

The Future of Software Performance Engineering

Murray Woodside, Greg Franks, Dorina C. Petriu
Carleton University, Ottawa, Canada.
{cmw | greg | petriu}@sce.carleton.ca

Abstract

Performance is a pervasive quality of software
systems; everything affects it, from the software itself
to all underlying layers, such as operating system,
middleware, hardware, communication networks, etc.
Software Performance Engineering encompasses
efforts to describe and improve performance, with two
distinct approaches: an early-cycle predictive model-
based approach, and a late-cycle measurement-based
approach. Current progress and future trends within
these two approaches are described, with a tendency
(and a need) for them to converge, in order to cover
the entire development cycle.

1. Introduction

Software performance (considered here as

concerned with capacity and timeliness) is a pervasive
quality difficult to understand, because it is affected by
every aspect of the design, code, and execution
environment. By conventional wisdom performance is
a serious problem in a significant fraction of projects.
It causes delays, cost overruns, failures on deployment,
and even abandonment of projects, but such failures
are seldom documented. A recent survey of
information technology executives [15] found that half
of them had encountered performance problems with at
least 20% of the applications they deployed.

 A highly disciplined approach known as Software
Performance Engineering (SPE) is necessary to
evaluate a system’s performance, or to improve it. In
this paper we propose the following SPE definition:

Definition: Software Performance Engineering
(SPE) represents the entire collection of software
engineering activities and related analyses used
throughout the software development cycle, which
are directed to meeting performance requirements.

Two general approaches found in literature are
discussed here, both under the SPE umbrella. The
commonest approach is purely measurement-based; it
applies testing, diagnosis and tuning late in the

development cycle, when the system under
development can be run and measured (see, e.g.
[2][4][8][9]). The model-based approach, pioneered
under the name of SPE by Smith [65][67] (see also [7]
for a survey of modeling approaches), creates
performance models early in the development cycle
and uses quantitative results from these models to
adjust the architecture and design with the purpose of
meeting performance requirements. The SPE definition
proposed in this paper is broader than the one given in
[65][67], in that it also includes late-cycle
measurement-based and model-based approaches.

An analogy with other engineering disciplines
suggests that design by early calculations (e.g., by
models) is the way forward, but also that it must be
integrated with measurements. In the case of SPE, this
integration has been elusive.

Like other software engineering activities, SPE is
constrained by tight project schedules, poorly defined
requirements, and over-optimism about meeting them.
Nonetheless adequate performance is essential for
product success, making SPE a foundation discipline in
software practice.
Resources. A resource is a system element that offers
services required by other system elements.
Performance results from the interaction of system
behaviour with resources, thus SPE gives first-class
status to resources of all kinds. Resources include:
• hardware (CPU, bus, I/O and storage, network)
• logical resources (buffers, locks, semaphores)
• processing resources (processes, threads)

A determining factor for performance is that
resources have a limited capacity, so they can
potentially halt/delay the execution of competing users
by denying permission to proceed. Quantifying such
effects is an important task of SPE.

Full SPE capability implies bringing resources into
models of software, as in the standard “UML Profile
for Schedulability, Performance and Time” (SPT) [52]
and its planned replacement “UML Profile for
Modeling and Analysis of Real-Time and Embedded
systems” (MARTE) [53]. Important properties of a
resource are its multiplicity (units that can be assigned

to requests, as in a buffer pool) and its scheduling
discipline.

This paper introduces SPE domain and process
concepts, surveys the current status of both approaches,
and then considers movement towards convergence of
measurement and modeling methods, into a single
Performance Knowledge Base. This is the most
prominent feature of our view of the future, but
additional aspects of future development are also
considered.

The survey of current work given here is only a
sampling of papers and is far from complete.

2. SPE domain and process

The elements of the SPE domain are

• system operations (Use Cases) with performance
requirements, behaviour and workloads,

• behaviour, defined by scenarios (e.g. by UML
behaviour specifications),

• workloads (defining the frequency of initiation of
different system operations),

• system structure, the software components
• resources, hardware and software.

Performance engineering normally confines itself to
a subset of system operations (for which performance
is of concern). These operations with their relative
weight make up the operational profile (see, e.g. [2]).

Smith and Williams describe an SPE process using
early modeling, based on significant experience [66];
Barber describes a process using measurement [9].
SPE processes are also discussed in [5][49][75]. In [77]
a taxonomy of SPE processes was based on how they
use three kinds of information: structural (called
“maps”), behavioural (“paths”) and resources.

2.1. SPE activities

Any SPE process is woven into software

development and includes some or all of the following
activities:
Identify concerns (important system operations and
resources). The qualitative analysis of factors affecting
performance goals is described in [14].
Define and analyze requirements: Define the
operational profile, workload intensities, delay and
throughput requirements, and scenarios describing
behaviour. UML behaviour notation or special scenario
languages are used (e.g. execution graphs [65], Use
Case Maps [56], User Community Modeling Language
(UCML) for performance test workloads [10]). The
scenarios are the basis for designing performance tests
[10], and for early performance models [57][66][56]
[58][11].

Predict performance from scenarios, architecture, and
detailed design, by modeling the interaction of the
behaviour with the resources. Modeling techniques
were surveyed in [6] This activity is discussed in
Section 4 below.
Performance testing on part or all of system, under
normal loads and stress loads [8]. The use of test data
to solve problems is the subject of [9]. This activity is
discussed in Section 3 below.
Maintenance and evolution: predict the effect of
potential changes and additions. Examples include:
impact of added features [64], impact of a platform
migration [2], comparison of web application platforms
[36].
Total system analysis: consider the planned software
in the complete and final deployed system. The present
work is related (and seamlessly connects) to this larger
perspective, but concentrates on software development.
An example of total analysis for future system
planning is given in [60].

The SPE activities are summarized in Figure 1. The
vertical placement indicates whether they are
performed earlier or later in the software lifecycle:
activities at the top correspond to early stages, at the
bottom to late stages.

Figure 1 SPE activities

Lessons from the current work. There are many
weaknesses in current performance processes. They
require heavy effort, which limits what can be
attempted. Measurements lack standards; those that
record the application and execution context (e.g. the
class of user) require source-code access and
instrumentation and interfere with system operation.
There is a semantic gap between performance concerns
and functional concerns, which prevents many
developers from addressing performance at all. For the
same reason many developers do not trust or
understand performance models, even if such models
are available. Performance modeling is effective but it
is often costly; models are approximate, they leave out
detail that may be important, and are difficult to
validate.

Operational Profile Perf. Requirements Scenarios

Analyze Early Perf. Models Perf. Test Design

Product architecture and design
(measurements and mid/late models: evaluate, diagnose)

Perf. Testing

Product evolve/maintain/migrate
(late Perf. models: evaluate alternatives)

Total
System

Analysis

The survey of information technology executives
[15], which found that half of them had had
performance problems with at least 20% of the
applications they deployed, commented that many
problems seem to come from lack of coverage in
performance testing, and from depending on customers
to do performance testing in the field.

Significant process issues are unresolved. Detail in
measurement and modeling must be managed and
adapted. Excessive detail is expensive and creates
information overload, while insufficient detail may
miss the key factor in a problem. Information has to be
thrown away. Models and measurements are discarded
even though they possibly hold information of long-
term value.

3. Progress in measurement, debugging

and testing

Measurement is used by verification teams to ensure

that the system under test meets its specifications, by
performance modelers to build and validate models,
and by designers to find and fix hot-spots in the code.
Interest in the measurement of the performance of a
computer system ranges back to the development of
the very first systems, described in an early survey
paper by Lucas [39]. Today, the state of industrial
performance measurement and testing techniques is
captured in a series of articles by Scott Barber [8][9]
including the problems of planning, execution,
instrumentation and interpretation.

For performance test design, an important issue is to
determine the workload under which the testing is
done. An approach is to run the performance tests
under similar conditions with the expected operational
profile of the application in the field [9]. Briand and
co-workers have pioneered the use of models to create
stress tests for time-critical systems, by triggering
stimuli at strategic instants [22].

This section will first describe some of the tools and
techniques used to measure the performance of a
system. Next, problems that exist today which impede
the adoption of the tools will be described. Finally,
future directions are identified.

3.1. Tools

The tools used by performance analysts range from

load generators, for supplying the workload to a
system under test, to monitors, for gathering data as the
system executes. Monitoring itself can be performed
through hardware, software, or a combination of the
two. The focus of this paper will be on software

monitoring, which itself can be broken down into two
broad categories: instrumentation and profiling.
Instrumentation is the insertion of probes into a
system to measure some sort of events. Some
instrumentation is usually built into the host operating
system and minimally indicates the utilization of the
various devices including the CPU. Other
instrumentation is added manually to applications.
Frameworks such as the Application Response
Measurement (ARM) application programmer
interface [29] are beneficial as they form a common
substrate to which disparate programs can gather
performance information.

Instrumentation can also be added automatically.
Aspect-Oriented programming can be used to
automatically insert instrumentation code into
applications [19]. Quantify [26] adds probes to object
code at the beginning and ending of basic blocks of
programs to count the number of cycles executed. The
Paradyn tool [47], carries this one step further, by
instrumenting the actual executables dynamically.
Profilers. A program profile is a histogram of the
execution of a program [31]. It can be generated using
instrumentation, as is the case with Quantify, through
statistical sampling, or by running the program on a
virtual machine and counting the execution of the
actual instructions [50].

3.2. Problems

The use of performance tools is well established at

the verification level, where it used to ensure that QoS
requirements are being met. However, it is less well
established at earlier stages in the life-cycle of a
product. Malony and Helm [42] have identified two
obstacles in particular to the adoption of these tools
a) a lack of theoretical justification for the methods

for improving performance that work, and why
they do so. Tools will provide measurement data,
but expert interpretation is still required to fix
problems.

b) a conflict between automation and adaptability in
that systems which are highly automated but are
difficult to change, and vice versa. As a result no
tool does the job the user needs, so the user goes
and invents one. Further, various tools all have
different forms of output which makes
interoperability challenging at best.

c) in distributed systems, events from different
systems need to be correlated. Today’s systems are
often composed of sub-systems from different
vendors. Establishing causality across the system is
difficult.

3.3. The future

Performance engineering is gaining attention, as

companies discover to their detriment that the
performance of their applications is often below
expectations. In the past, these problems were not
found until very late in the development of a product as
performance validation, if any, was one of the last
activities done before releasing the software. With
agile processes, the problem is unchanged if not worse
[11]. Thus early warning of performance problems is
still the challenge for SPE.

Better tools for measurement and modeling are one
direction we shall examine. Tracing captures CPU
demands quite well, but operating system support is
needed to trace operations to the various I/O devices.
Distributed systems require correlating traces between
nodes. The ARM framework [29] supports this
capability today, but it is still up to developers to write
the correlation code. Advances in logical clocks [25]
can aid this work.

Developers and testers use instrumentation tools to
help them find problems with systems. However, users
depend on experience to use the results, and this
experience needs to be codified and incorporated into
tools. Better methods and tools for interpreting the
results and diagnosing performance problems are a
future goal.

To be successful, earlier performance diagnosis
requires the use of models for insight into the sources
of problems. Model calibration may rest on improved
tracing technology. Rapid cheap modeling techniques
are a desirable goal.

At present, there is very little standardization in file
and model formats and protocols used in performance
engineering. The ARM framework is making progress
in terms of tracing, the Performance Model
Interchange Format is being proposed for queueing
models [68], and the UML Profile for Schedulability,
Performance, and Time Specification [52] has been
adopted for UML software design tools. Most tools,
however, do not conform to these formats. Further,
these formats themselves may not be sufficient to
cover the measurement and analysis domain.

Workload modeling and operational profiles are a
key part of both load testing and predictive modeling.
A discussion of how critical a good workload model is,
and how it can be constructed, is found in [2][33].

Dynamic optimization can use measurements fed
back to compilers for tuning, for off-line placing code
and other optimizations, and for cache analysis.
Recently instrumentation was described for caches, to
estimate the effect of an increment in the cache size
from the application behaviour while it runs [76], and
to control the cache size.

Performance models are often difficult to construct,
even with a live system, despite the presence of tools to
actually measure performance. In the future, model
building will become much more automated, and
output becomes standardized, and the conversion
process between measurement information and
performance model becomes more practical.
Ultimately, the model and measurement information
will be fed back into design tools, so that performance
issues are brought to the forefront early in the design
process.

4. Prediction of performance by models

Performance models describe how system

operations use resources, and how resource contention
affects operations. The types of models used for
software, including queueing networks, layered
queues, and types of Petri Nets and Stochastic Process
Algebras, were surveyed recently by Balsamo et al [7].

The special capability of a model is prediction of
properties of a system before it is built, or the effect of
a change before it is carried out. This gives a special
“early warning” role to early-cycle modeling during
requirements analysis. However as implementation
proceeds, better models can be created by other means,
and may have additional uses, in particular
• design of performance tests
• configuration of products for delivery
• evaluation of planned evolutions of the design,

recognizing that no system is ever final.
Incremental change: models are ideal for evaluating
the performance impact of changes which can be
implemented in a variety of ways.
Model validation: validation is critical for a model
created to represent an existing system in detail. For a
planned system, on the contrary, it is a non-issue. The
model simply summarizes the designer’s knowledge.
Like a project budget, which also represents the future,
it represents knowledge with uncertainty which is
validated by experience in using it. Like a budget, it
has an element of risk.

4.1. Performance models from scenarios

Early performance models are usually created from

the intended behaviour of the system, expressed as
scenarios which are realizations of Use Cases. The
term “scenario” here denotes a complex behaviour
including alternative paths as well as parallel paths and
repetition. The performance model is created by
extracting the demands for resource services. This has
been described for different source scenario models
and target performance formalisms:

• from Markov models of sequence, to queueing
models [63][55]

• from execution graphs to queueing models
[66][15]

• from Message Sequence Charts and SDL to
simulations [30][49]

• from UML: as surveyed in [80]
• from team expertise, as described by Smith and

Williams [66].
These works clearly show the feasibility of model
creation. Important challenges remain however (1) in
making the process accessible to designers, which is
addressed by the SPT profile [52] (giving a software
design context for the annotations); (2) in creating
interoperability between design and performance tools
(the model interchange language in [68] is a promising
development in this direction); (3) in providing models
for parts of the systems not described by the designer;
and (4) in providing a scalable and robust model.

Annotated UML specifications are a promising
development. The annotations include:
• the workload for each scenario, given by an arrival

rate or by a population with a think time between
requests,

• the CPU demand of steps,
• the probabilities of alternative paths, and loop

counts,
• the association of resources to the steps either

implicitly (by the processes and processors) or
explicitly.

As an illustration, Figure 2 shows a set of applications
requesting service from a pool of server threads
running on a multiprocessor (deployment not shown).
Part (a) shows the scenario modeled as a UML
sequence diagram with SPT annotations, (b) shows a
graph representing the scenario steps, and (c) shows
the corresponding layered queueing network (LQN)
model. Studies in [44] [56] [58] [72] use such models.

At a later stage, scenarios may be traced from
execution of prototypes or full deployments, giving
accurate behaviour. Models can be rebuilt based on
these experimental scenarios [24][78], combined with
measured values of CPU demands.

Schedulability analysis of time-critical systems [32]
is a special kind of scenario-based analysis, which is
beyond the scope of this paper.

4.2. Performance models from objects and
components

A different approach can be used when the

architecture is in place. A performance model can be
built based on the software objects viewed from a

performance perspective. A pioneering contribution in
this direction defined a “performance abstract data
type” for an object [13], based on the machine cycles
executed by its methods.

rqst apps(100)

getData
[50]

server(20)
[30]

Snode(2)

Anode
(1)

 (c)

<<PAresource>>
{PAcapacity=100}

apps

<<PAresource>>
{PAcapacity=20}

server

<<PAclosedLoad>>
{PApopulation=$N

PAextDelay = (1,’s’)}

 getData
 <<PAstep>>
{PAdemand=(30,’ms’)
}

<<PAstep>>
{PAdemand=(50,’ms’)}

rqst

 (a)

Start

rqst

acquire
(server)

getData

release
(server)

End

 (b)
Figure 2. Annotated UML, Scenario Model, and

Performance Model

To create a performance model, one traces a

response from initiation at a root object to all the
interfaces it calls, proceeding recursively for each call.
Queueing and layered queueing models were derived
based on objects and calls in [55] [44] and [83]. Model
parameters (CPU, call frequencies) were estimated by
measurement or were based on the documentation plus
expertise.

Object-based modeling is inherently compositional,
based on the call frequencies between objects. This
extends to subsystems composed of objects, with calls
between subsystems. In [2] an existing application is
described in terms of UNIX calls, and its migration to a
new platform is evaluated by a synthetic benchmark
with these calls, on the new platform. This study
created a kind of object model, but then carried out
composition and evaluation in the measurement
domain. The convergence of models and measurements
is an important direction for SPE.
The object-based approach to performance modeling
can be extended to systems built with reusable
components. Composition of submodels for
Component-Based Software Engineering [71] was
described in [11] [36] [59] [62] [82]. Issues regarding
performance contracts between components are
discussed in [59]. Components or platform layers can
be modeled separately, and composed by specifying
the calls between them. For example, in [36] a model
of a J2EE application server is created as a component
that offers a large set of operations; then an application
is modeled (by a scenario analysis) in terms of the
number of calls it made to each operation.

Figure 3. Simplified domain model for a converged SPE process

The quantitative parameters of the performance model
for the J2EE server - and the underlying operating
system and hardware platform - were obtained by
measurements for two different implementations.

The main challenge regarding performance
characterization of reusable components stem from the
fact that the offered performance depends not only on
the component per se, but also on its context,
deployment, usage and load. It seems obvious that such
approaches apply similarly to Generative techniques
[17] and to Model-Driven Development; this point is
followed up in Section 6.

The completion of performance models made from a
software design, by adding components that make up
its environment but are outside the design, is also
largely based on composition of submodels [79]. This
is an aspect of Model-Driven Development, addressed
below.

5. Convergence of the measurement and
modeling approaches

The present state of performance engineering is not

very satisfactory, and better methods would be
welcome to all. One way forward is to combine
knowledge of different kinds and from different
sources into a converged process. Figure 3 outlines
such a process, with the main concepts and their
relationships. The notation is based on the newly
adopted OMG standard Software Process Engineering
Metamodel (SPEM) [54]. At the core of SPEM is the
idea that a software process is a collaboration between
abstract active entities called ProcessRoles (e.g., use-
case actors) that perform operations called Activities on
concrete entities called WorkProducts. Documents,
models, and data are examples of WorkProduct
specializations. Guidance elements may be associated
to different model elements to provide extra
information. Figure 3 uses stereotypes defined in [54].
Concepts related to the model-based approach appear

improves_estimates

<<WorkProduct>>
Performance-related

Conclusions

<<Document>>
Design

Specification

<<Activity>>
Performance

Model Building

<<WorkProduct>>
Performace

Model

<<Activity>>
Model Solving

<<WorkProduct>>
Performance Test

Results

<<Document>>
Scenarios

<<WorkProduct>>
Performance

Model Results

<<Process>>
Develop & Deploy

System

<<Activity>>
Performance
Test Design

<<Activity>>
Monitor Live

 System

<<Activity>>
Run Performance

Tests

<<WorkProduct>>
Monitoring

Results

<<Activity>>
Interpretation of Performance

Results
optimizes

<<Document>>
OperationalProfile

<<Document>>
PerfRequirements

<<WorkProduct>>
ParameterEstimate

<<Guidance>>
Expertise

compares

guides

diagnosis

validates

on the left of Figure 3, and to the measurement-based
approach on the right. A distinction is made between
performance testing measurements (which may take
place in a laboratory setting, with more sophisticated
measurement tools and special code instrumentation)
and measurements for monitoring live production
systems that are deployed on the intended target
system and used by the intended customers. The
domain model from Figure 3 is very generic. For
instance, there is no indication whether different
activities (such as Performance Model Building) are
done automatically through model transformations or
“by hand” by a performance analyst. Some of these
aspects will be discussed in the following sectionsIn a
convergence of data-centric and model-centric
methods, data (including prior estimates) provides the
facts and models provide structure to organize and to
extract significance from the facts. Our exploration of
the future will examine aspects of this convergence.
Models have a key role. They integrate data and
convert it from a set of snapshots into a process

capable of extrapolation. To achieve this potential we
must develop robust and usable means to go from data
to model (i.e., model-building) and from model to
“data” (solving to obtain predictions). We must also
learn how to combine measurement data interpretation
with model interpretation, and to get the most out of
both.
.Capabilities supported by convergence include:
• efficient testing, through model-assisted test design

and evaluation
• search for performance-related bugs,
• performance optimization of the design
• scalability analysis
• reduced performance risk when adding new

features,
• aids to marketing and deployment of products.
The future developments that will provide these
capabilities are addressed in the remainder of this
section. A future tool suite is sketched in Figure 4.

Specification tools
requirements
design (e.g. UML)
transformation
assembly

Perf. Model
Assembler

tools

Perf. Model
Builder

tools

MDD Transformation and
Component Assembly

tools Performance Knowledge Base
(Data Repository)

Optimization
tools

Perf. Model
Solvers

Perf. Submodel
Library

Platform and Component
Specification Library

Performance
Test

Environment

Performance
Test Design

Visualization and Diagnosis tools

Software Performance Model
Test and

Measurement

Figure 4: Tools for a Future Converged SPE Process, linked to Software Development Tools

6. Technical developments

Future technical developments in SPE can be placed

within a converged process, and illustrate the
opportunities offered by convergence of measurement
and model based thinking.

6.1. Visualization and diagnostics

Understanding the source of performance limitations

is a search process, which depends on patterns and
relationships in performance data, often revealed by
visualizations. Promising areas for the future include

better visualizations, deep catalogues of performance-
related patterns of behaviour and structure, and
algorithms for automated search and diagnosis.

Present visualization approaches use generic data-
exploration views such as Kiviat graphs (e.g. in
Paradyn [47]), traffic intensity patterns overlaid on
physical structure maps [47], CPU loading overlaid on
scenarios, and breakdowns of delay [66]. Innovative
views are possible. For example, in [60] all kinds of
resources (not just the CPU) are monitored, with tools
to group resources and focus the view. The challenge
for the future is to visualize the causal interaction of

behaviour and resources, rather than to focus on just
one or the other.
Bottleneck identification, a search for a saturated
resource which limits the system, is a frequent
operation. In [21], Franks et al describe a search
strategy over a model, guided by its structure and
results, and detects under-provisioned resource pools
and over-long holding times. It combines properties of
resources and behaviour, for a “nested” use of
resources. It scales to high complexity, is capable of
partial automation, and could be adapted to interpret
measured data. A multistep performance enhancement
study using these principles is described in [83].
Another search strategy purely over data ([9], part 7)
focuses on reproducing and simplifying the conditions
in which the problem is observed. The actual diagnosis
of the cause (e.g. a memory leak) depends on designer
expertise.

A bottleneck search strategy combining the data and
the model could detect more kinds of problems (e.g.
both memory leaks and resource problems) and could
provide automated search assistance.

Patterns (or anti-patterns) related to bottlenecks have
been described by Smith and Williams [66] and others
(e.g., excessive dynamic allocation, “one-lane bridge”).
For the future, more patterns and more kinds of
patterns (on measurements, on scenarios or traces) will
be important. Patterns that combine design, model and
measurement will be more powerful than those based
on a single source. A sketch of such a “super-pattern”
for bottleneck discovery is as follows:
Bottleneck pattern: Resource R is a candidate
bottleneck if:
1. it is used by the majority of scenarios,
2. many scenarios that use it are too slow,
3. it is near saturation (>80% of its units are busy),
4. resources that are acquired earlier and released

later are also near saturation (from [21]).

Candidates can be resolved by problem-solving
strategies, and by probing with more measurements.

Automated assistance to diagnose and even correct
bottleneck problems could give (for the system level)
the capability of optimizing compilers. This might be
part of a high-level process such as MDD, (Section 6),
and will depend on combining model-level abstractions
with data.
Scalability analysis and improvement is largely a
matter of identifying bottlenecks that emerge as scale
is increased, and evolving the architecture. Future
scalability tools will employ advanced bottleneck
analysis but will depend more heavily on models, since
they deal with potential systems.

6.2. Model-based knowledge integration

The knowledge created during performance studies

tends to be fragmented and lost. Great value could be
obtained by organizing and retaining it in a
“Performance Knowledge Base” shown in Figure 4,
including performance data and model predictions
across time and across system versions. Such a
knowledge base could be organized around a
generalized notion of a performance model. This
model is more than just a calculation to predict
performance values. It is an abstraction created to
support reasoning and exploration, and it describes the
system with different values of factors that govern and
modify performance. Factors can include variations in
design, workload, component combinations,
configuration, and deployment.

 Every system exists in many actual and potential
versions, over time and across alternative designs and
configurations. The workload and behaviour depend on
the context of operation (scale of deployment, domain
of use, time of day...). One model exists as a set of
cases, with pointers to trace each case back to the
factors which define it. Factors include assumptions
and expectations, specification documents, scenarios,
performance measures and requirements, test data,
intended deployment and context of operation. The
mathematical definition of the predictive function will
vary from case to case, both in parameters and in
structure, and the model should document how these
were derived from the governing factors.

Figure 5. Modeling on demand and the

 model base

 To make modeling maintainable and in sync with the
current state of a system, it should be possible to
construct a model case on demand, from the current
state of the factors. The recipe for doing this is a
“Model Base”, consisting of model structures with
pointers to sources of parameters, and rules to govern
the creation of the appropriate model for the case
desired. The Model Base, factors, parameter data, and
rules are all elements of the Performance Knowledge

Factors Factors Data

Model Base

CaseCases

Data

Results

...
d

...
d

traceability links

model-building tool

Model
structure

Base, and the calculator aspect of the model is kind of
a projection of it. Model-building tools have a key role
in such an approach.

6.3. Begin with requirements

Requirements analysis for performance can be

enhanced by greater use of models; we can see the
birth of the necessary tools, especially in the UML SPT
Profile [52] for annotating specifications, and tools to
build models from it [6] [37] [58] [80] [82]. Uses
include specifying acceptance tests, judging the
feasibility of a requirement, tradeoff analysis [14], and
well-formedness (a search yielded no references on this
last item, yet anecdotal evidence for it is widespread).

6.4. More efficient testing

Efficient testing covers the operational profile and

the resources of interest with minimum effort needed
to give sufficient accuracy. Accuracy is an issue
because statistical results may require long runs, and it
can be affected by other factors in the test design such
as the load intensity and the patterns of request classes
used. For example, systems under heavy load show
high variance in their measurements, which contributes
to inaccurate statistical results. It may be more fruitful
to identify the heavily-used resources at moderate
loads and (for purposes apart from stress testing) use
the results to extrapolate to heavy loads using a
performance model.

A model could assist in test design to ensure that all
resources are used in some tests (resource coverage)
and that effort is not wasted by running many
experiments in the same saturation regime. At present
coverage measures are not well-developed for
performance tests. The model could be used to scale
workloads, to select test configurations which are
sensitive to system-features of interest, and to calibrate
stub services with timing features.

More effort is also required in performance testing
tools. The lack of standards for tool interoperation
increases the effort to gather and interpret data, and
reduces data-availability for new platforms.
Lightweight and automated instrumentation are old
goals that will continue to demand attention. Load
drivers are at present well-developed in commercial
tools, but more open tool development could speed
progress.

6.5. Better models and solvers: goals

Performance models will be improved as regards

capability (e.g., sensitivity analysis, scalability, models

of time-varying systems), and numerical methods.
Models depend on assumptions, and the sensitivity of
the results to the assumptions is sometimes not known.
For instance, an assumption of exponential service
demand is only occasionally sensitive, (e.g., in finding
the probability of timeout). Future models should
provide built-in sensitivity calculations and warnings.

Analytic performance models based directly on
states and transitions do not (yet) scale well due to
state space explosion. Recent progress in numerical
solution methods will continue, including better
approximations. Models based on queues scale better,
but use queueing approximations which need to be
improved, notably for priorities, and for new
scheduling disciplines such as fair sharing. Time-
varying features due to mobility or to adaptation (in the
run-time or in system management) will require new
kinds of models and approximations.

Analytic model solvers sometimes fail due to bad
numerical properties. By analogy with the handling of
stiff systems of equations, there might be automatic
fallback to a model that does not have such a problem.

Simulation modeling is steadily becoming more
practical with the availability of more powerful
inexpensive computers. However simulation model-
building is still expensive, sometimes comparable to
system development, and detailed simulation models
can take nearly as long to run as the system.
Simulation would be enhanced by automated model-
building that includes significant abstraction (and thus
reduced run-times) [6].

An alternative to simulation is a kind of simplified
prototype, possibly combined with simulated
components. This has been explored (e.g., [5][30]) but
not perfected.

6.6. Efficient model-building tools

The abstractions provided by performance models

are valuable, but some way must be found to create the
models more easily and more quickly.

For performance models made early in the lifecycle
from specified scenarios, automated model-building
has been demonstrated [6] [37] [58] [80] [82] and is
supported by the UML profiles [52] [53]. The future
challenge is to handle every scenario that a software
engineer may need to describe, and every way that the
engineer can express them (including the implied
scenario behaviour of object call hierarchies, and the
composition of models from component designs).

The multiplicity of model formats hinders tool
development, and would be aided by standards for
performance model representations, perhaps building
on [69]. Interoperability of performance building tools
with standard UML tools is also helpful. For instance,

the PUMA architecture[80] shown in Figure 6 supports
the generation of different kinds of performance
models (queueing networks, layered queueing
networks, Petri nets, etc.) from different versions of
UML (e.g., 1.4 and 2.0) and different behavioural
representations (sequence and activity diagrams).
PUMA also provides a feedback path for design
analysis and optimization.

Mid and late-cycle performance models should be
extracted from prototypes and implementations. Trace-
based automated modeling has been described in
[24][27], including calibrated CPU demands for
operations [78]. Future research can enhance this with
use of additional instrumentation (e.g. CPU demands,
code context), efficient processing, and perhaps exploit
different levels of abstraction. Abstraction from traces
exploits certain patterns in the trace, and domain-based
assumptions; these can be extended in future research.

Any
specification

with
performance
annotations

Some type of
performance

model

Core
Scenario
Model
(CSM)

Performance
results and design

advice

Convert CSM
some performance

model language
(C2P)

Extract CSM
from this

specification
(S2C)

Explore
solution
space

Designer
/analyst

Figure 6 Architecture of the PUMA toolset [80]

7. Software performance in the context of
Model Driven Development

Model-Driven Development (MDD) is an evolu-

tionary step in software engineering that changes the
focus of software development from code to models, as
described in [20]. The Object Management Group
(OMG) uses the copyrighted term Model-Driven
Architecture (MDA) [51] to describe its initiative of
producing standards for MDD (such as UML, MOF,
XMI and CWM). MDD would be enhanced by the
ability to analyze non-functional properties of software
models [17]. This section discusses SPE research
challenges in the context of MDD.

MDD is based on abstraction and automation:
abstraction separates the model of the application

under construction from the underlying platforms, and
automation is used to generate the code from models.
A key notion in MDA is that of “platform
independence”: the business and application logic of
the software under development is represented
separately from the underlying platform technology by
a so-called Platform Independent Model (PIM). The
term “platform” refers to technological and
engineering details that are irrelevant to the
fundamental functionality of the application. An
application is usually supported by a number of layered
platforms (such as virtual machine, operating system,
middleware, communication software, hardware,
network), each one contributing to the overall
performance of the system. Platform models are
usually layered, each providing services to the layers
above, and requiring services from the layers below.
The application model corresponding to a given
platform, named Platform-Specific Model, is obtained
by transforming the application PIM, as shown in
Figure 7(a); the transformation is guided by
information about the respective platform, given as a
Platform Model (PM). Figure 7(a) illustrates a chain of
PIM-to-PSM transformations (one for each layered
platform). Since PSM1 obtained for platform i=1 is
independent of its underlying platform 2, therefore it
can be denoted as PIM2. Similarly for any i=1 to n,
PSMi can also be denoted as PIMi+1. The last
transformation in the chain generates code from the
last PSM.

One of the SPE goals in the context of MDD is to
generate an overall performance model from a set of
input models: an application PIM with performance
annotations, plus a set of PMs for the underlying
platforms, which should come with reusable
performance annotations.

The purpose of the SPE model transformation chain
shown in Figure 7(b) is different from the traditional
MDD, as the target is a performance model rather than
code. The SPE transformations can be approached in
two ways: (i) follow the transformation chain from
PIM to the last PSM in the software domain, then
transform the last PSM into a performance model, as in
Figure 7(b), or (ii) transform all input UML models
into corresponding performance model fragments, then
compose them into an overall performance model (the
last composition taking place in the performance
domain). In both cases, the transformation has to deal
with the composition of performance annotations. The
advantage of integrating the SPE model
transformations into the MDD process is that software
artifacts and performance models will be kept coherent
and synchronized throughout the development process;
this will simplify considerably the SPE activities.

The platform models do not have to be detailed and
complete, as their role is to provide guidance for the
PIM to PSM transformation rather than to give a full
description of the platform details. Most probably, each
platform should be characterized by the services it
provides. The question is what abstraction level is
enough. It is desirable to capture the most relevant
performance characteristics of each platform, without
providing unnecessary details. Also, it is possible that
the PM abstraction level required for code generation
is different from the level required for performance
analysis. Since MDD is based on the platform-
independence concept, it would be desirable to use
separation of concerns when describing the
performance contributions of each platform to the
overall system performance. Thus, another SPE
research challenge in the context of MDD is to define
performance annotations for a given platform that are:
a) reusable, and b) separated form the other platforms

For instance, it would be useful to describe separately
the performance contribution of a J2EE platform from
the underlying operating system and hardware
platforms. This could be achieved by using parametric
annotations that express resource demand in one layer
as functions of the services offered by the immediate
underlying layer. However, with such an approach,
vertical dependencies between platforms that are not
immediate neighbours may be lost.

Complex software systems are usually built from
components. Even though component-based
development is not limited to MDD, it is important to
address the question of reusable components in this
context. The novelty here is to use component PIMs
that will be composed into an application PIM. This
constitutes a “horizontal” composition at the
application level, as opposed to a “vertical”
composition of an application with its supporting
platforms.

Figure 7. MDD model transformations for generating (a) code, and (b) performance model

<<Activity>>
PIM-to-PSM

Transformation

<<Activity>>
PSM-to-Perf

Transformation

<<WorkProduct>>
PerformanceModel

<<UMLModel>>
Annotated PSMn

<<UMLModel>>
Annotated PSM1

<<Activity>>
PIM-to-PSM

Transformation

<<UMLModel>>
Annotated PM2

<<Activity>>
PIM-to-PSM

Transformation

<<UMLModel>>
Annotated PIM

a) MDD transformation from PIM to PSM
for multiple layered platforms

<<UMLModel>>
PM1

<<UMLModel>>
PSM1

<<UMLModel>>
PM2

<<Activity>>
PIM-to-PSM

Transformation

<<UMLModel>>
PSMn

<<WorkProduct>>
Code

<<Activity>>
PSM-to-Code

Transformation

. . .

guides

guides input

input

input

output

output

output

<<UMLModel>>
PIM

<<UMLModel>>
Annotated PM1

...

guides

guides
input

input

input

output

output

output

<<Guidance>>
Performance
Annotations

impacts <<Guidance>>
Performance
Annotations

impacts

<<Guidance>>
Performance
Annotations

impacts

b) SPE in the context of MDD: performance model
generation through model transformations

8. Optimization

A prime goal of future work is automatic

performance optimization of architecture, design and
run-time configuration. We see optimization as an
extension of tuning, to include more fundamental
changes to the system.

8.1. Design optimization

A first approach uses methods, not yet well worked
out, to optimize design decisions represented in
performance models. Manual search within this
approach is described in [66] and [83]. An evolutionary
approach could apply automated search techniques to
models derived from the specification, with results fed
back into the UML. Alternatively the search could be
carried out on the UML design, with evaluation by
models. The design can be parameterized, so
optimization can be applied to the parameter values.

A second constructive approach is to begin from the
requirements in the form of scenarios, and proceed to
optimally cluster operations and data into objects and
concurrent processes, also selecting communications
patterns subject to various constraints (such as mutual
exclusion).

Both approaches can be adapted to re-use of
component and platform services with known
properties, applying optimization to the transformation
steps which add these features. In both cases also there
are design decisions (such as storage mapping) that are
below the level of abstraction in the model, which will
perhaps be evaluated and optimized by running small
measurement experiments on prototypes, or by
applying general rules based on the context.

Both approaches also require some way to provide
defaults for the configuration decisions discussed next,
since performance can only be evaluated for a
complete system.

8.2. Configuration optimization

Configuration decisions are applied at load and run

time to adapt the software to its workload, platform
and environment. Examples of decisions needing
optimization include replication levels of servers and
data [28], allocation of distributed processes to
processors [32], to priorities [85]. Further candidates
include buffer and thread pools [83], [43], middleware
parameters [23], and virtual machine parameters. The
future is expected to include systematic and efficient
optimization approaches covering all these problems.

For complex products, optimization problems yet to
be solved include selection of alternative components

from a product line, and selection of their configuration
parameters and installation parameters.

In [70] is presented an experimental methodology to
evaluate the statistical significance of configurable
parameters in e-commerce systems. Measurements are
used to identify key configuration parameters that have
a strong impact on performance, which are ranked in
order of relevance. The impact of various parameters
on the types of requests submitted to the site is also
analyzed.

A different experimental approach to detect
performance degradation in software systems with
large configuration spaces is proposed in [84].
Formally designed experiments, called screening
designs, are run with the goal of identifying important
performance effects caused by the simultaneous
interaction of n configuration parameters (n = 1,2,...).
The conclusion was that screening designs can
correctly identify important options used to produce
reliable performance estimates across the entire
configuration space, at a fraction of the cost of
exhaustive testing.

In general, such experimental methods require a lot
of computing power, so heuristics may be necessary to
select the most promising experiments.

9. Additional Concerns

Agile Programming is becoming a mainstream
approach to development, in which very frequent
releases are made with small increments in function.
Ancillary documents tend to be ignored, to concentrate
on code. Quality control in agile programming is a
current issue, for instance the role of test cases, and
performance engineering fits into this concern.
Performance specifications may not even be known for
each incremental release.

Given the importance of performance to final
products, a way must be found to do SPE in agile
development, as discussed in [11]. This can be through
test procedures or through models based on suitable
design documents (e.g. based on Agile Modeling, e.g.
[44]), or on test executions. The Performance
Knowledge Base proposed here may be well-adapted
to agile development, because it can be driven from the
code (through tests and automatically generated
models) and it accumulates history that is useful.
Design for Evaluation, Predictability and
Adaptation: Progress can be expected in software
design ideas that make it easier to evaluate and manage
performance, something like design for testability.

A framework called PACC, Predictive Assembly
from Certifiable Components [47], addresses the
predictability of properties (including performance) of

systems built from components, applied to real-time
system assembly. It shows that some properties of
some kinds of components can be predicted with
certainty. This is a question with wide practical
resonance.

Adaptive or autonomic systems make performance
engineering decisions on the fly, by optimizing the
configuration of a running system. Software design for
adaptation must include reflective capabilities to
monitor its performance, strategies for adaptation, and
handles on the system for effecting the necessary
changes. Design considerations in adaptive computing
are considered in [32].

Some strategies for adaptation are based on simple
rules and simply modify provisioning of processors,
but others use performance models as a basis for
decisions [1]. Since the system may be changing, the
use of models and tracking of model parameters for
autonomic control was addressed in [81]. These
models can be derived during development.
Integration with other evaluations: Other “non-
functional” properties of software systems may also be
evaluated from design documents, and it is natural to
look ahead to integrating them with performance
evaluation. For example security mechanisms often
have a heavy performance penalty, and a joint
evaluation would support a tradeoff between security
effectiveness and performance cost. Reliability/
availability concerns have long been integrated with
performance analysis in “performability” modeling
(e.g. [72]), for similar reasons.

Ensuring system performance over the life of the
software brings in concerns which are usually thought
of as capacity planning, deployment or configuration,
and management. The boundaries are not sharp, for
instance capacity planning affects requirements for the
software, and configuration must be considered in
evaluation as described just above.
Scalability: this is a complex issue that rests heavily
on performance limitations and bottlenecks. Research
into scalable design approaches and patterns would be
fruitful for the field.

10. Conclusions

Software Performance Engineering needs further

development in order to cope with market requirements
and with changes in software technology. It needs
strengthening in prediction, testing and measurement
technology, and in higher-level techniques for
reasoning and for optimization.

The authors’ main conclusion is that progress
requires a convergence of approaches based only on
measurement, with those that exploit performance

models. The essential role of models is to integrate
partial views, to extrapolate results from measured
data, and to explore increments in the design.

Several areas of technical improvement in SPE have
been identified for early progress. Further automation
of data collection and better methods for deducing
causality look promising. More powerful and general
approaches to problem diagnosis are necessary and
possible. Better methods for deriving and updating
models are needed for the convergence above.
Composition and transformation of models will
support component-based systems and MDD, and
performance optimization will help to exploit the
models we can build.

Performance knowledge tends to be fragmented, and
to be quickly lost. The authors propose a Performance
Knowledge Base to integrate different forms of data
which were obtained at different times, to support
relationships between them, and to manage the data
over time, configurations and software versions. This
Performance Knowledge Base could act as a data
repository and also contain results of analyses. It could
be searched by designers and by applications to find
relevant data for particular SPE purposes; we could see
it as an application of Data Mining to software
performance. It is suggested here that the Knowledge
Base should be organized around performance model
concepts.

SPE extends out from development into system
deployment and management, and these efforts can
also be integrated into the Knowledge Base, from
which they can feed back into development
increments.

Acknoweldgements

The comments of Scott Barber, Vittorio Cortellessa
and Jerry Rolia are gratefully acknowledged. This
research was supported by the Strategic Grants
program of NSERC, the Natural Sciences and
Engineering Research Council of Canada.

11. References

[1] B. Abrahao, V. Almeida, J. Almeida, A. Zhang, D.
Beyer, F. Safai, “Self-Adaptive SLA-Driven Capacity
Management for Internet Services”, Proc. 10th IEEE/IFIP
Net Operations and Management Symp., 2006, pp. 557- 568.
[2] M. Arlitt, D. Krishnamurthy, J. Rolia, “Characterizing
the Scalability of a Large Web-based Shopping System'',
ACM Trans. on Internet Technology, v 1, 2001, pp. 44-69.
[3] A. Avritzer, E.J. Weyuker, “Deriving Workloads for
Performance Testing”, Software: Practice and Experience, v
26, 1996, pp. 613 - 633

[4] A. Avritzer, J. Kondek, D. Liu, and E. J. Weyuker,
"Software performance testing based on workload
characterization," in Proc. WOSP’2002, Rome, , pp. 17-24.
[5] R. L. Bagrodia and C.-C. Shen, "MIDAS: Integrated
Design and Simulation of Distributed Systems," IEEE Trans.
Software Engineering, v. 17, 1991, pp. 1042-1058.
[6] S. Balsamo and M. Marzolla. “Simulation Modeling of
UML Software Architectures”, Proc. ESM'03, Nottingham
(UK), June 2003
[7] S. Balsamo, A. DiMarco, P. Inverardi, and M. Simeoni,
“Model-based Performance Prediction in Software
Development”, IEEE Trans. on Software Eng., vol. 30, 2004,
pp. 295-310.
[8] S. Barber, “Creating Effective Load Models for
Performance Testing with Incomplete Empirical Data”, in
Proc. 6th IEEE Int. Workshop on Web Site Evolution, 2004,
pp. 51-59.
[9] S. Barber, “Beyond performance testing”, parts 1-14,
IBM DeveloperWorks, Rational Technical Library, 2004,
www-128.ibm.com/developerworks/rational/library/4169.html
[10] S. Barber, “User Community Modeling Language for
performance test workloads”, http://www-128.ibm.com/
developerworks/rational/library/5219.html, July 2004
[11] S. Barber, “Tester PI: Performance Investigator”,
Better Software, March 2006, pp 20 – 25.
[12] A. Bertolino, R. Mirandola. “Software performance
engineering of component-based systems”, Proc.Workshop
on Software and Performance, WOSP’2004, pp 238-242.
[13] T.L. Booth, C.A. Wiecek, “Performance Abstract Data
Types as a Tool in Software Performance Analysis and
Design”, IEEE Trans. Software Engineering, v 6, 1980, pp.
138-151.
[14] L. Chung, B. A. Nixon, E. Yu, J. Mylopoulos, Non-
Functional Requirements in Software Engineering, Kluwer,
2000.
[15] Compuware, Applied Performance Management
Survey, Oct. 2006.
[16] V. Cortellessa and R. Mirandola, “Deriving a Queueing
Network based Performance Model from UML Diagrams”,
in Proc. WOSP’2000, Ottawa, 2000, pp. 58-70.
[17] V. Cortellessa, A. Di Marco, P. Inverardi, “Non-
functional Modeling and Validation in Model-Driven
Architecture”, Proc 6th Working IEEE/IFIP Conference on
Software Architecture (WICSA 2007), Mumbai, India, 2007.
[18] Czarnecki, K. and U. Eisenecker, Generative
Programming, Addison Wesley, 2000.
[19] M. Debusmann and K. Geihs, “Efficient and
Transparent Instrumentation of Application Components
Using an Aspect-Oriented Approach”, in Self-Managing
Distributed Systems, vol. LNCS 2867 Springer, 2003, pp.
209-220.
[20] R. France, B. Rumpe, “Model-driven Development of
Complex Systems: A Research Roadmap”, in Future of
Software Engineering 2007, L. Briand and A. Wolf (eds),
IEEE-CS Press, 2007.
[21] G. Franks, D.C. Petriu, M. Woodside, J. Xu, P.
Tregunno, “Layered Bottlenecks and Their Mitigation”, Proc
3rd Int. Conf. on Quantitative Evaluation of Systems,
Riverside, CA, Sept. 2006.

[22] V. Garousi, L. Briand, Y. Labiche, “Traffic-aware
Stress Testing of Distributed Real-Time Systems based on
UML Models”, Proc. Int. Conference on Software
Engineering, Shanghai, China, 2006, pp. 391-400.
[23] C. Gill, R. Cytron, and D. Schmidt, “Middleware
Scheduling Optimization Techniques for Distributed Real-
Time and Embedded Systems”, in Proc 7th Workshop on
Object-Oriented Real-time Dependable Systems, San Diego,
Jan. 2002.
[24] C. E. Hrischuk, C. M. Woodside, and J. A. Rolia,
“Trace-Based Load Characterization for Generating Software
Performance Models”, IEEE Trans. on Software Eng., v 25,
n 1, Jan 1999, pp. 122-135.
[25] C. E. Hrischuk and C. M. Woodside, “Logical clock
requirements for reverse engineering scenarios from a
distributed system”, IEEE Trans. Software Eng., 28(4), Apr.
2002, 321-339.
[26] IBM, IBM Rational PurifyPlus, Purify, PureCoverage,
and Quantify: Getting Started, May 2002. G126-5339-00.
[27] T. Israr, M. Woodside, G. Franks, “Interaction Tree
Algorithms to Extract Effective Architecture and Layered
Performance Models from Traces”, Journal of Systems and
Software, to appear 2007.
[28] X. Jia, D. Li, H. Du, J. Cao, “On Optimal Replication
of Data Object at Hierarchical and Transparent Web
Proxies”, IEEE Transactions on Parallel and Distributed
Systems, vol. 16, no. 8, 2005, pp. 673 - 685.
[29] M. W. Johnson, Monitoring and diagnosing
application response time with ARM, in Proc. IEEE 3rd Int.
Workshop on Systems Management, Newport, RI, USA,
Apr.1998, pp. 4-13.
[30] L. Kerber, “Scenario-Based Performance Evaluation
of SDL/MSC-Specified Systems”, in Performance
Engineering: State of the Art and Current Trends, LNCS vol.
2047, Springer, 2001.
[31] D. E. Knuth, “An empirical study of FORTRAN
programs”, Software Practice and Experience, vol 1 no 2,
Apr. 1971.
[32] J. Kramer, J. Magee, “Self-Managed Systems: An
Architectural Challenge”, in Future of Software Engineering
2007, L. Briand and A. Wolf (eds), IEEE-CS Press, 2007.
[33] D. Krishnamurthy, J.A. Rolia, S. Majumdar, “A
Synthetic Workload Generation Technique for Stress Testing
Session-Based Systems”, IEEE Trans. on Software
Engineering, v 32, 2006.
[34] M. Litoiu, J.A. Rolia, “Object Allocation for
Distributed Applications with Complex Workloads”, in Proc.
11th Int. Conf. Computer Performance Evaluation,
Techniques and Tools, LNCS 1786, 2000, pp. 25-39.
[35] J. W. S. Liu, Real-Time Systems, Prentice-Hall, 2000.
[36] Y. Liu, I. Gorton, A. Fekete, “Design-level
performance prediction of component-based applications”,
IEEE Trans. Software Engineering, v 31, pp 928 – 941,
2005.
[37] J. P. López-Grao, J. Merseguer, and J. Campos, “From
UML Activity Diagrams To Stochastic Petri Nets”, in Proc.
WOSP’2004, Redwood City, CA, 2004, pp. 25-36.
[38] Y. Lu, T. Abdelzaher, C. Lu, L. Sha, X. Liu,
“Feedback Control with Queueing-Theoretic Prediction for

Relative Delay Guarantees in Web Servers”, in Proc. 9th
IEEE Real-Time and Embedded Technology and
Applications Symposium, Washington, 2003, pp. 208-218.
[39] H. Lucas Jr, “Performance evaluation and monitoring”,
ACM Computing Surveys, 3(3), Sept. 1971, pp 79-91.
[40] M. Lyu: Software Reliability Engineering: A
Roadmap, in Future of Software Engineering 2007, L. Briand
and A. Wolf (eds), IEEE-CS Press, 2007.
[41] P. Maly, C.M. Woodside, “Layered Modeling of
Hardware and Software, with Application to a LAN
Extension Router”, in Proc 11th Int Conf Performance
Evaluation Techniques and Tools, 2000, pp. 10-24.
[42] A. D. Malony, B. R. Helm, “A theory and architecture
for automating performance diagnosis”, Future Generation
Computer Systems, 18(1), Sept. 2001, pp 189-200.
[43] P. Martin, W. Powley, X. Xu, W. Tian, “Automated
Configuration of Multiple Buffer Pools”, Computer Journal,
vol. 49, 2006, pp. 487-499.
[44] Stephen J. Mellor, “Agile MDA”, Addison Wesley
online article, July 23, 2004.
[45] D. Menasce and H. Gomaa, “A Method for Design and
Performance Modeling of Client/Server Systems”, IEEE
Trans. Software Engineering, v. 26, 2000, pp. 1066-1085.
[46] D. Mensace, H. Ruan, H. Gommaa, “A Framework for
QoS-Aware Software Components”, Proc. WOSP’2004,
Redwood Shores, CA, 2004, pp.186-196.
[47] Merson, P. and Hissam, S. “Predictability by
construction” Posters of OOPSLA 2005, pp 134-135, San
Diego, ACM Press, Oct. 2005.
[48] B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K.
Hollingsworth, R.B. Irvin, K.L. Karavanic, K.
Kunchithapadam, and T. Newhall, “The Paradyn Parallel
Performance Measurement Tool”, IEEE Computer, v. 28,
1995, pp. 37-46.
[49] A. Mitschele-Theil, B. Muller-Clostermann, “Perfor-
mance Engineering of SDL/MSC Systems”, Journal on
Computer Networks and ISDN Systems, v. 31, 1999, pp.
1801-1815.
[50] N. Nethercote and J. Seward, “Valgrind: a program
supervision framework” Electronic Notes in Theoretical
Computer Science, 89(2), Oct. 2003, pp. 1-23.
[51] Object Management Group, MDA Guide, Version
1.0.1, OMG document omg/2003-06-01, 2003
[52] Object Management Group, UML Profile for
Schedulability, Performance, and Time Specification,
Version 1.1, OMG document formal/05-01-02, Jan 2005.
[53] Object Management Group, UML Profile for Modeling
and Analysis of Real-Time and Embedded systems (MARTE)
RFP, OMG doc. realtime/05-02-06, 2005.
[54] Object Management Group, Software Process Engi-
neering Metamodel Specification, formal/05-01-06, 2006.
[55] A.L. Opdahl, “Sensitivity analysis of combined
software and hardware performance models: Open queueing
networks”, Performance Evaluation, 22, 1995, pp. 75-92.
[56] D.B. Petriu, C.M. Woodside, “Analysing Software
Requirements Specifications for Performance”, Proc. 3rd Int.
Workshop on Software and Performance, Rome, 2002.
[57] Dorin B. Petriu, C.M. Woodside, “An intermediate
metamodel with scenarios and resources for generating

performance models from UML designs”, Software and
Systems Modeling, vol. 5, no. 4, 2006.
[58] Dorina C. Petriu, H. Shen, “Applying the UML
Performance Profile: Graph Grammar based derivation of
LQN models from UML specifications”, in Proc. Computer
Performance Evaluation - Modelling Techniques and Tools,
LNCS Vol. 2324, Springer, 2002, pp.159-177.
[59] R. H. Reussner, V. Firus, S. Becker, “Parametric
Performance Contracts for Software Components and their
Compositionality”, in 9th Int. Workshop on Component-
Oriented Programming, Oslo, June 2004.
[60] J.A. Rolia, L. Cherkasova, R. Friedrich, “Performance
Engineering for EA Systems in Next Generation Data
Centres”, Proc. 6th Int. Workshop on Software and
Performance, Buenos Aires, Feb. 2007.
[61] P. C. Roth, B. P. Miller, “On-line Automated
Performance Diagnosis on Thousands of Processes”, Proc.
ACM Symposium on Principles and Practice of Parallel
Programming, New York, 2006, pp. 69-80
[62] P. K. Sharma, J. Loyall, R. E. Schantz, J. Ye, P.
Manghwani, M. Gillen, G. T. Heineman, “Managing End-to-
End QoS in Distributed Embedded Applications”, IEEE
Internet Computing, vol. 10, no. 3, 2006, pp. 16-23.
[63] H. A. Sholl and T. L. Booth, “Software Performance
Modeling Using Computation Structures”, IEEE Trans on
Software Engineering, v. 1, no. 4 Dec. 1975.
[64] H. Shen, D.C. Petriu, “Performance Analysis of UML
Models using Aspect Oriented Modeling Techniques”, In
MoDELS 2005 (L. Briand and C. Williams, Eds.), LNCS
Vol. 3713, Springer, 2005, pp. 156–170.
[65] C.U. Smith, Performance Engineering of Software
Systems, Addison Wesley, 1990.
[66] C.U. Smith, L. G. Williams, Performance Solutions,
Addison-Wesley, 2002.
[67] C.U. Smith, “Software Performance Engineering”,
Encyclopedia of Software Engineering, Wiley, 2002.
[68] C.U. Smith, C. M. Llado. “Performance model inter-
change format (PMIF 2.0): XML definition and
implementation”, In Proc. of 1st Int. Conference on the
Quantative Evaluation of Systems (QEST), Enschede, The
Netherlands, Sept. 2004, pp 38-47.
[69] C.U. Smith, C. M. Lladó, V. Cortellessa, A. diMarco,
L. Williams, “From UML models to software performance
results: an SPE process based on XML interchange formats”,
in Proc WOSP’2005, Palma de Mallorca, 2005, pp. 87-98.
[70] M. Sopitkamol and D.A. Menasce, “A Method for
Evaluating the Impact of Software Configuration Parameters
on E-commerce Sites,” Proc. WOSP’2005, Palma de
Mallorca, Spain, 2005, pp.53-64.
[71] C. Szypersky, D. Gruntz, S. Murer, Component
Software: Beyond Object Oriented Programming, Addison-
Wesley, 2002.
[72] A.T. Tai, J.F. Meyer, A. Avizienis., Software
Performability: From Concepts to Applications, Springer,
1995.
[73] T. Verdickt, B. Dhoedt, F. Gielen, and P. Demeester
“Automatic inclusion of Middleware Performance Attributes
into Architectural UML Software Models”, IEEE Trans.
Software Eng., v. 31, 2005, pp.695-711.

[74] K. M. Wasserman, G. Michailidis, and N. Bambos,
“Optimal processor allocation to differentiated job flows”,
Performance Evaluation, vol. 63, 2006, pp. 1-14.
[75] E. J. Weyuker and F. I. Vokolos, “Experience with
Performance Testing of Software Systems: Issues, an
Approach, and Case Study”, IEEE Trans. on Software
Engineering, vol. 26, no. 12 pp. 1147-1156, Dec 2000.
[76] G. Weikum, A. Moenkeberg, C. Hasse, P. Zabback,
“Self-tuning database technology and information services:
from wishful thinking to viable engineering”, Proc. 28th
International Conference on Very Large Data Bases (VLDB
2002), pp. 20-31, Hong Kong, CN, 2002.
[77] M. Woodside, “A Three-View Model for Performance
Engineering of Concurrent Software”, IEEE Transactions on
Software Engineering, vol. 21, no. 9 pp. 754-767, Sept. 1995.
[78] M. Woodside, C. Hrischuk, B. Selic, and S. Bayarov,
“Automated Performance Modeling of Software Generated
by a Design Environment”, Performance Evaluation, vol. 45,
no. 2-3 pp. 107-124, 2001.
[79] M. Woodside, D.B. Petriu, K. Siddiqui, “Performance-
related Completions for Software Specifications”, Proc 24th
Int. Conf. on Software Engineering, Orlando, 2002.
[80] M. Woodside, D.C. Petriu, D.B. Petriu, H. Shen, T.
Israr, J. Merseguer, “Performance by Unified Model
Analysis (PUMA)”, Proc. WOSP’2005, Mallorca, pp 1-12.

[81] C. M. Woodside, T. Zheng, and M. Litoiu, “The Use of
Optimal Filters to Track Parameters of Performance
Models”, in Proc. 2nd Int. Conf. on Quantitative Evaluation
of Systems, Torino, Italy, 2005, pp. 74-84.
[82] X. Wu and M. Woodside, “Performance Modeling
from Software Components”, in Proc.WOSP’2004, Redwood
Shores, Calif., 2004, pp. 290-301.
[83] J. Xu, M. Woodside, and D.C. Petriu, “Performance
Analysis of a Software Design using the UML Profile for
Schedulability, Performance and Time”, in Proc. 13th Int.
Conf. Modeling Techniques and Tools for Computer
Performance Evaluation, Urbana, USA, Sept. 2003
[84] C. Yilmaz, A. Krishna, A. Memon, A. Porter, D. C.
Schmidt, A. Gokhale, and B. Natarajan, “Main Effects
Screening: A Distributed Continuous Quality Assurance
Process for Monitoring Performance Degradation in
Evolving Software Systems”, in Proc. 27th International
Conference on Software Engineering (ICSE '05), St. Louis,
MO, May 2005.
[85] T. Zheng, M. Woodside, “Heuristic Optimization of
Scheduling and Allocation for Distributed Systems with Soft
Deadlines”, in Proc. 13th Int. Conf. Modelling Techniques
and Tools for Computer Performance Evaluation, Urbana,
USA, 2003.

