'Base; Right : Real_Vector)
 return Real_Vector;
 function "*" (Left : Real_Vector; Right : Real'Base)
 return Real_Vector;
 function "/" (Left : Real_Vector; Right : Real'Base)
 return Real_Vector;

 -- Other Real_Vector operations
 function Unit_Vector (Index : Integer;
 Order : Positive;
 First : Integer := 1) return Real_Vector;

 -- Subprograms for Real_Matrix types
 -- Real_Matrix arithmetic operations
 function "+" (Right : Real_Matrix) return Real_Matrix;
 function "-" (Right : Real_Matrix) return Real_Matrix;
 function "abs" (Right : Real_Matrix) return Real_Matrix;
 function Transpose (X : Real_Matrix) return Real_Matrix;

 function "+" (Left, Right : Real_Matrix) return Real_Matrix;
 function "-" (Left, Right : Real_Matrix) return Real_Matrix;
 function "*" (Left, Right : Real_Matrix) return Real_Matrix;

 function "*" (Left, Right : Real_Vector) return Real_Matrix;

 function "*" (Left : Real_Vector; Right : Real_Matrix)
 return Real_Vector;
 function "*" (Left : Real_Matrix; Right : Real_Vector)
 return Real_Vector;

 -- Real_Matrix scaling operations
 function "*" (Left : Real'Base; Right : Real_Matrix)
 return Real_Matrix;
 function "*" (Left : Real_Matrix; Right : Real'Base)
 return Real_Matrix;
 function "/" (Left : Real_Matrix; Right : Real'Base)
 return Real_Matrix;

 -- Real_Matrix inversion and related operations
 function Solve (A : Real_Matrix; X : Real_Vector) return Real_Vector;
 function Solve (A, X : Real_Matrix) return Real_Matrix;
 function Inverse (A : Real_Matrix) return Real_Matrix;
 function Determinant (A : Real_Matrix) return Real'Base;

 -- Eigenvalues and vectors of a real symmetric matrix
 function Eigenvalues (A : Real_Matrix) return Real_Vector;

 procedure Eigensystem (A : in Real_Matrix;
 Values : out Real_Vector;
 Vectors : out Real_Matrix);

 -- Other Real_Matrix operations
 function Unit_Matrix (Order : Positive;
 First_1, First_2 : Integer := 1)
 return Real_Matrix;

end Ada.Numerics.Generic_Real_Arrays;

The library package Numerics.Real_Arrays is declared pure and defines the same types and subprograms
as Numerics.Generic_Real_Arrays, except that the predefined type Float is systematically substituted for
Real'Base throughout. Nongeneric equivalents for each of the other predefined floating point types are
defined similarly, with the names Numerics.Short_Real_Arrays, Numerics.Long_Real_Arrays, etc.

Two types are defined and exported by Numerics.Generic_Real_Arrays. The composite type Real_Vector
is provided to represent a vector with components of type Real; it is defined as an unconstrained, one-

10/2

11/2

12/2

13/2

14/2

15/2

16/2

17/2

18/2

19/2

20/2

21/2

22/2

23/2

24/2

25/2

26/2

27/2

28/2

29/2

30/2

31/2

32/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

605 10 November 2006 Real Vectors and Matrices G.3.1

dimensional array with an index of type Integer. The composite type Real_Matrix is provided to represent
a matrix with components of type Real; it is defined as an unconstrained, two-dimensional array with
indices of type Integer.

The effect of the various subprograms is as described below. In most cases the subprograms are described
in terms of corresponding scalar operations of the type Real; any exception raised by those operations is
propagated by the array operation. Moreover, the accuracy of the result for each individual component is
as defined for the scalar operation unless stated otherwise.

In the case of those operations which are defined to involve an inner product, Constraint_Error may be
raised if an intermediate result is outside the range of Real'Base even though the mathematical final result
would not be.

function "+" (Right : Real_Vector) return Real_Vector;
function "-" (Right : Real_Vector) return Real_Vector;
function "abs" (Right : Real_Vector) return Real_Vector;

Each operation returns the result of applying the corresponding operation of the type Real to
each component of Right. The index range of the result is Right'Range.

function "+" (Left, Right : Real_Vector) return Real_Vector;
function "-" (Left, Right : Real_Vector) return Real_Vector;

Each operation returns the result of applying the corresponding operation of the type Real to
each component of Left and the matching component of Right. The index range of the result is
Left'Range. Constraint_Error is raised if Left'Length is not equal to Right'Length.

function "*" (Left, Right : Real_Vector) return Real'Base;

This operation returns the inner product of Left and Right. Constraint_Error is raised if
Left'Length is not equal to Right'Length. This operation involves an inner product.

function "abs" (Right : Real_Vector) return Real'Base;

This operation returns the L2-norm of Right (the square root of the inner product of the vector
with itself).

function "*" (Left : Real'Base; Right : Real_Vector) return Real_Vector;

This operation returns the result of multiplying each component of Right by the scalar Left using
the "*" operation of the type Real. The index range of the result is Right'Range.

function "*" (Left : Real_Vector; Right : Real'Base) return Real_Vector;
function "/" (Left : Real_Vector; Right : Real'Base) return Real_Vector;

Each operation returns the result of applying the corresponding operation of the type Real to
each component of Left and to the scalar Right. The index range of the result is Left'Range.

function Unit_Vector (Index : Integer;
 Order : Positive;
 First : Integer := 1) return Real_Vector;

This function returns a unit vector with Order components and a lower bound of First. All
components are set to 0.0 except for the Index component which is set to 1.0. Constraint_Error is
raised if Index < First, Index > First + Order – 1 or if First + Order – 1 > Integer'Last.

function "+" (Right : Real_Matrix) return Real_Matrix;
function "-" (Right : Real_Matrix) return Real_Matrix;
function "abs" (Right : Real_Matrix) return Real_Matrix;

Each operation returns the result of applying the corresponding operation of the type Real to
each component of Right. The index ranges of the result are those of Right.

33/2

34/2

35/2

36/2

37/2

38/2

39/2

40/2

41/2

42/2

43/2

44/2

45/2

46/2

47/2

48/2

49/2

50/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

G.3.1 Real Vectors and Matrices 10 November 2006 606

function Transpose (X : Real_Matrix) return Real_Matrix;

This function returns the transpose of a matrix X. The first and second index ranges of the result
are X'Range(2) and X'Range(1) respectively.

function "+" (Left, Right : Real_Matrix) return Real_Matrix;
function "-" (Left, Right : Real_Matrix) return Real_Matrix;

Each operation returns the result of applying the corresponding operation of the type Real to
each component of Left and the matching component of Right. The index ranges of the result are
those of Left. Constraint_Error is raised if Left'Length(1) is not equal to Right'Length(1) or
Left'Length(2) is not equal to Right'Length(2).

function "*" (Left, Right : Real_Matrix) return Real_Matrix;

This operation provides the standard mathematical operation for matrix multiplication. The first
and second index ranges of the result are Left'Range(1) and Right'Range(2) respectively.
Constraint_Error is raised if Left'Length(2) is not equal to Right'Length(1). This operation
involves inner products.

function "*" (Left, Right : Real_Vector) return Real_Matrix;

This operation returns the outer product of a (column) vector Left by a (row) vector Right using
the operation "*" of the type Real for computing the individual components. The first and second
index ranges of the result are Left'Range and Right'Range respectively.

function "*" (Left : Real_Vector; Right : Real_Matrix) return Real_Vector;

This operation provides the standard mathematical operation for multiplication of a (row) vector
Left by a matrix Right. The index range of the (row) vector result is Right'Range(2).
Constraint_Error is raised if Left'Length is not equal to Right'Length(1). This operation involves
inner products.

function "*" (Left : Real_Matrix; Right : Real_Vector) return Real_Vector;

This operation provides the standard mathematical operation for multiplication of a matrix Left
by a (column) vector Right. The index range of the (column) vector result is Left'Range(1).
Constraint_Error is raised if Left'Length(2) is not equal to Right'Length. This operation involves
inner products.

function "*" (Left : Real'Base; Right : Real_Matrix) return Real_Matrix;

This operation returns the result of multiplying each component of Right by the scalar Left using
the "*" operation of the type Real. The index ranges of the result are those of Right.

function "*" (Left : Real_Matrix; Right : Real'Base) return Real_Matrix;
function "/" (Left : Real_Matrix; Right : Real'Base) return Real_Matrix;

Each operation returns the result of applying the corresponding operation of the type Real to
each component of Left and to the scalar Right. The index ranges of the result are those of Left.

function Solve (A : Real_Matrix; X : Real_Vector) return Real_Vector;

This function returns a vector Y such that X is (nearly) equal to A * Y. This is the standard
mathematical operation for solving a single set of linear equations. The index range of the result
is A'Range(2). Constraint_Error is raised if A'Length(1), A'Length(2), and X'Length are not
equal. Constraint_Error is raised if the matrix A is ill-conditioned.

function Solve (A, X : Real_Matrix) return Real_Matrix;

This function returns a matrix Y such that X is (nearly) equal to A * Y. This is the standard
mathematical operation for solving several sets of linear equations. The index ranges of the

51/2

52/2

53/2

54/2

55/2

56/2

57/2

58/2

59/2

60/2

61/2

62/2

63/2

64/2

65/2

66/2

67/2

68/2

69/2

70/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

607 10 November 2006 Real Vectors and Matrices G.3.1

result are A'Range(2) and X'Range(2). Constraint_Error is raised if A'Length(1), A'Length(2),
and X'Length(1) are not equal. Constraint_Error is raised if the matrix A is ill-conditioned.

function Inverse (A : Real_Matrix) return Real_Matrix;

This function returns a matrix B such that A * B is (nearly) equal to the unit matrix. The index
ranges of the result are A'Range(2) and A'Range(1). Constraint_Error is raised if A'Length(1) is
not equal to A'Length(2). Constraint_Error is raised if the matrix A is ill-conditioned.

function Determinant (A : Real_Matrix) return Real'Base;

This function returns the determinant of the matrix A. Constraint_Error is raised if A'Length(1)
is not equal to A'Length(2).

function Eigenvalues(A : Real_Matrix) return Real_Vector;

This function returns the eigenvalues of the symmetric matrix A as a vector sorted into order
with the largest first. Constraint_Error is raised if A'Length(1) is not equal to A'Length(2). The
index range of the result is A'Range(1). Argument_Error is raised if the matrix A is not
symmetric.

procedure Eigensystem(A : in Real_Matrix;
 Values : out Real_Vector;
 Vectors : out Real_Matrix);

This procedure computes both the eigenvalues and eigenvectors of the symmetric matrix A. The
out parameter Values is the same as that obtained by calling the function Eigenvalues. The out
parameter Vectors is a matrix whose columns are the eigenvectors of the matrix A. The order of
the columns corresponds to the order of the eigenvalues. The eigenvectors are normalized and
mutually orthogonal (they are orthonormal), including when there are repeated eigenvalues.
Constraint_Error is raised if A'Length(1) is not equal to A'Length(2). The index ranges of the
parameter Vectors are those of A. Argument_Error is raised if the matrix A is not symmetric.

function Unit_Matrix (Order : Positive;
 First_1, First_2 : Integer := 1) return Real_Matrix;

This function returns a square unit matrix with Order**2 components and lower bounds of
First_1 and First_2 (for the first and second index ranges respectively). All components are set to
0.0 except for the main diagonal, whose components are set to 1.0. Constraint_Error is raised if
First_1 + Order – 1 > Integer'Last or First_2 + Order – 1 > Integer'Last.

Implementation Requirements

Accuracy requirements for the subprograms Solve, Inverse, Determinant, Eigenvalues and Eigensystem
are implementation defined.

For operations not involving an inner product, the accuracy requirements are those of the corresponding
operations of the type Real in both the strict mode and the relaxed mode (see G.2).

For operations involving an inner product, no requirements are specified in the relaxed mode. In the strict
mode the modulus of the absolute error of the inner product X*Y shall not exceed g*abs(X)*abs(Y) where
g is defined as

g = X'Length * Real'Machine_Radix**(1 – Real'Model_Mantissa)

For the L2-norm, no accuracy requirements are specified in the relaxed mode. In the strict mode the
relative error on the norm shall not exceed g / 2.0 + 3.0 * Real'Model_Epsilon where g is defined as above.

71/2

72/2

73/2

74/2

75/2

76/2

77/2

78/2

79/2

80/2

81/2

82/2

83/2

84/2

85/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

G.3.1 Real Vectors and Matrices 10 November 2006 608

Documentation Requirements

Implementations shall document any techniques used to reduce cancellation errors such as extended
precision arithmetic.

Implementation Permissions

The nongeneric equivalent packages may, but need not, be actual instantiations of the generic package for
the appropriate predefined type.

Implementation Advice

Implementations should implement the Solve and Inverse functions using established techniques such as
LU decomposition with row interchanges followed by back and forward substitution. Implementations are
recommended to refine the result by performing an iteration on the residuals; if this is done then it should
be documented.

It is not the intention that any special provision should be made to determine whether a matrix is ill-
conditioned or not. The naturally occurring overflow (including division by zero) which will result from
executing these functions with an ill-conditioned matrix and thus raise Constraint_Error is sufficient.

The test that a matrix is symmetric should be performed by using the equality operator to compare the
relevant components.

G.3.2 Complex Vectors and Matrices
Static Semantics

The generic library package Numerics.Generic_Complex_Arrays has the following declaration:
with Ada.Numerics.Generic_Real_Arrays, Ada.Numerics.Generic_Complex_Types;
generic
 with package Real_Arrays is new
 Ada.Numerics.Generic_Real_Arrays (<>);
 use Real_Arrays;
 with package Complex_Types is new
 Ada.Numerics.Generic_Complex_Types (Real);
 use Complex_Types;
package Ada.Numerics.Generic_Complex_Arrays is
 pragma Pure(Generic_Complex_Arrays);

 -- Types
 type Complex_Vector is array (Integer range <>) of Complex;
 type Complex_Matrix is array (Integer range <>,
 Integer range <>) of Complex;

 -- Subprograms for Complex_Vector types
 -- Complex_Vector selection, conversion and composition operations
 function Re (X : Complex_Vector) return Real_Vector;
 function Im (X : Complex_Vector) return Real_Vector;

 procedure Set_Re (X : in out Complex_Vector;
 Re : in Real_Vector);
 procedure Set_Im (X : in out Complex_Vector;
 Im : in Real_Vector);

 function Compose_From_Cartesian (Re : Real_Vector)
 return Complex_Vector;
 function Compose_From_Cartesian (Re, Im : Real_Vector)
 return Complex_Vector;

86/2

87/2

88/2

89/2

90/2

1/2

2/2

3/2

4/2

5/2

6/2

7/2

8/2

9/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

609 10 November 2006 Complex Vectors and Matrices G.3.2

 function Modulus (X : Complex_Vector) return Real_Vector;
 function "abs" (Right : Complex_Vector) return Real_Vector
 renames Modulus;
 function Argument (X : Complex_Vector) return Real_Vector;
 function Argument (X : Complex_Vector;
 Cycle : Real'Base) return Real_Vector;

 function Compose_From_Polar (Modulus, Argument : Real_Vector)
 return Complex_Vector;
 function Compose_From_Polar (Modulus, Argument : Real_Vector;
 Cycle : Real'Base)
 return Complex_Vector;

 -- Complex_Vector arithmetic operations
 function "+" (Right : Complex_Vector) return Complex_Vector;
 function "-" (Right : Complex_Vector) return Complex_Vector;
 function Conjugate (X : Complex_Vector) return Complex_Vector;

 function "+" (Left, Right : Complex_Vector) return Complex_Vector;
 function "-" (Left, Right : Complex_Vector) return Complex_Vector;

 function "*" (Left, Right : Complex_Vector) return Complex;

 function "abs" (Right : Complex_Vector) return Complex;

 -- Mixed Real_Vector and Complex_Vector arithmetic operations
 function "+" (Left : Real_Vector;
 Right : Complex_Vector) return Complex_Vector;
 function "+" (Left : Complex_Vector;
 Right : Real_Vector) return Complex_Vector;
 function "-" (Left : Real_Vector;
 Right : Complex_Vector) return Complex_Vector;
 function "-" (Left : Complex_Vector;
 Right : Real_Vector) return Complex_Vector;

 function "*" (Left : Real_Vector; Right : Complex_Vector)
 return Complex;
 function "*" (Left : Complex_Vector; Right : Real_Vector)
 return Complex;

 -- Complex_Vector scaling operations
 function "*" (Left : Complex;
 Right : Complex_Vector) return Complex_Vector;
 function "*" (Left : Complex_Vector;
 Right : Complex) return Complex_Vector;
 function "/" (Left : Complex_Vector;
 Right : Complex) return Complex_Vector;

 function "*" (Left : Real'Base;
 Right : Complex_Vector) return Complex_Vector;
 function "*" (Left : Complex_Vector;
 Right : Real'Base) return Complex_Vector;
 function "/" (Left : Complex_Vector;
 Right : Real'Base) return Complex_Vector;

 -- Other Complex_Vector operations
 function Unit_Vector (Index : Integer;
 Order : Positive;
 First : Integer := 1) return Complex_Vector;

 -- Subprograms for Complex_Matrix types
 -- Complex_Matrix selection, conversion and composition operations
 function Re (X : Complex_Matrix) return Real_Matrix;
 function Im (X : Complex_Matrix) return Real_Matrix;

 procedure Set_Re (X : in out Complex_Matrix;
 Re : in Real_Matrix);
 procedure Set_Im (X : in out Complex_Matrix;
 Im : in Real_Matrix);

10/2

11/2

12/2

13/2

14/2

15/2

16/2

17/2

18/2

19/2

20/2

21/2

22/2

23/2

24/2

25/2

26/2

27/2

28/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

G.3.2 Complex Vectors and Matrices 10 November 2006 610

 function Compose_From_Cartesian (Re : Real_Matrix)
 return Complex_Matrix;
 function Compose_From_Cartesian (Re, Im : Real_Matrix)
 return Complex_Matrix;

 function Modulus (X : Complex_Matrix) return Real_Matrix;
 function "abs" (Right : Complex_Matrix) return Real_Matrix
 renames Modulus;

 function Argument (X : Complex_Matrix) return Real_Matrix;
 function Argument (X : Complex_Matrix;
 Cycle : Real'Base) return Real_Matrix;

 function Compose_From_Polar (Modulus, Argument : Real_Matrix)
 return Complex_Matrix;
 function Compose_From_Polar (Modulus, Argument : Real_Matrix;
 Cycle : Real'Base)
 return Complex_Matrix;

 -- Complex_Matrix arithmetic operations
 function "+" (Right : Complex_Matrix) return Complex_Matrix;
 function "-" (Right : Complex_Matrix) return Complex_Matrix;
 function Conjugate (X : Complex_Matrix) return Complex_Matrix;
 function Transpose (X : Complex_Matrix) return Complex_Matrix;

 function "+" (Left, Right : Complex_Matrix) return Complex_Matrix;
 function "-" (Left, Right : Complex_Matrix) return Complex_Matrix;
 function "*" (Left, Right : Complex_Matrix) return Complex_Matrix;

 function "*" (Left, Right : Complex_Vector) return Complex_Matrix;

 function "*" (Left : Complex_Vector;
 Right : Complex_Matrix) return Complex_Vector;
 function "*" (Left : Complex_Matrix;
 Right : Complex_Vector) return Complex_Vector;

 -- Mixed Real_Matrix and Complex_Matrix arithmetic operations
 function "+" (Left : Real_Matrix;
 Right : Complex_Matrix) return Complex_Matrix;
 function "+" (Left : Complex_Matrix;
 Right : Real_Matrix) return Complex_Matrix;
 function "-" (Left : Real_Matrix;
 Right : Complex_Matrix) return Complex_Matrix;
 function "-" (Left : Complex_Matrix;
 Right : Real_Matrix) return Complex_Matrix;
 function "*" (Left : Real_Matrix;
 Right : Complex_Matrix) return Complex_Matrix;
 function "*" (Left : Complex_Matrix;
 Right : Real_Matrix) return Complex_Matrix;

 function "*" (Left : Real_Vector;
 Right : Complex_Vector) return Complex_Matrix;
 function "*" (Left : Complex_Vector;
 Right : Real_Vector) return Complex_Matrix;

 function "*" (Left : Real_Vector;
 Right : Complex_Matrix) return Complex_Vector;
 function "*" (Left : Complex_Vector;
 Right : Real_Matrix) return Complex_Vector;
 function "*" (Left : Real_Matrix;
 Right : Complex_Vector) return Complex_Vector;
 function "*" (Left : Complex_Matrix;
 Right : Real_Vector) return Complex_Vector;

 -- Complex_Matrix scaling operations
 function "*" (Left : Complex;
 Right : Complex_Matrix) return Complex_Matrix;
 function "*" (Left : Complex_Matrix;
 Right : Complex) return Complex_Matrix;
 function "/" (Left : Complex_Matrix;
 Right : Complex) return Complex_Matrix;

29/2

30/2

31/2

32/2

33/2

34/2

35/2

36/2

37/2

38/2

39/2

40/2

41/2

42/2

43/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

611 10 November 2006 Complex Vectors and Matrices G.3.2

 function "*" (Left : Real'Base;
 Right : Complex_Matrix) return Complex_Matrix;
 function "*" (Left : Complex_Matrix;
 Right : Real'Base) return Complex_Matrix;
 function "/" (Left : Complex_Matrix;
 Right : Real'Base) return Complex_Matrix;

 -- Complex_Matrix inversion and related operations
 function Solve (A : Complex_Matrix; X : Complex_Vector)
 return Complex_Vector;
 function Solve (A, X : Complex_Matrix) return Complex_Matrix;
 function Inverse (A : Complex_Matrix) return Complex_Matrix;
 function Determinant (A : Complex_Matrix) return Complex;

 -- Eigenvalues and vectors of a Hermitian matrix
 function Eigenvalues(A : Complex_Matrix) return Real_Vector;

 procedure Eigensystem(A : in Complex_Matrix;
 Values : out Real_Vector;
 Vectors : out Complex_Matrix);

 -- Other Complex_Matrix operations
 function Unit_Matrix (Order : Positive;
 First_1, First_2 : Integer := 1)
 return Complex_Matrix;

end Ada.Numerics.Generic_Complex_Arrays;

The library package Numerics.Complex_Arrays is declared pure and defines the same types and
subprograms as Numerics.Generic_Complex_Arrays, except that the predefined type Float is
systematically substituted for Real'Base, and the Real_Vector and Real_Matrix types exported by
Numerics.Real_Arrays are systematically substituted for Real_Vector and Real_Matrix, and the Complex
type exported by Numerics.Complex_Types is systematically substituted for Complex, throughout.
Nongeneric equivalents for each of the other predefined floating point types are defined similarly, with the
names Numerics.Short_Complex_Arrays, Numerics.Long_Complex_Arrays, etc.

Two types are defined and exported by Numerics.Generic_Complex_Arrays. The composite type
Complex_Vector is provided to represent a vector with components of type Complex; it is defined as an
unconstrained one-dimensional array with an index of type Integer. The composite type Complex_Matrix
is provided to represent a matrix with components of type Complex; it is defined as an unconstrained, two-
dimensional array with indices of type Integer.

The effect of the various subprograms is as described below. In many cases they are described in terms of
corresponding scalar operations in Numerics.Generic_Complex_Types. Any exception raised by those
operations is propagated by the array subprogram. Moreover, any constraints on the parameters and the
accuracy of the result for each individual component are as defined for the scalar operation.

In the case of those operations which are defined to involve an inner product, Constraint_Error may be
raised if an intermediate result has a component outside the range of Real'Base even though the final
mathematical result would not.

function Re (X : Complex_Vector) return Real_Vector;
function Im (X : Complex_Vector) return Real_Vector;

Each function returns a vector of the specified Cartesian components of X. The index range of
the result is X'Range.

procedure Set_Re (X : in out Complex_Vector; Re : in Real_Vector);
procedure Set_Im (X : in out Complex_Vector; Im : in Real_Vector);

Each procedure replaces the specified (Cartesian) component of each of the components of X by
the value of the matching component of Re or Im; the other (Cartesian) component of each of

44/2

45/2

46/2

47/2

48/2

49/2

50/2

51/2

52/2

53/2

54/2

55/2

56/2

57/2

58/2

59/2

60/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

G.3.2 Complex Vectors and Matrices 10 November 2006 612

the components is unchanged. Constraint_Error is raised if X'Length is not equal to Re'Length or
Im'Length.

function Compose_From_Cartesian (Re : Real_Vector)
 return Complex_Vector;
function Compose_From_Cartesian (Re, Im : Real_Vector)
 return Complex_Vector;

Each function constructs a vector of Complex results (in Cartesian representation) formed from
given vectors of Cartesian components; when only the real components are given, imaginary
components of zero are assumed. The index range of the result is Re'Range. Constraint_Error is
raised if Re'Length is not equal to Im'Length.

function Modulus (X : Complex_Vector) return Real_Vector;
function "abs" (Right : Complex_Vector) return Real_Vector
 renames Modulus;
function Argument (X : Complex_Vector) return Real_Vector;
function Argument (X : Complex_Vector;
 Cycle : Real'Base) return Real_Vector;

Each function calculates and returns a vector of the specified polar components of X or Right
using the corresponding function in numerics.generic_complex_types. The index range of the
result is X'Range or Right'Range.

function Compose_From_Polar (Modulus, Argument : Real_Vector)
 return Complex_Vector;
function Compose_From_Polar (Modulus, Argument : Real_Vector;
 Cycle : Real'Base)
 return Complex_Vector;

Each function constructs a vector of Complex results (in Cartesian representation) formed from
given vectors of polar components using the corresponding function in numerics.-
generic_complex_types on matching components of Modulus and Argument. The index range of
the result is Modulus'Range. Constraint_Error is raised if Modulus'Length is not equal to
Argument'Length.

function "+" (Right : Complex_Vector) return Complex_Vector;
function "-" (Right : Complex_Vector) return Complex_Vector;

Each operation returns the result of applying the corresponding operation in numerics.-
generic_complex_types to each component of Right. The index range of the result is
Right'Range.

function Conjugate (X : Complex_Vector) return Complex_Vector;

This function returns the result of applying the appropriate function Conjugate in numerics.-
generic_complex_types to each component of X. The index range of the result is X'Range.

function "+" (Left, Right : Complex_Vector) return Complex_Vector;
function "-" (Left, Right : Complex_Vector) return Complex_Vector;

Each operation returns the result of applying the corresponding operation in numerics.-
generic_complex_types to each component of Left and the matching component of Right. The
index range of the result is Left'Range. Constraint_Error is raised if Left'Length is not equal to
Right'Length.

function "*" (Left, Right : Complex_Vector) return Complex;

This operation returns the inner product of Left and Right. Constraint_Error is raised if
Left'Length is not equal to Right'Length. This operation involves an inner product.

61/2

62/2

63/2

64/2

65/2

66/2

67/2

68/2

69/2

70/2

71/2

72/2

73/2

74/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

613 10 November 2006 Complex Vectors and Matrices G.3.2

function "abs" (Right : Complex_Vector) return Complex;

This operation returns the Hermitian L2-norm of Right (the square root of the inner product of
the vector with its conjugate).

function "+" (Left : Real_Vector;
 Right : Complex_Vector) return Complex_Vector;
function "+" (Left : Complex_Vector;
 Right : Real_Vector) return Complex_Vector;
function "-" (Left : Real_Vector;
 Right : Complex_Vector) return Complex_Vector;
function "-" (Left : Complex_Vector;
 Right : Real_Vector) return Complex_Vector;

Each operation returns the result of applying the corresponding operation in numerics.-
generic_complex_types to each component of Left and the matching component of Right. The
index range of the result is Left'Range. Constraint_Error is raised if Left'Length is not equal to
Right'Length.

function "*" (Left : Real_Vector; Right : Complex_Vector) return Complex;
function "*" (Left : Complex_Vector; Right : Real_Vector) return Complex;

Each operation returns the inner product of Left and Right. Constraint_Error is raised if
Left'Length is not equal to Right'Length. These operations involve an inner product.

function "*" (Left : Complex; Right : Complex_Vector) return Complex_Vector;

This operation returns the result of multiplying each component of Right by the complex number
Left using the appropriate operation "*" in numerics.generic_complex_types. The index range of
the result is Right'Range.

function "*" (Left : Complex_Vector; Right : Complex) return Complex_Vector;
function "/" (Left : Complex_Vector; Right : Complex) return Complex_Vector;

Each operation returns the result of applying the corresponding operation in numerics.-
generic_complex_types to each component of the vector Left and the complex number Right.
The index range of the result is Left'Range.

function "*" (Left : Real'Base;
 Right : Complex_Vector) return Complex_Vector;

This operation returns the result of multiplying each component of Right by the real number Left
using the appropriate operation "*" in numerics.generic_complex_types. The index range of the
result is Right'Range.

function "*" (Left : Complex_Vector;
 Right : Real'Base) return Complex_Vector;
function "/" (Left : Complex_Vector;
 Right : Real'Base) return Complex_Vector;

Each operation returns the result of applying the corresponding operation in numerics.-
generic_complex_types to each component of the vector Left and the real number Right. The
index range of the result is Left'Range.

function Unit_Vector (Index : Integer;
 Order : Positive;
 First : Integer := 1) return Complex_Vector;

This function returns a unit vector with Order components and a lower bound of First. All
components are set to (0.0, 0.0) except for the Index component which is set to (1.0, 0.0).
Constraint_Error is raised if Index < First, Index > First + Order – 1, or if First + Order – 1 >
Integer'Last.

75/2

76/2

77/2

78/2

79/2

80/2

81/2

82/2

83/2

84/2

85/2

86/2

87/2

88/2

89/2

90/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

G.3.2 Complex Vectors and Matrices 10 November 2006 614

function Re (X : Complex_Matrix) return Real_Matrix;
function Im (X : Complex_Matrix) return Real_Matrix;

Each function returns a matrix of the specified Cartesian components of X. The index ranges of
the result are those of X.

procedure Set_Re (X : in out Complex_Matrix; Re : in Real_Matrix);
procedure Set_Im (X : in out Complex_Matrix; Im : in Real_Matrix);

Each procedure replaces the specified (Cartesian) component of each of the components of X by
the value of the matching component of Re or Im; the other (Cartesian) component of each of
the components is unchanged. Constraint_Error is raised if X'Length(1) is not equal to
Re'Length(1) or Im'Length(1) or if X'Length(2) is not equal to Re'Length(2) or Im'Length(2).

function Compose_From_Cartesian (Re : Real_Matrix)
 return Complex_Matrix;
function Compose_From_Cartesian (Re, Im : Real_Matrix)
 return Complex_Matrix;

Each function constructs a matrix of Complex results (in Cartesian representation) formed from
given matrices of Cartesian components; when only the real components are given, imaginary
components of zero are assumed. The index ranges of the result are those of Re.
Constraint_Error is raised if Re'Length(1) is not equal to Im'Length(1) or Re'Length(2) is not
equal to Im'Length(2).

function Modulus (X : Complex_Matrix) return Real_Matrix;
function "abs" (Right : Complex_Matrix) return Real_Matrix
 renames Modulus;
function Argument (X : Complex_Matrix) return Real_Matrix;
function Argument (X : Complex_Matrix;
 Cycle : Real'Base) return Real_Matrix;

Each function calculates and returns a matrix of the specified polar components of X or Right
using the corresponding function in numerics.generic_complex_types. The index ranges of the
result are those of X or Right.

function Compose_From_Polar (Modulus, Argument : Real_Matrix)
 return Complex_Matrix;
function Compose_From_Polar (Modulus, Argument : Real_Matrix;
 Cycle : Real'Base)
 return Complex_Matrix;

Each function constructs a matrix of Complex results (in Cartesian representation) formed from
given matrices of polar components using the corresponding function in numerics.-
generic_complex_types on matching components of Modulus and Argument. The index ranges
of the result are those of Modulus. Constraint_Error is raised if Modulus'Length(1) is not equal
to Argument'Length(1) or Modulus'Length(2) is not equal to Argument'Length(2).

function "+" (Right : Complex_Matrix) return Complex_Matrix;
function "-" (Right : Complex_Matrix) return Complex_Matrix;

Each operation returns the result of applying the corresponding operation in numerics.-
generic_complex_types to each component of Right. The index ranges of the result are those of
Right.

function Conjugate (X : Complex_Matrix) return Complex_Matrix;

This function returns the result of applying the appropriate function Conjugate in numerics.-
generic_complex_types to each component of X. The index ranges of the result are those of X.

91/2

92/2

93/2

94/2

95/2

96/2

97/2

98/2

99/2

100/2

101/2

102/2

103/2

104/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

615 10 November 2006 Complex Vectors and Matrices G.3.2

function Transpose (X : Complex_Matrix) return Complex_Matrix;

This function returns the transpose of a matrix X. The first and second index ranges of the result
are X'Range(2) and X'Range(1) respectively.

function "+" (Left, Right : Complex_Matrix) return Complex_Matrix;
function "-" (Left, Right : Complex_Matrix) return Complex_Matrix;

Each operation returns the result of applying the corresponding operation in numerics.-
generic_complex_types to each component of Left and the matching component of Right. The
index ranges of the result are those of Left. Constraint_Error is raised if Left'Length(1) is not
equal to Right'Length(1) or Left'Length(2) is not equal to Right'Length(2).

function "*" (Left, Right : Complex_Matrix) return Complex_Matrix;

This operation provides the standard mathematical operation for matrix multiplication. The first
and second index ranges of the result are Left'Range(1) and Right'Range(2) respectively.
Constraint_Error is raised if Left'Length(2) is not equal to Right'Length(1). This operation
involves inner products.

function "*" (Left, Right : Complex_Vector) return Complex_Matrix;

This operation returns the outer product of a (column) vector Left by a (row) vector Right using
the appropriate operation "*" in numerics.generic_complex_types for computing the individual
components. The first and second index ranges of the result are Left'Range and Right'Range
respectively.

function "*" (Left : Complex_Vector;
 Right : Complex_Matrix) return Complex_Vector;

This operation provides the standard mathematical operation for multiplication of a (row) vector
Left by a matrix Right. The index range of the (row) vector result is Right'Range(2).
Constraint_Error is raised if Left'Length is not equal to Right'Length(1). This operation involves
inner products.

function "*" (Left : Complex_Matrix;
 Right : Complex_Vector) return Complex_Vector;

This operation provides the standard mathematical operation for multiplication of a matrix Left
by a (column) vector Right. The index range of the (column) vector result is Left'Range(1).
Constraint_Error is raised if Left'Length(2) is not equal to Right'Length. This operation involves
inner products.

function "+" (Left : Real_Matrix;
 Right : Complex_Matrix) return Complex_Matrix;
function "+" (Left : Complex_Matrix;
 Right : Real_Matrix) return Complex_Matrix;
function "-" (Left : Real_Matrix;
 Right : Complex_Matrix) return Complex_Matrix;
function "-" (Left : Complex_Matrix;
 Right : Real_Matrix) return Complex_Matrix;

Each operation returns the result of applying the corresponding operation in numerics.-
generic_complex_types to each component of Left and the matching component of Right. The
index ranges of the result are those of Left. Constraint_Error is raised if Left'Length(1) is not
equal to Right'Length(1) or Left'Length(2) is not equal to Right'Length(2).

105/2

106/2

107/2

108/2

109/2

110/2

111/2

112/2

113/2

114/2

115/2

116/2

117/2

118/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

G.3.2 Complex Vectors and Matrices 10 November 2006 616

function "*" (Left : Real_Matrix;
 Right : Complex_Matrix) return Complex_Matrix;
function "*" (Left : Complex_Matrix;
 Right : Real_Matrix) return Complex_Matrix;

Each operation provides the standard mathematical operation for matrix multiplication. The first
and second index ranges of the result are Left'Range(1) and Right'Range(2) respectively.
Constraint_Error is raised if Left'Length(2) is not equal to Right'Length(1). These operations
involve inner products.

function "*" (Left : Real_Vector;
 Right : Complex_Vector) return Complex_Matrix;
function "*" (Left : Complex_Vector;
 Right : Real_Vector) return Complex_Matrix;

Each operation returns the outer product of a (column) vector Left by a (row) vector Right using
the appropriate operation "*" in numerics.generic_complex_types for computing the individual
components. The first and second index ranges of the result are Left'Range and Right'Range
respectively.

function "*" (Left : Real_Vector;
 Right : Complex_Matrix) return Complex_Vector;
function "*" (Left : Complex_Vector;
 Right : Real_Matrix) return Complex_Vector;

Each operation provides the standard mathematical operation for multiplication of a (row) vector
Left by a matrix Right. The index range of the (row) vector result is Right'Range(2).
Constraint_Error is raised if Left'Length is not equal to Right'Length(1). These operations
involve inner products.

function "*" (Left : Real_Matrix;
 Right : Complex_Vector) return Complex_Vector;
function "*" (Left : Complex_Matrix;
 Right : Real_Vector) return Complex_Vector;

Each operation provides the standard mathematical operation for multiplication of a matrix Left
by a (column) vector Right. The index range of the (column) vector result is Left'Range(1).
Constraint_Error is raised if Left'Length(2) is not equal to Right'Length. These operations
involve inner products.

function "*" (Left : Complex; Right : Complex_Matrix) return Complex_Matrix;

This operation returns the result of multiplying each component of Right by the complex number
Left using the appropriate operation "*" in numerics.generic_complex_types. The index ranges
of the result are those of Right.

function "*" (Left : Complex_Matrix; Right : Complex) return Complex_Matrix;
function "/" (Left : Complex_Matrix; Right : Complex) return Complex_Matrix;

Each operation returns the result of applying the corresponding operation in numerics.-
generic_complex_types to each component of the matrix Left and the complex number Right.
The index ranges of the result are those of Left.

function "*" (Left : Real'Base;
 Right : Complex_Matrix) return Complex_Matrix;

This operation returns the result of multiplying each component of Right by the real number Left
using the appropriate operation "*" in numerics.generic_complex_types. The index ranges of the
result are those of Right.

119/2

120/2

121/2

122/2

123/2

124/2

125/2

126/2

127/2

128/2

129/2

130/2

131/2

132/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

617 10 November 2006 Complex Vectors and Matrices G.3.2

function "*" (Left : Complex_Matrix;
 Right : Real'Base) return Complex_Matrix;
function "/" (Left : Complex_Matrix;
 Right : Real'Base) return Complex_Matrix;

Each operation returns the result of applying the corresponding operation in numerics.-
generic_complex_types to each component of the matrix Left and the real number Right. The
index ranges of the result are those of Left.

function Solve (A : Complex_Matrix; X : Complex_Vector) return
Complex_Vector;

This function returns a vector Y such that X is (nearly) equal to A * Y. This is the standard
mathematical operation for solving a single set of linear equations. The index range of the result
is A'Range(2). Constraint_Error is raised if A'Length(1), A'Length(2), and X'Length are not
equal. Constraint_Error is raised if the matrix A is ill-conditioned.

function Solve (A, X : Complex_Matrix) return Complex_Matrix;

This function returns a matrix Y such that X is (nearly) equal to A * Y. This is the standard
mathematical operation for solving several sets of linear equations. The index ranges of the
result are A'Range(2) and X'Range(2). Constraint_Error is raised if A'Length(1), A'Length(2),
and X'Length(1) are not equal. Constraint_Error is raised if the matrix A is ill-conditioned.

function Inverse (A : Complex_Matrix) return Complex_Matrix;

This function returns a matrix B such that A * B is (nearly) equal to the unit matrix. The index
ranges of the result are A'Range(2) and A'Range(1). Constraint_Error is raised if A'Length(1) is
not equal to A'Length(2). Constraint_Error is raised if the matrix A is ill-conditioned.

function Determinant (A : Complex_Matrix) return Complex;

This function returns the determinant of the matrix A. Constraint_Error is raised if A'Length(1)
is not equal to A'Length(2).

function Eigenvalues(A : Complex_Matrix) return Real_Vector;

This function returns the eigenvalues of the Hermitian matrix A as a vector sorted into order
with the largest first. Constraint_Error is raised if A'Length(1) is not equal to A'Length(2). The
index range of the result is A'Range(1). Argument_Error is raised if the matrix A is not
Hermitian.

procedure Eigensystem(A : in Complex_Matrix;
 Values : out Real_Vector;
 Vectors : out Complex_Matrix);

This procedure computes both the eigenvalues and eigenvectors of the Hermitian matrix A. The
out parameter Values is the same as that obtained by calling the function Eigenvalues. The out
parameter Vectors is a matrix whose columns are the eigenvectors of the matrix A. The order of
the columns corresponds to the order of the eigenvalues. The eigenvectors are mutually
orthonormal, including when there are repeated eigenvalues. Constraint_Error is raised if
A'Length(1) is not equal to A'Length(2). The index ranges of the parameter Vectors are those of
A. Argument_Error is raised if the matrix A is not Hermitian.

function Unit_Matrix (Order : Positive;
 First_1, First_2 : Integer := 1)
 return Complex_Matrix;

This function returns a square unit matrix with Order**2 components and lower bounds of
First_1 and First_2 (for the first and second index ranges respectively). All components are set to

133/2

134/2

135/2

136/2

137/2

138/2

139/2

140/2

141/2

142/2

143/2

144/2

145/2

146/2

147/2

148/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

G.3.2 Complex Vectors and Matrices 10 November 2006 618

(0.0, 0.0) except for the main diagonal, whose components are set to (1.0, 0.0). Constraint_Error
is raised if First_1 + Order – 1 > Integer'Last or First_2 + Order – 1 > Integer'Last.

Implementation Requirements

Accuracy requirements for the subprograms Solve, Inverse, Determinant, Eigenvalues and Eigensystem
are implementation defined.

For operations not involving an inner product, the accuracy requirements are those of the corresponding
operations of the type Real'Base and Complex in both the strict mode and the relaxed mode (see G.2).

For operations involving an inner product, no requirements are specified in the relaxed mode. In the strict
mode the modulus of the absolute error of the inner product X*Y shall not exceed g*abs(X)*abs(Y) where
g is defined as

g = X'Length * Real'Machine_Radix**(1 – Real'Model_Mantissa)
 for mixed complex and real operands
g = sqrt(2.0) * X'Length * Real'Machine_Radix**(1 – Real'Model_Mantissa)
 for two complex operands

For the L2-norm, no accuracy requirements are specified in the relaxed mode. In the strict mode the
relative error on the norm shall not exceed g / 2.0 + 3.0 * Real'Model_Epsilon where g has the definition
appropriate for two complex operands.

Documentation Requirements

Implementations shall document any techniques used to reduce cancellation errors such as extended
precision arithmetic.

Implementation Permissions

The nongeneric equivalent packages may, but need not, be actual instantiations of the generic package for
the appropriate predefined type.

Although many operations are defined in terms of operations from numerics.generic_complex_types, they
need not be implemented by calling those operations provided that the effect is the same.

Implementation Advice

Implementations should implement the Solve and Inverse functions using established techniques.
Implementations are recommended to refine the result by performing an iteration on the residuals; if this is
done then it should be documented.

It is not the intention that any special provision should be made to determine whether a matrix is ill-
conditioned or not. The naturally occurring overflow (including division by zero) which will result from
executing these functions with an ill-conditioned matrix and thus raise Constraint_Error is sufficient.

The test that a matrix is Hermitian should use the equality operator to compare the real components and
negation followed by equality to compare the imaginary components (see G.2.1).

Implementations should not perform operations on mixed complex and real operands by first converting
the real operand to complex. See G.1.1.

149/2

150/2

151/2

152/2

153/2

154/2

155/2

156/2

157/2

158/2

159/2

160/2

161/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

619 10 November 2006 High Integrity Systems H

Annex H
(normative)

High Integrity Systems
This Annex addresses requirements for high integrity systems (including safety-critical systems and
security-critical systems). It provides facilities and specifies documentation requirements that relate to
several needs:

• Understanding program execution;

• Reviewing object code;

• Restricting language constructs whose usage might complicate the demonstration of program
correctness

Execution understandability is supported by pragma Normalize_Scalars, and also by requirements for the
implementation to document the effect of a program in the presence of a bounded error or where the
language rules leave the effect unspecified.

The pragmas Reviewable and Restrictions relate to the other requirements addressed by this Annex.

NOTES
1 The Valid attribute (see 13.9.2) is also useful in addressing these needs, to avoid problems that could otherwise arise
from scalars that have values outside their declared range constraints.

H.1 Pragma Normalize_Scalars
This pragma ensures that an otherwise uninitialized scalar object is set to a predictable value, but out of
range if possible.

Syntax

The form of a pragma Normalize_Scalars is as follows:
 pragma Normalize_Scalars;

Post-Compilation Rules

Pragma Normalize_Scalars is a configuration pragma. It applies to all compilation_units included in a
partition.

Documentation Requirements

If a pragma Normalize_Scalars applies, the implementation shall document the implicit initial values for
scalar subtypes, and shall identify each case in which such a value is used and is not an invalid
representation.

Implementation Advice

Whenever possible, the implicit initial values for a scalar subtype should be an invalid representation (see
13.9.1).

NOTES
2 The initialization requirement applies to uninitialized scalar objects that are subcomponents of composite objects, to
allocated objects, and to stand-alone objects. It also applies to scalar out parameters. Scalar subcomponents of composite
out parameters are initialized to the corresponding part of the actual, by virtue of 6.4.1.

1/2

2

3

4

4.1

5

6

1

2

3

4

5/2

6/2

7

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

H.1 Pragma Normalize_Scalars 10 November 2006 620

3 The initialization requirement does not apply to a scalar for which pragma Import has been specified, since initialization
of an imported object is performed solely by the foreign language environment (see B.1).

4 The use of pragma Normalize_Scalars in conjunction with Pragma Restrictions(No_Exceptions) may result in
erroneous execution (see H.4).

H.2 Documentation of Implementation Decisions
Documentation Requirements

The implementation shall document the range of effects for each situation that the language rules identify
as either a bounded error or as having an unspecified effect. If the implementation can constrain the effects
of erroneous execution for a given construct, then it shall document such constraints. The documentation
might be provided either independently of any compilation unit or partition, or as part of an annotated
listing for a given unit or partition. See also 1.1.3, and 1.1.2.

NOTES
5 Among the situations to be documented are the conventions chosen for parameter passing, the methods used for the
management of run-time storage, and the method used to evaluate numeric expressions if this involves extended range or
extra precision.

H.3 Reviewable Object Code
Object code review and validation are supported by pragmas Reviewable and Inspection_Point.

H.3.1 Pragma Reviewable
This pragma directs the implementation to provide information to facilitate analysis and review of a
program's object code, in particular to allow determination of execution time and storage usage and to
identify the correspondence between the source and object programs.

Syntax

The form of a pragma Reviewable is as follows:
 pragma Reviewable;

Post-Compilation Rules

Pragma Reviewable is a configuration pragma. It applies to all compilation_units included in a partition.

Implementation Requirements

The implementation shall provide the following information for any compilation unit to which such a
pragma applies:

• Where compiler-generated run-time checks remain;

• An identification of any construct with a language-defined check that is recognized prior to run
time as certain to fail if executed (even if the generation of run-time checks has been
suppressed);

• For each read of a scalar object, an identification of the read as either “known to be initialized,”
or “possibly uninitialized,” independent of whether pragma Normalize_Scalars applies;

• Where run-time support routines are implicitly invoked;

8

9

1

2

1

1

2

3

4

5

6

7

8/2

9

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

621 10 November 2006 Pragma Reviewable H.3.1

• An object code listing, including:
• Machine instructions, with relative offsets;

• Where each data object is stored during its lifetime;

• Correspondence with the source program, including an identification of the code produced
per declaration and per statement.

• An identification of each construct for which the implementation detects the possibility of
erroneous execution;

• For each subprogram, block, task, or other construct implemented by reserving and subsequently
freeing an area on a run-time stack, an identification of the length of the fixed-size portion of the
area and an indication of whether the non-fixed size portion is reserved on the stack or in a
dynamically-managed storage region.

The implementation shall provide the following information for any partition to which the pragma applies:
• An object code listing of the entire partition, including initialization and finalization code as well

as run-time system components, and with an identification of those instructions and data that
will be relocated at load time;

• A description of the run-time model relevant to the partition.

The implementation shall provide control- and data-flow information, both within each compilation unit
and across the compilation units of the partition.

Implementation Advice

The implementation should provide the above information in both a human-readable and machine-readable
form, and should document the latter so as to ease further processing by automated tools.

Object code listings should be provided both in a symbolic format and also in an appropriate numeric
format (such as hexadecimal or octal).

NOTES
6 The order of elaboration of library units will be documented even in the absence of pragma Reviewable (see 10.2).

H.3.2 Pragma Inspection_Point
An occurrence of a pragma Inspection_Point identifies a set of objects each of whose values is to be
available at the point(s) during program execution corresponding to the position of the pragma in the
compilation unit. The purpose of such a pragma is to facilitate code validation.

Syntax

The form of a pragma Inspection_Point is as follows:
 pragma Inspection_Point[(object_name {, object_name})];

Legality Rules

A pragma Inspection_Point is allowed wherever a declarative_item or statement is allowed. Each
object_name shall statically denote the declaration of an object.

Static Semantics

An inspection point is a point in the object code corresponding to the occurrence of a pragma Inspection_-
Point in the compilation unit. An object is inspectable at an inspection point if the corresponding pragma

10

11

12

13

14

15

16

17

18

18.1

19

20

21

1

2

3

4

5/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

H.3.2 Pragma Inspection_Point 10 November 2006 622

Inspection_Point either has an argument denoting that object, or has no arguments and the declaration of
the object is visible at the inspection point.

Dynamic Semantics

Execution of a pragma Inspection_Point has no effect.

Implementation Requirements

Reaching an inspection point is an external interaction with respect to the values of the inspectable objects
at that point (see 1.1.3).

Documentation Requirements

For each inspection point, the implementation shall identify a mapping between each inspectable object
and the machine resources (such as memory locations or registers) from which the object's value can be
obtained.

NOTES
7 The implementation is not allowed to perform “dead store elimination” on the last assignment to a variable prior to a
point where the variable is inspectable. Thus an inspection point has the effect of an implicit read of each of its inspectable
objects.

8 Inspection points are useful in maintaining a correspondence between the state of the program in source code terms, and
the machine state during the program's execution. Assertions about the values of program objects can be tested in machine
terms at inspection points. Object code between inspection points can be processed by automated tools to verify programs
mechanically.

9 The identification of the mapping from source program objects to machine resources is allowed to be in the form of an
annotated object listing, in human-readable or tool-processable form.

H.4 High Integrity Restrictions
This clause defines restrictions that can be used with pragma Restrictions (see 13.12); these facilitate the
demonstration of program correctness by allowing tailored versions of the run-time system.

Static Semantics

This paragraph was deleted.

The following restriction_identifiers are language defined:

Tasking-related restriction:
No_Protected_Types
 There are no declarations of protected types or protected objects.

Memory-management related restrictions:
No_Allocators
 There are no occurrences of an allocator.

No_Local_Allocators
 Allocators are prohibited in subprograms, generic subprograms, tasks, and entry bodies.

This paragraph was deleted.

6

7

8

9/2

10

11

1

2/2

3/2

4

5

6

7

8/1

9/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

623 10 November 2006 High Integrity Restrictions H.4

Immediate_Reclamation
 Except for storage occupied by objects created by allocators and not deallocated via

unchecked deallocation, any storage reserved at run time for an object is immediately
reclaimed when the object no longer exists.

Exception-related restriction:
No_Exceptions
 Raise_statements and exception_handlers are not allowed. No language-defined run-time

checks are generated; however, a run-time check performed automatically by the hardware
is permitted.

Other restrictions:
No_Floating_Point
 Uses of predefined floating point types and operations, and declarations of new floating

point types, are not allowed.

No_Fixed_Point
 Uses of predefined fixed point types and operations, and declarations of new fixed point

types, are not allowed.

This paragraph was deleted.

No_Access_Subprograms
 The declaration of access-to-subprogram types is not allowed.

No_Unchecked_Access
 The Unchecked_Access attribute is not allowed.

No_Dispatch Occurrences of T'Class are not allowed, for any (tagged) subtype T.

No_IO Semantic dependence on any of the library units Sequential_IO, Direct_IO, Text_IO,
Wide_Text_IO, Wide_Wide_Text_IO, or Stream_IO is not allowed.

No_Delay Delay_Statements and semantic dependence on package Calendar are not allowed.

No_Recursion
 As part of the execution of a subprogram, the same subprogram is not invoked.

No_Reentrancy
 During the execution of a subprogram by a task, no other task invokes the same

subprogram.

Implementation Requirements

An implementation of this Annex shall support:
• the restrictions defined in this subclause; and

• the following restrictions defined in D.7: No_Task_Hierarchy, No_Abort_Statement,
No_Implicit_Heap_Allocation; and

• the pragma Profile(Ravenscar); and

• the following uses of restriction_parameter_identifiers defined in D.7, which are checked prior
to program execution:

• Max_Task_Entries => 0,

• Max_Asynchronous_Select_Nesting => 0, and

• Max_Tasks => 0.

10

11

12

13

14

15

16/2

17

18

19

20/2

21

22

23

23.1/2

23.2/2

23.3/2

23.4/2

23.5/2

23.6/2

23.7/2

23.8/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

H.4 High Integrity Restrictions 10 November 2006 624

If an implementation supports pragma Restrictions for a particular argument, then except for the
restrictions No_Unchecked_Deallocation, No_Unchecked_Conversion, No_Access_Subprograms, and
No_Unchecked_Access, the associated restriction applies to the run-time system.

Documentation Requirements

If a pragma Restrictions(No_Exceptions) is specified, the implementation shall document the effects of all
constructs where language-defined checks are still performed automatically (for example, an overflow
check performed by the processor).

Erroneous Execution

Program execution is erroneous if pragma Restrictions(No_Exceptions) has been specified and the
conditions arise under which a generated language-defined run-time check would fail.

Program execution is erroneous if pragma Restrictions(No_Recursion) has been specified and a
subprogram is invoked as part of its own execution, or if pragma Restrictions(No_Reentrancy) has been
specified and during the execution of a subprogram by a task, another task invokes the same subprogram.

NOTES
10 Uses of restriction_parameter_identifier No_Dependence defined in 13.12.1: No_Dependence => Ada.Unchecked_-
Deallocation and No_Dependence => Ada.Unchecked_Conversion may be appropriate for high-integrity systems. Other
uses of No_Dependence can also be appropriate for high-integrity systems.

H.5 Pragma Detect_Blocking
The following pragma forces an implementation to detect potentially blocking operations within a
protected operation.

Syntax

The form of a pragma Detect_Blocking is as follows:
 pragma Detect_Blocking;

Post-Compilation Rules

A pragma Detect_Blocking is a configuration pragma.

Dynamic Semantics

An implementation is required to detect a potentially blocking operation within a protected operation, and
to raise Program_Error (see 9.5.1).

Implementation Permissions

An implementation is allowed to reject a compilation_unit if a potentially blocking operation is present
directly within an entry_body or the body of a protected subprogram.

NOTES
11 An operation that causes a task to be blocked within a foreign language domain is not defined to be potentially
blocking, and need not be detected.

24

25

26

27

28/2

1/2

2/2

3/2

4/2

5/2

6/2

7/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

625 10 November 2006 Pragma Partition_Elaboration_Policy H.6

H.6 Pragma Partition_Elaboration_Policy
This clause defines a pragma for user control over elaboration policy.

Syntax

The form of a pragma Partition_Elaboration_Policy is as follows:
 pragma Partition_Elaboration_Policy (policy_identifier);
The policy_identifier shall be either Sequential, Concurrent or an implementation-defined identifier.

Post-Compilation Rules

A pragma Partition_Elaboration_Policy is a configuration pragma. It specifies the elaboration policy for a
partition. At most one elaboration policy shall be specified for a partition.

If the Sequential policy is specified for a partition then pragma Restrictions (No_Task_Hierarchy) shall
also be specified for the partition.

Dynamic Semantics

Notwithstanding what this International Standard says elsewhere, this pragma allows partition elaboration
rules concerning task activation and interrupt attachment to be changed. If the policy_identifier is
Concurrent, or if there is no pragma Partition_Elaboration_Policy defined for the partition, then the rules
defined elsewhere in this Standard apply.

If the partition elaboration policy is Sequential, then task activation and interrupt attachment are
performed in the following sequence of steps:

• The activation of all library-level tasks and the attachment of interrupt handlers are deferred
until all library units are elaborated.

• The interrupt handlers are attached by the environment task.

• The environment task is suspended while the library-level tasks are activated.

• The environment task executes the main subprogram (if any) concurrently with these executing
tasks.

If several dynamic interrupt handler attachments for the same interrupt are deferred, then the most recent
call of Attach_Handler or Exchange_Handler determines which handler is attached.

If any deferred task activation fails, Tasking_Error is raised at the beginning of the sequence of statements
of the body of the environment task prior to calling the main subprogram.

Implementation Advice

If the partition elaboration policy is Sequential and the Environment task becomes permanently blocked
during elaboration then the partition is deadlocked and it is recommended that the partition be immediately
terminated.

Implementation Permissions

If the partition elaboration policy is Sequential and any task activation fails then an implementation may
immediately terminate the active partition to mitigate the hazard posed by continuing to execute with a
subset of the tasks being active.

1/2

2/2

3/2

4/2

5/2

6/2

7/2

8/2

9/2

10/2

11/2

12/2

13/2

14/2

15/2

16/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

H.6 Pragma Partition_Elaboration_Policy 10 November 2006 626

NOTES
12 If any deferred task activation fails, the environment task is unable to handle the Tasking_Error exception and
completes immediately. By contrast, if the partition elaboration policy is Concurrent, then this exception could be handled
within a library unit.

17/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

627 10 November 2006 Obsolescent Features J

Annex J
(normative)

Obsolescent Features
This Annex contains descriptions of features of the language whose functionality is largely redundant with
other features defined by this International Standard. Use of these features is not recommended in newly
written programs. Use of these features can be prevented by using pragma Restrictions
(No_Obsolescent_Features), see 13.12.1.

J.1 Renamings of Ada 83 Library Units
Static Semantics

The following library_unit_renaming_declarations exist:
with Ada.Unchecked_Conversion;
generic function Unchecked_Conversion renames Ada.Unchecked_Conversion;

with Ada.Unchecked_Deallocation;
generic procedure Unchecked_Deallocation renames Ada.Unchecked_Deallocation;

with Ada.Sequential_IO;
generic package Sequential_IO renames Ada.Sequential_IO;

with Ada.Direct_IO;
generic package Direct_IO renames Ada.Direct_IO;

with Ada.Text_IO;
package Text_IO renames Ada.Text_IO;

with Ada.IO_Exceptions;
package IO_Exceptions renames Ada.IO_Exceptions;

with Ada.Calendar;
package Calendar renames Ada.Calendar;

with System.Machine_Code;
package Machine_Code renames System.Machine_Code; -- If supported.

Implementation Requirements

The implementation shall allow the user to replace these renamings.

J.2 Allowed Replacements of Characters
Syntax

The following replacements are allowed for the vertical line, number sign, and quotation mark
characters:

• A vertical line character (|) can be replaced by an exclamation mark (!) where used as a
delimiter.

• The number sign characters (#) of a based_literal can be replaced by colons (:) provided
that the replacement is done for both occurrences.

• The quotation marks (") used as string brackets at both ends of a string literal can be
replaced by percent signs (%) provided that the enclosed sequence of characters contains no
quotation mark, and provided that both string brackets are replaced. Any percent sign
within the sequence of characters shall then be doubled and each such doubled percent sign
is interpreted as a single percent sign character value.

1/2

1

2

3

4

5

6

7

8

9

10

1

2

3

4

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

J.2 Allowed Replacements of Characters 10 November 2006 628

These replacements do not change the meaning of the program.

J.3 Reduced Accuracy Subtypes
A digits_constraint may be used to define a floating point subtype with a new value for its requested
decimal precision, as reflected by its Digits attribute. Similarly, a delta_constraint may be used to define
an ordinary fixed point subtype with a new value for its delta, as reflected by its Delta attribute.

Syntax

delta_constraint ::= delta static_expression [range_constraint]

Name Resolution Rules

The expression of a delta_constraint is expected to be of any real type.

Legality Rules

The expression of a delta_constraint shall be static.

For a subtype_indication with a delta_constraint, the subtype_mark shall denote an ordinary fixed point
subtype.

For a subtype_indication with a digits_constraint, the subtype_mark shall denote either a decimal fixed
point subtype or a floating point subtype (notwithstanding the rule given in 3.5.9 that only allows a
decimal fixed point subtype).

Static Semantics

A subtype_indication with a subtype_mark that denotes an ordinary fixed point subtype and a
delta_constraint defines an ordinary fixed point subtype with a delta given by the value of the expression
of the delta_constraint. If the delta_constraint includes a range_constraint, then the ordinary fixed point
subtype is constrained by the range_constraint.

A subtype_indication with a subtype_mark that denotes a floating point subtype and a digits_constraint
defines a floating point subtype with a requested decimal precision (as reflected by its Digits attribute)
given by the value of the expression of the digits_constraint. If the digits_constraint includes a range_-
constraint, then the floating point subtype is constrained by the range_constraint.

Dynamic Semantics

A delta_constraint is compatible with an ordinary fixed point subtype if the value of the expression is no
less than the delta of the subtype, and the range_constraint, if any, is compatible with the subtype.

A digits_constraint is compatible with a floating point subtype if the value of the expression is no greater
than the requested decimal precision of the subtype, and the range_constraint, if any, is compatible with
the subtype.

The elaboration of a delta_constraint consists of the elaboration of the range_constraint, if any.

5

1

2

3

4

5

6

7

8

9

10

11

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

629 10 November 2006 The Constrained Attribute J.4

J.4 The Constrained Attribute
Static Semantics

For every private subtype S, the following attribute is defined:
S'Constrained
 Yields the value False if S denotes an unconstrained nonformal private subtype with

discriminants; also yields the value False if S denotes a generic formal private subtype, and
the associated actual subtype is either an unconstrained subtype with discriminants or an
unconstrained array subtype; yields the value True otherwise. The value of this attribute is
of the predefined subtype Boolean.

J.5 ASCII
Static Semantics

The following declaration exists in the declaration of package Standard:
package ASCII is

 -- Control characters:
 NUL : constant Character := nul; SOH : constant Character := soh;
 STX : constant Character := stx; ETX : constant Character := etx;
 EOT : constant Character := eot; ENQ : constant Character := enq;
 ACK : constant Character := ack; BEL : constant Character := bel;
 BS : constant Character := bs; HT : constant Character := ht;
 LF : constant Character := lf; VT : constant Character := vt;
 FF : constant Character := ff; CR : constant Character := cr;
 SO : constant Character := so; SI : constant Character := si;
 DLE : constant Character := dle; DC1 : constant Character := dc1;
 DC2 : constant Character := dc2; DC3 : constant Character := dc3;
 DC4 : constant Character := dc4; NAK : constant Character := nak;
 SYN : constant Character := syn; ETB : constant Character := etb;
 CAN : constant Character := can; EM : constant Character := em;
 SUB : constant Character := sub; ESC : constant Character := esc;
 FS : constant Character := fs; GS : constant Character := gs;
 RS : constant Character := rs; US : constant Character := us;
 DEL : constant Character := del;
 -- Other characters:
 Exclam : constant Character:= '!'; Quotation : constant Character:= '"';
 Sharp : constant Character:= '#'; Dollar : constant Character:= '$';
 Percent : constant Character:= '%'; Ampersand : constant Character:= '&';
 Colon : constant Character:= ':'; Semicolon : constant Character:= ';';
 Query : constant Character:= '?'; At_Sign : constant Character:= '@';
 L_Bracket: constant Character:= '['; Back_Slash: constant Character:= '\';
 R_Bracket: constant Character:= ']'; Circumflex: constant Character:= '^';
 Underline: constant Character:= '_'; Grave : constant Character:= '`';
 L_Brace : constant Character:= '{'; Bar : constant Character:= '|';
 R_Brace : constant Character:= '}'; Tilde : constant Character:= '~';

 -- Lower case letters:
 LC_A: constant Character:= 'a';
 ...
 LC_Z: constant Character:= 'z';

end ASCII;

1

2

1

2

3

4

5

6

7

8

9

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

J.6 Numeric_Error 10 November 2006 630

J.6 Numeric_Error
Static Semantics

The following declaration exists in the declaration of package Standard:
Numeric_Error : exception renames Constraint_Error;

J.7 At Clauses
Syntax

at_clause ::= for direct_name use at expression;

Static Semantics

An at_clause of the form “for x use at y;” is equivalent to an attribute_definition_clause of the form “for
x'Address use y;”.

J.7.1 Interrupt Entries
Implementations are permitted to allow the attachment of task entries to interrupts via the address clause.
Such an entry is referred to as an interrupt entry.

The address of the task entry corresponds to a hardware interrupt in an implementation-defined manner.
(See Ada.Interrupts.Reference in C.3.2.)

Static Semantics

The following attribute is defined:

For any task entry X:
X'Address For a task entry whose address is specified (an interrupt entry), the value refers to the

corresponding hardware interrupt. For such an entry, as for any other task entry, the
meaning of this value is implementation defined. The value of this attribute is of the type of
the subtype System.Address.

 Address may be specified for single entries via an attribute_definition_clause.

Dynamic Semantics

As part of the initialization of a task object, the address clause for an interrupt entry is elaborated, which
evaluates the expression of the address clause. A check is made that the address specified is associated
with some interrupt to which a task entry may be attached. If this check fails, Program_Error is raised.
Otherwise, the interrupt entry is attached to the interrupt associated with the specified address.

Upon finalization of the task object, the interrupt entry, if any, is detached from the corresponding
interrupt and the default treatment is restored.

While an interrupt entry is attached to an interrupt, the interrupt is reserved (see C.3).

An interrupt delivered to a task entry acts as a call to the entry issued by a hardware task whose priority is
in the System.Interrupt_Priority range. It is implementation defined whether the call is performed as an
ordinary entry call, a timed entry call, or a conditional entry call; which kind of call is performed can
depend on the specific interrupt.

1

2

1

2

1

2

3

4

5

6

7

8

9

10

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

631 10 November 2006 Interrupt Entries J.7.1

Bounded (Run-Time) Errors

It is a bounded error to evaluate E'Caller (see C.7.1) in an accept_statement for an interrupt entry. The
possible effects are the same as for calling Current_Task from an entry body.

Documentation Requirements

The implementation shall document to which interrupts a task entry may be attached.

The implementation shall document whether the invocation of an interrupt entry has the effect of an
ordinary entry call, conditional call, or a timed call, and whether the effect varies in the presence of
pending interrupts.

Implementation Permissions

The support for this subclause is optional.

Interrupts to which the implementation allows a task entry to be attached may be designated as reserved
for the entire duration of program execution; that is, not just when they have an interrupt entry attached to
them.

Interrupt entry calls may be implemented by having the hardware execute directly the appropriate
accept_statement. Alternatively, the implementation is allowed to provide an internal interrupt handler to
simulate the effect of a normal task calling the entry.

The implementation is allowed to impose restrictions on the specifications and bodies of tasks that have
interrupt entries.

It is implementation defined whether direct calls (from the program) to interrupt entries are allowed.

If a select_statement contains both a terminate_alternative and an accept_alternative for an interrupt
entry, then an implementation is allowed to impose further requirements for the selection of the
terminate_alternative in addition to those given in 9.3.

NOTES
1 Queued interrupts correspond to ordinary entry calls. Interrupts that are lost if not immediately processed correspond to
conditional entry calls. It is a consequence of the priority rules that an accept_statement executed in response to an
interrupt can be executed with the active priority at which the hardware generates the interrupt, taking precedence over
lower priority tasks, without a scheduling action.

2 Control information that is supplied upon an interrupt can be passed to an associated interrupt entry as one or more
parameters of mode in.

Examples

Example of an interrupt entry:
task Interrupt_Handler is
 entry Done;
 for Done'Address use
Ada.Interrupts.Reference(Ada.Interrupts.Names.Device_Done);
end Interrupt_Handler;

11

12

13

14

15

16/1

17

18

19

20/1

21

22

23

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

J.8 Mod Clauses 10 November 2006 632

J.8 Mod Clauses
Syntax

mod_clause ::= at mod static_expression;

Static Semantics

A record_representation_clause of the form:
for r use
 record at mod a
 ...
 end record;

is equivalent to:
for r'Alignment use a;
for r use
 record
 ...
 end record;

J.9 The Storage_Size Attribute
Static Semantics

For any task subtype T, the following attribute is defined:
T'Storage_Size
 Denotes an implementation-defined value of type universal_integer representing the

number of storage elements reserved for a task of the subtype T.

 Storage_Size may be specified for a task first subtype that is not an interface via an
attribute_definition_clause.

J.10 Specific Suppression of Checks
Pragma Suppress can be used to suppress checks on specific entities.

Syntax

The form of a specific Suppress pragma is as follows:
 pragma Suppress(identifier, [On =>] name);

Legality Rules

The identifier shall be the name of a check (see 11.5). The name shall statically denote some entity.

For a specific Suppress pragma that is immediately within a package_specification, the name shall
denote an entity (or several overloaded subprograms) declared immediately within the package_-
specification.

Static Semantics

A specific Suppress pragma applies to the named check from the place of the pragma to the end of the
innermost enclosing declarative region, or, if the pragma is given in a package_specification, to the end
of the scope of the named entity. The pragma applies only to the named entity, or, for a subtype, on
objects and values of its type. A specific Suppress pragma suppresses the named check for any entities to

1

2

3

4

5

1

2

3/2

1/2

2/2

3/2

4/2

5/2

6/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

633 10 November 2006 Specific Suppression of Checks J.10

which it applies (see 11.5). Which checks are associated with a specific entity is not defined by this
International Standard.

Implementation Permissions

An implementation is allowed to place restrictions on specific Suppress pragmas.

NOTES
3 An implementation may support a similar On parameter on pragma Unsuppress (see 11.5).

J.11 The Class Attribute of Untagged Incomplete Types
Static Semantics

For the first subtype S of a type T declared by an incomplete_type_declaration that is not tagged, the
following attribute is defined:
S'Class Denotes the first subtype of the incomplete class-wide type rooted at T. The completion of

T shall declare a tagged type. Such an attribute reference shall occur in the same library unit
as the incomplete_type_declaration.

J.12 Pragma Interface
Syntax

In addition to an identifier, the reserved word interface is allowed as a pragma name, to provide
compatibility with a prior edition of this International Standard.

J.13 Dependence Restriction Identifiers
The following restrictions involve dependence on specific language-defined units. The more general
restriction No_Dependence (see 13.12.1) should be used for this purpose.

Static Semantics

The following restriction_identifiers exist:
No_Asynchronous_Control
 Semantic dependence on the predefined package Asynchronous_Task_Control is not

allowed.

No_Unchecked_Conversion
 Semantic dependence on the predefined generic function Unchecked_Conversion is not

allowed.

No_Unchecked_Deallocation
 Semantic dependence on the predefined generic procedure Unchecked_Deallocation is not

allowed.

7/2

8/2

1/2

2/2

1/2

1/2

2/2

3/2

4/2

5/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

J.14 Character and Wide_Character Conversion Functions 10 November 2006 634

J.14 Character and Wide_Character Conversion Functions
Static Semantics

The following declarations exist in the declaration of package Ada.Characters.Handling:
 function Is_Character (Item : in Wide_Character) return Boolean
 renames Conversions.Is_Character;
 function Is_String (Item : in Wide_String) return Boolean
 renames Conversions.Is_String;

 function To_Character (Item : in Wide_Character;
 Substitute : in Character := ' ')
 return Character
 renames Conversions.To_Character;

 function To_String (Item : in Wide_String;
 Substitute : in Character := ' ')
 return String
 renames Conversions.To_String;

 function To_Wide_Character (Item : in Character) return Wide_Character
 renames Conversions.To_Wide_Character;

 function To_Wide_String (Item : in String) return Wide_String
 renames Conversions.To_Wide_String;

1/2

2/2

3/2

4/2

5/2

6/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

635 10 November 2006 Language-Defined Attributes K

Annex K
(informative)

Language-Defined Attributes
This annex summarizes the definitions given elsewhere of the language-defined attributes.

P'Access For a prefix P that denotes a subprogram:

 P'Access yields an access value that designates the subprogram denoted by P. The type of
P'Access is an access-to-subprogram type (S), as determined by the expected type. See
3.10.2.

X'Access For a prefix X that denotes an aliased view of an object:

 X'Access yields an access value that designates the object denoted by X. The type of
X'Access is an access-to-object type, as determined by the expected type. The expected
type shall be a general access type. See 3.10.2.

X'Address For a prefix X that denotes an object, program unit, or label:

 Denotes the address of the first of the storage elements allocated to X. For a program unit or
label, this value refers to the machine code associated with the corresponding body or
statement. The value of this attribute is of type System.Address. See 13.3.

S'Adjacent For every subtype S of a floating point type T:

 S'Adjacent denotes a function with the following specification:
function S'Adjacent (X, Towards : T)
 return T

 If Towards = X, the function yields X; otherwise, it yields the machine number of the type T
adjacent to X in the direction of Towards, if that machine number exists. If the result would
be outside the base range of S, Constraint_Error is raised. When T'Signed_Zeros is True, a
zero result has the sign of X. When Towards is zero, its sign has no bearing on the result.
See A.5.3.

S'Aft For every fixed point subtype S:

 S'Aft yields the number of decimal digits needed after the decimal point to accommodate
the delta of the subtype S, unless the delta of the subtype S is greater than 0.1, in which
case the attribute yields the value one. (S'Aft is the smallest positive integer N for which
(10**N)*S'Delta is greater than or equal to one.) The value of this attribute is of the type
universal_integer. See 3.5.10.

S'Alignment For every subtype S:

 The value of this attribute is of type universal_integer, and nonnegative.

 For an object X of subtype S, if S'Alignment is not zero, then X'Alignment is a nonzero
integral multiple of S'Alignment unless specified otherwise by a representation item. See
13.3.

X'Alignment For a prefix X that denotes an object:

 The value of this attribute is of type universal_integer, and nonnegative; zero means that
the object is not necessarily aligned on a storage element boundary. If X'Alignment is not
zero, then X is aligned on a storage unit boundary and X'Address is an integral multiple of
X'Alignment (that is, the Address modulo the Alignment is zero).

 See 13.3.

1

2

3

4

5

6/1

7

8

9

10

11

12

13

13.1/2

13.2/2

13.3/2

14/1

15

16/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

K Language-Defined Attributes 10 November 2006 636

S'Base For every scalar subtype S:

 S'Base denotes an unconstrained subtype of the type of S. This unconstrained subtype is
called the base subtype of the type. See 3.5.

S'Bit_Order For every specific record subtype S:

 Denotes the bit ordering for the type of S. The value of this attribute is of type
System.Bit_Order. See 13.5.3.

P'Body_Version
 For a prefix P that statically denotes a program unit:

 Yields a value of the predefined type String that identifies the version of the compilation
unit that contains the body (but not any subunits) of the program unit. See E.3.

T'Callable For a prefix T that is of a task type (after any implicit dereference):

 Yields the value True when the task denoted by T is callable, and False otherwise; See 9.9.

E'Caller For a prefix E that denotes an entry_declaration:

 Yields a value of the type Task_Id that identifies the task whose call is now being serviced.
Use of this attribute is allowed only inside an entry_body or accept_statement
corresponding to the entry_declaration denoted by E. See C.7.1.

S'Ceiling For every subtype S of a floating point type T:

 S'Ceiling denotes a function with the following specification:
function S'Ceiling (X : T)
 return T

 The function yields the value X, i.e., the smallest (most negative) integral value greater
than or equal to X. When X is zero, the result has the sign of X; a zero result otherwise has a
negative sign when S'Signed_Zeros is True. See A.5.3.

S'Class For every subtype S of an untagged private type whose full view is tagged:

 Denotes the class-wide subtype corresponding to the full view of S. This attribute is
allowed only from the beginning of the private part in which the full view is declared, until
the declaration of the full view. After the full view, the Class attribute of the full view can
be used. See 7.3.1.

S'Class For every subtype S of a tagged type T (specific or class-wide):

 S'Class denotes a subtype of the class-wide type (called T'Class in this International
Standard) for the class rooted at T (or if S already denotes a class-wide subtype, then
S'Class is the same as S).

 S'Class is unconstrained. However, if S is constrained, then the values of S'Class are only
those that when converted to the type T belong to S. See 3.9.

X'Component_Size
 For a prefix X that denotes an array subtype or array object (after any implicit dereference):

 Denotes the size in bits of components of the type of X. The value of this attribute is of type
universal_integer. See 13.3.

S'Compose For every subtype S of a floating point type T:

 S'Compose denotes a function with the following specification:
function S'Compose (Fraction : T;
 Exponent : universal_integer)
 return T

17

18

19

20

21/1

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36/1

37

38

39

40

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

637 10 November 2006 Language-Defined Attributes K

 Let v be the value Fraction · T'Machine_RadixExponent–k, where k is the normalized exponent
of Fraction. If v is a machine number of the type T, or if |v| ≥ T'Model_Small, the function
yields v; otherwise, it yields either one of the machine numbers of the type T adjacent to v.
Constraint_Error is optionally raised if v is outside the base range of S. A zero result has the
sign of Fraction when S'Signed_Zeros is True. See A.5.3.

A'Constrained
 For a prefix A that is of a discriminated type (after any implicit dereference):

 Yields the value True if A denotes a constant, a value, or a constrained variable, and False
otherwise. See 3.7.2.

S'Copy_Sign For every subtype S of a floating point type T:

 S'Copy_Sign denotes a function with the following specification:
function S'Copy_Sign (Value, Sign : T)
 return T

 If the value of Value is nonzero, the function yields a result whose magnitude is that of
Value and whose sign is that of Sign; otherwise, it yields the value zero. Constraint_Error is
optionally raised if the result is outside the base range of S. A zero result has the sign of
Sign when S'Signed_Zeros is True. See A.5.3.

E'Count For a prefix E that denotes an entry of a task or protected unit:

 Yields the number of calls presently queued on the entry E of the current instance of the
unit. The value of this attribute is of the type universal_integer. See 9.9.

S'Definite For a prefix S that denotes a formal indefinite subtype:

 S'Definite yields True if the actual subtype corresponding to S is definite; otherwise it
yields False. The value of this attribute is of the predefined type Boolean. See 12.5.1.

S'Delta For every fixed point subtype S:

 S'Delta denotes the delta of the fixed point subtype S. The value of this attribute is of the
type universal_real. See 3.5.10.

S'Denorm For every subtype S of a floating point type T:

 Yields the value True if every value expressible in the form
 ± mantissa · T'Machine_RadixT'Machine_Emin
 where mantissa is a nonzero T'Machine_Mantissa-digit fraction in the number base

T'Machine_Radix, the first digit of which is zero, is a machine number (see 3.5.7) of the
type T; yields the value False otherwise. The value of this attribute is of the predefined type
Boolean. See A.5.3.

S'Digits For every decimal fixed point subtype S:

 S'Digits denotes the digits of the decimal fixed point subtype S, which corresponds to the
number of decimal digits that are representable in objects of the subtype. The value of this
attribute is of the type universal_integer. See 3.5.10.

S'Digits For every floating point subtype S:

 S'Digits denotes the requested decimal precision for the subtype S. The value of this
attribute is of the type universal_integer. See 3.5.8.

S'Exponent For every subtype S of a floating point type T:

 S'Exponent denotes a function with the following specification:
function S'Exponent (X : T)
 return universal_integer

41

42

43

44

45

46

47

48

49

50/1

51

52

53

54

55

56

57

58

59

60

61

62

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

K Language-Defined Attributes 10 November 2006 638

 The function yields the normalized exponent of X. See A.5.3.

S'External_Tag
 For every subtype S of a tagged type T (specific or class-wide):

 S'External_Tag denotes an external string representation for S'Tag; it is of the predefined
type String. External_Tag may be specified for a specific tagged type via an
attribute_definition_clause; the expression of such a clause shall be static. The default
external tag representation is implementation defined. See 3.9.2 and 13.13.2. See 13.3.

A'First For a prefix A that is of an array type (after any implicit dereference), or denotes a
constrained array subtype:

 A'First denotes the lower bound of the first index range; its type is the corresponding index
type. See 3.6.2.

S'First For every scalar subtype S:

 S'First denotes the lower bound of the range of S. The value of this attribute is of the type
of S. See 3.5.

A'First(N) For a prefix A that is of an array type (after any implicit dereference), or denotes a
constrained array subtype:

 A'First(N) denotes the lower bound of the N-th index range; its type is the corresponding
index type. See 3.6.2.

R.C'First_Bit
 For a component C of a composite, non-array object R:

 If the nondefault bit ordering applies to the composite type, and if a component_clause
specifies the placement of C, denotes the value given for the first_bit of the
component_clause; otherwise, denotes the offset, from the start of the first of the storage
elements occupied by C, of the first bit occupied by C. This offset is measured in bits. The
first bit of a storage element is numbered zero. The value of this attribute is of the type
universal_integer. See 13.5.2.

S'Floor For every subtype S of a floating point type T:

 S'Floor denotes a function with the following specification:
function S'Floor (X : T)
 return T

 The function yields the value X, i.e., the largest (most positive) integral value less than or
equal to X. When X is zero, the result has the sign of X; a zero result otherwise has a
positive sign. See A.5.3.

S'Fore For every fixed point subtype S:

 S'Fore yields the minimum number of characters needed before the decimal point for the
decimal representation of any value of the subtype S, assuming that the representation does
not include an exponent, but includes a one-character prefix that is either a minus sign or a
space. (This minimum number does not include superfluous zeros or underlines, and is at
least 2.) The value of this attribute is of the type universal_integer. See 3.5.10.

S'Fraction For every subtype S of a floating point type T:

 S'Fraction denotes a function with the following specification:
function S'Fraction (X : T)
 return T

 The function yields the value X · T'Machine_Radix–k, where k is the normalized exponent of
X. A zero result, which can only occur when X is zero, has the sign of X. See A.5.3.

63

64

65

66/1

67

68

69

70/1

71

72

73/2

74

75

76

77

78

79

80

81

82

83

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

639 10 November 2006 Language-Defined Attributes K

T'Identity For a prefix T that is of a task type (after any implicit dereference):

 Yields a value of the type Task_Id that identifies the task denoted by T. See C.7.1.

E'Identity For a prefix E that denotes an exception:

 E'Identity returns the unique identity of the exception. The type of this attribute is
Exception_Id. See 11.4.1.

S'Image For every scalar subtype S:

 S'Image denotes a function with the following specification:
function S'Image(Arg : S'Base)
 return String

 The function returns an image of the value of Arg as a String. See 3.5.

S'Class'Input
 For every subtype S'Class of a class-wide type T'Class:

 S'Class'Input denotes a function with the following specification:
function S'Class'Input(
 Stream : not null access Ada.Streams.Root_Stream_Type'Class)
 return T'Class

 First reads the external tag from Stream and determines the corresponding internal tag (by
calling Tags.Descendant_Tag(String'Input(Stream), S'Tag) which might raise Tag_Error —
see 3.9) and then dispatches to the subprogram denoted by the Input attribute of the specific
type identified by the internal tag; returns that result. If the specific type identified by the
internal tag is not covered by T'Class or is abstract, Constraint_Error is raised. See 13.13.2.

S'Input For every subtype S of a specific type T:

 S'Input denotes a function with the following specification:
function S'Input(
 Stream : not null access Ada.Streams.Root_Stream_Type'Class)
 return T

 S'Input reads and returns one value from Stream, using any bounds or discriminants written
by a corresponding S'Output to determine how much to read. See 13.13.2.

A'Last For a prefix A that is of an array type (after any implicit dereference), or denotes a
constrained array subtype:

 A'Last denotes the upper bound of the first index range; its type is the corresponding index
type. See 3.6.2.

S'Last For every scalar subtype S:

 S'Last denotes the upper bound of the range of S. The value of this attribute is of the type of
S. See 3.5.

A'Last(N) For a prefix A that is of an array type (after any implicit dereference), or denotes a
constrained array subtype:

 A'Last(N) denotes the upper bound of the N-th index range; its type is the corresponding
index type. See 3.6.2.

R.C'Last_Bit
 For a component C of a composite, non-array object R:

 If the nondefault bit ordering applies to the composite type, and if a component_clause
specifies the placement of C, denotes the value given for the last_bit of the
component_clause; otherwise, denotes the offset, from the start of the first of the storage

84

85

86/1

87

88

89

90

91/2

92

93

94/2

95/2

96

97

98/2

99

100/1

101

102

103

104/1

105

106

107/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

K Language-Defined Attributes 10 November 2006 640

elements occupied by C, of the last bit occupied by C. This offset is measured in bits. The
value of this attribute is of the type universal_integer. See 13.5.2.

S'Leading_Part
 For every subtype S of a floating point type T:

 S'Leading_Part denotes a function with the following specification:
function S'Leading_Part (X : T;
 Radix_Digits : universal_integer)
 return T

 Let v be the value T'Machine_Radixk–Radix_Digits, where k is the normalized exponent of X. The
function yields the value

• X/v · v, when X is nonnegative and Radix_Digits is positive;

• X/v · v, when X is negative and Radix_Digits is positive.

 Constraint_Error is raised when Radix_Digits is zero or negative. A zero result, which can
only occur when X is zero, has the sign of X. See A.5.3.

A'Length For a prefix A that is of an array type (after any implicit dereference), or denotes a
constrained array subtype:

 A'Length denotes the number of values of the first index range (zero for a null range); its
type is universal_integer. See 3.6.2.

A'Length(N) For a prefix A that is of an array type (after any implicit dereference), or denotes a
constrained array subtype:

 A'Length(N) denotes the number of values of the N-th index range (zero for a null range);
its type is universal_integer. See 3.6.2.

S'Machine For every subtype S of a floating point type T:

 S'Machine denotes a function with the following specification:
function S'Machine (X : T)
 return T

 If X is a machine number of the type T, the function yields X; otherwise, it yields the value
obtained by rounding or truncating X to either one of the adjacent machine numbers of the
type T. Constraint_Error is raised if rounding or truncating X to the precision of the
machine numbers results in a value outside the base range of S. A zero result has the sign of
X when S'Signed_Zeros is True. See A.5.3.

S'Machine_Emax
 For every subtype S of a floating point type T:

 Yields the largest (most positive) value of exponent such that every value expressible in the
canonical form (for the type T), having a mantissa of T'Machine_Mantissa digits, is a
machine number (see 3.5.7) of the type T. This attribute yields a value of the type
universal_integer. See A.5.3.

S'Machine_Emin
 For every subtype S of a floating point type T:

 Yields the smallest (most negative) value of exponent such that every value expressible in
the canonical form (for the type T), having a mantissa of T'Machine_Mantissa digits, is a
machine number (see 3.5.7) of the type T. This attribute yields a value of the type
universal_integer. See A.5.3.

S'Machine_Mantissa
 For every subtype S of a floating point type T:

108

109

110

111

112

113

114

115/1

116

117/1

118

119

120

121

122

123

124

125

126

127

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

641 10 November 2006 Language-Defined Attributes K

 Yields the largest value of p such that every value expressible in the canonical form (for the
type T), having a p-digit mantissa and an exponent between T'Machine_Emin and
T'Machine_Emax, is a machine number (see 3.5.7) of the type T. This attribute yields a
value of the type universal_integer. See A.5.3.

S'Machine_Overflows
 For every subtype S of a fixed point type T:

 Yields the value True if overflow and divide-by-zero are detected and reported by raising
Constraint_Error for every predefined operation that yields a result of the type T; yields the
value False otherwise. The value of this attribute is of the predefined type Boolean. See
A.5.4.

S'Machine_Overflows
 For every subtype S of a floating point type T:

 Yields the value True if overflow and divide-by-zero are detected and reported by raising
Constraint_Error for every predefined operation that yields a result of the type T; yields the
value False otherwise. The value of this attribute is of the predefined type Boolean. See
A.5.3.

S'Machine_Radix
 For every subtype S of a fixed point type T:

 Yields the radix of the hardware representation of the type T. The value of this attribute is
of the type universal_integer. See A.5.4.

S'Machine_Radix
 For every subtype S of a floating point type T:

 Yields the radix of the hardware representation of the type T. The value of this attribute is
of the type universal_integer. See A.5.3.

S'Machine_Rounding
 For every subtype S of a floating point type T:

 S'Machine_Rounding denotes a function with the following specification:
function S'Machine_Rounding (X : T)
 return T

 The function yields the integral value nearest to X. If X lies exactly halfway between two
integers, one of those integers is returned, but which of them is returned is unspecified. A
zero result has the sign of X when S'Signed_Zeros is True. This function provides access to
the rounding behavior which is most efficient on the target processor. See A.5.3.

S'Machine_Rounds
 For every subtype S of a fixed point type T:

 Yields the value True if rounding is performed on inexact results of every predefined
operation that yields a result of the type T; yields the value False otherwise. The value of
this attribute is of the predefined type Boolean. See A.5.4.

S'Machine_Rounds
 For every subtype S of a floating point type T:

 Yields the value True if rounding is performed on inexact results of every predefined
operation that yields a result of the type T; yields the value False otherwise. The value of
this attribute is of the predefined type Boolean. See A.5.3.

S'Max For every scalar subtype S:

 S'Max denotes a function with the following specification:

128

129

130

131

132

133

134

135

136

136.1/2

136.2/2

136.3/2

136.4/2

137

138

139

140

141

142

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

K Language-Defined Attributes 10 November 2006 642

function S'Max(Left, Right : S'Base)
 return S'Base

 The function returns the greater of the values of the two parameters. See 3.5.

S'Max_Size_In_Storage_Elements
 For every subtype S:

 Denotes the maximum value for Size_In_Storage_Elements that could be requested by the
implementation via Allocate for an access type whose designated subtype is S. For a type
with access discriminants, if the implementation allocates space for a coextension in the
same pool as that of the object having the access discriminant, then this accounts for any
calls on Allocate that could be performed to provide space for such coextensions. The value
of this attribute is of type universal_integer. See 13.11.1.

S'Min For every scalar subtype S:

 S'Min denotes a function with the following specification:
function S'Min(Left, Right : S'Base)
 return S'Base

 The function returns the lesser of the values of the two parameters. See 3.5.

S'Mod For every modular subtype S:

 S'Mod denotes a function with the following specification:
function S'Mod (Arg : universal_integer)
 return S'Base

 This function returns Arg mod S'Modulus, as a value of the type of S. See 3.5.4.

S'Model For every subtype S of a floating point type T:

 S'Model denotes a function with the following specification:
function S'Model (X : T)
 return T

 If the Numerics Annex is not supported, the meaning of this attribute is implementation
defined; see G.2.2 for the definition that applies to implementations supporting the
Numerics Annex. See A.5.3.

S'Model_Emin
 For every subtype S of a floating point type T:

 If the Numerics Annex is not supported, this attribute yields an implementation defined
value that is greater than or equal to the value of T'Machine_Emin. See G.2.2 for further
requirements that apply to implementations supporting the Numerics Annex. The value of
this attribute is of the type universal_integer. See A.5.3.

S'Model_Epsilon
 For every subtype S of a floating point type T:

 Yields the value T'Machine_Radix1 – T'Model_Mantissa. The value of this attribute is of the type
universal_real. See A.5.3.

S'Model_Mantissa
 For every subtype S of a floating point type T:

 If the Numerics Annex is not supported, this attribute yields an implementation defined
value that is greater than or equal to d · log(10) / log(T'Machine_Radix) + 1, where d is
the requested decimal precision of T, and less than or equal to the value of
T'Machine_Mantissa. See G.2.2 for further requirements that apply to implementations

143

144

145

146/2

147

148

149

150

150.1/2

150.2/2

150.3/2

150.4/2

151

152

153

154

155

156

157

158

159

160

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

643 10 November 2006 Language-Defined Attributes K

supporting the Numerics Annex. The value of this attribute is of the type universal_integer.
See A.5.3.

S'Model_Small
 For every subtype S of a floating point type T:

 Yields the value T'Machine_RadixT'Model_Emin – 1. The value of this attribute is of the type
universal_real. See A.5.3.

S'Modulus For every modular subtype S:

 S'Modulus yields the modulus of the type of S, as a value of the type universal_integer. See
3.5.4.

S'Class'Output
 For every subtype S'Class of a class-wide type T'Class:

 S'Class'Output denotes a procedure with the following specification:
procedure S'Class'Output(
 Stream : not null access Ada.Streams.Root_Stream_Type'Class;
 Item : in T'Class)

 First writes the external tag of Item to Stream (by calling String'Output(Stream, Tags.-
External_Tag(Item'Tag)) — see 3.9) and then dispatches to the subprogram denoted by the
Output attribute of the specific type identified by the tag. Tag_Error is raised if the tag of
Item identifies a type declared at an accessibility level deeper than that of S. See 13.13.2.

S'Output For every subtype S of a specific type T:

 S'Output denotes a procedure with the following specification:
procedure S'Output(
 Stream : not null access Ada.Streams.Root_Stream_Type'Class;
 Item : in T)

 S'Output writes the value of Item to Stream, including any bounds or discriminants. See
13.13.2.

D'Partition_Id
 For a prefix D that denotes a library-level declaration, excepting a declaration of or within a

declared-pure library unit:

 Denotes a value of the type universal_integer that identifies the partition in which D was
elaborated. If D denotes the declaration of a remote call interface library unit (see E.2.3) the
given partition is the one where the body of D was elaborated. See E.1.

S'Pos For every discrete subtype S:

 S'Pos denotes a function with the following specification:
function S'Pos(Arg : S'Base)
 return universal_integer

 This function returns the position number of the value of Arg, as a value of type
universal_integer. See 3.5.5.

R.C'Position For a component C of a composite, non-array object R:

 If the nondefault bit ordering applies to the composite type, and if a component_clause
specifies the placement of C, denotes the value given for the position of the
component_clause; otherwise, denotes the same value as R.C'Address – R'Address. The
value of this attribute is of the type universal_integer. See 13.5.2.

S'Pred For every scalar subtype S:

 S'Pred denotes a function with the following specification:

161

162

163

164

165

166

167/2

168/2

169

170

171/2

172

173/1

174

175

176

177

178

179

180/2

181

182

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

K Language-Defined Attributes 10 November 2006 644

function S'Pred(Arg : S'Base)
 return S'Base

 For an enumeration type, the function returns the value whose position number is one less
than that of the value of Arg; Constraint_Error is raised if there is no such value of the type.
For an integer type, the function returns the result of subtracting one from the value of Arg.
For a fixed point type, the function returns the result of subtracting small from the value of
Arg. For a floating point type, the function returns the machine number (as defined in 3.5.7)
immediately below the value of Arg; Constraint_Error is raised if there is no such machine
number. See 3.5.

P'Priority For a prefix P that denotes a protected object:

 Denotes a non-aliased component of the protected object P. This component is of type
System.Any_Priority and its value is the priority of P. P'Priority denotes a variable if and
only if P denotes a variable. A reference to this attribute shall appear only within the body
of P. See D.5.2.

A'Range For a prefix A that is of an array type (after any implicit dereference), or denotes a
constrained array subtype:

 A'Range is equivalent to the range A'First .. A'Last, except that the prefix A is only
evaluated once. See 3.6.2.

S'Range For every scalar subtype S:

 S'Range is equivalent to the range S'First .. S'Last. See 3.5.

A'Range(N) For a prefix A that is of an array type (after any implicit dereference), or denotes a
constrained array subtype:

 A'Range(N) is equivalent to the range A'First(N) .. A'Last(N), except that the prefix A is
only evaluated once. See 3.6.2.

S'Class'Read For every subtype S'Class of a class-wide type T'Class:

 S'Class'Read denotes a procedure with the following specification:
procedure S'Class'Read(
 Stream : not null access Ada.Streams.Root_Stream_Type'Class;
 Item : out T'Class)

 Dispatches to the subprogram denoted by the Read attribute of the specific type identified
by the tag of Item. See 13.13.2.

S'Read For every subtype S of a specific type T:

 S'Read denotes a procedure with the following specification:
procedure S'Read(
 Stream : not null access Ada.Streams.Root_Stream_Type'Class;
 Item : out T)

 S'Read reads the value of Item from Stream. See 13.13.2.

S'Remainder For every subtype S of a floating point type T:

 S'Remainder denotes a function with the following specification:
function S'Remainder (X, Y : T)
 return T

 For nonzero Y, let v be the value X – n · Y, where n is the integer nearest to the exact value
of X/Y; if |n – X/Y| = 1/2, then n is chosen to be even. If v is a machine number of the type
T, the function yields v; otherwise, it yields zero. Constraint_Error is raised if Y is zero. A
zero result has the sign of X when S'Signed_Zeros is True. See A.5.3.

183

184

184.1/2

184.2/2

185/1

186

187

188

189/1

190

191

192

193/2

194

195

196

197/2

198

199

200

201

202

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

645 10 November 2006 Language-Defined Attributes K

S'Round For every decimal fixed point subtype S:

 S'Round denotes a function with the following specification:
function S'Round(X : universal_real)
 return S'Base

 The function returns the value obtained by rounding X (away from 0, if X is midway
between two values of the type of S). See 3.5.10.

S'Rounding For every subtype S of a floating point type T:

 S'Rounding denotes a function with the following specification:
function S'Rounding (X : T)
 return T

 The function yields the integral value nearest to X, rounding away from zero if X lies
exactly halfway between two integers. A zero result has the sign of X when S'Signed_Zeros
is True. See A.5.3.

S'Safe_First
 For every subtype S of a floating point type T:

 Yields the lower bound of the safe range (see 3.5.7) of the type T. If the Numerics Annex is
not supported, the value of this attribute is implementation defined; see G.2.2 for the
definition that applies to implementations supporting the Numerics Annex. The value of
this attribute is of the type universal_real. See A.5.3.

S'Safe_Last For every subtype S of a floating point type T:

 Yields the upper bound of the safe range (see 3.5.7) of the type T. If the Numerics Annex is
not supported, the value of this attribute is implementation defined; see G.2.2 for the
definition that applies to implementations supporting the Numerics Annex. The value of
this attribute is of the type universal_real. See A.5.3.

S'Scale For every decimal fixed point subtype S:

 S'Scale denotes the scale of the subtype S, defined as the value N such that S'Delta =
10.0**(–N). The scale indicates the position of the point relative to the rightmost significant
digits of values of subtype S. The value of this attribute is of the type universal_integer.
See 3.5.10.

S'Scaling For every subtype S of a floating point type T:

 S'Scaling denotes a function with the following specification:
function S'Scaling (X : T;
 Adjustment : universal_integer)
 return T

 Let v be the value X · T'Machine_RadixAdjustment. If v is a machine number of the type T, or if
|v| ≥ T'Model_Small, the function yields v; otherwise, it yields either one of the machine
numbers of the type T adjacent to v. Constraint_Error is optionally raised if v is outside the
base range of S. A zero result has the sign of X when S'Signed_Zeros is True. See A.5.3.

S'Signed_Zeros
 For every subtype S of a floating point type T:

 Yields the value True if the hardware representation for the type T has the capability of
representing both positively and negatively signed zeros, these being generated and used by
the predefined operations of the type T as specified in IEC 559:1989; yields the value False
otherwise. The value of this attribute is of the predefined type Boolean. See A.5.3.

S'Size For every subtype S:

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

K Language-Defined Attributes 10 November 2006 646

 If S is definite, denotes the size (in bits) that the implementation would choose for the
following objects of subtype S:

• A record component of subtype S when the record type is packed.

• The formal parameter of an instance of Unchecked_Conversion that converts
from subtype S to some other subtype.

 If S is indefinite, the meaning is implementation defined. The value of this attribute is of
the type universal_integer. See 13.3.

X'Size For a prefix X that denotes an object:

 Denotes the size in bits of the representation of the object. The value of this attribute is of
the type universal_integer. See 13.3.

S'Small For every fixed point subtype S:

 S'Small denotes the small of the type of S. The value of this attribute is of the type
universal_real. See 3.5.10.

S'Storage_Pool
 For every access-to-object subtype S:

 Denotes the storage pool of the type of S. The type of this attribute is Root_Storage_-
Pool'Class. See 13.11.

S'Storage_Size
 For every access-to-object subtype S:

 Yields the result of calling Storage_Size(S'Storage_Pool), which is intended to be a
measure of the number of storage elements reserved for the pool. The type of this attribute
is universal_integer. See 13.11.

T'Storage_Size
 For a prefix T that denotes a task object (after any implicit dereference):

 Denotes the number of storage elements reserved for the task. The value of this attribute is
of the type universal_integer. The Storage_Size includes the size of the task's stack, if any.
The language does not specify whether or not it includes other storage associated with the
task (such as the “task control block” used by some implementations.) See 13.3.

S'Stream_Size
 For every subtype S of an elementary type T:

 Denotes the number of bits occupied in a stream by items of subtype S. Hence, the number
of stream elements required per item of elementary type T is:

T'Stream_Size / Ada.Streams.Stream_Element'Size

 The value of this attribute is of type universal_integer and is a multiple of
Stream_Element'Size. See 13.13.2.

S'Succ For every scalar subtype S:

 S'Succ denotes a function with the following specification:
function S'Succ(Arg : S'Base)
 return S'Base

 For an enumeration type, the function returns the value whose position number is one more
than that of the value of Arg; Constraint_Error is raised if there is no such value of the type.
For an integer type, the function returns the result of adding one to the value of Arg. For a
fixed point type, the function returns the result of adding small to the value of Arg. For a
floating point type, the function returns the machine number (as defined in 3.5.7)

224

225

226

227

228/1

229

230

231

232

233

234

235

236/1

237

237.1/2

237.2/2

237.3/2

237.4/2

238

239

240

241

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

647 10 November 2006 Language-Defined Attributes K

immediately above the value of Arg; Constraint_Error is raised if there is no such machine
number. See 3.5.

X'Tag For a prefix X that is of a class-wide tagged type (after any implicit dereference):

 X'Tag denotes the tag of X. The value of this attribute is of type Tag. See 3.9.

S'Tag For every subtype S of a tagged type T (specific or class-wide):

 S'Tag denotes the tag of the type T (or if T is class-wide, the tag of the root type of the
corresponding class). The value of this attribute is of type Tag. See 3.9.

T'Terminated For a prefix T that is of a task type (after any implicit dereference):

 Yields the value True if the task denoted by T is terminated, and False otherwise. The value
of this attribute is of the predefined type Boolean. See 9.9.

S'Truncation For every subtype S of a floating point type T:

 S'Truncation denotes a function with the following specification:
function S'Truncation (X : T)
 return T

 The function yields the value X when X is negative, and X otherwise. A zero result has
the sign of X when S'Signed_Zeros is True. See A.5.3.

S'Unbiased_Rounding
 For every subtype S of a floating point type T:

 S'Unbiased_Rounding denotes a function with the following specification:
function S'Unbiased_Rounding (X : T)
 return T

 The function yields the integral value nearest to X, rounding toward the even integer if X
lies exactly halfway between two integers. A zero result has the sign of X when
S'Signed_Zeros is True. See A.5.3.

X'Unchecked_Access
 For a prefix X that denotes an aliased view of an object:

 All rules and semantics that apply to X'Access (see 3.10.2) apply also to
X'Unchecked_Access, except that, for the purposes of accessibility rules and checks, it is as
if X were declared immediately within a library package. See 13.10.

S'Val For every discrete subtype S:

 S'Val denotes a function with the following specification:
function S'Val(Arg : universal_integer)
 return S'Base

 This function returns a value of the type of S whose position number equals the value of
Arg. See 3.5.5.

X'Valid For a prefix X that denotes a scalar object (after any implicit dereference):

 Yields True if and only if the object denoted by X is normal and has a valid representation.
The value of this attribute is of the predefined type Boolean. See 13.9.2.

S'Value For every scalar subtype S:

 S'Value denotes a function with the following specification:
function S'Value(Arg : String)
 return S'Base

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

K Language-Defined Attributes 10 November 2006 648

 This function returns a value given an image of the value as a String, ignoring any leading
or trailing spaces. See 3.5.

P'Version For a prefix P that statically denotes a program unit:

 Yields a value of the predefined type String that identifies the version of the compilation
unit that contains the declaration of the program unit. See E.3.

S'Wide_Image For every scalar subtype S:

 S'Wide_Image denotes a function with the following specification:
function S'Wide_Image(Arg : S'Base)
 return Wide_String

 The function returns an image of the value of Arg as a Wide_String. See 3.5.

S'Wide_Value
 For every scalar subtype S:

 S'Wide_Value denotes a function with the following specification:
function S'Wide_Value(Arg : Wide_String)
 return S'Base

 This function returns a value given an image of the value as a Wide_String, ignoring any
leading or trailing spaces. See 3.5.

S'Wide_Wide_Image
 For every scalar subtype S:

 S'Wide_Wide_Image denotes a function with the following specification:
function S'Wide_Wide_Image(Arg : S'Base)
 return Wide_Wide_String

 The function returns an image of the value of Arg, that is, a sequence of characters
representing the value in display form. See 3.5.

S'Wide_Wide_Value
 For every scalar subtype S:

 S'Wide_Wide_Value denotes a function with the following specification:
function S'Wide_Wide_Value(Arg : Wide_Wide_String)
 return S'Base

 This function returns a value given an image of the value as a Wide_Wide_String, ignoring
any leading or trailing spaces. See 3.5.

S'Wide_Wide_Width
 For every scalar subtype S:

 S'Wide_Wide_Width denotes the maximum length of a Wide_Wide_String returned by
S'Wide_Wide_Image over all values of the subtype S. It denotes zero for a subtype that has
a null range. Its type is universal_integer. See 3.5.

S'Wide_Width
 For every scalar subtype S:

 S'Wide_Width denotes the maximum length of a Wide_String returned by S'Wide_Image
over all values of the subtype S. It denotes zero for a subtype that has a null range. Its type
is universal_integer. See 3.5.

S'Width For every scalar subtype S:

267

268/1

269

270

271

272

273/2

274

275

276

277

277.1/2

277.2/2

277.3/2

277.4/2

277.5/2

277.6/2

277.7/2

277.8/2

277.9/2

277.10/2

278

279

280

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

649 10 November 2006 Language-Defined Attributes K

 S'Width denotes the maximum length of a String returned by S'Image over all values of the
subtype S. It denotes zero for a subtype that has a null range. Its type is universal_integer.
See 3.5.

S'Class'Write
 For every subtype S'Class of a class-wide type T'Class:

 S'Class'Write denotes a procedure with the following specification:
procedure S'Class'Write(
 Stream : not null access Ada.Streams.Root_Stream_Type'Class;
 Item : in T'Class)

 Dispatches to the subprogram denoted by the Write attribute of the specific type identified
by the tag of Item. See 13.13.2.

S'Write For every subtype S of a specific type T:

 S'Write denotes a procedure with the following specification:
procedure S'Write(
 Stream : not null access Ada.Streams.Root_Stream_Type'Class;
 Item : in T)

 S'Write writes the value of Item to Stream. See 13.13.2.

281

282

283

284/2

285

286

287

288/2

289

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

651 10 November 2006 Language-Defined Pragmas L

Annex L
(informative)

Language-Defined Pragmas
This Annex summarizes the definitions given elsewhere of the language-defined pragmas.

pragma All_Calls_Remote[(library_unit_name)]; — See E.2.3.

pragma Assert([Check =>] boolean_expression[, [Message =>] string_expression]); — See 11.4.2.

pragma Assertion_Policy(policy_identifier); — See 11.4.2.

pragma Asynchronous(local_name); — See E.4.1.

pragma Atomic(local_name); — See C.6.

pragma Atomic_Components(array_local_name); — See C.6.

pragma Attach_Handler(handler_name, expression); — See C.3.1.

pragma Controlled(first_subtype_local_name); — See 13.11.3.

pragma Convention([Convention =>] convention_identifier,[Entity =>] local_name); — See B.1.

pragma Detect_Blocking; — See H.5.

pragma Discard_Names[([On =>] local_name)]; — See C.5.

pragma Elaborate(library_unit_name{, library_unit_name}); — See 10.2.1.

pragma Elaborate_All(library_unit_name{, library_unit_name}); — See 10.2.1.

pragma Elaborate_Body[(library_unit_name)]; — See 10.2.1.

pragma Export(
 [Convention =>] convention_identifier, [Entity =>] local_name
 [, [External_Name =>] string_expression] [, [Link_Name =>] string_expression]); — See B.1.

pragma Import(
 [Convention =>] convention_identifier, [Entity =>] local_name
 [, [External_Name =>] string_expression] [, [Link_Name =>] string_expression]); — See B.1.

pragma Inline(name {, name}); — See 6.3.2.

pragma Inspection_Point[(object_name {, object_name})]; — See H.3.2.

pragma Interrupt_Handler(handler_name); — See C.3.1.

pragma Interrupt_Priority[(expression)]; — See D.1.

pragma Linker_Options(string_expression); — See B.1.

pragma List(identifier); — See 2.8.

pragma Locking_Policy(policy_identifier); — See D.3.

pragma No_Return(procedure_local_name{, procedure_local_name}); — See 6.5.1.

pragma Normalize_Scalars; — See H.1.

1

2

2.1/2

2.2/2

3

4

5

6

7

8

8.1/2

9

10

11

12

13

14

15

16

17

18

19

20

21

21.1/2

22

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

L Language-Defined Pragmas 10 November 2006 652

pragma Optimize(identifier); — See 2.8.

pragma Pack(first_subtype_local_name); — See 13.2.

pragma Page; — See 2.8.

pragma Partition_Elaboration_Policy (policy_identifier); — See H.6.

pragma Preelaborable_Initialization(direct_name); — See 10.2.1.

pragma Preelaborate[(library_unit_name)]; — See 10.2.1.

pragma Priority(expression); — See D.1.

pragma Priority_Specific_Dispatching (
 policy_identifier, first_priority_expression, last_priority_expression); — See D.2.2.

pragma Profile (profile_identifier {, profile_pragma_argument_association}); — See D.13.

pragma Pure[(library_unit_name)]; — See 10.2.1.

pragma Queuing_Policy(policy_identifier); — See D.4.

pragma Relative_Deadline (relative_deadline_expression); — See D.2.6.

pragma Remote_Call_Interface[(library_unit_name)]; — See E.2.3.

pragma Remote_Types[(library_unit_name)]; — See E.2.2.

pragma Restrictions(restriction{, restriction}); — See 13.12.

pragma Reviewable; — See H.3.1.

pragma Shared_Passive[(library_unit_name)]; — See E.2.1.

pragma Storage_Size(expression); — See 13.3.

pragma Suppress(identifier); — See 11.5.

pragma Task_Dispatching_Policy(policy_identifier); — See D.2.2.

pragma Unchecked_Union (first_subtype_local_name); — See B.3.3.

pragma Unsuppress(identifier); — See 11.5.

pragma Volatile(local_name); — See C.6.

pragma Volatile_Components(array_local_name); — See C.6.

23

24

25

25.1/2

25.2/2

26

27

27.1/2

27.2/2

28

29

29.1/2

30

31

32

33

34

35

36

37

37.1/2

37.2/2

38

39

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

653 10 November 2006 Summary of Documentation Requirements M

Annex M
(informative)

Summary of Documentation Requirements
The Ada language allows for certain target machine dependences in a controlled manner. Each Ada
implementation must document many characteristics and properties of the target system. This International
Standard contains specific documentation requirements. In addition, many characteristics that require
documentation are identified throughout this International Standard as being implementation defined.
Finally, this International Standard requires documentation of whether implementation advice is followed.
The following clauses provide summaries of these documentation requirements.

M.1 Specific Documentation Requirements
In addition to implementation-defined characteristics, each Ada implementation must document various
properties of the implementation:

• The behavior of implementations in implementation-defined situations shall be documented —
see M.2, “Implementation-Defined Characteristics” for a listing. See 1.1.3(19).

• The set of values that a user-defined Allocate procedure needs to accept for the Alignment
parameter. How the standard storage pool is chosen, and how storage is allocated by standard
storage pools. See 13.11(22).

• The algorithm used for random number generation, including a description of its period. See
A.5.2(44).

• The minimum time interval between calls to the time-dependent Reset procedure that is
guaranteed to initiate different random number sequences. See A.5.2(45).

• The conditions under which Io_Exceptions.Name_Error, Io_Exceptions.Use_Error, and
Io_Exceptions.Device_Error are propagated. See A.13(15).

• The behavior of package Environment_Variables when environment variables are changed by
external mechanisms. See A.17(30/2).

• The overhead of calling machine-code or intrinsic subprograms. See C.1(6).

• The types and attributes used in machine code insertions. See C.1(7).

• The subprogram calling conventions for all supported convention identifiers. See C.1(8).

• The mapping between the Link_Name or Ada designator and the external link name. See C.1(9).

• The treatment of interrupts. See C.3(22).

• The metrics for interrupt handlers. See C.3.1(16).

• If the Ceiling_Locking policy is in effect, the default ceiling priority for a protected object that
contains an interrupt handler pragma. See C.3.2(24/2).

• Any circumstances when the elaboration of a preelaborated package causes code to be executed.
See C.4(12).

• Whether a partition can be restarted without reloading. See C.4(13).

• The effect of calling Current_Task from an entry body or interrupt handler. See C.7.1(19).

1/2

1/2

2/2

3/2

4/2

5/2

6/2

7/2

8/2

9/2

10/2

11/2

12/2

13/2

14/2

15/2

16/2

17/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

M.1 Specific Documentation Requirements 10 November 2006 654

• For package Task_Attributes, limits on the number and size of task attributes, and how to
configure any limits. See C.7.2(19).

• The metrics for the Task_Attributes package. See C.7.2(27).

• The details of the configuration used to generate the values of all metrics. See D(2).

• The maximum priority inversion a user task can experience from the implementation. See
D.2.3(12/2).

• The amount of time that a task can be preempted for processing on behalf of lower-priority
tasks. See D.2.3(13/2).

• The quantum values supported for round robin dispatching. See D.2.5(16/2).

• The accuracy of the detection of the exhaustion of the budget of a task for round robin
dispatching. See D.2.5(17/2).

• Any conditions that cause the completion of the setting of the deadline of a task to be delayed
for a multiprocessor. See D.2.6(32/2).

• Any conditions that cause the completion of the setting of the priority of a task to be delayed for
a multiprocessor. See D.5.1(12.1/2).

• The metrics for Set_Priority. See D.5.1(14).

• The metrics for setting the priority of a protected object. See D.5.2(10).

• On a multiprocessor, any conditions that cause the completion of an aborted construct to be
delayed later than what is specified for a single processor. See D.6(3).

• The metrics for aborts. See D.6(8).

• The values of Time_First, Time_Last, Time_Span_First, Time_Span_Last, Time_Span_Unit,
and Tick for package Real_Time. See D.8(33).

• The properties of the underlying time base used in package Real_Time. See D.8(34).

• Any synchronization of package Real_Time with external time references. See D.8(35).

• Any aspects of the external environment that could interfere with package Real_Time. See
D.8(36/1).

• The metrics for package Real_Time. See D.8(45).

• The minimum value of the delay expression of a delay_relative_statement that causes a task to
actually be blocked. See D.9(7).

• The minimum difference between the value of the delay expression of a delay_until_statement
and the value of Real_Time.Clock, that causes the task to actually be blocked. See D.9(8).

• The metrics for delay statements. See D.9(13).

• The upper bound on the duration of interrupt blocking caused by the implementation. See
D.12(5).

• The metrics for entry-less protected objects. See D.12(12).

• The values of CPU_Time_First, CPU_Time_Last, CPU_Time_Unit, and CPU_Tick of package
Execution_Time. See D.14(21/2).

• The properties of the mechanism used to implement package Execution_Time. See D.14(22/2).

• The metrics for execution time. See D.14(27).

• The metrics for timing events. See D.15(24).

18/2

19/2

20/2

21/2

22/2

23/2

24/2

25/2

26/2

27/2

28/2

29/2

30/2

31/2

32/2

33/2

34/2

35/2

36/2

37/2

38/2

39/2

40/2

41/2

42/2

43/2

44/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

655 10 November 2006 Specific Documentation Requirements M.1

• Whether the RPC-receiver is invoked from concurrent tasks, and if so, the number of such tasks.
See E.5(25).

• Any techniques used to reduce cancellation errors in Numerics.Generic_Real_Arrays shall be
documented. See G.3.1(86/2).

• Any techniques used to reduce cancellation errors in Numerics.Generic_Complex_Arrays shall
be documented. See G.3.2(155/2).

• If a pragma Normalize_Scalars applies, the implicit initial values of scalar subtypes shall be
documented. Such a value should be an invalid representation when possible; any cases when is
it not shall be documented. See H.1(5/2).

• The range of effects for each bounded error and each unspecified effect. If the effects of a given
erroneous construct are constrained, the constraints shall be documented. See H.2(1).

• For each inspection point, a mapping between each inspectable object and the machine resources
where the object's value can be obtained shall be provided. See H.3.2(8).

• If a pragma Restrictions(No_Exceptions) is specified, the effects of all constructs where
language-defined checks are still performed. See H.4(25).

• The interrupts to which a task entry may be attached. See J.7.1(12).

• The type of entry call invoked for an interrupt entry. See J.7.1(13).

M.2 Implementation-Defined Characteristics
The Ada language allows for certain machine dependences in a controlled manner. Each Ada
implementation must document all implementation-defined characteristics:

• Whether or not each recommendation given in Implementation Advice is followed — see M.3,
“Implementation Advice” for a listing. See 1.1.2(37).

• Capacity limitations of the implementation. See 1.1.3(3).

• Variations from the standard that are impractical to avoid given the implementation's execution
environment. See 1.1.3(6).

• Which code_statements cause external interactions. See 1.1.3(10).

• The semantics of an Ada program whose text is not in Normalization Form KC. See 2.1(4.1/2).

• The coded representation for the text of an Ada program. See 2.1(4/2).

• This paragraph was deleted.

• The representation for an end of line. See 2.2(2/2).

• Maximum supported line length and lexical element length. See 2.2(14).

• Implementation-defined pragmas. See 2.8(14).

• Effect of pragma Optimize. See 2.8(27).

• The sequence of characters of the value returned by S'Wide_Image when some of the graphic
characters of S'Wide_Wide_Image are not defined in Wide_Character. See 3.5(30/2).

• The sequence of characters of the value returned by S'Image when some of the graphic
characters of S'Wide_Wide_Image are not defined in Character. See 3.5(37/2).

• The predefined integer types declared in Standard. See 3.5.4(25).

• Any nonstandard integer types and the operators defined for them. See 3.5.4(26).

45/2

46/2

47/2

48/2

49/2

50/2

51/2

52/2

53/2

1/2

2/2

3

4

5

5.1/2

6

7/2

8

9

10

11

11.1/2

12/2

13

14

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

M.2 Implementation-Defined Characteristics 10 November 2006 656

• Any nonstandard real types and the operators defined for them. See 3.5.6(8).

• What combinations of requested decimal precision and range are supported for floating point
types. See 3.5.7(7).

• The predefined floating point types declared in Standard. See 3.5.7(16).

• The small of an ordinary fixed point type. See 3.5.9(8/2).

• What combinations of small, range, and digits are supported for fixed point types. See 3.5.9(10).

• The sequence of characters of the value returned by Tags.Expanded_Name (respectively,
Tags.Wide_Expanded_Name) when some of the graphic characters of
Tags.Wide_Wide_Expanded_Name are not defined in Character (respectively, Wide_Character).
See 3.9(10.1/2).

• The result of Tags.Wide_Wide_Expanded_Name for types declared within an unnamed
block_statement. See 3.9(10).

• Implementation-defined attributes. See 4.1.4(12/1).

• Rounding of real static expressions which are exactly half-way between two machine numbers.
See 4.9(38/2).

• Any implementation-defined time types. See 9.6(6).

• The time base associated with relative delays. See 9.6(20).

• The time base of the type Calendar.Time. See 9.6(23).

• The time zone used for package Calendar operations. See 9.6(24/2).

• Any limit on delay_until_statements of select_statements. See 9.6(29).

• The result of Calendar.Formating.Image if its argument represents more than 100 hours. See
9.6.1(86/2).

• Whether or not two nonoverlapping parts of a composite object are independently addressable,
in the case where packing, record layout, or Component_Size is specified for the object. See
9.10(1).

• The representation for a compilation. See 10.1(2).

• Any restrictions on compilations that contain multiple compilation_units. See 10.1(4).

• The mechanisms for adding a compilation unit mentioned in a limited_with_clause to an
environment. See 10.1.4(3/2).

• The mechanisms for creating an environment and for adding and replacing compilation units.
See 10.1.4(3/2).

• The implementation-defined means, if any, of specifying which compilation units are needed by
a given compilation unit. See 10.2(2).

• The manner of explicitly assigning library units to a partition. See 10.2(2).

• The manner of designating the main subprogram of a partition. See 10.2(7).

• The order of elaboration of library_items. See 10.2(18).

• Parameter passing and function return for the main subprogram. See 10.2(21).

• The mechanisms for building and running partitions. See 10.2(24).

• The details of program execution, including program termination. See 10.2(25).

• The semantics of any nonactive partitions supported by the implementation. See 10.2(28).

15

16

17

18

19

19.1/2

20/2

21

21.1/2

22

23

24

25/2

26

26.1/2

27

28

29

29.1/2

30

31

32

33

34

35

36

37

38

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

657 10 November 2006 Implementation-Defined Characteristics M.2

• The information returned by Exception_Message. See 11.4.1(10.1/2).

• The sequence of characters of the value returned by Exceptions.Exception_Name (respectively,
Exceptions.Wide_Exception_Name) when some of the graphic characters of
Exceptions.Wide_Wide_Exception_Name are not defined in Character (respectively,
Wide_Character). See 11.4.1(12.1/2).

• The result of Exceptions.Wide_Wide_Exception_Name for exceptions declared within an
unnamed block_statement. See 11.4.1(12).

• The information returned by Exception_Information. See 11.4.1(13/2).

• Implementation-defined policy_identifiers allowed in a pragma Assertion_Policy. See
11.4.2(9/2).

• The default assertion policy. See 11.4.2(10/2).

• Existence and meaning of second parameter of pragma Unsuppress. See 11.5(27.1/2).

• Implementation-defined check names. See 11.5(27).

• The cases that cause conflicts between the representation of the ancestors of a type_declaration.
See 13.1(13.1/2).

• Any restrictions placed upon representation items. See 13.1(20).

• The interpretation of each aspect of representation. See 13.1(20).

• The set of machine scalars. See 13.3(8.1/2).

• The meaning of Size for indefinite subtypes. See 13.3(48).

• The default external representation for a type tag. See 13.3(75/1).

• What determines whether a compilation unit is the same in two different partitions. See 13.3(76).

• Implementation-defined components. See 13.5.1(15).

• If Word_Size = Storage_Unit, the default bit ordering. See 13.5.3(5).

• The contents of the visible part of package System. See 13.7(2).

• The range of Storage_Elements.Storage_Offset, the modulus of
Storage_Elements.Storage_Element, and the declaration of Storage_Elements.Integer_Address..
See 13.7.1(11).

• The contents of the visible part of package System.Machine_Code, and the meaning of
code_statements. See 13.8(7).

• The effect of unchecked conversion for instances with nonscalar result types whose effect is not
defined by the language. See 13.9(11).

• The result of unchecked conversion for instances with scalar result types whose result is not
defined by the language. See 13.9(11).

• Whether or not the implementation provides user-accessible names for the standard pool type(s).
See 13.11(17).

• This paragraph was deleted.

• The meaning of Storage_Size when neither the Storage_Size nor the Storage_Pool is specified
for an access type. See 13.11(18).

• This paragraph was deleted.

• The set of restrictions allowed in a pragma Restrictions. See 13.12(7/2).

39

39.1/2

40/2

41

41.1/2

41.2/2

41.3/2

42

42.1/2

43

44

44.1/2

45

46

47

48

49

50/2

50.1/2

51

52/2

52.1/2

53

54/2

55/2

56/2

57/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

M.2 Implementation-Defined Characteristics 10 November 2006 658

• The consequences of violating limitations on Restrictions pragmas. See 13.12(9).

• The contents of the stream elements read and written by the Read and Write attributes of
elementary types. See 13.13.2(9).

• The names and characteristics of the numeric subtypes declared in the visible part of package
Standard. See A.1(3).

• The values returned by Strings.Hash. See A.4.9(3/2).

• The accuracy actually achieved by the elementary functions. See A.5.1(1).

• The sign of a zero result from some of the operators or functions in
Numerics.Generic_Elementary_Functions, when Float_Type'Signed_Zeros is True. See
A.5.1(46).

• The value of Numerics.Discrete_Random.Max_Image_Width. See A.5.2(27).

• The value of Numerics.Float_Random.Max_Image_Width. See A.5.2(27).

• This paragraph was deleted.

• The string representation of a random number generator's state. See A.5.2(38).

• This paragraph was deleted.

• The values of the Model_Mantissa, Model_Emin, Model_Epsilon, Model, Safe_First, and
Safe_Last attributes, if the Numerics Annex is not supported. See A.5.3(72).

• This paragraph was deleted.

• The value of Buffer_Size in Storage_IO. See A.9(10).

• The external files associated with the standard input, standard output, and standard error files.
See A.10(5).

• The accuracy of the value produced by Put. See A.10.9(36).

• Current size for a stream file for which positioning is not supported. See A.12.1(1.1/1).

• The meaning of Argument_Count, Argument, and Command_Name for package
Command_Line. The bounds of type Command_Line.Exit_Status. See A.15(1).

• The interpretation of file names and directory names. See A.16(46/2).

• The maximum value for a file size in Directories. See A.16(87/2).

• The result for Directories.Size for a directory or special file See A.16(93/2).

• The result for Directories.Modification_Time for a directory or special file. See A.16(95/2).

• The interpretation of a non-null search pattern in Directories. See A.16(104/2).

• The results of a Directories search if the contents of the directory are altered while a search is in
progress. See A.16(110/2).

• The definition and meaning of an environment variable. See A.17(1/2).

• The circumstances where an environment variable cannot be defined. See A.17(16/2).

• Environment names for which Set has the effect of Clear. See A.17(17/2).

• The value of Containers.Hash_Type'Modulus. The value of Containers.Count_Type'Last. See
A.18.1(7/2).

• Implementation-defined convention names. See B.1(11).

58

59/2

60

60.1/2

61

62

63

64

65/2

66

67/2

68

69/2

70

71/2

72

72.1/1

73/2

73.1/2

73.2/2

73.3/2

73.4/2

73.5/2

73.6/2

73.7/2

73.8/2

73.9/2

73.10/2

74

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

659 10 November 2006 Implementation-Defined Characteristics M.2

• The manner of choosing link names when neither the link name nor the address of an imported
or exported entity is specified. See B.1(36).

• The meaning of link names. See B.1(36).

• The effect of pragma Linker_Options. See B.1(37).

• The contents of the visible part of package Interfaces and its language-defined descendants. See
B.2(1).

• Implementation-defined children of package Interfaces. See B.2(11).

• The definitions of certain types and constants in Interfaces.C. See B.3(41).

• The types Floating, Long_Floating, Binary, Long_Binary, Decimal_Element, and
COBOL_Character; and the initializations of the variables Ada_To_COBOL and
COBOL_To_Ada, in Interfaces.COBOL. See B.4(50).

• The types Fortran_Integer, Real, Double_Precision, and Character_Set in Interfaces.Fortran. See
B.5(17).

• Implementation-defined intrinsic subprograms. See C.1(1).

• This paragraph was deleted.

• This paragraph was deleted.

• Any restrictions on a protected procedure or its containing type when a pragma Attach_handler
or Interrupt_Handler applies. See C.3.1(17).

• Any other forms of interrupt handler supported by the Attach_Handler and Interrupt_Handler
pragmas. See C.3.1(19).

• This paragraph was deleted.

• The semantics of pragma Discard_Names. See C.5(7).

• The result of the Task_Identification.Image attribute. See C.7.1(7).

• The value of Current_Task when in a protected entry, interrupt handler, or finalization of a task
attribute. See C.7.1(17/2).

• This paragraph was deleted.

• Granularity of locking for Task_Attributes. See C.7.2(16/1).

• This paragraph was deleted.

• This paragraph was deleted.

• The declarations of Any_Priority and Priority. See D.1(11).

• Implementation-defined execution resources. See D.1(15).

• Whether, on a multiprocessor, a task that is waiting for access to a protected object keeps its
processor busy. See D.2.1(3).

• The effect of implementation-defined execution resources on task dispatching. See D.2.1(9/2).

• This paragraph was deleted.

• This paragraph was deleted.

• Implementation defined task dispatching policies. See D.2.2(18).

• The value of Default_Quantum in Dispatching.Round_Robin. See D.2.5(4).

• Implementation-defined policy_identifiers allowed in a pragma Locking_Policy. See D.3(4).

75

76

77

78

79/2

79.1/2

80/1

80.1/1

81/2

82/2

83/2

83.1/2

83.2/2

84/2

85

86

87/2

88/2

88.1/1

89/2

90/2

91

92

93

94/2

95/2

96/2

97/2

97.1/2

98

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

M.2 Implementation-Defined Characteristics 10 November 2006 660

• The locking policy if no Locking_Policy pragma applies to any unit of a partition. See D.3(6).

• Default ceiling priorities. See D.3(10/2).

• The ceiling of any protected object used internally by the implementation. See D.3(16).

• Implementation-defined queuing policies. See D.4(1/1).

• This paragraph was deleted.

• Any operations that implicitly require heap storage allocation. See D.7(8).

• When restriction No_Task_Termination applies to a partition, what happens when a task
terminates. See D.7(15.1/2).

• The behavior when restriction Max_Storage_At_Blocking is violated. See D.7(17/1).

• The behavior when restriction Max_Asynchronous_Select_Nesting is violated. See D.7(18/1).

• The behavior when restriction Max_Tasks is violated. See D.7(19).

• Whether the use of pragma Restrictions results in a reduction in program code or data size or
execution time. See D.7(20).

• This paragraph was deleted.

• This paragraph was deleted.

• This paragraph was deleted.

• The means for creating and executing distributed programs. See E(5).

• Any events that can result in a partition becoming inaccessible. See E.1(7).

• The scheduling policies, treatment of priorities, and management of shared resources between
partitions in certain cases. See E.1(11).

• This paragraph was deleted.

• Whether the execution of the remote subprogram is immediately aborted as a result of
cancellation. See E.4(13).

• The range of type System.RPC.Partition_Id. See E.5(14).

• This paragraph was deleted.

• Implementation-defined interfaces in the PCS. See E.5(26).

• The values of named numbers in the package Decimal. See F.2(7).

• The value of Max_Picture_Length in the package Text_IO.Editing See F.3.3(16).

• The value of Max_Picture_Length in the package Wide_Text_IO.Editing See F.3.4(5).

• The value of Max_Picture_Length in the package Wide_Wide_Text_IO.Editing See F.3.5(5).

• The accuracy actually achieved by the complex elementary functions and by other complex
arithmetic operations. See G.1(1).

• The sign of a zero result (or a component thereof) from any operator or function in
Numerics.Generic_Complex_Types, when Real'Signed_Zeros is True. See G.1.1(53).

• The sign of a zero result (or a component thereof) from any operator or function in
Numerics.Generic_Complex_Elementary_Functions, when Complex_Types.Real'Signed_Zeros
is True. See G.1.2(45).

• Whether the strict mode or the relaxed mode is the default. See G.2(2).

98.1/2

99

100

101

102/2

103

103.1/2

103.2/2

103.3/2

103.4/2

104/2

105/2

106/2

107/2

108

109

110

111/1

112

112.1/2

113/2

114

115

116

117

117.1/2

118

119

120

121

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

661 10 November 2006 Implementation-Defined Characteristics M.2

• The result interval in certain cases of fixed-to-float conversion. See G.2.1(10).

• The result of a floating point arithmetic operation in overflow situations, when the
Machine_Overflows attribute of the result type is False. See G.2.1(13).

• The result interval for division (or exponentiation by a negative exponent), when the floating
point hardware implements division as multiplication by a reciprocal. See G.2.1(16).

• The definition of close result set, which determines the accuracy of certain fixed point
multiplications and divisions. See G.2.3(5).

• Conditions on a universal_real operand of a fixed point multiplication or division for which the
result shall be in the perfect result set. See G.2.3(22).

• The result of a fixed point arithmetic operation in overflow situations, when the
Machine_Overflows attribute of the result type is False. See G.2.3(27).

• The result of an elementary function reference in overflow situations, when the
Machine_Overflows attribute of the result type is False. See G.2.4(4).

• The accuracy of certain elementary functions for parameters beyond the angle threshold. See
G.2.4(10).

• The value of the angle threshold, within which certain elementary functions, complex arithmetic
operations, and complex elementary functions yield results conforming to a maximum relative
error bound. See G.2.4(10).

• The result of a complex arithmetic operation or complex elementary function reference in
overflow situations, when the Machine_Overflows attribute of the corresponding real type is
False. See G.2.6(5).

• The accuracy of certain complex arithmetic operations and certain complex elementary functions
for parameters (or components thereof) beyond the angle threshold. See G.2.6(8).

• The accuracy requirements for the subprograms Solve, Inverse, Determinant, Eigenvalues and
Eigensystem for type Real_Matrix. See G.3.1(81/2).

• The accuracy requirements for the subprograms Solve, Inverse, Determinant, Eigenvalues and
Eigensystem for type Complex_Matrix. See G.3.2(149/2).

• This paragraph was deleted.

• This paragraph was deleted.

• This paragraph was deleted.

• This paragraph was deleted.

• Implementation-defined policy_identifiers allowed in a pragma Partition_Elaboration_Policy.
See H.6(4/2).

M.3 Implementation Advice
This International Standard sometimes gives advice about handling certain target machine dependences.
Each Ada implementation must document whether that advice is followed:

• Program_Error should be raised when an unsupported Specialized Needs Annex feature is used
at run time. See 1.1.3(20).

• Implementation-defined extensions to the functionality of a language-defined library unit should
be provided by adding children to the library unit. See 1.1.3(21).

122

123

124

125

126

127

128

129

130

131

132

132.1/2

132.2/2

133/2

134/2

135/2

136/2

136.1/2

1/2

2/2

3/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

M.3 Implementation Advice 10 November 2006 662

• If a bounded error or erroneous execution is detected, Program_Error should be raised. See
1.1.5(12).

• Implementation-defined pragmas should have no semantic effect for error-free programs. See
2.8(16).

• Implementation-defined pragmas should not make an illegal program legal, unless they complete
a declaration or configure the library_items in an environment. See 2.8(19).

• Long_Integer should be declared in Standard if the target supports 32-bit arithmetic. No other
named integer subtypes should be declared in Standard. See 3.5.4(28).

• For a two's complement target, modular types with a binary modulus up to System.Max_Int*2+2
should be supported. A nonbinary modulus up to Integer'Last should be supported. See
3.5.4(29).

• Program_Error should be raised for the evaluation of S'Pos for an enumeration type, if the value
of the operand does not correspond to the internal code for any enumeration literal of the type.
See 3.5.5(8).

• Long_Float should be declared in Standard if the target supports 11 or more digits of precision.
No other named float subtypes should be declared in Standard. See 3.5.7(17).

• Multidimensional arrays should be represented in row-major order, unless the array has
convention Fortran. See 3.6.2(11).

• Tags.Internal_Tag should return the tag of a type whose innermost master is the master of the
point of the function call.. See 3.9(26.1/2).

• For a real static expression with a non-formal type that is not part of a larger static expression
should be rounded the same as the target system. See 4.9(38.1/2).

• The value of Duration'Small should be no greater than 100 microseconds. See 9.6(30).

• The time base for delay_relative_statements should be monotonic. See 9.6(31).

• Leap seconds should be supported if the target system supports them. Otherwise, operations in
Calendar.Formatting should return results consistent with no leap seconds. See 9.6.1(89/2).

• When applied to a generic unit, a program unit pragma that is not a library unit pragma should
apply to each instance of the generic unit for which there is not an overriding pragma applied
directly to the instance. See 10.1.5(10/1).

• A type declared in a preelaborated package should have the same representation in every
elaboration of a given version of the package. See 10.2.1(12).

• Exception_Message by default should be short, provide information useful for debugging, and
should not include the Exception_Name. See 11.4.1(19).

• Exception_Information should provide information useful for debugging, and should include the
Exception_Name and Exception_Message. See 11.4.1(19).

• Code executed for checks that have been suppressed should be minimized. See 11.5(28).

• The recommended level of support for all representation items should be followed. See
13.1(28/2).

• Storage allocated to objects of a packed type should be minimized. See 13.2(6).

• The recommended level of support for pragma Pack should be followed. See 13.2(9).

• For an array X, X'Address should point at the first component of the array rather than the array
bounds. See 13.3(14).

4/2

5/2

6/2

7/2

8/2

9/2

10/2

11/2

12/2

13/2

14/2

15/2

16/2

17/2

18/2

19/2

20/2

21/2

22/2

23/2

24/2

25/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

663 10 November 2006 Implementation Advice M.3

• The recommended level of support for the Address attribute should be followed. See 13.3(19).

• The recommended level of support for the Alignment attribute should be followed. See 13.3(35).

• The Size of an array object should not include its bounds. See 13.3(41.1/2).

• If the Size of a subtype allows for efficient independent addressability, then the Size of most
objects of the subtype should equal the Size of the subtype. See 13.3(52).

• A Size clause on a composite subtype should not affect the internal layout of components. See
13.3(53).

• The recommended level of support for the Size attribute should be followed. See 13.3(56).

• The recommended level of support for the Component_Size attribute should be followed. See
13.3(73).

• The recommended level of support for enumeration_representation_clauses should be
followed. See 13.4(10).

• The recommended level of support for record_representation_clauses should be followed. See
13.5.1(22).

• If a component is represented using a pointer to the actual data of the component which is
contiguous with the rest of the object, then the storage place attributes should reflect the place of
the actual data. If a component is allocated discontiguously from the rest of the object, then a
warning should be generated upon reference to one of its storage place attributes. See 13.5.2(5).

• The recommended level of support for the nondefault bit ordering should be followed. See
13.5.3(8).

• Type System.Address should be a private type. See 13.7(37).

• Operations in System and its children should reflect the target environment; operations that do
not make sense should raise Program_Error. See 13.7.1(16).

• Since the Size of an array object generally does not include its bounds, the bounds should not be
part of the converted data in an instance of Unchecked_Conversion. See 13.9(14/2).

• There should not be unnecessary run-time checks on the result of an Unchecked_Conversion; the
result should be returned by reference when possible. Restrictions on Unchecked_Conversions
should be avoided. See 13.9(15).

• The recommended level of support for Unchecked_Conversion should be followed. See
13.9(17).

• Any cases in which heap storage is dynamically allocated other than as part of the evaluation of
an allocator should be documented. See 13.11(23).

• A default storage pool for an access-to-constant type should not have overhead to support
deallocation of individual objects. See 13.11(24).

• Usually, a storage pool for an access discriminant or access parameter should be created at the
point of an allocator, and be reclaimed when the designated object becomes inaccessible. For
other anonymous access types, the pool should be created at the point where the type is
elaborated and need not support deallocation of individual objects. See 13.11(25).

• For a standard storage pool, an instance of Unchecked_Deallocation should actually reclaim the
storage. See 13.11.2(17).

• The recommended level of support for the Stream_Size attribute should be followed. See
13.13.2(1.8/2).

26/2

27/2

28/2

29/2

30/2

31/2

32/2

33/2

34/2

35/2

36/2

37/2

38/2

39/2

40/2

41/2

42/2

43/2

44/2

45/2

46/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

M.3 Implementation Advice 10 November 2006 664

• If not specified, the value of Stream_Size for an elementary type should be the number of bits
that corresponds to the minimum number of stream elements required by the first subtype of the
type, rounded up to the nearest factor or multiple of the word size that is also a multiple of the
stream element size. See 13.13.2(1.6/2).

• If an implementation provides additional named predefined integer types, then the names should
end with “Integer”. If an implementation provides additional named predefined floating point
types, then the names should end with “Float”. See A.1(52).

• Implementation-defined operations on Wide_Character, Wide_String, Wide_Wide_Character,
and Wide_Wide_String should be child units of Wide_Characters or Wide_Wide_Characters.
See A.3.1(7/2).

• Bounded string objects should not be implemented by implicit pointers and dynamic allocation.
See A.4.4(106).

• Strings.Hash should be good a hash function, returning a wide spread of values for different
string values, and similar strings should rarely return the same value. See A.4.9(12/2).

• Any storage associated with an object of type Generator of the random number packages should
be reclaimed on exit from the scope of the object. See A.5.2(46).

• Each value of Initiator passed to Reset for the random number packages should initiate a distinct
sequence of random numbers, or, if that is not possible, be at least a rapidly varying function of
the initiator value. See A.5.2(47).

• Get_Immediate should be implemented with unbuffered input; input should be available
immediately; line-editing should be disabled. See A.10.7(23).

• Package Directories.Information should be provided to retrieve other information about a file.
See A.16(124/2).

• Directories.Start_Search and Directories.Search should raise Use_Error for malformed patterns.
See A.16(125/2).

• Directories.Rename should be supported at least when both New_Name and Old_Name are
simple names and New_Name does not identify an existing external file. See A.16(126/2).

• If the execution environment supports subprocesses, the current environment variables should be
used to initialize the environment variables of a subprocess. See A.17(32/2).

• Changes to the environment variables made outside the control of Environment_Variables
should be reflected immediately. See A.17(33/2).

• Containers.Hash_Type'Modulus should be at least 2**32. Containers.Count_Type'Last should
be at least 2**31–1. See A.18.1(8/2).

• The worst-case time complexity of Element for Containers.Vector should be O(log N). See
A.18.2(256/2).

• The worst-case time complexity of Append with Count = 1 when N is less than the capacity for
Containers.Vector should be O(log N). See A.18.2(257).

• The worst-case time complexity of Prepend with Count = 1 and Delete_First with Count=1 for
Containers.Vectors should be O(N log N). See A.18.2(258/2).

• The worst-case time complexity of a call on procedure Sort of an instance of
Containers.Vectors.Generic_Sorting should be O(N**2), and the average time complexity
should be better than O(N**2). See A.18.2(259/2).

• Containers.Vectors.Generic_Sorting.Sort and Containers.Vectors.Generic_Sorting.Merge should
minimize copying of elements. See A.18.2(260/2).

47/2

48/2

49/2

50/2

51/2

52/2

53/2

54/2

55/2

56/2

57/2

58/2

59/2

60/2

61/2

62/2

63/2

64/2

65/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

665 10 November 2006 Implementation Advice M.3

• Containers.Vectors.Move should not copy elements, and should minimize copying of internal
data structures. See A.18.2(261/2).

• If an exception is propagated from a vector operation, no storage should be lost, nor any
elements removed from a vector unless specified by the operation. See A.18.2(262/2).

• The worst-case time complexity of Element, Insert with Count=1, and Delete with Count=1 for
Containers.Doubly_Linked_Lists should be O(log N). See A.18.3(160/2).

• a call on procedure Sort of an instance of Containers.Doubly_Linked_Lists.Generic_Sorting
should have an average time complexity better than O(N**2) and worst case no worse than
O(N**2). See A.18.3(161/2).

• Containers.Doubly_Link_Lists.Move should not copy elements, and should minimize copying of
internal data structures. See A.18.3(162/2).

• If an exception is propagated from a list operation, no storage should be lost, nor any elements
removed from a list unless specified by the operation. See A.18.3(163/2).

• Move for a map should not copy elements, and should minimize copying of internal data
structures. See A.18.4(83/2).

• If an exception is propagated from a map operation, no storage should be lost, nor any elements
removed from a map unless specified by the operation. See A.18.4(84/2).

• The average time complexity of Element, Insert, Include, Replace, Delete, Exclude and Find
operations that take a key parameter for Containers.Hashed_Maps should be O(log N). The
average time complexity of the subprograms of Containers.Hashed_Maps that take a cursor
parameter should be O(1). See A.18.5(62/2).

• The worst-case time complexity of Element, Insert, Include, Replace, Delete, Exclude and Find
operations that take a key parameter for Containers.Ordered_Maps should be O((log N)**2) or
better. The worst-case time complexity of the subprograms of Containers.Ordered_Maps that
take a cursor parameter should be O(1). See A.18.6(95/2).

• Move for sets should not copy elements, and should minimize copying of internal data
structures. See A.18.7(104/2).

• If an exception is propagated from a set operation, no storage should be lost, nor any elements
removed from a set unless specified by the operation. See A.18.7(105/2).

• The average time complexity of the Insert, Include, Replace, Delete, Exclude and Find
operations of Containers.Hashed_Sets that take an element parameter should be O(log N). The
average time complexity of the subprograms of Containers.Hashed_Sets that take a cursor
parameter should be O(1). The average time complexity of Containers.Hashed_Sets.-
Reserve_Capacity should be O(N). See A.18.8(88/2).

• The worst-case time complexity of the Insert, Include, Replace, Delete, Exclude and Find
operations of Containers.Ordered_Sets that take an element parameter should be O((log N)**2).
The worst-case time complexity of the subprograms of Containers.Ordered_Sets that take a
cursor parameter should be O(1). See A.18.9(116/2).

• Containers.Generic_Array_Sort and Containers.Generic_Constrained_Array_Sort should have
an average time complexity better than O(N**2) and worst case no worse than O(N**2). See
A.18.16(10/2).

• Containers.Generic_Array_Sort and Containers.Generic_Constrained_Array_Sort should
minimize copying of elements. See A.18.16(11/2).

66/2

67/2

68/2

69/2

70/2

71/2

72/2

73/2

74/2

75/2

76/2

77/2

78/2

79/2

80/2

81/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

M.3 Implementation Advice 10 November 2006 666

• If pragma Export is supported for a language, the main program should be able to be written in
that language. Subprograms named "adainit" and "adafinal" should be provided for elaboration
and finalization of the environment task. See B.1(39).

• Automatic elaboration of preelaborated packages should be provided when pragma Export is
supported. See B.1(40).

• For each supported convention L other than Intrinsic, pragmas Import and Export should be
supported for objects of L-compatible types and for subprograms, and pragma Convention
should be supported for L-eligible types and for subprograms. See B.1(41).

• If an interface to C, COBOL, or Fortran is provided, the corresponding package or packages
described in Annex B, “Interface to Other Languages” should also be provided. See B.2(13).

• The constants nul, wide_nul, char16_nul, and char32_nul in package Interfaces.C should have a
representation of zero. See B.3(62.1/2).

• If C interfacing is supported, the interface correspondences between Ada and C should be
supported. See B.3(71).

• If COBOL interfacing is supported, the interface correspondences between Ada and COBOL
should be supported. See B.4(98).

• If Fortran interfacing is supported, the interface correspondences between Ada and Fortran
should be supported. See B.5(26).

• The machine code or intrinsics support should allow access to all operations normally available
to assembly language programmers for the target environment. See C.1(3).

• Interface to assembler should be supported; the default assembler should be associated with the
convention identifier Assembler. See C.1(4).

• If an entity is exported to assembly language, then the implementation should allocate it at an
addressable location even if not otherwise referenced from the Ada code. A call to a machine
code or assembler subprogram should be treated as if it could read or update every object that is
specified as exported. See C.1(5).

• Little or no overhead should be associated with calling intrinsic and machine-code subprograms.
See C.1(10).

• Intrinsic subprograms should be provided to access any machine operations that provide special
capabilities or efficiency not normally available. See C.1(16).

• If the Ceiling_Locking policy is not in effect and the target system allows for finer-grained
control of interrupt blocking, a means for the application to specify which interrupts are to be
blocked during protected actions should be provided. See C.3(28/2).

• Interrupt handlers should be called directly by the hardware. See C.3.1(20).

• Violations of any implementation-defined restrictions on interrupt handlers should be detected
before run time. See C.3.1(21).

• If implementation-defined forms of interrupt handler procedures are supported, then for each
such form of a handler, a type analogous to Parameterless_Handler should be specified in a child
package of Interrupts, with the same operations as in the predefined package Interrupts. See
C.3.2(25).

• Preelaborated packages should be implemented such that little or no code is executed at run time
for the elaboration of entities. See C.4(14).

• If pragma Discard_Names applies to an entity, then the amount of storage used for storing
names associated with that entity should be reduced. See C.5(8).

82/2

83/2

84/2

85/2

86/2

87/2

88/2

89/2

90/2

91/2

92/2

93/2

94/2

95/2

96/2

97/2

98/2

99/2

100/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

667 10 November 2006 Implementation Advice M.3

• A load or store of a volatile object whose size is a multiple of System.Storage_Unit and whose
alignment is nonzero, should be implemented by accessing exactly the bits of the object and no
others. See C.6(22/2).

• A load or store of an atomic object should be implemented by a single load or store instruction.
See C.6(23/2).

• Finalization of task attributes and reclamation of associated storage should be performed as soon
as possible after task termination. See C.7.2(30.1/2).

• If the target domain requires deterministic memory use at run time, storage for task attributes
should be pre-allocated statically and the number of attributes pre-allocated should be
documented. See C.7.2(30).

• Names that end with “_Locking” should be used for implementation-defined locking policies.
See D.3(17).

• Names that end with “_Queuing” should be used for implementation-defined queuing policies.
See D.4(16).

• The abort_statement should not require the task executing the statement to block. See D.6(9).

• On a multi-processor, the delay associated with aborting a task on another processor should be
bounded. See D.6(10).

• When feasible, specified restrictions should be used to produce a more efficient implementation.
See D.7(21).

• When appropriate, mechanisms to change the value of Tick should be provided. See D.8(47).

• Calendar.Clock and Real_Time.Clock should be transformations of the same time base. See
D.8(48).

• The “best” time base which exists in the underlying system should be available to the application
through Real_Time.Clock. See D.8(49).

• When appropriate, implementations should provide configuration mechanisms to change the
value of Execution_Time.CPU_Tick. See D.14(29/2).

• For a timing event, the handler should be executed directly by the real-time clock interrupt
mechanism. See D.15(25).

• The PCS should allow for multiple tasks to call the RPC-receiver. See E.5(28).

• The System.RPC.Write operation should raise Storage_Error if it runs out of space when writing
an item. See E.5(29).

• If COBOL (respectively, C) is supported in the target environment, then interfacing to COBOL
(respectively, C) should be supported as specified in Annex B. See F(7).

• Packed decimal should be used as the internal representation for objects of subtype S when
S'Machine_Radix = 10. See F.1(2).

• If Fortran (respectively, C) is supported in the target environment, then interfacing to Fortran
(respectively, C) should be supported as specified in Annex B. See G(7).

• Mixed real and complex operations (as well as pure-imaginary and complex operations) should
not be performed by converting the real (resp. pure-imaginary) operand to complex. See
G.1.1(56).

• If Real'Signed_Zeros is true for Numerics.Generic_Complex_Types, a rational treatment of the
signs of zero results and result components should be provided. See G.1.1(58).

101/2

102/2

103/2

104/2

105/2

106/2

107/2

108/2

109/2

110/2

111/2

112/2

113/2

114/2

115/2

116/2

117/2

118/2

119/2

120/2

121/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

M.3 Implementation Advice 10 November 2006 668

• If Complex_Types.Real'Signed_Zeros is true for Numerics.Generic_Complex_Elementary_-
Functions, a rational treatment of the signs of zero results and result components should be
provided. See G.1.2(49).

• For elementary functions, the forward trigonometric functions without a Cycle parameter should
not be implemented by calling the corresponding version with a Cycle parameter. Log without a
Base parameter should not be implemented by calling Log with a Base parameter. See
G.2.4(19).

• For complex arithmetic, the Compose_From_Polar function without a Cycle parameter should
not be implemented by calling Compose_From_Polar with a Cycle parameter. See G.2.6(15).

• Solve and Inverse for Numerics.Generic_Real_Arrays should be implemented using established
techniques such as LU decomposition and the result should be refined by an iteration on the
residuals. See G.3.1(88/2).

• The equality operator should be used to test that a matrix in Numerics.Generic_Real_Matrix is
symmetric. See G.3.1(90/2).

• Solve and Inverse for Numerics.Generic_Complex_Arrays should be implemented using
established techniques and the result should be refined by an iteration on the residuals. See
G.3.2(158/2).

• The equality and negation operators should be used to test that a matrix is Hermitian. See
G.3.2(160/2).

• Mixed real and complex operations should not be performed by converting the real operand to
complex. See G.3.2(161/2).

• The information produced by pragma Reviewable should be provided in both a human-readable
and machine-readable form, and the latter form should be documented. See H.3.1(19).

• Object code listings should be provided both in a symbolic format and in a numeric format. See
H.3.1(20).

• If the partition elaboration policy is Sequential and the Environment task becomes permanently
blocked during elaboration then the partition should be immediately terminated. See H.6(15/2).

122/2

123/2

124/2

125/2

126/2

127/2

128/2

129/2

130/2

131/2

132/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

669 10 November 2006 Glossary N

Annex N
(informative)

Glossary
This Annex contains informal descriptions of some of the terms used in this International Standard. The
index provides references to more formal definitions of all of the terms used in this International Standard.

Abstract type. An abstract type is a tagged type intended for use as an ancestor of other types, but which
is not allowed to have objects of its own.

Access type. An access type has values that designate aliased objects. Access types correspond to “pointer
types” or “reference types” in some other languages.

Aliased. An aliased view of an object is one that can be designated by an access value. Objects allocated
by allocators are aliased. Objects can also be explicitly declared as aliased with the reserved word aliased.
The Access attribute can be used to create an access value designating an aliased object.

Ancestor. An ancestor of a type is the type itself or, in the case of a type derived from other types, its
parent type or one of its progenitor types or one of their ancestors. Note that ancestor and descendant are
inverse relationships.

Array type. An array type is a composite type whose components are all of the same type. Components
are selected by indexing.

Category (of types). A category of types is a set of types with one or more common properties, such as
primitive operations. A category of types that is closed under derivation is also known as a class.

Character type. A character type is an enumeration type whose values include characters.

Class (of types). A class is a set of types that is closed under derivation, which means that if a given type
is in the class, then all types derived from that type are also in the class. The set of types of a class share
common properties, such as their primitive operations.

Compilation unit. The text of a program can be submitted to the compiler in one or more compilations.
Each compilation is a succession of compilation_units. A compilation_unit contains either the declaration,
the body, or a renaming of a program unit.

Composite type. A composite type may have components.

Construct. A construct is a piece of text (explicit or implicit) that is an instance of a syntactic category
defined under “Syntax”.

Controlled type. A controlled type supports user-defined assignment and finalization. Objects are always
finalized before being destroyed.

Declaration. A declaration is a language construct that associates a name with (a view of) an entity. A
declaration may appear explicitly in the program text (an explicit declaration), or may be supposed to
occur at a given place in the text as a consequence of the semantics of another construct (an implicit
declaration).

This paragraph was deleted.

Derived type. A derived type is a type defined in terms of one or more other types given in a derived type
definition. The first of those types is the parent type of the derived type and any others are progenitor

1/2

1.1/2

2

3

3.1/2

4

4.1/2

5

6/2

7

8/2

9

10

11

12/2

13/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

N Glossary 10 November 2006 670

types. Each class containing the parent type or a progenitor type also contains the derived type. The
derived type inherits properties such as components and primitive operations from the parent and
progenitors. A type together with the types derived from it (directly or indirectly) form a derivation class.

Descendant. A type is a descendant of itself, its parent and progenitor types, and their ancestors. Note that
descendant and ancestor are inverse relationships.

Discrete type. A discrete type is either an integer type or an enumeration type. Discrete types may be
used, for example, in case_statements and as array indices.

Discriminant. A discriminant is a parameter for a composite type. It can control, for example, the bounds
of a component of the type if the component is an array. A discriminant for a task type can be used to pass
data to a task of the type upon creation.

Elaboration. The process by which a declaration achieves its run-time effect is called elaboration.
Elaboration is one of the forms of execution.

Elementary type. An elementary type does not have components.

Enumeration type. An enumeration type is defined by an enumeration of its values, which may be named
by identifiers or character literals.

Evaluation. The process by which an expression achieves its run-time effect is called evaluation.
Evaluation is one of the forms of execution.

Exception. An exception represents a kind of exceptional situation; an occurrence of such a situation (at
run time) is called an exception occurrence. To raise an exception is to abandon normal program
execution so as to draw attention to the fact that the corresponding situation has arisen. Performing some
actions in response to the arising of an exception is called handling the exception.

Execution. The process by which a construct achieves its run-time effect is called execution. Execution of
a declaration is also called elaboration. Execution of an expression is also called evaluation.

Function. A function is a form of subprogram that returns a result and can be called as part of an
expression.

Generic unit. A generic unit is a template for a (nongeneric) program unit; the template can be
parameterized by objects, types, subprograms, and packages. An instance of a generic unit is created by a
generic_instantiation. The rules of the language are enforced when a generic unit is compiled, using a
generic contract model; additional checks are performed upon instantiation to verify the contract is met.
That is, the declaration of a generic unit represents a contract between the body of the generic and
instances of the generic. Generic units can be used to perform the role that macros sometimes play in other
languages.

Incomplete type. An incomplete type gives a view of a type that reveals only some of its properties. The
remaining properties are provided by the full view given elsewhere. Incomplete types can be used for
defining recursive data structures.

Integer type. Integer types comprise the signed integer types and the modular types. A signed integer type
has a base range that includes both positive and negative numbers, and has operations that may raise an
exception when the result is outside the base range. A modular type has a base range whose lower bound is
zero, and has operations with “wraparound” semantics. Modular types subsume what are called “unsigned
types” in some other languages.

13.1/2

14

15/2

15.1/2

16

17

17.1/2

18

19

19.1/2

20

20.1/2

21

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

671 10 November 2006 Glossary N

Interface type. An interface type is a form of abstract tagged type which has no components or concrete
operations except possibly null procedures. Interface types are used for composing other interfaces and
tagged types and thereby provide multiple inheritance. Only an interface type can be used as a progenitor
of another type.

Library unit. A library unit is a separately compiled program unit, and is always a package, subprogram,
or generic unit. Library units may have other (logically nested) library units as children, and may have
other program units physically nested within them. A root library unit, together with its children and
grandchildren and so on, form a subsystem.

Limited type. A limited type is a type for which copying (such as in an assignment_statement) is not
allowed. A nonlimited type is a type for which copying is allowed.

Object. An object is either a constant or a variable. An object contains a value. An object is created by an
object_declaration or by an allocator. A formal parameter is (a view of) an object. A subcomponent of an
object is an object.

Overriding operation. An overriding operation is one that replaces an inherited primitive operation.
Operations may be marked explicitly as overriding or not overriding.

Package. Packages are program units that allow the specification of groups of logically related entities.
Typically, a package contains the declaration of a type (often a private type or private extension) along
with the declarations of primitive subprograms of the type, which can be called from outside the package,
while their inner workings remain hidden from outside users.

Parent. The parent of a derived type is the first type given in the definition of the derived type. The parent
can be almost any kind of type, including an interface type.

Partition. A partition is a part of a program. Each partition consists of a set of library units. Each partition
may run in a separate address space, possibly on a separate computer. A program may contain just one
partition. A distributed program typically contains multiple partitions, which can execute concurrently.

Pragma. A pragma is a compiler directive. There are language-defined pragmas that give instructions for
optimization, listing control, etc. An implementation may support additional (implementation-defined)
pragmas.

Primitive operations. The primitive operations of a type are the operations (such as subprograms)
declared together with the type declaration. They are inherited by other types in the same class of types.
For a tagged type, the primitive subprograms are dispatching subprograms, providing run-time
polymorphism. A dispatching subprogram may be called with statically tagged operands, in which case the
subprogram body invoked is determined at compile time. Alternatively, a dispatching subprogram may be
called using a dispatching call, in which case the subprogram body invoked is determined at run time.

Private extension. A private extension is a type that extends another type, with the additional properties
hidden from its clients.

Private type. A private type gives a view of a type that reveals only some of its properties. The remaining
properties are provided by the full view given elsewhere. Private types can be used for defining
abstractions that hide unnecessary details from their clients.

Procedure. A procedure is a form of subprogram that does not return a result and can only be called by a
statement.

21.1/2

22

23/2

24

24.1/2

25

25.1/2

26

27

28

29/2

30/2

30.1/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

N Glossary 10 November 2006 672

Progenitor. A progenitor of a derived type is one of the types given in the definition of the derived type
other than the first. A progenitor is always an interface type. Interfaces, tasks, and protected types may
also have progenitors.

Program. A program is a set of partitions, each of which may execute in a separate address space,
possibly on a separate computer. A partition consists of a set of library units.

Program unit. A program unit is either a package, a task unit, a protected unit, a protected entry, a
generic unit, or an explicitly declared subprogram other than an enumeration literal. Certain kinds of
program units can be separately compiled. Alternatively, they can appear physically nested within other
program units.

Protected type. A protected type is a composite type whose components are accessible only through one
of its protected operations which synchronize concurrent access by multiple tasks.

Real type. A real type has values that are approximations of the real numbers. Floating point and fixed
point types are real types.

Record extension. A record extension is a type that extends another type by adding additional
components.

Record type. A record type is a composite type consisting of zero or more named components, possibly of
different types.

Renaming. A renaming_declaration is a declaration that does not define a new entity, but instead defines
a view of an existing entity.

Scalar type. A scalar type is either a discrete type or a real type.

Subprogram. A subprogram is a section of a program that can be executed in various contexts. It is
invoked by a subprogram call that may qualify the effect of the subprogram through the passing of
parameters. There are two forms of subprograms: functions, which return values, and procedures, which
do not.

Subtype. A subtype is a type together with a constraint or null exclusion, which constrains the values of
the subtype to satisfy a certain condition. The values of a subtype are a subset of the values of its type.

Synchronized. A synchronized entity is one that will work safely with multiple tasks at one time. A
synchronized interface can be an ancestor of a task or a protected type. Such a task or protected type is
called a synchronized tagged type.

Tagged type. The objects of a tagged type have a run-time type tag, which indicates the specific type with
which the object was originally created. An operand of a class-wide tagged type can be used in a
dispatching call; the tag indicates which subprogram body to invoke. Nondispatching calls, in which the
subprogram body to invoke is determined at compile time, are also allowed. Tagged types may be
extended with additional components.

Task type. A task type is a composite type used to represent active entities which execute concurrently
and which can communicate via queued task entries. The top-level task of a partition is called the
environment task.

Type. Each object has a type. A type has an associated set of values, and a set of primitive operations
which implement the fundamental aspects of its semantics. Types are grouped into categories. Most
language-defined categories of types are also classes of types.

30.2/2

31

32

33/2

34

35

36

36.1/2

37

37.1/2

38/2

38.1/2

39

40/2

41/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

673 10 November 2006 Glossary N

View. A view of an entity reveals some or all of the properties of the entity. A single entity may have
multiple views.

42/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

675 10 November 2006 Syntax Summary P

Annex P
(informative)

Syntax Summary
This Annex summarizes the complete syntax of the language. See 1.1.4 for a description of the notation
used.

2.3:
identifier ::=
 identifier_start {identifier_start | identifier_extend}
2.3:
identifier_start ::=
 letter_uppercase
 | letter_lowercase
 | letter_titlecase
 | letter_modifier
 | letter_other
 | number_letter
2.3:
identifier_extend ::=
 mark_non_spacing
 | mark_spacing_combining
 | number_decimal
 | punctuation_connector
 | other_format
2.4:
numeric_literal ::= decimal_literal | based_literal
2.4.1:
decimal_literal ::= numeral [.numeral] [exponent]
2.4.1:
numeral ::= digit {[underline] digit}
2.4.1:
exponent ::= E [+] numeral | E – numeral
2.4.1:
digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
2.4.2:
based_literal ::=
 base # based_numeral [.based_numeral] # [exponent]
2.4.2:
base ::= numeral
2.4.2:
based_numeral ::=
 extended_digit {[underline] extended_digit}
2.4.2:
extended_digit ::= digit | A | B | C | D | E | F
2.5:
character_literal ::= 'graphic_character'
2.6:
string_literal ::= "{string_element}"
2.6:
string_element ::= "" | non_quotation_mark_graphic_character
2.7:
comment ::= --{non_end_of_line_character}

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

P Syntax Summary 10 November 2006 676

2.8:
pragma ::=
 pragma identifier [(pragma_argument_association {, pragma_argument_association})];
2.8:
pragma_argument_association ::=
 [pragma_argument_identifier =>] name
 | [pragma_argument_identifier =>] expression
3.1:
basic_declaration ::=
 type_declaration | subtype_declaration
 | object_declaration | number_declaration
 | subprogram_declaration | abstract_subprogram_declaration
 | null_procedure_declaration | package_declaration
 | renaming_declaration | exception_declaration
 | generic_declaration | generic_instantiation
3.1:
defining_identifier ::= identifier
3.2.1:
type_declaration ::= full_type_declaration
 | incomplete_type_declaration
 | private_type_declaration
 | private_extension_declaration
3.2.1:
full_type_declaration ::=
 type defining_identifier [known_discriminant_part] is type_definition;
 | task_type_declaration
 | protected_type_declaration
3.2.1:
type_definition ::=
 enumeration_type_definition | integer_type_definition
 | real_type_definition | array_type_definition
 | record_type_definition | access_type_definition
 | derived_type_definition | interface_type_definition
3.2.2:
subtype_declaration ::=
 subtype defining_identifier is subtype_indication;
3.2.2:
subtype_indication ::= [null_exclusion] subtype_mark [constraint]
3.2.2:
subtype_mark ::= subtype_name
3.2.2:
constraint ::= scalar_constraint | composite_constraint
3.2.2:
scalar_constraint ::=
 range_constraint | digits_constraint | delta_constraint
3.2.2:
composite_constraint ::=
 index_constraint | discriminant_constraint
3.3.1:
object_declaration ::=
 defining_identifier_list : [aliased] [constant] subtype_indication [:= expression];
 | defining_identifier_list : [aliased] [constant] access_definition [:= expression];
 | defining_identifier_list : [aliased] [constant] array_type_definition [:= expression];
 | single_task_declaration
 | single_protected_declaration
3.3.1:
defining_identifier_list ::=
 defining_identifier {, defining_identifier}

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

677 10 November 2006 Syntax Summary P

3.3.2:
number_declaration ::=
 defining_identifier_list : constant := static_expression;
3.4:
derived_type_definition ::=
 [abstract] [limited] new parent_subtype_indication [[and interface_list] record_extension_part]
3.5:
range_constraint ::= range range
3.5:
range ::= range_attribute_reference
 | simple_expression .. simple_expression
3.5.1:
enumeration_type_definition ::=
 (enumeration_literal_specification {, enumeration_literal_specification})
3.5.1:
enumeration_literal_specification ::= defining_identifier | defining_character_literal
3.5.1:
defining_character_literal ::= character_literal
3.5.4:
integer_type_definition ::= signed_integer_type_definition | modular_type_definition
3.5.4:
signed_integer_type_definition ::= range static_simple_expression .. static_simple_expression
3.5.4:
modular_type_definition ::= mod static_expression
3.5.6:
real_type_definition ::=
 floating_point_definition | fixed_point_definition
3.5.7:
floating_point_definition ::=
 digits static_expression [real_range_specification]
3.5.7:
real_range_specification ::=
 range static_simple_expression .. static_simple_expression
3.5.9:
fixed_point_definition ::= ordinary_fixed_point_definition | decimal_fixed_point_definition
3.5.9:
ordinary_fixed_point_definition ::=
 delta static_expression real_range_specification
3.5.9:
decimal_fixed_point_definition ::=
 delta static_expression digits static_expression [real_range_specification]
3.5.9:
digits_constraint ::=
 digits static_expression [range_constraint]
3.6:
array_type_definition ::=
 unconstrained_array_definition | constrained_array_definition
3.6:
unconstrained_array_definition ::=
 array(index_subtype_definition {, index_subtype_definition}) of component_definition
3.6:
index_subtype_definition ::= subtype_mark range <>
3.6:
constrained_array_definition ::=
 array (discrete_subtype_definition {, discrete_subtype_definition}) of component_definition

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

P Syntax Summary 10 November 2006 678

3.6:
discrete_subtype_definition ::= discrete_subtype_indication | range
3.6:
component_definition ::=
 [aliased] subtype_indication
 | [aliased] access_definition
3.6.1:
index_constraint ::= (discrete_range {, discrete_range})
3.6.1:
discrete_range ::= discrete_subtype_indication | range
3.7:
discriminant_part ::= unknown_discriminant_part | known_discriminant_part
3.7:
unknown_discriminant_part ::= (<>)
3.7:
known_discriminant_part ::=
 (discriminant_specification {; discriminant_specification})
3.7:
discriminant_specification ::=
 defining_identifier_list : [null_exclusion] subtype_mark [:= default_expression]
 | defining_identifier_list : access_definition [:= default_expression]
3.7:
default_expression ::= expression
3.7.1:
discriminant_constraint ::=
 (discriminant_association {, discriminant_association})
3.7.1:
discriminant_association ::=
 [discriminant_selector_name {| discriminant_selector_name} =>] expression
3.8:
record_type_definition ::= [[abstract] tagged] [limited] record_definition
3.8:
record_definition ::=
 record
 component_list
 end record
 | null record
3.8:
component_list ::=
 component_item {component_item}
 | {component_item} variant_part
 | null;
3.8:
component_item ::= component_declaration | aspect_clause
3.8:
component_declaration ::=
 defining_identifier_list : component_definition [:= default_expression];
3.8.1:
variant_part ::=
 case discriminant_direct_name is
 variant
 {variant}
 end case;

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

679 10 November 2006 Syntax Summary P

3.8.1:
variant ::=
 when discrete_choice_list =>
 component_list
3.8.1:
discrete_choice_list ::= discrete_choice {| discrete_choice}
3.8.1:
discrete_choice ::= expression | discrete_range | others
3.9.1:
record_extension_part ::= with record_definition
3.9.3:
abstract_subprogram_declaration ::=
 [overriding_indicator]
 subprogram_specification is abstract;
3.9.4:
interface_type_definition ::=
 [limited | task | protected | synchronized] interface [and interface_list]
3.9.4:
interface_list ::= interface_subtype_mark {and interface_subtype_mark}
3.10:
access_type_definition ::=
 [null_exclusion] access_to_object_definition
 | [null_exclusion] access_to_subprogram_definition
3.10:
access_to_object_definition ::=
 access [general_access_modifier] subtype_indication
3.10:
general_access_modifier ::= all | constant
3.10:
access_to_subprogram_definition ::=
 access [protected] procedure parameter_profile
 | access [protected] function parameter_and_result_profile
3.10:
null_exclusion ::= not null
3.10:
access_definition ::=
 [null_exclusion] access [constant] subtype_mark
 | [null_exclusion] access [protected] procedure parameter_profile
 | [null_exclusion] access [protected] function parameter_and_result_profile
3.10.1:
incomplete_type_declaration ::= type defining_identifier [discriminant_part] [is tagged];
3.11:
declarative_part ::= {declarative_item}
3.11:
declarative_item ::=
 basic_declarative_item | body
3.11:
basic_declarative_item ::=
 basic_declaration | aspect_clause | use_clause
3.11:
body ::= proper_body | body_stub
3.11:
proper_body ::=
 subprogram_body | package_body | task_body | protected_body

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

P Syntax Summary 10 November 2006 680

4.1:
name ::=
 direct_name | explicit_dereference
 | indexed_component | slice
 | selected_component | attribute_reference
 | type_conversion | function_call
 | character_literal
4.1:
direct_name ::= identifier | operator_symbol
4.1:
prefix ::= name | implicit_dereference
4.1:
explicit_dereference ::= name.all
4.1:
implicit_dereference ::= name
4.1.1:
indexed_component ::= prefix(expression {, expression})
4.1.2:
slice ::= prefix(discrete_range)
4.1.3:
selected_component ::= prefix . selector_name
4.1.3:
selector_name ::= identifier | character_literal | operator_symbol
4.1.4:
attribute_reference ::= prefix'attribute_designator
4.1.4:
attribute_designator ::=
 identifier[(static_expression)]
 | Access | Delta | Digits
4.1.4:
range_attribute_reference ::= prefix'range_attribute_designator
4.1.4:
range_attribute_designator ::= Range[(static_expression)]
4.3:
aggregate ::= record_aggregate | extension_aggregate | array_aggregate
4.3.1:
record_aggregate ::= (record_component_association_list)
4.3.1:
record_component_association_list ::=
 record_component_association {, record_component_association}
 | null record
4.3.1:
record_component_association ::=
 [component_choice_list =>] expression
 | component_choice_list => <>
4.3.1:
component_choice_list ::=
 component_selector_name {| component_selector_name}
 | others
4.3.2:
extension_aggregate ::=
 (ancestor_part with record_component_association_list)
4.3.2:
ancestor_part ::= expression | subtype_mark

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

681 10 November 2006 Syntax Summary P

4.3.3:
array_aggregate ::=
 positional_array_aggregate | named_array_aggregate
4.3.3:
positional_array_aggregate ::=
 (expression, expression {, expression})
 | (expression {, expression}, others => expression)
 | (expression {, expression}, others => <>)
4.3.3:
named_array_aggregate ::=
 (array_component_association {, array_component_association})
4.3.3:
array_component_association ::=
 discrete_choice_list => expression
 | discrete_choice_list => <>
4.4:
expression ::=
 relation {and relation} | relation {and then relation}
 | relation {or relation} | relation {or else relation}
 | relation {xor relation}
4.4:
relation ::=
 simple_expression [relational_operator simple_expression]
 | simple_expression [not] in range
 | simple_expression [not] in subtype_mark
4.4:
simple_expression ::= [unary_adding_operator] term {binary_adding_operator term}
4.4:
term ::= factor {multiplying_operator factor}
4.4:
factor ::= primary [** primary] | abs primary | not primary
4.4:
primary ::=
 numeric_literal | null | string_literal | aggregate
 | name | qualified_expression | allocator | (expression)
4.5:
logical_operator ::= and | or | xor
4.5:
relational_operator ::= = | /= | < | <= | > | >=
4.5:
binary_adding_operator ::= + | – | &
4.5:
unary_adding_operator ::= + | –
4.5:
multiplying_operator ::= * | / | mod | rem
4.5:
highest_precedence_operator ::= ** | abs | not
4.6:
type_conversion ::=
 subtype_mark(expression)
 | subtype_mark(name)
4.7:
qualified_expression ::=
 subtype_mark'(expression) | subtype_mark'aggregate

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

P Syntax Summary 10 November 2006 682

4.8:
allocator ::=
 new subtype_indication | new qualified_expression
5.1:
sequence_of_statements ::= statement {statement}
5.1:
statement ::=
 {label} simple_statement | {label} compound_statement
5.1:
simple_statement ::= null_statement
 | assignment_statement | exit_statement
 | goto_statement | procedure_call_statement
 | simple_return_statement | entry_call_statement
 | requeue_statement | delay_statement
 | abort_statement | raise_statement
 | code_statement
5.1:
compound_statement ::=
 if_statement | case_statement
 | loop_statement | block_statement
 | extended_return_statement
 | accept_statement | select_statement
5.1:
null_statement ::= null;
5.1:
label ::= <<label_statement_identifier>>
5.1:
statement_identifier ::= direct_name
5.2:
assignment_statement ::=
 variable_name := expression;
5.3:
if_statement ::=
 if condition then
 sequence_of_statements
 {elsif condition then
 sequence_of_statements}
 [else
 sequence_of_statements]
 end if;
5.3:
condition ::= boolean_expression
5.4:
case_statement ::=
 case expression is
 case_statement_alternative
 {case_statement_alternative}
 end case;
5.4:
case_statement_alternative ::=
 when discrete_choice_list =>
 sequence_of_statements
5.5:
loop_statement ::=
 [loop_statement_identifier:]
 [iteration_scheme] loop
 sequence_of_statements
 end loop [loop_identifier];

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

683 10 November 2006 Syntax Summary P

5.5:
iteration_scheme ::= while condition
 | for loop_parameter_specification
5.5:
loop_parameter_specification ::=
 defining_identifier in [reverse] discrete_subtype_definition
5.6:
block_statement ::=
 [block_statement_identifier:]
 [declare
 declarative_part]
 begin
 handled_sequence_of_statements
 end [block_identifier];
5.7:
exit_statement ::=
 exit [loop_name] [when condition];
5.8:
goto_statement ::= goto label_name;
6.1:
subprogram_declaration ::=
 [overriding_indicator]
 subprogram_specification;
6.1:
subprogram_specification ::=
 procedure_specification
 | function_specification
6.1:
procedure_specification ::= procedure defining_program_unit_name parameter_profile
6.1:
function_specification ::= function defining_designator parameter_and_result_profile
6.1:
designator ::= [parent_unit_name .]identifier | operator_symbol
6.1:
defining_designator ::= defining_program_unit_name | defining_operator_symbol
6.1:
defining_program_unit_name ::= [parent_unit_name .]defining_identifier
6.1:
operator_symbol ::= string_literal
6.1:
defining_operator_symbol ::= operator_symbol
6.1:
parameter_profile ::= [formal_part]
6.1:
parameter_and_result_profile ::=
 [formal_part] return [null_exclusion] subtype_mark
 | [formal_part] return access_definition
6.1:
formal_part ::=
 (parameter_specification {; parameter_specification})
6.1:
parameter_specification ::=
 defining_identifier_list : mode [null_exclusion] subtype_mark [:= default_expression]
 | defining_identifier_list : access_definition [:= default_expression]
6.1:
mode ::= [in] | in out | out

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

P Syntax Summary 10 November 2006 684

6.3:
subprogram_body ::=
 [overriding_indicator]
 subprogram_specification is
 declarative_part
 begin
 handled_sequence_of_statements
 end [designator];
6.4:
procedure_call_statement ::=
 procedure_name;
 | procedure_prefix actual_parameter_part;
6.4:
function_call ::=
 function_name
 | function_prefix actual_parameter_part
6.4:
actual_parameter_part ::=
 (parameter_association {, parameter_association})
6.4:
parameter_association ::=
 [formal_parameter_selector_name =>] explicit_actual_parameter
6.4:
explicit_actual_parameter ::= expression | variable_name
6.5:
simple_return_statement ::= return [expression];
6.5:
extended_return_statement ::=
 return defining_identifier : [aliased] return_subtype_indication [:= expression] [do
 handled_sequence_of_statements
 end return];
6.5:
return_subtype_indication ::= subtype_indication | access_definition
6.7:
null_procedure_declaration ::=
 [overriding_indicator]
 procedure_specification is null;
7.1:
package_declaration ::= package_specification;
7.1:
package_specification ::=
 package defining_program_unit_name is
 {basic_declarative_item}
 [private
 {basic_declarative_item}]
 end [[parent_unit_name.]identifier]
7.2:
package_body ::=
 package body defining_program_unit_name is
 declarative_part
 [begin
 handled_sequence_of_statements]
 end [[parent_unit_name.]identifier];
7.3:
private_type_declaration ::=
 type defining_identifier [discriminant_part] is [[abstract] tagged] [limited] private;

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

685 10 November 2006 Syntax Summary P

7.3:
private_extension_declaration ::=
 type defining_identifier [discriminant_part] is
 [abstract] [limited | synchronized] new ancestor_subtype_indication
 [and interface_list] with private;
8.3.1:
overriding_indicator ::= [not] overriding
8.4:
use_clause ::= use_package_clause | use_type_clause
8.4:
use_package_clause ::= use package_name {, package_name};
8.4:
use_type_clause ::= use type subtype_mark {, subtype_mark};
8.5:
renaming_declaration ::=
 object_renaming_declaration
 | exception_renaming_declaration
 | package_renaming_declaration
 | subprogram_renaming_declaration
 | generic_renaming_declaration
8.5.1:
object_renaming_declaration ::=
 defining_identifier : [null_exclusion] subtype_mark renames object_name;
 | defining_identifier : access_definition renames object_name;
8.5.2:
exception_renaming_declaration ::= defining_identifier : exception renames exception_name;
8.5.3:
package_renaming_declaration ::= package defining_program_unit_name renames package_name;
8.5.4:
subprogram_renaming_declaration ::=
 [overriding_indicator]
 subprogram_specification renames callable_entity_name;
8.5.5:
generic_renaming_declaration ::=
 generic package defining_program_unit_name renames generic_package_name;
 | generic procedure defining_program_unit_name renames generic_procedure_name;
 | generic function defining_program_unit_name renames generic_function_name;
9.1:
task_type_declaration ::=
 task type defining_identifier [known_discriminant_part] [is
 [new interface_list with]
 task_definition];
9.1:
single_task_declaration ::=
 task defining_identifier [is
 [new interface_list with]
 task_definition];
9.1:
task_definition ::=
 {task_item}
 [private
 {task_item}]
 end [task_identifier]
9.1:
task_item ::= entry_declaration | aspect_clause

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

P Syntax Summary 10 November 2006 686

9.1:
task_body ::=
 task body defining_identifier is
 declarative_part
 begin
 handled_sequence_of_statements
 end [task_identifier];
9.4:
protected_type_declaration ::=
 protected type defining_identifier [known_discriminant_part] is
 [new interface_list with]
 protected_definition;
9.4:
single_protected_declaration ::=
 protected defining_identifier is
 [new interface_list with]
 protected_definition;
9.4:
protected_definition ::=
 { protected_operation_declaration }
[private
 { protected_element_declaration }]
 end [protected_identifier]
9.4:
protected_operation_declaration ::= subprogram_declaration
 | entry_declaration
 | aspect_clause
9.4:
protected_element_declaration ::= protected_operation_declaration
 | component_declaration
9.4:
protected_body ::=
 protected body defining_identifier is
 { protected_operation_item }
 end [protected_identifier];
9.4:
protected_operation_item ::= subprogram_declaration
 | subprogram_body
 | entry_body
 | aspect_clause
9.5.2:
entry_declaration ::=
 [overriding_indicator]
 entry defining_identifier [(discrete_subtype_definition)] parameter_profile;
9.5.2:
accept_statement ::=
 accept entry_direct_name [(entry_index)] parameter_profile [do
 handled_sequence_of_statements
 end [entry_identifier]];
9.5.2:
entry_index ::= expression
9.5.2:
entry_body ::=
 entry defining_identifier entry_body_formal_part entry_barrier is
 declarative_part
 begin
 handled_sequence_of_statements
 end [entry_identifier];

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

687 10 November 2006 Syntax Summary P

9.5.2:
entry_body_formal_part ::= [(entry_index_specification)] parameter_profile
9.5.2:
entry_barrier ::= when condition
9.5.2:
entry_index_specification ::= for defining_identifier in discrete_subtype_definition
9.5.3:
entry_call_statement ::= entry_name [actual_parameter_part];
9.5.4:
requeue_statement ::= requeue entry_name [with abort];
9.6:
delay_statement ::= delay_until_statement | delay_relative_statement
9.6:
delay_until_statement ::= delay until delay_expression;
9.6:
delay_relative_statement ::= delay delay_expression;
9.7:
select_statement ::=
 selective_accept
 | timed_entry_call
 | conditional_entry_call
 | asynchronous_select
9.7.1:
selective_accept ::=
 select
 [guard]
 select_alternative
{ or
 [guard]
 select_alternative }
[else
 sequence_of_statements]
 end select;
9.7.1:
guard ::= when condition =>
9.7.1:
select_alternative ::=
 accept_alternative
 | delay_alternative
 | terminate_alternative
9.7.1:
accept_alternative ::=
 accept_statement [sequence_of_statements]
9.7.1:
delay_alternative ::=
 delay_statement [sequence_of_statements]
9.7.1:
terminate_alternative ::= terminate;
9.7.2:
timed_entry_call ::=
 select
 entry_call_alternative
 or
 delay_alternative
 end select;

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

P Syntax Summary 10 November 2006 688

9.7.2:
entry_call_alternative ::=
 procedure_or_entry_call [sequence_of_statements]
9.7.2:
procedure_or_entry_call ::=
 procedure_call_statement | entry_call_statement
9.7.3:
conditional_entry_call ::=
 select
 entry_call_alternative
 else
 sequence_of_statements
 end select;
9.7.4:
asynchronous_select ::=
 select
 triggering_alternative
 then abort
 abortable_part
 end select;
9.7.4:
triggering_alternative ::= triggering_statement [sequence_of_statements]
9.7.4:
triggering_statement ::= procedure_or_entry_call | delay_statement
9.7.4:
abortable_part ::= sequence_of_statements
9.8:
abort_statement ::= abort task_name {, task_name};
10.1.1:
compilation ::= {compilation_unit}
10.1.1:
compilation_unit ::=
 context_clause library_item
 | context_clause subunit
10.1.1:
library_item ::= [private] library_unit_declaration
 | library_unit_body
 | [private] library_unit_renaming_declaration
10.1.1:
library_unit_declaration ::=
 subprogram_declaration | package_declaration
 | generic_declaration | generic_instantiation
10.1.1:
library_unit_renaming_declaration ::=
 package_renaming_declaration
 | generic_renaming_declaration
 | subprogram_renaming_declaration
10.1.1:
library_unit_body ::= subprogram_body | package_body
10.1.1:
parent_unit_name ::= name
10.1.2:
context_clause ::= {context_item}
10.1.2:
context_item ::= with_clause | use_clause

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

689 10 November 2006 Syntax Summary P

10.1.2:
with_clause ::= limited_with_clause | nonlimited_with_clause
10.1.2:
limited_with_clause ::= limited [private] with library_unit_name {, library_unit_name};
10.1.2:
nonlimited_with_clause ::= [private] with library_unit_name {, library_unit_name};
10.1.3:
body_stub ::= subprogram_body_stub | package_body_stub | task_body_stub | protected_body_stub
10.1.3:
subprogram_body_stub ::=
 [overriding_indicator]
 subprogram_specification is separate;
10.1.3:
package_body_stub ::= package body defining_identifier is separate;
10.1.3:
task_body_stub ::= task body defining_identifier is separate;
10.1.3:
protected_body_stub ::= protected body defining_identifier is separate;
10.1.3:
subunit ::= separate (parent_unit_name) proper_body
11.1:
exception_declaration ::= defining_identifier_list : exception;
11.2:
handled_sequence_of_statements ::=
 sequence_of_statements
 [exception
 exception_handler
 {exception_handler}]
11.2:
exception_handler ::=
 when [choice_parameter_specification:] exception_choice {| exception_choice} =>
 sequence_of_statements
11.2:
choice_parameter_specification ::= defining_identifier
11.2:
exception_choice ::= exception_name | others
11.3:
raise_statement ::= raise;
 | raise exception_name [with string_expression];
12.1:
generic_declaration ::= generic_subprogram_declaration | generic_package_declaration
12.1:
generic_subprogram_declaration ::=
 generic_formal_part subprogram_specification;
12.1:
generic_package_declaration ::=
 generic_formal_part package_specification;
12.1:
generic_formal_part ::= generic {generic_formal_parameter_declaration | use_clause}
12.1:
generic_formal_parameter_declaration ::=
 formal_object_declaration
 | formal_type_declaration
 | formal_subprogram_declaration
 | formal_package_declaration

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

P Syntax Summary 10 November 2006 690

12.3:
generic_instantiation ::=
 package defining_program_unit_name is
 new generic_package_name [generic_actual_part];
 | [overriding_indicator]
 procedure defining_program_unit_name is
 new generic_procedure_name [generic_actual_part];
 | [overriding_indicator]
 function defining_designator is
 new generic_function_name [generic_actual_part];
12.3:
generic_actual_part ::=
 (generic_association {, generic_association})
12.3:
generic_association ::=
 [generic_formal_parameter_selector_name =>] explicit_generic_actual_parameter
12.3:
explicit_generic_actual_parameter ::= expression | variable_name
 | subprogram_name | entry_name | subtype_mark
 | package_instance_name
12.4:
formal_object_declaration ::=
 defining_identifier_list : mode [null_exclusion] subtype_mark [:= default_expression];
 defining_identifier_list : mode access_definition [:= default_expression];
12.5:
formal_type_declaration ::=
 type defining_identifier[discriminant_part] is formal_type_definition;
12.5:
formal_type_definition ::=
 formal_private_type_definition
 | formal_derived_type_definition
 | formal_discrete_type_definition
 | formal_signed_integer_type_definition
 | formal_modular_type_definition
 | formal_floating_point_definition
 | formal_ordinary_fixed_point_definition
 | formal_decimal_fixed_point_definition
 | formal_array_type_definition
 | formal_access_type_definition
 | formal_interface_type_definition
12.5.1:
formal_private_type_definition ::= [[abstract] tagged] [limited] private
12.5.1:
formal_derived_type_definition ::=
 [abstract] [limited | synchronized] new subtype_mark [[and interface_list]with private]
12.5.2:
formal_discrete_type_definition ::= (<>)
12.5.2:
formal_signed_integer_type_definition ::= range <>
12.5.2:
formal_modular_type_definition ::= mod <>
12.5.2:
formal_floating_point_definition ::= digits <>
12.5.2:
formal_ordinary_fixed_point_definition ::= delta <>
12.5.2:
formal_decimal_fixed_point_definition ::= delta <> digits <>

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

691 10 November 2006 Syntax Summary P

12.5.3:
formal_array_type_definition ::= array_type_definition
12.5.4:
formal_access_type_definition ::= access_type_definition
12.5.5:
formal_interface_type_definition ::= interface_type_definition
12.6:
formal_subprogram_declaration ::= formal_concrete_subprogram_declaration
 | formal_abstract_subprogram_declaration
12.6:
formal_concrete_subprogram_declaration ::=
 with subprogram_specification [is subprogram_default];
12.6:
formal_abstract_subprogram_declaration ::=
 with subprogram_specification is abstract [subprogram_default];
12.6:
subprogram_default ::= default_name | <> | null
12.6:
default_name ::= name
12.7:
formal_package_declaration ::=
 with package defining_identifier is new generic_package_name formal_package_actual_part;
12.7:
formal_package_actual_part ::=
 ([others =>] <>)
 | [generic_actual_part]
 | (formal_package_association {, formal_package_association} [, others => <>])
12.7:
formal_package_association ::=
 generic_association
 | generic_formal_parameter_selector_name => <>
13.1:
aspect_clause ::= attribute_definition_clause
 | enumeration_representation_clause
 | record_representation_clause
 | at_clause
13.1:
local_name ::= direct_name
 | direct_name'attribute_designator
 | library_unit_name
13.3:
attribute_definition_clause ::=
 for local_name'attribute_designator use expression;
 | for local_name'attribute_designator use name;
13.4:
enumeration_representation_clause ::=
 for first_subtype_local_name use enumeration_aggregate;
13.4:
enumeration_aggregate ::= array_aggregate
13.5.1:
record_representation_clause ::=
 for first_subtype_local_name use
 record [mod_clause]
 {component_clause}
 end record;

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

P Syntax Summary 10 November 2006 692

13.5.1:
component_clause ::=
 component_local_name at position range first_bit .. last_bit;
13.5.1:
position ::= static_expression
13.5.1:
first_bit ::= static_simple_expression
13.5.1:
last_bit ::= static_simple_expression
13.8:
code_statement ::= qualified_expression;
13.12:
restriction ::= restriction_identifier
 | restriction_parameter_identifier => restriction_parameter_argument
13.12:
restriction_parameter_argument ::= name | expression
J.3:
delta_constraint ::= delta static_expression [range_constraint]
J.7:
at_clause ::= for direct_name use at expression;
J.8:
mod_clause ::= at mod static_expression;

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

693 10 November 2006 Syntax Summary P

Syntax Cross Reference

In the following syntax cross reference, each syntactic category is followed by the clause number where it
is defined. In addition, each syntactic category S is followed by a list of the categories that use S in their
definitions. For example, the first listing below shows that abort_statement appears in the definition of
simple_statement.

abort_statement 9.8
 simple_statement 5.1

abortable_part 9.7.4
 asynchronous_select 9.7.4

abstract_subprogram_declaration 3.9.3
 basic_declaration 3.1

accept_alternative 9.7.1
 select_alternative 9.7.1

accept_statement 9.5.2
 accept_alternative 9.7.1
 compound_statement 5.1

access_definition 3.10
 component_definition 3.6
 discriminant_specification 3.7
 formal_object_declaration 12.4
 object_declaration 3.3.1
 object_renaming_declaration 8.5.1
 parameter_and_result_profile 6.1
 parameter_specification 6.1
 return_subtype_indication 6.5

access_to_object_definition 3.10
 access_type_definition 3.10

access_to_subprogram_definition 3.10
 access_type_definition 3.10

access_type_definition 3.10
 formal_access_type_definition 12.5.4
 type_definition 3.2.1

actual_parameter_part 6.4
 entry_call_statement 9.5.3
 function_call 6.4
 procedure_call_statement 6.4

aggregate 4.3
 primary 4.4
 qualified_expression 4.7

allocator 4.8
 primary 4.4

ancestor_part 4.3.2
 extension_aggregate 4.3.2

array_aggregate 4.3.3
 aggregate 4.3
 enumeration_aggregate 13.4

array_component_association 4.3.3
 named_array_aggregate 4.3.3

array_type_definition 3.6
 formal_array_type_definition 12.5.3
 object_declaration 3.3.1
 type_definition 3.2.1

aspect_clause 13.1
 basic_declarative_item 3.11
 component_item 3.8
 protected_operation_declaration 9.4
 protected_operation_item 9.4
 task_item 9.1

assignment_statement 5.2
 simple_statement 5.1

asynchronous_select 9.7.4
 select_statement 9.7

at_clause J.7
 aspect_clause 13.1

attribute_definition_clause 13.3
 aspect_clause 13.1

attribute_designator 4.1.4
 attribute_definition_clause 13.3
 attribute_reference 4.1.4
 local_name 13.1

attribute_reference 4.1.4
 name 4.1

base 2.4.2
 based_literal 2.4.2

based_literal 2.4.2
 numeric_literal 2.4

based_numeral 2.4.2
 based_literal 2.4.2

basic_declaration 3.1
 basic_declarative_item 3.11

basic_declarative_item 3.11
 declarative_item 3.11
 package_specification 7.1

binary_adding_operator 4.5
 simple_expression 4.4

block_statement 5.6
 compound_statement 5.1

body 3.11
 declarative_item 3.11

body_stub 10.1.3
 body 3.11

1

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

P Syntax Summary 10 November 2006 694

case_statement 5.4
 compound_statement 5.1

case_statement_alternative 5.4
 case_statement 5.4

character 2.1
 comment 2.7

character_literal 2.5
 defining_character_literal 3.5.1
 name 4.1
 selector_name 4.1.3

choice_parameter_specification 11.2
 exception_handler 11.2

code_statement 13.8
 simple_statement 5.1

compilation_unit 10.1.1
 compilation 10.1.1

component_choice_list 4.3.1
 record_component_association 4.3.1

component_clause 13.5.1
 record_representation_clause 13.5.1

component_declaration 3.8
 component_item 3.8
 protected_element_declaration 9.4

component_definition 3.6
 component_declaration 3.8
 constrained_array_definition 3.6
 unconstrained_array_definition 3.6

component_item 3.8
 component_list 3.8

component_list 3.8
 record_definition 3.8
 variant 3.8.1

composite_constraint 3.2.2
 constraint 3.2.2

compound_statement 5.1
 statement 5.1

condition 5.3
 entry_barrier 9.5.2
 exit_statement 5.7
 guard 9.7.1
 if_statement 5.3
 iteration_scheme 5.5

conditional_entry_call 9.7.3
 select_statement 9.7

constrained_array_definition 3.6
 array_type_definition 3.6

constraint 3.2.2
 subtype_indication 3.2.2

context_clause 10.1.2
 compilation_unit 10.1.1

context_item 10.1.2
 context_clause 10.1.2

decimal_fixed_point_definition 3.5.9
 fixed_point_definition 3.5.9

decimal_literal 2.4.1
 numeric_literal 2.4

declarative_item 3.11
 declarative_part 3.11

declarative_part 3.11
 block_statement 5.6
 entry_body 9.5.2
 package_body 7.2
 subprogram_body 6.3
 task_body 9.1

default_expression 3.7
 component_declaration 3.8
 discriminant_specification 3.7
 formal_object_declaration 12.4
 parameter_specification 6.1

default_name 12.6
 subprogram_default 12.6

defining_character_literal 3.5.1
 enumeration_literal_specification 3.5.1

defining_designator 6.1
 function_specification 6.1
 generic_instantiation 12.3

defining_identifier 3.1
 choice_parameter_specification 11.2
 defining_identifier_list 3.3.1
 defining_program_unit_name 6.1
 entry_body 9.5.2
 entry_declaration 9.5.2
 entry_index_specification 9.5.2
 enumeration_literal_specification 3.5.1
 exception_renaming_declaration 8.5.2
 extended_return_statement 6.5
 formal_package_declaration 12.7
 formal_type_declaration 12.5
 full_type_declaration 3.2.1
 incomplete_type_declaration 3.10.1
 loop_parameter_specification 5.5
 object_renaming_declaration 8.5.1
 package_body_stub 10.1.3
 private_extension_declaration 7.3
 private_type_declaration 7.3
 protected_body 9.4
 protected_body_stub 10.1.3
 protected_type_declaration 9.4
 single_protected_declaration 9.4
 single_task_declaration 9.1
 subtype_declaration 3.2.2
 task_body 9.1
 task_body_stub 10.1.3
 task_type_declaration 9.1

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

695 10 November 2006 Syntax Summary P

defining_identifier_list 3.3.1
 component_declaration 3.8
 discriminant_specification 3.7
 exception_declaration 11.1
 formal_object_declaration 12.4
 number_declaration 3.3.2
 object_declaration 3.3.1
 parameter_specification 6.1

defining_operator_symbol 6.1
 defining_designator 6.1

defining_program_unit_name 6.1
 defining_designator 6.1
 generic_instantiation 12.3
 generic_renaming_declaration 8.5.5
 package_body 7.2
 package_renaming_declaration 8.5.3
 package_specification 7.1
 procedure_specification 6.1

delay_alternative 9.7.1
 select_alternative 9.7.1
 timed_entry_call 9.7.2

delay_relative_statement 9.6
 delay_statement 9.6

delay_statement 9.6
 delay_alternative 9.7.1
 simple_statement 5.1
 triggering_statement 9.7.4

delay_until_statement 9.6
 delay_statement 9.6

delta_constraint J.3
 scalar_constraint 3.2.2

derived_type_definition 3.4
 type_definition 3.2.1

designator 6.1
 subprogram_body 6.3

digit 2.4.1
 extended_digit 2.4.2
 numeral 2.4.1

digits_constraint 3.5.9
 scalar_constraint 3.2.2

direct_name 4.1
 accept_statement 9.5.2
 at_clause J.7
 local_name 13.1
 name 4.1
 statement_identifier 5.1
 variant_part 3.8.1

discrete_choice 3.8.1
 discrete_choice_list 3.8.1

discrete_choice_list 3.8.1
 array_component_association 4.3.3
 case_statement_alternative 5.4
 variant 3.8.1

discrete_range 3.6.1
 discrete_choice 3.8.1
 index_constraint 3.6.1
 slice 4.1.2

discrete_subtype_definition 3.6
 constrained_array_definition 3.6
 entry_declaration 9.5.2
 entry_index_specification 9.5.2
 loop_parameter_specification 5.5

discriminant_association 3.7.1
 discriminant_constraint 3.7.1

discriminant_constraint 3.7.1
 composite_constraint 3.2.2

discriminant_part 3.7
 formal_type_declaration 12.5
 incomplete_type_declaration 3.10.1
 private_extension_declaration 7.3
 private_type_declaration 7.3

discriminant_specification 3.7
 known_discriminant_part 3.7

entry_barrier 9.5.2
 entry_body 9.5.2

entry_body 9.5.2
 protected_operation_item 9.4

entry_body_formal_part 9.5.2
 entry_body 9.5.2

entry_call_alternative 9.7.2
 conditional_entry_call 9.7.3
 timed_entry_call 9.7.2

entry_call_statement 9.5.3
 procedure_or_entry_call 9.7.2
 simple_statement 5.1

entry_declaration 9.5.2
 protected_operation_declaration 9.4
 task_item 9.1

entry_index 9.5.2
 accept_statement 9.5.2

entry_index_specification 9.5.2
 entry_body_formal_part 9.5.2

enumeration_aggregate 13.4
 enumeration_representation_clause 13.4

enumeration_literal_specification 3.5.1
 enumeration_type_definition 3.5.1

enumeration_representation_clause 13.4
 aspect_clause 13.1

enumeration_type_definition 3.5.1
 type_definition 3.2.1

exception_choice 11.2
 exception_handler 11.2

exception_declaration 11.1
 basic_declaration 3.1

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

P Syntax Summary 10 November 2006 696

exception_handler 11.2
 handled_sequence_of_statements 11.2

exception_renaming_declaration 8.5.2
 renaming_declaration 8.5

exit_statement 5.7
 simple_statement 5.1

explicit_actual_parameter 6.4
 parameter_association 6.4

explicit_dereference 4.1
 name 4.1

explicit_generic_actual_parameter 12.3
 generic_association 12.3

exponent 2.4.1
 based_literal 2.4.2
 decimal_literal 2.4.1

expression 4.4
 ancestor_part 4.3.2
 array_component_association 4.3.3
 assignment_statement 5.2
 at_clause J.7
 attribute_definition_clause 13.3
 attribute_designator 4.1.4
 case_statement 5.4
 condition 5.3
 decimal_fixed_point_definition 3.5.9
 default_expression 3.7
 delay_relative_statement 9.6
 delay_until_statement 9.6
 delta_constraint J.3
 digits_constraint 3.5.9
 discrete_choice 3.8.1
 discriminant_association 3.7.1
 entry_index 9.5.2
 explicit_actual_parameter 6.4
 explicit_generic_actual_parameter 12.3
 extended_return_statement 6.5
 floating_point_definition 3.5.7
 indexed_component 4.1.1
 mod_clause J.8
 modular_type_definition 3.5.4
 number_declaration 3.3.2
 object_declaration 3.3.1
 ordinary_fixed_point_definition 3.5.9
 position 13.5.1
 positional_array_aggregate 4.3.3
 pragma_argument_association 2.8
 primary 4.4
 qualified_expression 4.7
 raise_statement 11.3
 range_attribute_designator 4.1.4
 record_component_association 4.3.1
 restriction_parameter_argument 13.12
 simple_return_statement 6.5
 type_conversion 4.6

extended_digit 2.4.2
 based_numeral 2.4.2

extended_return_statement 6.5
 compound_statement 5.1

extension_aggregate 4.3.2
 aggregate 4.3

factor 4.4
 term 4.4

first_bit 13.5.1
 component_clause 13.5.1

fixed_point_definition 3.5.9
 real_type_definition 3.5.6

floating_point_definition 3.5.7
 real_type_definition 3.5.6

formal_abstract_subprogram_declaration 12.6
 formal_subprogram_declaration 12.6

formal_access_type_definition 12.5.4
 formal_type_definition 12.5

formal_array_type_definition 12.5.3
 formal_type_definition 12.5

formal_concrete_subprogram_declaration 12.6
 formal_subprogram_declaration 12.6

formal_decimal_fixed_point_definition 12.5.2
 formal_type_definition 12.5

formal_derived_type_definition 12.5.1
 formal_type_definition 12.5

formal_discrete_type_definition 12.5.2
 formal_type_definition 12.5

formal_floating_point_definition 12.5.2
 formal_type_definition 12.5

formal_interface_type_definition 12.5.5
 formal_type_definition 12.5

formal_modular_type_definition 12.5.2
 formal_type_definition 12.5

formal_object_declaration 12.4
 generic_formal_parameter_declaration 12.1

formal_ordinary_fixed_point_definition 12.5.2
 formal_type_definition 12.5

formal_package_actual_part 12.7
 formal_package_declaration 12.7

formal_package_association 12.7
 formal_package_actual_part 12.7

formal_package_declaration 12.7
 generic_formal_parameter_declaration 12.1

formal_part 6.1
 parameter_and_result_profile 6.1
 parameter_profile 6.1

formal_private_type_definition 12.5.1
 formal_type_definition 12.5

formal_signed_integer_type_definition 12.5.2
 formal_type_definition 12.5

formal_subprogram_declaration 12.6
 generic_formal_parameter_declaration 12.1

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

697 10 November 2006 Syntax Summary P

formal_type_declaration 12.5
 generic_formal_parameter_declaration 12.1

formal_type_definition 12.5
 formal_type_declaration 12.5

full_type_declaration 3.2.1
 type_declaration 3.2.1

function_call 6.4
 name 4.1

function_specification 6.1
 subprogram_specification 6.1

general_access_modifier 3.10
 access_to_object_definition 3.10

generic_actual_part 12.3
 formal_package_actual_part 12.7
 generic_instantiation 12.3

generic_association 12.3
 formal_package_association 12.7
 generic_actual_part 12.3

generic_declaration 12.1
 basic_declaration 3.1
 library_unit_declaration 10.1.1

generic_formal_parameter_declaration 12.1
 generic_formal_part 12.1

generic_formal_part 12.1
 generic_package_declaration 12.1
 generic_subprogram_declaration 12.1

generic_instantiation 12.3
 basic_declaration 3.1
 library_unit_declaration 10.1.1

generic_package_declaration 12.1
 generic_declaration 12.1

generic_renaming_declaration 8.5.5
 library_unit_renaming_declaration 10.1.1
 renaming_declaration 8.5

generic_subprogram_declaration 12.1
 generic_declaration 12.1

goto_statement 5.8
 simple_statement 5.1

graphic_character 2.1
 character_literal 2.5
 string_element 2.6

guard 9.7.1
 selective_accept 9.7.1

handled_sequence_of_statements 11.2
 accept_statement 9.5.2
 block_statement 5.6
 entry_body 9.5.2
 extended_return_statement 6.5
 package_body 7.2
 subprogram_body 6.3
 task_body 9.1

identifier 2.3
 accept_statement 9.5.2
 attribute_designator 4.1.4
 block_statement 5.6
 defining_identifier 3.1
 designator 6.1
 direct_name 4.1
 entry_body 9.5.2
 loop_statement 5.5
 package_body 7.2
 package_specification 7.1
 pragma 2.8
 pragma_argument_association 2.8
 protected_body 9.4
 protected_definition 9.4
 restriction 13.12
 selector_name 4.1.3
 task_body 9.1
 task_definition 9.1

identifier_extend 2.3
 identifier 2.3

identifier_start 2.3
 identifier 2.3

if_statement 5.3
 compound_statement 5.1

implicit_dereference 4.1
 prefix 4.1

incomplete_type_declaration 3.10.1
 type_declaration 3.2.1

index_constraint 3.6.1
 composite_constraint 3.2.2

index_subtype_definition 3.6
 unconstrained_array_definition 3.6

indexed_component 4.1.1
 name 4.1

integer_type_definition 3.5.4
 type_definition 3.2.1

interface_list 3.9.4
 derived_type_definition 3.4
 formal_derived_type_definition 12.5.1
 interface_type_definition 3.9.4
 private_extension_declaration 7.3
 protected_type_declaration 9.4
 single_protected_declaration 9.4
 single_task_declaration 9.1
 task_type_declaration 9.1

interface_type_definition 3.9.4
 formal_interface_type_definition 12.5.5
 type_definition 3.2.1

iteration_scheme 5.5
 loop_statement 5.5

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

P Syntax Summary 10 November 2006 698

known_discriminant_part 3.7
 discriminant_part 3.7
 full_type_declaration 3.2.1
 protected_type_declaration 9.4
 task_type_declaration 9.1

label 5.1
 statement 5.1

last_bit 13.5.1
 component_clause 13.5.1

letter_lowercase ...
 identifier_start 2.3

letter_modifier ...
 identifier_start 2.3

letter_other ...
 identifier_start 2.3

letter_titlecase ...
 identifier_start 2.3

letter_uppercase ...
 identifier_start 2.3

library_item 10.1.1
 compilation_unit 10.1.1

library_unit_body 10.1.1
 library_item 10.1.1

library_unit_declaration 10.1.1
 library_item 10.1.1

library_unit_renaming_declaration 10.1.1
 library_item 10.1.1

limited_with_clause 10.1.2
 with_clause 10.1.2

local_name 13.1
 attribute_definition_clause 13.3
 component_clause 13.5.1
 enumeration_representation_clause 13.4
 record_representation_clause 13.5.1

loop_parameter_specification 5.5
 iteration_scheme 5.5

loop_statement 5.5
 compound_statement 5.1

mark_non_spacing ...
 identifier_extend 2.3

mark_spacing_combining ...
 identifier_extend 2.3

mod_clause J.8
 record_representation_clause 13.5.1

mode 6.1
 formal_object_declaration 12.4
 parameter_specification 6.1

modular_type_definition 3.5.4
 integer_type_definition 3.5.4

multiplying_operator 4.5
 term 4.4

name 4.1
 abort_statement 9.8
 assignment_statement 5.2
 attribute_definition_clause 13.3
 default_name 12.6
 entry_call_statement 9.5.3
 exception_choice 11.2
 exception_renaming_declaration 8.5.2
 exit_statement 5.7
 explicit_actual_parameter 6.4
 explicit_dereference 4.1
 explicit_generic_actual_parameter 12.3
 formal_package_declaration 12.7
 function_call 6.4
 generic_instantiation 12.3
 generic_renaming_declaration 8.5.5
 goto_statement 5.8
 implicit_dereference 4.1
 limited_with_clause 10.1.2
 local_name 13.1
 nonlimited_with_clause 10.1.2
 object_renaming_declaration 8.5.1
 package_renaming_declaration 8.5.3
 parent_unit_name 10.1.1
 pragma_argument_association 2.8
 prefix 4.1
 primary 4.4
 procedure_call_statement 6.4
 raise_statement 11.3
 requeue_statement 9.5.4
 restriction_parameter_argument 13.12
 subprogram_renaming_declaration 8.5.4
 subtype_mark 3.2.2
 type_conversion 4.6
 use_package_clause 8.4

named_array_aggregate 4.3.3
 array_aggregate 4.3.3

nonlimited_with_clause 10.1.2
 with_clause 10.1.2

null_exclusion 3.10
 access_definition 3.10
 access_type_definition 3.10
 discriminant_specification 3.7
 formal_object_declaration 12.4
 object_renaming_declaration 8.5.1
 parameter_and_result_profile 6.1
 parameter_specification 6.1
 subtype_indication 3.2.2

null_procedure_declaration 6.7
 basic_declaration 3.1

null_statement 5.1
 simple_statement 5.1

number_decimal ...
 identifier_extend 2.3

number_declaration 3.3.2
 basic_declaration 3.1

number_letter ...
 identifier_start 2.3

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

699 10 November 2006 Syntax Summary P

numeral 2.4.1
 base 2.4.2
 decimal_literal 2.4.1
 exponent 2.4.1

numeric_literal 2.4
 primary 4.4

object_declaration 3.3.1
 basic_declaration 3.1

object_renaming_declaration 8.5.1
 renaming_declaration 8.5

operator_symbol 6.1
 defining_operator_symbol 6.1
 designator 6.1
 direct_name 4.1
 selector_name 4.1.3

ordinary_fixed_point_definition 3.5.9
 fixed_point_definition 3.5.9

other_format ...
 identifier_extend 2.3

overriding_indicator 8.3.1
 abstract_subprogram_declaration 3.9.3
 entry_declaration 9.5.2
 generic_instantiation 12.3
 null_procedure_declaration 6.7
 subprogram_body 6.3
 subprogram_body_stub 10.1.3
 subprogram_declaration 6.1
 subprogram_renaming_declaration 8.5.4

package_body 7.2
 library_unit_body 10.1.1
 proper_body 3.11

package_body_stub 10.1.3
 body_stub 10.1.3

package_declaration 7.1
 basic_declaration 3.1
 library_unit_declaration 10.1.1

package_renaming_declaration 8.5.3
 library_unit_renaming_declaration 10.1.1
 renaming_declaration 8.5

package_specification 7.1
 generic_package_declaration 12.1
 package_declaration 7.1

parameter_and_result_profile 6.1
 access_definition 3.10
 access_to_subprogram_definition 3.10
 function_specification 6.1

parameter_association 6.4
 actual_parameter_part 6.4

parameter_profile 6.1
 accept_statement 9.5.2
 access_definition 3.10
 access_to_subprogram_definition 3.10
 entry_body_formal_part 9.5.2
 entry_declaration 9.5.2
 procedure_specification 6.1

parameter_specification 6.1
 formal_part 6.1

parent_unit_name 10.1.1
 defining_program_unit_name 6.1
 designator 6.1
 package_body 7.2
 package_specification 7.1
 subunit 10.1.3

position 13.5.1
 component_clause 13.5.1

positional_array_aggregate 4.3.3
 array_aggregate 4.3.3

pragma_argument_association 2.8
 pragma 2.8

prefix 4.1
 attribute_reference 4.1.4
 function_call 6.4
 indexed_component 4.1.1
 procedure_call_statement 6.4
 range_attribute_reference 4.1.4
 selected_component 4.1.3
 slice 4.1.2

primary 4.4
 factor 4.4

private_extension_declaration 7.3
 type_declaration 3.2.1

private_type_declaration 7.3
 type_declaration 3.2.1

procedure_call_statement 6.4
 procedure_or_entry_call 9.7.2
 simple_statement 5.1

procedure_or_entry_call 9.7.2
 entry_call_alternative 9.7.2
 triggering_statement 9.7.4

procedure_specification 6.1
 null_procedure_declaration 6.7
 subprogram_specification 6.1

proper_body 3.11
 body 3.11
 subunit 10.1.3

protected_body 9.4
 proper_body 3.11

protected_body_stub 10.1.3
 body_stub 10.1.3

protected_definition 9.4
 protected_type_declaration 9.4
 single_protected_declaration 9.4

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

P Syntax Summary 10 November 2006 700

protected_element_declaration 9.4
 protected_definition 9.4

protected_operation_declaration 9.4
 protected_definition 9.4
 protected_element_declaration 9.4

protected_operation_item 9.4
 protected_body 9.4

protected_type_declaration 9.4
 full_type_declaration 3.2.1

punctuation_connector ...
 identifier_extend 2.3

qualified_expression 4.7
 allocator 4.8
 code_statement 13.8
 primary 4.4

raise_statement 11.3
 simple_statement 5.1

range 3.5
 discrete_range 3.6.1
 discrete_subtype_definition 3.6
 range_constraint 3.5
 relation 4.4

range_attribute_designator 4.1.4
 range_attribute_reference 4.1.4

range_attribute_reference 4.1.4
 range 3.5

range_constraint 3.5
 delta_constraint J.3
 digits_constraint 3.5.9
 scalar_constraint 3.2.2

real_range_specification 3.5.7
 decimal_fixed_point_definition 3.5.9
 floating_point_definition 3.5.7
 ordinary_fixed_point_definition 3.5.9

real_type_definition 3.5.6
 type_definition 3.2.1

record_aggregate 4.3.1
 aggregate 4.3

record_component_association 4.3.1
 record_component_association_list 4.3.1

record_component_association_list 4.3.1
 extension_aggregate 4.3.2
 record_aggregate 4.3.1

record_definition 3.8
 record_extension_part 3.9.1
 record_type_definition 3.8

record_extension_part 3.9.1
 derived_type_definition 3.4

record_representation_clause 13.5.1
 aspect_clause 13.1

record_type_definition 3.8
 type_definition 3.2.1

relation 4.4
 expression 4.4

relational_operator 4.5
 relation 4.4

renaming_declaration 8.5
 basic_declaration 3.1

requeue_statement 9.5.4
 simple_statement 5.1

restriction_parameter_argument 13.12
 restriction 13.12

return_subtype_indication 6.5
 extended_return_statement 6.5

scalar_constraint 3.2.2
 constraint 3.2.2

select_alternative 9.7.1
 selective_accept 9.7.1

select_statement 9.7
 compound_statement 5.1

selected_component 4.1.3
 name 4.1

selective_accept 9.7.1
 select_statement 9.7

selector_name 4.1.3
 component_choice_list 4.3.1
 discriminant_association 3.7.1
 formal_package_association 12.7
 generic_association 12.3
 parameter_association 6.4
 selected_component 4.1.3

sequence_of_statements 5.1
 abortable_part 9.7.4
 accept_alternative 9.7.1
 case_statement_alternative 5.4
 conditional_entry_call 9.7.3
 delay_alternative 9.7.1
 entry_call_alternative 9.7.2
 exception_handler 11.2
 handled_sequence_of_statements 11.2
 if_statement 5.3
 loop_statement 5.5
 selective_accept 9.7.1
 triggering_alternative 9.7.4

signed_integer_type_definition 3.5.4
 integer_type_definition 3.5.4

simple_expression 4.4
 first_bit 13.5.1
 last_bit 13.5.1
 range 3.5
 real_range_specification 3.5.7
 relation 4.4
 signed_integer_type_definition 3.5.4

simple_return_statement 6.5
 simple_statement 5.1

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

701 10 November 2006 Syntax Summary P

simple_statement 5.1
 statement 5.1

single_protected_declaration 9.4
 object_declaration 3.3.1

single_task_declaration 9.1
 object_declaration 3.3.1

slice 4.1.2
 name 4.1

statement 5.1
 sequence_of_statements 5.1

statement_identifier 5.1
 block_statement 5.6
 label 5.1
 loop_statement 5.5

string_element 2.6
 string_literal 2.6

string_literal 2.6
 operator_symbol 6.1
 primary 4.4

subprogram_body 6.3
 library_unit_body 10.1.1
 proper_body 3.11
 protected_operation_item 9.4

subprogram_body_stub 10.1.3
 body_stub 10.1.3

subprogram_declaration 6.1
 basic_declaration 3.1
 library_unit_declaration 10.1.1
 protected_operation_declaration 9.4
 protected_operation_item 9.4

subprogram_default 12.6
 formal_abstract_subprogram_declaration 12.6
 formal_concrete_subprogram_declaration 12.6

subprogram_renaming_declaration 8.5.4
 library_unit_renaming_declaration 10.1.1
 renaming_declaration 8.5

subprogram_specification 6.1
 abstract_subprogram_declaration 3.9.3
 formal_abstract_subprogram_declaration 12.6
 formal_concrete_subprogram_declaration 12.6
 generic_subprogram_declaration 12.1
 subprogram_body 6.3
 subprogram_body_stub 10.1.3
 subprogram_declaration 6.1
 subprogram_renaming_declaration 8.5.4

subtype_declaration 3.2.2
 basic_declaration 3.1

subtype_indication 3.2.2
 access_to_object_definition 3.10
 allocator 4.8
 component_definition 3.6
 derived_type_definition 3.4
 discrete_range 3.6.1
 discrete_subtype_definition 3.6
 object_declaration 3.3.1
 private_extension_declaration 7.3
 return_subtype_indication 6.5
 subtype_declaration 3.2.2

subtype_mark 3.2.2
 access_definition 3.10
 ancestor_part 4.3.2
 discriminant_specification 3.7
 explicit_generic_actual_parameter 12.3
 formal_derived_type_definition 12.5.1
 formal_object_declaration 12.4
 index_subtype_definition 3.6
 interface_list 3.9.4
 object_renaming_declaration 8.5.1
 parameter_and_result_profile 6.1
 parameter_specification 6.1
 qualified_expression 4.7
 relation 4.4
 subtype_indication 3.2.2
 type_conversion 4.6
 use_type_clause 8.4

subunit 10.1.3
 compilation_unit 10.1.1

task_body 9.1
 proper_body 3.11

task_body_stub 10.1.3
 body_stub 10.1.3

task_definition 9.1
 single_task_declaration 9.1
 task_type_declaration 9.1

task_item 9.1
 task_definition 9.1

task_type_declaration 9.1
 full_type_declaration 3.2.1

term 4.4
 simple_expression 4.4

terminate_alternative 9.7.1
 select_alternative 9.7.1

timed_entry_call 9.7.2
 select_statement 9.7

triggering_alternative 9.7.4
 asynchronous_select 9.7.4

triggering_statement 9.7.4
 triggering_alternative 9.7.4

type_conversion 4.6
 name 4.1

type_declaration 3.2.1
 basic_declaration 3.1

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

P Syntax Summary 10 November 2006 702

type_definition 3.2.1
 full_type_declaration 3.2.1

unary_adding_operator 4.5
 simple_expression 4.4

unconstrained_array_definition 3.6
 array_type_definition 3.6

underline ...
 based_numeral 2.4.2
 numeral 2.4.1

unknown_discriminant_part 3.7
 discriminant_part 3.7

use_clause 8.4
 basic_declarative_item 3.11
 context_item 10.1.2
 generic_formal_part 12.1

use_package_clause 8.4
 use_clause 8.4

use_type_clause 8.4
 use_clause 8.4

variant 3.8.1
 variant_part 3.8.1

variant_part 3.8.1
 component_list 3.8

with_clause 10.1.2
 context_item 10.1.2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

703 10 November 2006 Language-Defined Entities Q

Annex Q
(informative)

Language-Defined Entities
This annex lists the language-defined entities of the language. A list of language-defined library units can
be found in Annex A, “Predefined Language Environment”.

Q.1 Language-Defined Packages
This clause lists all language-defined packages.

Ada A.2(2)
Address_To_Access_Conversions
 child of System 13.7.2(2)
Arithmetic
 child of Ada.Calendar 9.6.1(8/2)
ASCII
 in Standard A.1(36.3/2)
Assertions
 child of Ada 11.4.2(12/2)
Asynchronous_Task_Control
 child of Ada D.11(3/2)
Bounded
 child of Ada.Strings A.4.4(3)
Bounded_IO
 child of Ada.Text_IO A.10.11(3/2)
 child of Ada.Wide_Text_IO A.11(4/2)
 child of Ada.Wide_Wide_Text_IO A.11(4/2)
C
 child of Interfaces B.3(4)
Calendar
 child of Ada 9.6(10)
Characters
 child of Ada A.3.1(2)
COBOL
 child of Interfaces B.4(7)
Command_Line
 child of Ada A.15(3)
Complex_Arrays
 child of Ada.Numerics G.3.2(53/2)
Complex_Elementary_Functions
 child of Ada.Numerics G.1.2(9/1)
Complex_Text_IO
 child of Ada G.1.3(9.1/2)
Complex_Types
 child of Ada.Numerics G.1.1(25/1)
Complex_IO
 child of Ada.Text_IO G.1.3(3)
 child of Ada.Wide_Text_IO G.1.4(1)
 child of Ada.Wide_Wide_Text_IO G.1.5(1/2)
Constants
 child of Ada.Strings.Maps A.4.6(3/2)

Containers
 child of Ada A.18.1(3/2)
Conversions
 child of Ada.Characters A.3.4(2/2)
Decimal
 child of Ada F.2(2)
Decimal_Conversions
 in Interfaces.COBOL B.4(31)
Decimal_IO
 in Ada.Text_IO A.10.1(73)
Decimal_Output
 in Ada.Text_IO.Editing F.3.3(11)
Direct_IO
 child of Ada A.8.4(2)
Directories
 child of Ada A.16(3/2)
Discrete_Random
 child of Ada.Numerics A.5.2(17)
Dispatching
 child of Ada D.2.1(1.2/2)
Doubly_Linked_Lists
 child of Ada.Containers A.18.3(5/2)
Dynamic_Priorities
 child of Ada D.5.1(3/2)
EDF
 child of Ada.Dispatching D.2.6(9/2)
Editing
 child of Ada.Text_IO F.3.3(3)
 child of Ada.Wide_Text_IO F.3.4(1)
 child of Ada.Wide_Wide_Text_IO F.3.5(1/2)
Elementary_Functions
 child of Ada.Numerics A.5.1(9/1)
Enumeration_IO
 in Ada.Text_IO A.10.1(79)
Environment_Variables
 child of Ada A.17(3/2)
Exceptions
 child of Ada 11.4.1(2/2)
Execution_Time
 child of Ada D.14(3/2)
Finalization
 child of Ada 7.6(4/1)

1/2

1/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Q.1 Language-Defined Packages 10 November 2006 704

Fixed
 child of Ada.Strings A.4.3(5)
Fixed_IO
 in Ada.Text_IO A.10.1(68)
Float_Random
 child of Ada.Numerics A.5.2(5)
Float_Text_IO
 child of Ada A.10.9(33)
Float_Wide_Text_IO
 child of Ada A.11(2/2)
Float_Wide_Wide_Text_IO
 child of Ada A.11(3/2)
Float_IO
 in Ada.Text_IO A.10.1(63)
Formatting
 child of Ada.Calendar 9.6.1(15/2)
Fortran
 child of Interfaces B.5(4)
Generic_Complex_Arrays
 child of Ada.Numerics G.3.2(2/2)
Generic_Complex_Elementary_Functions
 child of Ada.Numerics G.1.2(2/2)
Generic_Complex_Types
 child of Ada.Numerics G.1.1(2/1)
Generic_Dispatching_Constructor
 child of Ada.Tags 3.9(18.2/2)
Generic_Elementary_Functions
 child of Ada.Numerics A.5.1(3)
Generic_Bounded_Length
 in Ada.Strings.Bounded A.4.4(4)
Generic_Keys
 in Ada.Containers.Hashed_Sets A.18.8(50/2)
 in Ada.Containers.Ordered_Sets A.18.9(62/2)
Generic_Real_Arrays
 child of Ada.Numerics G.3.1(2/2)
Generic_Sorting
 in Ada.Containers.Doubly_Linked_Lists A.18.3(47/2)
 in Ada.Containers.Vectors A.18.2(75/2)
Group_Budgets
 child of Ada.Execution_Time D.14.2(3/2)
Handling
 child of Ada.Characters A.3.2(2/2)
Hashed_Maps
 child of Ada.Containers A.18.5(2/2)
Hashed_Sets
 child of Ada.Containers A.18.8(2/2)
Indefinite_Doubly_Linked_Lists
 child of Ada.Containers A.18.11(2/2)
Indefinite_Hashed_Maps
 child of Ada.Containers A.18.12(2/2)
Indefinite_Hashed_Sets
 child of Ada.Containers A.18.14(2/2)
Indefinite_Ordered_Maps
 child of Ada.Containers A.18.13(2/2)
Indefinite_Ordered_Sets
 child of Ada.Containers A.18.15(2/2)
Indefinite_Vectors
 child of Ada.Containers A.18.10(2/2)
Information
 child of Ada.Directories A.16(124/2)

Integer_Text_IO
 child of Ada A.10.8(21)
Integer_Wide_Text_IO
 child of Ada A.11(2/2)
Integer_Wide_Wide_Text_IO
 child of Ada A.11(3/2)
Integer_IO
 in Ada.Text_IO A.10.1(52)
Interfaces B.2(3)
Interrupts
 child of Ada C.3.2(2)
IO_Exceptions
 child of Ada A.13(3)
Latin_1
 child of Ada.Characters A.3.3(3)
Machine_Code
 child of System 13.8(7)
Maps
 child of Ada.Strings A.4.2(3/2)
Modular_IO
 in Ada.Text_IO A.10.1(57)
Names
 child of Ada.Interrupts C.3.2(12)
Numerics
 child of Ada A.5(3/2)
Ordered_Maps
 child of Ada.Containers A.18.6(2/2)
Ordered_Sets
 child of Ada.Containers A.18.9(2/2)
Pointers
 child of Interfaces.C B.3.2(4)
Real_Arrays
 child of Ada.Numerics G.3.1(31/2)
Real_Time
 child of Ada D.8(3)
Round_Robin
 child of Ada.Dispatching D.2.5(4/2)
RPC
 child of System E.5(3)
Sequential_IO
 child of Ada A.8.1(2)
Single_Precision_Complex_Types
 in Interfaces.Fortran B.5(8)
Standard A.1(4)
Storage_Elements
 child of System 13.7.1(2/2)
Storage_IO
 child of Ada A.9(3)
Storage_Pools
 child of System 13.11(5)
Stream_IO
 child of Ada.Streams A.12.1(3)
Streams
 child of Ada 13.13.1(2)
Strings
 child of Ada A.4.1(3)
 child of Interfaces.C B.3.1(3)
Synchronous_Task_Control
 child of Ada D.10(3/2)
System 13.7(3/2)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

705 10 November 2006 Language-Defined Packages Q.1

Tags
 child of Ada 3.9(6/2)
Task_Attributes
 child of Ada C.7.2(2)
Task_Identification
 child of Ada C.7.1(2/2)
Task_Termination
 child of Ada C.7.3(2/2)
Text_Streams
 child of Ada.Text_IO A.12.2(3)
 child of Ada.Wide_Text_IO A.12.3(3)
 child of Ada.Wide_Wide_Text_IO A.12.4(3/2)
Text_IO
 child of Ada A.10.1(2)
Time_Zones
 child of Ada.Calendar 9.6.1(2/2)
Timers
 child of Ada.Execution_Time D.14.1(3/2)
Timing_Events
 child of Ada.Real_Time D.15(3/2)
Unbounded
 child of Ada.Strings A.4.5(3)
Unbounded_IO
 child of Ada.Text_IO A.10.12(3/2)
 child of Ada.Wide_Text_IO A.11(5/2)
 child of Ada.Wide_Wide_Text_IO A.11(5/2)
Vectors
 child of Ada.Containers A.18.2(6/2)
Wide_Bounded
 child of Ada.Strings A.4.7(1/2)

Wide_Constants
 child of Ada.Strings.Wide_Maps A.4.7(1/2), A.4.8(28/2)
Wide_Fixed
 child of Ada.Strings A.4.7(1/2)
Wide_Hash
 child of Ada.Strings A.4.7(1/2)
Wide_Maps
 child of Ada.Strings A.4.7(3)
Wide_Text_IO
 child of Ada A.11(2/2)
Wide_Unbounded
 child of Ada.Strings A.4.7(1/2)
Wide_Characters
 child of Ada A.3.1(4/2)
Wide_Wide_Constants
 child of Ada.Strings.Wide_Wide_Maps A.4.8(1/2)
Wide_Wide_Hash
 child of Ada.Strings A.4.8(1/2)
Wide_Wide_Text_IO
 child of Ada A.11(3/2)
Wide_Wide_Bounded
 child of Ada.Strings A.4.8(1/2)
Wide_Wide_Characters
 child of Ada A.3.1(6/2)
Wide_Wide_Fixed
 child of Ada.Strings A.4.8(1/2)
Wide_Wide_Maps
 child of Ada.Strings A.4.8(3/2)
Wide_Wide_Unbounded
 child of Ada.Strings A.4.8(1/2)

Q.2 Language-Defined Types and Subtypes
This clause lists all language-defined types and subtypes.

Address
 in System 13.7(12)
Alignment
 in Ada.Strings A.4.1(6)
Alphanumeric
 in Interfaces.COBOL B.4(16)
Any_Priority subtype of Integer
 in System 13.7(16)
Attribute_Handle
 in Ada.Task_Attributes C.7.2(3)
Binary
 in Interfaces.COBOL B.4(10)
Binary_Format
 in Interfaces.COBOL B.4(24)
Bit_Order
 in System 13.7(15/2)
Boolean
 in Standard A.1(5)
Bounded_String
 in Ada.Strings.Bounded A.4.4(6)

Buffer_Type subtype of Storage_Array
 in Ada.Storage_IO A.9(4)
Byte
 in Interfaces.COBOL B.4(29)
Byte_Array
 in Interfaces.COBOL B.4(29)
C_float
 in Interfaces.C B.3(15)
Cause_Of_Termination
 in Ada.Task_Termination C.7.3(3/2)
char
 in Interfaces.C B.3(19)
char16_array
 in Interfaces.C B.3(39.5/2)
char16_t
 in Interfaces.C B.3(39.2/2)
char32_array
 in Interfaces.C B.3(39.14/2)
char32_t
 in Interfaces.C B.3(39.11/2)

1/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Q.2 Language-Defined Types and Subtypes 10 November 2006 706

char_array
 in Interfaces.C B.3(23)
char_array_access
 in Interfaces.C.Strings B.3.1(4)
Character
 in Standard A.1(35/2)
Character_Mapping
 in Ada.Strings.Maps A.4.2(20/2)
Character_Mapping_Function
 in Ada.Strings.Maps A.4.2(25)
Character_Range
 in Ada.Strings.Maps A.4.2(6)
Character_Ranges
 in Ada.Strings.Maps A.4.2(7)
Character_Sequence subtype of String
 in Ada.Strings.Maps A.4.2(16)
Character_Set
 in Ada.Strings.Maps A.4.2(4/2)
 in Interfaces.Fortran B.5(11)
chars_ptr
 in Interfaces.C.Strings B.3.1(5/2)
chars_ptr_array
 in Interfaces.C.Strings B.3.1(6/2)
COBOL_Character
 in Interfaces.COBOL B.4(13)
Complex
 in Ada.Numerics.Generic_Complex_Types G.1.1(3)
 in Interfaces.Fortran B.5(9)
Complex_Matrix
 in Ada.Numerics.Generic_Complex_Arrays G.3.2(4/2)
Complex_Vector
 in Ada.Numerics.Generic_Complex_Arrays G.3.2(4/2)
Controlled
 in Ada.Finalization 7.6(5/2)
Count
 in Ada.Direct_IO A.8.4(4)
 in Ada.Streams.Stream_IO A.12.1(7)
 in Ada.Text_IO A.10.1(5)
CPU_Time
 in Ada.Execution_Time D.14(4/2)
Cursor
 in Ada.Containers.Doubly_Linked_Lists A.18.3(7/2)
 in Ada.Containers.Hashed_Maps A.18.5(4/2)
 in Ada.Containers.Hashed_Sets A.18.8(4/2)
 in Ada.Containers.Ordered_Maps A.18.6(5/2)
 in Ada.Containers.Ordered_Sets A.18.9(5/2)
 in Ada.Containers.Vectors A.18.2(9/2)
Day_Count
 in Ada.Calendar.Arithmetic 9.6.1(10/2)
Day_Duration subtype of Duration
 in Ada.Calendar 9.6(11/2)
Day_Name
 in Ada.Calendar.Formatting 9.6.1(17/2)
Day_Number subtype of Integer
 in Ada.Calendar 9.6(11/2)
Deadline subtype of Time
 in Ada.Dispatching.EDF D.2.6(9/2)
Decimal_Element
 in Interfaces.COBOL B.4(12)

Direction
 in Ada.Strings A.4.1(6)
Directory_Entry_Type
 in Ada.Directories A.16(29/2)
Display_Format
 in Interfaces.COBOL B.4(22)
double
 in Interfaces.C B.3(16)
Double_Precision
 in Interfaces.Fortran B.5(6)
Duration
 in Standard A.1(43)
Exception_Id
 in Ada.Exceptions 11.4.1(2/2)
Exception_Occurrence
 in Ada.Exceptions 11.4.1(3/2)
Exception_Occurrence_Access
 in Ada.Exceptions 11.4.1(3/2)
Exit_Status
 in Ada.Command_Line A.15(7)
Extended_Index subtype of Index_Type'Base
 in Ada.Containers.Vectors A.18.2(7/2)
Field subtype of Integer
 in Ada.Text_IO A.10.1(6)
File_Access
 in Ada.Text_IO A.10.1(18)
File_Kind
 in Ada.Directories A.16(22/2)
File_Mode
 in Ada.Direct_IO A.8.4(4)
 in Ada.Sequential_IO A.8.1(4)
 in Ada.Streams.Stream_IO A.12.1(6)
 in Ada.Text_IO A.10.1(4)
File_Size
 in Ada.Directories A.16(23/2)
File_Type
 in Ada.Direct_IO A.8.4(3)
 in Ada.Sequential_IO A.8.1(3)
 in Ada.Streams.Stream_IO A.12.1(5)
 in Ada.Text_IO A.10.1(3)
Filter_Type
 in Ada.Directories A.16(30/2)
Float
 in Standard A.1(21)
Floating
 in Interfaces.COBOL B.4(9)
Fortran_Character
 in Interfaces.Fortran B.5(12)
Fortran_Integer
 in Interfaces.Fortran B.5(5)
Generator
 in Ada.Numerics.Discrete_Random A.5.2(19)
 in Ada.Numerics.Float_Random A.5.2(7)
Group_Budget
 in Ada.Execution_Time.Group_Budgets D.14.2(4/2)
Group_Budget_Handler
 in Ada.Execution_Time.Group_Budgets D.14.2(5/2)
Hash_Type
 in Ada.Containers A.18.1(4/2)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

707 10 November 2006 Language-Defined Types and Subtypes Q.2

Hour_Number subtype of Natural
 in Ada.Calendar.Formatting 9.6.1(20/2)
Imaginary
 in Ada.Numerics.Generic_Complex_Types G.1.1(4/2)
Imaginary subtype of Imaginary
 in Interfaces.Fortran B.5(10)
int
 in Interfaces.C B.3(7)
Integer
 in Standard A.1(12)
Integer_Address
 in System.Storage_Elements 13.7.1(10)
Interrupt_ID
 in Ada.Interrupts C.3.2(2)
Interrupt_Priority subtype of Any_Priority
 in System 13.7(16)
ISO_646 subtype of Character
 in Ada.Characters.Handling A.3.2(9)
Leap_Seconds_Count subtype of Integer
 in Ada.Calendar.Arithmetic 9.6.1(11/2)
Length_Range subtype of Natural
 in Ada.Strings.Bounded A.4.4(8)
Limited_Controlled
 in Ada.Finalization 7.6(7/2)
List
 in Ada.Containers.Doubly_Linked_Lists A.18.3(6/2)
Logical
 in Interfaces.Fortran B.5(7)
long
 in Interfaces.C B.3(7)
Long_Binary
 in Interfaces.COBOL B.4(10)
long_double
 in Interfaces.C B.3(17)
Long_Floating
 in Interfaces.COBOL B.4(9)
Map
 in Ada.Containers.Hashed_Maps A.18.5(3/2)
 in Ada.Containers.Ordered_Maps A.18.6(4/2)
Membership
 in Ada.Strings A.4.1(6)
Minute_Number subtype of Natural
 in Ada.Calendar.Formatting 9.6.1(20/2)
Month_Number subtype of Integer
 in Ada.Calendar 9.6(11/2)
Name
 in System 13.7(4)
Natural subtype of Integer
 in Standard A.1(13)
Number_Base subtype of Integer
 in Ada.Text_IO A.10.1(6)
Numeric
 in Interfaces.COBOL B.4(20)
Packed_Decimal
 in Interfaces.COBOL B.4(12)
Packed_Format
 in Interfaces.COBOL B.4(26)
Parameterless_Handler
 in Ada.Interrupts C.3.2(2)

Params_Stream_Type
 in System.RPC E.5(6)
Partition_Id
 in System.RPC E.5(4)
Picture
 in Ada.Text_IO.Editing F.3.3(4)
plain_char
 in Interfaces.C B.3(11)
Pointer
 in Interfaces.C.Pointers B.3.2(5)
Positive subtype of Integer
 in Standard A.1(13)
Positive_Count subtype of Count
 in Ada.Direct_IO A.8.4(4)
 in Ada.Streams.Stream_IO A.12.1(7)
 in Ada.Text_IO A.10.1(5)
Priority subtype of Any_Priority
 in System 13.7(16)
ptrdiff_t
 in Interfaces.C B.3(12)
Real
 in Interfaces.Fortran B.5(6)
Real_Matrix
 in Ada.Numerics.Generic_Real_Arrays G.3.1(4/2)
Real_Vector
 in Ada.Numerics.Generic_Real_Arrays G.3.1(4/2)
Root_Storage_Pool
 in System.Storage_Pools 13.11(6/2)
Root_Stream_Type
 in Ada.Streams 13.13.1(3/2)
RPC_Receiver
 in System.RPC E.5(11)
Search_Type
 in Ada.Directories A.16(31/2)
Second_Duration subtype of Day_Duration
 in Ada.Calendar.Formatting 9.6.1(20/2)
Second_Number subtype of Natural
 in Ada.Calendar.Formatting 9.6.1(20/2)
Seconds_Count
 in Ada.Real_Time D.8(15)
Set
 in Ada.Containers.Hashed_Sets A.18.8(3/2)
 in Ada.Containers.Ordered_Sets A.18.9(4/2)
short
 in Interfaces.C B.3(7)
signed_char
 in Interfaces.C B.3(8)
size_t
 in Interfaces.C B.3(13)
State
 in Ada.Numerics.Discrete_Random A.5.2(23)
 in Ada.Numerics.Float_Random A.5.2(11)
Storage_Array
 in System.Storage_Elements 13.7.1(5)
Storage_Count subtype of Storage_Offset
 in System.Storage_Elements 13.7.1(4)
Storage_Element
 in System.Storage_Elements 13.7.1(5)
Storage_Offset
 in System.Storage_Elements 13.7.1(3)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Q.2 Language-Defined Types and Subtypes 10 November 2006 708

Stream_Access
 in Ada.Streams.Stream_IO A.12.1(4)
 in Ada.Text_IO.Text_Streams A.12.2(3)
 in Ada.Wide_Text_IO.Text_Streams A.12.3(3)
 in Ada.Wide_Wide_Text_IO.Text_Streams A.12.4(3/2)
Stream_Element
 in Ada.Streams 13.13.1(4/1)
Stream_Element_Array
 in Ada.Streams 13.13.1(4/1)
Stream_Element_Count subtype of Stream_Element_Offset
 in Ada.Streams 13.13.1(4/1)
Stream_Element_Offset
 in Ada.Streams 13.13.1(4/1)
String
 in Standard A.1(37)
String_Access
 in Ada.Strings.Unbounded A.4.5(7)
Suspension_Object
 in Ada.Synchronous_Task_Control D.10(4)
Tag
 in Ada.Tags 3.9(6/2)
Tag_Array
 in Ada.Tags 3.9(7.3/2)
Task_Array
 in Ada.Execution_Time.Group_Budgets D.14.2(6/2)
Task_Id
 in Ada.Task_Identification C.7.1(2/2)
Termination_Handler
 in Ada.Task_Termination C.7.3(4/2)
Time
 in Ada.Calendar 9.6(10)
 in Ada.Real_Time D.8(4)
Time_Offset
 in Ada.Calendar.Time_Zones 9.6.1(4/2)
Time_Span
 in Ada.Real_Time D.8(5)
Timer
 in Ada.Execution_Time.Timers D.14.1(4/2)
Timer_Handler
 in Ada.Execution_Time.Timers D.14.1(5/2)
Timing_Event
 in Ada.Real_Time.Timing_Events D.15(4/2)
Timing_Event_Handler
 in Ada.Real_Time.Timing_Events D.15(4/2)
Trim_End
 in Ada.Strings A.4.1(6)
Truncation
 in Ada.Strings A.4.1(6)
Type_Set
 in Ada.Text_IO A.10.1(7)
Unbounded_String
 in Ada.Strings.Unbounded A.4.5(4/2)

Uniformly_Distributed subtype of Float
 in Ada.Numerics.Float_Random A.5.2(8)
unsigned
 in Interfaces.C B.3(9)
unsigned_char
 in Interfaces.C B.3(10)
unsigned_long
 in Interfaces.C B.3(9)
unsigned_short
 in Interfaces.C B.3(9)
Vector
 in Ada.Containers.Vectors A.18.2(8/2)
wchar_array
 in Interfaces.C B.3(33)
wchar_t
 in Interfaces.C B.3(30/1)
Wide_Character
 in Standard A.1(36.1/2)
Wide_Character_Mapping
 in Ada.Strings.Wide_Maps A.4.7(20/2)
Wide_Character_Mapping_Function
 in Ada.Strings.Wide_Maps A.4.7(26)
Wide_Character_Range
 in Ada.Strings.Wide_Maps A.4.7(6)
Wide_Character_Ranges
 in Ada.Strings.Wide_Maps A.4.7(7)
Wide_Character_Sequence subtype of Wide_String
 in Ada.Strings.Wide_Maps A.4.7(16)
Wide_Character_Set
 in Ada.Strings.Wide_Maps A.4.7(4/2)
Wide_String
 in Standard A.1(41)
Wide_Wide_Character
 in Standard A.1(36.2/2)
Wide_Wide_Character_Mapping
 in Ada.Strings.Wide_Wide_Maps A.4.8(20/2)
Wide_Wide_Character_Mapping_Function
 in Ada.Strings.Wide_Wide_Maps A.4.8(26/2)
Wide_Wide_Character_Range
 in Ada.Strings.Wide_Wide_Maps A.4.8(6/2)
Wide_Wide_Character_Ranges
 in Ada.Strings.Wide_Wide_Maps A.4.8(7/2)
Wide_Wide_Character_Sequence subtype of

Wide_Wide_String
 in Ada.Strings.Wide_Wide_Maps A.4.8(16/2)
Wide_Wide_Character_Set
 in Ada.Strings.Wide_Wide_Maps A.4.8(4/2)
Wide_Wide_String
 in Standard A.1(42.1/2)
Year_Number subtype of Integer
 in Ada.Calendar 9.6(11/2)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

709 10 November 2006 Language-Defined Subprograms Q.3

Q.3 Language-Defined Subprograms
This clause lists all language-defined subprograms.

Abort_Task in Ada.Task_Identification C.7.1(3/1)
Actual_Quantum
 in Ada.Dispatching.Round_Robin D.2.5(4/2)
Add
 in Ada.Execution_Time.Group_Budgets D.14.2(9/2)
Add_Task
 in Ada.Execution_Time.Group_Budgets D.14.2(8/2)
Adjust in Ada.Finalization 7.6(6/2)
Allocate in System.Storage_Pools 13.11(7)
Append
 in Ada.Containers.Doubly_Linked_Lists A.18.3(23/2)
 in Ada.Containers.Vectors A.18.2(46/2), A.18.2(47/2)
 in Ada.Strings.Bounded A.4.4(13), A.4.4(14), A.4.4(15),

A.4.4(16), A.4.4(17), A.4.4(18), A.4.4(19), A.4.4(20)
 in Ada.Strings.Unbounded A.4.5(12), A.4.5(13), A.4.5(14)
Arccos
 in Ada.Numerics.Generic_Complex_Elementary_Functions

G.1.2(5)
 in Ada.Numerics.Generic_Elementary_Functions A.5.1(6)
Arccosh
 in Ada.Numerics.Generic_Complex_Elementary_Functions

G.1.2(7)
 in Ada.Numerics.Generic_Elementary_Functions A.5.1(7)
Arccot
 in Ada.Numerics.Generic_Complex_Elementary_Functions

G.1.2(5)
 in Ada.Numerics.Generic_Elementary_Functions A.5.1(6)
Arccoth
 in Ada.Numerics.Generic_Complex_Elementary_Functions

G.1.2(7)
 in Ada.Numerics.Generic_Elementary_Functions A.5.1(7)
Arcsin
 in Ada.Numerics.Generic_Complex_Elementary_Functions

G.1.2(5)
 in Ada.Numerics.Generic_Elementary_Functions A.5.1(6)
Arcsinh
 in Ada.Numerics.Generic_Complex_Elementary_Functions

G.1.2(7)
 in Ada.Numerics.Generic_Elementary_Functions A.5.1(7)
Arctan
 in Ada.Numerics.Generic_Complex_Elementary_Functions

G.1.2(5)
 in Ada.Numerics.Generic_Elementary_Functions A.5.1(6)
Arctanh
 in Ada.Numerics.Generic_Complex_Elementary_Functions

G.1.2(7)
 in Ada.Numerics.Generic_Elementary_Functions A.5.1(7)
Argument
 in Ada.Command_Line A.15(5)
 in Ada.Numerics.Generic_Complex_Arrays G.3.2(10/2),

G.3.2(31/2)
 in Ada.Numerics.Generic_Complex_Types G.1.1(10)

Argument_Count in Ada.Command_Line A.15(4)
Attach_Handler in Ada.Interrupts C.3.2(7)
Base_Name in Ada.Directories A.16(19/2)
Blank_When_Zero
 in Ada.Text_IO.Editing F.3.3(7)
Bounded_Slice in Ada.Strings.Bounded A.4.4(28.1/2),

A.4.4(28.2/2)
Budget_Has_Expired
 in Ada.Execution_Time.Group_Budgets D.14.2(9/2)
Budget_Remaining
 in Ada.Execution_Time.Group_Budgets D.14.2(9/2)
Cancel_Handler
 in Ada.Execution_Time.Group_Budgets D.14.2(10/2)
 in Ada.Execution_Time.Timers D.14.1(7/2)
 in Ada.Real_Time.Timing_Events D.15(5/2)
Capacity
 in Ada.Containers.Hashed_Maps A.18.5(8/2)
 in Ada.Containers.Hashed_Sets A.18.8(10/2)
 in Ada.Containers.Vectors A.18.2(19/2)
Ceiling
 in Ada.Containers.Ordered_Maps A.18.6(41/2)
 in Ada.Containers.Ordered_Sets A.18.9(51/2), A.18.9(71/2)
Clear
 in Ada.Containers.Doubly_Linked_Lists A.18.3(13/2)
 in Ada.Containers.Hashed_Maps A.18.5(12/2)
 in Ada.Containers.Hashed_Sets A.18.8(14/2)
 in Ada.Containers.Ordered_Maps A.18.6(11/2)
 in Ada.Containers.Ordered_Sets A.18.9(13/2)
 in Ada.Containers.Vectors A.18.2(24/2)
 in Ada.Environment_Variables A.17(7/2)
Clock
 in Ada.Calendar 9.6(12)
 in Ada.Execution_Time D.14(5/2)
 in Ada.Real_Time D.8(6)
Close
 in Ada.Direct_IO A.8.4(8)
 in Ada.Sequential_IO A.8.1(8)
 in Ada.Streams.Stream_IO A.12.1(10)
 in Ada.Text_IO A.10.1(11)
Col in Ada.Text_IO A.10.1(37)
Command_Name in Ada.Command_Line A.15(6)
Compose in Ada.Directories A.16(20/2)
Compose_From_Cartesian
 in Ada.Numerics.Generic_Complex_Arrays G.3.2(9/2),

G.3.2(29/2)
 in Ada.Numerics.Generic_Complex_Types G.1.1(8)
Compose_From_Polar
 in Ada.Numerics.Generic_Complex_Arrays G.3.2(11/2),

G.3.2(32/2)
 in Ada.Numerics.Generic_Complex_Types G.1.1(11)

1/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Q.3 Language-Defined Subprograms 10 November 2006 710

Conjugate
 in Ada.Numerics.Generic_Complex_Arrays G.3.2(13/2),

G.3.2(34/2)
 in Ada.Numerics.Generic_Complex_Types G.1.1(12),

G.1.1(15)
Containing_Directory
 in Ada.Directories A.16(17/2)
Contains
 in Ada.Containers.Doubly_Linked_Lists A.18.3(43/2)
 in Ada.Containers.Hashed_Maps A.18.5(32/2)
 in Ada.Containers.Hashed_Sets A.18.8(44/2), A.18.8(57/2)
 in Ada.Containers.Ordered_Maps A.18.6(42/2)
 in Ada.Containers.Ordered_Sets A.18.9(52/2), A.18.9(72/2)
 in Ada.Containers.Vectors A.18.2(71/2)
Continue
 in Ada.Asynchronous_Task_Control D.11(3/2)
Copy_Array in Interfaces.C.Pointers B.3.2(15)
Copy_File in Ada.Directories A.16(13/2)
Copy_Terminated_Array
 in Interfaces.C.Pointers B.3.2(14)
Cos
 in Ada.Numerics.Generic_Complex_Elementary_Functions

G.1.2(4)
 in Ada.Numerics.Generic_Elementary_Functions A.5.1(5)
Cosh
 in Ada.Numerics.Generic_Complex_Elementary_Functions

G.1.2(6)
 in Ada.Numerics.Generic_Elementary_Functions A.5.1(7)
Cot
 in Ada.Numerics.Generic_Complex_Elementary_Functions

G.1.2(4)
 in Ada.Numerics.Generic_Elementary_Functions A.5.1(5)
Coth
 in Ada.Numerics.Generic_Complex_Elementary_Functions

G.1.2(6)
 in Ada.Numerics.Generic_Elementary_Functions A.5.1(7)
Count
 in Ada.Strings.Bounded A.4.4(48), A.4.4(49), A.4.4(50)
 in Ada.Strings.Fixed A.4.3(13), A.4.3(14), A.4.3(15)
 in Ada.Strings.Unbounded A.4.5(43), A.4.5(44), A.4.5(45)
Create
 in Ada.Direct_IO A.8.4(6)
 in Ada.Sequential_IO A.8.1(6)
 in Ada.Streams.Stream_IO A.12.1(8)
 in Ada.Text_IO A.10.1(9)
Create_Directory in Ada.Directories A.16(7/2)
Create_Path in Ada.Directories A.16(9/2)
Current_Directory in Ada.Directories A.16(5/2)
Current_Error in Ada.Text_IO A.10.1(17), A.10.1(20)
Current_Handler
 in Ada.Execution_Time.Group_Budgets D.14.2(10/2)
 in Ada.Execution_Time.Timers D.14.1(7/2)
 in Ada.Interrupts C.3.2(6)
 in Ada.Real_Time.Timing_Events D.15(5/2)
Current_Input in Ada.Text_IO A.10.1(17), A.10.1(20)
Current_Output in Ada.Text_IO A.10.1(17), A.10.1(20)
Current_State
 in Ada.Synchronous_Task_Control D.10(4)
Current_Task
 in Ada.Task_Identification C.7.1(3/1)

Current_Task_Fallback_Handler
 in Ada.Task_Termination C.7.3(5/2)
Day
 in Ada.Calendar 9.6(13)
 in Ada.Calendar.Formatting 9.6.1(23/2)
Day_of_Week
 in Ada.Calendar.Formatting 9.6.1(18/2)
Deallocate in System.Storage_Pools 13.11(8)
Decrement in Interfaces.C.Pointers B.3.2(11)
Delay_Until_And_Set_Deadline
 in Ada.Dispatching.EDF D.2.6(9/2)
Delete
 in Ada.Containers.Doubly_Linked_Lists A.18.3(24/2)
 in Ada.Containers.Hashed_Maps A.18.5(25/2), A.18.5(26/2)
 in Ada.Containers.Hashed_Sets A.18.8(24/2), A.18.8(25/2),

A.18.8(55/2)
 in Ada.Containers.Ordered_Maps A.18.6(24/2),

A.18.6(25/2)
 in Ada.Containers.Ordered_Sets A.18.9(23/2), A.18.9(24/2),

A.18.9(68/2)
 in Ada.Containers.Vectors A.18.2(50/2), A.18.2(51/2)
 in Ada.Direct_IO A.8.4(8)
 in Ada.Sequential_IO A.8.1(8)
 in Ada.Streams.Stream_IO A.12.1(10)
 in Ada.Strings.Bounded A.4.4(64), A.4.4(65)
 in Ada.Strings.Fixed A.4.3(29), A.4.3(30)
 in Ada.Strings.Unbounded A.4.5(59), A.4.5(60)
 in Ada.Text_IO A.10.1(11)
Delete_Directory in Ada.Directories A.16(8/2)
Delete_File in Ada.Directories A.16(11/2)
Delete_First
 in Ada.Containers.Doubly_Linked_Lists A.18.3(25/2)
 in Ada.Containers.Ordered_Maps A.18.6(26/2)
 in Ada.Containers.Ordered_Sets A.18.9(25/2)
 in Ada.Containers.Vectors A.18.2(52/2)
Delete_Last
 in Ada.Containers.Doubly_Linked_Lists A.18.3(26/2)
 in Ada.Containers.Ordered_Maps A.18.6(27/2)
 in Ada.Containers.Ordered_Sets A.18.9(26/2)
 in Ada.Containers.Vectors A.18.2(53/2)
Delete_Tree in Ada.Directories A.16(10/2)
Dereference_Error
 in Interfaces.C.Strings B.3.1(12)
Descendant_Tag in Ada.Tags 3.9(7.1/2)
Detach_Handler in Ada.Interrupts C.3.2(9)
Determinant
 in Ada.Numerics.Generic_Complex_Arrays G.3.2(46/2)
 in Ada.Numerics.Generic_Real_Arrays G.3.1(24/2)
Difference
 in Ada.Calendar.Arithmetic 9.6.1(12/2)
 in Ada.Containers.Hashed_Sets A.18.8(32/2), A.18.8(33/2)
 in Ada.Containers.Ordered_Sets A.18.9(33/2), A.18.9(34/2)
Divide in Ada.Decimal F.2(6)
Do_APC in System.RPC E.5(10)
Do_RPC in System.RPC E.5(9)
Eigensystem
 in Ada.Numerics.Generic_Complex_Arrays G.3.2(49/2)
 in Ada.Numerics.Generic_Real_Arrays G.3.1(27/2)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

711 10 November 2006 Language-Defined Subprograms Q.3

Eigenvalues
 in Ada.Numerics.Generic_Complex_Arrays G.3.2(48/2)
 in Ada.Numerics.Generic_Real_Arrays G.3.1(26/2)
Element
 in Ada.Containers.Doubly_Linked_Lists A.18.3(14/2)
 in Ada.Containers.Hashed_Maps A.18.5(14/2), A.18.5(31/2)
 in Ada.Containers.Hashed_Sets A.18.8(15/2), A.18.8(52/2)
 in Ada.Containers.Ordered_Maps A.18.6(13/2),

A.18.6(39/2)
 in Ada.Containers.Ordered_Sets A.18.9(14/2), A.18.9(65/2)
 in Ada.Containers.Vectors A.18.2(27/2), A.18.2(28/2)
 in Ada.Strings.Bounded A.4.4(26)
 in Ada.Strings.Unbounded A.4.5(20)
End_Of_File
 in Ada.Direct_IO A.8.4(16)
 in Ada.Sequential_IO A.8.1(13)
 in Ada.Streams.Stream_IO A.12.1(12)
 in Ada.Text_IO A.10.1(34)
End_Of_Line in Ada.Text_IO A.10.1(30)
End_Of_Page in Ada.Text_IO A.10.1(33)
End_Search in Ada.Directories A.16(33/2)
Equivalent_Elements
 in Ada.Containers.Hashed_Sets A.18.8(46/2), A.18.8(47/2),

A.18.8(48/2)
 in Ada.Containers.Ordered_Sets A.18.9(3/2)
Equivalent_Keys
 in Ada.Containers.Hashed_Maps A.18.5(34/2),

A.18.5(35/2), A.18.5(36/2)
 in Ada.Containers.Ordered_Maps A.18.6(3/2)
 in Ada.Containers.Ordered_Sets A.18.9(63/2)
Equivalent_Sets
 in Ada.Containers.Hashed_Sets A.18.8(8/2)
 in Ada.Containers.Ordered_Sets A.18.9(9/2)
Establish_RPC_Receiver in System.RPC E.5(12)
Exception_Identity in Ada.Exceptions 11.4.1(5/2)
Exception_Information
 in Ada.Exceptions 11.4.1(5/2)
Exception_Message in Ada.Exceptions 11.4.1(4/2)
Exception_Name in Ada.Exceptions 11.4.1(2/2), 11.4.1(5/2)
Exchange_Handler in Ada.Interrupts C.3.2(8)
Exclude
 in Ada.Containers.Hashed_Maps A.18.5(24/2)
 in Ada.Containers.Hashed_Sets A.18.8(23/2), A.18.8(54/2)
 in Ada.Containers.Ordered_Maps A.18.6(23/2)
 in Ada.Containers.Ordered_Sets A.18.9(22/2), A.18.9(67/2)
Exists
 in Ada.Directories A.16(24/2)
 in Ada.Environment_Variables A.17(5/2)
Exp
 in Ada.Numerics.Generic_Complex_Elementary_Functions

G.1.2(3)
 in Ada.Numerics.Generic_Elementary_Functions A.5.1(4)
Expanded_Name in Ada.Tags 3.9(7/2)
Extension in Ada.Directories A.16(18/2)
External_Tag in Ada.Tags 3.9(7/2)
Finalize in Ada.Finalization 7.6(6/2), 7.6(8/2)
Find
 in Ada.Containers.Doubly_Linked_Lists A.18.3(41/2)
 in Ada.Containers.Hashed_Maps A.18.5(30/2)
 in Ada.Containers.Hashed_Sets A.18.8(43/2), A.18.8(56/2)

 in Ada.Containers.Ordered_Maps A.18.6(38/2)
 in Ada.Containers.Ordered_Sets A.18.9(49/2), A.18.9(69/2)
 in Ada.Containers.Vectors A.18.2(68/2)
Find_Index in Ada.Containers.Vectors A.18.2(67/2)
Find_Token
 in Ada.Strings.Bounded A.4.4(51)
 in Ada.Strings.Fixed A.4.3(16)
 in Ada.Strings.Unbounded A.4.5(46)
First
 in Ada.Containers.Doubly_Linked_Lists A.18.3(33/2)
 in Ada.Containers.Hashed_Maps A.18.5(27/2)
 in Ada.Containers.Hashed_Sets A.18.8(40/2)
 in Ada.Containers.Ordered_Maps A.18.6(28/2)
 in Ada.Containers.Ordered_Sets A.18.9(41/2)
 in Ada.Containers.Vectors A.18.2(58/2)
First_Element
 in Ada.Containers.Doubly_Linked_Lists A.18.3(34/2)
 in Ada.Containers.Ordered_Maps A.18.6(29/2)
 in Ada.Containers.Ordered_Sets A.18.9(42/2)
 in Ada.Containers.Vectors A.18.2(59/2)
First_Index in Ada.Containers.Vectors A.18.2(57/2)
First_Key
 in Ada.Containers.Ordered_Maps A.18.6(30/2)
Floor
 in Ada.Containers.Ordered_Maps A.18.6(40/2)
 in Ada.Containers.Ordered_Sets A.18.9(50/2), A.18.9(70/2)
Flush
 in Ada.Streams.Stream_IO A.12.1(25/1)
 in Ada.Text_IO A.10.1(21/1)
Form
 in Ada.Direct_IO A.8.4(9)
 in Ada.Sequential_IO A.8.1(9)
 in Ada.Streams.Stream_IO A.12.1(11)
 in Ada.Text_IO A.10.1(12)
Free
 in Ada.Strings.Unbounded A.4.5(7)
 in Interfaces.C.Strings B.3.1(11)
Full_Name in Ada.Directories A.16(15/2), A.16(39/2)
Generic_Array_Sort
 child of Ada.Containers A.18.16(3/2)
Generic_Constrained_Array_Sort
 child of Ada.Containers A.18.16(7/2)
Get
 in Ada.Text_IO A.10.1(41), A.10.1(47), A.10.1(54),

A.10.1(55), A.10.1(59), A.10.1(60), A.10.1(65), A.10.1(67),
A.10.1(70), A.10.1(72), A.10.1(75), A.10.1(77), A.10.1(81),
A.10.1(83)

 in Ada.Text_IO.Complex_IO G.1.3(6), G.1.3(8)
Get_Deadline in Ada.Dispatching.EDF D.2.6(9/2)
Get_Immediate in Ada.Text_IO A.10.1(44), A.10.1(45)
Get_Line
 in Ada.Text_IO A.10.1(49), A.10.1(49.1/2)
 in Ada.Text_IO.Bounded_IO A.10.11(8/2), A.10.11(9/2),

A.10.11(10/2), A.10.11(11/2)
 in Ada.Text_IO.Unbounded_IO A.10.12(8/2), A.10.12(9/2),

A.10.12(10/2), A.10.12(11/2)
Get_Next_Entry in Ada.Directories A.16(35/2)
Get_Priority
 in Ada.Dynamic_Priorities D.5.1(5)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Q.3 Language-Defined Subprograms 10 November 2006 712

Has_Element
 in Ada.Containers.Doubly_Linked_Lists A.18.3(44/2)
 in Ada.Containers.Hashed_Maps A.18.5(33/2)
 in Ada.Containers.Hashed_Sets A.18.8(45/2)
 in Ada.Containers.Ordered_Maps A.18.6(43/2)
 in Ada.Containers.Ordered_Sets A.18.9(53/2)
 in Ada.Containers.Vectors A.18.2(72/2)
Hash
 child of Ada.Strings A.4.9(2/2)
 child of Ada.Strings.Bounded A.4.9(7/2)
 child of Ada.Strings.Unbounded A.4.9(10/2)
Head
 in Ada.Strings.Bounded A.4.4(70), A.4.4(71)
 in Ada.Strings.Fixed A.4.3(35), A.4.3(36)
 in Ada.Strings.Unbounded A.4.5(65), A.4.5(66)
Hold in Ada.Asynchronous_Task_Control D.11(3/2)
Hour in Ada.Calendar.Formatting 9.6.1(24/2)
Im
 in Ada.Numerics.Generic_Complex_Arrays G.3.2(7/2),

G.3.2(27/2)
 in Ada.Numerics.Generic_Complex_Types G.1.1(6)
Image
 in Ada.Calendar.Formatting 9.6.1(35/2), 9.6.1(37/2)
 in Ada.Numerics.Discrete_Random A.5.2(26)
 in Ada.Numerics.Float_Random A.5.2(14)
 in Ada.Task_Identification C.7.1(3/1)
 in Ada.Text_IO.Editing F.3.3(13)
Include
 in Ada.Containers.Hashed_Maps A.18.5(22/2)
 in Ada.Containers.Hashed_Sets A.18.8(21/2)
 in Ada.Containers.Ordered_Maps A.18.6(21/2)
 in Ada.Containers.Ordered_Sets A.18.9(20/2)
Increment in Interfaces.C.Pointers B.3.2(11)
Index
 in Ada.Direct_IO A.8.4(15)
 in Ada.Streams.Stream_IO A.12.1(23)
 in Ada.Strings.Bounded A.4.4(43.1/2), A.4.4(43.2/2),

A.4.4(44), A.4.4(45), A.4.4(45.1/2), A.4.4(46)
 in Ada.Strings.Fixed A.4.3(8.1/2), A.4.3(8.2/2), A.4.3(9),

A.4.3(10), A.4.3(10.1/2), A.4.3(11)
 in Ada.Strings.Unbounded A.4.5(38.1/2), A.4.5(38.2/2),

A.4.5(39), A.4.5(40), A.4.5(40.1/2), A.4.5(41)
Index_Non_Blank
 in Ada.Strings.Bounded A.4.4(46.1/2), A.4.4(47)
 in Ada.Strings.Fixed A.4.3(11.1/2), A.4.3(12)
 in Ada.Strings.Unbounded A.4.5(41.1/2), A.4.5(42)
Initialize in Ada.Finalization 7.6(6/2), 7.6(8/2)
Insert
 in Ada.Containers.Doubly_Linked_Lists A.18.3(19/2),

A.18.3(20/2), A.18.3(21/2)
 in Ada.Containers.Hashed_Maps A.18.5(19/2),

A.18.5(20/2), A.18.5(21/2)
 in Ada.Containers.Hashed_Sets A.18.8(19/2), A.18.8(20/2)
 in Ada.Containers.Ordered_Maps A.18.6(18/2),

A.18.6(19/2), A.18.6(20/2)
 in Ada.Containers.Ordered_Sets A.18.9(18/2), A.18.9(19/2)
 in Ada.Containers.Vectors A.18.2(36/2), A.18.2(37/2),

A.18.2(38/2), A.18.2(39/2), A.18.2(40/2), A.18.2(41/2),
A.18.2(42/2), A.18.2(43/2)

 in Ada.Strings.Bounded A.4.4(60), A.4.4(61)

 in Ada.Strings.Fixed A.4.3(25), A.4.3(26)
 in Ada.Strings.Unbounded A.4.5(55), A.4.5(56)
Insert_Space
 in Ada.Containers.Vectors A.18.2(48/2), A.18.2(49/2)
Interface_Ancestor_Tags in Ada.Tags 3.9(7.4/2)
Internal_Tag in Ada.Tags 3.9(7/2)
Intersection
 in Ada.Containers.Hashed_Sets A.18.8(29/2), A.18.8(30/2)
 in Ada.Containers.Ordered_Sets A.18.9(30/2), A.18.9(31/2)
Inverse
 in Ada.Numerics.Generic_Complex_Arrays G.3.2(46/2)
 in Ada.Numerics.Generic_Real_Arrays G.3.1(24/2)
Is_A_Group_Member
 in Ada.Execution_Time.Group_Budgets D.14.2(8/2)
Is_Alphanumeric
 in Ada.Characters.Handling A.3.2(4)
Is_Attached in Ada.Interrupts C.3.2(5)
Is_Basic in Ada.Characters.Handling A.3.2(4)
Is_Callable
 in Ada.Task_Identification C.7.1(4)
Is_Character
 in Ada.Characters.Conversions A.3.4(3/2)
Is_Control in Ada.Characters.Handling A.3.2(4)
Is_Decimal_Digit
 in Ada.Characters.Handling A.3.2(4)
Is_Descendant_At_Same_Level
 in Ada.Tags 3.9(7.1/2)
Is_Digit in Ada.Characters.Handling A.3.2(4)
Is_Empty
 in Ada.Containers.Doubly_Linked_Lists A.18.3(12/2)
 in Ada.Containers.Hashed_Maps A.18.5(11/2)
 in Ada.Containers.Hashed_Sets A.18.8(13/2)
 in Ada.Containers.Ordered_Maps A.18.6(10/2)
 in Ada.Containers.Ordered_Sets A.18.9(12/2)
 in Ada.Containers.Vectors A.18.2(23/2)
Is_Graphic in Ada.Characters.Handling A.3.2(4)
Is_Held
 in Ada.Asynchronous_Task_Control D.11(3/2)
Is_Hexadecimal_Digit
 in Ada.Characters.Handling A.3.2(4)
Is_In
 in Ada.Strings.Maps A.4.2(13)
 in Ada.Strings.Wide_Maps A.4.7(13)
 in Ada.Strings.Wide_Wide_Maps A.4.8(13/2)
Is_ISO_646 in Ada.Characters.Handling A.3.2(10)
Is_Letter in Ada.Characters.Handling A.3.2(4)
Is_Lower in Ada.Characters.Handling A.3.2(4)
Is_Member
 in Ada.Execution_Time.Group_Budgets D.14.2(8/2)
Is_Nul_Terminated in Interfaces.C B.3(24), B.3(35),

B.3(39.16/2), B.3(39.7/2)
Is_Open
 in Ada.Direct_IO A.8.4(10)
 in Ada.Sequential_IO A.8.1(10)
 in Ada.Streams.Stream_IO A.12.1(12)
 in Ada.Text_IO A.10.1(13)
Is_Reserved in Ada.Interrupts C.3.2(4)
Is_Round_Robin
 in Ada.Dispatching.Round_Robin D.2.5(4/2)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

713 10 November 2006 Language-Defined Subprograms Q.3

Is_Sorted
 in Ada.Containers.Doubly_Linked_Lists A.18.3(48/2)
 in Ada.Containers.Vectors A.18.2(76/2)
Is_Special in Ada.Characters.Handling A.3.2(4)
Is_String
 in Ada.Characters.Conversions A.3.4(3/2)
Is_Subset
 in Ada.Containers.Hashed_Sets A.18.8(39/2)
 in Ada.Containers.Ordered_Sets A.18.9(40/2)
 in Ada.Strings.Maps A.4.2(14)
 in Ada.Strings.Wide_Maps A.4.7(14)
 in Ada.Strings.Wide_Wide_Maps A.4.8(14/2)
Is_Terminated
 in Ada.Task_Identification C.7.1(4)
Is_Upper in Ada.Characters.Handling A.3.2(4)
Is_Wide_Character
 in Ada.Characters.Conversions A.3.4(3/2)
Is_Wide_String
 in Ada.Characters.Conversions A.3.4(3/2)
Iterate
 in Ada.Containers.Doubly_Linked_Lists A.18.3(45/2)
 in Ada.Containers.Hashed_Maps A.18.5(37/2)
 in Ada.Containers.Hashed_Sets A.18.8(49/2)
 in Ada.Containers.Ordered_Maps A.18.6(50/2)
 in Ada.Containers.Ordered_Sets A.18.9(60/2)
 in Ada.Containers.Vectors A.18.2(73/2)
 in Ada.Environment_Variables A.17(8/2)
Key
 in Ada.Containers.Hashed_Maps A.18.5(13/2)
 in Ada.Containers.Hashed_Sets A.18.8(51/2)
 in Ada.Containers.Ordered_Maps A.18.6(12/2)
 in Ada.Containers.Ordered_Sets A.18.9(64/2)
Kind in Ada.Directories A.16(25/2), A.16(40/2)
Last
 in Ada.Containers.Doubly_Linked_Lists A.18.3(35/2)
 in Ada.Containers.Ordered_Maps A.18.6(31/2)
 in Ada.Containers.Ordered_Sets A.18.9(43/2)
 in Ada.Containers.Vectors A.18.2(61/2)
Last_Element
 in Ada.Containers.Doubly_Linked_Lists A.18.3(36/2)
 in Ada.Containers.Ordered_Maps A.18.6(32/2)
 in Ada.Containers.Ordered_Sets A.18.9(44/2)
 in Ada.Containers.Vectors A.18.2(62/2)
Last_Index in Ada.Containers.Vectors A.18.2(60/2)
Last_Key
 in Ada.Containers.Ordered_Maps A.18.6(33/2)
Length
 in Ada.Containers.Doubly_Linked_Lists A.18.3(11/2)
 in Ada.Containers.Hashed_Maps A.18.5(10/2)
 in Ada.Containers.Hashed_Sets A.18.8(12/2)
 in Ada.Containers.Ordered_Maps A.18.6(9/2)
 in Ada.Containers.Ordered_Sets A.18.9(11/2)
 in Ada.Containers.Vectors A.18.2(21/2)
 in Ada.Strings.Bounded A.4.4(9)
 in Ada.Strings.Unbounded A.4.5(6)
 in Ada.Text_IO.Editing F.3.3(11)
 in Interfaces.COBOL B.4(34), B.4(39), B.4(44)
Line in Ada.Text_IO A.10.1(38)
Line_Length in Ada.Text_IO A.10.1(25)

Log
 in Ada.Numerics.Generic_Complex_Elementary_Functions

G.1.2(3)
 in Ada.Numerics.Generic_Elementary_Functions A.5.1(4)
Look_Ahead in Ada.Text_IO A.10.1(43)
Members
 in Ada.Execution_Time.Group_Budgets D.14.2(8/2)
Merge
 in Ada.Containers.Doubly_Linked_Lists A.18.3(50/2)
 in Ada.Containers.Vectors A.18.2(78/2)
Microseconds in Ada.Real_Time D.8(14/2)
Milliseconds in Ada.Real_Time D.8(14/2)
Minute in Ada.Calendar.Formatting 9.6.1(25/2)
Minutes in Ada.Real_Time D.8(14/2)
Mode
 in Ada.Direct_IO A.8.4(9)
 in Ada.Sequential_IO A.8.1(9)
 in Ada.Streams.Stream_IO A.12.1(11)
 in Ada.Text_IO A.10.1(12)
Modification_Time in Ada.Directories A.16(27/2), A.16(42/2)
Modulus
 in Ada.Numerics.Generic_Complex_Arrays G.3.2(10/2),

G.3.2(30/2)
 in Ada.Numerics.Generic_Complex_Types G.1.1(9)
Month
 in Ada.Calendar 9.6(13)
 in Ada.Calendar.Formatting 9.6.1(22/2)
More_Entries in Ada.Directories A.16(34/2)
Move
 in Ada.Containers.Doubly_Linked_Lists A.18.3(18/2)
 in Ada.Containers.Hashed_Maps A.18.5(18/2)
 in Ada.Containers.Hashed_Sets A.18.8(18/2)
 in Ada.Containers.Ordered_Maps A.18.6(17/2)
 in Ada.Containers.Ordered_Sets A.18.9(17/2)
 in Ada.Containers.Vectors A.18.2(35/2)
 in Ada.Strings.Fixed A.4.3(7)
Name
 in Ada.Direct_IO A.8.4(9)
 in Ada.Sequential_IO A.8.1(9)
 in Ada.Streams.Stream_IO A.12.1(11)
 in Ada.Text_IO A.10.1(12)
Nanoseconds in Ada.Real_Time D.8(14/2)
New_Char_Array
 in Interfaces.C.Strings B.3.1(9)
New_Line in Ada.Text_IO A.10.1(28)
New_Page in Ada.Text_IO A.10.1(31)
New_String in Interfaces.C.Strings B.3.1(10)
Next
 in Ada.Containers.Doubly_Linked_Lists A.18.3(37/2),

A.18.3(39/2)
 in Ada.Containers.Hashed_Maps A.18.5(28/2), A.18.5(29/2)
 in Ada.Containers.Hashed_Sets A.18.8(41/2), A.18.8(42/2)
 in Ada.Containers.Ordered_Maps A.18.6(34/2),

A.18.6(35/2)
 in Ada.Containers.Ordered_Sets A.18.9(45/2), A.18.9(46/2)
 in Ada.Containers.Vectors A.18.2(63/2), A.18.2(64/2)
Null_Task_Id
 in Ada.Task_Identification C.7.1(2/2)
Open
 in Ada.Direct_IO A.8.4(7)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Q.3 Language-Defined Subprograms 10 November 2006 714

 in Ada.Sequential_IO A.8.1(7)
 in Ada.Streams.Stream_IO A.12.1(9)
 in Ada.Text_IO A.10.1(10)
Overlap
 in Ada.Containers.Hashed_Sets A.18.8(38/2)
 in Ada.Containers.Ordered_Sets A.18.9(39/2)
Overwrite
 in Ada.Strings.Bounded A.4.4(62), A.4.4(63)
 in Ada.Strings.Fixed A.4.3(27), A.4.3(28)
 in Ada.Strings.Unbounded A.4.5(57), A.4.5(58)
Page in Ada.Text_IO A.10.1(39)
Page_Length in Ada.Text_IO A.10.1(26)
Parent_Tag in Ada.Tags 3.9(7.2/2)
Pic_String in Ada.Text_IO.Editing F.3.3(7)
Prepend
 in Ada.Containers.Doubly_Linked_Lists A.18.3(22/2)
 in Ada.Containers.Vectors A.18.2(44/2), A.18.2(45/2)
Previous
 in Ada.Containers.Doubly_Linked_Lists A.18.3(38/2),

A.18.3(40/2)
 in Ada.Containers.Ordered_Maps A.18.6(36/2),

A.18.6(37/2)
 in Ada.Containers.Ordered_Sets A.18.9(47/2), A.18.9(48/2)
 in Ada.Containers.Vectors A.18.2(65/2), A.18.2(66/2)
Put
 in Ada.Text_IO A.10.1(42), A.10.1(48), A.10.1(55),

A.10.1(60), A.10.1(66), A.10.1(67), A.10.1(71), A.10.1(72),
A.10.1(76), A.10.1(77), A.10.1(82), A.10.1(83)

 in Ada.Text_IO.Bounded_IO A.10.11(4/2), A.10.11(5/2)
 in Ada.Text_IO.Complex_IO G.1.3(7), G.1.3(8)
 in Ada.Text_IO.Editing F.3.3(14), F.3.3(15), F.3.3(16)
 in Ada.Text_IO.Unbounded_IO A.10.12(4/2), A.10.12(5/2)
Put_Line
 in Ada.Text_IO A.10.1(50)
 in Ada.Text_IO.Bounded_IO A.10.11(6/2), A.10.11(7/2)
 in Ada.Text_IO.Unbounded_IO A.10.12(6/2), A.10.12(7/2)
Query_Element
 in Ada.Containers.Doubly_Linked_Lists A.18.3(16/2)
 in Ada.Containers.Hashed_Maps A.18.5(16/2)
 in Ada.Containers.Hashed_Sets A.18.8(17/2)
 in Ada.Containers.Ordered_Maps A.18.6(15/2)
 in Ada.Containers.Ordered_Sets A.18.9(16/2)
 in Ada.Containers.Vectors A.18.2(31/2), A.18.2(32/2)
Raise_Exception in Ada.Exceptions 11.4.1(4/2)
Random
 in Ada.Numerics.Discrete_Random A.5.2(20)
 in Ada.Numerics.Float_Random A.5.2(8)
Re
 in Ada.Numerics.Generic_Complex_Arrays G.3.2(7/2),

G.3.2(27/2)
 in Ada.Numerics.Generic_Complex_Types G.1.1(6)
Read
 in Ada.Direct_IO A.8.4(12)
 in Ada.Sequential_IO A.8.1(12)
 in Ada.Storage_IO A.9(6)
 in Ada.Streams 13.13.1(5)
 in Ada.Streams.Stream_IO A.12.1(15), A.12.1(16)
 in System.RPC E.5(7)
Reference
 in Ada.Interrupts C.3.2(10)

 in Ada.Task_Attributes C.7.2(5)
Reinitialize in Ada.Task_Attributes C.7.2(6)
Remove_Task
 in Ada.Execution_Time.Group_Budgets D.14.2(8/2)
Rename in Ada.Directories A.16(12/2)
Replace
 in Ada.Containers.Hashed_Maps A.18.5(23/2)
 in Ada.Containers.Hashed_Sets A.18.8(22/2), A.18.8(53/2)
 in Ada.Containers.Ordered_Maps A.18.6(22/2)
 in Ada.Containers.Ordered_Sets A.18.9(21/2), A.18.9(66/2)
Replace_Element
 in Ada.Containers.Doubly_Linked_Lists A.18.3(15/2)
 in Ada.Containers.Hashed_Maps A.18.5(15/2)
 in Ada.Containers.Hashed_Sets A.18.8(16/2)
 in Ada.Containers.Ordered_Maps A.18.6(14/2)
 in Ada.Containers.Ordered_Sets A.18.9(15/2)
 in Ada.Containers.Vectors A.18.2(29/2), A.18.2(30/2)
 in Ada.Strings.Bounded A.4.4(27)
 in Ada.Strings.Unbounded A.4.5(21)
Replace_Slice
 in Ada.Strings.Bounded A.4.4(58), A.4.4(59)
 in Ada.Strings.Fixed A.4.3(23), A.4.3(24)
 in Ada.Strings.Unbounded A.4.5(53), A.4.5(54)
Replenish
 in Ada.Execution_Time.Group_Budgets D.14.2(9/2)
Replicate in Ada.Strings.Bounded A.4.4(78), A.4.4(79),

A.4.4(80)
Reraise_Occurrence in Ada.Exceptions 11.4.1(4/2)
Reserve_Capacity
 in Ada.Containers.Hashed_Maps A.18.5(9/2)
 in Ada.Containers.Hashed_Sets A.18.8(11/2)
 in Ada.Containers.Vectors A.18.2(20/2)
Reset
 in Ada.Direct_IO A.8.4(8)
 in Ada.Numerics.Discrete_Random A.5.2(21), A.5.2(24)
 in Ada.Numerics.Float_Random A.5.2(9), A.5.2(12)
 in Ada.Sequential_IO A.8.1(8)
 in Ada.Streams.Stream_IO A.12.1(10)
 in Ada.Text_IO A.10.1(11)
Reverse_Elements
 in Ada.Containers.Doubly_Linked_Lists A.18.3(27/2)
 in Ada.Containers.Vectors A.18.2(54/2)
Reverse_Find
 in Ada.Containers.Doubly_Linked_Lists A.18.3(42/2)
 in Ada.Containers.Vectors A.18.2(70/2)
Reverse_Find_Index
 in Ada.Containers.Vectors A.18.2(69/2)
Reverse_Iterate
 in Ada.Containers.Doubly_Linked_Lists A.18.3(46/2)
 in Ada.Containers.Ordered_Maps A.18.6(51/2)
 in Ada.Containers.Ordered_Sets A.18.9(61/2)
 in Ada.Containers.Vectors A.18.2(74/2)
Save
 in Ada.Numerics.Discrete_Random A.5.2(24)
 in Ada.Numerics.Float_Random A.5.2(12)
Save_Occurrence in Ada.Exceptions 11.4.1(6/2)
Second in Ada.Calendar.Formatting 9.6.1(26/2)
Seconds
 in Ada.Calendar 9.6(13)
 in Ada.Real_Time D.8(14/2)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

715 10 November 2006 Language-Defined Subprograms Q.3

Seconds_Of in Ada.Calendar.Formatting 9.6.1(28/2)
Set in Ada.Environment_Variables A.17(6/2)
Set_Bounded_String
 in Ada.Strings.Bounded A.4.4(12.1/2)
Set_Col in Ada.Text_IO A.10.1(35)
Set_Deadline in Ada.Dispatching.EDF D.2.6(9/2)
Set_Dependents_Fallback_Handler
 in Ada.Task_Termination C.7.3(5/2)
Set_Directory in Ada.Directories A.16(6/2)
Set_Error in Ada.Text_IO A.10.1(15)
Set_Exit_Status in Ada.Command_Line A.15(9)
Set_False
 in Ada.Synchronous_Task_Control D.10(4)
Set_Handler
 in Ada.Execution_Time.Group_Budgets D.14.2(10/2)
 in Ada.Execution_Time.Timers D.14.1(7/2)
 in Ada.Real_Time.Timing_Events D.15(5/2)
Set_Im
 in Ada.Numerics.Generic_Complex_Arrays G.3.2(8/2),

G.3.2(28/2)
 in Ada.Numerics.Generic_Complex_Types G.1.1(7)
Set_Index
 in Ada.Direct_IO A.8.4(14)
 in Ada.Streams.Stream_IO A.12.1(22)
Set_Input in Ada.Text_IO A.10.1(15)
Set_Length in Ada.Containers.Vectors A.18.2(22/2)
Set_Line in Ada.Text_IO A.10.1(36)
Set_Line_Length in Ada.Text_IO A.10.1(23)
Set_Mode in Ada.Streams.Stream_IO A.12.1(24)
Set_Output in Ada.Text_IO A.10.1(15)
Set_Page_Length in Ada.Text_IO A.10.1(24)
Set_Priority
 in Ada.Dynamic_Priorities D.5.1(4)
Set_Quantum
 in Ada.Dispatching.Round_Robin D.2.5(4/2)
Set_Re
 in Ada.Numerics.Generic_Complex_Arrays G.3.2(8/2),

G.3.2(28/2)
 in Ada.Numerics.Generic_Complex_Types G.1.1(7)
Set_Specific_Handler
 in Ada.Task_Termination C.7.3(6/2)
Set_True
 in Ada.Synchronous_Task_Control D.10(4)
Set_Unbounded_String
 in Ada.Strings.Unbounded A.4.5(11.1/2)
Set_Value in Ada.Task_Attributes C.7.2(6)
Simple_Name in Ada.Directories A.16(16/2), A.16(38/2)
Sin
 in Ada.Numerics.Generic_Complex_Elementary_Functions

G.1.2(4)
 in Ada.Numerics.Generic_Elementary_Functions A.5.1(5)
Sinh
 in Ada.Numerics.Generic_Complex_Elementary_Functions

G.1.2(6)
 in Ada.Numerics.Generic_Elementary_Functions A.5.1(7)
Size
 in Ada.Direct_IO A.8.4(15)
 in Ada.Directories A.16(26/2), A.16(41/2)
 in Ada.Streams.Stream_IO A.12.1(23)
Skip_Line in Ada.Text_IO A.10.1(29)

Skip_Page in Ada.Text_IO A.10.1(32)
Slice
 in Ada.Strings.Bounded A.4.4(28)
 in Ada.Strings.Unbounded A.4.5(22)
Solve
 in Ada.Numerics.Generic_Complex_Arrays G.3.2(46/2)
 in Ada.Numerics.Generic_Real_Arrays G.3.1(24/2)
Sort
 in Ada.Containers.Doubly_Linked_Lists A.18.3(49/2)
 in Ada.Containers.Vectors A.18.2(77/2)
Specific_Handler
 in Ada.Task_Termination C.7.3(6/2)
Splice
 in Ada.Containers.Doubly_Linked_Lists A.18.3(30/2),

A.18.3(31/2), A.18.3(32/2)
Split
 in Ada.Calendar 9.6(14)
 in Ada.Calendar.Formatting 9.6.1(29/2), 9.6.1(32/2),

9.6.1(33/2), 9.6.1(34/2)
 in Ada.Execution_Time D.14(8/2)
 in Ada.Real_Time D.8(16)
Sqrt
 in Ada.Numerics.Generic_Complex_Elementary_Functions

G.1.2(3)
 in Ada.Numerics.Generic_Elementary_Functions A.5.1(4)
Standard_Error in Ada.Text_IO A.10.1(16), A.10.1(19)
Standard_Input in Ada.Text_IO A.10.1(16), A.10.1(19)
Standard_Output in Ada.Text_IO A.10.1(16), A.10.1(19)
Start_Search in Ada.Directories A.16(32/2)
Storage_Size in System.Storage_Pools 13.11(9)
Stream
 in Ada.Streams.Stream_IO A.12.1(13)
 in Ada.Text_IO.Text_Streams A.12.2(4)
 in Ada.Wide_Text_IO.Text_Streams A.12.3(4)
 in Ada.Wide_Wide_Text_IO.Text_Streams A.12.4(4/2)
Strlen in Interfaces.C.Strings B.3.1(17)
Sub_Second in Ada.Calendar.Formatting 9.6.1(27/2)
Suspend_Until_True
 in Ada.Synchronous_Task_Control D.10(4)
Swap
 in Ada.Containers.Doubly_Linked_Lists A.18.3(28/2)
 in Ada.Containers.Vectors A.18.2(55/2), A.18.2(56/2)
Swap_Links
 in Ada.Containers.Doubly_Linked_Lists A.18.3(29/2)
Symmetric_Difference
 in Ada.Containers.Hashed_Sets A.18.8(35/2), A.18.8(36/2)
 in Ada.Containers.Ordered_Sets A.18.9(36/2), A.18.9(37/2)
Tail
 in Ada.Strings.Bounded A.4.4(72), A.4.4(73)
 in Ada.Strings.Fixed A.4.3(37), A.4.3(38)
 in Ada.Strings.Unbounded A.4.5(67), A.4.5(68)
Tan
 in Ada.Numerics.Generic_Complex_Elementary_Functions

G.1.2(4)
 in Ada.Numerics.Generic_Elementary_Functions A.5.1(5)
Tanh
 in Ada.Numerics.Generic_Complex_Elementary_Functions

G.1.2(6)
 in Ada.Numerics.Generic_Elementary_Functions A.5.1(7)
Time_Of

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Q.3 Language-Defined Subprograms 10 November 2006 716

 in Ada.Calendar 9.6(15)
 in Ada.Calendar.Formatting 9.6.1(30/2), 9.6.1(31/2)
 in Ada.Execution_Time D.14(9/2)
 in Ada.Real_Time D.8(16)
Time_Of_Event
 in Ada.Real_Time.Timing_Events D.15(6/2)
Time_Remaining
 in Ada.Execution_Time.Timers D.14.1(8/2)
To_Ada
 in Interfaces.C B.3(22), B.3(26), B.3(28), B.3(32), B.3(37),

B.3(39), B.3(39.10/2), B.3(39.13/2), B.3(39.17/2),
B.3(39.19/2), B.3(39.4/2), B.3(39.8/2)

 in Interfaces.COBOL B.4(17), B.4(19)
 in Interfaces.Fortran B.5(13), B.5(14), B.5(16)
To_Address
 in System.Address_To_Access_Conversions 13.7.2(3)
 in System.Storage_Elements 13.7.1(10)
To_Basic in Ada.Characters.Handling A.3.2(6), A.3.2(7)
To_Binary in Interfaces.COBOL B.4(45), B.4(48)
To_Bounded_String
 in Ada.Strings.Bounded A.4.4(11)
To_C in Interfaces.C B.3(21), B.3(25), B.3(27), B.3(32),

B.3(36), B.3(38), B.3(39.13/2), B.3(39.16/2), B.3(39.18/2),
B.3(39.4/2), B.3(39.7/2), B.3(39.9/2)

To_Character
 in Ada.Characters.Conversions A.3.4(5/2)
To_Chars_Ptr in Interfaces.C.Strings B.3.1(8)
To_COBOL in Interfaces.COBOL B.4(17), B.4(18)
To_Cursor in Ada.Containers.Vectors A.18.2(25/2)
To_Decimal in Interfaces.COBOL B.4(35), B.4(40), B.4(44),

B.4(47)
To_Display in Interfaces.COBOL B.4(36)
To_Domain
 in Ada.Strings.Maps A.4.2(24)
 in Ada.Strings.Wide_Maps A.4.7(24)
 in Ada.Strings.Wide_Wide_Maps A.4.8(24/2)
To_Duration in Ada.Real_Time D.8(13)
To_Fortran in Interfaces.Fortran B.5(13), B.5(14), B.5(15)
To_Index in Ada.Containers.Vectors A.18.2(26/2)
To_Integer in System.Storage_Elements 13.7.1(10)
To_ISO_646 in Ada.Characters.Handling A.3.2(11), A.3.2(12)
To_Long_Binary in Interfaces.COBOL B.4(48)
To_Lower in Ada.Characters.Handling A.3.2(6), A.3.2(7)
To_Mapping
 in Ada.Strings.Maps A.4.2(23)
 in Ada.Strings.Wide_Maps A.4.7(23)
 in Ada.Strings.Wide_Wide_Maps A.4.8(23/2)
To_Packed in Interfaces.COBOL B.4(41)
To_Picture in Ada.Text_IO.Editing F.3.3(6)
To_Pointer
 in System.Address_To_Access_Conversions 13.7.2(3)
To_Range
 in Ada.Strings.Maps A.4.2(24)
 in Ada.Strings.Wide_Maps A.4.7(25)
 in Ada.Strings.Wide_Wide_Maps A.4.8(25/2)
To_Ranges
 in Ada.Strings.Maps A.4.2(10)
 in Ada.Strings.Wide_Maps A.4.7(10)
 in Ada.Strings.Wide_Wide_Maps A.4.8(10/2)
To_Sequence

 in Ada.Strings.Maps A.4.2(19)
 in Ada.Strings.Wide_Maps A.4.7(19)
 in Ada.Strings.Wide_Wide_Maps A.4.8(19/2)
To_Set
 in Ada.Containers.Hashed_Sets A.18.8(9/2)
 in Ada.Containers.Ordered_Sets A.18.9(10/2)
 in Ada.Strings.Maps A.4.2(8), A.4.2(9), A.4.2(17),

A.4.2(18)
 in Ada.Strings.Wide_Maps A.4.7(8), A.4.7(9), A.4.7(17),

A.4.7(18)
 in Ada.Strings.Wide_Wide_Maps A.4.8(8/2), A.4.8(9/2),

A.4.8(17/2), A.4.8(18/2)
To_String
 in Ada.Characters.Conversions A.3.4(5/2)
 in Ada.Strings.Bounded A.4.4(12)
 in Ada.Strings.Unbounded A.4.5(11)
To_Time_Span in Ada.Real_Time D.8(13)
To_Unbounded_String
 in Ada.Strings.Unbounded A.4.5(9), A.4.5(10)
To_Upper in Ada.Characters.Handling A.3.2(6), A.3.2(7)
To_Vector in Ada.Containers.Vectors A.18.2(13/2),

A.18.2(14/2)
To_Wide_Character
 in Ada.Characters.Conversions A.3.4(4/2), A.3.4(5/2)
To_Wide_String
 in Ada.Characters.Conversions A.3.4(4/2), A.3.4(5/2)
To_Wide_Wide_Character
 in Ada.Characters.Conversions A.3.4(4/2)
To_Wide_Wide_String
 in Ada.Characters.Conversions A.3.4(4/2)
Translate
 in Ada.Strings.Bounded A.4.4(53), A.4.4(54), A.4.4(55),

A.4.4(56)
 in Ada.Strings.Fixed A.4.3(18), A.4.3(19), A.4.3(20),

A.4.3(21)
 in Ada.Strings.Unbounded A.4.5(48), A.4.5(49), A.4.5(50),

A.4.5(51)
Transpose
 in Ada.Numerics.Generic_Complex_Arrays G.3.2(34/2)
 in Ada.Numerics.Generic_Real_Arrays G.3.1(17/2)
Trim
 in Ada.Strings.Bounded A.4.4(67), A.4.4(68), A.4.4(69)
 in Ada.Strings.Fixed A.4.3(31), A.4.3(32), A.4.3(33),

A.4.3(34)
 in Ada.Strings.Unbounded A.4.5(61), A.4.5(62), A.4.5(63),

A.4.5(64)
Unbounded_Slice
 in Ada.Strings.Unbounded A.4.5(22.1/2), A.4.5(22.2/2)
Unchecked_Conversion
 child of Ada 13.9(3)
Unchecked_Deallocation
 child of Ada 13.11.2(3)
Union
 in Ada.Containers.Hashed_Sets A.18.8(26/2), A.18.8(27/2)
 in Ada.Containers.Ordered_Sets A.18.9(27/2), A.18.9(28/2)
Unit_Matrix
 in Ada.Numerics.Generic_Complex_Arrays G.3.2(51/2)
 in Ada.Numerics.Generic_Real_Arrays G.3.1(29/2)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

717 10 November 2006 Language-Defined Subprograms Q.3

Unit_Vector
 in Ada.Numerics.Generic_Complex_Arrays G.3.2(24/2)
 in Ada.Numerics.Generic_Real_Arrays G.3.1(14/2)
Update in Interfaces.C.Strings B.3.1(18), B.3.1(19)
Update_Element
 in Ada.Containers.Doubly_Linked_Lists A.18.3(17/2)
 in Ada.Containers.Hashed_Maps A.18.5(17/2)
 in Ada.Containers.Ordered_Maps A.18.6(16/2)
 in Ada.Containers.Vectors A.18.2(33/2), A.18.2(34/2)
Update_Element_Preserving_Key
 in Ada.Containers.Hashed_Sets A.18.8(58/2)
 in Ada.Containers.Ordered_Sets A.18.9(73/2)
Update_Error in Interfaces.C.Strings B.3.1(20)
UTC_Time_Offset
 in Ada.Calendar.Time_Zones 9.6.1(6/2)
Valid
 in Ada.Text_IO.Editing F.3.3(5), F.3.3(12)
 in Interfaces.COBOL B.4(33), B.4(38), B.4(43)
Value
 in Ada.Calendar.Formatting 9.6.1(36/2), 9.6.1(38/2)
 in Ada.Environment_Variables A.17(4/2)
 in Ada.Numerics.Discrete_Random A.5.2(26)
 in Ada.Numerics.Float_Random A.5.2(14)
 in Ada.Strings.Maps A.4.2(21)
 in Ada.Strings.Wide_Maps A.4.7(21)
 in Ada.Strings.Wide_Wide_Maps A.4.8(21/2)
 in Ada.Task_Attributes C.7.2(4)
 in Interfaces.C.Pointers B.3.2(6), B.3.2(7)

 in Interfaces.C.Strings B.3.1(13), B.3.1(14), B.3.1(15),
B.3.1(16)

Virtual_Length
 in Interfaces.C.Pointers B.3.2(13)
Wide_Hash
 child of Ada.Strings.Wide_Bounded A.4.7(1/2)
 child of Ada.Strings.Wide_Fixed A.4.7(1/2)
 child of Ada.Strings.Wide_Unbounded A.4.7(1/2)
Wide_Exception_Name in Ada.Exceptions 11.4.1(2/2),

11.4.1(5/2)
Wide_Expanded_Name in Ada.Tags 3.9(7/2)
Wide_Wide_Hash
 child of Ada.Strings.Wide_Wide_Bounded A.4.8(1/2)
 child of Ada.Strings.Wide_Wide_Fixed A.4.8(1/2)
 child of Ada.Strings.Wide_Wide_Unbounded A.4.8(1/2)
Wide_Wide_Exception_Name
 in Ada.Exceptions 11.4.1(2/2), 11.4.1(5/2)
Wide_Wide_Expanded_Name in Ada.Tags 3.9(7/2)
Write
 in Ada.Direct_IO A.8.4(13)
 in Ada.Sequential_IO A.8.1(12)
 in Ada.Storage_IO A.9(7)
 in Ada.Streams 13.13.1(6)
 in Ada.Streams.Stream_IO A.12.1(18), A.12.1(19)
 in System.RPC E.5(8)
Year
 in Ada.Calendar 9.6(13)
 in Ada.Calendar.Formatting 9.6.1(21/2)

Q.4 Language-Defined Exceptions
This clause lists all language-defined exceptions.

Argument_Error
 in Ada.Numerics A.5(3/2)
Communication_Error
 in System.RPC E.5(5)
Constraint_Error
 in Standard A.1(46)
Conversion_Error
 in Interfaces.COBOL B.4(30)
Data_Error
 in Ada.Direct_IO A.8.4(18)
 in Ada.IO_Exceptions A.13(4)
 in Ada.Sequential_IO A.8.1(15)
 in Ada.Storage_IO A.9(9)
 in Ada.Streams.Stream_IO A.12.1(26)
 in Ada.Text_IO A.10.1(85)
Device_Error
 in Ada.Direct_IO A.8.4(18)
 in Ada.Directories A.16(43/2)
 in Ada.IO_Exceptions A.13(4)
 in Ada.Sequential_IO A.8.1(15)
 in Ada.Streams.Stream_IO A.12.1(26)
 in Ada.Text_IO A.10.1(85)

Dispatching_Policy_Error
 in Ada.Dispatching D.2.1(1.2/2)
End_Error
 in Ada.Direct_IO A.8.4(18)
 in Ada.IO_Exceptions A.13(4)
 in Ada.Sequential_IO A.8.1(15)
 in Ada.Streams.Stream_IO A.12.1(26)
 in Ada.Text_IO A.10.1(85)
Group_Budget_Error
 in Ada.Execution_Time.Group_Budgets D.14.2(11/2)
Index_Error
 in Ada.Strings A.4.1(5)
Layout_Error
 in Ada.IO_Exceptions A.13(4)
 in Ada.Text_IO A.10.1(85)
Length_Error
 in Ada.Strings A.4.1(5)
Mode_Error
 in Ada.Direct_IO A.8.4(18)
 in Ada.IO_Exceptions A.13(4)
 in Ada.Sequential_IO A.8.1(15)
 in Ada.Streams.Stream_IO A.12.1(26)
 in Ada.Text_IO A.10.1(85)

1/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Q.4 Language-Defined Exceptions 10 November 2006 718

Name_Error
 in Ada.Direct_IO A.8.4(18)
 in Ada.Directories A.16(43/2)
 in Ada.IO_Exceptions A.13(4)
 in Ada.Sequential_IO A.8.1(15)
 in Ada.Streams.Stream_IO A.12.1(26)
 in Ada.Text_IO A.10.1(85)
Pattern_Error
 in Ada.Strings A.4.1(5)
Picture_Error
 in Ada.Text_IO.Editing F.3.3(9)
Pointer_Error
 in Interfaces.C.Pointers B.3.2(8)
Program_Error
 in Standard A.1(46)
Status_Error
 in Ada.Direct_IO A.8.4(18)
 in Ada.Directories A.16(43/2)
 in Ada.IO_Exceptions A.13(4)
 in Ada.Sequential_IO A.8.1(15)
 in Ada.Streams.Stream_IO A.12.1(26)
 in Ada.Text_IO A.10.1(85)

Storage_Error
 in Standard A.1(46)
Tag_Error
 in Ada.Tags 3.9(8)
Tasking_Error
 in Standard A.1(46)
Terminator_Error
 in Interfaces.C B.3(40)
Time_Error
 in Ada.Calendar 9.6(18)
Timer_Resource_Error
 in Ada.Execution_Time.Timers D.14.1(9/2)
Translation_Error
 in Ada.Strings A.4.1(5)
Unknown_Zone_Error
 in Ada.Calendar.Time_Zones 9.6.1(5/2)
Use_Error
 in Ada.Direct_IO A.8.4(18)
 in Ada.Directories A.16(43/2)
 in Ada.IO_Exceptions A.13(4)
 in Ada.Sequential_IO A.8.1(15)
 in Ada.Streams.Stream_IO A.12.1(26)
 in Ada.Text_IO A.10.1(85)

Q.5 Language-Defined Objects
This clause lists all language-defined constants, variables, named numbers, and enumeration literals.

ACK in Ada.Characters.Latin_1 A.3.3(5)
Acute in Ada.Characters.Latin_1 A.3.3(22)
Ada_To_COBOL in Interfaces.COBOL B.4(14)
Alphanumeric_Set
 in Ada.Strings.Maps.Constants A.4.6(4)
Ampersand in Ada.Characters.Latin_1 A.3.3(8)
APC in Ada.Characters.Latin_1 A.3.3(19)
Apostrophe in Ada.Characters.Latin_1 A.3.3(8)
Asterisk in Ada.Characters.Latin_1 A.3.3(8)
Basic_Map
 in Ada.Strings.Maps.Constants A.4.6(5)
Basic_Set
 in Ada.Strings.Maps.Constants A.4.6(4)
BEL in Ada.Characters.Latin_1 A.3.3(5)
BPH in Ada.Characters.Latin_1 A.3.3(17)
Broken_Bar in Ada.Characters.Latin_1 A.3.3(21)
BS in Ada.Characters.Latin_1 A.3.3(5)
Buffer_Size in Ada.Storage_IO A.9(4)
CAN in Ada.Characters.Latin_1 A.3.3(6)
CCH in Ada.Characters.Latin_1 A.3.3(18)
Cedilla in Ada.Characters.Latin_1 A.3.3(22)
Cent_Sign in Ada.Characters.Latin_1 A.3.3(21)
char16_nul in Interfaces.C B.3(39.3/2)
char32_nul in Interfaces.C B.3(39.12/2)
CHAR_BIT in Interfaces.C B.3(6)
Character_Set
 in Ada.Strings.Wide_Maps A.4.7(46/2)
 in Ada.Strings.Wide_Maps.Wide_Constants A.4.8(48/2)

Circumflex in Ada.Characters.Latin_1 A.3.3(12)
COBOL_To_Ada in Interfaces.COBOL B.4(15)
Colon in Ada.Characters.Latin_1 A.3.3(10)
Comma in Ada.Characters.Latin_1 A.3.3(8)
Commercial_At
 in Ada.Characters.Latin_1 A.3.3(10)
Control_Set
 in Ada.Strings.Maps.Constants A.4.6(4)
Copyright_Sign
 in Ada.Characters.Latin_1 A.3.3(21)
CPU_Tick in Ada.Execution_Time D.14(4/2)
CPU_Time_First in Ada.Execution_Time D.14(4/2)
CPU_Time_Last in Ada.Execution_Time D.14(4/2)
CPU_Time_Unit in Ada.Execution_Time D.14(4/2)
CR in Ada.Characters.Latin_1 A.3.3(5)
CSI in Ada.Characters.Latin_1 A.3.3(19)
Currency_Sign
 in Ada.Characters.Latin_1 A.3.3(21)
DC1 in Ada.Characters.Latin_1 A.3.3(6)
DC2 in Ada.Characters.Latin_1 A.3.3(6)
DC3 in Ada.Characters.Latin_1 A.3.3(6)
DC4 in Ada.Characters.Latin_1 A.3.3(6)
DCS in Ada.Characters.Latin_1 A.3.3(18)
Decimal_Digit_Set
 in Ada.Strings.Maps.Constants A.4.6(4)
Default_Aft
 in Ada.Text_IO A.10.1(64), A.10.1(69), A.10.1(74)
 in Ada.Text_IO.Complex_IO G.1.3(5)

1/2

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

719 10 November 2006 Language-Defined Objects Q.5

Default_Base in Ada.Text_IO A.10.1(53), A.10.1(58)
Default_Bit_Order in System 13.7(15/2)
Default_Currency
 in Ada.Text_IO.Editing F.3.3(10)
Default_Deadline
 in Ada.Dispatching.EDF D.2.6(9/2)
Default_Exp
 in Ada.Text_IO A.10.1(64), A.10.1(69), A.10.1(74)
 in Ada.Text_IO.Complex_IO G.1.3(5)
Default_Fill in Ada.Text_IO.Editing F.3.3(10)
Default_Fore
 in Ada.Text_IO A.10.1(64), A.10.1(69), A.10.1(74)
 in Ada.Text_IO.Complex_IO G.1.3(5)
Default_Priority in System 13.7(17)
Default_Quantum
 in Ada.Dispatching.Round_Robin D.2.5(4/2)
Default_Radix_Mark
 in Ada.Text_IO.Editing F.3.3(10)
Default_Separator
 in Ada.Text_IO.Editing F.3.3(10)
Default_Setting in Ada.Text_IO A.10.1(80)
Default_Width in Ada.Text_IO A.10.1(53), A.10.1(58),

A.10.1(80)
Degree_Sign in Ada.Characters.Latin_1 A.3.3(22)
DEL in Ada.Characters.Latin_1 A.3.3(14)
Diaeresis in Ada.Characters.Latin_1 A.3.3(21)
Division_Sign
 in Ada.Characters.Latin_1 A.3.3(26)
DLE in Ada.Characters.Latin_1 A.3.3(6)
Dollar_Sign in Ada.Characters.Latin_1 A.3.3(8)
e in Ada.Numerics A.5(3/2)
EM in Ada.Characters.Latin_1 A.3.3(6)
Empty_List
 in Ada.Containers.Doubly_Linked_Lists A.18.3(8/2)
Empty_Map
 in Ada.Containers.Hashed_Maps A.18.5(5/2)
 in Ada.Containers.Ordered_Maps A.18.6(6/2)
Empty_Set
 in Ada.Containers.Hashed_Sets A.18.8(5/2)
 in Ada.Containers.Ordered_Sets A.18.9(6/2)
Empty_Vector
 in Ada.Containers.Vectors A.18.2(10/2)
ENQ in Ada.Characters.Latin_1 A.3.3(5)
EOT in Ada.Characters.Latin_1 A.3.3(5)
EPA in Ada.Characters.Latin_1 A.3.3(18)
Equals_Sign in Ada.Characters.Latin_1 A.3.3(10)
ESA in Ada.Characters.Latin_1 A.3.3(17)
ESC in Ada.Characters.Latin_1 A.3.3(6)
ETB in Ada.Characters.Latin_1 A.3.3(6)
ETX in Ada.Characters.Latin_1 A.3.3(5)
Exclamation in Ada.Characters.Latin_1 A.3.3(8)
Failure in Ada.Command_Line A.15(8)
Feminine_Ordinal_Indicator
 in Ada.Characters.Latin_1 A.3.3(21)
FF in Ada.Characters.Latin_1 A.3.3(5)
Fine_Delta in System 13.7(9)
Fraction_One_Half
 in Ada.Characters.Latin_1 A.3.3(22)
Fraction_One_Quarter
 in Ada.Characters.Latin_1 A.3.3(22)

Fraction_Three_Quarters
 in Ada.Characters.Latin_1 A.3.3(22)
Friday in Ada.Calendar.Formatting 9.6.1(17/2)
FS in Ada.Characters.Latin_1 A.3.3(6)
Full_Stop in Ada.Characters.Latin_1 A.3.3(8)
Graphic_Set
 in Ada.Strings.Maps.Constants A.4.6(4)
Grave in Ada.Characters.Latin_1 A.3.3(13)
Greater_Than_Sign
 in Ada.Characters.Latin_1 A.3.3(10)
GS in Ada.Characters.Latin_1 A.3.3(6)
Hexadecimal_Digit_Set
 in Ada.Strings.Maps.Constants A.4.6(4)
High_Order_First
 in Interfaces.COBOL B.4(25)
 in System 13.7(15/2)
HT in Ada.Characters.Latin_1 A.3.3(5)
HTJ in Ada.Characters.Latin_1 A.3.3(17)
HTS in Ada.Characters.Latin_1 A.3.3(17)
Hyphen in Ada.Characters.Latin_1 A.3.3(8)
i
 in Ada.Numerics.Generic_Complex_Types G.1.1(5)
 in Interfaces.Fortran B.5(10)
Identity
 in Ada.Strings.Maps A.4.2(22)
 in Ada.Strings.Wide_Maps A.4.7(22)
 in Ada.Strings.Wide_Wide_Maps A.4.8(22/2)
Inverted_Exclamation
 in Ada.Characters.Latin_1 A.3.3(21)
Inverted_Question
 in Ada.Characters.Latin_1 A.3.3(22)
IS1 in Ada.Characters.Latin_1 A.3.3(16)
IS2 in Ada.Characters.Latin_1 A.3.3(16)
IS3 in Ada.Characters.Latin_1 A.3.3(16)
IS4 in Ada.Characters.Latin_1 A.3.3(16)
ISO_646_Set
 in Ada.Strings.Maps.Constants A.4.6(4)
j
 in Ada.Numerics.Generic_Complex_Types G.1.1(5)
 in Interfaces.Fortran B.5(10)
LC_A in Ada.Characters.Latin_1 A.3.3(13)
LC_A_Acute in Ada.Characters.Latin_1 A.3.3(25)
LC_A_Circumflex
 in Ada.Characters.Latin_1 A.3.3(25)
LC_A_Diaeresis
 in Ada.Characters.Latin_1 A.3.3(25)
LC_A_Grave in Ada.Characters.Latin_1 A.3.3(25)
LC_A_Ring in Ada.Characters.Latin_1 A.3.3(25)
LC_A_Tilde in Ada.Characters.Latin_1 A.3.3(25)
LC_AE_Diphthong
 in Ada.Characters.Latin_1 A.3.3(25)
LC_B in Ada.Characters.Latin_1 A.3.3(13)
LC_C in Ada.Characters.Latin_1 A.3.3(13)
LC_C_Cedilla
 in Ada.Characters.Latin_1 A.3.3(25)
LC_D in Ada.Characters.Latin_1 A.3.3(13)
LC_E in Ada.Characters.Latin_1 A.3.3(13)
LC_E_Acute in Ada.Characters.Latin_1 A.3.3(25)
LC_E_Circumflex
 in Ada.Characters.Latin_1 A.3.3(25)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Q.5 Language-Defined Objects 10 November 2006 720

LC_E_Diaeresis
 in Ada.Characters.Latin_1 A.3.3(25)
LC_E_Grave in Ada.Characters.Latin_1 A.3.3(25)
LC_F in Ada.Characters.Latin_1 A.3.3(13)
LC_G in Ada.Characters.Latin_1 A.3.3(13)
LC_German_Sharp_S
 in Ada.Characters.Latin_1 A.3.3(24)
LC_H in Ada.Characters.Latin_1 A.3.3(13)
LC_I in Ada.Characters.Latin_1 A.3.3(13)
LC_I_Acute in Ada.Characters.Latin_1 A.3.3(25)
LC_I_Circumflex
 in Ada.Characters.Latin_1 A.3.3(25)
LC_I_Diaeresis
 in Ada.Characters.Latin_1 A.3.3(25)
LC_I_Grave in Ada.Characters.Latin_1 A.3.3(25)
LC_Icelandic_Eth
 in Ada.Characters.Latin_1 A.3.3(26)
LC_Icelandic_Thorn
 in Ada.Characters.Latin_1 A.3.3(26)
LC_J in Ada.Characters.Latin_1 A.3.3(13)
LC_K in Ada.Characters.Latin_1 A.3.3(13)
LC_L in Ada.Characters.Latin_1 A.3.3(13)
LC_M in Ada.Characters.Latin_1 A.3.3(13)
LC_N in Ada.Characters.Latin_1 A.3.3(13)
LC_N_Tilde in Ada.Characters.Latin_1 A.3.3(26)
LC_O in Ada.Characters.Latin_1 A.3.3(13)
LC_O_Acute in Ada.Characters.Latin_1 A.3.3(26)
LC_O_Circumflex
 in Ada.Characters.Latin_1 A.3.3(26)
LC_O_Diaeresis
 in Ada.Characters.Latin_1 A.3.3(26)
LC_O_Grave in Ada.Characters.Latin_1 A.3.3(26)
LC_O_Oblique_Stroke
 in Ada.Characters.Latin_1 A.3.3(26)
LC_O_Tilde in Ada.Characters.Latin_1 A.3.3(26)
LC_P in Ada.Characters.Latin_1 A.3.3(14)
LC_Q in Ada.Characters.Latin_1 A.3.3(14)
LC_R in Ada.Characters.Latin_1 A.3.3(14)
LC_S in Ada.Characters.Latin_1 A.3.3(14)
LC_T in Ada.Characters.Latin_1 A.3.3(14)
LC_U in Ada.Characters.Latin_1 A.3.3(14)
LC_U_Acute in Ada.Characters.Latin_1 A.3.3(26)
LC_U_Circumflex
 in Ada.Characters.Latin_1 A.3.3(26)
LC_U_Diaeresis
 in Ada.Characters.Latin_1 A.3.3(26)
LC_U_Grave in Ada.Characters.Latin_1 A.3.3(26)
LC_V in Ada.Characters.Latin_1 A.3.3(14)
LC_W in Ada.Characters.Latin_1 A.3.3(14)
LC_X in Ada.Characters.Latin_1 A.3.3(14)
LC_Y in Ada.Characters.Latin_1 A.3.3(14)
LC_Y_Acute in Ada.Characters.Latin_1 A.3.3(26)
LC_Y_Diaeresis
 in Ada.Characters.Latin_1 A.3.3(26)
LC_Z in Ada.Characters.Latin_1 A.3.3(14)
Leading_Nonseparate
 in Interfaces.COBOL B.4(23)
Leading_Separate in Interfaces.COBOL B.4(23)
Left_Angle_Quotation
 in Ada.Characters.Latin_1 A.3.3(21)

Left_Curly_Bracket
 in Ada.Characters.Latin_1 A.3.3(14)
Left_Parenthesis
 in Ada.Characters.Latin_1 A.3.3(8)
Left_Square_Bracket
 in Ada.Characters.Latin_1 A.3.3(12)
Less_Than_Sign
 in Ada.Characters.Latin_1 A.3.3(10)
Letter_Set
 in Ada.Strings.Maps.Constants A.4.6(4)
LF in Ada.Characters.Latin_1 A.3.3(5)
Low_Line in Ada.Characters.Latin_1 A.3.3(12)
Low_Order_First
 in Interfaces.COBOL B.4(25)
 in System 13.7(15/2)
Lower_Case_Map
 in Ada.Strings.Maps.Constants A.4.6(5)
Lower_Set
 in Ada.Strings.Maps.Constants A.4.6(4)
Macron in Ada.Characters.Latin_1 A.3.3(21)
Masculine_Ordinal_Indicator
 in Ada.Characters.Latin_1 A.3.3(22)
Max_Base_Digits in System 13.7(8)
Max_Binary_Modulus in System 13.7(7)
Max_Decimal_Digits in Ada.Decimal F.2(5)
Max_Delta in Ada.Decimal F.2(4)
Max_Digits in System 13.7(8)
Max_Digits_Binary in Interfaces.COBOL B.4(11)
Max_Digits_Long_Binary
 in Interfaces.COBOL B.4(11)
Max_Image_Width
 in Ada.Numerics.Discrete_Random A.5.2(25)
 in Ada.Numerics.Float_Random A.5.2(13)
Max_Int in System 13.7(6)
Max_Length in Ada.Strings.Bounded A.4.4(5)
Max_Mantissa in System 13.7(9)
Max_Nonbinary_Modulus in System 13.7(7)
Max_Picture_Length
 in Ada.Text_IO.Editing F.3.3(8)
Max_Scale in Ada.Decimal F.2(3)
Memory_Size in System 13.7(13)
Micro_Sign in Ada.Characters.Latin_1 A.3.3(22)
Middle_Dot in Ada.Characters.Latin_1 A.3.3(22)
Min_Delta in Ada.Decimal F.2(4)
Min_Handler_Ceiling
 in Ada.Execution_Time.Group_Budgets D.14.2(7/2)
 in Ada.Execution_Time.Timers D.14.1(6/2)
Min_Int in System 13.7(6)
Min_Scale in Ada.Decimal F.2(3)
Minus_Sign in Ada.Characters.Latin_1 A.3.3(8)
Monday in Ada.Calendar.Formatting 9.6.1(17/2)
Multiplication_Sign
 in Ada.Characters.Latin_1 A.3.3(24)
MW in Ada.Characters.Latin_1 A.3.3(18)
NAK in Ada.Characters.Latin_1 A.3.3(6)
Native_Binary in Interfaces.COBOL B.4(25)
NBH in Ada.Characters.Latin_1 A.3.3(17)
NBSP in Ada.Characters.Latin_1 A.3.3(21)
NEL in Ada.Characters.Latin_1 A.3.3(17)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

721 10 November 2006 Language-Defined Objects Q.5

No_Break_Space
 in Ada.Characters.Latin_1 A.3.3(21)
No_Element
 in Ada.Containers.Doubly_Linked_Lists A.18.3(9/2)
 in Ada.Containers.Hashed_Maps A.18.5(6/2)
 in Ada.Containers.Hashed_Sets A.18.8(6/2)
 in Ada.Containers.Ordered_Maps A.18.6(7/2)
 in Ada.Containers.Ordered_Sets A.18.9(7/2)
 in Ada.Containers.Vectors A.18.2(11/2)
No_Index in Ada.Containers.Vectors A.18.2(7/2)
No_Tag in Ada.Tags 3.9(6.1/2)
Not_Sign in Ada.Characters.Latin_1 A.3.3(21)
NUL
 in Ada.Characters.Latin_1 A.3.3(5)
 in Interfaces.C B.3(20/1)
Null_Address in System 13.7(12)
Null_Bounded_String
 in Ada.Strings.Bounded A.4.4(7)
Null_Id in Ada.Exceptions 11.4.1(2/2)
Null_Occurrence in Ada.Exceptions 11.4.1(3/2)
Null_Ptr in Interfaces.C.Strings B.3.1(7)
Null_Set
 in Ada.Strings.Maps A.4.2(5)
 in Ada.Strings.Wide_Maps A.4.7(5)
 in Ada.Strings.Wide_Wide_Maps A.4.8(5/2)
Null_Unbounded_String
 in Ada.Strings.Unbounded A.4.5(5)
Number_Sign in Ada.Characters.Latin_1 A.3.3(8)
OSC in Ada.Characters.Latin_1 A.3.3(19)
Packed_Signed in Interfaces.COBOL B.4(27)
Packed_Unsigned in Interfaces.COBOL B.4(27)
Paragraph_Sign
 in Ada.Characters.Latin_1 A.3.3(22)
Percent_Sign
 in Ada.Characters.Latin_1 A.3.3(8)
Pi in Ada.Numerics A.5(3/2)
Pilcrow_Sign
 in Ada.Characters.Latin_1 A.3.3(22)
PLD in Ada.Characters.Latin_1 A.3.3(17)
PLU in Ada.Characters.Latin_1 A.3.3(17)
Plus_Minus_Sign
 in Ada.Characters.Latin_1 A.3.3(22)
Plus_Sign in Ada.Characters.Latin_1 A.3.3(8)
PM in Ada.Characters.Latin_1 A.3.3(19)
Pound_Sign in Ada.Characters.Latin_1 A.3.3(21)
PU1 in Ada.Characters.Latin_1 A.3.3(18)
PU2 in Ada.Characters.Latin_1 A.3.3(18)
Question in Ada.Characters.Latin_1 A.3.3(10)
Quotation in Ada.Characters.Latin_1 A.3.3(8)
Registered_Trade_Mark_Sign
 in Ada.Characters.Latin_1 A.3.3(21)
Reserved_128
 in Ada.Characters.Latin_1 A.3.3(17)
Reserved_129
 in Ada.Characters.Latin_1 A.3.3(17)
Reserved_132
 in Ada.Characters.Latin_1 A.3.3(17)
Reserved_153
 in Ada.Characters.Latin_1 A.3.3(19)

Reverse_Solidus
 in Ada.Characters.Latin_1 A.3.3(12)
RI in Ada.Characters.Latin_1 A.3.3(17)
Right_Angle_Quotation
 in Ada.Characters.Latin_1 A.3.3(22)
Right_Curly_Bracket
 in Ada.Characters.Latin_1 A.3.3(14)
Right_Parenthesis
 in Ada.Characters.Latin_1 A.3.3(8)
Right_Square_Bracket
 in Ada.Characters.Latin_1 A.3.3(12)
Ring_Above in Ada.Characters.Latin_1 A.3.3(22)
RS in Ada.Characters.Latin_1 A.3.3(6)
Saturday in Ada.Calendar.Formatting 9.6.1(17/2)
SCHAR_MAX in Interfaces.C B.3(6)
SCHAR_MIN in Interfaces.C B.3(6)
SCI in Ada.Characters.Latin_1 A.3.3(19)
Section_Sign
 in Ada.Characters.Latin_1 A.3.3(21)
Semicolon in Ada.Characters.Latin_1 A.3.3(10)
SI in Ada.Characters.Latin_1 A.3.3(5)
SO in Ada.Characters.Latin_1 A.3.3(5)
Soft_Hyphen in Ada.Characters.Latin_1 A.3.3(21)
SOH in Ada.Characters.Latin_1 A.3.3(5)
Solidus in Ada.Characters.Latin_1 A.3.3(8)
SOS in Ada.Characters.Latin_1 A.3.3(19)
SPA in Ada.Characters.Latin_1 A.3.3(18)
Space
 in Ada.Characters.Latin_1 A.3.3(8)
 in Ada.Strings A.4.1(4/2)
Special_Set
 in Ada.Strings.Maps.Constants A.4.6(4)
SS2 in Ada.Characters.Latin_1 A.3.3(17)
SS3 in Ada.Characters.Latin_1 A.3.3(17)
SSA in Ada.Characters.Latin_1 A.3.3(17)
ST in Ada.Characters.Latin_1 A.3.3(19)
Storage_Unit in System 13.7(13)
STS in Ada.Characters.Latin_1 A.3.3(18)
STX in Ada.Characters.Latin_1 A.3.3(5)
SUB in Ada.Characters.Latin_1 A.3.3(6)
Success in Ada.Command_Line A.15(8)
Sunday in Ada.Calendar.Formatting 9.6.1(17/2)
Superscript_One
 in Ada.Characters.Latin_1 A.3.3(22)
Superscript_Three
 in Ada.Characters.Latin_1 A.3.3(22)
Superscript_Two
 in Ada.Characters.Latin_1 A.3.3(22)
SYN in Ada.Characters.Latin_1 A.3.3(6)
System_Name in System 13.7(4)
Thursday in Ada.Calendar.Formatting 9.6.1(17/2)
Tick
 in Ada.Real_Time D.8(6)
 in System 13.7(10)
Tilde in Ada.Characters.Latin_1 A.3.3(14)
Time_First in Ada.Real_Time D.8(4)
Time_Last in Ada.Real_Time D.8(4)
Time_Span_First in Ada.Real_Time D.8(5)
Time_Span_Last in Ada.Real_Time D.8(5)
Time_Span_Unit in Ada.Real_Time D.8(5)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Q.5 Language-Defined Objects 10 November 2006 722

Time_Span_Zero in Ada.Real_Time D.8(5)
Time_Unit in Ada.Real_Time D.8(4)
Trailing_Nonseparate
 in Interfaces.COBOL B.4(23)
Trailing_Separate in Interfaces.COBOL B.4(23)
Tuesday in Ada.Calendar.Formatting 9.6.1(17/2)
UC_A_Acute in Ada.Characters.Latin_1 A.3.3(23)
UC_A_Circumflex
 in Ada.Characters.Latin_1 A.3.3(23)
UC_A_Diaeresis
 in Ada.Characters.Latin_1 A.3.3(23)
UC_A_Grave in Ada.Characters.Latin_1 A.3.3(23)
UC_A_Ring in Ada.Characters.Latin_1 A.3.3(23)
UC_A_Tilde in Ada.Characters.Latin_1 A.3.3(23)
UC_AE_Diphthong
 in Ada.Characters.Latin_1 A.3.3(23)
UC_C_Cedilla
 in Ada.Characters.Latin_1 A.3.3(23)
UC_E_Acute in Ada.Characters.Latin_1 A.3.3(23)
UC_E_Circumflex
 in Ada.Characters.Latin_1 A.3.3(23)
UC_E_Diaeresis
 in Ada.Characters.Latin_1 A.3.3(23)
UC_E_Grave in Ada.Characters.Latin_1 A.3.3(23)
UC_I_Acute in Ada.Characters.Latin_1 A.3.3(23)
UC_I_Circumflex
 in Ada.Characters.Latin_1 A.3.3(23)
UC_I_Diaeresis
 in Ada.Characters.Latin_1 A.3.3(23)
UC_I_Grave in Ada.Characters.Latin_1 A.3.3(23)
UC_Icelandic_Eth
 in Ada.Characters.Latin_1 A.3.3(24)
UC_Icelandic_Thorn
 in Ada.Characters.Latin_1 A.3.3(24)
UC_N_Tilde in Ada.Characters.Latin_1 A.3.3(24)
UC_O_Acute in Ada.Characters.Latin_1 A.3.3(24)

UC_O_Circumflex
 in Ada.Characters.Latin_1 A.3.3(24)
UC_O_Diaeresis
 in Ada.Characters.Latin_1 A.3.3(24)
UC_O_Grave in Ada.Characters.Latin_1 A.3.3(24)
UC_O_Oblique_Stroke
 in Ada.Characters.Latin_1 A.3.3(24)
UC_O_Tilde in Ada.Characters.Latin_1 A.3.3(24)
UC_U_Acute in Ada.Characters.Latin_1 A.3.3(24)
UC_U_Circumflex
 in Ada.Characters.Latin_1 A.3.3(24)
UC_U_Diaeresis
 in Ada.Characters.Latin_1 A.3.3(24)
UC_U_Grave in Ada.Characters.Latin_1 A.3.3(24)
UC_Y_Acute in Ada.Characters.Latin_1 A.3.3(24)
UCHAR_MAX in Interfaces.C B.3(6)
Unbounded in Ada.Text_IO A.10.1(5)
Unsigned in Interfaces.COBOL B.4(23)
Upper_Case_Map
 in Ada.Strings.Maps.Constants A.4.6(5)
Upper_Set
 in Ada.Strings.Maps.Constants A.4.6(4)
US in Ada.Characters.Latin_1 A.3.3(6)
Vertical_Line
 in Ada.Characters.Latin_1 A.3.3(14)
VT in Ada.Characters.Latin_1 A.3.3(5)
VTS in Ada.Characters.Latin_1 A.3.3(17)
Wednesday in Ada.Calendar.Formatting 9.6.1(17/2)
Wide_Character_Set
 in Ada.Strings.Wide_Maps.Wide_Constants A.4.8(48/2)
wide_nul in Interfaces.C B.3(31/1)
Wide_Space in Ada.Strings A.4.1(4/2)
Wide_Wide_Space in Ada.Strings A.4.1(4/2)
Word_Size in System 13.7(13)
Yen_Sign in Ada.Characters.Latin_1 A.3.3(21)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

723 10 November 2006 Index

Index
Index entries are given by paragraph number.

& operator 4.4(1), 4.5.3(3)

* operator 4.4(1), 4.5.5(1)
** operator 4.4(1), 4.5.6(7)

+ operator 4.4(1), 4.5.3(1), 4.5.4(1)

- operator 4.4(1), 4.5.3(1), 4.5.4(1)

/ operator 4.4(1), 4.5.5(1)
/= operator 4.4(1), 4.5.2(1)

10646:2003, ISO/IEC standard 1.2(8/2)
14882:2003, ISO/IEC standard 1.2(9/2)
1539-1:2004, ISO/IEC standard 1.2(3/2)
19769:2004, ISO/IEC technical report

1.2(10/2)
1989:2002, ISO standard 1.2(4/2)

6429:1992, ISO/IEC standard 1.2(5)
646:1991, ISO/IEC standard 1.2(2)

8859-1:1987, ISO/IEC standard 1.2(6)

9899:1999, ISO/IEC standard 1.2(7/2)

< operator 4.4(1), 4.5.2(1)
<= operator 4.4(1), 4.5.2(1)

= operator 4.4(1), 4.5.2(1)

> operator 4.4(1), 4.5.2(1)
>= operator 4.4(1), 4.5.2(1)

A

AARM 0.3(5/2)
abnormal completion 7.6.1(2/2)
abnormal state of an object 13.9.1(4)
 [partial] 9.8(21), 11.6(6), A.13(17)
abnormal task 9.8(4)
abort
 of a partition E.1(7)
 of a task 9.8(4)
 of the execution of a construct 9.8(5)
abort completion point 9.8(15)
abort-deferred operation 9.8(5)
abort_statement 9.8(2)
 used 5.1(4/2), P
Abort_Task
 in Ada.Task_Identification C.7.1(3/1)
abortable_part 9.7.4(5)

 used 9.7.4(2), P
abs operator 4.4(1), 4.5.6(1)
absolute value 4.4(1), 4.5.6(1)
abstract data type (ADT)
 See private types and private

extensions 7.3(1)
 See also abstract type 3.9.3(1/2)
abstract subprogram 3.9.3(1/2),

3.9.3(3/2)
abstract type 3.9.3(1.2/2), 3.9.3(1/2),

N(1.1/2)
abstract_subprogram_declaration

3.9.3(1.1/2)
 used 3.1(3/2), P
accept_alternative 9.7.1(5)
 used 9.7.1(4), P
accept_statement 9.5.2(3)
 used 5.1(5/2), 9.7.1(5), P
acceptable interpretation 8.6(14)
Access attribute 3.10.2(24/1),

3.10.2(32/2)
 See also Unchecked_Access attribute

13.10(3)
access discriminant 3.7(9/2)
access parameter 6.1(24/2)
access paths
 distinct 6.2(12)
access result type 6.1(24/2)
access type 3.10(1), N(2)
access types
 input-output unspecified A.7(6)
access value 3.10(1)
access-to-constant type 3.10(10)
access-to-object type 3.10(7/1)
access-to-subprogram type 3.10(7/1),

3.10(11)
access-to-variable type 3.10(10)
Access_Check 11.5(11/2)
 [partial] 4.1(13), 4.6(51/2)
access_definition 3.10(6/2)
 used 3.3.1(2/2), 3.6(7/2), 3.7(5/2),

6.1(13/2), 6.1(15/2), 6.5(2.2/2),
8.5.1(2/2), 12.4(2/2), P

access_to_object_definition 3.10(3)
 used 3.10(2/2), P
access_to_subprogram_definition

3.10(5)
 used 3.10(2/2), P
access_type_definition 3.10(2/2)
 used 3.2.1(4/2), 12.5.4(2), P

accessibility
 from shared passive library units

E.2.1(8)
accessibility level 3.10.2(3/2)
accessibility rule
 Access attribute 3.10.2(28),

3.10.2(32/2)
 requeue statement 9.5.4(6)
 type conversion 4.6(24.17/2),

4.6(24.21/2)
 type conversion, array components

4.6(24.6/2)
Accessibility_Check 11.5(19.1/2)
 [partial] 3.10.2(29), 4.6(39.1/2),

4.6(48), 4.8(10.1/2), 6.5(8/2),
6.5(21/2), E.4(18/1)

accessible partition E.1(7)
accuracy 4.6(32), G.2(1)
ACK
 in Ada.Characters.Latin_1 A.3.3(5)
acquire
 execution resource associated with

protected object 9.5.1(5)
activation
 of a task 9.2(1)
activation failure 9.2(1)
activator
 of a task 9.2(5)
active partition 10.2(28), E.1(2)
active priority D.1(15)
actual 12.3(7/2)
actual duration D.9(12)
actual parameter
 for a formal parameter 6.4.1(3)
actual subtype 3.3(23), 12.5(4)
 of an object 3.3.1(9/2)
actual type 12.5(4)
actual_parameter_part 6.4(4)
 used 6.4(2), 6.4(3), 9.5.3(2), P
Actual_Quantum
 in Ada.Dispatching.Round_Robin

D.2.5(4/2)
Acute
 in Ada.Characters.Latin_1 A.3.3(22)
Ada A.2(2)
Ada calling convention 6.3.1(3)
Ada.Assertions 11.4.2(12/2)
Ada.Asynchronous_Task_Control

D.11(3/2)
Ada.Calendar 9.6(10)
Ada.Calendar.Arithmetic 9.6.1(8/2)
Ada.Calendar.Formatting 9.6.1(15/2)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Index 10 November 2006 724

Ada.Calendar.Time_Zones 9.6.1(2/2)
Ada.Characters A.3.1(2)
Ada.Characters.Conversions A.3.4(2/2)
Ada.Characters.Handling A.3.2(2/2)
Ada.Characters.Latin_1 A.3.3(3)
Ada.Command_Line A.15(3)
Ada.Complex_Text_IO G.1.3(9.1/2)
Ada.Containers A.18.1(3/2)
Ada.Containers.Doubly_Linked_Lists

A.18.3(5/2)
Ada.Containers.Generic_Array_Sort

A.18.16(3/2)
Ada.Containers.Generic_Constrained_Arr

ay_Sort A.18.16(7/2)
Ada.Containers.Hashed_Maps

A.18.5(2/2)
Ada.Containers.Hashed_Sets A.18.8(2/2)
Ada.Containers.Indefinite_Doubly_Linke

d_Lists A.18.11(2/2)
Ada.Containers.Indefinite_Hashed_Maps

A.18.12(2/2)
Ada.Containers.Indefinite_Hashed_Sets

A.18.14(2/2)
Ada.Containers.Indefinite_Ordered_Maps

 A.18.13(2/2)
Ada.Containers.Indefinite_Ordered_Sets

A.18.15(2/2)
Ada.Containers.Indefinite_Vectors

A.18.10(2/2)
Ada.Containers.Ordered_Maps

A.18.6(2/2)
Ada.Containers.Ordered_Sets

A.18.9(2/2)
Ada.Containers.Vectors A.18.2(6/2)
Ada.Decimal F.2(2)
Ada.Direct_IO A.8.4(2)
Ada.Directories A.16(3/2)
Ada.Directories.Information A.16(124/2)
Ada.Dispatching D.2.1(1.2/2)
Ada.Dispatching.EDF D.2.6(9/2)
Ada.Dispatching.Round_Robin

D.2.5(4/2)
Ada.Dynamic_Priorities D.5.1(3/2)
Ada.Environment_Variables A.17(3/2)
Ada.Exceptions 11.4.1(2/2)
Ada.Execution_Time D.14(3/2)
Ada.Execution_Time.Group_Budgets

D.14.2(3/2)
Ada.Execution_Time.Timers D.14.1(3/2)
Ada.Finalization 7.6(4/1)
Ada.Float_Text_IO A.10.9(33)
Ada.Float_Wide_Text_IO A.11(2/2)
Ada.Float_Wide_Wide_Text_IO

A.11(3/2)
Ada.Integer_Text_IO A.10.8(21)
Ada.Integer_Wide_Text_IO A.11(2/2)
Ada.Integer_Wide_Wide_Text_IO

A.11(3/2)
Ada.Interrupts C.3.2(2)
Ada.Interrupts.Names C.3.2(12)

Ada.IO_Exceptions A.13(3)
Ada.Numerics A.5(3/2)
Ada.Numerics.Complex_Arrays

G.3.2(53/2)
Ada.Numerics.Complex_Elementary_-

Functions G.1.2(9/1)
Ada.Numerics.Complex_Types

G.1.1(25/1)
Ada.Numerics.Discrete_Random

A.5.2(17)
Ada.Numerics.Elementary_Functions

A.5.1(9/1)
Ada.Numerics.Float_Random A.5.2(5)
Ada.Numerics.Generic_Complex_Arrays

G.3.2(2/2)
Ada.Numerics.Generic_Complex_-

Elementary_Functions G.1.2(2/2)
Ada.Numerics.Generic_Complex_Types

G.1.1(2/1)
Ada.Numerics.Generic_Elementary_-

Functions A.5.1(3)
Ada.Numerics.Generic_Real_Arrays

G.3.1(2/2)
Ada.Numerics.Real_Arrays G.3.1(31/2)
Ada.Real_Time D.8(3)
Ada.Real_Time.Timing_Events

D.15(3/2)
Ada.Sequential_IO A.8.1(2)
Ada.Storage_IO A.9(3)
Ada.Streams 13.13.1(2)
Ada.Streams.Stream_IO A.12.1(3)
Ada.Strings A.4.1(3)
Ada.Strings.Bounded A.4.4(3)
Ada.Strings.Bounded.Hash A.4.9(7/2)
Ada.Strings.Fixed A.4.3(5)
Ada.Strings.Hash A.4.9(2/2)
Ada.Strings.Maps A.4.2(3/2)
Ada.Strings.Maps.Constants A.4.6(3/2)
Ada.Strings.Unbounded A.4.5(3)
Ada.Strings.Unbounded.Hash

A.4.9(10/2)
Ada.Strings.Wide_Bounded A.4.7(1/2)
Ada.Strings.Wide_Bounded.Wide_Hash

A.4.7(1/2)
Ada.Strings.Wide_Fixed A.4.7(1/2)
Ada.Strings.Wide_Fixed.Wide_Hash

A.4.7(1/2)
Ada.Strings.Wide_Hash A.4.7(1/2)
Ada.Strings.Wide_Maps A.4.7(3)
Ada.Strings.Wide_Maps.Wide_-

Constants A.4.7(1/2), A.4.8(28/2)
Ada.Strings.Wide_Unbounded

A.4.7(1/2)
Ada.Strings.Wide_Unbounded.Wide_-

Hash A.4.7(1/2)
Ada.Strings.Wide_Wide_-

Bounded.Wide_Wide_Hash
A.4.8(1/2)

Ada.Strings.Wide_Wide_-
Fixed.Wide_Wide_Hash A.4.8(1/2)

Ada.Strings.Wide_Wide_Hash
A.4.8(1/2)

Ada.Strings.Wide_Wide_-
Maps.Wide_Wide_Constants
A.4.8(1/2)

Ada.Strings.Wide_Wide_-
Unbounded.Wide_Wide_Hash
A.4.8(1/2)

Ada.Strings.Wide_Wide_Bounded
A.4.8(1/2)

Ada.Strings.Wide_Wide_Fixed
A.4.8(1/2)

Ada.Strings.Wide_Wide_Maps
A.4.8(3/2)

Ada.Strings.Wide_Wide_Unbounded
A.4.8(1/2)

Ada.Synchronous_Task_Control
D.10(3/2)

Ada.Tags 3.9(6/2)
Ada.Tags.Generic_Dispatching_-

Constructor 3.9(18.2/2)
Ada.Task_Attributes C.7.2(2)
Ada.Task_Identification C.7.1(2/2)
Ada.Task_Termination C.7.3(2/2)
Ada.Text_IO A.10.1(2)
Ada.Text_IO.Bounded_IO A.10.11(3/2)
Ada.Text_IO.Complex_IO G.1.3(3)
Ada.Text_IO.Editing F.3.3(3)
Ada.Text_IO.Text_Streams A.12.2(3)
Ada.Text_IO.Unbounded_IO

A.10.12(3/2)
Ada.Unchecked_Conversion 13.9(3)
Ada.Unchecked_Deallocation 13.11.2(3)
Ada.Wide_Text_IO A.11(2/2)
Ada.Wide_Text_IO.Bounded_IO

A.11(4/2)
Ada.Wide_Text_IO.Complex_IO

G.1.4(1)
Ada.Wide_Text_IO.Editing F.3.4(1)
Ada.Wide_Text_IO.Text_Streams

A.12.3(3)
Ada.Wide_Text_IO.Unbounded_IO

A.11(5/2)
Ada.Wide_Wide_Text_IO.Editing

F.3.5(1/2)
Ada.Wide_Characters A.3.1(4/2)
Ada.Wide_Wide_Text_IO A.11(3/2)
Ada.Wide_Wide_Text_IO.Bounded_IO

A.11(4/2)
Ada.Wide_Wide_Text_IO.Complex_IO

G.1.5(1/2)
Ada.Wide_Wide_Text_IO.Text_Streams

A.12.4(3/2)
Ada.Wide_Wide_-

Text_IO.Unbounded_IO A.11(5/2)
Ada.Wide_Wide_Characters A.3.1(6/2)
Ada_To_COBOL
 in Interfaces.COBOL B.4(14)
adafinal B.1(39)
adainit B.1(39)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

725 10 November 2006 Index

Add
 in

Ada.Execution_Time.Group_Budgets
D.14.2(9/2)

Add_Task
 in

Ada.Execution_Time.Group_Budgets
D.14.2(8/2)

address
 arithmetic 13.7.1(6)
 comparison 13.7(14)
 in System 13.7(12)
Address attribute 13.3(11), J.7.1(5)
Address clause 13.3(7/2), 13.3(12)
Address_To_Access_Conversions
 child of System 13.7.2(2)
Adjacent attribute A.5.3(48)
Adjust 7.6(2)
 in Ada.Finalization 7.6(6/2)
adjusting the value of an object 7.6(15),

7.6(16)
adjustment 7.6(15), 7.6(16)
 as part of assignment 5.2(14)
ADT (abstract data type)
 See private types and private

extensions 7.3(1)
 See also abstract type 3.9.3(1/2)
advice 1.1.2(37)
Aft attribute 3.5.10(5)
aggregate 4.3(1), 4.3(2)
 used 4.4(7), 4.7(2), P
 See also composite type 3.2(2/2)
aliased 3.10(9/2), N(3)
aliasing
 See distinct access paths 6.2(12)
Alignment
 in Ada.Strings A.4.1(6)
Alignment attribute 13.3(23/2),

13.3(26.2/2)
Alignment clause 13.3(7/2), 13.3(25/2),

13.3(26.4/2)
All_Calls_Remote pragma E.2.3(5), L(2)
All_Checks 11.5(25)
Allocate
 in System.Storage_Pools 13.11(7)
Allocation_Check 11.5(19.2/2)
 [partial] 4.8(10.2/2), 4.8(10.3/2)
allocator 4.8(2)
 used 4.4(7), P
Alphanumeric
 in Interfaces.COBOL B.4(16)
alphanumeric character
 a category of Character A.3.2(31)
Alphanumeric_Set
 in Ada.Strings.Maps.Constants

A.4.6(4)
ambiguous 8.6(30)
ambiguous cursor
 of a vector A.18.2(240/2)
ampersand 2.1(15/2)

 in Ada.Characters.Latin_1 A.3.3(8)
ampersand operator 4.4(1), 4.5.3(3)
ancestor N(3.1/2)
 of a library unit 10.1.1(11)
 of a type 3.4.1(10/2)
 ultimate 3.4.1(10/2)
ancestor subtype
 of a formal derived type 12.5.1(5/2)
 of a private_extension_declaration

7.3(8)
ancestor_part 4.3.2(3)
 used 4.3.2(2), P
and operator 4.4(1), 4.5.1(2)
and then (short-circuit control form)

4.4(1), 4.5.1(1)
angle threshold G.2.4(10)
Annex
 informative 1.1.2(18)
 normative 1.1.2(14)
 Specialized Needs 1.1.2(7)
Annotated Ada Reference Manual

0.3(5/2)
anonymous access type 3.10(12/2)
anonymous array type 3.3.1(1)
anonymous protected type 3.3.1(1)
anonymous task type 3.3.1(1)
anonymous type 3.2.1(7/2)
Any_Priority subtype of Integer
 in System 13.7(16)
APC
 in Ada.Characters.Latin_1 A.3.3(19)
apostrophe 2.1(15/2)
 in Ada.Characters.Latin_1 A.3.3(8)
Append
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(23/2)
 in Ada.Containers.Vectors

A.18.2(46/2), A.18.2(47/2)
 in Ada.Strings.Bounded A.4.4(13),

A.4.4(14), A.4.4(15), A.4.4(16),
A.4.4(17), A.4.4(18), A.4.4(19),
A.4.4(20)

 in Ada.Strings.Unbounded A.4.5(12),
A.4.5(13), A.4.5(14)

applicable index constraint 4.3.3(10)
application areas 1.1.2(7)
apply
 to a callable construct by a return

statement 6.5(4/2)
 to a loop_statement by an

exit_statement 5.7(4)
 to a program unit by a program unit

pragma 10.1.5(2)
arbitrary order 1.1.4(18)
Arccos
 in Ada.Numerics.Generic_Complex_-

Elementary_Functions G.1.2(5)
 in Ada.Numerics.Generic_Elementary_-

Functions A.5.1(6)

Arccosh
 in Ada.Numerics.Generic_Complex_-

Elementary_Functions G.1.2(7)
 in Ada.Numerics.Generic_Elementary_-

Functions A.5.1(7)
Arccot
 in Ada.Numerics.Generic_Complex_-

Elementary_Functions G.1.2(5)
 in Ada.Numerics.Generic_Elementary_-

Functions A.5.1(6)
Arccoth
 in Ada.Numerics.Generic_Complex_-

Elementary_Functions G.1.2(7)
 in Ada.Numerics.Generic_Elementary_-

Functions A.5.1(7)
Arcsin
 in Ada.Numerics.Generic_Complex_-

Elementary_Functions G.1.2(5)
 in Ada.Numerics.Generic_Elementary_-

Functions A.5.1(6)
Arcsinh
 in Ada.Numerics.Generic_Complex_-

Elementary_Functions G.1.2(7)
 in Ada.Numerics.Generic_Elementary_-

Functions A.5.1(7)
Arctan
 in Ada.Numerics.Generic_Complex_-

Elementary_Functions G.1.2(5)
 in Ada.Numerics.Generic_Elementary_-

Functions A.5.1(6)
Arctanh
 in Ada.Numerics.Generic_Complex_-

Elementary_Functions G.1.2(7)
 in Ada.Numerics.Generic_Elementary_-

Functions A.5.1(7)
Argument
 in Ada.Command_Line A.15(5)
 in Ada.Numerics.Generic_Complex_-

Arrays G.3.2(10/2), G.3.2(31/2)
 in Ada.Numerics.Generic_Complex_-

Types G.1.1(10)
argument of a pragma 2.8(9)
Argument_Count
 in Ada.Command_Line A.15(4)
Argument_Error
 in Ada.Numerics A.5(3/2)
Arithmetic
 child of Ada.Calendar 9.6.1(8/2)
array 3.6(1)
array component expression 4.3.3(6)
array indexing
 See indexed_component 4.1.1(1)
array slice 4.1.2(1)
array type 3.6(1), N(4)
array_aggregate 4.3.3(2)
 used 4.3(2), 13.4(3), P
array_component_association 4.3.3(5/2)
 used 4.3.3(4), P
array_type_definition 3.6(2)
 used 3.2.1(4/2), 3.3.1(2/2), 12.5.3(2), P

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Index 10 November 2006 726

ASCII
 package physically nested within the

declaration of Standard A.1(36.3/2)
 in Standard A.1(36.3/2)
aspect of representation 13.1(8)
 coding 13.4(7)
 controlled 13.11.3(5)
 convention, calling convention B.1(28)
 exported B.1(28)
 imported B.1(28)
 layout 13.5(1)
 packing 13.2(5)
 record layout 13.5(1)
 specifiable attributes 13.3(5/1)
 storage place 13.5(1)
aspect_clause 13.1(2/1)
 used 3.8(5/1), 3.11(4/1), 9.1(5/1),

9.4(5/1), 9.4(8/1), P
assembly language C.1(4)
Assert pragma 11.4.2(3/2), L(2.1/2)
assertion policy 11.4.2(18/2)
Assertion_Policy pragma 11.4.2(6/2),

L(2.2/2)
Assertions 11.4.2(1/2)
 child of Ada 11.4.2(12/2)
assign
 See assignment operation 5.2(3)
assigning back of parameters 6.4.1(17)
assignment
 user-defined 7.6(1)
assignment operation 5.2(3), 5.2(12),

7.6(13)
 during elaboration of an

object_declaration 3.3.1(18/2)
 during evaluation of a

generic_association for a formal object
of mode in 12.4(11)

 during evaluation of a
parameter_association 6.4.1(11)

 during evaluation of an aggregate
4.3(5)

 during evaluation of an initialized
allocator 4.8(7/2)

 during evaluation of an uninitialized
allocator 4.8(9/2)

 during evaluation of concatenation
4.5.3(10)

 during execution of a for loop 5.5(9)
 during execution of an

assignment_statement 5.2(12)
 during parameter copy back 6.4.1(17)
assignment_statement 5.2(2)
 used 5.1(4/2), P
associated components
 of a record_component_association

4.3.1(10)

associated discriminants
 of a named discriminant_association

3.7.1(5)
 of a positional discriminant_association

3.7.1(5)
associated object
 of a value of a by-reference type

6.2(10)
asterisk 2.1(15/2)
 in Ada.Characters.Latin_1 A.3.3(8)
asynchronous
 remote procedure call E.4.1(9)
Asynchronous pragma E.4.1(3), L(3)
asynchronous remote procedure call

E.4(1)
asynchronous_select 9.7.4(2)
 used 9.7(2), P
Asynchronous_Task_Control
 child of Ada D.11(3/2)
at-most-once execution E.4(11)
at_clause J.7(1)
 used 13.1(2/1), P
atomic C.6(7/2)
Atomic pragma C.6(3), L(4)
Atomic_Components pragma C.6(5),

L(5)
Attach_Handler
 in Ada.Interrupts C.3.2(7)
Attach_Handler pragma C.3.1(4), L(6)
attaching
 to an interrupt C.3(2)
attribute 4.1.4(1), K(1)
 representation 13.3(1/1)
 specifiable 13.3(5/1)
 specifying 13.3(1/1)
attribute_definition_clause 13.3(2)
 used 13.1(2/1), P
attribute_designator 4.1.4(3)
 used 4.1.4(2), 13.1(3), 13.3(2), P
Attribute_Handle
 in Ada.Task_Attributes C.7.2(3)
attribute_reference 4.1.4(2)
 used 4.1(2), P
attributes
 Access 3.10.2(24/1), 3.10.2(32/2)
 Address 13.3(11), J.7.1(5)
 Adjacent A.5.3(48)
 Aft 3.5.10(5)
 Alignment 13.3(23/2), 13.3(26.2/2)
 Base 3.5(15)
 Bit_Order 13.5.3(4)
 Body_Version E.3(4)
 Callable 9.9(2)
 Caller C.7.1(14)
 Ceiling A.5.3(33)
 Class 3.9(14), 7.3.1(9), J.11(2/2)
 Component_Size 13.3(69)
 Compose A.5.3(24)
 Constrained 3.7.2(3), J.4(2)
 Copy_Sign A.5.3(51)

 Count 9.9(5)
 Definite 12.5.1(23)
 Delta 3.5.10(3)
 Denorm A.5.3(9)
 Digits 3.5.8(2/1), 3.5.10(7)
 Exponent A.5.3(18)
 External_Tag 13.3(75/1)
 First 3.5(12), 3.6.2(3)
 First(N) 3.6.2(4)
 First_Bit 13.5.2(3/2)
 Floor A.5.3(30)
 Fore 3.5.10(4)
 Fraction A.5.3(21)
 Identity 11.4.1(9), C.7.1(12)
 Image 3.5(35)
 Input 13.13.2(22), 13.13.2(32)
 Last 3.5(13), 3.6.2(5)
 Last(N) 3.6.2(6)
 Last_Bit 13.5.2(4/2)
 Leading_Part A.5.3(54)
 Length 3.6.2(9)
 Length(N) 3.6.2(10)
 Machine A.5.3(60)
 Machine_Emax A.5.3(8)
 Machine_Emin A.5.3(7)
 Machine_Mantissa A.5.3(6)
 Machine_Overflows A.5.3(12),

A.5.4(4)
 Machine_Radix A.5.3(2), A.5.4(2)
 Machine_Rounding A.5.3(41.1/2)
 Machine_Rounds A.5.3(11), A.5.4(3)
 Max 3.5(19)
 Max_Size_In_Storage_Elements

13.11.1(3/2)
 Min 3.5(16)
 Mod 3.5.4(16.1/2)
 Model A.5.3(68), G.2.2(7)
 Model_Emin A.5.3(65), G.2.2(4)
 Model_Epsilon A.5.3(66)
 Model_Mantissa A.5.3(64), G.2.2(3/2)
 Model_Small A.5.3(67)
 Modulus 3.5.4(17)
 Output 13.13.2(19), 13.13.2(29)
 Partition_Id E.1(9)
 Pos 3.5.5(2)
 Position 13.5.2(2/2)
 Pred 3.5(25)
 Priority D.5.2(3/2)
 Range 3.5(14), 3.6.2(7)
 Range(N) 3.6.2(8)
 Read 13.13.2(6), 13.13.2(14)
 Remainder A.5.3(45)
 Round 3.5.10(12)
 Rounding A.5.3(36)
 Safe_First A.5.3(71), G.2.2(5)
 Safe_Last A.5.3(72), G.2.2(6)
 Scale 3.5.10(11)
 Scaling A.5.3(27)
 Signed_Zeros A.5.3(13)
 Size 13.3(40), 13.3(45)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

727 10 November 2006 Index

 Small 3.5.10(2/1)
 Storage_Pool 13.11(13)
 Storage_Size 13.3(60), 13.11(14),

J.9(2)
 Stream_Size 13.13.2(1.2/2)
 Succ 3.5(22)
 Tag 3.9(16), 3.9(18)
 Terminated 9.9(3)
 Truncation A.5.3(42)
 Unbiased_Rounding A.5.3(39)
 Unchecked_Access 13.10(3), H.4(18)
 Val 3.5.5(5)
 Valid 13.9.2(3), H(6)
 Value 3.5(52)
 Version E.3(3)
 Wide_Image 3.5(28)
 Wide_Value 3.5(40)
 Wide_Wide_Image 3.5(27.1/2)
 Wide_Wide_Value 3.5(39.1/2)
 Wide_Wide_Width 3.5(37.1/2)
 Wide_Width 3.5(38)
 Width 3.5(39)
 Write 13.13.2(3), 13.13.2(11)
available
 stream attribute 13.13.2(39/2)

B

Backus-Naur Form (BNF)
 complete listing P
 cross reference P
 notation 1.1.4(3)
 under Syntax heading 1.1.2(25)
base 2.4.2(3), 2.4.2(6)
 used 2.4.2(2), P
base 16 literal 2.4.2(1)
base 2 literal 2.4.2(1)
base 8 literal 2.4.2(1)
Base attribute 3.5(15)
base decimal precision
 of a floating point type 3.5.7(9)
 of a floating point type 3.5.7(10)
base priority D.1(15)
base range
 of a decimal fixed point type 3.5.9(16)
 of a fixed point type 3.5.9(12)
 of a floating point type 3.5.7(8),

3.5.7(10)
 of a modular type 3.5.4(10)
 of a scalar type 3.5(6)
 of a signed integer type 3.5.4(9)
 of an ordinary fixed point type

3.5.9(13)
base subtype
 of a type 3.5(15)
Base_Name
 in Ada.Directories A.16(19/2)
based_literal 2.4.2(2)
 used 2.4(2), P
based_numeral 2.4.2(4)

 used 2.4.2(2), P
basic letter
 a category of Character A.3.2(27)
basic_declaration 3.1(3/2)
 used 3.11(4/1), P
basic_declarative_item 3.11(4/1)
 used 3.11(3), 7.1(3), P
Basic_Map
 in Ada.Strings.Maps.Constants

A.4.6(5)
Basic_Set
 in Ada.Strings.Maps.Constants

A.4.6(4)
become nonlimited 7.3.1(5/1), 7.5(16)
BEL
 in Ada.Characters.Latin_1 A.3.3(5)
belong
 to a range 3.5(4)
 to a subtype 3.2(8/2)
bibliography 1.2(1)
big endian 13.5.3(2)
binary
 literal 2.4.2(1)
 in Interfaces.COBOL B.4(10)
binary adding operator 4.5.3(1)
binary literal 2.4.2(1)
binary operator 4.5(9)
binary_adding_operator 4.5(4)
 used 4.4(4), P
Binary_Format
 in Interfaces.COBOL B.4(24)
bit field
 See record_representation_clause

13.5.1(1)
bit ordering 13.5.3(2)
bit string
 See logical operators on boolean arrays

4.5.1(2)
Bit_Order
 in System 13.7(15/2)
Bit_Order attribute 13.5.3(4)
Bit_Order clause 13.3(7/2), 13.5.3(4)
blank
 in text input for enumeration and

numeric types A.10.6(5/2)
Blank_When_Zero
 in Ada.Text_IO.Editing F.3.3(7)
block_statement 5.6(2)
 used 5.1(5/2), P
blocked
 [partial] D.2.1(11)
 a task state 9(10)
 during an entry call 9.5.3(19)
 execution of a selective_accept

9.7.1(16)
 on a delay_statement 9.6(21)
 on an accept_statement 9.5.2(24)
 waiting for activations to complete

9.2(5)

 waiting for dependents to terminate
9.3(5)

blocked interrupt C.3(2)
blocking, potentially 9.5.1(8)
 Abort_Task C.7.1(16)
 delay_statement 9.6(34), D.9(5)
 remote subprogram call E.4(17)
 RPC operations E.5(23)
 Suspend_Until_True D.10(10)
BMP 3.5.2(2/2), 3.5.2(3.1/2), 3.5.2(3/2)
BNF (Backus-Naur Form)
 complete listing P
 cross reference P
 notation 1.1.4(3)
 under Syntax heading 1.1.2(25)
body 3.11(5), 3.11.1(1/1)
 used 3.11(3), P
body_stub 10.1.3(2)
 used 3.11(5), P
Body_Version attribute E.3(4)
Boolean 3.5.3(1)
 in Standard A.1(5)
boolean type 3.5.3(1)
Bounded
 child of Ada.Strings A.4.4(3)
bounded error 1.1.2(31), 1.1.5(8)
 cause 4.8(11.1/2), 6.2(12), 7.6.1(14/1),

9.4(20.1/2), 9.5.1(8), 9.8(20),
10.2(26), 13.9.1(9), 13.11.2(11),
A.17(25/2), A.18.2(238/2),
A.18.2(239/2), A.18.2(243/2),
A.18.3(152/2), C.7.1(17/2),
C.7.2(13.2/1), D.2.6(30/2),
D.3(13.1/2), E.1(10), E.3(6), J.7.1(11)

Bounded_IO
 child of Ada.Text_IO A.10.11(3/2)
 child of Ada.Wide_Text_IO A.11(4/2)
 child of Ada.Wide_Wide_Text_IO

A.11(4/2)
Bounded_Slice
 in Ada.Strings.Bounded A.4.4(28.1/2),

A.4.4(28.2/2)
Bounded_String
 in Ada.Strings.Bounded A.4.4(6)
bounds
 of a discrete_range 3.6.1(6)
 of an array 3.6(13)
 of the index range of an

array_aggregate 4.3.3(24)
box
 compound delimiter 3.6(15)
BPH
 in Ada.Characters.Latin_1 A.3.3(17)
broadcast signal
 See protected object 9.4(1)
 See requeue 9.5.4(1)
Broken_Bar
 in Ada.Characters.Latin_1 A.3.3(21)
BS
 in Ada.Characters.Latin_1 A.3.3(5)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Index 10 November 2006 728

budget D.14.2(14/2)
Budget_Has_Expired
 in

Ada.Execution_Time.Group_Budgets
D.14.2(9/2)

Budget_Remaining
 in

Ada.Execution_Time.Group_Budgets
D.14.2(9/2)

Buffer_Size
 in Ada.Storage_IO A.9(4)
Buffer_Type subtype of Storage_Array
 in Ada.Storage_IO A.9(4)
by copy parameter passing 6.2(2)
by reference parameter passing 6.2(2)
by-copy type 6.2(3)
by-reference type 6.2(4)
 atomic or volatile C.6(18)
Byte
 in Interfaces.COBOL B.4(29)
 See storage element 13.3(8)
byte sex
 See ordering of storage elements in a

word 13.5.3(5)
Byte_Array
 in Interfaces.COBOL B.4(29)

C

C
 child of Interfaces B.3(4)
C interface B.3(1/2)
C standard 1.2(7/2)
C++ standard 1.2(9/2)
C_float
 in Interfaces.C B.3(15)
Calendar
 child of Ada 9.6(10)
call 6(2)
call on a dispatching operation 3.9.2(2/2)
callable 9.9(2)
Callable attribute 9.9(2)
callable construct 6(2)
callable entity 6(2)
called partition E.4(1)
Caller attribute C.7.1(14)
calling convention 6.3.1(2/1), B.1(11)
 Ada 6.3.1(3)
 associated with a designated profile

3.10(11)
 entry 6.3.1(13)
 Intrinsic 6.3.1(4)
 protected 6.3.1(12)
calling partition E.4(1)
calling stub E.4(10)
CAN
 in Ada.Characters.Latin_1 A.3.3(6)

Cancel_Handler
 in

Ada.Execution_Time.Group_Budgets
D.14.2(10/2)

 in Ada.Execution_Time.Timers
D.14.1(7/2)

 in Ada.Real_Time.Timing_Events
D.15(5/2)

cancellation
 of a delay_statement 9.6(22)
 of an entry call 9.5.3(20)
cancellation of a remote subprogram call

E.4(13)
canonical form A.5.3(3)
canonical semantics 11.6(2)
canonical-form representation A.5.3(10)
capacity
 of a hashed map A.18.5(41/2)
 of a hashed set A.18.8(63/2)
 of a vector A.18.2(2/2)
 in Ada.Containers.Hashed_Maps

A.18.5(8/2)
 in Ada.Containers.Hashed_Sets

A.18.8(10/2)
 in Ada.Containers.Vectors

A.18.2(19/2)
case insensitive 2.3(5.2/2)
case_statement 5.4(2)
 used 5.1(5/2), P
case_statement_alternative 5.4(3)
 used 5.4(2), P
cast
 See type conversion 4.6(1)
 See unchecked type conversion 13.9(1)
catch (an exception)
 See handle 11(1)
categorization pragma E.2(2)
 Remote_Call_Interface E.2.3(2)
 Remote_Types E.2.2(2)
 Shared_Passive E.2.1(2)
categorized library unit E.2(2)
category
 of types 3.2(2/2), 3.4(1.1/2)
category (of types) N(4.1/2)
category determined for a formal type

12.5(6/2)
catenation operator
 See concatenation operator 4.4(1)
 See concatenation operator 4.5.3(3)
Cause_Of_Termination
 in Ada.Task_Termination C.7.3(3/2)
CCH
 in Ada.Characters.Latin_1 A.3.3(18)
cease to exist
 object 7.6.1(11/2), 13.11.2(10/2)
 type 7.6.1(11/2)
Cedilla
 in Ada.Characters.Latin_1 A.3.3(22)

Ceiling
 in Ada.Containers.Ordered_Maps

A.18.6(41/2)
 in Ada.Containers.Ordered_Sets

A.18.9(51/2), A.18.9(71/2)
Ceiling attribute A.5.3(33)
ceiling priority
 of a protected object D.3(8/2)
Ceiling_Check
 [partial] C.3.1(11/2), D.3(13)
Cent_Sign
 in Ada.Characters.Latin_1 A.3.3(21)
change of representation 13.6(1)
char
 in Interfaces.C B.3(19)
char16_array
 in Interfaces.C B.3(39.5/2)
char16_nul
 in Interfaces.C B.3(39.3/2)
char16_t
 in Interfaces.C B.3(39.2/2)
char32_array
 in Interfaces.C B.3(39.14/2)
char32_nul
 in Interfaces.C B.3(39.12/2)
char32_t
 in Interfaces.C B.3(39.11/2)
char_array
 in Interfaces.C B.3(23)
char_array_access
 in Interfaces.C.Strings B.3.1(4)
CHAR_BIT
 in Interfaces.C B.3(6)
Character 3.5.2(2/2)
 used 2.7(2), P
 in Standard A.1(35/2)
character plane 2.1(1/2)
character set 2.1(1/2)
character set standard
 16 and 32-bit 1.2(8/2)
 7-bit 1.2(2)
 8-bit 1.2(6)
 control functions 1.2(5)
character type 3.5.2(1), N(5)
character_literal 2.5(2)
 used 3.5.1(4), 4.1(2), 4.1.3(3), P
Character_Mapping
 in Ada.Strings.Maps A.4.2(20/2)
Character_Mapping_Function
 in Ada.Strings.Maps A.4.2(25)
Character_Range
 in Ada.Strings.Maps A.4.2(6)
Character_Ranges
 in Ada.Strings.Maps A.4.2(7)
Character_Sequence subtype of String
 in Ada.Strings.Maps A.4.2(16)
Character_Set
 in Ada.Strings.Maps A.4.2(4/2)
 in Ada.Strings.Wide_Maps A.4.7(46/2)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

729 10 November 2006 Index

 in Ada.Strings.Wide_Maps.Wide_-
Constants A.4.8(48/2)

 in Interfaces.Fortran B.5(11)
characteristics 7.3(15)
Characters
 child of Ada A.3.1(2)
chars_ptr
 in Interfaces.C.Strings B.3.1(5/2)
chars_ptr_array
 in Interfaces.C.Strings B.3.1(6/2)
check
 language-defined 11.5(2), 11.6(1)
check, language-defined
 Access_Check 4.1(13), 4.6(51/2)
 Accessibility_Check 3.10.2(29),

4.6(39.1/2), 4.6(48), 4.8(10.1/2),
6.5(8/2), 6.5(21/2), E.4(18/1)

 Allocation_Check 4.8(10.2/2),
4.8(10.3/2)

 Ceiling_Check C.3.1(11/2), D.3(13)
 Discriminant_Check 4.1.3(15), 4.3(6),

4.3.2(8), 4.6(43), 4.6(45), 4.6(51/2),
4.6(52), 4.7(4), 4.8(10/2)

 Division_Check 3.5.4(20), 4.5.5(22),
A.5.1(28), A.5.3(47), G.1.1(40),
G.1.2(28), K(202)

 Elaboration_Check 3.11(9)
 Index_Check 4.1.1(7), 4.1.2(7),

4.3.3(29), 4.3.3(30), 4.5.3(8),
4.6(51/2), 4.7(4), 4.8(10/2)

 Length_Check 4.5.1(8), 4.6(37),
4.6(52)

 Overflow_Check 3.5.4(20), 4.4(11),
5.4(13), G.2.1(11), G.2.2(7),
G.2.3(25), G.2.4(2), G.2.6(3)

 Partition_Check E.4(19)
 Range_Check 3.2.2(11), 3.5(24),

3.5(27), 3.5(39.12/2), 3.5(39.4/2),
3.5(39.5/2), 3.5(43/2), 3.5(55/2),
3.5.5(7), 3.5.9(19), 4.2(11), 4.3.3(28),
4.5.1(8), 4.5.6(6), 4.5.6(13), 4.6(28),
4.6(38), 4.6(46), 4.6(51/2), 4.7(4),
13.13.2(35/2), A.5.2(39), A.5.3(26),
A.5.3(29), A.5.3(50), A.5.3(53),
A.5.3(59), A.5.3(62), K(11), K(114),
K(122), K(184), K(220), K(241),
K(41), K(47)

 Reserved_Check C.3.1(10)
 Storage_Check 11.1(6), 13.3(67),

13.11(17), D.7(17/1), D.7(18/1),
D.7(19/1)

 Tag_Check 3.9.2(16), 4.6(42), 4.6(52),
5.2(10)

Checking pragmas 11.5(1/2)
child
 of a library unit 10.1.1(1)
choice parameter 11.2(9)
choice_parameter_specification 11.2(4)
 used 11.2(3), P

Circumflex
 in Ada.Characters.Latin_1 A.3.3(12)
class
 of types 3.2(2/2), 3.4(1.1/2)
 See also package 7(1)
 See also tag 3.9(3)
class (of types) N(6/2)
Class attribute 3.9(14), 7.3.1(9),

J.11(2/2)
class factory 3.9(30.1/2)
class-wide type 3.4.1(4), 3.7(26)
cleanup
 See finalization 7.6.1(1)
clear
 execution timer object D.14.1(12/2)
 group budget object D.14.2(15/2)
 timing event object D.15(9/2)
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(13/2)
 in Ada.Containers.Hashed_Maps

A.18.5(12/2)
 in Ada.Containers.Hashed_Sets

A.18.8(14/2)
 in Ada.Containers.Ordered_Maps

A.18.6(11/2)
 in Ada.Containers.Ordered_Sets

A.18.9(13/2)
 in Ada.Containers.Vectors

A.18.2(24/2)
 in Ada.Environment_Variables

A.17(7/2)
cleared
 termination handler C.7.3(9/2)
clock 9.6(6)
 in Ada.Calendar 9.6(12)
 in Ada.Execution_Time D.14(5/2)
 in Ada.Real_Time D.8(6)
clock jump D.8(32)
clock tick D.8(23)
Close
 in Ada.Direct_IO A.8.4(8)
 in Ada.Sequential_IO A.8.1(8)
 in Ada.Streams.Stream_IO A.12.1(10)
 in Ada.Text_IO A.10.1(11)
close result set G.2.3(5)
closed entry 9.5.3(5)
 of a protected object 9.5.3(7)
 of a task 9.5.3(6)
closed under derivation 3.4(28), N(6/2)
closure
 downward 3.10.2(37/2)
COBOL
 child of Interfaces B.4(7)
COBOL interface B.4(1)
COBOL standard 1.2(4/2)
COBOL_Character
 in Interfaces.COBOL B.4(13)
COBOL_To_Ada
 in Interfaces.COBOL B.4(15)
code_statement 13.8(2)

 used 5.1(4/2), P
coding
 aspect of representation 13.4(7)
coextension
 of an object 3.10.2(14.4/2)
Col
 in Ada.Text_IO A.10.1(37)
collection
 finalization of 7.6.1(11/2)
colon 2.1(15/2)
 in Ada.Characters.Latin_1 A.3.3(10)
column number A.10(9)
comma 2.1(15/2)
 in Ada.Characters.Latin_1 A.3.3(8)
Command_Line
 child of Ada A.15(3)
Command_Name
 in Ada.Command_Line A.15(6)
comment 2.7(2)
comments, instructions for submission

0.3(58/1)
Commercial_At
 in Ada.Characters.Latin_1 A.3.3(10)
Communication_Error
 in System.RPC E.5(5)
comparison operator
 See relational operator 4.5.2(1)
compatibility
 composite_constraint with an access

subtype 3.10(15/2)
 constraint with a subtype 3.2.2(12)
 delta_constraint with an ordinary fixed

point subtype J.3(9)
 digits_constraint with a decimal fixed

point subtype 3.5.9(18)
 digits_constraint with a floating point

subtype J.3(10)
 discriminant constraint with a subtype

3.7.1(10)
 index constraint with a subtype 3.6.1(7)
 range with a scalar subtype 3.5(8)
 range_constraint with a scalar subtype

3.5(8)
compatible
 a type, with a convention B.1(12)
compilation 10.1.1(2)
 separate 10.1(1)
Compilation unit 10.1(2), 10.1.1(9), N(7)
compilation units needed
 by a compilation unit 10.2(2)
 remote call interface E.2.3(18)
 shared passive library unit E.2.1(11)
compilation_unit 10.1.1(3)
 used 10.1.1(2), P
compile-time error 1.1.2(27), 1.1.5(4)
compile-time semantics 1.1.2(28)
complete context 8.6(4)
completely defined 3.11.1(8)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Index 10 November 2006 730

completion
 abnormal 7.6.1(2/2)
 compile-time concept 3.11.1(1/1)
 normal 7.6.1(2/2)
 run-time concept 7.6.1(2/2)
completion and leaving (completed and

left) 7.6.1(2/2)
completion legality
 [partial] 3.10.1(13)
 entry_body 9.5.2(16)
Complex
 in Ada.Numerics.Generic_Complex_-

Types G.1.1(3)
 in Interfaces.Fortran B.5(9)
Complex_Arrays
 child of Ada.Numerics G.3.2(53/2)
Complex_Elementary_Functions
 child of Ada.Numerics G.1.2(9/1)
Complex_Text_IO
 child of Ada G.1.3(9.1/2)
Complex_Types
 child of Ada.Numerics G.1.1(25/1)
Complex_IO
 child of Ada.Text_IO G.1.3(3)
 child of Ada.Wide_Text_IO G.1.4(1)
 child of Ada.Wide_Wide_Text_IO

G.1.5(1/2)
Complex_Matrix
 in Ada.Numerics.Generic_Complex_-

Arrays G.3.2(4/2)
Complex_Vector
 in Ada.Numerics.Generic_Complex_-

Arrays G.3.2(4/2)
component 3.2(2/2)
component subtype 3.6(10)
component_choice_list 4.3.1(5)
 used 4.3.1(4/2), P
component_clause 13.5.1(3)
 used 13.5.1(2), P
component_declaration 3.8(6)
 used 3.8(5/1), 9.4(6), P
component_definition 3.6(7/2)
 used 3.6(3), 3.6(5), 3.8(6), P
component_item 3.8(5/1)
 used 3.8(4), P
component_list 3.8(4)
 used 3.8(3), 3.8.1(3), P
Component_Size attribute 13.3(69)
Component_Size clause 13.3(7/2),

13.3(70)
components
 of a record type 3.8(9/2)
Compose
 in Ada.Directories A.16(20/2)
Compose attribute A.5.3(24)
Compose_From_Cartesian
 in Ada.Numerics.Generic_Complex_-

Arrays G.3.2(9/2), G.3.2(29/2)
 in Ada.Numerics.Generic_Complex_-

Types G.1.1(8)

Compose_From_Polar
 in Ada.Numerics.Generic_Complex_-

Arrays G.3.2(11/2), G.3.2(32/2)
 in Ada.Numerics.Generic_Complex_-

Types G.1.1(11)
composite type 3.2(2/2), N(8/2)
composite_constraint 3.2.2(7)
 used 3.2.2(5), P
compound delimiter 2.2(10)
compound_statement 5.1(5/2)
 used 5.1(3), P
concatenation operator 4.4(1), 4.5.3(3)
concrete subprogram
 See nonabstract subprogram 3.9.3(1/2)
concrete type
 See nonabstract type 3.9.3(1/2)
concurrent processing
 See task 9(1)
condition 5.3(3)
 used 5.3(2), 5.5(3), 5.7(2), 9.5.2(7),

9.7.1(3), P
 See also exception 11(1)
conditional_entry_call 9.7.3(2)
 used 9.7(2), P
configuration
 of the partitions of a program E(4)
configuration pragma 10.1.5(8)
 Assertion_Policy 11.4.2(7/2)
 Detect_Blocking H.5(4/2)
 Discard_Names C.5(4)
 Locking_Policy D.3(5)
 Normalize_Scalars H.1(4)
 Partition_Elaboration_Policy H.6(5/2)
 Priority_Specific_Dispatching

D.2.2(4/2)
 Profile D.13(6/2)
 Queuing_Policy D.4(5)
 Restrictions 13.12(8)
 Reviewable H.3.1(4)
 Suppress 11.5(5/2)
 Task_Dispatching_Policy D.2.2(4/2)
 Unsuppress 11.5(5/2)
confirming
 representation item 13.1(18.2/2)
conformance 6.3.1(1)
 of an implementation with the Standard

1.1.3(1)
 See also full conformance, mode

conformance, subtype conformance,
type conformance

Conjugate
 in Ada.Numerics.Generic_Complex_-

Arrays G.3.2(13/2), G.3.2(34/2)
 in Ada.Numerics.Generic_Complex_-

Types G.1.1(12), G.1.1(15)
consistency
 among compilation units 10.1.4(5)
constant 3.3(13)
 result of a function_call 6.4(12/2)
 See also literal 4.2(1)

 See also static 4.9(1)
constant object 3.3(13)
constant view 3.3(13)
Constants
 child of Ada.Strings.Maps A.4.6(3/2)
constituent
 of a construct 1.1.4(17)
constrained 3.2(9)
 object 3.3.1(9/2)
 object 6.4.1(16)
 subtype 3.2(9), 3.4(6), 3.5(7),

3.5.1(10), 3.5.4(9), 3.5.4(10),
3.5.7(11), 3.5.9(13), 3.5.9(16),
3.6(15), 3.6(16), 3.7(26), 3.9(15)

 subtype 3.10(14/1)
 subtype K(35)
Constrained attribute 3.7.2(3), J.4(2)
constrained by its initial value 3.3.1(9/2)
 [partial] 4.8(6/2)
constrained_array_definition 3.6(5)
 used 3.6(2), P
constraint 3.2.2(5)
 [partial] 3.2(7/2)
 of a first array subtype 3.6(16)
 of a subtype 3.2(8/2)
 of an object 3.3.1(9/2)
 used 3.2.2(3/2), P
Constraint_Error
 raised by failure of run-time check

3.2.2(12), 3.5(24), 3.5(27),
3.5(39.12/2), 3.5(39.4/2), 3.5(39.5/2),
3.5(43/2), 3.5(55/2), 3.5.4(20),
3.5.5(7), 3.5.9(19), 3.9.2(16), 4.1(13),
4.1.1(7), 4.1.2(7), 4.1.3(15), 4.2(11),
4.3(6), 4.3.2(8), 4.3.3(31), 4.4(11),
4.5(10), 4.5(11), 4.5(12), 4.5.1(8),
4.5.3(8), 4.5.5(22), 4.5.6(6), 4.5.6(12),
4.5.6(13), 4.6(28), 4.6(57), 4.6(60),
4.7(4), 4.8(10/2), 5.2(10), 5.4(13),
11.1(4), 11.4.1(14/2), 11.5(10),
13.9.1(9), 13.13.2(35/2), A.4.3(109),
A.4.3(68/1), A.4.7(47), A.4.8(51/2),
A.5.1(28), A.5.1(34), A.5.2(39),
A.5.2(40.1/1), A.5.3(26), A.5.3(29),
A.5.3(47), A.5.3(50), A.5.3(53),
A.5.3(59), A.5.3(62), A.15(14),
B.3(53), B.3(54), B.4(58), E.4(19),
G.1.1(40), G.1.2(28), G.2.1(12),
G.2.2(7), G.2.3(26), G.2.4(3),
G.2.6(4), K(11), K(114), K(122),
K(184), K(202), K(220), K(241),
K(261), K(41), K(47)

 in Standard A.1(46)
Construct 1.1.4(16), N(9)
constructor
 See initialization 3.3.1(18/2)
 See initialization 7.6(1)
 See initialization expression 3.3.1(4)
 See Initialize 7.6(1)
 See initialized allocator 4.8(4)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

731 10 November 2006 Index

container
 cursor A.18(2/2)
 list A.18.3(1/2)
 map A.18.4(1/2)
 set A.18.7(1/2)
 vector A.18.2(1/2)
Containers
 child of Ada A.18.1(3/2)
Containing_Directory
 in Ada.Directories A.16(17/2)
Contains
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(43/2)
 in Ada.Containers.Hashed_Maps

A.18.5(32/2)
 in Ada.Containers.Hashed_Sets

A.18.8(44/2), A.18.8(57/2)
 in Ada.Containers.Ordered_Maps

A.18.6(42/2)
 in Ada.Containers.Ordered_Sets

A.18.9(52/2), A.18.9(72/2)
 in Ada.Containers.Vectors

A.18.2(71/2)
context free grammar
 complete listing P
 cross reference P
 notation 1.1.4(3)
 under Syntax heading 1.1.2(25)
context_clause 10.1.2(2)
 used 10.1.1(3), P
context_item 10.1.2(3)
 used 10.1.2(2), P
contiguous representation
 [partial] 13.5.2(5), 13.7.1(12), 13.9(9),

13.9(17), 13.11(16)
Continue
 in Ada.Asynchronous_Task_Control

D.11(3/2)
control character
 a category of Character A.3.2(22)
 a category of Character A.3.3(4),

A.3.3(15)
 See also format_effector 2.1(13/2)
Control_Set
 in Ada.Strings.Maps.Constants

A.4.6(4)
controlled
 aspect of representation 13.11.3(5)
 in Ada.Finalization 7.6(5/2)
Controlled pragma 13.11.3(3), L(7)
controlled type 7.6(2), 7.6(9/2), N(10)
controlling formal parameter 3.9.2(2/2)
controlling operand 3.9.2(2/2)
controlling result 3.9.2(2/2)
controlling tag
 for a call on a dispatching operation

3.9.2(1/2)
controlling tag value 3.9.2(14)
 for the expression in an

assignment_statement 5.2(9)

controlling type
 of a

formal_abstract_subprogram_declarati
on 12.6(8.4/2)

convention 6.3.1(2/1), B.1(11)
 aspect of representation B.1(28)
Convention pragma B.1(7), L(8)
conversion 4.6(1), 4.6(28)
 access 4.6(24.11/2), 4.6(24.18/2),

4.6(24.19/2), 4.6(47)
 arbitrary order 1.1.4(18)
 array 4.6(24.2/2), 4.6(36)
 composite (non-array) 4.6(21/2),

4.6(40)
 enumeration 4.6(21.1/2), 4.6(34)
 numeric 4.6(24.1/2), 4.6(29)
 unchecked 13.9(1)
 value 4.6(5/2)
 view 4.6(5/2)
Conversion_Error
 in Interfaces.COBOL B.4(30)
Conversions
 child of Ada.Characters A.3.4(2/2)
convertible 4.6(4)
 required 3.7(16), 3.7.1(9), 4.6(24.13/2),

4.6(24.4/2), 6.4.1(6)
copy back of parameters 6.4.1(17)
copy parameter passing 6.2(2)
Copy_Array
 in Interfaces.C.Pointers B.3.2(15)
Copy_File
 in Ada.Directories A.16(13/2)
Copy_Sign attribute A.5.3(51)
Copy_Terminated_Array
 in Interfaces.C.Pointers B.3.2(14)
Copyright_Sign
 in Ada.Characters.Latin_1 A.3.3(21)
core language 1.1.2(2)
corresponding constraint 3.4(6)
corresponding discriminants 3.7(18)
corresponding index
 for an array_aggregate 4.3.3(8)
corresponding subtype 3.4(18/2)
corresponding value
 of the target type of a conversion

4.6(28)
Cos
 in Ada.Numerics.Generic_Complex_-

Elementary_Functions G.1.2(4)
 in Ada.Numerics.Generic_Elementary_-

Functions A.5.1(5)
Cosh
 in Ada.Numerics.Generic_Complex_-

Elementary_Functions G.1.2(6)
 in Ada.Numerics.Generic_Elementary_-

Functions A.5.1(7)

Cot
 in Ada.Numerics.Generic_Complex_-

Elementary_Functions G.1.2(4)
 in Ada.Numerics.Generic_Elementary_-

Functions A.5.1(5)
Coth
 in Ada.Numerics.Generic_Complex_-

Elementary_Functions G.1.2(6)
 in Ada.Numerics.Generic_Elementary_-

Functions A.5.1(7)
Count
 in Ada.Direct_IO A.8.4(4)
 in Ada.Streams.Stream_IO A.12.1(7)
 in Ada.Strings.Bounded A.4.4(48),

A.4.4(49), A.4.4(50)
 in Ada.Strings.Fixed A.4.3(13),

A.4.3(14), A.4.3(15)
 in Ada.Strings.Unbounded A.4.5(43),

A.4.5(44), A.4.5(45)
 in Ada.Text_IO A.10.1(5)
Count attribute 9.9(5)
cover
 a type 3.4.1(9)
 of a choice and an exception 11.2(6)
cover a value
 by a discrete_choice 3.8.1(9)
 by a discrete_choice_list 3.8.1(13)
CPU clock tick D.14(15/2)
CPU time
 of a task D.14(11/2)
CPU_Tick
 in Ada.Execution_Time D.14(4/2)
CPU_Time
 in Ada.Execution_Time D.14(4/2)
CPU_Time_First
 in Ada.Execution_Time D.14(4/2)
CPU_Time_Last
 in Ada.Execution_Time D.14(4/2)
CPU_Time_Unit
 in Ada.Execution_Time D.14(4/2)
CR
 in Ada.Characters.Latin_1 A.3.3(5)
create 3.1(12)
 in Ada.Direct_IO A.8.4(6)
 in Ada.Sequential_IO A.8.1(6)
 in Ada.Streams.Stream_IO A.12.1(8)
 in Ada.Text_IO A.10.1(9)
Create_Directory
 in Ada.Directories A.16(7/2)
Create_Path
 in Ada.Directories A.16(9/2)
creation
 of a protected object C.3.1(10)
 of a return object 6.5(5.8/2)
 of a tag 13.14(20/2)
 of a task object D.1(17)
 of an object 3.3(1)
critical section
 See intertask communication 9.5(1)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Index 10 November 2006 732

CSI
 in Ada.Characters.Latin_1 A.3.3(19)
Currency_Sign
 in Ada.Characters.Latin_1 A.3.3(21)
current column number A.10(9)
current index
 of an open direct file A.8(4)
 of an open stream file A.12.1(1.1/1)
current instance
 of a generic unit 8.6(18)
 of a type 8.6(17/2)
current line number A.10(9)
current mode
 of an open file A.7(7)
current page number A.10(9)
Current size
 of a stream file A.12.1(1.1/1)
 of an external file A.8(3)
Current_Directory
 in Ada.Directories A.16(5/2)
Current_Error
 in Ada.Text_IO A.10.1(17), A.10.1(20)
Current_Handler
 in

Ada.Execution_Time.Group_Budgets
D.14.2(10/2)

 in Ada.Execution_Time.Timers
D.14.1(7/2)

 in Ada.Interrupts C.3.2(6)
 in Ada.Real_Time.Timing_Events

D.15(5/2)
Current_Input
 in Ada.Text_IO A.10.1(17), A.10.1(20)
Current_Output
 in Ada.Text_IO A.10.1(17), A.10.1(20)
Current_State
 in Ada.Synchronous_Task_Control

D.10(4)
Current_Task
 in Ada.Task_Identification C.7.1(3/1)
Current_Task_Fallback_Handler
 in Ada.Task_Termination C.7.3(5/2)
cursor
 ambiguous A.18.2(240/2)
 for a container A.18(2/2)
 invalid A.18.2(248/2), A.18.3(153/2),

A.18.4(76/2), A.18.7(97/2)
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(7/2)
 in Ada.Containers.Hashed_Maps

A.18.5(4/2)
 in Ada.Containers.Hashed_Sets

A.18.8(4/2)
 in Ada.Containers.Ordered_Maps

A.18.6(5/2)
 in Ada.Containers.Ordered_Sets

A.18.9(5/2)
 in Ada.Containers.Vectors A.18.2(9/2)

D

dangling references
 prevention via accessibility rules

3.10.2(3/2)
Data_Error
 in Ada.Direct_IO A.8.4(18)
 in Ada.IO_Exceptions A.13(4)
 in Ada.Sequential_IO A.8.1(15)
 in Ada.Storage_IO A.9(9)
 in Ada.Streams.Stream_IO A.12.1(26)
 in Ada.Text_IO A.10.1(85)
date and time formatting standard

1.2(5.1/2)
Day
 in Ada.Calendar 9.6(13)
 in Ada.Calendar.Formatting

9.6.1(23/2)
Day_Count
 in Ada.Calendar.Arithmetic 9.6.1(10/2)
Day_Duration subtype of Duration
 in Ada.Calendar 9.6(11/2)
Day_Name
 in Ada.Calendar.Formatting

9.6.1(17/2)
Day_Number subtype of Integer
 in Ada.Calendar 9.6(11/2)
Day_of_Week
 in Ada.Calendar.Formatting

9.6.1(18/2)
DC1
 in Ada.Characters.Latin_1 A.3.3(6)
DC2
 in Ada.Characters.Latin_1 A.3.3(6)
DC3
 in Ada.Characters.Latin_1 A.3.3(6)
DC4
 in Ada.Characters.Latin_1 A.3.3(6)
DCS
 in Ada.Characters.Latin_1 A.3.3(18)
Deadline subtype of Time
 in Ada.Dispatching.EDF D.2.6(9/2)
Deallocate
 in System.Storage_Pools 13.11(8)
deallocation of storage 13.11.2(1)
Decimal
 child of Ada F.2(2)
decimal digit
 a category of Character A.3.2(28)
decimal fixed point type 3.5.9(1),

3.5.9(6)
Decimal_Conversions
 in Interfaces.COBOL B.4(31)
Decimal_Digit_Set
 in Ada.Strings.Maps.Constants

A.4.6(4)
Decimal_Element
 in Interfaces.COBOL B.4(12)
decimal_fixed_point_definition 3.5.9(4)
 used 3.5.9(2), P

Decimal_IO
 in Ada.Text_IO A.10.1(73)
decimal_literal 2.4.1(2)
 used 2.4(2), P
Decimal_Output
 in Ada.Text_IO.Editing F.3.3(11)
Declaration 3.1(5), 3.1(6/2), N(11)
declaration list
 declarative_part 3.11(6.1/2)
 package_specification 7.1(6/2)
declarative region
 of a construct 8.1(1)
declarative_item 3.11(3)
 used 3.11(2), P
declarative_part 3.11(2)
 used 5.6(2), 6.3(2/2), 7.2(2), 9.1(6),

9.5.2(5), P
declare 3.1(8), 3.1(12)
declared pure 10.2.1(17/2)
Decrement
 in Interfaces.C.Pointers B.3.2(11)
deeper
 accessibility level 3.10.2(3/2)
 statically 3.10.2(4), 3.10.2(17)
default directory A.16(48/2)
default entry queuing policy 9.5.3(17)
default treatment C.3(5)
Default_Aft
 in Ada.Text_IO A.10.1(64),

A.10.1(69), A.10.1(74)
 in Ada.Text_IO.Complex_IO G.1.3(5)
Default_Base
 in Ada.Text_IO A.10.1(53), A.10.1(58)
Default_Bit_Order
 in System 13.7(15/2)
Default_Currency
 in Ada.Text_IO.Editing F.3.3(10)
Default_Deadline
 in Ada.Dispatching.EDF D.2.6(9/2)
Default_Exp
 in Ada.Text_IO A.10.1(64),

A.10.1(69), A.10.1(74)
 in Ada.Text_IO.Complex_IO G.1.3(5)
default_expression 3.7(6)
 used 3.7(5/2), 3.8(6), 6.1(15/2),

12.4(2/2), P
Default_Fill
 in Ada.Text_IO.Editing F.3.3(10)
Default_Fore
 in Ada.Text_IO A.10.1(64),

A.10.1(69), A.10.1(74)
 in Ada.Text_IO.Complex_IO G.1.3(5)
default_name 12.6(4)
 used 12.6(3/2), P
Default_Priority
 in System 13.7(17)
Default_Quantum
 in Ada.Dispatching.Round_Robin

D.2.5(4/2)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

733 10 November 2006 Index

Default_Radix_Mark
 in Ada.Text_IO.Editing F.3.3(10)
Default_Separator
 in Ada.Text_IO.Editing F.3.3(10)
Default_Setting
 in Ada.Text_IO A.10.1(80)
Default_Width
 in Ada.Text_IO A.10.1(53),

A.10.1(58), A.10.1(80)
deferred constant 7.4(2)
deferred constant declaration 3.3.1(6),

7.4(2)
defining name 3.1(10)
defining_character_literal 3.5.1(4)
 used 3.5.1(3), P
defining_designator 6.1(6)
 used 6.1(4.2/2), 12.3(2/2), P
defining_identifier 3.1(4)
 used 3.2.1(3), 3.2.2(2), 3.3.1(3),

3.5.1(3), 3.10.1(2/2), 5.5(4), 6.1(7),
6.5(2.1/2), 7.3(2), 7.3(3/2), 8.5.1(2/2),
8.5.2(2), 9.1(2/2), 9.1(3/2), 9.1(6),
9.4(2/2), 9.4(3/2), 9.4(7), 9.5.2(2/2),
9.5.2(5), 9.5.2(8), 10.1.3(4), 10.1.3(5),
10.1.3(6), 11.2(4), 12.5(2), 12.7(2), P

defining_identifier_list 3.3.1(3)
 used 3.3.1(2/2), 3.3.2(2), 3.7(5/2),

3.8(6), 6.1(15/2), 11.1(2), 12.4(2/2), P
defining_operator_symbol 6.1(11)
 used 6.1(6), P
defining_program_unit_name 6.1(7)
 used 6.1(4.1/2), 6.1(6), 7.1(3), 7.2(2),

8.5.3(2), 8.5.5(2), 12.3(2/2), P
Definite attribute 12.5.1(23)
definite subtype 3.3(23)
definition 3.1(7), N(12/2)
Degree_Sign
 in Ada.Characters.Latin_1 A.3.3(22)
DEL
 in Ada.Characters.Latin_1 A.3.3(14)
delay_alternative 9.7.1(6)
 used 9.7.1(4), 9.7.2(2), P
delay_relative_statement 9.6(4)
 used 9.6(2), P
delay_statement 9.6(2)
 used 5.1(4/2), 9.7.1(6), 9.7.4(4/2), P
Delay_Until_And_Set_Deadline
 in Ada.Dispatching.EDF D.2.6(9/2)
delay_until_statement 9.6(3)
 used 9.6(2), P
Delete
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(24/2)
 in Ada.Containers.Hashed_Maps

A.18.5(25/2), A.18.5(26/2)
 in Ada.Containers.Hashed_Sets

A.18.8(24/2), A.18.8(25/2),
A.18.8(55/2)

 in Ada.Containers.Ordered_Maps
A.18.6(24/2), A.18.6(25/2)

 in Ada.Containers.Ordered_Sets
A.18.9(23/2), A.18.9(24/2),
A.18.9(68/2)

 in Ada.Containers.Vectors
A.18.2(50/2), A.18.2(51/2)

 in Ada.Direct_IO A.8.4(8)
 in Ada.Sequential_IO A.8.1(8)
 in Ada.Streams.Stream_IO A.12.1(10)
 in Ada.Strings.Bounded A.4.4(64),

A.4.4(65)
 in Ada.Strings.Fixed A.4.3(29),

A.4.3(30)
 in Ada.Strings.Unbounded A.4.5(59),

A.4.5(60)
 in Ada.Text_IO A.10.1(11)
Delete_Directory
 in Ada.Directories A.16(8/2)
Delete_File
 in Ada.Directories A.16(11/2)
Delete_First
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(25/2)
 in Ada.Containers.Ordered_Maps

A.18.6(26/2)
 in Ada.Containers.Ordered_Sets

A.18.9(25/2)
 in Ada.Containers.Vectors

A.18.2(52/2)
Delete_Last
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(26/2)
 in Ada.Containers.Ordered_Maps

A.18.6(27/2)
 in Ada.Containers.Ordered_Sets

A.18.9(26/2)
 in Ada.Containers.Vectors

A.18.2(53/2)
Delete_Tree
 in Ada.Directories A.16(10/2)
delimiter 2.2(8/2)
delivery
 of an interrupt C.3(2)
delta
 of a fixed point type 3.5.9(1)
Delta attribute 3.5.10(3)
delta_constraint J.3(2)
 used 3.2.2(6), P
Denorm attribute A.5.3(9)
denormalized number A.5.3(10)
denote 8.6(16)
 informal definition 3.1(8)
 name used as a pragma argument

8.6(32)
depend on a discriminant
 for a component 3.7(20)
 for a constraint or

component_definition 3.7(19)
dependence
 elaboration 10.2(9)
 of a task on a master 9.3(1)

 of a task on another task 9.3(4)
 semantic 10.1.1(26/2)
depth
 accessibility level 3.10.2(3/2)
dereference 4.1(8)
Dereference_Error
 in Interfaces.C.Strings B.3.1(12)
derivation class
 for a type 3.4.1(2/2)
derived from
 directly or indirectly 3.4.1(2/2)
derived type 3.4(1/2), N(13/2)
 [partial] 3.4(24)
derived_type_definition 3.4(2/2)
 used 3.2.1(4/2), P
descendant 10.1.1(11), N(13.1/2)
 of a type 3.4.1(10/2)
 relationship with scope 8.2(4)
Descendant_Tag
 in Ada.Tags 3.9(7.1/2)
designate 3.10(1)
designated profile
 of an access-to-subprogram type

3.10(11)
 of an anonymous access type

3.10(12/2)
designated subtype
 of a named access type 3.10(10)
 of an anonymous access type

3.10(12/2)
designated type
 of a named access type 3.10(10)
 of an anonymous access type

3.10(12/2)
designator 6.1(5)
 used 6.3(2/2), P
destructor
 See finalization 7.6(1)
 See finalization 7.6.1(1)
Detach_Handler
 in Ada.Interrupts C.3.2(9)
Detect_Blocking pragma H.5(3/2),

L(8.1/2)
Determinant
 in Ada.Numerics.Generic_Complex_-

Arrays G.3.2(46/2)
 in Ada.Numerics.Generic_Real_Arrays

G.3.1(24/2)
determined category for a formal type

12.5(6/2)
determines
 a type by a subtype_mark 3.2.2(8)
Device_Error
 in Ada.Direct_IO A.8.4(18)
 in Ada.Directories A.16(43/2)
 in Ada.IO_Exceptions A.13(4)
 in Ada.Sequential_IO A.8.1(15)
 in Ada.Streams.Stream_IO A.12.1(26)
 in Ada.Text_IO A.10.1(85)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Index 10 November 2006 734

Diaeresis
 in Ada.Characters.Latin_1 A.3.3(21)
Difference
 in Ada.Calendar.Arithmetic 9.6.1(12/2)
 in Ada.Containers.Hashed_Sets

A.18.8(32/2), A.18.8(33/2)
 in Ada.Containers.Ordered_Sets

A.18.9(33/2), A.18.9(34/2)
digit 2.4.1(4.1/2)
 used 2.4.1(3), 2.4.2(5), P
digits
 of a decimal fixed point subtype

3.5.9(6), 3.5.10(7)
Digits attribute 3.5.8(2/1), 3.5.10(7)
digits_constraint 3.5.9(5)
 used 3.2.2(6), P
dimensionality
 of an array 3.6(12)
direct access A.8(3)
direct file A.8(1/2)
Direct_IO
 child of Ada A.8.4(2)
direct_name 4.1(3)
 used 3.8.1(2), 4.1(2), 5.1(8), 9.5.2(3),

10.2.1(4.2/2), 13.1(3), J.7(1),
L(25.2/2), P

Direction
 in Ada.Strings A.4.1(6)
directly specified
 of an aspect of representation of an

entity 13.1(8)
 of an operational aspect of an entity

13.1(8.1/1)
directly visible 8.3(2), 8.3(21)
 within a pragma in a context_clause

10.1.6(3)
 within a pragma that appears at the place

of a compilation unit 10.1.6(5)
 within a use_clause in a

context_clause 10.1.6(3)
 within a with_clause 10.1.6(2/2)
 within the parent_unit_name of a library

unit 10.1.6(2/2)
 within the parent_unit_name of a

subunit 10.1.6(4)
Directories
 child of Ada A.16(3/2)
directory A.16(45/2)
directory entry A.16(49/2)
directory name A.16(46/2)
Directory_Entry_Type
 in Ada.Directories A.16(29/2)
Discard_Names pragma C.5(3), L(9)
discontiguous representation
 [partial] 13.5.2(5), 13.7.1(12), 13.9(9),

13.9(17), 13.11(16)
discrete array type 4.5.2(1)
discrete type 3.2(3), 3.5(1), N(14)
Discrete_Random
 child of Ada.Numerics A.5.2(17)

discrete_choice 3.8.1(5)
 used 3.8.1(4), P
discrete_choice_list 3.8.1(4)
 used 3.8.1(3), 4.3.3(5/2), 5.4(3), P
discrete_range 3.6.1(3)
 used 3.6.1(2), 3.8.1(5), 4.1.2(2), P
discrete_subtype_definition 3.6(6)
 used 3.6(5), 5.5(4), 9.5.2(2/2), 9.5.2(8),

P
discriminant 3.2(5/2), 3.7(1/2), N(15/2)
 of a variant_part 3.8.1(6)
 use in a record definition 3.8(12)
discriminant_association 3.7.1(3)
 used 3.7.1(2), P
Discriminant_Check 11.5(12)
 [partial] 4.1.3(15), 4.3(6), 4.3.2(8),

4.6(43), 4.6(45), 4.6(51/2), 4.6(52),
4.7(4), 4.8(10/2)

discriminant_constraint 3.7.1(2)
 used 3.2.2(7), P
discriminant_part 3.7(2/2)
 used 3.10.1(2/2), 7.3(2), 7.3(3/2),

12.5(2), P
discriminant_specification 3.7(5/2)
 used 3.7(4), P
discriminants
 known 3.7(26)
 unknown 3.7(26)
discriminated type 3.7(8/2)
dispatching 3.9(3)
 child of Ada D.2.1(1.2/2)
dispatching call
 on a dispatching operation 3.9.2(1/2)
dispatching operation 3.9.2(1/2),

3.9.2(2/2)
 [partial] 3.9(1)
dispatching point D.2.1(4/2)
 [partial] D.2.3(8/2), D.2.4(9/2)
dispatching policy for tasks
 [partial] D.2.1(5/2)
dispatching, task D.2.1(4/2)
Dispatching_Policy_Error
 in Ada.Dispatching D.2.1(1.2/2)
Display_Format
 in Interfaces.COBOL B.4(22)
displayed magnitude (of a decimal value)

F.3.2(14)
disruption of an assignment 9.8(21),

13.9.1(5)
 [partial] 11.6(6)
distinct access paths 6.2(12)
distributed program E(3)
distributed system E(2)
distributed systems C(1)
divide 2.1(15/2)
 in Ada.Decimal F.2(6)
divide operator 4.4(1), 4.5.5(1)
Division_Check 11.5(13/2)

 [partial] 3.5.4(20), 4.5.5(22),
A.5.1(28), A.5.3(47), G.1.1(40),
G.1.2(28), K(202)

Division_Sign
 in Ada.Characters.Latin_1 A.3.3(26)
DLE
 in Ada.Characters.Latin_1 A.3.3(6)
Do_APC
 in System.RPC E.5(10)
Do_RPC
 in System.RPC E.5(9)
documentation (required of an

implementation) 1.1.3(18), M.1(1/2),
M.2(1/2), M.3(1/2)

documentation requirements 1.1.2(34),
M(1/2)

 summary of requirements M.1(1/2)
Dollar_Sign
 in Ada.Characters.Latin_1 A.3.3(8)
dot 2.1(15/2)
dot selection
 See selected_component 4.1.3(1)
double
 in Interfaces.C B.3(16)
Double_Precision
 in Interfaces.Fortran B.5(6)
Doubly_Linked_Lists
 child of Ada.Containers A.18.3(5/2)
downward closure 3.10.2(37/2)
drift rate D.8(41)
Duration
 in Standard A.1(43)
dynamic binding
 See dispatching operation 3.9(1)
dynamic semantics 1.1.2(30)
Dynamic_Priorities
 child of Ada D.5.1(3/2)
dynamically determined tag 3.9.2(1/2)
dynamically enclosing
 of one execution by another 11.4(2)
dynamically tagged 3.9.2(5/2)

E

e
 in Ada.Numerics A.5(3/2)
EDF
 child of Ada.Dispatching D.2.6(9/2)
edited output F.3(1/2)
Editing
 child of Ada.Text_IO F.3.3(3)
 child of Ada.Wide_Text_IO F.3.4(1)
 child of Ada.Wide_Wide_Text_IO

F.3.5(1/2)
effect
 external 1.1.3(8)
efficiency 11.5(29), 11.6(1)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

735 10 November 2006 Index

Eigensystem
 in Ada.Numerics.Generic_Complex_-

Arrays G.3.2(49/2)
 in Ada.Numerics.Generic_Real_Arrays

G.3.1(27/2)
Eigenvalues
 in Ada.Numerics.Generic_Complex_-

Arrays G.3.2(48/2)
 in Ada.Numerics.Generic_Real_Arrays

G.3.1(26/2)
Elaborate pragma 10.2.1(20), L(10)
Elaborate_All pragma 10.2.1(21), L(11)
Elaborate_Body pragma 10.2.1(22),

L(12)
elaborated 3.11(8)
elaboration 3.1(11), N(15.1/2), N(19)
 abstract_subprogram_declaration

3.9.3(11.1/2)
 access_definition 3.10(17/2)
 access_type_definition 3.10(16)
 array_type_definition 3.6(21)
 aspect_clause 13.1(19/1)
 choice_parameter_specification 11.4(7)
 component_declaration 3.8(17)
 component_definition 3.6(22/2),

3.8(18/2)
 component_list 3.8(17)
 declaration named by a pragma Import

B.1(38)
 declarative_part 3.11(7)
 deferred constant declaration 7.4(10)
 delta_constraint J.3(11)
 derived_type_definition 3.4(26)
 digits_constraint 3.5.9(19)
 discrete_subtype_definition 3.6(22/2)
 discriminant_constraint 3.7.1(12)
 entry_declaration 9.5.2(22/1)
 enumeration_type_definition 3.5.1(10)
 exception_declaration 11.1(5)
 fixed_point_definition 3.5.9(17)
 floating_point_definition 3.5.7(13)
 full type definition 3.2.1(11)
 full_type_declaration 3.2.1(11)
 generic body 12.2(2)
 generic_declaration 12.1(10)
 generic_instantiation 12.3(20)
 incomplete_type_declaration

3.10.1(12)
 index_constraint 3.6.1(8)
 integer_type_definition 3.5.4(18)
 loop_parameter_specification 5.5(9)
 non-generic subprogram_body 6.3(6)
 nongeneric package_body 7.2(6)
 null_procedure_declaration 6.7(5/2)
 number_declaration 3.3.2(7)
 object_declaration 3.3.1(15)
 of library units for a foreign language

main subprogram B.1(39)
 package_body of Standard A.1(50)
 package_declaration 7.1(8)

 partition E.1(6)
 partition E.5(21)
 per-object constraint 3.8(18.1/1)
 pragma 2.8(12)
 private_extension_declaration 7.3(17)
 private_type_declaration 7.3(17)
 protected declaration 9.4(12)
 protected_body 9.4(15)
 protected_definition 9.4(13)
 range_constraint 3.5(9)
 real_type_definition 3.5.6(5)
 record_definition 3.8(16)
 record_extension_part 3.9.1(5)
 record_type_definition 3.8(16)
 renaming_declaration 8.5(3)
 single_protected_declaration 9.4(12)
 single_task_declaration 9.1(10)
 Storage_Size pragma 13.3(66)
 subprogram_declaration 6.1(31/2)
 subtype_declaration 3.2.2(9)
 subtype_indication 3.2.2(9)
 task declaration 9.1(10)
 task_body 9.1(13)
 task_definition 9.1(11)
 use_clause 8.4(12)
 variant_part 3.8.1(22)
elaboration control 10.2.1(1)
elaboration dependence
 library_item on another 10.2(9)
Elaboration_Check 11.5(20)
 [partial] 3.11(9)
element
 of a storage pool 13.11(11)
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(14/2)
 in Ada.Containers.Hashed_Maps

A.18.5(14/2), A.18.5(31/2)
 in Ada.Containers.Hashed_Sets

A.18.8(15/2), A.18.8(52/2)
 in Ada.Containers.Ordered_Maps

A.18.6(13/2), A.18.6(39/2)
 in Ada.Containers.Ordered_Sets

A.18.9(14/2), A.18.9(65/2)
 in Ada.Containers.Vectors

A.18.2(27/2), A.18.2(28/2)
 in Ada.Strings.Bounded A.4.4(26)
 in Ada.Strings.Unbounded A.4.5(20)
elementary type 3.2(2/2), N(16)
Elementary_Functions
 child of Ada.Numerics A.5.1(9/1)
eligible
 a type, for a convention B.1(14)
else part
 of a selective_accept 9.7.1(11)
EM
 in Ada.Characters.Latin_1 A.3.3(6)
embedded systems C(1), D(1)
empty element
 of a vector A.18.2(4/2)

Empty_List
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(8/2)
Empty_Map
 in Ada.Containers.Hashed_Maps

A.18.5(5/2)
 in Ada.Containers.Ordered_Maps

A.18.6(6/2)
Empty_Set
 in Ada.Containers.Hashed_Sets

A.18.8(5/2)
 in Ada.Containers.Ordered_Sets

A.18.9(6/2)
Empty_Vector
 in Ada.Containers.Vectors

A.18.2(10/2)
encapsulation
 See package 7(1)
enclosing
 immediately 8.1(13)
end of a line 2.2(2/2)
End_Error
 raised by failure of run-time check

13.13.2(37/1)
 in Ada.Direct_IO A.8.4(18)
 in Ada.IO_Exceptions A.13(4)
 in Ada.Sequential_IO A.8.1(15)
 in Ada.Streams.Stream_IO A.12.1(26)
 in Ada.Text_IO A.10.1(85)
End_Of_File
 in Ada.Direct_IO A.8.4(16)
 in Ada.Sequential_IO A.8.1(13)
 in Ada.Streams.Stream_IO A.12.1(12)
 in Ada.Text_IO A.10.1(34)
End_Of_Line
 in Ada.Text_IO A.10.1(30)
End_Of_Page
 in Ada.Text_IO A.10.1(33)
End_Search
 in Ada.Directories A.16(33/2)
endian
 big 13.5.3(2)
 little 13.5.3(2)
ENQ
 in Ada.Characters.Latin_1 A.3.3(5)
entity
 [partial] 3.1(1)
entry
 closed 9.5.3(5)
 open 9.5.3(5)
 single 9.5.2(20)
entry call 9.5.3(1)
 simple 9.5.3(1)
entry calling convention 6.3.1(13)
entry family 9.5.2(20)
entry index subtype 3.8(18/2), 9.5.2(20)
entry queue 9.5.3(12)
entry queuing policy 9.5.3(17)
 default policy 9.5.3(17)
entry_barrier 9.5.2(7)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Index 10 November 2006 736

 used 9.5.2(5), P
entry_body 9.5.2(5)
 used 9.4(8/1), P
entry_body_formal_part 9.5.2(6)
 used 9.5.2(5), P
entry_call_alternative 9.7.2(3/2)
 used 9.7.2(2), 9.7.3(2), P
entry_call_statement 9.5.3(2)
 used 5.1(4/2), 9.7.2(3.1/2), P
entry_declaration 9.5.2(2/2)
 used 9.1(5/1), 9.4(5/1), P
entry_index 9.5.2(4)
 used 9.5.2(3), P
entry_index_specification 9.5.2(8)
 used 9.5.2(6), P
enumeration literal 3.5.1(6)
enumeration type 3.2(3), 3.5.1(1), N(17)
enumeration_aggregate 13.4(3)
 used 13.4(2), P
Enumeration_IO
 in Ada.Text_IO A.10.1(79)
enumeration_literal_specification

3.5.1(3)
 used 3.5.1(2), P
enumeration_representation_clause

13.4(2)
 used 13.1(2/1), P
enumeration_type_definition 3.5.1(2)
 used 3.2.1(4/2), P
environment 10.1.4(1)
environment declarative_part 10.1.4(1)
 for the environment task of a partition

10.2(13)
environment task 10.2(8)
environment variable A.17(1/2)
Environment_Variables
 child of Ada A.17(3/2)
EOT
 in Ada.Characters.Latin_1 A.3.3(5)
EPA
 in Ada.Characters.Latin_1 A.3.3(18)
epoch D.8(19)
equal operator 4.4(1), 4.5.2(1)
equality operator 4.5.2(1)
 special inheritance rule for tagged

types 3.4(17/2), 4.5.2(14)
equals sign 2.1(15/2)
Equals_Sign
 in Ada.Characters.Latin_1 A.3.3(10)
equivalent element
 of a hashed set A.18.8(64/2)
 of a ordered set A.18.9(78/2)
equivalent key
 of a hashed map A.18.5(42/2)
 of an ordered map A.18.6(55/2)

Equivalent_Elements
 in Ada.Containers.Hashed_Sets

A.18.8(46/2), A.18.8(47/2),
A.18.8(48/2)

 in Ada.Containers.Ordered_Sets
A.18.9(3/2)

Equivalent_Keys
 in Ada.Containers.Hashed_Maps

A.18.5(34/2), A.18.5(35/2),
A.18.5(36/2)

 in Ada.Containers.Ordered_Maps
A.18.6(3/2)

 in Ada.Containers.Ordered_Sets
A.18.9(63/2)

Equivalent_Sets
 in Ada.Containers.Hashed_Sets

A.18.8(8/2)
 in Ada.Containers.Ordered_Sets

A.18.9(9/2)
erroneous execution 1.1.2(32), 1.1.5(10)
 cause 3.7.2(4), 3.9(25.3/2), 9.8(21),

9.10(11), 11.5(26), 13.3(13), 13.3(27),
13.3(28/2), 13.9.1(8), 13.9.1(12/2),
13.9.1(13), 13.11(21), 13.11.2(16),
13.13.2(53/2), A.10.3(22/1),
A.12.1(36.1/1), A.13(17), A.17(28/2),
A.18.2(252/2), A.18.3(157/2),
A.18.4(80/2), A.18.7(101/2),
B.1(38.1/2), B.3.1(51), B.3.1(55),
B.3.1(56), B.3.1(57), B.3.2(35),
B.3.2(36), B.3.2(37), B.3.2(38),
B.3.2(39), B.3.2(42), C.3.1(14),
C.3.1(14.1/1), C.7.1(18), C.7.2(14),
C.7.2(15), C.7.2(15.1/2), D.2.6(31/2),
D.5.1(12), D.11(9), D.14(19/2),
D.14.1(25/2), D.14.2(35/2), H.4(26),
H.4(27)

error
 compile-time 1.1.2(27), 1.1.5(4)
 link-time 1.1.2(29), 1.1.5(4)
 run-time 1.1.2(30), 1.1.5(6), 11.5(2),

11.6(1)
 See also bounded error, erroneous

execution
ESA
 in Ada.Characters.Latin_1 A.3.3(17)
ESC
 in Ada.Characters.Latin_1 A.3.3(6)
Establish_RPC_Receiver
 in System.RPC E.5(12)
ETB
 in Ada.Characters.Latin_1 A.3.3(6)
ETX
 in Ada.Characters.Latin_1 A.3.3(5)
evaluation 3.1(11), N(17.1/2), N(19)
 aggregate 4.3(5)
 allocator 4.8(7/2)
 array_aggregate 4.3.3(21)
 attribute_reference 4.1.4(11)
 concatenation 4.5.3(5)

 dereference 4.1(13)
 discrete_range 3.6.1(8)
 extension_aggregate 4.3.2(7)
 generic_association 12.3(21)
 generic_association for a formal object

of mode in 12.4(11)
 indexed_component 4.1.1(7)
 initialized allocator 4.8(7/2)
 membership test 4.5.2(27)
 name 4.1(11/2)
 name that has a prefix 4.1(12)
 null literal 4.2(9)
 numeric literal 4.2(9)
 parameter_association 6.4.1(7)
 prefix 4.1(12)
 primary that is a name 4.4(10)
 qualified_expression 4.7(4)
 range 3.5(9)
 range_attribute_reference 4.1.4(11)
 record_aggregate 4.3.1(18)
 record_component_association_list

4.3.1(19)
 selected_component 4.1.3(14)
 short-circuit control form 4.5.1(7)
 slice 4.1.2(7)
 string_literal 4.2(10)
 uninitialized allocator 4.8(8)
 Val 3.5.5(7), K(261)
 Value 3.5(55/2)
 value conversion 4.6(28)
 view conversion 4.6(52)
 Wide_Value 3.5(43/2)
 Wide_Wide_Value 3.5(39.4/2)
Exception 11(1), 11.1(1), N(18)
exception occurrence 11(1)
exception_choice 11.2(5)
 used 11.2(3), P
exception_declaration 11.1(2)
 used 3.1(3/2), P
exception_handler 11.2(3)
 used 11.2(2), P
Exception_Id
 in Ada.Exceptions 11.4.1(2/2)
Exception_Identity
 in Ada.Exceptions 11.4.1(5/2)
Exception_Information
 in Ada.Exceptions 11.4.1(5/2)
Exception_Message
 in Ada.Exceptions 11.4.1(4/2)
Exception_Name
 in Ada.Exceptions 11.4.1(2/2),

11.4.1(5/2)
Exception_Occurrence
 in Ada.Exceptions 11.4.1(3/2)
Exception_Occurrence_Access
 in Ada.Exceptions 11.4.1(3/2)
exception_renaming_declaration 8.5.2(2)
 used 8.5(2), P
Exceptions
 child of Ada 11.4.1(2/2)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

737 10 November 2006 Index

Exchange_Handler
 in Ada.Interrupts C.3.2(8)
Exclamation
 in Ada.Characters.Latin_1 A.3.3(8)
exclamation point 2.1(15/2)
Exclude
 in Ada.Containers.Hashed_Maps

A.18.5(24/2)
 in Ada.Containers.Hashed_Sets

A.18.8(23/2), A.18.8(54/2)
 in Ada.Containers.Ordered_Maps

A.18.6(23/2)
 in Ada.Containers.Ordered_Sets

A.18.9(22/2), A.18.9(67/2)
excludes null
 subtype 3.10(13.1/2)
execution 3.1(11), N(19)
 abort_statement 9.8(4)
 aborting the execution of a construct

9.8(5)
 accept_statement 9.5.2(24)
 Ada program 9(1)
 assignment_statement 5.2(7), 7.6(17),

7.6.1(12/2)
 asynchronous_select with a

delay_statement trigger 9.7.4(7)
 asynchronous_select with a procedure

call trigger 9.7.4(6/2)
 asynchronous_select with an entry call

trigger 9.7.4(6/2)
 block_statement 5.6(5)
 call on a dispatching operation

3.9.2(14)
 call on an inherited subprogram

3.4(27/2)
 case_statement 5.4(11)
 conditional_entry_call 9.7.3(3)
 delay_statement 9.6(20)
 dynamically enclosing 11.4(2)
 entry_body 9.5.2(26)
 entry_call_statement 9.5.3(8)
 exit_statement 5.7(5)
 extended_return_statement 6.5(5.8/2)
 goto_statement 5.8(5)
 handled_sequence_of_statements

11.2(10)
 handler 11.4(7)
 if_statement 5.3(5)
 instance of Unchecked_Deallocation

7.6.1(10)
 loop_statement 5.5(7)
 loop_statement with a for

iteration_scheme 5.5(9)
 loop_statement with a while

iteration_scheme 5.5(8)
 null_statement 5.1(13)
 partition 10.2(25)
 pragma 2.8(12)
 program 10.2(25)
 protected subprogram call 9.5.1(3)

 raise_statement with an
exception_name 11.3(4/2)

 re-raise statement 11.3(4/2)
 remote subprogram call E.4(9)
 requeue protected entry 9.5.4(9)
 requeue task entry 9.5.4(8)
 requeue_statement 9.5.4(7)
 selective_accept 9.7.1(15)
 sequence_of_statements 5.1(15)
 simple_return_statement 6.5(6/2)
 subprogram call 6.4(10/2)
 subprogram_body 6.3(7)
 task 9.2(1)
 task_body 9.2(1)
 timed_entry_call 9.7.2(4/2)
execution resource
 associated with a protected object

9.4(18)
 required for a task to run 9(10)
execution time
 of a task D.14(11/2)
Execution_Time
 child of Ada D.14(3/2)
exhaust
 a budget D.14.2(14/2)
exist
 cease to 7.6.1(11/2), 13.11.2(10/2)
Exists
 in Ada.Directories A.16(24/2)
 in Ada.Environment_Variables

A.17(5/2)
exit_statement 5.7(2)
 used 5.1(4/2), P
Exit_Status
 in Ada.Command_Line A.15(7)
Exp
 in Ada.Numerics.Generic_Complex_-

Elementary_Functions G.1.2(3)
 in Ada.Numerics.Generic_Elementary_-

Functions A.5.1(4)
expanded name 4.1.3(4)
Expanded_Name
 in Ada.Tags 3.9(7/2)
expected profile 8.6(26)
 accept_statement entry_direct_name

9.5.2(11)
 Access attribute_reference prefix

3.10.2(2.3/2)
 attribute_definition_clause name

13.3(4)
 character_literal 4.2(3)
 formal subprogram actual 12.6(6)
 formal subprogram default_name

12.6(5)
 subprogram_renaming_declaration

8.5.4(3)
expected type 8.6(20/2)
 abort_statement task_name 9.8(3)
 access attribute_reference 3.10.2(2/2)

 Access attribute_reference prefix
3.10.2(2.3/2)

 actual parameter 6.4.1(3)
 aggregate 4.3(3/2)
 allocator 4.8(3/1)
 array_aggregate 4.3.3(7/2)
 array_aggregate component expression

4.3.3(7/2)
 array_aggregate discrete_choice

4.3.3(8)
 assignment_statement expression

5.2(4/2)
 assignment_statement variable_name

5.2(4/2)
 attribute_definition_clause expression or

name 13.3(4)
 attribute_designator expression

4.1.4(7)
 case expression 5.4(4)
 case_statement_alternative

discrete_choice 5.4(4)
 character_literal 4.2(3)
 code_statement 13.8(4)
 component_clause expressions

13.5.1(7)
 component_declaration

default_expression 3.8(7)
 condition 5.3(4)
 decimal fixed point type digits 3.5.9(6)
 delay_relative_statement expression

9.6(5)
 delay_until_statement expression

9.6(5)
 delta_constraint expression J.3(3)
 dereference name 4.1(8)
 discrete_subtype_definition range

3.6(8)
 discriminant default_expression 3.7(7)
 discriminant_association expression

3.7.1(6)
 entry_index 9.5.2(11)
 enumeration_representation_clause

expressions 13.4(4)
 expression of

extended_return_statement 6.5(3/2)
 expression of simple_return_statement

6.5(3/2)
 extension_aggregate 4.3.2(4/2)
 extension_aggregate ancestor

expression 4.3.2(4/2)
 first_bit 13.5.1(7)
 fixed point type delta 3.5.9(6)
 generic formal in object actual 12.4(4)
 generic formal object

default_expression 12.4(3)
 index_constraint discrete_range

3.6.1(4)
 indexed_component expression

4.1.1(4)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Index 10 November 2006 738

 Interrupt_Priority pragma argument
D.1(6)

 last_bit 13.5.1(7)
 link name B.1(10)
 membership test simple_expression

4.5.2(3/2)
 modular_type_definition expression

3.5.4(5)
 number_declaration expression

3.3.2(3)
 object_declaration initialization

expression 3.3.1(4)
 parameter default_expression 6.1(17)
 position 13.5.1(7)
 Priority pragma argument D.1(6)
 range simple_expressions 3.5(5)
 range_attribute_designator expression

4.1.4(7)
 range_constraint range 3.5(5)
 real_range_specification bounds

3.5.7(5)
 record_aggregate 4.3.1(8/2)
 record_component_association

expression 4.3.1(10)
 requested decimal precision 3.5.7(4)
 restriction parameter expression

13.12(5)
 short-circuit control form relation

4.5.1(1)
 signed_integer_type_definition

simple_expression 3.5.4(5)
 slice discrete_range 4.1.2(4)
 Storage_Size pragma argument

13.3(65)
 string_literal 4.2(4)
 type_conversion operand 4.6(6)
 variant_part discrete_choice 3.8.1(6)
expiration time
 [partial] 9.6(1)
 for a delay_relative_statement 9.6(20)
 for a delay_until_statement 9.6(20)
expires
 execution timer D.14.1(15/2)
explicit declaration 3.1(5), N(11)
explicit initial value 3.3.1(1)
explicit_actual_parameter 6.4(6)
 used 6.4(5), P
explicit_dereference 4.1(5)
 used 4.1(2), P
explicit_generic_actual_parameter

12.3(5)
 used 12.3(4), P
explicitly assign 10.2(2)
explicitly limited record 3.8(13.1/2)
exponent 2.4.1(4), 4.5.6(11)
 used 2.4.1(2), 2.4.2(2), P
Exponent attribute A.5.3(18)
exponentiation operator 4.4(1), 4.5.6(7)
Export pragma B.1(6), L(13)

exported
 aspect of representation B.1(28)
exported entity B.1(23)
expression 4.4(1), 4.4(2)
 used 2.8(3), 3.3.1(2/2), 3.3.2(2),

3.5.4(4), 3.5.7(2), 3.5.9(3), 3.5.9(4),
3.5.9(5), 3.7(6), 3.7.1(3), 3.8.1(5),
4.1.1(2), 4.1.4(3), 4.1.4(5), 4.3.1(4/2),
4.3.2(3), 4.3.3(3/2), 4.3.3(5/2), 4.4(7),
4.6(2), 4.7(2), 5.2(2), 5.3(3), 5.4(2),
6.4(6), 6.5(2.1/2), 6.5(2/2), 9.5.2(4),
9.6(3), 9.6(4), 11.3(2/2), 11.4.2(3/2),
12.3(5), 13.3(2), 13.3(63), 13.5.1(4),
13.12(4.1/2), B.1(5), B.1(6), B.1(8),
B.1(10), C.3.1(4), D.1(3), D.1(5),
D.2.2(2.2/2), D.2.6(4/2), J.3(2), J.7(1),
J.8(1), L(2.1/2), L(6), L(13), L(14),
L(18), L(19), L(27), L(27.1/2),
L(29.1/2), L(35), P

extended_digit 2.4.2(5)
 used 2.4.2(4), P
Extended_Index subtype of

Index_Type'Base
 in Ada.Containers.Vectors A.18.2(7/2)
extended_return_statement 6.5(2.1/2)
 used 5.1(5/2), P
extension
 of a private type 3.9(2.1/2), 3.9.1(1/2)
 of a record type 3.9(2.1/2), 3.9.1(1/2)
 of a type 3.9(2/2), 3.9.1(1/2)
 in Ada.Directories A.16(18/2)
extension_aggregate 4.3.2(2)
 used 4.3(2), P
external call 9.5(4)
external effect
 of the execution of an Ada program

1.1.3(8)
 volatile/atomic objects C.6(20)
external file A.7(1)
external interaction 1.1.3(8)
external name B.1(34)
external requeue 9.5(7)
external streaming
 type supports 13.13.2(52/2)
External_Tag
 in Ada.Tags 3.9(7/2)
External_Tag attribute 13.3(75/1)
External_Tag clause 13.3(7/2),

13.3(75/1), K(65)
extra permission to avoid raising

exceptions 11.6(5)
extra permission to reorder actions

11.6(6)

F

factor 4.4(6)
 used 4.4(5), P
factory 3.9(30.1/2)

failure
 of a language-defined check 11.5(2)
 in Ada.Command_Line A.15(8)
fall-back handler C.7.3(9/2)
False 3.5.3(1)
family
 entry 9.5.2(20)
Feminine_Ordinal_Indicator
 in Ada.Characters.Latin_1 A.3.3(21)
FF
 in Ada.Characters.Latin_1 A.3.3(5)
Field subtype of Integer
 in Ada.Text_IO A.10.1(6)
file
 as file object A.7(2)
file name A.16(46/2)
file terminator A.10(7)
File_Access
 in Ada.Text_IO A.10.1(18)
File_Kind
 in Ada.Directories A.16(22/2)
File_Mode
 in Ada.Direct_IO A.8.4(4)
 in Ada.Sequential_IO A.8.1(4)
 in Ada.Streams.Stream_IO A.12.1(6)
 in Ada.Text_IO A.10.1(4)
File_Size
 in Ada.Directories A.16(23/2)
File_Type
 in Ada.Direct_IO A.8.4(3)
 in Ada.Sequential_IO A.8.1(3)
 in Ada.Streams.Stream_IO A.12.1(5)
 in Ada.Text_IO A.10.1(3)
Filter_Type
 in Ada.Directories A.16(30/2)
finalization
 of a master 7.6.1(4)
 of a protected object 9.4(20)
 of a protected object C.3.1(12/1)
 of a task object J.7.1(8)
 of an object 7.6.1(5)
 of environment task for a foreign

language main subprogram B.1(39)
 child of Ada 7.6(4/1)
finalization of the collection 7.6.1(11/2)
Finalize 7.6(2)
 in Ada.Finalization 7.6(6/2), 7.6(8/2)
Find
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(41/2)
 in Ada.Containers.Hashed_Maps

A.18.5(30/2)
 in Ada.Containers.Hashed_Sets

A.18.8(43/2), A.18.8(56/2)
 in Ada.Containers.Ordered_Maps

A.18.6(38/2)
 in Ada.Containers.Ordered_Sets

A.18.9(49/2), A.18.9(69/2)
 in Ada.Containers.Vectors

A.18.2(68/2)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

739 10 November 2006 Index

Find_Index
 in Ada.Containers.Vectors

A.18.2(67/2)
Find_Token
 in Ada.Strings.Bounded A.4.4(51)
 in Ada.Strings.Fixed A.4.3(16)
 in Ada.Strings.Unbounded A.4.5(46)
Fine_Delta
 in System 13.7(9)
First
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(33/2)
 in Ada.Containers.Hashed_Maps

A.18.5(27/2)
 in Ada.Containers.Hashed_Sets

A.18.8(40/2)
 in Ada.Containers.Ordered_Maps

A.18.6(28/2)
 in Ada.Containers.Ordered_Sets

A.18.9(41/2)
 in Ada.Containers.Vectors

A.18.2(58/2)
First attribute 3.5(12), 3.6.2(3)
first element
 of a hashed set A.18.8(68/2)
 of a ordered set A.18.9(81/2)
 of a set A.18.7(6/2)
first node
 of a hashed map A.18.5(46/2)
 of a map A.18.4(6/2)
 of an ordered map A.18.6(58/2)
first subtype 3.2.1(6), 3.4.1(5)
First(N) attribute 3.6.2(4)
first_bit 13.5.1(5)
 used 13.5.1(3), P
First_Bit attribute 13.5.2(3/2)
First_Element
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(34/2)
 in Ada.Containers.Ordered_Maps

A.18.6(29/2)
 in Ada.Containers.Ordered_Sets

A.18.9(42/2)
 in Ada.Containers.Vectors

A.18.2(59/2)
First_Index
 in Ada.Containers.Vectors

A.18.2(57/2)
First_Key
 in Ada.Containers.Ordered_Maps

A.18.6(30/2)
Fixed
 child of Ada.Strings A.4.3(5)
fixed point type 3.5.9(1)
Fixed_IO
 in Ada.Text_IO A.10.1(68)
fixed_point_definition 3.5.9(2)
 used 3.5.6(2), P
Float 3.5.7(12), 3.5.7(14)
 in Standard A.1(21)

Float_Random
 child of Ada.Numerics A.5.2(5)
Float_Text_IO
 child of Ada A.10.9(33)
Float_Wide_Text_IO
 child of Ada A.11(2/2)
Float_Wide_Wide_Text_IO
 child of Ada A.11(3/2)
Float_IO
 in Ada.Text_IO A.10.1(63)
Floating
 in Interfaces.COBOL B.4(9)
floating point type 3.5.7(1)
floating_point_definition 3.5.7(2)
 used 3.5.6(2), P
Floor
 in Ada.Containers.Ordered_Maps

A.18.6(40/2)
 in Ada.Containers.Ordered_Sets

A.18.9(50/2), A.18.9(70/2)
Floor attribute A.5.3(30)
Flush
 in Ada.Streams.Stream_IO

A.12.1(25/1)
 in Ada.Text_IO A.10.1(21/1)
Fore attribute 3.5.10(4)
form
 of an external file A.7(1)
 in Ada.Direct_IO A.8.4(9)
 in Ada.Sequential_IO A.8.1(9)
 in Ada.Streams.Stream_IO A.12.1(11)
 in Ada.Text_IO A.10.1(12)
formal object, generic 12.4(1)
formal package, generic 12.7(1)
formal parameter
 of a subprogram 6.1(17)
formal subprogram, generic 12.6(1)
formal subtype 12.5(5)
formal type 12.5(5)
formal_abstract_subprogram_declaration

12.6(2.2/2)
 used 12.6(2/2), P
formal_access_type_definition 12.5.4(2)
 used 12.5(3/2), P
formal_array_type_definition 12.5.3(2)
 used 12.5(3/2), P
formal_concrete_subprogram_declaration

 12.6(2.1/2)
 used 12.6(2/2), P
formal_decimal_fixed_point_definition

12.5.2(7)
 used 12.5(3/2), P
formal_derived_type_definition

12.5.1(3/2)
 used 12.5(3/2), P
formal_discrete_type_definition

12.5.2(2)
 used 12.5(3/2), P
formal_floating_point_definition

12.5.2(5)

 used 12.5(3/2), P
formal_interface_type_definition

12.5.5(2/2)
 used 12.5(3/2), P
formal_modular_type_definition

12.5.2(4)
 used 12.5(3/2), P
formal_object_declaration 12.4(2/2)
 used 12.1(6), P
formal_ordinary_fixed_point_definition

12.5.2(6)
 used 12.5(3/2), P
formal_package_actual_part 12.7(3/2)
 used 12.7(2), P
formal_package_association 12.7(3.1/2)
 used 12.7(3/2), P
formal_package_declaration 12.7(2)
 used 12.1(6), P
formal_part 6.1(14)
 used 6.1(12), 6.1(13/2), P
formal_private_type_definition 12.5.1(2)
 used 12.5(3/2), P
formal_signed_integer_type_definition

12.5.2(3)
 used 12.5(3/2), P
formal_subprogram_declaration

12.6(2/2)
 used 12.1(6), P
formal_type_declaration 12.5(2)
 used 12.1(6), P
formal_type_definition 12.5(3/2)
 used 12.5(2), P
format_effector 2.1(13/2)
Formatting
 child of Ada.Calendar 9.6.1(15/2)
Fortran
 child of Interfaces B.5(4)
Fortran interface B.5(1)
Fortran standard 1.2(3/2)
Fortran_Character
 in Interfaces.Fortran B.5(12)
Fortran_Integer
 in Interfaces.Fortran B.5(5)
Fraction attribute A.5.3(21)
Fraction_One_Half
 in Ada.Characters.Latin_1 A.3.3(22)
Fraction_One_Quarter
 in Ada.Characters.Latin_1 A.3.3(22)
Fraction_Three_Quarters
 in Ada.Characters.Latin_1 A.3.3(22)
Free
 in Ada.Strings.Unbounded A.4.5(7)
 in Interfaces.C.Strings B.3.1(11)
freed
 See nonexistent 13.11.2(10/2)
freeing storage 13.11.2(1)
freezing
 by a constituent of a construct

13.14(4/1)
 by an expression 13.14(8/1)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Index 10 November 2006 740

 by an implicit call 13.14(8.1/1)
 by an object name 13.14(8/1)
 class-wide type caused by the freezing

of the specific type 13.14(15)
 constituents of a full type definition

13.14(15)
 designated subtype caused by an

allocator 13.14(13)
 entity 13.14(2)
 entity caused by a body 13.14(3/1)
 entity caused by a construct 13.14(4/1)
 entity caused by a name 13.14(11)
 entity caused by the end of an enclosing

construct 13.14(3/1)
 first subtype caused by the freezing of

the type 13.14(15)
 function call 13.14(14)
 generic_instantiation 13.14(5)
 nominal subtype caused by a name

13.14(11)
 object_declaration 13.14(6)
 specific type caused by the freezing of

the class-wide type 13.14(15)
 subtype caused by a record extension

13.14(7)
 subtype caused by an implicit

conversion 13.14(8.2/1)
 subtype caused by an implicit

dereference 13.14(11.1/1)
 subtypes of the profile of a callable

entity 13.14(14)
 type caused by a range 13.14(12)
 type caused by an expression 13.14(10)
 type caused by the freezing of a

subtype 13.14(15)
freezing points
 entity 13.14(2)
Friday
 in Ada.Calendar.Formatting

9.6.1(17/2)
FS
 in Ada.Characters.Latin_1 A.3.3(6)
full conformance
 for discrete_subtype_definitions

6.3.1(24)
 for expressions 6.3.1(19)
 for known_discriminant_parts

6.3.1(23)
 for profiles 6.3.1(18)
 required 3.10.1(4/2), 6.3(4), 7.3(9),

8.3(12.3/2), 8.5.4(5/1), 9.5.2(14),
9.5.2(16), 9.5.2(17), 10.1.3(11),
10.1.3(12)

full constant declaration 3.3.1(6)
 corresponding to a formal object of

mode in 12.4(10/2)
full declaration 7.4(2)
full name
 of a file A.16(47/2)
full stop 2.1(15/2)

full type 3.2.1(8/2)
full type definition 3.2.1(8/2)
full view
 of a type 3.2.1(8/2)
Full_Name
 in Ada.Directories A.16(15/2),

A.16(39/2)
Full_Stop
 in Ada.Characters.Latin_1 A.3.3(8)
full_type_declaration 3.2.1(3)
 used 3.2.1(2), P
function 6(1), N(19.1/2)
function instance 12.3(13)
function_call 6.4(3)
 used 4.1(2), P
function_specification 6.1(4.2/2)
 used 6.1(4/2), P

G

garbage collection 13.11.3(6)
general access type 3.10(7/1), 3.10(8)
general_access_modifier 3.10(4)
 used 3.10(3), P
generation
 of an interrupt C.3(2)
Generator
 in Ada.Numerics.Discrete_Random

A.5.2(19)
 in Ada.Numerics.Float_Random

A.5.2(7)
generic actual 12.3(7/2)
generic actual parameter 12.3(7/2)
generic actual subtype 12.5(4)
generic actual type 12.5(4)
generic body 12.2(1)
generic contract issue 10.2.1(10/2)
 [partial] 3.7(10/2), 3.7.1(7/2),

3.9.1(3/2), 3.9.4(17/2), 3.10.2(28),
3.10.2(32/2), 4.6(24.17/2),
4.6(24.21/2), 4.8(5.3/2), 4.9(37/2),
6.5.1(6/2), 8.3(26/2), 8.3.1(7/2),
8.5.1(4.6/2), 8.5.4(4.3/2), 9.1(9.9/2),
9.4(11.13/2), 9.4(11.8/2),
9.5.2(13.4/2), 10.2.1(11/1),
12.4(8.5/2), 12.6(8.3/2)

generic formal 12.1(9)
generic formal object 12.4(1)
generic formal package 12.7(1)
generic formal subprogram 12.6(1)
generic formal subtype 12.5(5)
generic formal type 12.5(5)
generic function 12.1(8/2)
generic package 12.1(8/2)
generic procedure 12.1(8/2)
generic subprogram 12.1(8/2)
generic unit 12(1), N(20)
 See also dispatching operation 3.9(1)
Generic_Complex_Arrays
 child of Ada.Numerics G.3.2(2/2)

Generic_Complex_Elementary_Functions
 child of Ada.Numerics G.1.2(2/2)
Generic_Complex_Types
 child of Ada.Numerics G.1.1(2/1)
Generic_Dispatching_Constructor
 child of Ada.Tags 3.9(18.2/2)
Generic_Elementary_Functions
 child of Ada.Numerics A.5.1(3)
generic_actual_part 12.3(3)
 used 12.3(2/2), 12.7(3/2), P
Generic_Array_Sort
 child of Ada.Containers A.18.16(3/2)
generic_association 12.3(4)
 used 12.3(3), 12.7(3.1/2), P
Generic_Bounded_Length
 in Ada.Strings.Bounded A.4.4(4)
Generic_Constrained_Array_Sort
 child of Ada.Containers A.18.16(7/2)
generic_declaration 12.1(2)
 used 3.1(3/2), 10.1.1(5), P
generic_formal_parameter_declaration

12.1(6)
 used 12.1(5), P
generic_formal_part 12.1(5)
 used 12.1(3), 12.1(4), P
generic_instantiation 12.3(2/2)
 used 3.1(3/2), 10.1.1(5), P
Generic_Keys
 in Ada.Containers.Hashed_Sets

A.18.8(50/2)
 in Ada.Containers.Ordered_Sets

A.18.9(62/2)
generic_package_declaration 12.1(4)
 used 12.1(2), P
Generic_Real_Arrays
 child of Ada.Numerics G.3.1(2/2)
generic_renaming_declaration 8.5.5(2)
 used 8.5(2), 10.1.1(6), P
Generic_Sorting
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(47/2)
 in Ada.Containers.Vectors

A.18.2(75/2)
generic_subprogram_declaration 12.1(3)
 used 12.1(2), P
Get
 in Ada.Text_IO A.10.1(41),

A.10.1(47), A.10.1(54), A.10.1(55),
A.10.1(59), A.10.1(60), A.10.1(65),
A.10.1(67), A.10.1(70), A.10.1(72),
A.10.1(75), A.10.1(77), A.10.1(81),
A.10.1(83)

 in Ada.Text_IO.Complex_IO G.1.3(6),
G.1.3(8)

Get_Deadline
 in Ada.Dispatching.EDF D.2.6(9/2)
Get_Immediate
 in Ada.Text_IO A.10.1(44), A.10.1(45)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

741 10 November 2006 Index

Get_Line
 in Ada.Text_IO A.10.1(49),

A.10.1(49.1/2)
 in Ada.Text_IO.Bounded_IO

A.10.11(8/2), A.10.11(9/2),
A.10.11(10/2), A.10.11(11/2)

 in Ada.Text_IO.Unbounded_IO
A.10.12(8/2), A.10.12(9/2),
A.10.12(10/2), A.10.12(11/2)

Get_Next_Entry
 in Ada.Directories A.16(35/2)
Get_Priority
 in Ada.Dynamic_Priorities D.5.1(5)
global to 8.1(15)
Glossary N(1/2)
goto_statement 5.8(2)
 used 5.1(4/2), P
govern a variant 3.8.1(20)
govern a variant_part 3.8.1(20)
grammar
 complete listing P
 cross reference P
 notation 1.1.4(3)
 resolution of ambiguity 8.6(3)
 under Syntax heading 1.1.2(25)
graphic character
 a category of Character A.3.2(23)
graphic_character 2.1(14/2)
 used 2.5(2), 2.6(3), P
Graphic_Set
 in Ada.Strings.Maps.Constants

A.4.6(4)
Grave
 in Ada.Characters.Latin_1 A.3.3(13)
greater than operator 4.4(1), 4.5.2(1)
greater than or equal operator 4.4(1),

4.5.2(1)
greater-than sign 2.1(15/2)
Greater_Than_Sign
 in Ada.Characters.Latin_1 A.3.3(10)
Group_Budget
 in

Ada.Execution_Time.Group_Budgets
D.14.2(4/2)

Group_Budget_Error
 in

Ada.Execution_Time.Group_Budgets
D.14.2(11/2)

Group_Budget_Handler
 in

Ada.Execution_Time.Group_Budgets
D.14.2(5/2)

Group_Budgets
 child of Ada.Execution_Time

D.14.2(3/2)
GS
 in Ada.Characters.Latin_1 A.3.3(6)
guard 9.7.1(3)
 used 9.7.1(2), P

H

handle
 an exception 11(1), N(18)
 an exception occurrence 11.4(1),

11.4(7)
handled_sequence_of_statements 11.2(2)
 used 5.6(2), 6.3(2/2), 6.5(2.1/2), 7.2(2),

9.1(6), 9.5.2(3), 9.5.2(5), P
handler
 execution timer D.14.1(13/2)
 group budget D.14.2(14/2)
 interrupt C.3(2)
 termination C.7.3(8/2)
 timing event D.15(10/2)
Handling
 child of Ada.Characters A.3.2(2/2)
Has_Element
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(44/2)
 in Ada.Containers.Hashed_Maps

A.18.5(33/2)
 in Ada.Containers.Hashed_Sets

A.18.8(45/2)
 in Ada.Containers.Ordered_Maps

A.18.6(43/2)
 in Ada.Containers.Ordered_Sets

A.18.9(53/2)
 in Ada.Containers.Vectors

A.18.2(72/2)
Hash
 child of Ada.Strings A.4.9(2/2)
 child of Ada.Strings.Bounded

A.4.9(7/2)
 child of Ada.Strings.Unbounded

A.4.9(10/2)
Hash_Type
 in Ada.Containers A.18.1(4/2)
Hashed_Maps
 child of Ada.Containers A.18.5(2/2)
Hashed_Sets
 child of Ada.Containers A.18.8(2/2)
Head
 in Ada.Strings.Bounded A.4.4(70),

A.4.4(71)
 in Ada.Strings.Fixed A.4.3(35),

A.4.3(36)
 in Ada.Strings.Unbounded A.4.5(65),

A.4.5(66)
head (of a queue) D.2.1(5/2)
heap management
 user-defined 13.11(1)
 See also allocator 4.8(1)
held priority D.11(4/2)
heterogeneous input-output A.12.1(1)
hexadecimal
 literal 2.4.2(1)
hexadecimal digit
 a category of Character A.3.2(30)
hexadecimal literal 2.4.2(1)

Hexadecimal_Digit_Set
 in Ada.Strings.Maps.Constants

A.4.6(4)
hidden from all visibility 8.3(5), 8.3(14)
 by lack of a with_clause 8.3(20/2)
 for a declaration completed by a

subsequent declaration 8.3(19)
 for overridden declaration 8.3(15)
 within the declaration itself 8.3(16)
hidden from direct visibility 8.3(5),

8.3(21)
 by an inner homograph 8.3(22)
 where hidden from all visibility 8.3(23)
hiding 8.3(5)
High_Order_First 13.5.3(2)
 in Interfaces.COBOL B.4(25)
 in System 13.7(15/2)
highest precedence operator 4.5.6(1)
highest_precedence_operator 4.5(7)
Hold
 in Ada.Asynchronous_Task_Control

D.11(3/2)
homograph 8.3(8)
Hour
 in Ada.Calendar.Formatting

9.6.1(24/2)
Hour_Number subtype of Natural
 in Ada.Calendar.Formatting

9.6.1(20/2)
HT
 in Ada.Characters.Latin_1 A.3.3(5)
HTJ
 in Ada.Characters.Latin_1 A.3.3(17)
HTS
 in Ada.Characters.Latin_1 A.3.3(17)
Hyphen
 in Ada.Characters.Latin_1 A.3.3(8)
hyphen-minus 2.1(15/2)

I

i
 in Ada.Numerics.Generic_Complex_-

Types G.1.1(5)
 in Interfaces.Fortran B.5(10)
identifier 2.3(2/2)
 used 2.8(2), 2.8(3), 2.8(21), 2.8(23),

3.1(4), 4.1(3), 4.1.3(3), 4.1.4(3),
5.5(2), 5.6(2), 6.1(5), 7.1(3), 7.2(2),
9.1(4), 9.1(6), 9.4(4), 9.4(7), 9.5.2(3),
9.5.2(5), 11.4.2(6/2), 11.5(4.1/2),
11.5(4/2), 13.12(4/2), B.1(5), B.1(6),
B.1(7), D.2.2(2), D.2.2(2.2/2), D.3(3),
D.3(4), D.4(3), D.4(4), D.13(3/2),
H.6(3/2), J.10(3/2), L(2.2/2), L(8),
L(13), L(14), L(20), L(21), L(23),
L(25.1/2), L(27.1/2), L(27.2/2), L(29),
L(36), L(37), L(37.2/2), M.2(98), P

identifier specific to a pragma 2.8(10)
identifier_extend 2.3(3.1/2)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Index 10 November 2006 742

 used 2.3(2/2), P
identifier_start 2.3(3/2)
 used 2.3(2/2), P
Identity
 in Ada.Strings.Maps A.4.2(22)
 in Ada.Strings.Wide_Maps A.4.7(22)
 in Ada.Strings.Wide_Wide_Maps

A.4.8(22/2)
Identity attribute 11.4.1(9), C.7.1(12)
idle task D.11(4/2)
if_statement 5.3(2)
 used 5.1(5/2), P
illegal
 construct 1.1.2(27)
 partition 1.1.2(29)
Im
 in Ada.Numerics.Generic_Complex_-

Arrays G.3.2(7/2), G.3.2(27/2)
 in Ada.Numerics.Generic_Complex_-

Types G.1.1(6)
image
 of a value 3.5(27.3/2), 3.5(30/2),

K(273/2), K(277.4/2)
 in Ada.Calendar.Formatting

9.6.1(35/2), 9.6.1(37/2)
 in Ada.Numerics.Discrete_Random

A.5.2(26)
 in Ada.Numerics.Float_Random

A.5.2(14)
 in Ada.Task_Identification C.7.1(3/1)
 in Ada.Text_IO.Editing F.3.3(13)
Image attribute 3.5(35)
Imaginary
 in Ada.Numerics.Generic_Complex_-

Types G.1.1(4/2)
Imaginary subtype of Imaginary
 in Interfaces.Fortran B.5(10)
immediate scope
 of (a view of) an entity 8.2(11)
 of a declaration 8.2(2)
immediately enclosing 8.1(13)
immediately visible 8.3(4), 8.3(21)
immediately within 8.1(13)
implementation advice 1.1.2(37)
 summary of advice M.3(1/2)
implementation defined 1.1.3(18)
 summary of characteristics M.2(1/2)
implementation permissions 1.1.2(36)
implementation requirements 1.1.2(33)
implementation-dependent
 See unspecified 1.1.3(18)
implemented
 by a protected entry 9.4(11.1/2)
 by a protected subprogram 9.4(11.1/2)
 by a task entry 9.1(9.2/2)
implicit declaration 3.1(5), N(11)
implicit initial values
 for a subtype 3.3.1(10)
implicit subtype conversion 4.6(59),

4.6(60)

 Access attribute 3.10.2(30)
 access discriminant 3.7(27/2)
 array bounds 4.6(38)
 array index 4.1.1(7)
 assignment to view conversion 4.6(55)
 assignment_statement 5.2(11)
 bounds of a decimal fixed point type

3.5.9(16)
 bounds of a fixed point type 3.5.9(14)
 bounds of a range 3.5(9), 3.6(18)
 choices of aggregate 4.3.3(22)
 component defaults 3.3.1(13)
 delay expression 9.6(20)
 derived type discriminants 3.4(21)
 discriminant values 3.7.1(12)
 entry index 9.5.2(24)
 expressions in aggregate 4.3.1(19)
 expressions of aggregate 4.3.3(23)
 function return 6.5(5.8/2), 6.5(6/2)
 generic formal object of mode in

12.4(11)
 inherited enumeration literal 3.4(29)
 initialization expression 3.3.1(17)
 initialization expression of allocator

4.8(7/2)
 named number value 3.3.2(6)
 operand of concatenation 4.5.3(9)
 parameter passing 6.4.1(10), 6.4.1(11),

6.4.1(17)
 pragma Interrupt_Priority D.1(17),

D.3(6.1/2)
 pragma Priority D.1(17), D.3(6.1/2)
 qualified_expression 4.7(4)
 reading a view conversion 4.6(56)
 result of inherited function 3.4(27/2)
implicit_dereference 4.1(6)
 used 4.1(4), P
Import pragma B.1(5), L(14)
imported
 aspect of representation B.1(28)
imported entity B.1(23)
in (membership test) 4.4(1), 4.5.2(2)
inaccessible partition E.1(7)
inactive
 a task state 9(10)
Include
 in Ada.Containers.Hashed_Maps

A.18.5(22/2)
 in Ada.Containers.Hashed_Sets

A.18.8(21/2)
 in Ada.Containers.Ordered_Maps

A.18.6(21/2)
 in Ada.Containers.Ordered_Sets

A.18.9(20/2)
included
 one range in another 3.5(4)
incomplete type 3.2(4.1/2), 3.10.1(2.1/2),

N(20.1/2)
incomplete view 3.10.1(2.1/2)
 tagged 3.10.1(2.1/2)

incomplete_type_declaration 3.10.1(2/2)
 used 3.2.1(2), P
Increment
 in Interfaces.C.Pointers B.3.2(11)
indefinite subtype 3.3(23), 3.7(26)
Indefinite_Doubly_Linked_Lists
 child of Ada.Containers A.18.11(2/2)
Indefinite_Hashed_Maps
 child of Ada.Containers A.18.12(2/2)
Indefinite_Hashed_Sets
 child of Ada.Containers A.18.14(2/2)
Indefinite_Ordered_Maps
 child of Ada.Containers A.18.13(2/2)
Indefinite_Ordered_Sets
 child of Ada.Containers A.18.15(2/2)
Indefinite_Vectors
 child of Ada.Containers A.18.10(2/2)
independent subprogram 11.6(6)
independently addressable 9.10(1)
index
 of an element of an open direct file

A.8(3)
 in Ada.Direct_IO A.8.4(15)
 in Ada.Streams.Stream_IO A.12.1(23)
 in Ada.Strings.Bounded A.4.4(43.1/2),

A.4.4(43.2/2), A.4.4(44), A.4.4(45),
A.4.4(45.1/2), A.4.4(46)

 in Ada.Strings.Fixed A.4.3(8.1/2),
A.4.3(8.2/2), A.4.3(9), A.4.3(10),
A.4.3(10.1/2), A.4.3(11)

 in Ada.Strings.Unbounded
A.4.5(38.1/2), A.4.5(38.2/2),
A.4.5(39), A.4.5(40), A.4.5(40.1/2),
A.4.5(41)

index range 3.6(13)
index subtype 3.6(9)
index type 3.6(9)
Index_Check 11.5(14)
 [partial] 4.1.1(7), 4.1.2(7), 4.3.3(29),

4.3.3(30), 4.5.3(8), 4.6(51/2), 4.7(4),
4.8(10/2)

index_constraint 3.6.1(2)
 used 3.2.2(7), P
Index_Error
 in Ada.Strings A.4.1(5)
Index_Non_Blank
 in Ada.Strings.Bounded A.4.4(46.1/2),

A.4.4(47)
 in Ada.Strings.Fixed A.4.3(11.1/2),

A.4.3(12)
 in Ada.Strings.Unbounded

A.4.5(41.1/2), A.4.5(42)
index_subtype_definition 3.6(4)
 used 3.6(3), P
indexed_component 4.1.1(2)
 used 4.1(2), P
indivisible C.6(10)
inferable discriminants B.3.3(20/2)
Information
 child of Ada.Directories A.16(124/2)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

743 10 November 2006 Index

information hiding
 See package 7(1)
 See private types and private

extensions 7.3(1)
information systems C(1), F(1)
informative 1.1.2(18)
inheritance
 See derived types and classes 3.4(1/2)
 See also tagged types and type

extension 3.9(1)
inherited
 from an ancestor type 3.4.1(11)
inherited component 3.4(11), 3.4(12)
inherited discriminant 3.4(11)
inherited entry 3.4(12)
inherited protected subprogram 3.4(12)
inherited subprogram 3.4(17/2)
initialization
 of a protected object 9.4(14)
 of a protected object C.3.1(10),

C.3.1(11/2)
 of a task object 9.1(12/1), J.7.1(7)
 of an object 3.3.1(18/2)
initialization expression 3.3.1(1),

3.3.1(4)
Initialize 7.6(2)
 in Ada.Finalization 7.6(6/2), 7.6(8/2)
initialized allocator 4.8(4)
initialized by default 3.3.1(18/2)
Inline pragma 6.3.2(3), L(15)
innermost dynamically enclosing 11.4(2)
input A.6(1/2)
Input attribute 13.13.2(22), 13.13.2(32)
Input clause 13.3(7/2), 13.13.2(38/2)
input-output
 unspecified for access types A.7(6)
Insert
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(19/2), A.18.3(20/2),
A.18.3(21/2)

 in Ada.Containers.Hashed_Maps
A.18.5(19/2), A.18.5(20/2),
A.18.5(21/2)

 in Ada.Containers.Hashed_Sets
A.18.8(19/2), A.18.8(20/2)

 in Ada.Containers.Ordered_Maps
A.18.6(18/2), A.18.6(19/2),
A.18.6(20/2)

 in Ada.Containers.Ordered_Sets
A.18.9(18/2), A.18.9(19/2)

 in Ada.Containers.Vectors
A.18.2(36/2), A.18.2(37/2),
A.18.2(38/2), A.18.2(39/2),
A.18.2(40/2), A.18.2(41/2),
A.18.2(42/2), A.18.2(43/2)

 in Ada.Strings.Bounded A.4.4(60),
A.4.4(61)

 in Ada.Strings.Fixed A.4.3(25),
A.4.3(26)

 in Ada.Strings.Unbounded A.4.5(55),
A.4.5(56)

Insert_Space
 in Ada.Containers.Vectors

A.18.2(48/2), A.18.2(49/2)
inspectable object H.3.2(5/2)
inspection point H.3.2(5/2)
Inspection_Point pragma H.3.2(3), L(16)
instance
 of a generic function 12.3(13)
 of a generic package 12.3(13)
 of a generic procedure 12.3(13)
 of a generic subprogram 12.3(13)
 of a generic unit 12.3(1)
instructions for comment submission

0.3(58/1)
int
 in Interfaces.C B.3(7)
Integer 3.5.4(11), 3.5.4(21)
 in Standard A.1(12)
integer literal 2.4(1)
integer literals 3.5.4(14), 3.5.4(30)
integer type 3.5.4(1), N(21)
Integer_Text_IO
 child of Ada A.10.8(21)
Integer_Wide_Text_IO
 child of Ada A.11(2/2)
Integer_Wide_Wide_Text_IO
 child of Ada A.11(3/2)
Integer_Address
 in System.Storage_Elements 13.7.1(10)
Integer_IO
 in Ada.Text_IO A.10.1(52)
integer_type_definition 3.5.4(2)
 used 3.2.1(4/2), P
interaction
 between tasks 9(1)
interface 3.9.4(4/2)
 limited 3.9.4(5/2)
 nonlimited 3.9.4(5/2)
 protected 3.9.4(5/2)
 synchronized 3.9.4(5/2)
 task 3.9.4(5/2)
 type 3.9.4(4/2)
interface to assembly language C.1(4)
interface to C B.3(1/2)
interface to COBOL B.4(1)
interface to Fortran B.5(1)
interface to other languages B(1)
interface type N(21.1/2)
Interface_Ancestor_Tags
 in Ada.Tags 3.9(7.4/2)
interface_list 3.9.4(3/2)
 used 3.4(2/2), 3.9.4(2/2), 7.3(3/2),

9.1(2/2), 9.1(3/2), 9.4(2/2), 9.4(3/2),
12.5.1(3/2), P

interface_type_definition 3.9.4(2/2)
 used 3.2.1(4/2), 12.5.5(2/2), P
Interfaces B.2(3)
Interfaces.C B.3(4)

Interfaces.C.Pointers B.3.2(4)
Interfaces.C.Strings B.3.1(3)
Interfaces.COBOL B.4(7)
Interfaces.Fortran B.5(4)
interfacing pragma B.1(4)
 Convention B.1(4)
 Export B.1(4)
 Import B.1(4)
internal call 9.5(3)
internal code 13.4(7)
internal requeue 9.5(7)
Internal_Tag
 in Ada.Tags 3.9(7/2)
interpretation
 of a complete context 8.6(10)
 of a constituent of a complete context

8.6(15)
 overload resolution 8.6(14)
interrupt C.3(2)
 example using asynchronous_select

9.7.4(10), 9.7.4(12)
interrupt entry J.7.1(5)
interrupt handler C.3(2)
Interrupt_Handler pragma C.3.1(2),

L(17)
Interrupt_ID
 in Ada.Interrupts C.3.2(2)
Interrupt_Priority pragma D.1(5), L(18)
Interrupt_Priority subtype of Any_Priority
 in System 13.7(16)
Interrupts
 child of Ada C.3.2(2)
Intersection
 in Ada.Containers.Hashed_Sets

A.18.8(29/2), A.18.8(30/2)
 in Ada.Containers.Ordered_Sets

A.18.9(30/2), A.18.9(31/2)
intertask communication 9.5(1)
 See also task 9(1)
Intrinsic calling convention 6.3.1(4)
invalid cursor
 of a list container A.18.3(153/2)
 of a map A.18.4(76/2)
 of a set A.18.7(97/2)
 of a vector A.18.2(248/2)
invalid representation 13.9.1(9)
Inverse
 in Ada.Numerics.Generic_Complex_-

Arrays G.3.2(46/2)
 in Ada.Numerics.Generic_Real_Arrays

G.3.1(24/2)
Inverted_Exclamation
 in Ada.Characters.Latin_1 A.3.3(21)
Inverted_Question
 in Ada.Characters.Latin_1 A.3.3(22)
involve an inner product
 complex G.3.2(56/2)
 real G.3.1(34/2)
IO_Exceptions
 child of Ada A.13(3)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Index 10 November 2006 744

IS1
 in Ada.Characters.Latin_1 A.3.3(16)
IS2
 in Ada.Characters.Latin_1 A.3.3(16)
IS3
 in Ada.Characters.Latin_1 A.3.3(16)
IS4
 in Ada.Characters.Latin_1 A.3.3(16)
Is_A_Group_Member
 in

Ada.Execution_Time.Group_Budgets
D.14.2(8/2)

Is_Alphanumeric
 in Ada.Characters.Handling A.3.2(4)
Is_Attached
 in Ada.Interrupts C.3.2(5)
Is_Basic
 in Ada.Characters.Handling A.3.2(4)
Is_Callable
 in Ada.Task_Identification C.7.1(4)
Is_Character
 in Ada.Characters.Conversions

A.3.4(3/2)
Is_Control
 in Ada.Characters.Handling A.3.2(4)
Is_Decimal_Digit
 in Ada.Characters.Handling A.3.2(4)
Is_Descendant_At_Same_Level
 in Ada.Tags 3.9(7.1/2)
Is_Digit
 in Ada.Characters.Handling A.3.2(4)
Is_Empty
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(12/2)
 in Ada.Containers.Hashed_Maps

A.18.5(11/2)
 in Ada.Containers.Hashed_Sets

A.18.8(13/2)
 in Ada.Containers.Ordered_Maps

A.18.6(10/2)
 in Ada.Containers.Ordered_Sets

A.18.9(12/2)
 in Ada.Containers.Vectors

A.18.2(23/2)
Is_Graphic
 in Ada.Characters.Handling A.3.2(4)
Is_Held
 in Ada.Asynchronous_Task_Control

D.11(3/2)
Is_Hexadecimal_Digit
 in Ada.Characters.Handling A.3.2(4)
Is_In
 in Ada.Strings.Maps A.4.2(13)
 in Ada.Strings.Wide_Maps A.4.7(13)
 in Ada.Strings.Wide_Wide_Maps

A.4.8(13/2)
Is_ISO_646
 in Ada.Characters.Handling A.3.2(10)
Is_Letter
 in Ada.Characters.Handling A.3.2(4)

Is_Lower
 in Ada.Characters.Handling A.3.2(4)
Is_Member
 in

Ada.Execution_Time.Group_Budgets
D.14.2(8/2)

Is_Nul_Terminated
 in Interfaces.C B.3(24), B.3(35),

B.3(39.16/2), B.3(39.7/2)
Is_Open
 in Ada.Direct_IO A.8.4(10)
 in Ada.Sequential_IO A.8.1(10)
 in Ada.Streams.Stream_IO A.12.1(12)
 in Ada.Text_IO A.10.1(13)
Is_Reserved
 in Ada.Interrupts C.3.2(4)
Is_Round_Robin
 in Ada.Dispatching.Round_Robin

D.2.5(4/2)
Is_Sorted
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(48/2)
 in Ada.Containers.Vectors

A.18.2(76/2)
Is_Special
 in Ada.Characters.Handling A.3.2(4)
Is_String
 in Ada.Characters.Conversions

A.3.4(3/2)
Is_Subset
 in Ada.Containers.Hashed_Sets

A.18.8(39/2)
 in Ada.Containers.Ordered_Sets

A.18.9(40/2)
 in Ada.Strings.Maps A.4.2(14)
 in Ada.Strings.Wide_Maps A.4.7(14)
 in Ada.Strings.Wide_Wide_Maps

A.4.8(14/2)
Is_Terminated
 in Ada.Task_Identification C.7.1(4)
Is_Upper
 in Ada.Characters.Handling A.3.2(4)
Is_Wide_Character
 in Ada.Characters.Conversions

A.3.4(3/2)
Is_Wide_String
 in Ada.Characters.Conversions

A.3.4(3/2)
ISO 1989:2002 1.2(4/2)
ISO 8601:2004 1.2(5.1/2)
ISO/IEC 10646:2003 1.2(8/2),

3.5.2(2/2), 3.5.2(3.1/2), 3.5.2(3/2)
ISO/IEC 14882:2003 1.2(9/2)
ISO/IEC 1539-1:2004 1.2(3/2)
ISO/IEC 6429:1992 1.2(5)
ISO/IEC 646:1991 1.2(2)
ISO/IEC 8859-1:1987 1.2(6)
ISO/IEC 9899:1999 1.2(7/2)
ISO/IEC TR 19769:2004 1.2(10/2)

ISO_646 subtype of Character
 in Ada.Characters.Handling A.3.2(9)
ISO_646_Set
 in Ada.Strings.Maps.Constants

A.4.6(4)
issue
 an entry call 9.5.3(8)
italics
 nongraphic characters 3.5.2(2/2)
 pseudo-names of anonymous types

3.2.1(7/2), A.1(2)
 syntax rules 1.1.4(14)
 terms introduced or defined 1.3(1/2)
Iterate
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(45/2)
 in Ada.Containers.Hashed_Maps

A.18.5(37/2)
 in Ada.Containers.Hashed_Sets

A.18.8(49/2)
 in Ada.Containers.Ordered_Maps

A.18.6(50/2)
 in Ada.Containers.Ordered_Sets

A.18.9(60/2)
 in Ada.Containers.Vectors

A.18.2(73/2)
 in Ada.Environment_Variables

A.17(8/2)
iteration_scheme 5.5(3)
 used 5.5(2), P

J

j
 in Ada.Numerics.Generic_Complex_-

Types G.1.1(5)
 in Interfaces.Fortran B.5(10)

K

Key
 in Ada.Containers.Hashed_Maps

A.18.5(13/2)
 in Ada.Containers.Hashed_Sets

A.18.8(51/2)
 in Ada.Containers.Ordered_Maps

A.18.6(12/2)
 in Ada.Containers.Ordered_Sets

A.18.9(64/2)
Kind
 in Ada.Directories A.16(25/2),

A.16(40/2)
known discriminants 3.7(26)
known_discriminant_part 3.7(4)
 used 3.2.1(3), 3.7(2/2), 9.1(2/2),

9.4(2/2), P

L

label 5.1(7)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

745 10 November 2006 Index

 used 5.1(3), P
Landau symbol O(X) A.18(3/2)
language
 interface to assembly C.1(4)
 interface to non-Ada B(1)
language-defined categories
 [partial] 3.2(10/2)
language-defined category
 of types 3.2(2/2)
language-defined check 11.5(2), 11.6(1)
language-defined class
 [partial] 3.2(10/2)
 of types 3.2(2/2)
Language-Defined Library Units A(1)
Last
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(35/2)
 in Ada.Containers.Ordered_Maps

A.18.6(31/2)
 in Ada.Containers.Ordered_Sets

A.18.9(43/2)
 in Ada.Containers.Vectors

A.18.2(61/2)
Last attribute 3.5(13), 3.6.2(5)
last element
 of a hashed set A.18.8(68/2)
 of a ordered set A.18.9(81/2)
 of a set A.18.7(6/2)
last node
 of a hashed map A.18.5(46/2)
 of a map A.18.4(6/2)
 of an ordered map A.18.6(58/2)
Last(N) attribute 3.6.2(6)
last_bit 13.5.1(6)
 used 13.5.1(3), P
Last_Bit attribute 13.5.2(4/2)
Last_Element
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(36/2)
 in Ada.Containers.Ordered_Maps

A.18.6(32/2)
 in Ada.Containers.Ordered_Sets

A.18.9(44/2)
 in Ada.Containers.Vectors

A.18.2(62/2)
Last_Index
 in Ada.Containers.Vectors

A.18.2(60/2)
Last_Key
 in Ada.Containers.Ordered_Maps

A.18.6(33/2)
lateness D.9(12)
Latin-1 3.5.2(2/2)
Latin_1
 child of Ada.Characters A.3.3(3)
layout
 aspect of representation 13.5(1)
Layout_Error
 in Ada.IO_Exceptions A.13(4)
 in Ada.Text_IO A.10.1(85)

LC_A
 in Ada.Characters.Latin_1 A.3.3(13)
LC_A_Acute
 in Ada.Characters.Latin_1 A.3.3(25)
LC_A_Circumflex
 in Ada.Characters.Latin_1 A.3.3(25)
LC_A_Diaeresis
 in Ada.Characters.Latin_1 A.3.3(25)
LC_A_Grave
 in Ada.Characters.Latin_1 A.3.3(25)
LC_A_Ring
 in Ada.Characters.Latin_1 A.3.3(25)
LC_A_Tilde
 in Ada.Characters.Latin_1 A.3.3(25)
LC_AE_Diphthong
 in Ada.Characters.Latin_1 A.3.3(25)
LC_B
 in Ada.Characters.Latin_1 A.3.3(13)
LC_C
 in Ada.Characters.Latin_1 A.3.3(13)
LC_C_Cedilla
 in Ada.Characters.Latin_1 A.3.3(25)
LC_D
 in Ada.Characters.Latin_1 A.3.3(13)
LC_E
 in Ada.Characters.Latin_1 A.3.3(13)
LC_E_Acute
 in Ada.Characters.Latin_1 A.3.3(25)
LC_E_Circumflex
 in Ada.Characters.Latin_1 A.3.3(25)
LC_E_Diaeresis
 in Ada.Characters.Latin_1 A.3.3(25)
LC_E_Grave
 in Ada.Characters.Latin_1 A.3.3(25)
LC_F
 in Ada.Characters.Latin_1 A.3.3(13)
LC_G
 in Ada.Characters.Latin_1 A.3.3(13)
LC_German_Sharp_S
 in Ada.Characters.Latin_1 A.3.3(24)
LC_H
 in Ada.Characters.Latin_1 A.3.3(13)
LC_I
 in Ada.Characters.Latin_1 A.3.3(13)
LC_I_Acute
 in Ada.Characters.Latin_1 A.3.3(25)
LC_I_Circumflex
 in Ada.Characters.Latin_1 A.3.3(25)
LC_I_Diaeresis
 in Ada.Characters.Latin_1 A.3.3(25)
LC_I_Grave
 in Ada.Characters.Latin_1 A.3.3(25)
LC_Icelandic_Eth
 in Ada.Characters.Latin_1 A.3.3(26)
LC_Icelandic_Thorn
 in Ada.Characters.Latin_1 A.3.3(26)
LC_J
 in Ada.Characters.Latin_1 A.3.3(13)
LC_K
 in Ada.Characters.Latin_1 A.3.3(13)

LC_L
 in Ada.Characters.Latin_1 A.3.3(13)
LC_M
 in Ada.Characters.Latin_1 A.3.3(13)
LC_N
 in Ada.Characters.Latin_1 A.3.3(13)
LC_N_Tilde
 in Ada.Characters.Latin_1 A.3.3(26)
LC_O
 in Ada.Characters.Latin_1 A.3.3(13)
LC_O_Acute
 in Ada.Characters.Latin_1 A.3.3(26)
LC_O_Circumflex
 in Ada.Characters.Latin_1 A.3.3(26)
LC_O_Diaeresis
 in Ada.Characters.Latin_1 A.3.3(26)
LC_O_Grave
 in Ada.Characters.Latin_1 A.3.3(26)
LC_O_Oblique_Stroke
 in Ada.Characters.Latin_1 A.3.3(26)
LC_O_Tilde
 in Ada.Characters.Latin_1 A.3.3(26)
LC_P
 in Ada.Characters.Latin_1 A.3.3(14)
LC_Q
 in Ada.Characters.Latin_1 A.3.3(14)
LC_R
 in Ada.Characters.Latin_1 A.3.3(14)
LC_S
 in Ada.Characters.Latin_1 A.3.3(14)
LC_T
 in Ada.Characters.Latin_1 A.3.3(14)
LC_U
 in Ada.Characters.Latin_1 A.3.3(14)
LC_U_Acute
 in Ada.Characters.Latin_1 A.3.3(26)
LC_U_Circumflex
 in Ada.Characters.Latin_1 A.3.3(26)
LC_U_Diaeresis
 in Ada.Characters.Latin_1 A.3.3(26)
LC_U_Grave
 in Ada.Characters.Latin_1 A.3.3(26)
LC_V
 in Ada.Characters.Latin_1 A.3.3(14)
LC_W
 in Ada.Characters.Latin_1 A.3.3(14)
LC_X
 in Ada.Characters.Latin_1 A.3.3(14)
LC_Y
 in Ada.Characters.Latin_1 A.3.3(14)
LC_Y_Acute
 in Ada.Characters.Latin_1 A.3.3(26)
LC_Y_Diaeresis
 in Ada.Characters.Latin_1 A.3.3(26)
LC_Z
 in Ada.Characters.Latin_1 A.3.3(14)
Leading_Nonseparate
 in Interfaces.COBOL B.4(23)
Leading_Part attribute A.5.3(54)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Index 10 November 2006 746

Leading_Separate
 in Interfaces.COBOL B.4(23)
Leap_Seconds_Count subtype of Integer
 in Ada.Calendar.Arithmetic 9.6.1(11/2)
leaving 7.6.1(3/2)
left 7.6.1(3/2)
left parenthesis 2.1(15/2)
Left_Angle_Quotation
 in Ada.Characters.Latin_1 A.3.3(21)
Left_Curly_Bracket
 in Ada.Characters.Latin_1 A.3.3(14)
Left_Parenthesis
 in Ada.Characters.Latin_1 A.3.3(8)
Left_Square_Bracket
 in Ada.Characters.Latin_1 A.3.3(12)
legal
 construct 1.1.2(27)
 partition 1.1.2(29)
legality rules 1.1.2(27)
length
 of a dimension of an array 3.6(13)
 of a list container A.18.3(3/2)
 of a map A.18.4(5/2)
 of a one-dimensional array 3.6(13)
 of a set A.18.7(5/2)
 of a vector container A.18.2(2/2)
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(11/2)
 in Ada.Containers.Hashed_Maps

A.18.5(10/2)
 in Ada.Containers.Hashed_Sets

A.18.8(12/2)
 in Ada.Containers.Ordered_Maps

A.18.6(9/2)
 in Ada.Containers.Ordered_Sets

A.18.9(11/2)
 in Ada.Containers.Vectors

A.18.2(21/2)
 in Ada.Strings.Bounded A.4.4(9)
 in Ada.Strings.Unbounded A.4.5(6)
 in Ada.Text_IO.Editing F.3.3(11)
 in Interfaces.COBOL B.4(34), B.4(39),

B.4(44)
Length attribute 3.6.2(9)
Length(N) attribute 3.6.2(10)
Length_Check 11.5(15)
 [partial] 4.5.1(8), 4.6(37), 4.6(52)
Length_Error
 in Ada.Strings A.4.1(5)
Length_Range subtype of Natural
 in Ada.Strings.Bounded A.4.4(8)
less than operator 4.4(1), 4.5.2(1)
less than or equal operator 4.4(1),

4.5.2(1)
less-than sign 2.1(15/2)
Less_Than_Sign
 in Ada.Characters.Latin_1 A.3.3(10)
letter
 a category of Character A.3.2(24)
letter_lowercase 2.1(9/2)

 used 2.3(3/2), P
letter_modifier 2.1(9.2/2)
 used 2.3(3/2), P
letter_other 2.1(9.3/2)
 used 2.3(3/2), P
Letter_Set
 in Ada.Strings.Maps.Constants

A.4.6(4)
letter_titlecase 2.1(9.1/2)
 used 2.3(3/2), P
letter_uppercase 2.1(8/2)
 used 2.3(3/2), P
level
 accessibility 3.10.2(3/2)
 library 3.10.2(22)
lexical element 2.2(1)
lexicographic order 4.5.2(26)
LF
 in Ada.Characters.Latin_1 A.3.3(5)
library 10.1.4(9)
 [partial] 10.1.1(9)
 informal introduction 10(2)
 See also library level, library unit,

library_item
library level 3.10.2(22)
Library unit 10.1(3), 10.1.1(9), N(22)
 informal introduction 10(2)
 See also language-defined library units
library unit pragma 10.1.5(7)
 All_Calls_Remote E.2.3(6)
 categorization pragmas E.2(2)
 Elaborate_Body 10.2.1(24)
 Preelaborate 10.2.1(4)
 Pure 10.2.1(15)
library_item 10.1.1(4)
 informal introduction 10(2)
 used 10.1.1(3), P
library_unit_body 10.1.1(7)
 used 10.1.1(4), P
library_unit_declaration 10.1.1(5)
 used 10.1.1(4), P
library_unit_renaming_declaration

10.1.1(6)
 used 10.1.1(4), P
lifetime 3.10.2(3/2)
limited interface 3.9.4(5/2)
limited type 7.5(3/2), N(23/2)
 becoming nonlimited 7.3.1(5/1),

7.5(16)
limited view 10.1.1(12.1/2)
Limited_Controlled
 in Ada.Finalization 7.6(7/2)
limited_with_clause 10.1.2(4.1/2)
 used 10.1.2(4/2), P
line 2.2(2/2)
 in Ada.Text_IO A.10.1(38)
line terminator A.10(7)
Line_Length
 in Ada.Text_IO A.10.1(25)
link name B.1(35)

link-time error
 See post-compilation error 1.1.2(29)
 See post-compilation error 1.1.5(4)
Linker_Options pragma B.1(8), L(19)
linking
 See partition building 10.2(2)
List
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(6/2)
list container A.18.3(1/2)
List pragma 2.8(21), L(20)
literal 4.2(1)
 based 2.4.2(1)
 decimal 2.4.1(1)
 numeric 2.4(1)
 See also aggregate 4.3(1)
little endian 13.5.3(2)
load time C.4(3)
local to 8.1(14)
local_name 13.1(3)
 used 6.5.1(3/2), 13.2(3), 13.3(2),

13.4(2), 13.5.1(2), 13.5.1(3),
13.11.3(3), B.1(5), B.1(6), B.1(7),
B.3.3(3/2), C.5(3), C.6(3), C.6(4),
C.6(5), C.6(6), E.4.1(3), L(3), L(4),
L(5), L(7), L(8), L(9), L(13), L(14),
L(21.1/2), L(24), L(37.1/2), L(38),
L(39), P

locking policy D.3(6/2)
Locking_Policy pragma D.3(3), L(21)
Log
 in Ada.Numerics.Generic_Complex_-

Elementary_Functions G.1.2(3)
 in Ada.Numerics.Generic_Elementary_-

Functions A.5.1(4)
Logical
 in Interfaces.Fortran B.5(7)
logical operator 4.5.1(2)
 See also not operator 4.5.6(3)
logical_operator 4.5(2)
long
 in Interfaces.C B.3(7)
Long_Binary
 in Interfaces.COBOL B.4(10)
long_double
 in Interfaces.C B.3(17)
Long_Float 3.5.7(15), 3.5.7(16),

3.5.7(17)
Long_Floating
 in Interfaces.COBOL B.4(9)
Long_Integer 3.5.4(22), 3.5.4(25),

3.5.4(28)
Look_Ahead
 in Ada.Text_IO A.10.1(43)
loop parameter 5.5(6)
loop_parameter_specification 5.5(4)
 used 5.5(3), P
loop_statement 5.5(2)
 used 5.1(5/2), P
low line 2.1(15/2)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

747 10 November 2006 Index

low-level programming C(1)
Low_Line
 in Ada.Characters.Latin_1 A.3.3(12)
Low_Order_First 13.5.3(2)
 in Interfaces.COBOL B.4(25)
 in System 13.7(15/2)
lower bound
 of a range 3.5(4)
lower-case letter
 a category of Character A.3.2(25)
Lower_Case_Map
 in Ada.Strings.Maps.Constants

A.4.6(5)
Lower_Set
 in Ada.Strings.Maps.Constants

A.4.6(4)

M

Machine attribute A.5.3(60)
machine code insertion 13.8(1), C.1(2)
machine numbers
 of a fixed point type 3.5.9(8/2)
 of a floating point type 3.5.7(8)
machine scalar 13.3(8.1/2)
Machine_Code
 child of System 13.8(7)
Machine_Emax attribute A.5.3(8)
Machine_Emin attribute A.5.3(7)
Machine_Mantissa attribute A.5.3(6)
Machine_Overflows attribute A.5.3(12),

A.5.4(4)
Machine_Radix attribute A.5.3(2),

A.5.4(2)
Machine_Radix clause 13.3(7/2), F.1(1)
Machine_Rounding attribute

A.5.3(41.1/2)
Machine_Rounds attribute A.5.3(11),

A.5.4(3)
macro
 See generic unit 12(1)
Macron
 in Ada.Characters.Latin_1 A.3.3(21)
main subprogram
 for a partition 10.2(7)
malloc
 See allocator 4.8(1)
Map
 in Ada.Containers.Hashed_Maps

A.18.5(3/2)
 in Ada.Containers.Ordered_Maps

A.18.6(4/2)
map container A.18.4(1/2)
Maps
 child of Ada.Strings A.4.2(3/2)
mark_non_spacing 2.1(9.4/2), 2.1(9.5/2)
 used 2.3(3.1/2), P
mark_spacing_combining
 used 2.3(3.1/2), P
marshalling E.4(9)

Masculine_Ordinal_Indicator
 in Ada.Characters.Latin_1 A.3.3(22)
master 7.6.1(3/2)
match
 a character to a pattern character

A.4.2(54)
 a character to a pattern character, with

respect to a character mapping
function A.4.2(64)

 a string to a pattern string A.4.2(54)
matching components 4.5.2(16)
Max attribute 3.5(19)
Max_Base_Digits 3.5.7(6)
 in System 13.7(8)
Max_Binary_Modulus 3.5.4(7)
 in System 13.7(7)
Max_Decimal_Digits
 in Ada.Decimal F.2(5)
Max_Delta
 in Ada.Decimal F.2(4)
Max_Digits 3.5.7(6)
 in System 13.7(8)
Max_Digits_Binary
 in Interfaces.COBOL B.4(11)
Max_Digits_Long_Binary
 in Interfaces.COBOL B.4(11)
Max_Image_Width
 in Ada.Numerics.Discrete_Random

A.5.2(25)
 in Ada.Numerics.Float_Random

A.5.2(13)
Max_Int 3.5.4(14)
 in System 13.7(6)
Max_Length
 in Ada.Strings.Bounded A.4.4(5)
Max_Mantissa
 in System 13.7(9)
Max_Nonbinary_Modulus 3.5.4(7)
 in System 13.7(7)
Max_Picture_Length
 in Ada.Text_IO.Editing F.3.3(8)
Max_Scale
 in Ada.Decimal F.2(3)
Max_Size_In_Storage_Elements

attribute 13.11.1(3/2)
maximum box error
 for a component of the result of

evaluating a complex function
G.2.6(3)

maximum line length A.10(11)
maximum page length A.10(11)
maximum relative error
 for a component of the result of

evaluating a complex function
G.2.6(3)

 for the evaluation of an elementary
function G.2.4(2)

Members
 in

Ada.Execution_Time.Group_Budgets
D.14.2(8/2)

Membership
 in Ada.Strings A.4.1(6)
membership test 4.5.2(2)
Memory_Size
 in System 13.7(13)
Merge
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(50/2)
 in Ada.Containers.Vectors

A.18.2(78/2)
message
 See dispatching call 3.9.2(1/2)
method
 See dispatching subprogram 3.9.2(1/2)
metrics 1.1.2(35)
Micro_Sign
 in Ada.Characters.Latin_1 A.3.3(22)
Microseconds
 in Ada.Real_Time D.8(14/2)
Middle_Dot
 in Ada.Characters.Latin_1 A.3.3(22)
Milliseconds
 in Ada.Real_Time D.8(14/2)
Min attribute 3.5(16)
Min_Delta
 in Ada.Decimal F.2(4)
Min_Handler_Ceiling
 in

Ada.Execution_Time.Group_Budgets
D.14.2(7/2)

 in Ada.Execution_Time.Timers
D.14.1(6/2)

Min_Int 3.5.4(14)
 in System 13.7(6)
Min_Scale
 in Ada.Decimal F.2(3)
minus 2.1(15/2)
minus operator 4.4(1), 4.5.3(1), 4.5.4(1)
Minus_Sign
 in Ada.Characters.Latin_1 A.3.3(8)
Minute
 in Ada.Calendar.Formatting

9.6.1(25/2)
Minute_Number subtype of Natural
 in Ada.Calendar.Formatting

9.6.1(20/2)
Minutes
 in Ada.Real_Time D.8(14/2)
mixed-language programs B(1), C.1(4)
Mod attribute 3.5.4(16.1/2)
mod operator 4.4(1), 4.5.5(1)
mod_clause J.8(1)
 used 13.5.1(2), P
mode 6.1(16)
 used 6.1(15/2), 12.4(2/2), P
 in Ada.Direct_IO A.8.4(9)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Index 10 November 2006 748

 in Ada.Sequential_IO A.8.1(9)
 in Ada.Streams.Stream_IO A.12.1(11)
 in Ada.Text_IO A.10.1(12)
mode conformance 6.3.1(16/2)
 required 8.5.4(4), 8.5.4(5/1), 12.5.4(5),

12.6(7), 12.6(8), 13.3(6)
mode of operation
 nonstandard 1.1.5(11)
 standard 1.1.5(11)
Mode_Error
 in Ada.Direct_IO A.8.4(18)
 in Ada.IO_Exceptions A.13(4)
 in Ada.Sequential_IO A.8.1(15)
 in Ada.Streams.Stream_IO A.12.1(26)
 in Ada.Text_IO A.10.1(85)
Model attribute A.5.3(68), G.2.2(7)
model interval G.2.1(4)
 associated with a value G.2.1(4)
model number G.2.1(3)
model-oriented attributes
 of a floating point subtype A.5.3(63)
Model_Emin attribute A.5.3(65),

G.2.2(4)
Model_Epsilon attribute A.5.3(66)
Model_Mantissa attribute A.5.3(64),

G.2.2(3/2)
Model_Small attribute A.5.3(67)
Modification_Time
 in Ada.Directories A.16(27/2),

A.16(42/2)
modular type 3.5.4(1)
Modular_IO
 in Ada.Text_IO A.10.1(57)
modular_type_definition 3.5.4(4)
 used 3.5.4(2), P
module
 See package 7(1)
modulus
 of a modular type 3.5.4(7)
 in Ada.Numerics.Generic_Complex_-

Arrays G.3.2(10/2), G.3.2(30/2)
 in Ada.Numerics.Generic_Complex_-

Types G.1.1(9)
Modulus attribute 3.5.4(17)
Monday
 in Ada.Calendar.Formatting

9.6.1(17/2)
Month
 in Ada.Calendar 9.6(13)
 in Ada.Calendar.Formatting

9.6.1(22/2)
Month_Number subtype of Integer
 in Ada.Calendar 9.6(11/2)
More_Entries
 in Ada.Directories A.16(34/2)
Move
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(18/2)
 in Ada.Containers.Hashed_Maps

A.18.5(18/2)

 in Ada.Containers.Hashed_Sets
A.18.8(18/2)

 in Ada.Containers.Ordered_Maps
A.18.6(17/2)

 in Ada.Containers.Ordered_Sets
A.18.9(17/2)

 in Ada.Containers.Vectors
A.18.2(35/2)

 in Ada.Strings.Fixed A.4.3(7)
multi-dimensional array 3.6(12)
Multiplication_Sign
 in Ada.Characters.Latin_1 A.3.3(24)
multiply 2.1(15/2)
multiply operator 4.4(1), 4.5.5(1)
multiplying operator 4.5.5(1)
multiplying_operator 4.5(6)
 used 4.4(5), P
MW
 in Ada.Characters.Latin_1 A.3.3(18)

N

n-dimensional array_aggregate 4.3.3(6)
NAK
 in Ada.Characters.Latin_1 A.3.3(6)
name 4.1(2)
 [partial] 3.1(1)
 of (a view of) an entity 3.1(8)
 of a pragma 2.8(9)
 of an external file A.7(1)
 used 2.8(3), 3.2.2(4), 4.1(4), 4.1(5),

4.1(6), 4.4(7), 4.6(2), 5.2(2), 5.7(2),
5.8(2), 6.3.2(3), 6.4(2), 6.4(3), 6.4(6),
8.4(3), 8.5.1(2/2), 8.5.2(2), 8.5.3(2),
8.5.4(2/2), 8.5.5(2), 9.5.3(2), 9.5.4(2),
9.8(2), 10.1.1(8), 10.1.2(4.1/2),
10.1.2(4.2/2), 10.2.1(3), 10.2.1(14),
10.2.1(20), 10.2.1(21), 10.2.1(22),
11.2(5), 11.3(2/2), 12.3(2/2), 12.3(5),
12.6(4), 12.7(2), 13.1(3), 13.3(2),
13.12(4.1/2), C.3.1(2), C.3.1(4),
E.2.1(3), E.2.2(3), E.2.3(3), E.2.3(5),
H.3.2(3), J.10(3/2), L(2), L(6), L(10),
L(11), L(12), L(15), L(16), L(17),
L(26), L(28), L(30), L(31), L(34), P

 in Ada.Direct_IO A.8.4(9)
 in Ada.Sequential_IO A.8.1(9)
 in Ada.Streams.Stream_IO A.12.1(11)
 in Ada.Text_IO A.10.1(12)
 in System 13.7(4)
name resolution rules 1.1.2(26)
Name_Error
 in Ada.Direct_IO A.8.4(18)
 in Ada.Directories A.16(43/2)
 in Ada.IO_Exceptions A.13(4)
 in Ada.Sequential_IO A.8.1(15)
 in Ada.Streams.Stream_IO A.12.1(26)
 in Ada.Text_IO A.10.1(85)

named
 in a use clause 8.4(7.1/2)
 in a with_clause 10.1.2(6/2)
named association 6.4(7), 12.3(6)
named component association 4.3.1(6)
named discriminant association 3.7.1(4)
named entry index 9.5.2(21)
named number 3.3(24)
named type 3.2.1(7/2)
named_array_aggregate 4.3.3(4)
 used 4.3.3(2), P
Names
 child of Ada.Interrupts C.3.2(12)
Nanoseconds
 in Ada.Real_Time D.8(14/2)
Native_Binary
 in Interfaces.COBOL B.4(25)
Natural 3.5.4(12)
Natural subtype of Integer
 in Standard A.1(13)
NBH
 in Ada.Characters.Latin_1 A.3.3(17)
NBSP
 in Ada.Characters.Latin_1 A.3.3(21)
needed
 of a compilation unit by another

10.2(2)
 remote call interface E.2.3(18)
 shared passive library unit E.2.1(11)
needed component
 extension_aggregate

record_component_association_list
4.3.2(6)

 record_aggregate
record_component_association_list
4.3.1(9)

needs finalization 7.6(9.1/2)
NEL
 in Ada.Characters.Latin_1 A.3.3(17)
new
 See allocator 4.8(1)
New_Char_Array
 in Interfaces.C.Strings B.3.1(9)
New_Line
 in Ada.Text_IO A.10.1(28)
New_Page
 in Ada.Text_IO A.10.1(31)
New_String
 in Interfaces.C.Strings B.3.1(10)
Next
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(37/2), A.18.3(39/2)
 in Ada.Containers.Hashed_Maps

A.18.5(28/2), A.18.5(29/2)
 in Ada.Containers.Hashed_Sets

A.18.8(41/2), A.18.8(42/2)
 in Ada.Containers.Ordered_Maps

A.18.6(34/2), A.18.6(35/2)
 in Ada.Containers.Ordered_Sets

A.18.9(45/2), A.18.9(46/2)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

749 10 November 2006 Index

 in Ada.Containers.Vectors
A.18.2(63/2), A.18.2(64/2)

No_Break_Space
 in Ada.Characters.Latin_1 A.3.3(21)
No_Element
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(9/2)
 in Ada.Containers.Hashed_Maps

A.18.5(6/2)
 in Ada.Containers.Hashed_Sets

A.18.8(6/2)
 in Ada.Containers.Ordered_Maps

A.18.6(7/2)
 in Ada.Containers.Ordered_Sets

A.18.9(7/2)
 in Ada.Containers.Vectors

A.18.2(11/2)
No_Index
 in Ada.Containers.Vectors A.18.2(7/2)
No_Return pragma 6.5.1(3/2), L(21.1/2)
No_Tag
 in Ada.Tags 3.9(6.1/2)
node
 of a list A.18.3(2/2)
 of a map A.18.4(5/2)
nominal subtype 3.3(23), 3.3.1(8/2)
 associated with a dereference 4.1(9)
 associated with a type_conversion

4.6(27)
 associated with an indexed_component

4.1.1(5)
 of a component 3.6(20)
 of a formal parameter 6.1(23/2)
 of a function result 6.1(23/2)
 of a generic formal object 12.4(9/2)
 of a record component 3.8(14)
 of the result of a function_call

6.4(12/2)
non-normative
 See informative 1.1.2(18)
non-returning 6.5.1(4/2)
nondispatching call
 on a dispatching operation 3.9.2(1/2)
nonexistent 13.11.2(10/2), 13.11.2(16)
nongraphic character 3.5(27.5/2)
nonlimited interface 3.9.4(5/2)
nonlimited type 7.5(7)
 becoming nonlimited 7.3.1(5/1),

7.5(16)
nonlimited_with_clause 10.1.2(4.2/2)
 used 10.1.2(4/2), P
nonstandard integer type 3.5.4(26)
nonstandard mode 1.1.5(11)
nonstandard real type 3.5.6(8)
normal completion 7.6.1(2/2)
normal library unit E.2(4/1)
normal state of an object 11.6(6),

13.9.1(4)
 [partial] 9.8(21), A.13(17)
Normalize_Scalars pragma H.1(3), L(22)

normalized exponent A.5.3(14)
normalized number A.5.3(10)
normative 1.1.2(14)
not equal operator 4.4(1), 4.5.2(1)
not in (membership test) 4.4(1), 4.5.2(2)
not operator 4.4(1), 4.5.6(3)
Not_Sign
 in Ada.Characters.Latin_1 A.3.3(21)
notes 1.1.2(38)
notwithstanding 10.1.6(6/2), B.1(22),

B.1(38), C.3.1(19), E.2.1(8),
E.2.1(11), E.2.3(18), J.3(6)

NUL
 in Ada.Characters.Latin_1 A.3.3(5)
 in Interfaces.C B.3(20/1)
null access value 4.2(9)
null array 3.6.1(7)
null constraint 3.2(7/2)
null extension 3.9.1(4.1/2)
null pointer
 See null access value 4.2(9)
null procedure 6.7(3/2)
null range 3.5(4)
null record 3.8(15)
null slice 4.1.2(7)
null string literal 2.6(6)
null value
 of an access type 3.10(13/2)
Null_Address
 in System 13.7(12)
Null_Bounded_String
 in Ada.Strings.Bounded A.4.4(7)
null_exclusion 3.10(5.1/2)
 used 3.2.2(3/2), 3.7(5/2), 3.10(2/2),

3.10(6/2), 6.1(13/2), 6.1(15/2),
8.5.1(2/2), 12.4(2/2), P

Null_Id
 in Ada.Exceptions 11.4.1(2/2)
Null_Occurrence
 in Ada.Exceptions 11.4.1(3/2)
null_procedure_declaration 6.7(2/2)
 used 3.1(3/2), P
Null_Ptr
 in Interfaces.C.Strings B.3.1(7)
Null_Set
 in Ada.Strings.Maps A.4.2(5)
 in Ada.Strings.Wide_Maps A.4.7(5)
 in Ada.Strings.Wide_Wide_Maps

A.4.8(5/2)
null_statement 5.1(6)
 used 5.1(4/2), P
Null_Task_Id
 in Ada.Task_Identification C.7.1(2/2)
Null_Unbounded_String
 in Ada.Strings.Unbounded A.4.5(5)
number sign 2.1(15/2)
Number_Base subtype of Integer
 in Ada.Text_IO A.10.1(6)
number_decimal 2.1(10/2)
 used 2.3(3.1/2), P

number_declaration 3.3.2(2)
 used 3.1(3/2), P
number_letter 2.1(10.1/2)
 used 2.3(3/2), P
Number_Sign
 in Ada.Characters.Latin_1 A.3.3(8)
numeral 2.4.1(3)
 used 2.4.1(2), 2.4.1(4), 2.4.2(3), P
Numeric
 in Interfaces.COBOL B.4(20)
numeric type 3.5(1)
numeric_literal 2.4(2)
 used 4.4(7), P
numerics G(1)
 child of Ada A.5(3/2)

O

O(f(N)) A.18(3/2)
object 3.3(2), N(24)
 [partial] 3.2(1)
object-oriented programming (OOP)
 See dispatching operations of tagged

types 3.9.2(1/2)
 See tagged types and type extensions

3.9(1)
object_declaration 3.3.1(2/2)
 used 3.1(3/2), P
object_renaming_declaration 8.5.1(2/2)
 used 8.5(2), P
obsolescent feature J(1/2)
occur immediately within 8.1(13)
occurrence
 of an interrupt C.3(2)
octal
 literal 2.4.2(1)
octal literal 2.4.2(1)
one's complement
 modular types 3.5.4(27)
one-dimensional array 3.6(12)
only as a completion
 entry_body 9.5.2(16)
OOP (object-oriented programming)
 See dispatching operations of tagged

types 3.9.2(1/2)
 See tagged types and type extensions

3.9(1)
opaque type
 See private types and private

extensions 7.3(1)
Open
 in Ada.Direct_IO A.8.4(7)
 in Ada.Sequential_IO A.8.1(7)
 in Ada.Streams.Stream_IO A.12.1(9)
 in Ada.Text_IO A.10.1(10)
open alternative 9.7.1(14)
open entry 9.5.3(5)
 of a protected object 9.5.3(7)
 of a task 9.5.3(6)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Index 10 November 2006 750

operand
 of a qualified_expression 4.7(3)
 of a type_conversion 4.6(3)
operand interval G.2.1(6)
operand type
 of a type_conversion 4.6(3)
operates on a type 3.2.3(1/2)
operational aspect 13.1(8.1/1)
 specifiable attributes 13.3(5/1)
operational item 13.1(1.1/1)
operator 6.6(1)
 & 4.4(1), 4.5.3(3)
 * 4.4(1), 4.5.5(1)
 ** 4.4(1), 4.5.6(7)
 + 4.4(1), 4.5.3(1), 4.5.4(1)
 - 4.4(1), 4.5.3(1), 4.5.4(1)
 / 4.4(1), 4.5.5(1)
 /= 4.4(1), 4.5.2(1)
 < 4.4(1), 4.5.2(1)
 <= 4.4(1), 4.5.2(1)
 = 4.4(1), 4.5.2(1)
 > 4.4(1), 4.5.2(1)
 >= 4.4(1), 4.5.2(1)
 abs 4.4(1), 4.5.6(1)
 ampersand 4.4(1), 4.5.3(3)
 and 4.4(1), 4.5.1(2)
 binary 4.5(9)
 binary adding 4.5.3(1)
 concatenation 4.4(1), 4.5.3(3)
 divide 4.4(1), 4.5.5(1)
 equal 4.4(1), 4.5.2(1)
 equality 4.5.2(1)
 exponentiation 4.4(1), 4.5.6(7)
 greater than 4.4(1), 4.5.2(1)
 greater than or equal 4.4(1), 4.5.2(1)
 highest precedence 4.5.6(1)
 less than 4.4(1), 4.5.2(1)
 less than or equal 4.4(1), 4.5.2(1)
 logical 4.5.1(2)
 minus 4.4(1), 4.5.3(1), 4.5.4(1)
 mod 4.4(1), 4.5.5(1)
 multiply 4.4(1), 4.5.5(1)
 multiplying 4.5.5(1)
 not 4.4(1), 4.5.6(3)
 not equal 4.4(1), 4.5.2(1)
 or 4.4(1), 4.5.1(2)
 ordering 4.5.2(1)
 plus 4.4(1), 4.5.3(1), 4.5.4(1)
 predefined 4.5(9)
 relational 4.5.2(1)
 rem 4.4(1), 4.5.5(1)
 times 4.4(1), 4.5.5(1)
 unary 4.5(9)
 unary adding 4.5.4(1)
 user-defined 6.6(1)
 xor 4.4(1), 4.5.1(2)
operator precedence 4.5(1)
operator_symbol 6.1(9)
 used 4.1(3), 4.1.3(3), 6.1(5), 6.1(11), P
optimization 11.5(29), 11.6(1)

Optimize pragma 2.8(23), L(23)
or else (short-circuit control form) 4.4(1),

4.5.1(1)
or operator 4.4(1), 4.5.1(2)
Ordered_Maps
 child of Ada.Containers A.18.6(2/2)
Ordered_Sets
 child of Ada.Containers A.18.9(2/2)
ordering operator 4.5.2(1)
ordinary file A.16(45/2)
ordinary fixed point type 3.5.9(1),

3.5.9(8/2)
ordinary_fixed_point_definition 3.5.9(3)
 used 3.5.9(2), P
OSC
 in Ada.Characters.Latin_1 A.3.3(19)
other_control 2.1(13.1/2)
other_format 2.1(10.3/2)
 used 2.3(3.1/2), P
other_private_use 2.1(13.2/2)
other_surrogate 2.1(13.3/2)
output A.6(1/2)
Output attribute 13.13.2(19), 13.13.2(29)
Output clause 13.3(7/2), 13.13.2(38/2)
overall interpretation
 of a complete context 8.6(10)
Overflow_Check 11.5(16)
 [partial] 3.5.4(20), 4.4(11), 5.4(13),

G.2.1(11), G.2.2(7), G.2.3(25),
G.2.4(2), G.2.6(3)

Overlap
 in Ada.Containers.Hashed_Sets

A.18.8(38/2)
 in Ada.Containers.Ordered_Sets

A.18.9(39/2)
overload resolution 8.6(1)
overloadable 8.3(7)
overloaded 8.3(6)
 enumeration literal 3.5.1(9)
overloading rules 1.1.2(26), 8.6(2)
overridable 8.3(9/1)
override 8.3(9/1), 12.3(17)
 a primitive subprogram 3.2.3(7/2)
overriding operation N(24.1/2)
overriding_indicator 8.3.1(2/2)
 used 3.9.3(1.1/2), 6.1(2/2), 6.3(2/2),

6.7(2/2), 8.5.4(2/2), 9.5.2(2/2),
10.1.3(3/2), 12.3(2/2), P

Overwrite
 in Ada.Strings.Bounded A.4.4(62),

A.4.4(63)
 in Ada.Strings.Fixed A.4.3(27),

A.4.3(28)
 in Ada.Strings.Unbounded A.4.5(57),

A.4.5(58)

P

Pack pragma 13.2(3), L(24)
Package 7(1), N(25)

package instance 12.3(13)
package_body 7.2(2)
 used 3.11(6), 10.1.1(7), P
package_body_stub 10.1.3(4)
 used 10.1.3(2), P
package_declaration 7.1(2)
 used 3.1(3/2), 10.1.1(5), P
package_renaming_declaration 8.5.3(2)
 used 8.5(2), 10.1.1(6), P
package_specification 7.1(3)
 used 7.1(2), 12.1(4), P
packed 13.2(5)
Packed_Decimal
 in Interfaces.COBOL B.4(12)
Packed_Format
 in Interfaces.COBOL B.4(26)
Packed_Signed
 in Interfaces.COBOL B.4(27)
Packed_Unsigned
 in Interfaces.COBOL B.4(27)
packing
 aspect of representation 13.2(5)
padding bits 13.1(7/2)
Page
 in Ada.Text_IO A.10.1(39)
Page pragma 2.8(22), L(25)
page terminator A.10(7)
Page_Length
 in Ada.Text_IO A.10.1(26)
Paragraph_Sign
 in Ada.Characters.Latin_1 A.3.3(22)
parallel processing
 See task 9(1)
parameter
 See formal parameter 6.1(17)
 See generic formal parameter 12(1)
 See also discriminant 3.7(1/2)
 See also loop parameter 5.5(6)
parameter assigning back 6.4.1(17)
parameter copy back 6.4.1(17)
parameter mode 6.1(18)
parameter passing 6.4.1(1)
parameter_and_result_profile 6.1(13/2)
 used 3.10(5), 3.10(6/2), 6.1(4.2/2), P
parameter_association 6.4(5)
 used 6.4(4), P
parameter_profile 6.1(12)
 used 3.10(5), 3.10(6/2), 6.1(4.1/2),

9.5.2(2/2), 9.5.2(3), 9.5.2(6), P
parameter_specification 6.1(15/2)
 used 6.1(14), P
Parameterless_Handler
 in Ada.Interrupts C.3.2(2)
Params_Stream_Type
 in System.RPC E.5(6)
parent N(25.1/2)
parent body
 of a subunit 10.1.3(8/2)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

751 10 November 2006 Index

parent declaration
 of a library unit 10.1.1(10)
 of a library_item 10.1.1(10)
parent subtype 3.4(3/2)
parent type 3.4(3/2)
parent unit
 of a library unit 10.1.1(10)
Parent_Tag
 in Ada.Tags 3.9(7.2/2)
parent_unit_name 10.1.1(8)
 used 6.1(5), 6.1(7), 7.1(3), 7.2(2),

10.1.3(7), P
part
 of an object or value 3.2(6/2)
partial view
 of a type 7.3(4)
partition 10.2(2), N(26)
partition building 10.2(2)
partition communication subsystem

(PCS) E.5(1/2)
Partition_Check
 [partial] E.4(19)
Partition_Elaboration_Policy pragma

H.6(3/2), L(25.1/2)
Partition_Id
 in System.RPC E.5(4)
Partition_Id attribute E.1(9)
pass by copy 6.2(2)
pass by reference 6.2(2)
passive partition E.1(2)
Pattern_Error
 in Ada.Strings A.4.1(5)
PCS (partition communication

subsystem) E.5(1/2)
pending interrupt occurrence C.3(2)
per-object constraint 3.8(18/2)
per-object expression 3.8(18/2)
percent sign 2.1(15/2)
Percent_Sign
 in Ada.Characters.Latin_1 A.3.3(8)
perfect result set G.2.3(5)
periodic task
 example 9.6(39)
 See delay_until_statement 9.6(39)
Pi
 in Ada.Numerics A.5(3/2)
Pic_String
 in Ada.Text_IO.Editing F.3.3(7)
Picture
 in Ada.Text_IO.Editing F.3.3(4)
picture String
 for edited output F.3.1(1)
Picture_Error
 in Ada.Text_IO.Editing F.3.3(9)
Pilcrow_Sign
 in Ada.Characters.Latin_1 A.3.3(22)
plain_char
 in Interfaces.C B.3(11)
plane
 character 2.1(1/2)

PLD
 in Ada.Characters.Latin_1 A.3.3(17)
PLU
 in Ada.Characters.Latin_1 A.3.3(17)
plus operator 4.4(1), 4.5.3(1), 4.5.4(1)
plus sign 2.1(15/2)
Plus_Minus_Sign
 in Ada.Characters.Latin_1 A.3.3(22)
Plus_Sign
 in Ada.Characters.Latin_1 A.3.3(8)
PM
 in Ada.Characters.Latin_1 A.3.3(19)
point 2.1(15/2)
Pointer
 in Interfaces.C.Pointers B.3.2(5)
 See access value 3.10(1)
 See type System.Address 13.7(34/2)
pointer type
 See access type 3.10(1)
Pointer_Error
 in Interfaces.C.Pointers B.3.2(8)
Pointers
 child of Interfaces.C B.3.2(4)
polymorphism 3.9(1), 3.9.2(1/2)
pool element 3.10(7/1), 13.11(11)
pool type 13.11(11)
pool-specific access type 3.10(7/1),

3.10(8)
Pos attribute 3.5.5(2)
position 13.5.1(4)
 used 13.5.1(3), P
Position attribute 13.5.2(2/2)
position number 3.5(1)
 of an enumeration value 3.5.1(7)
 of an integer value 3.5.4(15)
positional association 6.4(7), 12.3(6)
positional component association

4.3.1(6)
positional discriminant association

3.7.1(4)
positional_array_aggregate 4.3.3(3/2)
 used 4.3.3(2), P
Positive 3.5.4(12)
Positive subtype of Integer
 in Standard A.1(13)
Positive_Count subtype of Count
 in Ada.Direct_IO A.8.4(4)
 in Ada.Streams.Stream_IO A.12.1(7)
 in Ada.Text_IO A.10.1(5)
possible interpretation 8.6(14)
 for direct_names 8.3(24)
 for selector_names 8.3(24)
post-compilation error 1.1.2(29)
post-compilation rules 1.1.2(29)
potentially blocking operation 9.5.1(8)
 Abort_Task C.7.1(16)
 delay_statement 9.6(34), D.9(5)
 remote subprogram call E.4(17)
 RPC operations E.5(23)
 Suspend_Until_True D.10(10)

potentially use-visible 8.4(8/2)
Pound_Sign
 in Ada.Characters.Latin_1 A.3.3(21)
Pragma 2.8(1), 2.8(2), L(1), N(27)
pragma argument 2.8(9)
pragma name 2.8(9)
pragma, categorization E.2(2)
 Remote_Call_Interface E.2.3(2)
 Remote_Types E.2.2(2)
 Shared_Passive E.2.1(2)
pragma, configuration 10.1.5(8)
 Assertion_Policy 11.4.2(7/2)
 Detect_Blocking H.5(4/2)
 Discard_Names C.5(4)
 Locking_Policy D.3(5)
 Normalize_Scalars H.1(4)
 Partition_Elaboration_Policy H.6(5/2)
 Priority_Specific_Dispatching

D.2.2(4/2)
 Profile D.13(6/2)
 Queuing_Policy D.4(5)
 Restrictions 13.12(8)
 Reviewable H.3.1(4)
 Suppress 11.5(5/2)
 Task_Dispatching_Policy D.2.2(4/2)
 Unsuppress 11.5(5/2)
pragma, identifier specific to 2.8(10)
pragma, interfacing
 Convention B.1(4)
 Export B.1(4)
 Import B.1(4)
 Linker_Options B.1(4)
pragma, library unit 10.1.5(7)
 All_Calls_Remote E.2.3(6)
 categorization pragmas E.2(2)
 Elaborate_Body 10.2.1(24)
 Preelaborate 10.2.1(4)
 Pure 10.2.1(15)
pragma, program unit 10.1.5(2)
 Convention B.1(29)
 Export B.1(29)
 Import B.1(29)
 Inline 6.3.2(2)
 library unit pragmas 10.1.5(7)
pragma, representation 13.1(1/1)
 Asynchronous E.4.1(8)
 Atomic C.6(14)
 Atomic_Components C.6(14)
 Controlled 13.11.3(5)
 Convention B.1(28)
 Discard_Names C.5(6)
 Export B.1(28)
 Import B.1(28)
 Pack 13.2(5)
 Volatile C.6(14)
 Volatile_Components C.6(14)
pragma_argument_association 2.8(3)
 used 2.8(2), D.13(3/2), L(27.2/2), P

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Index 10 November 2006 752

pragmas
 All_Calls_Remote E.2.3(5), L(2)
 Assert 11.4.2(3/2), L(2.1/2)
 Assertion_Policy 11.4.2(6/2), L(2.2/2)
 Asynchronous E.4.1(3), L(3)
 Atomic C.6(3), L(4)
 Atomic_Components C.6(5), L(5)
 Attach_Handler C.3.1(4), L(6)
 Controlled 13.11.3(3), L(7)
 Convention B.1(7), L(8)
 Detect_Blocking H.5(3/2), L(8.1/2)
 Discard_Names C.5(3), L(9)
 Elaborate 10.2.1(20), L(10)
 Elaborate_All 10.2.1(21), L(11)
 Elaborate_Body 10.2.1(22), L(12)
 Export B.1(6), L(13)
 Import B.1(5), L(14)
 Inline 6.3.2(3), L(15)
 Inspection_Point H.3.2(3), L(16)
 Interrupt_Handler C.3.1(2), L(17)
 Interrupt_Priority D.1(5), L(18)
 Linker_Options B.1(8), L(19)
 List 2.8(21), L(20)
 Locking_Policy D.3(3), L(21)
 No_Return 6.5.1(3/2), L(21.1/2)
 Normalize_Scalars H.1(3), L(22)
 Optimize 2.8(23), L(23)
 Pack 13.2(3), L(24)
 Page 2.8(22), L(25)
 Partition_Elaboration_Policy H.6(3/2),

L(25.1/2)
 Preelaborable_Initialization

10.2.1(4.2/2), L(25.2/2)
 Preelaborate 10.2.1(3), L(26)
 Priority D.1(3), L(27)
 Priority_Specific_Dispatching

D.2.2(2.2/2), L(27.1/2)
 Profile D.13(3/2), L(27.2/2)
 Pure 10.2.1(14), L(28)
 Queuing_Policy D.4(3), L(29)
 Relative_Deadline D.2.6(4/2),

L(29.1/2)
 Remote_Call_Interface E.2.3(3), L(30)
 Remote_Types E.2.2(3), L(31)
 Restrictions 13.12(3), L(32)
 Reviewable H.3.1(3), L(33)
 Shared_Passive E.2.1(3), L(34)
 Storage_Size 13.3(63), L(35)
 Suppress 11.5(4/2), J.10(3/2), L(36)
 Task_Dispatching_Policy D.2.2(2),

L(37)
 Unchecked_Union B.3.3(3/2),

L(37.1/2)
 Unsuppress 11.5(4.1/2), L(37.2/2)
 Volatile C.6(4), L(38)
 Volatile_Components C.6(6), L(39)
precedence of operators 4.5(1)
Pred attribute 3.5(25)
predefined environment A(1)
predefined exception 11.1(4)

predefined library unit
 See language-defined library units
predefined operation
 of a type 3.2.3(1/2)
predefined operations
 of a discrete type 3.5.5(10)
 of a fixed point type 3.5.10(17)
 of a floating point type 3.5.8(3)
 of a record type 3.8(24)
 of an access type 3.10.2(34/2)
 of an array type 3.6.2(15)
predefined operator 4.5(9)
 [partial] 3.2.1(9)
predefined type 3.2.1(10)
 See language-defined types
preelaborable
 of an elaborable construct 10.2.1(5)
preelaborable initialization

10.2.1(11.1/2)
Preelaborable_Initialization pragma

10.2.1(4.2/2), L(25.2/2)
Preelaborate pragma 10.2.1(3), L(26)
preelaborated 10.2.1(11/1)
 [partial] 10.2.1(11/1), E.2.1(9)
preempt
 a running task D.2.3(9/2)
preference
 for root numeric operators and ranges

8.6(29)
preference control
 See requeue 9.5.4(1)
prefix 4.1(4)
 of a prefixed view 4.1.3(9.2/2)
 used 4.1.1(2), 4.1.2(2), 4.1.3(2),

4.1.4(2), 4.1.4(4), 6.4(2), 6.4(3), P
prefixed view 4.1.3(9.2/2)
prefixed view profile 6.3.1(24.1/2)
Prepend
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(22/2)
 in Ada.Containers.Vectors

A.18.2(44/2), A.18.2(45/2)
prescribed result
 for the evaluation of a complex

arithmetic operation G.1.1(42)
 for the evaluation of a complex

elementary function G.1.2(35)
 for the evaluation of an elementary

function A.5.1(37)
Previous
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(38/2), A.18.3(40/2)
 in Ada.Containers.Ordered_Maps

A.18.6(36/2), A.18.6(37/2)
 in Ada.Containers.Ordered_Sets

A.18.9(47/2), A.18.9(48/2)
 in Ada.Containers.Vectors

A.18.2(65/2), A.18.2(66/2)
primary 4.4(7)
 used 4.4(6), P

primitive function A.5.3(17)
primitive operation
 [partial] 3.2(1)
primitive operations N(28)
 of a type 3.2.3(1/2)
primitive operator
 of a type 3.2.3(8)
primitive subprograms
 of a type 3.2.3(2)
priority D.1(15)
 of a protected object D.3(6/2)
Priority attribute D.5.2(3/2)
priority inheritance D.1(15)
priority inversion D.2.3(11/2)
priority of an entry call D.4(9)
Priority pragma D.1(3), L(27)
Priority subtype of Any_Priority
 in System 13.7(16)
Priority_Specific_Dispatching pragma

D.2.2(2.2/2), L(27.1/2)
private declaration of a library unit

10.1.1(12)
private descendant
 of a library unit 10.1.1(12)
private extension 3.2(4.1/2), 3.9(2.1/2),

3.9.1(1/2), N(29/2)
 [partial] 7.3(14), 12.5.1(5/2)
private library unit 10.1.1(12)
private operations 7.3.1(1)
private part 8.2(5)
 of a package 7.1(6/2)
 of a protected unit 9.4(11/2)
 of a task unit 9.1(9)
private type 3.2(4.1/2), N(30/2)
 [partial] 7.3(14)
private types and private extensions

7.3(1)
private_extension_declaration 7.3(3/2)
 used 3.2.1(2), P
private_type_declaration 7.3(2)
 used 3.2.1(2), P
procedure 6(1), N(30.1/2)
 null 6.7(3/2)
procedure instance 12.3(13)
procedure_call_statement 6.4(2)
 used 5.1(4/2), 9.7.2(3.1/2), P
procedure_or_entry_call 9.7.2(3.1/2)
 used 9.7.2(3/2), 9.7.4(4/2), P
procedure_specification 6.1(4.1/2)
 used 6.1(4/2), 6.7(2/2), P
processing node E(2)
profile 6.1(22)
 associated with a dereference 4.1(10)
 fully conformant 6.3.1(18)
 mode conformant 6.3.1(16/2)
 subtype conformant 6.3.1(17)
 type conformant 6.3.1(15/2)
Profile pragma D.13(3/2), L(27.2/2)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

753 10 November 2006 Index

profile resolution rule
 name with a given expected profile

8.6(26)
progenitor N(30.2/2)
progenitor subtype 3.9.4(9/2)
progenitor type 3.9.4(9/2)
program 10.2(1), N(31)
program execution 10.2(1)
program library
 See library 10(2)
 See library 10.1.4(9)
Program unit 10.1(1), N(32)
program unit pragma 10.1.5(2)
 Convention B.1(29)
 Export B.1(29)
 Import B.1(29)
 Inline 6.3.2(2)
 library unit pragmas 10.1.5(7)
Program_Error
 raised by failure of run-time check

1.1.3(20), 1.1.5(8), 1.1.5(12), 3.5.5(8),
3.10.2(29), 3.11(14), 4.6(57),
4.8(10.1/2), 4.8(10.2/2), 4.8(10.3/2),
6.2(12), 6.4(11/2), 6.5(8/2), 6.5(21/2),
6.5.1(9/2), 7.6.1(15), 7.6.1(16/2),
7.6.1(17), 7.6.1(17.1/1), 7.6.1(17.2/1),
7.6.1(18/2), 8.5.4(8.1/1), 9.4(20),
9.5.1(17), 9.5.3(7), 9.7.1(21), 9.8(20),
10.2(26), 11.1(4), 11.5(19),
12.5.1(23.3/2), 13.7.1(16), 13.9.1(9),
13.11.2(13), 13.11.2(14),
A.5.2(40.1/1), A.7(14), B.3.3(22/2),
C.3.1(10), C.3.1(11/2), C.3.2(17),
C.3.2(20), C.3.2(21), C.3.2(22/2),
C.7.1(15), C.7.1(17/2), C.7.2(13),
D.3(13), D.3(13.2/2), D.3(13.4/2),
D.5.1(9), D.5.2(6/2), D.7(19.1/2),
D.10(10), D.11(8), E.1(10), E.3(6),
E.4(18/1), J.7.1(7)

 in Standard A.1(46)
propagate 11.4(1)
 an exception occurrence by an

execution, to a dynamically enclosing
execution 11.4(6)

proper_body 3.11(6)
 used 3.11(5), 10.1.3(7), P
protected action 9.5.1(4)
 complete 9.5.1(6)
 start 9.5.1(5)
protected calling convention 6.3.1(12)
protected declaration 9.4(1)
protected entry 9.4(1)
protected function 9.5.1(1)
protected interface 3.9.4(5/2)
protected object 9(3), 9.4(1)
protected operation 9.4(1)
protected procedure 9.5.1(1)
protected subprogram 9.4(1), 9.5.1(1)
protected tagged type 3.9.4(6/2)
protected type N(33/2)

protected unit 9.4(1)
protected_body 9.4(7)
 used 3.11(6), P
protected_body_stub 10.1.3(6)
 used 10.1.3(2), P
protected_definition 9.4(4)
 used 9.4(2/2), 9.4(3/2), P
protected_element_declaration 9.4(6)
 used 9.4(4), P
protected_operation_declaration 9.4(5/1)
 used 9.4(4), 9.4(6), P
protected_operation_item 9.4(8/1)
 used 9.4(7), P
protected_type_declaration 9.4(2/2)
 used 3.2.1(3), P
ptrdiff_t
 in Interfaces.C B.3(12)
PU1
 in Ada.Characters.Latin_1 A.3.3(18)
PU2
 in Ada.Characters.Latin_1 A.3.3(18)
public declaration of a library unit

10.1.1(12)
public descendant
 of a library unit 10.1.1(12)
public library unit 10.1.1(12)
punctuation_connector 2.1(10.2/2)
 used 2.3(3.1/2), P
pure 10.2.1(15.1/2)
Pure pragma 10.2.1(14), L(28)
Put
 in Ada.Text_IO A.10.1(42),

A.10.1(48), A.10.1(55), A.10.1(60),
A.10.1(66), A.10.1(67), A.10.1(71),
A.10.1(72), A.10.1(76), A.10.1(77),
A.10.1(82), A.10.1(83)

 in Ada.Text_IO.Bounded_IO
A.10.11(4/2), A.10.11(5/2)

 in Ada.Text_IO.Complex_IO G.1.3(7),
G.1.3(8)

 in Ada.Text_IO.Editing F.3.3(14),
F.3.3(15), F.3.3(16)

 in Ada.Text_IO.Unbounded_IO
A.10.12(4/2), A.10.12(5/2)

Put_Line
 in Ada.Text_IO A.10.1(50)
 in Ada.Text_IO.Bounded_IO

A.10.11(6/2), A.10.11(7/2)
 in Ada.Text_IO.Unbounded_IO

A.10.12(6/2), A.10.12(7/2)

Q

qualified_expression 4.7(2)
 used 4.4(7), 4.8(2), 13.8(2), P
Query_Element
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(16/2)
 in Ada.Containers.Hashed_Maps

A.18.5(16/2)

 in Ada.Containers.Hashed_Sets
A.18.8(17/2)

 in Ada.Containers.Ordered_Maps
A.18.6(15/2)

 in Ada.Containers.Ordered_Sets
A.18.9(16/2)

 in Ada.Containers.Vectors
A.18.2(31/2), A.18.2(32/2)

Question
 in Ada.Characters.Latin_1 A.3.3(10)
queuing policy D.4(1/1), D.4(6)
Queuing_Policy pragma D.4(3), L(29)
Quotation
 in Ada.Characters.Latin_1 A.3.3(8)
quotation mark 2.1(15/2)
quoted string
 See string_literal 2.6(1)

R

raise
 an exception 11(1)
 an exception 11.3(4/2)
 an exception N(18)
 an exception occurrence 11.4(3)
Raise_Exception
 in Ada.Exceptions 11.4.1(4/2)
raise_statement 11.3(2/2)
 used 5.1(4/2), P
Random
 in Ada.Numerics.Discrete_Random

A.5.2(20)
 in Ada.Numerics.Float_Random

A.5.2(8)
random number A.5.2(1)
range 3.5(3), 3.5(4)
 of a scalar subtype 3.5(7)
 used 3.5(2), 3.6(6), 3.6.1(3), 4.4(3), P
Range attribute 3.5(14), 3.6.2(7)
Range(N) attribute 3.6.2(8)
range_attribute_designator 4.1.4(5)
 used 4.1.4(4), P
range_attribute_reference 4.1.4(4)
 used 3.5(3), P
Range_Check 11.5(17)
 [partial] 3.2.2(11), 3.5(24), 3.5(27),

3.5(39.12/2), 3.5(39.4/2), 3.5(39.5/2),
3.5(43/2), 3.5(55/2), 3.5.5(7),
3.5.9(19), 4.2(11), 4.3.3(28), 4.5.1(8),
4.5.6(6), 4.5.6(13), 4.6(28), 4.6(38),
4.6(46), 4.6(51/2), 4.7(4),
13.13.2(35/2), A.5.2(39), A.5.3(26),
A.5.3(29), A.5.3(50), A.5.3(53),
A.5.3(59), A.5.3(62), K(11), K(114),
K(122), K(184), K(220), K(241),
K(41), K(47)

range_constraint 3.5(2)
 used 3.2.2(6), 3.5.9(5), J.3(2), P
Ravenscar D.13.1(1/2)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Index 10 November 2006 754

RCI
 generic E.2.3(7/1)
 library unit E.2.3(7/1)
 package E.2.3(7/1)
Re
 in Ada.Numerics.Generic_Complex_-

Arrays G.3.2(7/2), G.3.2(27/2)
 in Ada.Numerics.Generic_Complex_-

Types G.1.1(6)
re-raise statement 11.3(3)
read
 the value of an object 3.3(14)
 in Ada.Direct_IO A.8.4(12)
 in Ada.Sequential_IO A.8.1(12)
 in Ada.Storage_IO A.9(6)
 in Ada.Streams 13.13.1(5)
 in Ada.Streams.Stream_IO A.12.1(15),

A.12.1(16)
 in System.RPC E.5(7)
Read attribute 13.13.2(6), 13.13.2(14)
Read clause 13.3(7/2), 13.13.2(38/2)
ready
 a task state 9(10)
ready queue D.2.1(5/2)
ready task D.2.1(5/2)
Real
 in Interfaces.Fortran B.5(6)
real literal 2.4(1)
real literals 3.5.6(4)
real time D.8(18)
real type 3.2(3), 3.5.6(1), N(34)
real-time systems C(1), D(1)
Real_Arrays
 child of Ada.Numerics G.3.1(31/2)
Real_Matrix
 in Ada.Numerics.Generic_Real_Arrays

G.3.1(4/2)
real_range_specification 3.5.7(3)
 used 3.5.7(2), 3.5.9(3), 3.5.9(4), P
Real_Time
 child of Ada D.8(3)
real_type_definition 3.5.6(2)
 used 3.2.1(4/2), P
Real_Vector
 in Ada.Numerics.Generic_Real_Arrays

G.3.1(4/2)
receiving stub E.4(10)
reclamation of storage 13.11.2(1)
recommended level of support 13.1(20)
 Address attribute 13.3(15)
 Alignment attribute for objects

13.3(33)
 Alignment attribute for subtypes

13.3(29)
 bit ordering 13.5.3(7)
 Component_Size attribute 13.3(71)
 enumeration_representation_clause

13.4(9)
 pragma Pack 13.2(7)

 record_representation_clause
13.5.1(17)

 required in Systems Programming
Annex C.2(2)

 Size attribute 13.3(42/2), 13.3(54)
 Stream_Size attribute 13.13.2(1.7/2)
 unchecked conversion 13.9(16)
 with respect to nonstatic expressions

13.1(21)
record 3.8(1)
 explicitly limited 3.8(13.1/2)
record extension 3.4(5/2), 3.9.1(1/2),

N(35)
record layout
 aspect of representation 13.5(1)
record type 3.8(1), N(36)
record_aggregate 4.3.1(2)
 used 4.3(2), P
record_component_association 4.3.1(4/2)
 used 4.3.1(3), P
record_component_association_list

4.3.1(3)
 used 4.3.1(2), 4.3.2(2), P
record_definition 3.8(3)
 used 3.8(2), 3.9.1(2), P
record_extension_part 3.9.1(2)
 used 3.4(2/2), P
record_representation_clause 13.5.1(2)
 used 13.1(2/1), P
record_type_definition 3.8(2)
 used 3.2.1(4/2), P
reentrant A(3/2)
Reference
 in Ada.Interrupts C.3.2(10)
 in Ada.Task_Attributes C.7.2(5)
reference parameter passing 6.2(2)
references 1.2(1)
Registered_Trade_Mark_Sign
 in Ada.Characters.Latin_1 A.3.3(21)
Reinitialize
 in Ada.Task_Attributes C.7.2(6)
relation 4.4(3)
 used 4.4(2), P
relational operator 4.5.2(1)
relational_operator 4.5(3)
 used 4.4(3), P
Relative_Deadline pragma D.2.6(4/2),

L(29.1/2)
relaxed mode G.2(1)
release
 execution resource associated with

protected object 9.5.1(6)
rem operator 4.4(1), 4.5.5(1)
Remainder attribute A.5.3(45)
remote access E.1(5)
remote access type E.2.2(9/1)
remote access-to-class-wide type

E.2.2(9/1)
remote access-to-subprogram type

E.2.2(9/1)

remote call interface E.2(4/1), E.2.3(7/1)
remote procedure call
 asynchronous E.4.1(9)
remote subprogram E.2.3(7/1)
remote subprogram binding E.4(1)
remote subprogram call E.4(1)
remote types library unit E.2(4/1),

E.2.2(4)
Remote_Call_Interface pragma E.2.3(3),

L(30)
Remote_Types pragma E.2.2(3), L(31)
Remove_Task
 in

Ada.Execution_Time.Group_Budgets
D.14.2(8/2)

Rename
 in Ada.Directories A.16(12/2)
renamed entity 8.5(3)
renamed view 8.5(3)
renaming N(36.1/2)
renaming-as-body 8.5.4(1)
renaming-as-declaration 8.5.4(1)
renaming_declaration 8.5(2)
 used 3.1(3/2), P
rendezvous 9.5.2(25)
Replace
 in Ada.Containers.Hashed_Maps

A.18.5(23/2)
 in Ada.Containers.Hashed_Sets

A.18.8(22/2), A.18.8(53/2)
 in Ada.Containers.Ordered_Maps

A.18.6(22/2)
 in Ada.Containers.Ordered_Sets

A.18.9(21/2), A.18.9(66/2)
Replace_Element
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(15/2)
 in Ada.Containers.Hashed_Maps

A.18.5(15/2)
 in Ada.Containers.Hashed_Sets

A.18.8(16/2)
 in Ada.Containers.Ordered_Maps

A.18.6(14/2)
 in Ada.Containers.Ordered_Sets

A.18.9(15/2)
 in Ada.Containers.Vectors

A.18.2(29/2), A.18.2(30/2)
 in Ada.Strings.Bounded A.4.4(27)
 in Ada.Strings.Unbounded A.4.5(21)
Replace_Slice
 in Ada.Strings.Bounded A.4.4(58),

A.4.4(59)
 in Ada.Strings.Fixed A.4.3(23),

A.4.3(24)
 in Ada.Strings.Unbounded A.4.5(53),

A.4.5(54)
Replenish
 in

Ada.Execution_Time.Group_Budgets
D.14.2(9/2)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

755 10 November 2006 Index

Replicate
 in Ada.Strings.Bounded A.4.4(78),

A.4.4(79), A.4.4(80)
representation
 change of 13.6(1)
representation aspect 13.1(8)
representation attribute 13.3(1/1)
representation item 13.1(1/1)
representation of an object 13.1(7/2)
representation pragma 13.1(1/1)
 Asynchronous E.4.1(8)
 Atomic C.6(14)
 Atomic_Components C.6(14)
 Controlled 13.11.3(5)
 Convention B.1(28)
 Discard_Names C.5(6)
 Export B.1(28)
 Import B.1(28)
 Pack 13.2(5)
 Volatile C.6(14)
 Volatile_Components C.6(14)
representation-oriented attributes
 of a fixed point subtype A.5.4(1)
 of a floating point subtype A.5.3(1)
representation_clause
 See aspect_clause 13.1(4/1)
represented in canonical form A.5.3(10)
requested decimal precision
 of a floating point type 3.5.7(4)
requeue 9.5.4(1)
requeue-with-abort 9.5.4(13)
requeue_statement 9.5.4(2)
 used 5.1(4/2), P
require overriding 3.9.3(6/2)
requires a completion 3.11.1(1/1),

3.11.1(6)
 declaration of a partial view 7.3(4)
 declaration to which a pragma

Elaborate_Body applies 10.2.1(25)
 deferred constant declaration 7.4(2)
 generic_package_declaration 7.1(5/2)
 generic_subprogram_declaration

6.1(20/2)
 incomplete_type_declaration 3.10.1(3)
 package_declaration 7.1(5/2)
 protected entry_declaration 9.5.2(16)
 protected_declaration} 9.4(11.2/2)
 subprogram_declaration 6.1(20/2)
 task_declaration} 9.1(9.3/2)
requires late initialization 3.3.1(8.1/2)
Reraise_Occurrence
 in Ada.Exceptions 11.4.1(4/2)
Reserve_Capacity
 in Ada.Containers.Hashed_Maps

A.18.5(9/2)
 in Ada.Containers.Hashed_Sets

A.18.8(11/2)
 in Ada.Containers.Vectors

A.18.2(20/2)
reserved interrupt C.3(2)

reserved word 2.9(2/2)
Reserved_128
 in Ada.Characters.Latin_1 A.3.3(17)
Reserved_129
 in Ada.Characters.Latin_1 A.3.3(17)
Reserved_132
 in Ada.Characters.Latin_1 A.3.3(17)
Reserved_153
 in Ada.Characters.Latin_1 A.3.3(19)
Reserved_Check
 [partial] C.3.1(10)
Reset
 in Ada.Direct_IO A.8.4(8)
 in Ada.Numerics.Discrete_Random

A.5.2(21), A.5.2(24)
 in Ada.Numerics.Float_Random

A.5.2(9), A.5.2(12)
 in Ada.Sequential_IO A.8.1(8)
 in Ada.Streams.Stream_IO A.12.1(10)
 in Ada.Text_IO A.10.1(11)
resolution rules 1.1.2(26)
resolve
 overload resolution 8.6(14)
restriction 13.12(4/2)
 used 13.12(3), L(32)
restriction_parameter_argument

13.12(4.1/2)
 used 13.12(4/2), P
Restrictions
 Immediate_Reclamation H.4(10)
 Max_Asynchronous_Select_Nesting

D.7(18/1)
 Max_Entry_Queue_Length D.7(19.1/2)
 Max_Protected_Entries D.7(14)
 Max_Select_Alternatives D.7(12)
 Max_Storage_At_Blocking D.7(17/1)
 Max_Task_Entries D.7(13)
 Max_Tasks D.7(19/1)
 No_Abort_Statements D.7(5)
 No_Access_Subprograms H.4(17)
 No_Allocators H.4(7)
 No_Asynchronous_Control J.13(3/2)
 No_Delay H.4(21)
 No_Dependence 13.12.1(6/2)
 No_Dispatch H.4(19)
 No_Dynamic_Attachment D.7(10/2)
 No_Dynamic_Priorities D.7(9/2)
 No_Exceptions H.4(12)
 No_Fixed_Point H.4(15)
 No_Floating_Point H.4(14)
 No_Implementation_Attributes

13.12.1(2/2)
 No_Implementation_Pragmas

13.12.1(3/2)
 No_Implicit_Heap_Allocations D.7(8)
 No_IO H.4(20/2)
 No_Local_Allocators H.4(8/1)
 No_Local_Protected_Objects

D.7(10.1/2)
 No_Local_Timing_Events D.7(10.2/2)

 No_Nested_Finalization D.7(4/2)
 No_Obsolescent_Features 13.12.1(4/2)
 No_Protected_Type_Allocators

D.7(10.3/2)
 No_Protected_Types H.4(5)
 No_Recursion H.4(22)
 No_Reentrancy H.4(23)
 No_Relative_Delay D.7(10.4/2)
 No_Requeue_Statements D.7(10.5/2)
 No_Select_Statements D.7(10.6/2)
 No_Specific_Termination_Handlers

D.7(10.7/2)
 No_Task_Allocators D.7(7)
 No_Task_Hierarchy D.7(3)
 No_Task_Termination D.7(15.1/2)
 No_Terminate_Alternatives D.7(6)
 No_Unchecked_Access H.4(18)
 No_Unchecked_Conversion J.13(4/2)
 No_Unchecked_Deallocation J.13(5/2)
 Simple_Barriers D.7(10.8/2)
Restrictions pragma 13.12(3), L(32)
result interval
 for a component of the result of

evaluating a complex function
G.2.6(3)

 for the evaluation of a predefined
arithmetic operation G.2.1(8)

 for the evaluation of an elementary
function G.2.4(2)

result subtype
 of a function 6.5(3/2)
return object
 extended_return_statement 6.5(5.7/2)
 simple_return_statement 6.5(6/2)
return statement 6.5(1/2)
return_subtype_indication 6.5(2.2/2)
 used 6.5(2.1/2), P
Reverse_Elements
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(27/2)
 in Ada.Containers.Vectors

A.18.2(54/2)
Reverse_Find
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(42/2)
 in Ada.Containers.Vectors

A.18.2(70/2)
Reverse_Find_Index
 in Ada.Containers.Vectors

A.18.2(69/2)
Reverse_Iterate
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(46/2)
 in Ada.Containers.Ordered_Maps

A.18.6(51/2)
 in Ada.Containers.Ordered_Sets

A.18.9(61/2)
 in Ada.Containers.Vectors

A.18.2(74/2)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Index 10 November 2006 756

Reverse_Solidus
 in Ada.Characters.Latin_1 A.3.3(12)
Reviewable pragma H.3.1(3), L(33)
RI
 in Ada.Characters.Latin_1 A.3.3(17)
right parenthesis 2.1(15/2)
Right_Angle_Quotation
 in Ada.Characters.Latin_1 A.3.3(22)
Right_Curly_Bracket
 in Ada.Characters.Latin_1 A.3.3(14)
Right_Parenthesis
 in Ada.Characters.Latin_1 A.3.3(8)
Right_Square_Bracket
 in Ada.Characters.Latin_1 A.3.3(12)
Ring_Above
 in Ada.Characters.Latin_1 A.3.3(22)
root library unit 10.1.1(10)
root type
 of a class 3.4.1(2/2)
root_integer 3.5.4(14)
 [partial] 3.4.1(8)
root_real 3.5.6(3)
 [partial] 3.4.1(8)
Root_Storage_Pool
 in System.Storage_Pools 13.11(6/2)
Root_Stream_Type
 in Ada.Streams 13.13.1(3/2)
rooted at a type 3.4.1(2/2)
rotate B.2(9)
Round attribute 3.5.10(12)
Round_Robin
 child of Ada.Dispatching D.2.5(4/2)
Rounding attribute A.5.3(36)
RPC
 child of System E.5(3)
RPC-receiver E.5(21)
RPC_Receiver
 in System.RPC E.5(11)
RS
 in Ada.Characters.Latin_1 A.3.3(6)
run-time check
 See language-defined check 11.5(2)
run-time error 1.1.2(30), 1.1.5(6),

11.5(2), 11.6(1)
run-time polymorphism 3.9.2(1/2)
run-time semantics 1.1.2(30)
run-time type
 See tag 3.9(3)
running a program
 See program execution 10.2(1)
running task D.2.1(6/2)

S

safe range
 of a floating point type 3.5.7(9)
 of a floating point type 3.5.7(10)
Safe_First attribute A.5.3(71), G.2.2(5)
Safe_Last attribute A.5.3(72), G.2.2(6)
safety-critical systems H(1/2)

satisfies
 a discriminant constraint 3.7.1(11)
 a range constraint 3.5(4)
 an index constraint 3.6.1(7)
 for an access value 3.10(15/2)
Saturday
 in Ada.Calendar.Formatting

9.6.1(17/2)
Save
 in Ada.Numerics.Discrete_Random

A.5.2(24)
 in Ada.Numerics.Float_Random

A.5.2(12)
Save_Occurrence
 in Ada.Exceptions 11.4.1(6/2)
scalar type 3.2(3), 3.5(1), N(37)
scalar_constraint 3.2.2(6)
 used 3.2.2(5), P
scale
 of a decimal fixed point subtype

3.5.10(11), K(216)
Scale attribute 3.5.10(11)
Scaling attribute A.5.3(27)
SCHAR_MAX
 in Interfaces.C B.3(6)
SCHAR_MIN
 in Interfaces.C B.3(6)
SCI
 in Ada.Characters.Latin_1 A.3.3(19)
scope
 informal definition 3.1(8)
 of (a view of) an entity 8.2(11)
 of a declaration 8.2(10)
 of a use_clause 8.4(6)
 of a with_clause 10.1.2(5)
 of an attribute_definition_clause

8.2(10.1/2)
Search_Type
 in Ada.Directories A.16(31/2)
Second
 in Ada.Calendar.Formatting

9.6.1(26/2)
Second_Duration subtype of

Day_Duration
 in Ada.Calendar.Formatting

9.6.1(20/2)
Second_Number subtype of Natural
 in Ada.Calendar.Formatting

9.6.1(20/2)
Seconds
 in Ada.Calendar 9.6(13)
 in Ada.Real_Time D.8(14/2)
Seconds_Count
 in Ada.Real_Time D.8(15)
Seconds_Of
 in Ada.Calendar.Formatting

9.6.1(28/2)
Section_Sign
 in Ada.Characters.Latin_1 A.3.3(21)
secure systems H(1/2)

select an entry call
 from an entry queue 9.5.3(13),

9.5.3(16)
 immediately 9.5.3(8)
select_alternative 9.7.1(4)
 used 9.7.1(2), P
select_statement 9.7(2)
 used 5.1(5/2), P
selected_component 4.1.3(2)
 used 4.1(2), P
selection
 of an entry caller 9.5.2(24)
selective_accept 9.7.1(2)
 used 9.7(2), P
selector_name 4.1.3(3)
 used 3.7.1(3), 4.1.3(2), 4.3.1(5), 6.4(5),

12.3(4), 12.7(3.1/2), P
semantic dependence
 of one compilation unit upon another

10.1.1(26/2)
semicolon 2.1(15/2)
 in Ada.Characters.Latin_1 A.3.3(10)
separate compilation 10.1(1)
separator 2.2(3/2)
separator_line 2.1(12/2)
separator_paragraph 2.1(12.1/2)
separator_space 2.1(11/2)
sequence of characters
 of a string_literal 2.6(5)
sequence_of_statements 5.1(2)
 used 5.3(2), 5.4(3), 5.5(2), 9.7.1(2),

9.7.1(5), 9.7.1(6), 9.7.2(3/2), 9.7.3(2),
9.7.4(3), 9.7.4(5), 11.2(2), 11.2(3), P

sequential
 actions 9.10(11), C.6(17)
sequential access A.8(2)
sequential file A.8(1/2)
Sequential_IO
 child of Ada A.8.1(2)
service
 an entry queue 9.5.3(13)
set
 execution timer object D.14.1(12/2)
 group budget object D.14.2(15/2)
 termination handler C.7.3(9/2)
 timing event object D.15(9/2)
 in Ada.Containers.Hashed_Sets

A.18.8(3/2)
 in Ada.Containers.Ordered_Sets

A.18.9(4/2)
 in Ada.Environment_Variables

A.17(6/2)
set container A.18.7(1/2)
Set_Bounded_String
 in Ada.Strings.Bounded A.4.4(12.1/2)
Set_Col
 in Ada.Text_IO A.10.1(35)
Set_Deadline
 in Ada.Dispatching.EDF D.2.6(9/2)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

757 10 November 2006 Index

Set_Dependents_Fallback_Handler
 in Ada.Task_Termination C.7.3(5/2)
Set_Directory
 in Ada.Directories A.16(6/2)
Set_Error
 in Ada.Text_IO A.10.1(15)
Set_Exit_Status
 in Ada.Command_Line A.15(9)
Set_False
 in Ada.Synchronous_Task_Control

D.10(4)
Set_Handler
 in

Ada.Execution_Time.Group_Budgets
D.14.2(10/2)

 in Ada.Execution_Time.Timers
D.14.1(7/2)

 in Ada.Real_Time.Timing_Events
D.15(5/2)

Set_Im
 in Ada.Numerics.Generic_Complex_-

Arrays G.3.2(8/2), G.3.2(28/2)
 in Ada.Numerics.Generic_Complex_-

Types G.1.1(7)
Set_Index
 in Ada.Direct_IO A.8.4(14)
 in Ada.Streams.Stream_IO A.12.1(22)
Set_Input
 in Ada.Text_IO A.10.1(15)
Set_Length
 in Ada.Containers.Vectors

A.18.2(22/2)
Set_Line
 in Ada.Text_IO A.10.1(36)
Set_Line_Length
 in Ada.Text_IO A.10.1(23)
Set_Mode
 in Ada.Streams.Stream_IO A.12.1(24)
Set_Output
 in Ada.Text_IO A.10.1(15)
Set_Page_Length
 in Ada.Text_IO A.10.1(24)
Set_Priority
 in Ada.Dynamic_Priorities D.5.1(4)
Set_Quantum
 in Ada.Dispatching.Round_Robin

D.2.5(4/2)
Set_Re
 in Ada.Numerics.Generic_Complex_-

Arrays G.3.2(8/2), G.3.2(28/2)
 in Ada.Numerics.Generic_Complex_-

Types G.1.1(7)
Set_Specific_Handler
 in Ada.Task_Termination C.7.3(6/2)
Set_True
 in Ada.Synchronous_Task_Control

D.10(4)
Set_Unbounded_String
 in Ada.Strings.Unbounded

A.4.5(11.1/2)

Set_Value
 in Ada.Task_Attributes C.7.2(6)
shared passive library unit E.2(4/1),

E.2.1(4)
shared variable
 protection of 9.10(1)
Shared_Passive pragma E.2.1(3), L(34)
shift B.2(9)
short
 in Interfaces.C B.3(7)
short-circuit control form 4.5.1(1)
Short_Float 3.5.7(16)
Short_Integer 3.5.4(25)
SI
 in Ada.Characters.Latin_1 A.3.3(5)
signal
 as defined between actions 9.10(2)
 See interrupt C.3(1)
signal (an exception)
 See raise 11(1)
signal handling
 example 9.7.4(10)
signed integer type 3.5.4(1)
signed_char
 in Interfaces.C B.3(8)
signed_integer_type_definition 3.5.4(3)
 used 3.5.4(2), P
Signed_Zeros attribute A.5.3(13)
simple entry call 9.5.3(1)
simple name
 of a file A.16(47/2)
simple_expression 4.4(4)
 used 3.5(3), 3.5.4(3), 3.5.7(3), 4.4(3),

13.5.1(5), 13.5.1(6), P
Simple_Name
 in Ada.Directories A.16(16/2),

A.16(38/2)
simple_return_statement 6.5(2/2)
 used 5.1(4/2), P
simple_statement 5.1(4/2)
 used 5.1(3), P
Sin
 in Ada.Numerics.Generic_Complex_-

Elementary_Functions G.1.2(4)
 in Ada.Numerics.Generic_Elementary_-

Functions A.5.1(5)
single
 class expected type 8.6(27/2)
single entry 9.5.2(20)
Single_Precision_Complex_Types
 in Interfaces.Fortran B.5(8)
single_protected_declaration 9.4(3/2)
 used 3.3.1(2/2), P
single_task_declaration 9.1(3/2)
 used 3.3.1(2/2), P
Sinh
 in Ada.Numerics.Generic_Complex_-

Elementary_Functions G.1.2(6)
 in Ada.Numerics.Generic_Elementary_-

Functions A.5.1(7)

size
 of an object 13.1(7/2)
 in Ada.Direct_IO A.8.4(15)
 in Ada.Directories A.16(26/2),

A.16(41/2)
 in Ada.Streams.Stream_IO A.12.1(23)
Size attribute 13.3(40), 13.3(45)
Size clause 13.3(7/2), 13.3(41), 13.3(48)
size_t
 in Interfaces.C B.3(13)
Skip_Line
 in Ada.Text_IO A.10.1(29)
Skip_Page
 in Ada.Text_IO A.10.1(32)
slice 4.1.2(2)
 used 4.1(2), P
 in Ada.Strings.Bounded A.4.4(28)
 in Ada.Strings.Unbounded A.4.5(22)
small
 of a fixed point type 3.5.9(8/2)
Small attribute 3.5.10(2/1)
Small clause 3.5.10(2/1), 13.3(7/2)
SO
 in Ada.Characters.Latin_1 A.3.3(5)
Soft_Hyphen
 in Ada.Characters.Latin_1 A.3.3(21)
SOH
 in Ada.Characters.Latin_1 A.3.3(5)
solidus 2.1(15/2)
 in Ada.Characters.Latin_1 A.3.3(8)
Solve
 in Ada.Numerics.Generic_Complex_-

Arrays G.3.2(46/2)
 in Ada.Numerics.Generic_Real_Arrays

G.3.1(24/2)
Sort
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(49/2)
 in Ada.Containers.Vectors

A.18.2(77/2)
SOS
 in Ada.Characters.Latin_1 A.3.3(19)
SPA
 in Ada.Characters.Latin_1 A.3.3(18)
Space
 in Ada.Characters.Latin_1 A.3.3(8)
 in Ada.Strings A.4.1(4/2)
special file A.16(45/2)
special graphic character
 a category of Character A.3.2(32)
Special_Set
 in Ada.Strings.Maps.Constants

A.4.6(4)
Specialized Needs Annexes 1.1.2(7)
specifiable
 of Address for entries J.7.1(6)
 of Address for stand-alone objects and

for program units 13.3(12)
 of Alignment for first subtypes

13.3(26.4/2)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Index 10 November 2006 758

 of Alignment for objects 13.3(25/2)
 of Bit_Order for record types and record

extensions 13.5.3(4)
 of Component_Size for array types

13.3(70)
 of External_Tag for a tagged type

13.3(75/1), K(65)
 of Input for a type 13.13.2(38/2)
 of Machine_Radix for decimal first

subtypes F.1(1)
 of Output for a type 13.13.2(38/2)
 of Read for a type 13.13.2(38/2)
 of Size for first subtypes 13.3(48)
 of Size for stand-alone objects 13.3(41)
 of Small for fixed point types

3.5.10(2/1)
 of Storage_Pool for a non-derived

access-to-object type 13.11(15)
 of Storage_Size for a non-derived

access-to-object type 13.11(15)
 of Storage_Size for a task first subtype

J.9(3/2)
 of Write for a type 13.13.2(38/2)
specifiable (of an attribute and for an

entity) 13.3(5/1)
specific handler C.7.3(9/2)
specific type 3.4.1(3/2)
Specific_Handler
 in Ada.Task_Termination C.7.3(6/2)
specified
 of an aspect of representation of an

entity 13.1(17)
 of an operational aspect of an entity

13.1(18.1/1)
specified (not!) 1.1.3(18)
specified discriminant 3.7(18)
Splice
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(30/2), A.18.3(31/2),
A.18.3(32/2)

Split
 in Ada.Calendar 9.6(14)
 in Ada.Calendar.Formatting

9.6.1(29/2), 9.6.1(32/2), 9.6.1(33/2),
9.6.1(34/2)

 in Ada.Execution_Time D.14(8/2)
 in Ada.Real_Time D.8(16)
Sqrt
 in Ada.Numerics.Generic_Complex_-

Elementary_Functions G.1.2(3)
 in Ada.Numerics.Generic_Elementary_-

Functions A.5.1(4)
SS2
 in Ada.Characters.Latin_1 A.3.3(17)
SS3
 in Ada.Characters.Latin_1 A.3.3(17)
SSA
 in Ada.Characters.Latin_1 A.3.3(17)
ST
 in Ada.Characters.Latin_1 A.3.3(19)

stand-alone constant 3.3.1(23)
 corresponding to a formal object of

mode in 12.4(10/2)
stand-alone object 3.3.1(1)
 [partial] 12.4(10/2)
stand-alone variable 3.3.1(23)
Standard A.1(4)
standard error file A.10(6)
standard input file A.10(5)
standard mode 1.1.5(11)
standard output file A.10(5)
standard storage pool 13.11(17)
Standard_Error
 in Ada.Text_IO A.10.1(16), A.10.1(19)
Standard_Input
 in Ada.Text_IO A.10.1(16), A.10.1(19)
Standard_Output
 in Ada.Text_IO A.10.1(16), A.10.1(19)
Start_Search
 in Ada.Directories A.16(32/2)
State
 in Ada.Numerics.Discrete_Random

A.5.2(23)
 in Ada.Numerics.Float_Random

A.5.2(11)
statement 5.1(3)
 used 5.1(2), P
statement_identifier 5.1(8)
 used 5.1(7), 5.5(2), 5.6(2), P
static 4.9(1)
 constant 4.9(24)
 constraint 4.9(27)
 delta constraint 4.9(29)
 digits constraint 4.9(29)
 discrete_range 4.9(25)
 discriminant constraint 4.9(31)
 expression 4.9(2)
 function 4.9(18)
 index constraint 4.9(30)
 range 4.9(25)
 range constraint 4.9(29)
 scalar subtype 4.9(26/2)
 string subtype 4.9(26/2)
 subtype 4.9(26/2)
 subtype 12.4(9/2)
static semantics 1.1.2(28)
statically
 constrained 4.9(32)
 denote 4.9(14)
statically compatible
 for a constraint and a scalar subtype

4.9.1(4)
 for a constraint and an access or

composite subtype 4.9.1(4)
 for two subtypes 4.9.1(4)
statically deeper 3.10.2(4), 3.10.2(17)
statically determined tag 3.9.2(1/2)
 [partial] 3.9.2(15), 3.9.2(19)

statically matching
 effect on subtype-specific aspects

13.1(14)
 for constraints 4.9.1(1/2)
 for ranges 4.9.1(3)
 for subtypes 4.9.1(2/2)
 required 3.9.2(10/2), 3.10.2(27.1/2),

4.6(24.15/2), 4.6(24.5/2), 6.3.1(16/2),
6.3.1(17), 6.3.1(23), 6.5(5.2/2),
7.3(13), 8.5.1(4.2/2), 12.4(8.1/2),
12.5.1(14), 12.5.3(6), 12.5.3(7),
12.5.4(3), 12.7(7)

statically tagged 3.9.2(4/2)
Status_Error
 in Ada.Direct_IO A.8.4(18)
 in Ada.Directories A.16(43/2)
 in Ada.IO_Exceptions A.13(4)
 in Ada.Sequential_IO A.8.1(15)
 in Ada.Streams.Stream_IO A.12.1(26)
 in Ada.Text_IO A.10.1(85)
storage deallocation
 unchecked 13.11.2(1)
storage element 13.3(8)
storage management
 user-defined 13.11(1)
storage node E(2)
storage place
 of a component 13.5(1)
storage place attributes
 of a component 13.5.2(1)
storage pool 3.10(7/1)
storage pool element 13.11(11)
storage pool type 13.11(11)
Storage_Array
 in System.Storage_Elements 13.7.1(5)
Storage_Check 11.5(23)
 [partial] 11.1(6), 13.3(67), 13.11(17),

D.7(17/1), D.7(18/1), D.7(19/1)
Storage_Count subtype of Storage_Offset
 in System.Storage_Elements 13.7.1(4)
Storage_Element
 in System.Storage_Elements 13.7.1(5)
Storage_Elements
 child of System 13.7.1(2/2)
Storage_Error
 raised by failure of run-time check

4.8(14), 8.5.4(8.1/1), 11.1(4), 11.1(6),
11.5(23), 13.3(67), 13.11(17),
13.11(18), A.7(14), D.7(17/1),
D.7(18/1), D.7(19/1)

 in Standard A.1(46)
Storage_IO
 child of Ada A.9(3)
Storage_Offset
 in System.Storage_Elements 13.7.1(3)
Storage_Pool attribute 13.11(13)
Storage_Pool clause 13.3(7/2), 13.11(15)
Storage_Pools
 child of System 13.11(5)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

759 10 November 2006 Index

Storage_Size
 in System.Storage_Pools 13.11(9)
Storage_Size attribute 13.3(60),

13.11(14), J.9(2)
Storage_Size clause 13.3(7/2), 13.11(15)
 See also pragma Storage_Size 13.3(61)
Storage_Size pragma 13.3(63), L(35)
Storage_Unit
 in System 13.7(13)
stream 13.13(1)
 in Ada.Streams.Stream_IO A.12.1(13)
 in Ada.Text_IO.Text_Streams

A.12.2(4)
 in Ada.Wide_Text_IO.Text_Streams

A.12.3(4)
 in Ada.Wide_Wide_Text_IO.Text_-

Streams A.12.4(4/2)
stream file A.8(1/2)
stream type 13.13(1)
Stream_IO
 child of Ada.Streams A.12.1(3)
Stream_Access
 in Ada.Streams.Stream_IO A.12.1(4)
 in Ada.Text_IO.Text_Streams

A.12.2(3)
 in Ada.Wide_Text_IO.Text_Streams

A.12.3(3)
 in Ada.Wide_Wide_Text_IO.Text_-

Streams A.12.4(3/2)
Stream_Element
 in Ada.Streams 13.13.1(4/1)
Stream_Element_Array
 in Ada.Streams 13.13.1(4/1)
Stream_Element_Count subtype of

Stream_Element_Offset
 in Ada.Streams 13.13.1(4/1)
Stream_Element_Offset
 in Ada.Streams 13.13.1(4/1)
Stream_Size attribute 13.13.2(1.2/2)
Stream_Size clause 13.3(7/2)
Streams
 child of Ada 13.13.1(2)
strict mode G.2(1)
String
 in Standard A.1(37)
string type 3.6.3(1)
String_Access
 in Ada.Strings.Unbounded A.4.5(7)
string_element 2.6(3)
 used 2.6(2), P
string_literal 2.6(2)
 used 4.4(7), 6.1(9), P
Strings
 child of Ada A.4.1(3)
 child of Interfaces.C B.3.1(3)
Strlen
 in Interfaces.C.Strings B.3.1(17)
structure
 See record type 3.8(1)

STS
 in Ada.Characters.Latin_1 A.3.3(18)
STX
 in Ada.Characters.Latin_1 A.3.3(5)
SUB
 in Ada.Characters.Latin_1 A.3.3(6)
Sub_Second
 in Ada.Calendar.Formatting

9.6.1(27/2)
subaggregate
 of an array_aggregate 4.3.3(6)
subcomponent 3.2(6/2)
subprogram 6(1), N(37.1/2)
 abstract 3.9.3(3/2)
subprogram call 6.4(1)
subprogram instance 12.3(13)
subprogram_body 6.3(2/2)
 used 3.11(6), 9.4(8/1), 10.1.1(7), P
subprogram_body_stub 10.1.3(3/2)
 used 10.1.3(2), P
subprogram_declaration 6.1(2/2)
 used 3.1(3/2), 9.4(5/1), 9.4(8/1),

10.1.1(5), P
subprogram_default 12.6(3/2)
 used 12.6(2.1/2), 12.6(2.2/2), P
subprogram_renaming_declaration

8.5.4(2/2)
 used 8.5(2), 10.1.1(6), P
subprogram_specification 6.1(4/2)
 used 3.9.3(1.1/2), 6.1(2/2), 6.3(2/2),

8.5.4(2/2), 10.1.3(3/2), 12.1(3),
12.6(2.1/2), 12.6(2.2/2), P

subsystem 10.1(3), N(22)
subtype 3.2(8/2), N(38/2)
 constraint of 3.2(8/2)
 type of 3.2(8/2)
 values belonging to 3.2(8/2)
subtype (of an object)
 See actual subtype of an object 3.3(23)
 See actual subtype of an object

3.3.1(9/2)
subtype conformance 6.3.1(17)
 [partial] 3.10.2(34/2), 9.5.4(17)
 required 3.9.2(10/2), 3.10.2(32/2),

4.6(24.20/2), 8.5.1(4.3/2), 8.5.4(5/1),
9.1(9.7/2), 9.1(9.8/2), 9.4(11.6/2),
9.4(11.7/2), 9.5.4(5), 12.4(8.2/2)

subtype conversion
 See type conversion 4.6(1)
 See also implicit subtype conversion

4.6(1)
subtype-specific
 of a representation item 13.1(8)
 of an aspect 13.1(8)
subtype_declaration 3.2.2(2)
 used 3.1(3/2), P
subtype_indication 3.2.2(3/2)
 used 3.2.2(2), 3.3.1(2/2), 3.4(2/2),

3.6(6), 3.6(7/2), 3.6.1(3), 3.10(3),
4.8(2), 6.5(2.2/2), 7.3(3/2), P

subtype_mark 3.2.2(4)
 used 3.2.2(3/2), 3.6(4), 3.7(5/2),

3.9.4(3/2), 3.10(6/2), 4.3.2(3), 4.4(3),
4.6(2), 4.7(2), 6.1(13/2), 6.1(15/2),
8.4(4), 8.5.1(2/2), 12.3(5), 12.4(2/2),
12.5.1(3/2), P

subtypes
 of a profile 6.1(25)
subunit 10.1.3(7), 10.1.3(8/2)
 of a program unit 10.1.3(8/2)
 used 10.1.1(3), P
Succ attribute 3.5(22)
Success
 in Ada.Command_Line A.15(8)
successor element
 of a hashed set A.18.8(68/2)
 of a ordered set A.18.9(81/2)
 of a set A.18.7(6/2)
successor node
 of a hashed map A.18.5(46/2)
 of a map A.18.4(6/2)
 of an ordered map A.18.6(58/2)
Sunday
 in Ada.Calendar.Formatting

9.6.1(17/2)
super
 See view conversion 4.6(5/2)
Superscript_One
 in Ada.Characters.Latin_1 A.3.3(22)
Superscript_Three
 in Ada.Characters.Latin_1 A.3.3(22)
Superscript_Two
 in Ada.Characters.Latin_1 A.3.3(22)
support external streaming 13.13.2(52/2)
Suppress pragma 11.5(4/2), J.10(3/2),

L(36)
suppressed check 11.5(8/2)
Suspend_Until_True
 in Ada.Synchronous_Task_Control

D.10(4)
Suspension_Object
 in Ada.Synchronous_Task_Control

D.10(4)
Swap
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(28/2)
 in Ada.Containers.Vectors

A.18.2(55/2), A.18.2(56/2)
Swap_Links
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(29/2)
Symmetric_Difference
 in Ada.Containers.Hashed_Sets

A.18.8(35/2), A.18.8(36/2)
 in Ada.Containers.Ordered_Sets

A.18.9(36/2), A.18.9(37/2)
SYN
 in Ada.Characters.Latin_1 A.3.3(6)
synchronization 9(1)
synchronized N(38.1/2)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Index 10 November 2006 760

synchronized interface 3.9.4(5/2)
synchronized tagged type 3.9.4(6/2)
Synchronous_Task_Control
 child of Ada D.10(3/2)
syntactic category 1.1.4(15)
syntax
 complete listing P(1)
 cross reference P(1)
 notation 1.1.4(3)
 under Syntax heading 1.1.2(25)
System 13.7(3/2)
System.Address_To_Access_-

Conversions 13.7.2(2)
System.Machine_Code 13.8(7)
System.RPC E.5(3)
System.Storage_Elements 13.7.1(2/2)
System.Storage_Pools 13.11(5)
System_Name
 in System 13.7(4)
systems programming C(1)

T

Tag
 in Ada.Tags 3.9(6/2)
Tag attribute 3.9(16), 3.9(18)
tag indeterminate 3.9.2(6/2)
tag of an object 3.9(3)
 class-wide object 3.9(22)
 object created by an allocator 3.9(21)
 preserved by type conversion and

parameter passing 3.9(25)
 returned by a function 3.9(23),

3.9(24/2)
 stand-alone object, component, or

aggregate 3.9(20)
Tag_Array
 in Ada.Tags 3.9(7.3/2)
Tag_Check 11.5(18)
 [partial] 3.9.2(16), 4.6(42), 4.6(52),

5.2(10)
Tag_Error
 in Ada.Tags 3.9(8)
tagged incomplete view 3.10.1(2.1/2)
tagged type 3.9(2/2), N(39)
 protected 3.9.4(6/2)
 synchronized 3.9.4(6/2)
 task 3.9.4(6/2)
Tags
 child of Ada 3.9(6/2)
Tail
 in Ada.Strings.Bounded A.4.4(72),

A.4.4(73)
 in Ada.Strings.Fixed A.4.3(37),

A.4.3(38)
 in Ada.Strings.Unbounded A.4.5(67),

A.4.5(68)
tail (of a queue) D.2.1(5/2)

tamper with cursors
 of a list A.18.3(62/2)
 of a map A.18.4(8/2)
 of a set A.18.7(8/2)
 of a vector A.18.2(91/2)
tamper with elements
 of a list A.18.3(67/2)
 of a map A.18.4(13/2)
 of a set A.18.7(13/2)
 of a vector A.18.2(95/2)
Tan
 in Ada.Numerics.Generic_Complex_-

Elementary_Functions G.1.2(4)
 in Ada.Numerics.Generic_Elementary_-

Functions A.5.1(5)
Tanh
 in Ada.Numerics.Generic_Complex_-

Elementary_Functions G.1.2(6)
 in Ada.Numerics.Generic_Elementary_-

Functions A.5.1(7)
target
 of an assignment operation 5.2(3)
 of an assignment_statement 5.2(3)
target entry
 of a requeue_statement 9.5.4(3)
target object
 of a call on an entry or a protected

subprogram 9.5(2)
 of a requeue_statement 9.5(7)
target statement
 of a goto_statement 5.8(3)
target subtype
 of a type_conversion 4.6(3)
task 9(1)
 activation 9.2(1)
 completion 9.3(1)
 dependence 9.3(1)
 execution 9.2(1)
 termination 9.3(1)
task declaration 9.1(1)
task dispatching D.2.1(4/2)
task dispatching point D.2.1(4/2)
 [partial] D.2.3(8/2), D.2.4(9/2)
task dispatching policy D.2.2(6/2)
 [partial] D.2.1(5/2)
task interface 3.9.4(5/2)
task priority D.1(15)
task state
 abnormal 9.8(4)
 blocked 9(10)
 callable 9.9(2)
 held D.11(4/2)
 inactive 9(10)
 ready 9(10)
 terminated 9(10)
task tagged type 3.9.4(6/2)
task type N(40/2)
task unit 9(9)

Task_Array
 in

Ada.Execution_Time.Group_Budgets
D.14.2(6/2)

Task_Attributes
 child of Ada C.7.2(2)
task_body 9.1(6)
 used 3.11(6), P
task_body_stub 10.1.3(5)
 used 10.1.3(2), P
task_definition 9.1(4)
 used 9.1(2/2), 9.1(3/2), P
Task_Dispatching_Policy pragma

D.2.2(2), L(37)
Task_Id
 in Ada.Task_Identification C.7.1(2/2)
Task_Identification
 child of Ada C.7.1(2/2)
task_item 9.1(5/1)
 used 9.1(4), P
Task_Termination
 child of Ada C.7.3(2/2)
task_type_declaration 9.1(2/2)
 used 3.2.1(3), P
Tasking_Error
 raised by failure of run-time check

9.2(5), 9.5.3(21), 11.1(4), 13.11.2(13),
13.11.2(14), C.7.2(13), D.5.1(8),
D.11(8)

 in Standard A.1(46)
template 12(1)
 for a formal package 12.7(4)
 See generic unit 12(1)
term 4.4(5)
 used 4.4(4), P
Term=[mentioned],Sec=[in a

with_clause] 10.1.2(6/2)
terminal interrupt
 example 9.7.4(10)
terminate_alternative 9.7.1(7)
 used 9.7.1(4), P
terminated
 a task state 9(10)
Terminated attribute 9.9(3)
termination
 of a partition E.1(7)
termination handler C.7.3(8/2)
 fall-back C.7.3(9/2)
 specific C.7.3(9/2)
Termination_Handler
 in Ada.Task_Termination C.7.3(4/2)
Terminator_Error
 in Interfaces.C B.3(40)
tested type
 of a membership test 4.5.2(3/2)
text of a program 2.2(1)
Text_Streams
 child of Ada.Text_IO A.12.2(3)
 child of Ada.Wide_Text_IO A.12.3(3)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

761 10 November 2006 Index

 child of Ada.Wide_Wide_Text_IO
A.12.4(3/2)

Text_IO
 child of Ada A.10.1(2)
throw (an exception)
 See raise 11(1)
Thursday
 in Ada.Calendar.Formatting

9.6.1(17/2)
tick 2.1(15/2)
 in Ada.Real_Time D.8(6)
 in System 13.7(10)
Tilde
 in Ada.Characters.Latin_1 A.3.3(14)
Time
 in Ada.Calendar 9.6(10)
 in Ada.Real_Time D.8(4)
time base 9.6(6)
time limit
 example 9.7.4(12)
time type 9.6(6)
Time-dependent Reset procedure
 of the random number generator

A.5.2(34)
time-out
 example 9.7.4(12)
 See asynchronous_select 9.7.4(12)
 See selective_accept 9.7.1(1)
 See timed_entry_call 9.7.2(1/2)
Time_Error
 in Ada.Calendar 9.6(18)
Time_First
 in Ada.Real_Time D.8(4)
Time_Last
 in Ada.Real_Time D.8(4)
Time_Of
 in Ada.Calendar 9.6(15)
 in Ada.Calendar.Formatting

9.6.1(30/2), 9.6.1(31/2)
 in Ada.Execution_Time D.14(9/2)
 in Ada.Real_Time D.8(16)
Time_Of_Event
 in Ada.Real_Time.Timing_Events

D.15(6/2)
Time_Offset
 in Ada.Calendar.Time_Zones

9.6.1(4/2)
Time_Remaining
 in Ada.Execution_Time.Timers

D.14.1(8/2)
Time_Span
 in Ada.Real_Time D.8(5)
Time_Span_First
 in Ada.Real_Time D.8(5)
Time_Span_Last
 in Ada.Real_Time D.8(5)
Time_Span_Unit
 in Ada.Real_Time D.8(5)
Time_Span_Zero
 in Ada.Real_Time D.8(5)

Time_Unit
 in Ada.Real_Time D.8(4)
Time_Zones
 child of Ada.Calendar 9.6.1(2/2)
timed_entry_call 9.7.2(2)
 used 9.7(2), P
Timer
 in Ada.Execution_Time.Timers

D.14.1(4/2)
timer interrupt
 example 9.7.4(12)
Timer_Handler
 in Ada.Execution_Time.Timers

D.14.1(5/2)
Timer_Resource_Error
 in Ada.Execution_Time.Timers

D.14.1(9/2)
Timers
 child of Ada.Execution_Time

D.14.1(3/2)
times operator 4.4(1), 4.5.5(1)
timing
 See delay_statement 9.6(1)
Timing_Event
 in Ada.Real_Time.Timing_Events

D.15(4/2)
Timing_Event_Handler
 in Ada.Real_Time.Timing_Events

D.15(4/2)
Timing_Events
 child of Ada.Real_Time D.15(3/2)
To_Ada
 in Interfaces.C B.3(22), B.3(26),

B.3(28), B.3(32), B.3(37), B.3(39),
B.3(39.10/2), B.3(39.13/2),
B.3(39.17/2), B.3(39.19/2),
B.3(39.4/2), B.3(39.8/2)

 in Interfaces.COBOL B.4(17), B.4(19)
 in Interfaces.Fortran B.5(13), B.5(14),

B.5(16)
To_Address
 in System.Address_To_Access_-

Conversions 13.7.2(3)
 in System.Storage_Elements 13.7.1(10)
To_Basic
 in Ada.Characters.Handling A.3.2(6),

A.3.2(7)
To_Binary
 in Interfaces.COBOL B.4(45), B.4(48)
To_Bounded_String
 in Ada.Strings.Bounded A.4.4(11)
To_C
 in Interfaces.C B.3(21), B.3(25),

B.3(27), B.3(32), B.3(36), B.3(38),
B.3(39.13/2), B.3(39.16/2),
B.3(39.18/2), B.3(39.4/2), B.3(39.7/2),
B.3(39.9/2)

To_Character
 in Ada.Characters.Conversions

A.3.4(5/2)

To_Chars_Ptr
 in Interfaces.C.Strings B.3.1(8)
To_COBOL
 in Interfaces.COBOL B.4(17), B.4(18)
To_Cursor
 in Ada.Containers.Vectors

A.18.2(25/2)
To_Decimal
 in Interfaces.COBOL B.4(35), B.4(40),

B.4(44), B.4(47)
To_Display
 in Interfaces.COBOL B.4(36)
To_Domain
 in Ada.Strings.Maps A.4.2(24)
 in Ada.Strings.Wide_Maps A.4.7(24)
 in Ada.Strings.Wide_Wide_Maps

A.4.8(24/2)
To_Duration
 in Ada.Real_Time D.8(13)
To_Fortran
 in Interfaces.Fortran B.5(13), B.5(14),

B.5(15)
To_Index
 in Ada.Containers.Vectors

A.18.2(26/2)
To_Integer
 in System.Storage_Elements 13.7.1(10)
To_ISO_646
 in Ada.Characters.Handling A.3.2(11),

A.3.2(12)
To_Long_Binary
 in Interfaces.COBOL B.4(48)
To_Lower
 in Ada.Characters.Handling A.3.2(6),

A.3.2(7)
To_Mapping
 in Ada.Strings.Maps A.4.2(23)
 in Ada.Strings.Wide_Maps A.4.7(23)
 in Ada.Strings.Wide_Wide_Maps

A.4.8(23/2)
To_Packed
 in Interfaces.COBOL B.4(41)
To_Picture
 in Ada.Text_IO.Editing F.3.3(6)
To_Pointer
 in System.Address_To_Access_-

Conversions 13.7.2(3)
To_Range
 in Ada.Strings.Maps A.4.2(24)
 in Ada.Strings.Wide_Maps A.4.7(25)
 in Ada.Strings.Wide_Wide_Maps

A.4.8(25/2)
To_Ranges
 in Ada.Strings.Maps A.4.2(10)
 in Ada.Strings.Wide_Maps A.4.7(10)
 in Ada.Strings.Wide_Wide_Maps

A.4.8(10/2)
To_Sequence
 in Ada.Strings.Maps A.4.2(19)
 in Ada.Strings.Wide_Maps A.4.7(19)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Index 10 November 2006 762

 in Ada.Strings.Wide_Wide_Maps
A.4.8(19/2)

To_Set
 in Ada.Containers.Hashed_Sets

A.18.8(9/2)
 in Ada.Containers.Ordered_Sets

A.18.9(10/2)
 in Ada.Strings.Maps A.4.2(8),

A.4.2(9), A.4.2(17), A.4.2(18)
 in Ada.Strings.Wide_Maps A.4.7(8),

A.4.7(9), A.4.7(17), A.4.7(18)
 in Ada.Strings.Wide_Wide_Maps

A.4.8(8/2), A.4.8(9/2), A.4.8(17/2),
A.4.8(18/2)

To_String
 in Ada.Characters.Conversions

A.3.4(5/2)
 in Ada.Strings.Bounded A.4.4(12)
 in Ada.Strings.Unbounded A.4.5(11)
To_Time_Span
 in Ada.Real_Time D.8(13)
To_Unbounded_String
 in Ada.Strings.Unbounded A.4.5(9),

A.4.5(10)
To_Upper
 in Ada.Characters.Handling A.3.2(6),

A.3.2(7)
To_Vector
 in Ada.Containers.Vectors

A.18.2(13/2), A.18.2(14/2)
To_Wide_Character
 in Ada.Characters.Conversions

A.3.4(4/2), A.3.4(5/2)
To_Wide_String
 in Ada.Characters.Conversions

A.3.4(4/2), A.3.4(5/2)
To_Wide_Wide_Character
 in Ada.Characters.Conversions

A.3.4(4/2)
To_Wide_Wide_String
 in Ada.Characters.Conversions

A.3.4(4/2)
token
 See lexical element 2.2(1)
Trailing_Nonseparate
 in Interfaces.COBOL B.4(23)
Trailing_Separate
 in Interfaces.COBOL B.4(23)
transfer of control 5.1(14/2)
Translate
 in Ada.Strings.Bounded A.4.4(53),

A.4.4(54), A.4.4(55), A.4.4(56)
 in Ada.Strings.Fixed A.4.3(18),

A.4.3(19), A.4.3(20), A.4.3(21)
 in Ada.Strings.Unbounded A.4.5(48),

A.4.5(49), A.4.5(50), A.4.5(51)
Translation_Error
 in Ada.Strings A.4.1(5)

Transpose
 in Ada.Numerics.Generic_Complex_-

Arrays G.3.2(34/2)
 in Ada.Numerics.Generic_Real_Arrays

G.3.1(17/2)
triggering_alternative 9.7.4(3)
 used 9.7.4(2), P
triggering_statement 9.7.4(4/2)
 used 9.7.4(3), P
Trim
 in Ada.Strings.Bounded A.4.4(67),

A.4.4(68), A.4.4(69)
 in Ada.Strings.Fixed A.4.3(31),

A.4.3(32), A.4.3(33), A.4.3(34)
 in Ada.Strings.Unbounded A.4.5(61),

A.4.5(62), A.4.5(63), A.4.5(64)
Trim_End
 in Ada.Strings A.4.1(6)
True 3.5.3(1)
Truncation
 in Ada.Strings A.4.1(6)
Truncation attribute A.5.3(42)
Tuesday
 in Ada.Calendar.Formatting

9.6.1(17/2)
two's complement
 modular types 3.5.4(29)
type 3.2(1), N(41/2)
 abstract 3.9.3(1.2/2)
 needs finalization 7.6(9.1/2)
 of a subtype 3.2(8/2)
 synchronized tagged 3.9.4(6/2)
 See also tag 3.9(3)
 See also language-defined types
type conformance 6.3.1(15/2)
 [partial] 3.4(17/2), 8.3(8), 8.3(26/2),

10.1.4(4/1)
 required 3.11.1(5), 4.1.4(14/2), 8.6(26),

9.1(9.2/2), 9.4(11.1/2), 9.4(11.4/2),
9.5.4(3), 12.4(5/2)

type conversion 4.6(1)
 access 4.6(24.11/2), 4.6(24.18/2),

4.6(24.19/2), 4.6(47)
 arbitrary order 1.1.4(18)
 array 4.6(24.2/2), 4.6(36)
 composite (non-array) 4.6(21/2),

4.6(40)
 enumeration 4.6(21.1/2), 4.6(34)
 numeric 4.6(24.1/2), 4.6(29)
 unchecked 13.9(1)
 See also qualified_expression 4.7(1)
type conversion, implicit
 See implicit subtype conversion 4.6(1)
type extension 3.9(2/2), 3.9.1(1/2)
type of a discrete_range 3.6.1(4)
type of a range 3.5(4)
type parameter
 See discriminant 3.7(1/2)

type profile
 See profile, type conformant

6.3.1(15/2)
type resolution rules 8.6(20/2)
 if any type in a specified class of types is

expected 8.6(21)
 if expected type is specific 8.6(22)
 if expected type is universal or class-

wide 8.6(21)
type tag
 See tag 3.9(3)
type-related
 aspect 13.1(8)
 aspect 13.1(8.1/1)
 operational item 13.1(8.1/1)
 representation item 13.1(8)
type_conversion 4.6(2)
 used 4.1(2), P
 See also unchecked type conversion

13.9(1)
type_declaration 3.2.1(2)
 used 3.1(3/2), P
type_definition 3.2.1(4/2)
 used 3.2.1(3), P
Type_Set
 in Ada.Text_IO A.10.1(7)
types
 of a profile 6.1(29)

U

UC_A_Acute
 in Ada.Characters.Latin_1 A.3.3(23)
UC_A_Circumflex
 in Ada.Characters.Latin_1 A.3.3(23)
UC_A_Diaeresis
 in Ada.Characters.Latin_1 A.3.3(23)
UC_A_Grave
 in Ada.Characters.Latin_1 A.3.3(23)
UC_A_Ring
 in Ada.Characters.Latin_1 A.3.3(23)
UC_A_Tilde
 in Ada.Characters.Latin_1 A.3.3(23)
UC_AE_Diphthong
 in Ada.Characters.Latin_1 A.3.3(23)
UC_C_Cedilla
 in Ada.Characters.Latin_1 A.3.3(23)
UC_E_Acute
 in Ada.Characters.Latin_1 A.3.3(23)
UC_E_Circumflex
 in Ada.Characters.Latin_1 A.3.3(23)
UC_E_Diaeresis
 in Ada.Characters.Latin_1 A.3.3(23)
UC_E_Grave
 in Ada.Characters.Latin_1 A.3.3(23)
UC_I_Acute
 in Ada.Characters.Latin_1 A.3.3(23)
UC_I_Circumflex
 in Ada.Characters.Latin_1 A.3.3(23)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

763 10 November 2006 Index

UC_I_Diaeresis
 in Ada.Characters.Latin_1 A.3.3(23)
UC_I_Grave
 in Ada.Characters.Latin_1 A.3.3(23)
UC_Icelandic_Eth
 in Ada.Characters.Latin_1 A.3.3(24)
UC_Icelandic_Thorn
 in Ada.Characters.Latin_1 A.3.3(24)
UC_N_Tilde
 in Ada.Characters.Latin_1 A.3.3(24)
UC_O_Acute
 in Ada.Characters.Latin_1 A.3.3(24)
UC_O_Circumflex
 in Ada.Characters.Latin_1 A.3.3(24)
UC_O_Diaeresis
 in Ada.Characters.Latin_1 A.3.3(24)
UC_O_Grave
 in Ada.Characters.Latin_1 A.3.3(24)
UC_O_Oblique_Stroke
 in Ada.Characters.Latin_1 A.3.3(24)
UC_O_Tilde
 in Ada.Characters.Latin_1 A.3.3(24)
UC_U_Acute
 in Ada.Characters.Latin_1 A.3.3(24)
UC_U_Circumflex
 in Ada.Characters.Latin_1 A.3.3(24)
UC_U_Diaeresis
 in Ada.Characters.Latin_1 A.3.3(24)
UC_U_Grave
 in Ada.Characters.Latin_1 A.3.3(24)
UC_Y_Acute
 in Ada.Characters.Latin_1 A.3.3(24)
UCHAR_MAX
 in Interfaces.C B.3(6)
ultimate ancestor
 of a type 3.4.1(10/2)
unary adding operator 4.5.4(1)
unary operator 4.5(9)
unary_adding_operator 4.5(5)
 used 4.4(4), P
Unbiased_Rounding attribute A.5.3(39)
Unbounded
 child of Ada.Strings A.4.5(3)
 in Ada.Text_IO A.10.1(5)
Unbounded_IO
 child of Ada.Text_IO A.10.12(3/2)
 child of Ada.Wide_Text_IO A.11(5/2)
 child of Ada.Wide_Wide_Text_IO

A.11(5/2)
Unbounded_Slice
 in Ada.Strings.Unbounded

A.4.5(22.1/2), A.4.5(22.2/2)
Unbounded_String
 in Ada.Strings.Unbounded A.4.5(4/2)
unchecked storage deallocation

13.11.2(1)
unchecked type conversion 13.9(1)
unchecked union object B.3.3(6/2)
unchecked union subtype B.3.3(6/2)
unchecked union type B.3.3(6/2)

Unchecked_Access attribute 13.10(3),
H.4(18)

 See also Access attribute 3.10.2(24/1)
Unchecked_Conversion
 child of Ada 13.9(3)
Unchecked_Deallocation
 child of Ada 13.11.2(3)
Unchecked_Union pragma B.3.3(3/2),

L(37.1/2)
unconstrained 3.2(9)
 object 3.3.1(9/2)
 object 6.4.1(16)
 subtype 3.2(9), 3.4(6), 3.5(7),

3.5.1(10), 3.5.4(9), 3.5.4(10),
3.5.7(11), 3.5.9(13), 3.5.9(16),
3.6(15), 3.6(16), 3.7(26), 3.9(15)

 subtype 3.10(14/1)
 subtype K(35)
unconstrained_array_definition 3.6(3)
 used 3.6(2), P
undefined result 11.6(5)
underline 2.1(15/2)
 used 2.4.1(3), 2.4.2(4), P
Uniformly_Distributed subtype of Float
 in Ada.Numerics.Float_Random

A.5.2(8)
uninitialized allocator 4.8(4)
uninitialized variables 13.9.1(2)
 [partial] 3.3.1(21)
union
 C B.3.3(1/2)
 in Ada.Containers.Hashed_Sets

A.18.8(26/2), A.18.8(27/2)
 in Ada.Containers.Ordered_Sets

A.18.9(27/2), A.18.9(28/2)
unit consistency E.3(6)
unit matrix
 complex matrix G.3.2(148/2)
 real matrix G.3.1(80/2)
unit vector
 complex vector G.3.2(90/2)
 real vector G.3.1(48/2)
Unit_Matrix
 in Ada.Numerics.Generic_Complex_-

Arrays G.3.2(51/2)
 in Ada.Numerics.Generic_Real_Arrays

G.3.1(29/2)
Unit_Vector
 in Ada.Numerics.Generic_Complex_-

Arrays G.3.2(24/2)
 in Ada.Numerics.Generic_Real_Arrays

G.3.1(14/2)
universal type 3.4.1(6/2)
universal_fixed
 [partial] 3.5.6(4)
universal_integer 3.5.4(30)
 [partial] 3.5.4(14)
universal_real
 [partial] 3.5.6(4)
unknown discriminants 3.7(26)

unknown_discriminant_part 3.7(3)
 used 3.7(2/2), P
Unknown_Zone_Error
 in Ada.Calendar.Time_Zones

9.6.1(5/2)
unmarshalling E.4(9)
unpolluted 13.13.1(2)
unsigned
 in Interfaces.C B.3(9)
 in Interfaces.COBOL B.4(23)
unsigned type
 See modular type 3.5.4(1)
unsigned_char
 in Interfaces.C B.3(10)
unsigned_long
 in Interfaces.C B.3(9)
unsigned_short
 in Interfaces.C B.3(9)
unspecified 1.1.3(18)
 [partial] 2.1(5/2), 3.9(4/2), 3.9(12.4/2),

4.5.2(13), 4.5.2(24.1/1), 4.5.5(21),
6.2(11), 7.2(5), 9.8(14), 10.2(26),
11.1(6), 11.5(27/2), 13.1(18),
13.7.2(5/2), 13.9.1(7), 13.11(20),
13.13.2(36/2), A.1(1), A.5.1(34),
A.5.2(28), A.5.2(34), A.5.3(41.3/2),
A.7(6), A.10(8), A.10.7(8/1),
A.10.7(12), A.10.7(17.3/2),
A.10.7(19), A.14(1), A.18.2(231/2),
A.18.2(252/2), A.18.2(83/2),
A.18.3(145/2), A.18.3(157/2),
A.18.3(55/2), A.18.4(3/2),
A.18.4(80/2), A.18.5(43/2),
A.18.5(44/2), A.18.5(45/2),
A.18.5(46/2), A.18.6(56/2),
A.18.6(57/2), A.18.7(3/2),
A.18.7(101/2), A.18.7(87/2),
A.18.7(88/2), A.18.8(65/2),
A.18.8(66/2), A.18.8(67/2),
A.18.8(68/2), A.18.8(86/2),
A.18.8(87/2), A.18.9(114/2),
A.18.9(79/2), A.18.9(80/2),
A.18.16(5/2), A.18.16(9/2),
D.2.2(6.1/2), D.8(19), E.3(5/1),
G.1.1(40), G.1.2(33), G.1.2(48),
H(4.1), H.2(1), K(136.4/2)

Unsuppress pragma 11.5(4.1/2),
L(37.2/2)

update
 the value of an object 3.3(14)
 in Interfaces.C.Strings B.3.1(18),

B.3.1(19)
Update_Element
 in Ada.Containers.Doubly_Linked_-

Lists A.18.3(17/2)
 in Ada.Containers.Hashed_Maps

A.18.5(17/2)
 in Ada.Containers.Ordered_Maps

A.18.6(16/2)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

Index 10 November 2006 764

 in Ada.Containers.Vectors
A.18.2(33/2), A.18.2(34/2)

Update_Element_Preserving_Key
 in Ada.Containers.Hashed_Sets

A.18.8(58/2)
 in Ada.Containers.Ordered_Sets

A.18.9(73/2)
Update_Error
 in Interfaces.C.Strings B.3.1(20)
upper bound
 of a range 3.5(4)
upper-case letter
 a category of Character A.3.2(26)
Upper_Case_Map
 in Ada.Strings.Maps.Constants

A.4.6(5)
Upper_Set
 in Ada.Strings.Maps.Constants

A.4.6(4)
US
 in Ada.Characters.Latin_1 A.3.3(6)
usage name 3.1(10)
use-visible 8.3(4), 8.4(9)
use_clause 8.4(2)
 used 3.11(4/1), 10.1.2(3), 12.1(5), P
Use_Error
 in Ada.Direct_IO A.8.4(18)
 in Ada.Directories A.16(43/2)
 in Ada.IO_Exceptions A.13(4)
 in Ada.Sequential_IO A.8.1(15)
 in Ada.Streams.Stream_IO A.12.1(26)
 in Ada.Text_IO A.10.1(85)
use_package_clause 8.4(3)
 used 8.4(2), P
use_type_clause 8.4(4)
 used 8.4(2), P
user-defined assignment 7.6(1)
user-defined heap management 13.11(1)
user-defined operator 6.6(1)
user-defined storage management

13.11(1)
UTC_Time_Offset
 in Ada.Calendar.Time_Zones

9.6.1(6/2)

V

Val attribute 3.5.5(5)
Valid
 in Ada.Text_IO.Editing F.3.3(5),

F.3.3(12)
 in Interfaces.COBOL B.4(33), B.4(38),

B.4(43)
Valid attribute 13.9.2(3), H(6)
Value
 in Ada.Calendar.Formatting

9.6.1(36/2), 9.6.1(38/2)
 in Ada.Environment_Variables

A.17(4/2)

 in Ada.Numerics.Discrete_Random
A.5.2(26)

 in Ada.Numerics.Float_Random
A.5.2(14)

 in Ada.Strings.Maps A.4.2(21)
 in Ada.Strings.Wide_Maps A.4.7(21)
 in Ada.Strings.Wide_Wide_Maps

A.4.8(21/2)
 in Ada.Task_Attributes C.7.2(4)
 in Interfaces.C.Pointers B.3.2(6),

B.3.2(7)
 in Interfaces.C.Strings B.3.1(13),

B.3.1(14), B.3.1(15), B.3.1(16)
Value attribute 3.5(52)
value conversion 4.6(5/2)
values
 belonging to a subtype 3.2(8/2)
variable 3.3(13)
variable object 3.3(13)
variable view 3.3(13)
variant 3.8.1(3)
 used 3.8.1(2), P
 See also tagged type 3.9(1)
variant_part 3.8.1(2)
 used 3.8(4), P
Vector
 in Ada.Containers.Vectors A.18.2(8/2)
vector container A.18.2(1/2)
Vectors
 child of Ada.Containers A.18.2(6/2)
version
 of a compilation unit E.3(5/1)
Version attribute E.3(3)
vertical line 2.1(15/2)
Vertical_Line
 in Ada.Characters.Latin_1 A.3.3(14)
view 3.1(7), N(42/2)
view conversion 4.6(5/2)
virtual function
 See dispatching subprogram 3.9.2(1/2)
Virtual_Length
 in Interfaces.C.Pointers B.3.2(13)
visibility
 direct 8.3(2), 8.3(21)
 immediate 8.3(4), 8.3(21)
 use clause 8.3(4), 8.4(9)
visibility rules 8.3(1)
visible 8.3(2), 8.3(14)
 attribute_definition_clause 8.3(23.1/2)
 within a use_clause in a

context_clause 10.1.6(3)
 within a pragma in a context_clause

10.1.6(3)
 within a pragma that appears at the place

of a compilation unit 10.1.6(5)
 within a with_clause 10.1.6(2/2)
 within the parent_unit_name of a library

unit 10.1.6(2/2)
 within the parent_unit_name of a

subunit 10.1.6(4)

visible part 8.2(5)
 of a formal package 12.7(10/2)
 of a generic unit 8.2(8)
 of a package (other than a generic

formal package) 7.1(6/2)
 of a protected unit 9.4(11/2)
 of a task unit 9.1(9)
 of a view of a callable entity 8.2(6)
 of a view of a composite type 8.2(7)
volatile C.6(8)
Volatile pragma C.6(4), L(38)
Volatile_Components pragma C.6(6),

L(39)
VT
 in Ada.Characters.Latin_1 A.3.3(5)
VTS
 in Ada.Characters.Latin_1 A.3.3(17)

W

wchar_array
 in Interfaces.C B.3(33)
wchar_t
 in Interfaces.C B.3(30/1)
Wednesday
 in Ada.Calendar.Formatting

9.6.1(17/2)
well-formed picture String
 for edited output F.3.1(1)
Wide_Bounded
 child of Ada.Strings A.4.7(1/2)
Wide_Constants
 child of Ada.Strings.Wide_Maps

A.4.7(1/2), A.4.8(28/2)
Wide_Fixed
 child of Ada.Strings A.4.7(1/2)
Wide_Hash
 child of Ada.Strings A.4.7(1/2)
 child of Ada.Strings.Wide_Bounded

A.4.7(1/2)
 child of Ada.Strings.Wide_Fixed

A.4.7(1/2)
 child of Ada.Strings.Wide_Unbounded

A.4.7(1/2)
Wide_Maps
 child of Ada.Strings A.4.7(3)
Wide_Text_IO
 child of Ada A.11(2/2)
Wide_Unbounded
 child of Ada.Strings A.4.7(1/2)
Wide_Character 3.5.2(3/2)
 in Standard A.1(36.1/2)
Wide_Character_Mapping
 in Ada.Strings.Wide_Maps A.4.7(20/2)
Wide_Character_Mapping_Function
 in Ada.Strings.Wide_Maps A.4.7(26)
Wide_Character_Range
 in Ada.Strings.Wide_Maps A.4.7(6)
Wide_Character_Ranges
 in Ada.Strings.Wide_Maps A.4.7(7)

ISO/IEC 8652:2007(E) Ed. 3 — Ada Reference Manual

765 10 November 2006 Index

Wide_Character_Sequence subtype of
Wide_String

 in Ada.Strings.Wide_Maps A.4.7(16)
Wide_Character_Set
 in Ada.Strings.Wide_Maps A.4.7(4/2)
 in Ada.Strings.Wide_Maps.Wide_-

Constants A.4.8(48/2)
Wide_Characters
 child of Ada A.3.1(4/2)
Wide_Exception_Name
 in Ada.Exceptions 11.4.1(2/2),

11.4.1(5/2)
Wide_Expanded_Name
 in Ada.Tags 3.9(7/2)
Wide_Image attribute 3.5(28)
wide_nul
 in Interfaces.C B.3(31/1)
Wide_Space
 in Ada.Strings A.4.1(4/2)
Wide_String
 in Standard A.1(41)
Wide_Value attribute 3.5(40)
Wide_Wide_Constants
 child of Ada.Strings.Wide_Wide_Maps

A.4.8(1/2)
Wide_Wide_Hash
 child of Ada.Strings A.4.8(1/2)
 child of Ada.Strings.Wide_Wide_-

Bounded A.4.8(1/2)
 child of Ada.Strings.Wide_Wide_Fixed

A.4.8(1/2)
 child of Ada.Strings.Wide_Wide_-

Unbounded A.4.8(1/2)
Wide_Wide_Text_IO
 child of Ada A.11(3/2)
Wide_Wide_Bounded
 child of Ada.Strings A.4.8(1/2)
Wide_Wide_Character 3.5.2(3.1/2)
 in Standard A.1(36.2/2)
Wide_Wide_Character_Mapping
 in Ada.Strings.Wide_Wide_Maps

A.4.8(20/2)
Wide_Wide_Character_Mapping_Functio

n
 in Ada.Strings.Wide_Wide_Maps

A.4.8(26/2)
Wide_Wide_Character_Range
 in Ada.Strings.Wide_Wide_Maps

A.4.8(6/2)
Wide_Wide_Character_Ranges
 in Ada.Strings.Wide_Wide_Maps

A.4.8(7/2)
Wide_Wide_Character_Sequence subtype

of Wide_Wide_String
 in Ada.Strings.Wide_Wide_Maps

A.4.8(16/2)
Wide_Wide_Character_Set
 in Ada.Strings.Wide_Wide_Maps

A.4.8(4/2)

Wide_Wide_Characters
 child of Ada A.3.1(6/2)
Wide_Wide_Exception_Name
 in Ada.Exceptions 11.4.1(2/2),

11.4.1(5/2)
Wide_Wide_Expanded_Name
 in Ada.Tags 3.9(7/2)
Wide_Wide_Fixed
 child of Ada.Strings A.4.8(1/2)
Wide_Wide_Image attribute 3.5(27.1/2)
Wide_Wide_Maps
 child of Ada.Strings A.4.8(3/2)
Wide_Wide_Space
 in Ada.Strings A.4.1(4/2)
Wide_Wide_String
 in Standard A.1(42.1/2)
Wide_Wide_Unbounded
 child of Ada.Strings A.4.8(1/2)
Wide_Wide_Value attribute 3.5(39.1/2)
Wide_Wide_Width attribute 3.5(37.1/2)
Wide_Width attribute 3.5(38)
Width attribute 3.5(39)
with_clause 10.1.2(4/2)
 mentioned in 10.1.2(6/2)
 named in 10.1.2(6/2)
 used 10.1.2(3), P
within
 immediately 8.1(13)
word 13.3(8)
Word_Size
 in System 13.7(13)
Write
 in Ada.Direct_IO A.8.4(13)
 in Ada.Sequential_IO A.8.1(12)
 in Ada.Storage_IO A.9(7)
 in Ada.Streams 13.13.1(6)
 in Ada.Streams.Stream_IO A.12.1(18),

A.12.1(19)
 in System.RPC E.5(8)
Write attribute 13.13.2(3), 13.13.2(11)
Write clause 13.3(7/2), 13.13.2(38/2)

X

xor operator 4.4(1), 4.5.1(2)

Y

Year
 in Ada.Calendar 9.6(13)
 in Ada.Calendar.Formatting

9.6.1(21/2)
Year_Number subtype of Integer
 in Ada.Calendar 9.6(11/2)
Yen_Sign
 in Ada.Characters.Latin_1 A.3.3(21)

