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Abstract 
 

Performance is a pervasive quality of software 
systems; everything affects it, from the software itself 
to all underlying layers, such as operating system, 
middleware, hardware, communication networks, etc. 
Software Performance Engineering encompasses 
efforts to describe and improve performance, with two 
distinct approaches: an early-cycle predictive model-
based approach, and a late-cycle measurement-based 
approach. Current progress and future trends within 
these two approaches are described, with a tendency 
(and a need) for them to converge, in order to cover 
the entire development cycle. 

 
1. Introduction 

 
Software performance (considered here as 

concerned with capacity and timeliness) is a pervasive 
quality difficult to understand, because it is affected by 
every aspect of the design, code, and execution 
environment. By conventional wisdom performance is 
a serious problem in a significant fraction of projects. 
It causes delays, cost overruns, failures on deployment, 
and even abandonment of projects, but such failures 
are seldom documented. A recent survey of 
information technology executives [15] found that half 
of them had encountered performance problems with at 
least 20% of the applications they deployed. 

 A highly disciplined approach known as Software 
Performance Engineering (SPE) is necessary to 
evaluate a system’s performance, or to improve it. In 
this paper we propose the following SPE definition: 

Definition: Software Performance Engineering 
(SPE) represents the entire collection of software 
engineering activities and related analyses used 
throughout the software development cycle, which 
are directed to meeting performance requirements. 

Two general approaches found in literature are 
discussed here, both under the SPE umbrella. The 
commonest approach is purely measurement-based; it 
applies testing, diagnosis and tuning late in the 

development cycle, when the system under 
development can be run and measured (see, e.g. 
[2][4][8][9]). The model-based approach, pioneered 
under the name of SPE by Smith [65][67] (see also [7] 
for a survey of modeling approaches), creates 
performance models early in the development cycle 
and uses quantitative results from these models to 
adjust the architecture and design with the purpose of 
meeting performance requirements. The SPE definition 
proposed in this paper is broader than the one given in 
[65][67], in that it also includes late-cycle 
measurement-based and model-based approaches. 

An analogy with other engineering disciplines 
suggests that design by early calculations (e.g., by 
models) is the way forward, but also that it must be 
integrated with measurements. In the case of SPE, this 
integration has been elusive. 

Like other software engineering activities, SPE is 
constrained by tight project schedules, poorly defined 
requirements, and over-optimism about meeting them. 
Nonetheless adequate performance is essential for 
product success, making SPE a foundation discipline in 
software practice. 
Resources. A resource is a system element that offers 
services required by other system elements. 
Performance results from the interaction of system 
behaviour with resources, thus SPE gives first-class 
status to resources of all kinds. Resources include: 
• hardware (CPU, bus, I/O and storage, network) 
• logical resources (buffers, locks, semaphores) 
• processing resources (processes, threads) 

A determining factor for performance is that 
resources have a limited capacity, so they can 
potentially halt/delay the execution of competing users 
by denying permission to proceed. Quantifying such 
effects is an important task of SPE. 

Full SPE capability implies bringing resources into  
models of software, as in the standard “UML Profile 
for Schedulability, Performance and Time” (SPT) [52] 
and its planned replacement “UML Profile for 
Modeling and Analysis of Real-Time and Embedded 
systems” (MARTE) [53]. Important properties of a 
resource are its multiplicity (units that can be assigned 



             

to requests, as in a buffer pool) and its scheduling 
discipline. 

This paper introduces SPE domain and process 
concepts, surveys the current status of both approaches, 
and then considers movement towards convergence of 
measurement and modeling methods, into a single 
Performance Knowledge Base. This is the most 
prominent feature of our view of the future, but 
additional aspects of future development are also 
considered. 

The survey of current work given here is only a 
sampling of papers and is far from complete. 

 
2. SPE domain and process 

 
The elements of the SPE domain are  

• system operations (Use Cases) with performance 
requirements, behaviour and workloads, 

• behaviour, defined by scenarios (e.g. by UML 
behaviour specifications), 

• workloads (defining the frequency of initiation of 
different system operations), 

• system structure, the software components 
• resources, hardware and software.   

Performance engineering normally confines itself to 
a subset of system operations (for which performance 
is of concern). These operations with their relative 
weight make up the operational profile (see, e.g. [2] ). 

Smith and Williams describe an SPE process using 
early modeling, based on significant experience [66]; 
Barber describes a process using measurement [9]. 
SPE processes are also discussed in [5][49][75]. In [77] 
a taxonomy of SPE processes was based on how they 
use three kinds of information: structural (called 
“maps”), behavioural (“paths”) and resources. 

 
2.1. SPE activities 

 
Any SPE process is woven into software 

development and includes some or all of the following 
activities: 
Identify concerns (important system operations and 
resources). The qualitative analysis of factors affecting 
performance goals is described in [14].  
Define and analyze requirements: Define the 
operational profile, workload intensities, delay and 
throughput requirements, and scenarios describing 
behaviour. UML behaviour notation or special scenario 
languages are used (e.g. execution graphs [65], Use 
Case Maps [56], User Community Modeling Language 
(UCML) for performance test workloads [10]). The 
scenarios are the basis for designing performance tests 
[10], and for early performance models [57][66][56] 
[58][11].  

Predict performance from scenarios, architecture, and 
detailed design, by modeling the interaction of the 
behaviour with the resources. Modeling techniques 
were surveyed in [6] This activity is discussed in 
Section 4 below.  
Performance testing on part or all of system, under 
normal loads and stress loads [8]. The use of test data 
to solve problems is the subject of [9]. This activity is 
discussed in Section 3 below. 
Maintenance and evolution: predict the effect of 
potential changes and additions. Examples include: 
impact of added features [64], impact of a platform 
migration [2], comparison of web application platforms 
[36].  
Total system analysis: consider the planned software 
in the complete and final deployed system. The present 
work is related (and seamlessly connects) to this larger 
perspective, but concentrates on software development. 
An example of total analysis for future system 
planning is given in [60]. 

The SPE activities are summarized in Figure 1. The 
vertical placement indicates whether they are 
performed earlier or later in the software lifecycle: 
activities at the top correspond to early stages, at the 
bottom to late stages.  

 

Figure 1 SPE activities 
 
Lessons from the current work. There are many 
weaknesses in current performance processes. They 
require heavy effort, which limits what can be 
attempted. Measurements lack standards; those that 
record the application and execution context (e.g. the 
class of user) require source-code access and 
instrumentation and interfere with system operation. 
There is a semantic gap between performance concerns 
and functional concerns, which prevents many 
developers from addressing performance at all. For the 
same reason many developers do not trust or 
understand performance models, even if such models 
are available. Performance modeling is effective but it 
is often costly; models are approximate, they leave out 
detail that may be important, and are difficult to 
validate. 
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The survey of information technology executives 
[15], which found that half of them had had 
performance problems with at least 20% of the 
applications they deployed, commented that many 
problems seem to come from lack of coverage in 
performance testing, and from depending on customers 
to do performance testing in the field. 

Significant process issues are unresolved. Detail in 
measurement and modeling must be managed and 
adapted. Excessive detail is expensive and creates 
information overload, while insufficient detail may 
miss the key factor in a problem. Information has to be 
thrown away. Models and measurements are discarded 
even though they possibly hold information of long-
term value.  

 
3. Progress in measurement, debugging 

and testing 
 
Measurement is used by verification teams to ensure 

that the system under test meets its specifications, by 
performance modelers to build and validate models, 
and by designers to find and fix hot-spots in the code. 
Interest in the measurement of the performance of a 
computer system ranges back to the development of 
the very first systems, described in an early survey 
paper by Lucas [39]. Today, the state of industrial 
performance measurement and testing techniques is 
captured in a series of articles by Scott Barber [8][9] 
including the problems of planning, execution, 
instrumentation and interpretation.  

For performance test design, an important issue is to 
determine the workload under which the testing is 
done. An approach is to run the performance tests 
under similar conditions with the expected operational 
profile of the application in the field [9]. Briand and 
co-workers have pioneered the use of models to create 
stress tests for time-critical systems, by triggering 
stimuli at strategic instants [22]. 

This section will first describe some of the tools and 
techniques used to measure the performance of a 
system. Next, problems that exist today which impede 
the adoption of the tools will be described. Finally, 
future directions are identified. 
 
3.1. Tools 

 
The tools used by performance analysts range from 

load generators, for supplying the workload to a 
system under test, to monitors, for gathering data as the 
system executes. Monitoring itself can be performed 
through hardware, software, or a combination of the 
two. The focus of this paper will be on software 

monitoring, which itself can be broken down into two 
broad categories: instrumentation and profiling. 
Instrumentation is the insertion of probes into a 
system to measure some sort of events. Some 
instrumentation is usually built into the host operating 
system and minimally indicates the utilization of the 
various devices including the CPU. Other 
instrumentation is added manually to applications. 
Frameworks such as the Application Response 
Measurement (ARM) application programmer 
interface [29] are beneficial as they form a common 
substrate to which disparate programs can gather 
performance information.  

Instrumentation can also be added automatically. 
Aspect-Oriented programming can be used to 
automatically insert instrumentation code into 
applications [19]. Quantify [26] adds probes to object 
code at the beginning and ending of basic blocks of 
programs to count the number of cycles executed. The 
Paradyn tool [47], carries this one step further, by 
instrumenting the actual executables dynamically. 
Profilers. A program profile is a histogram of the 
execution of a program [31]. It can be generated using 
instrumentation, as is the case with Quantify, through 
statistical sampling, or by running the program on a 
virtual machine and counting the execution of the 
actual instructions [50]. 

 
3.2. Problems 

 
The use of performance tools is well established at 

the verification level, where it used to ensure that QoS 
requirements are being met. However, it is less well 
established at earlier stages in the life-cycle of a 
product. Malony and Helm [42] have identified two 
obstacles in particular to the adoption of these tools 
a) a lack of theoretical justification for the methods 

for improving performance that work, and why 
they do so. Tools will provide measurement data, 
but expert interpretation is still required to fix 
problems. 

b) a conflict between automation and adaptability in 
that systems which are highly automated but are 
difficult to change, and vice versa. As a result no 
tool does the job the user needs, so the user goes 
and invents one. Further, various tools all have 
different forms of output which makes 
interoperability challenging at best. 

c) in distributed systems, events from different 
systems need to be correlated. Today’s systems are 
often composed of sub-systems from different 
vendors. Establishing causality across the system is 
difficult. 

 



             

3.3. The future 
 
Performance engineering is gaining attention, as 

companies discover to their detriment that the 
performance of their applications is often below 
expectations. In the past, these problems were not 
found until very late in the development of a product as 
performance validation, if any, was one of the last 
activities done before releasing the software.  With 
agile processes, the problem is unchanged if not worse 
[11]. Thus early warning of performance problems is 
still the challenge for SPE. 

Better tools for measurement and modeling are one 
direction we shall examine. Tracing captures CPU 
demands quite well, but operating system support is 
needed to trace operations to the various I/O devices. 
Distributed systems require correlating traces between 
nodes. The ARM framework [29] supports this 
capability today, but it is still up to developers to write 
the correlation code. Advances in logical clocks [25] 
can aid this work. 

Developers and testers use instrumentation tools to 
help them find problems with systems. However, users 
depend on experience to use the results, and this 
experience needs to be codified and incorporated into 
tools. Better methods and tools for interpreting the 
results and diagnosing performance problems are a 
future goal.  

To be successful, earlier performance diagnosis 
requires the use of models for insight into the sources 
of problems. Model calibration may rest on improved 
tracing technology. Rapid cheap modeling techniques 
are a desirable goal. 

At present, there is very little standardization in file 
and model formats and protocols used in performance 
engineering. The ARM framework is making progress 
in terms of tracing, the Performance Model 
Interchange Format is being proposed for queueing 
models [68], and the UML Profile for Schedulability, 
Performance, and Time Specification [52] has been 
adopted for UML software design tools. Most tools, 
however, do not conform to these formats. Further, 
these formats themselves may not be sufficient to 
cover the measurement and analysis domain. 

Workload modeling and operational profiles are a 
key part of both load testing and predictive modeling. 
A discussion of how critical a good workload model is, 
and how it can be constructed, is found in [2][33]. 

Dynamic optimization can use measurements fed 
back to compilers for tuning, for off-line placing code 
and other optimizations, and for cache analysis. 
Recently instrumentation was described for caches, to 
estimate the effect of an increment in the cache size 
from the application behaviour while it runs [76], and 
to control the cache size.  

Performance models are often difficult to construct, 
even with a live system, despite the presence of tools to 
actually measure performance. In the future, model 
building will become much more automated, and 
output becomes standardized, and the conversion 
process between measurement information and 
performance model becomes more practical. 
Ultimately, the model and measurement information 
will be fed back into design tools, so that performance 
issues are brought to the forefront early in the design 
process. 

 
4. Prediction of performance by models  

 
Performance models describe how system 

operations use resources, and how resource contention 
affects operations. The types of models used for 
software, including queueing networks, layered 
queues, and types of Petri Nets and Stochastic Process 
Algebras, were surveyed recently by Balsamo et al [7]. 

The special capability of a model is prediction of 
properties of a system before it is built, or the effect of 
a change before it is carried out. This gives a special 
“early warning” role to early-cycle modeling during 
requirements analysis. However as implementation 
proceeds, better models can be created by other means, 
and may have additional uses, in particular 
• design of performance tests 
• configuration of products for delivery 
• evaluation of planned evolutions of the design, 

recognizing that no system is ever final. 
Incremental change: models are ideal for evaluating 
the performance impact of changes which can be 
implemented in a variety of ways. 
Model validation: validation is critical for a model 
created to represent an existing system in detail. For a 
planned system, on the contrary, it is a non-issue. The 
model simply summarizes the designer’s knowledge. 
Like a project budget, which also represents the future, 
it represents knowledge with uncertainty which is 
validated by experience in using it. Like a budget, it 
has an element of risk. 
 
4.1. Performance models from scenarios 

 
Early performance models are usually created from 

the intended behaviour of the system, expressed as 
scenarios which are realizations of Use Cases. The 
term “scenario” here denotes a complex behaviour 
including alternative paths as well as parallel paths and 
repetition. The performance model is created by 
extracting the demands for resource services. This has 
been described for different source scenario models 
and target performance formalisms: 



             

• from Markov models of sequence, to queueing 
models [63][55] 

• from execution graphs to queueing models 
[66][15] 

• from Message Sequence Charts and SDL to 
simulations [30][49]  

• from UML: as surveyed in [80] 
• from team expertise, as described by Smith and 

Williams [66].  
These works clearly show the feasibility of model 
creation. Important challenges remain however (1) in 
making the process accessible to designers, which is 
addressed by the SPT profile [52] (giving a software 
design context for the annotations); (2) in creating 
interoperability between design and performance tools 
(the model interchange language in [68] is a promising 
development in this direction); (3) in providing models 
for parts of the systems not described by the designer; 
and (4) in providing a scalable and robust model.  

Annotated UML specifications are a promising 
development. The annotations include: 
• the workload for each scenario, given by an arrival 

rate or by a population with a think time between 
requests, 

• the CPU demand of steps, 
• the probabilities of alternative paths, and loop 

counts, 
• the association of resources to the steps either 

implicitly (by the processes and processors) or 
explicitly.  

As an illustration, Figure 2 shows a set of applications 
requesting service from a pool of server threads 
running on a multiprocessor (deployment not shown). 
Part (a) shows the scenario modeled as a UML 
sequence diagram with SPT annotations, (b) shows a 
graph representing the scenario steps, and (c) shows 
the corresponding layered queueing network (LQN) 
model. Studies in [44] [56] [58] [72] use such models.  

At a later stage, scenarios may be traced from 
execution of prototypes or full deployments, giving 
accurate behaviour. Models can be rebuilt based on 
these experimental scenarios [24][78], combined with 
measured values of CPU demands. 

Schedulability analysis of time-critical systems [32] 
is a special kind of scenario-based analysis, which is 
beyond the scope of this paper.  

 
4.2. Performance models from objects and 
components  

 
A different approach can be used when the 

architecture is in place. A performance model can be 
built based on the software objects viewed from a 

performance perspective. A pioneering contribution in 
this direction defined a “performance abstract data 
type” for an object [13], based on the machine cycles 
executed by its methods. 
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     (c)
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   (b) 
Figure 2. Annotated UML, Scenario Model, and 

Performance Model 
 
To create a performance model, one traces a 

response from initiation at a root object to all the 
interfaces it calls, proceeding recursively for each call. 
Queueing and layered queueing models were derived 
based on objects and calls in [55] [44] and [83]. Model 
parameters (CPU, call frequencies) were estimated by 
measurement or were based on the documentation plus 
expertise.  

Object-based modeling is inherently compositional, 
based on the call frequencies between objects. This 
extends to subsystems composed of objects, with calls 
between subsystems. In [2] an existing application is 
described in terms of UNIX calls, and its migration to a 
new platform is evaluated by a synthetic benchmark 
with these calls, on the new platform. This study 
created a kind of object model, but then carried out 
composition and evaluation in the measurement 
domain. The convergence of models and measurements 
is an important direction for SPE. 
The object-based approach to performance modeling 
can be extended to systems built with reusable 
components. Composition of submodels for 
Component-Based Software Engineering [71] was 
described in [11] [36] [59] [62] [82]. Issues regarding 
performance contracts between components are 
discussed in [59]. Components or platform layers can 
be modeled separately, and composed by specifying 
the calls between them. For example, in [36] a model 
of a J2EE application server is created as a component 
that offers a large set of operations; then an application 
is modeled (by a scenario analysis) in terms of the 
number of calls it made to each operation.  

 



             

 

 
Figure 3. Simplified domain model for a converged SPE process 

 
 

The quantitative parameters of the performance model 
for the J2EE server - and the underlying operating 
system and hardware platform - were obtained by 
measurements for two different implementations. 

The main challenge regarding performance 
characterization of reusable components stem from the 
fact that the offered performance depends not only on 
the component per se, but also on its context, 
deployment, usage and load. It seems obvious that such 
approaches apply similarly to Generative techniques 
[17] and to Model-Driven Development; this point is 
followed up in Section 6. 

The completion of performance models made from a 
software design, by adding components that make up 
its environment but are outside the design, is also 
largely based on composition of submodels [79]. This 
is an aspect of Model-Driven Development, addressed 
below. 

 

5. Convergence of the measurement and 
modeling approaches 

 
The present state of performance engineering is not 

very satisfactory, and better methods would be 
welcome to all. One way forward is to combine 
knowledge of different kinds and from different 
sources into a converged process. Figure 3 outlines 
such a process, with the main concepts and their 
relationships. The notation is based on the newly 
adopted OMG standard Software Process Engineering 
Metamodel (SPEM) [54]. At the core of SPEM is the 
idea that a software process is a collaboration between 
abstract active entities called ProcessRoles (e.g., use-
case actors) that perform operations called Activities on 
concrete entities called WorkProducts. Documents, 
models, and data are examples of WorkProduct 
specializations. Guidance elements may be associated 
to different model elements to provide extra 
information. Figure 3 uses stereotypes defined in [54]. 
Concepts related to the model-based approach appear 
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on the left of Figure 3, and to the measurement-based 
approach on the right. A distinction is made between 
performance testing measurements (which may take 
place in a laboratory setting, with more sophisticated 
measurement tools and special code instrumentation) 
and measurements for monitoring live production 
systems that are deployed on the intended target 
system and used by the intended customers. The 
domain model from Figure 3 is very generic. For 
instance, there is no indication whether different 
activities (such as Performance Model Building) are 
done automatically through model transformations or 
“by hand” by a performance analyst. Some of these 
aspects will be discussed in the following sectionsIn a 
convergence of data-centric and model-centric 
methods, data (including prior estimates) provides the 
facts and models provide structure to organize and to 
extract significance from the facts. Our exploration of 
the future will examine aspects of this convergence. 
Models have a key role. They integrate data and 
convert it from a set of snapshots into a process 

capable of extrapolation. To achieve this potential we 
must develop robust and usable means to go from data 
to model (i.e., model-building) and from model to 
“data” (solving to obtain predictions). We must also 
learn how to combine measurement data interpretation 
with model interpretation, and to get the most out of 
both. 
.Capabilities supported by convergence include: 
• efficient testing, through model-assisted test design 

and evaluation  
• search for performance-related bugs, 
• performance optimization of the design 
• scalability analysis 
• reduced performance risk when adding new 

features, 
• aids to marketing and deployment of products. 
The future developments that will provide these 
capabilities are addressed in the remainder of this 
section. A future tool suite is sketched in Figure 4.  
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Figure 4: Tools for a Future Converged SPE Process, linked to Software Development Tools 

 
 

6. Technical developments 
 
Future technical developments in SPE can be placed 

within a converged process, and illustrate the 
opportunities offered by convergence of measurement 
and model based thinking. 

 
6.1. Visualization and diagnostics  

 
Understanding the source of performance limitations 

is a search process, which depends on patterns and 
relationships in performance data, often revealed by 
visualizations. Promising areas for the future include 

better visualizations, deep catalogues of performance-
related patterns of behaviour and structure, and 
algorithms for automated search and diagnosis.  

Present visualization approaches use generic data-
exploration views such as Kiviat graphs (e.g. in 
Paradyn [47]), traffic intensity patterns overlaid on 
physical structure maps [47], CPU loading overlaid on 
scenarios, and breakdowns of delay [66]. Innovative 
views are possible. For example, in [60] all kinds of 
resources (not just the CPU) are monitored, with tools 
to group resources and focus the view. The challenge 
for the future is to visualize the causal interaction of 



             

behaviour and resources, rather than to focus on just 
one or the other. 
Bottleneck identification, a search for a saturated 
resource which limits the system, is a frequent 
operation. In [21], Franks et al describe a search 
strategy over a model, guided by its structure and 
results, and detects under-provisioned resource pools 
and over-long holding times. It combines properties of 
resources and behaviour, for a “nested” use of 
resources. It scales to high complexity, is capable of 
partial automation, and could be adapted to interpret 
measured data. A multistep performance enhancement 
study using these principles is described in [83]. 
Another search strategy purely over data ([9], part 7) 
focuses on reproducing and simplifying the conditions 
in which the problem is observed. The actual diagnosis 
of the cause (e.g. a memory leak) depends on designer 
expertise. 

A bottleneck search strategy combining the data and 
the model could detect more kinds of problems (e.g. 
both memory leaks and resource problems) and could 
provide automated search assistance.  

Patterns (or anti-patterns) related to bottlenecks have 
been described by Smith and Williams [66] and others 
(e.g., excessive dynamic allocation, “one-lane bridge”). 
For the future, more patterns and more kinds of 
patterns (on measurements, on scenarios or traces) will 
be important. Patterns that combine design, model and 
measurement will be more powerful than those based 
on a single source. A sketch of such a “super-pattern” 
for bottleneck discovery is as follows: 
Bottleneck pattern: Resource R is a candidate 
bottleneck if: 
1. it is used by the majority of scenarios, 
2. many scenarios that use it are too slow, 
3. it is near saturation (>80% of its units are busy), 
4. resources that are acquired earlier and released 

later are also near saturation (from [21]). 
 
Candidates can be resolved by problem-solving 
strategies, and by probing with more measurements. 

Automated assistance to diagnose and even correct 
bottleneck problems could give (for the system level) 
the capability of optimizing compilers. This might be 
part of a high-level process such as MDD, (Section 6), 
and will depend on combining model-level abstractions 
with data. 
Scalability analysis and improvement is largely a 
matter of identifying bottlenecks that emerge as scale 
is increased, and evolving the architecture. Future 
scalability tools will employ advanced bottleneck 
analysis but will depend more heavily on models, since 
they deal with potential systems. 

 

6.2. Model-based knowledge integration 
 
The knowledge created during performance studies 

tends to be fragmented and lost. Great value could be 
obtained by organizing and retaining it in a 
“Performance Knowledge Base” shown in Figure 4, 
including performance data and model predictions 
across time and across system versions. Such a 
knowledge base could be organized around a 
generalized notion of a performance model. This 
model is more than just a calculation to predict 
performance values. It is an abstraction created to 
support reasoning and exploration, and it describes the 
system with different values of factors that govern and 
modify performance. Factors can include variations in 
design, workload, component combinations, 
configuration, and deployment. 

 Every system exists in many actual and potential 
versions, over time and across alternative designs and 
configurations. The workload and behaviour depend on 
the context of operation (scale of deployment, domain 
of use, time of day...). One model exists as a set of 
cases, with pointers to trace each case back to the 
factors which define it. Factors include assumptions 
and expectations, specification documents, scenarios, 
performance measures and requirements, test data, 
intended deployment and context of operation. The 
mathematical definition of the predictive function will 
vary from case to case, both in parameters and in 
structure, and the model should document how these 
were derived from the governing factors.  

 

 
Figure 5. Modeling on demand and the  

 model base 
 

 To make modeling maintainable and in sync with the 
current state of a system, it should be possible to 
construct a model case on demand, from the current 
state of the factors. The recipe for doing this is a 
“Model Base”, consisting of model structures with 
pointers to sources of parameters, and rules to govern 
the creation of the appropriate model for the case 
desired. The Model Base, factors, parameter data, and 
rules are all elements of the Performance Knowledge 
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Base, and the calculator aspect of the model is kind of 
a projection of it. Model-building tools have a key role 
in such an approach.  
 
6.3. Begin with requirements 

 
Requirements analysis for performance can be 

enhanced by greater use of models; we can see the 
birth of the necessary tools, especially in the UML SPT 
Profile [52] for annotating specifications, and tools to 
build models from it [6] [37] [58] [80] [82]. Uses 
include specifying acceptance tests, judging the 
feasibility of a requirement, tradeoff analysis [14], and 
well-formedness (a search yielded no references on this 
last item, yet anecdotal evidence for it is widespread).  

 
6.4. More efficient testing 

 
Efficient testing covers the operational profile and 

the resources of interest with minimum effort needed 
to give sufficient accuracy. Accuracy is an issue 
because statistical results may require long runs, and it 
can be affected by other factors in the test design such 
as the load intensity and the patterns of request classes 
used. For example, systems under heavy load show 
high variance in their measurements, which contributes 
to inaccurate statistical results. It may be more fruitful 
to identify the heavily-used resources at moderate 
loads and (for purposes apart from stress testing) use 
the results to extrapolate to heavy loads using a 
performance model.  

A model could assist in test design to ensure that all 
resources are used in some tests (resource coverage) 
and that effort is not wasted by running many 
experiments in the same saturation regime. At present 
coverage measures are not well-developed for 
performance tests. The model could be used to scale 
workloads, to select test configurations which are 
sensitive to system-features of interest, and to calibrate 
stub services with timing features. 

More effort is also required in performance testing 
tools. The lack of standards for tool interoperation 
increases the effort to gather and interpret data, and 
reduces data-availability for new platforms. 
Lightweight and automated instrumentation are old 
goals that will continue to demand attention. Load 
drivers are at present well-developed in commercial 
tools, but more open tool development could speed 
progress. 

 
6.5. Better models and solvers: goals 

 
Performance models will be improved as regards 

capability (e.g., sensitivity analysis, scalability, models 

of time-varying systems), and numerical methods. 
Models depend on assumptions, and the sensitivity of 
the results to the assumptions is sometimes not known. 
For instance, an assumption of exponential service 
demand is only occasionally sensitive, (e.g., in finding 
the probability of timeout). Future models should 
provide built-in sensitivity calculations and warnings. 

Analytic performance models based directly on 
states and transitions do not (yet) scale well due to 
state space explosion. Recent progress in numerical 
solution methods will continue, including better 
approximations. Models based on queues scale better, 
but use queueing approximations which need to be 
improved, notably for priorities, and for new 
scheduling disciplines such as fair sharing. Time-
varying features due to mobility or to adaptation (in the 
run-time or in system management) will require new 
kinds of models and approximations. 

Analytic model solvers sometimes fail due to bad 
numerical properties. By analogy with the handling of 
stiff systems of equations, there might be automatic 
fallback to a model that does not have such a problem. 

Simulation modeling is steadily becoming more 
practical with the availability of more powerful 
inexpensive computers. However simulation model-
building is still expensive, sometimes comparable to 
system development, and detailed simulation models 
can take nearly as long to run as the system. 
Simulation would be enhanced by automated model-
building that includes significant abstraction (and thus 
reduced run-times) [6]. 

An alternative to simulation is a kind of simplified 
prototype, possibly combined with simulated 
components. This has been explored (e.g., [5][30]) but 
not perfected. 

 
6.6. Efficient model-building tools 

 
The abstractions provided by performance models 

are valuable, but some way must be found to create the 
models more easily and more quickly.  

For performance models made early in the lifecycle 
from specified scenarios, automated model-building 
has been demonstrated [6] [37] [58] [80] [82] and is 
supported by the UML profiles [52] [53]. The future 
challenge is to handle every scenario that a software 
engineer may need to describe, and every way that the 
engineer can express them (including the implied 
scenario behaviour of object call hierarchies, and the 
composition of models from component designs). 

The multiplicity of model formats hinders tool 
development, and would be aided by standards for 
performance model representations, perhaps building 
on [69]. Interoperability of performance building tools 
with standard UML tools is also helpful. For instance,  



             

the PUMA architecture[80] shown in Figure 6 supports 
the generation of different kinds of performance 
models (queueing networks, layered queueing 
networks, Petri nets, etc.) from different versions of 
UML (e.g., 1.4 and 2.0) and different behavioural 
representations (sequence and activity diagrams). 
PUMA also provides a feedback path for design 
analysis and optimization. 

Mid and late-cycle performance models should be 
extracted from prototypes and implementations. Trace-
based automated modeling has been described in 
[24][27], including calibrated CPU demands for 
operations [78]. Future research can enhance this with 
use of additional instrumentation (e.g. CPU demands, 
code context), efficient processing, and perhaps exploit 
different levels of abstraction. Abstraction from traces 
exploits certain patterns in the trace, and domain-based 
assumptions; these can be extended in future research. 
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Figure 6 Architecture of the PUMA toolset [80] 
 
 

7. Software performance in the context of 
Model Driven Development 

 
Model-Driven Development (MDD) is an evolu-

tionary step in software engineering that changes the 
focus of software development from code to models, as 
described in [20]. The Object Management Group 
(OMG) uses the copyrighted term Model-Driven 
Architecture (MDA) [51] to describe its initiative of 
producing standards for MDD (such as UML, MOF, 
XMI and CWM). MDD would be enhanced by the 
ability to analyze non-functional properties of software 
models [17]. This section discusses SPE research 
challenges in the context of MDD.  

MDD is based on abstraction and automation: 
abstraction separates the model of the application 

under construction from the underlying platforms, and 
automation is used to generate the code from models. 
A key notion in MDA is that of “platform 
independence”: the business and application logic of 
the software under development is represented 
separately from the underlying platform technology by 
a so-called Platform Independent Model (PIM). The 
term “platform” refers to technological and 
engineering details that are irrelevant to the 
fundamental functionality of the application. An 
application is usually supported by a number of layered 
platforms (such as virtual machine, operating system, 
middleware, communication software, hardware, 
network), each one contributing to the overall 
performance of the system. Platform models are 
usually layered, each providing services to the layers 
above, and requiring services from the layers below. 
The application model corresponding to a given 
platform, named Platform-Specific Model, is obtained 
by transforming the application PIM, as shown in 
Figure 7(a); the transformation is guided by 
information about the respective platform, given as a 
Platform Model (PM). Figure 7(a) illustrates a chain of 
PIM-to-PSM transformations (one for each layered 
platform). Since PSM1 obtained for platform i=1 is 
independent of its underlying platform 2, therefore it 
can be denoted as PIM2. Similarly for any i=1 to n, 
PSMi can also be denoted as PIMi+1. The last 
transformation in the chain generates code from the 
last PSM. 

One of the SPE goals in the context of MDD is to 
generate an overall performance model from a set of 
input models: an application PIM with performance 
annotations, plus a set of PMs for the underlying 
platforms, which should come with reusable 
performance annotations. 

The purpose of the SPE model transformation chain 
shown in Figure 7(b) is different from the traditional 
MDD, as the target is a performance model rather than 
code. The SPE transformations can be approached in 
two ways: (i) follow the transformation chain from 
PIM to the last PSM in the software domain, then 
transform the last PSM into a performance model, as in 
Figure 7(b), or (ii) transform all input UML models 
into corresponding performance model fragments, then 
compose them into an overall performance model (the 
last composition taking place in the performance 
domain). In both cases, the transformation has to deal 
with the composition of performance annotations. The 
advantage of integrating the SPE model 
transformations into the MDD process is that software 
artifacts and performance models will be kept coherent 
and synchronized throughout the development process; 
this will simplify considerably the SPE activities.  



             

The platform models do not have to be detailed and 
complete, as their role is to provide guidance for the 
PIM to PSM transformation rather than to give a full 
description of the platform details. Most probably, each 
platform should be characterized by the services it 
provides. The question is what abstraction level is 
enough. It is desirable to capture the most relevant 
performance characteristics of each platform, without 
providing unnecessary details. Also, it is possible that 
the PM abstraction level required for code generation 
is different from the level required for performance 
analysis. Since MDD is based on the platform-
independence concept, it would be desirable to use 
separation of concerns when describing the 
performance contributions of each platform to the 
overall system performance. Thus, another SPE 
research challenge in the context of MDD is to define 
performance annotations for a given platform that are: 
a) reusable, and b) separated form the other platforms 

For instance, it would be useful to describe separately 
the performance contribution of a J2EE platform from 
the underlying operating system and hardware 
platforms. This could be achieved by using parametric 
annotations that express resource demand in one layer 
as functions of the services offered by the immediate 
underlying layer. However, with such an approach, 
vertical dependencies between platforms that are not 
immediate neighbours may be lost. 

Complex software systems are usually built from 
components. Even though component-based 
development is not limited to MDD, it is important to 
address the question of reusable components in this 
context. The novelty here is to use component PIMs 
that will be composed into an application PIM. This 
constitutes a “horizontal” composition at the 
application level, as opposed to a “vertical” 
composition of an application with its supporting 
platforms. 

 
Figure 7. MDD model transformations for generating (a) code, and (b) performance model 
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8. Optimization 
 
A prime goal of future work is automatic 

performance optimization of architecture, design and 
run-time configuration. We see optimization as an 
extension of tuning, to include more fundamental 
changes to the system. 

 
8.1. Design optimization 

A first approach uses methods, not yet well worked 
out, to optimize design decisions represented in 
performance models. Manual search within this 
approach is described in [66] and [83]. An evolutionary 
approach could apply automated search techniques to 
models derived from the specification, with results fed 
back into the UML. Alternatively the search could be 
carried out on the UML design, with evaluation by 
models. The design can be parameterized, so 
optimization can be applied to the parameter values.  

A second constructive approach is to begin from the 
requirements in the form of scenarios, and proceed to 
optimally cluster operations and data into objects and 
concurrent processes, also selecting communications 
patterns subject to various constraints (such as mutual 
exclusion). 

Both approaches can be adapted to re-use of 
component and platform services with known 
properties, applying optimization to the transformation 
steps which add these features. In both cases also there 
are design decisions (such as storage mapping) that are 
below the level of abstraction in the model, which will 
perhaps be evaluated and optimized by running small 
measurement experiments on prototypes, or by 
applying general rules based on the context. 

Both approaches also require some way to provide 
defaults for the configuration decisions discussed next, 
since performance can only be evaluated for a 
complete system.  

 
8.2. Configuration optimization 

 
Configuration decisions are applied at load and run 

time to adapt the software to its workload, platform 
and environment. Examples of decisions needing 
optimization include replication levels of servers and 
data [28], allocation of distributed processes to 
processors [32], to priorities [85]. Further candidates 
include buffer and thread pools [83], [43], middleware 
parameters [23], and virtual machine parameters. The 
future is expected to include systematic and efficient 
optimization approaches covering all these problems. 

For complex products, optimization problems yet to 
be solved include selection of alternative components 

from a product line, and selection of their configuration 
parameters and installation parameters. 

In [70] is presented an experimental methodology to 
evaluate the statistical significance of configurable 
parameters in e-commerce systems. Measurements are 
used to identify key configuration parameters that have 
a strong impact on performance, which are ranked in 
order of relevance. The impact of various parameters 
on the types of requests submitted to the site is also 
analyzed.  

A different experimental approach to detect 
performance degradation in software systems with 
large configuration spaces is proposed in [84]. 
Formally designed experiments, called screening 
designs, are run with the goal of identifying important 
performance effects caused by the simultaneous 
interaction of n configuration parameters (n = 1,2,...).  
The conclusion was that screening designs can 
correctly identify important options used to produce 
reliable performance estimates across the entire 
configuration space, at a fraction of the cost of 
exhaustive testing.  

In general, such experimental methods require a lot 
of computing power, so heuristics may be necessary to 
select the most promising experiments. 

 
9. Additional Concerns 

 
Agile Programming is becoming a mainstream 
approach to development, in which very frequent 
releases are made with small increments in function. 
Ancillary documents tend to be ignored, to concentrate 
on code. Quality control in agile programming is a 
current issue, for instance the role of test cases, and 
performance engineering fits into this concern. 
Performance specifications may not even be known for 
each incremental release. 

Given the importance of performance to final 
products, a way must be found to do SPE in agile 
development, as discussed in [11]. This can be through 
test procedures or through models based on suitable 
design documents (e.g. based on Agile Modeling, e.g. 
[44]), or on test executions. The Performance 
Knowledge Base proposed here may be well-adapted 
to agile development, because it can be driven from the 
code (through tests and automatically generated 
models) and it accumulates history that is useful. 
Design for Evaluation, Predictability and 
Adaptation: Progress can be expected in software 
design ideas that make it easier to evaluate and manage 
performance, something like design for testability.  

A framework called PACC, Predictive Assembly 
from Certifiable Components [47], addresses the 
predictability of properties (including performance)  of 



             

systems built from components, applied to real-time 
system assembly. It shows that some properties of 
some kinds of components can be predicted with 
certainty. This is a question with wide practical 
resonance. 

Adaptive or autonomic systems make performance 
engineering decisions on the fly, by optimizing the 
configuration of a running system.  Software design for 
adaptation must include reflective capabilities to 
monitor its performance, strategies for adaptation, and 
handles on the system for effecting the necessary 
changes. Design considerations in adaptive computing 
are considered in [32]. 

Some strategies for adaptation are based on simple 
rules and simply modify provisioning of processors, 
but others use performance models as a basis for 
decisions [1]. Since the system may be changing, the 
use of models and tracking of model parameters for 
autonomic control was addressed in [81]. These 
models can be derived during development. 
Integration with other evaluations: Other “non-
functional” properties of software systems may also be 
evaluated from design documents, and it is natural to 
look ahead to integrating them with performance 
evaluation. For example security mechanisms often 
have a heavy performance penalty, and a joint 
evaluation would support a tradeoff between security 
effectiveness and performance cost. Reliability/ 
availability concerns have long been integrated with 
performance analysis in “performability” modeling 
(e.g. [72]), for similar reasons.  

Ensuring system performance over the life of the 
software brings in concerns which are usually thought 
of as capacity planning, deployment or configuration, 
and management. The boundaries are not sharp, for 
instance capacity planning affects requirements for the 
software, and configuration must be considered in 
evaluation as described just above.  
Scalability: this is a complex issue that rests heavily 
on performance limitations and bottlenecks. Research 
into scalable design approaches and patterns would be 
fruitful for the field. 

 
10. Conclusions 

 
Software Performance Engineering needs further 

development in order to cope with market requirements 
and with changes in software technology. It needs 
strengthening in prediction, testing and measurement 
technology, and in higher-level techniques for 
reasoning and for optimization. 

The authors’ main conclusion is that progress 
requires a convergence of approaches based only on 
measurement, with those that exploit performance 

models. The essential role of models is to integrate 
partial views, to extrapolate results from measured 
data, and to explore increments in the design. 

Several areas of technical improvement in SPE have 
been identified for early progress. Further automation 
of data collection and better methods for deducing 
causality look promising. More powerful and general 
approaches to problem diagnosis are necessary and 
possible. Better methods for deriving and updating 
models are needed for the convergence above. 
Composition and transformation of models will 
support component-based systems and MDD, and 
performance optimization will help to exploit the 
models we can build. 

Performance knowledge tends to be fragmented, and 
to be quickly lost. The authors propose a Performance 
Knowledge Base to integrate different forms of data 
which were obtained at different times, to support 
relationships between them, and to manage the data 
over time, configurations and software versions. This 
Performance Knowledge Base could act as a data 
repository and also contain results of analyses. It could 
be searched by designers and by applications to find 
relevant data for particular SPE purposes; we could see 
it as an application of Data Mining to software 
performance. It is suggested here that the Knowledge 
Base should be organized around performance model 
concepts. 

SPE extends out from development into system 
deployment and management, and these efforts can 
also be integrated into the Knowledge Base, from 
which they can feed back into development 
increments. 
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