
Abstract1

In this paper we present our experience in the development
of real-time controllers for special robots, designed to
perform maintenance operations in nuclear power plants.
The evolution of computer hardware and software
technology has made the requirements of the embedded
robot controllers to also evolve. In addition to the usual
concurrent software and real-time constraints, today our
robots require advanced features such as network
communications, file systems, and graphical user interfaces.
To meet all these requirements we not only need a reliable
concurrent programming language such as Ada, but we also
need to use services provided by real-time operating
systems. In this paper we want to present our successful
experience in the development of robot controllers using the
Ada language and a POSIX real-time operating system.

Keywords: POSIX, Ada, Real-Time Applications, Robot
Controllers, Real-Time Operating Systems

1. Introduction

At the Computers and Real-Time Systems Group at the
University of Cantabria, we have been involved in the
development of robot software for several years. During
these years we have evolved through different generations
of development platforms and tools that represent different
stages of software technology.

Our first controllers (1985-1992) were built using a real-
time cross Pascal compiler which used HP 9000/300
workstations as a host, and VME boards based on 680x0
microprocessors as the target platform. The software
architecture was based on a cyclic executive model, which
made the application difficult to implement and maintain.

Between 1990 and 1995 we used a cross Ada compiler with
the same host and target platform; it allowed us to write our
code using the Ada tasking concurrency model. The timing
behaviour of this kind of fixed-priority concurrent software
can be predicted by using Rate Monotonic Analysis [1].
Although the Ada run-time system introduced a significant
degree of overhead for the 16 bit microprocessors that we
were using, our software was still able to meet its timing
requirements, and was much more reliable and easier to
maintain thanks to the use of Ada. However, we found
ourselves writing software for basic services, specially
communications software. Besides, there was an increasing
demand to include in the robot controllers advanced
features that were outside the scope of the Ada language,
such as graphical user interfaces, or a file system (which
was not available on the embedded platform). Moreover, in
the larger applications we had software modules written in
different programming languages and that were developed
by different companies. For these modules it was found
convenient to provide some level of protection to disable
them from accidentally accessing each others internal data.
All these services could be provided by the use of a real-
time operating system conforming to the POSIX standard.
At the time we decided to use a real-time OS the relevant
POSIX standards [3][4] were not approved, but there were
POSIX-like OS implementations already in the market
[5][6].

The experience that we have had with this kind of
development platform has been very successful. We have
continued using the Ada programming language as much as
possible, and we have used the services provided by the
operating system. This allows us to produce software that
meets its real-time requirements and that is reliable and
easy to maintain, while providing all the advanced features
that are common today in non real-time systems.

In this paper we want to present this experience, and we
want to focus on the specific mechanisms that we have used

1. This work has been funded by the Comisión Interministerial de
Ciencia y Tecnología of the Spanish Government under grant TAP94-
0996, and by Equipos Nucleares S.A.

Implementing Robot Controllers
under Real-Time POSIX and Ada

By: M. González Harbour, J.M. Drake Moyano, M. Aldea Rivas, and J. García Fernández
Departamento de Electrónica y Computadores

Universidad de Cantabria
39005- Santander, SPAIN

{mgh,drakej}@ctr.unican.es, {mario,jgf}@ctrhp6.ctr.unican.es

of to achieve our goals. In Section 2 we will make a quick
review of the functional and timing requirements of our
robot controllers. In Section 3 we will explain the main
issues that we have faced in the use of the Ada language, in
particular regarding task synchronization. In Section 4 we
will discuss the main operating system-related issues, in
particular the inter-program synchronization, and the
program scheduling issues. In Section 5 we will discuss the
special characteristics of the HP-RT platform, which we are
using in our current projects. Finally, in Section 6 we will
give a brief overview of the robot controllers that we have
designed using Ada and real-time operating systems.

2. Functional and Timing Requirements

Most of our robots perform maintenance operations in
nuclear power plants. This implies that the control system is
divided in two units: a local controller, which is located
next to the robot and inside the radioactive area, and the
teleoperation station, where the operator supervises and/or
controls the robot from a non-radioactive area. Both units
are typically 100 meters apart, and communicate by wire or
fiber optic cable.

The typical functional requirements for the teleoperation
station include a graphical user interface (GUI), interfaces
to special-purpose keyboards and joysticks, sensor data
filtering and processing, image processing, and
communications with the local controller. For the local
controller, the main functions are the coordinated control of
several joints, sensor reading and filtering, digital and
analog output controls, and communications to the
teleoperation station and also to a local terminal and other
local devices. Figure 1 shows the basic functional and
timing requirements for both units.

Many of the tasks that execute both in the teleoperation
station and in the local controller have real time
requirements of different kinds. The local controller is an
embedded computer and it has the strictest timing
requirements. It has hard real-time requirements for the
servo motor control algorithm (5 ms), trajectory planning

(50 ms), reaction to user commands (100 ms), and
reception and transmission of control messages (50-100
ms). It also has soft real-time requirements for those tasks
related to the processing of display information for the local
terminal (200-500 ms), and the transmission of data for
display and post-processing (50-500 ms).

The teleoperation station also has hard and soft real-time
requirements. The hard requirements are related to the
reading of joysticks and a special-purpose keyboard (50
ms), and the transmission of control messages (50-100 ms).
The soft real-time requirements are related to the display of
information (200-1000 ms), and the reception of sensor
data and status information (100-500 ms). It also has to
perform non-real time activities, such as processing and
storage of sensor data, and report generation.

3. Ada Language Issues

If we look at the commercial tools available nowadays for
developing real-time systems, we find that there are two
major choices for implementing a real-time system based
on a concurrent model. We can use the C programming
language plus real-time operating system services to
implement concurrency (such as POSIX threads), or we can
use Ada. We’ve had experience with both approaches, and
for us the C/POSIX threads model is very error-prone. Ada
tasking is part of the language, and thus the compiler makes
a lot of checks, and helps in building correct and more
reliable concurrent software.

However, the Ada 83 language had some well-known
drawbacks for real-time applications. The ones that affect
our applications are data synchronization being inefficient
and with unbounded priority inversion, scheduling being
too inflexible, and interrupt handling being inefficient.
Fortunately, most real-time Ada vendors currently supply
non-standard extensions that help in solving these
problems. The Ada-95 language also solves these
problems: data synchronization and interrupt handling is
now more efficient through protected objects; unbounded
priority inversion can be avoided by using priority ceiling
locking for protected objects; and the scheduling model has
the required flexibility. In addition, Ada 95 incorporates
new technology that we think that will be very useful to
real-time systems, such as the OOP capabilities, and
hierarchical libraries. We will be able to use all these new
features in a portable way when real-time Ada 95 compilers
become commercially available for the platforms that we
use; but, for now, we have to continue using the Ada-83
compilers that are available today.

The synchronization mechanism provided in Ada 83 —the
rendezvous— is inefficient for data synchronization and hasFigure 1. Functional and timing requirements

Teleoperation Station

GUI

Display of
Information

Special

Sensor Data
Processing

Comms.

Keyboard &
Joystick
Interface

Local Controller

Servo

Comms.

Local
Terminal

Sensor Data
Processing

Trajectory
Planning

Control

200-500ms

50ms

50-100ms

100-500ms

200-1000ms
5ms

50-100ms

200-500ms

50ms

50-500ms

priority inversion. Most real-time Ada compilers provide a
more efficient synchronization mechanism by defining an
optimization pragma (usually called Monitor or Passive)
that allows a task with certain restrictions to be handled as a
synchronization object, with no thread of control of its own,
and similar to the Ada 95 protected objects. However,
although this allows a much more efficient synchronization
in terms of the average case response time, in many of these
implementations the priority model of the task is not
implemented, and thus severe priority inversions may arise.
One solution to that problem is to implement at the
application level the priority ceiling algorithm that is used
in the Ada 95 protected objects. For this purpose it is
necessary that the compiler provides the capability of
dynamically modifying the priority of a thread, which is an
extension with respect to the Ada 83 standard that is usually
provided by real-time compilers.

In order to keep the synchronization mechanism as safe as
possible, we have implemented the synchronization objects
through a monitor that wraps all the synchronization and
priority change operations in a uniform and safe way. One
problem that we found with this solution was that if an
exception was raised inside the monitor task, that task
would terminate causing the application to fail. A global
exception handler could not be put in place because the task
did not have a thread of control of its own. Therefore, we
had to catch the exceptions that occurred in each accept
statement with an internal exception handler, and convert
the exception value to a parameter that could be passed to
the caller. The resulting pseudocode can be seen in Table 1.
It can be seen that the treatment of exceptions is clumsy, but
fortunately the Ada 95 protected objects will bring the right
solution with respect to the handling of priorities and of the
exceptions. The rules of the Ada language protect this
package against the abortion of the calling task by deferring
abortion until the end of the accept statement, once it has
started. If we wish to have several protected objects with
the same operations and attributes, we could implement the
package shown as a generic package, with the
Ceiling_Priority as a generic formal parameter; in
this case, each object would be an instantiation of the
generic package.

4. Need for a Real-Time Operating System

Since we are using Ada that is a concurrent language which
supports the concurrency, synchronization, scheduling and
timing requirements of real-time applications, why do we
need a real-time OS? The answer is that there are features
that are outside the scope of the language and that are
required for our applications. We need to use operating
system services, such as a file system, network

communications, and graphical user interfaces. In addition,
in the larger applications that we have built, we found it
very convenient to have memory protection between the
different parts of the application, especially for those parts
that were written in different (and less reliable) languages
(C), and for those parts developed by different companies.
Memory protection can be accomplished if the operating
system supports concurrent execution of multiple programs

Table 1. Pseudocode of a data synchronization object

package Protected_Object is
procedure P1(...);
procedure P2(...);

end Protected_Object;

package body Protected_Object is

Ceiling_Prio: constant System.Priority:=...;
type Error_Cause is

(No_Error,Cause1,Cause2,...);

task Object_Monitor is
entry E1(...,Error : out Error_Cause);
entry E2(...,Error : out Error_Cause);
pragma Monitor;

end Object_Monitor;

procedure P1(...) is
Old_Prio : System.Priority:=Get_Priority;

begin
Set_Priority(Ceiling_Prio);
Object_Monitor.E1(...,Error);
Set_Priority(Old_Prio);
case Error is

when No_Error => null ;
when Cause1 => raise Exception1;
...

end case ;
end P1;

procedure P2(...) is ...;
-- identical structure

task body Object_Monitor is
begin

loop
select

accept E1
(...,Error: out Error_Cause)

do begin
-- do work;
Error:=No_Error;

exception
when Exception1=> Error:=Cause1;
...

end E1;
or

accept E2 ...;
or

terminate ;
end select ;

end loop ;
end Object_Monitor;

end Protected_Object;

or partitions, and supports the real-time scheduling and
synchronization that is required to have the ability of
meeting all the timing requirements.

Since portability is a very important issue for us given the
ever-changing nature of hardware, a good choice is a real-
time POSIX OS that supports both POSIX.1b (the real-time
extensions to POSIX [2]), and POSIX.1c (the threads
extension [3]). The threads extension allows a large part of
the Ada run-time system to be built on top of operating
system services. If Ada tasks are built on top of OS threads
the scheduling of tasks of different processes (programs)
can be consistent across the entire system, which is
extremely useful in multi-program applications. This is the
approach taken in the Thomson compiler for the HP-RT
operating system [8] that we have used for our robot
controllers.

Caution is necessary when selecting a POSIX conforming
operating system for real-time systems development. It is
necessary to know that POSIX.1b or POSIX.1c
conformance are not synonymous of real-time behaviour.
The POSIX standard only specifies the interface to the
operating system services and their semantics, but does not
specify how they are implemented. This means that the
system services may or may not be implemented in a way
that has predictable timing behaviour. Therefore, we need
to get from the vendor, from our own benchmarks, or from
the user community, the bounds on the response time for
each of the services that will be used in the real-time part of
our software.

We must also have in mind that most of the services
described in POSIX.1b and POSIX.1c are optional, and that
the standard leaves many behaviours as “unspecified”, or
“implementation defined”. We must always check that the
services that we need are present, and that the behaviours
that we need are supported. In the following subsections we
will focus on particular issues that are very important to be
checked for real-time applications.

4.1. Scheduling issues

The POSIX standard gives the implementation a large
amount of freedom to chose how the different processes
and threads will be scheduled. Basically there are two
mechanisms that are defined in POSIX for scheduling
threads:

• A thread may have a process-wide contention scope,
which means that it only contends for the CPU with
threads within it’s same process. The process itself is
scheduled at a different level, contending with other
processes.

• A thread may have a system-wide contention scope,
which means that it contends for the CPUs with all the
other threads that have system-wide contention scope,
independently of the process to which they belong

An implementation must support process-wide or system-
wide contention scopes, but it is not required to support
both. But for multi-program and multi-threaded (or multi-
task) real-time applications, process-wide is very difficult
and unsafe to use, because the priorities of the different
threads or tasks is not consistent across different processes.
For example, it could happen that the highest priority active
task could be preempted by a lower priority task belonging
to a different process, just because the OS chose to schedule
the latter process at that time. Therefore, if we want to
accomplish predictable scheduling in a multi-program
application, we must make sure that the system-wide
contention scope is supported.

The control systems that we use for robots are not
multiprocessor systems, but if they were so we would have
to pay attention to the allocation domain of each thread,
which is defined as the set of processors on which that
thread may execute. The POSIX scheduling rules are only
predictable if the allocation domain of threads is static, i.e.,
each thread is statically allocated to only one processor. The
way to specify the allocation domain is implementation
defined, and we must make sure that the implementation
allows a static allocation domain for threads.

4.2. Synchronization Issues

When programming a real-time application in Ada we can
use the Ada-language mechanisms for task synchronization
within a program or partition, but we cannot use it to
synchronize with tasks belonging to different programs or
partitions, in which case we must use the OS
synchronization services.1

POSIX.1b and POSIX.1c specify several mechanisms that
can be used to achieve both mutual exclusive
synchronization (counting semaphores and mutexes) and
signal & wait synchronization (counting semaphores, and
condition variables). For real-time applications it is
necessary to know that if we use counting semaphores to
achieve mutual exclusion, since they do not have any
support for priority inheritance or priority ceiling protocols,
very severe priority inversions might happen, thus making

1. It may be possible to use the active or passive partitions described in
the Ada 95 Distributed Systems Annex to synchronize tasks belonging to
different partitions, but this is problematic for portable real-time
applications since the scheduling policies, the treatment of priorities, and
the management of shared resources between partitions are
implementation defined.

our application unable to meet its timing requirements.
Mutexes however do have optional support for priority
inheritance and/or priority ceiling (which is called priority
protection in POSIX). Another behaviour that is optional
for mutexes is the ability to use them for threads belonging
to different processes (process-shared mutexes).

Therefore we must make sure that the process-shared
option and one of the priority inheritance or priority protect
options are supported by our implementation. If not, it is
still possible to use the counting semaphores for mutual
exclusion, by using an application-level mechanism to
increase the priority of the thread locking the semaphore
(before the lock occurs), and returning to the previous
priority after unlocking the semaphore, in a similar way as
that indicated by Table 1.

Apart from the synchronization mechanism, in order to
share data between different processes, which by default
have independent address spaces, it is necessary to create a
shared memory object in which the shared data is allocated.
Table 2 shows the pseudocode of a package that provides
for a shared data object accessible from more than one
process. We can see that three operations are needed to
access the shared memory object: first it must be opened
and created if necessary; then we must set its size using the
Truncate_File POSIX call; finally, the shared memory
object must be mapped into the process’s address space.
The mapping call returns the address of the object, which is
then used in a representation clause to create the
corresponding Ada variable.

4.3. Timing Behaviour Issues

The first aspects that we have to check against the
requirements of our real-time application are the resolutions
of the operating system clocks, the Ada
Calendar.Clock function, and the delay sentence
(which are usually the same). The POSIX standard only
requires 20 ms for the clock resolution (although the
implementation may support resolutions down to 1 ns),
which is not usually enough for most real-time systems. If
the clock resolution is smaller than the deadlines or the
timing requirements of our application, there is very little
that can be done except to add an extra hardware clock to
the system, or change to a different platform.

Even if the clock has enough resolution, we need to check
that the required timing requirements are met. It is well
known that the Ada 83 relative delay sentence is not
adequate for implementing periodic activations of task,
which is a very common requirement in real-time systems
(Ada 95 introduces the new absolute delay until
construction that avoids this problem). One solution to this

problem is to use the POSIX timers, which can be
programmed to measure a relative interval or an absolute
time, or can also be programmed to expire periodically.
Table 3 shows the pseudocode of a package that can be used
to create a periodic timer and to activate a periodic task
based upon it. A user of this package must remember that
the handling of signals and threads is a little clumsy in

Table 2. Pseudocode of a process-shared
synchronization object

function Create_Object (Name : String;
Length : Integer)
return System.Address is

Fd : POSIX_IO.File_Descriptor;
Start_Addr : System.Address;

begin
Fd:=POSIX_Shared_Memory_Objects.

Open_Or_Create_Shared_Memory
(Name => To_POSIX_Str(Name),...);

POSIX_IO.Truncate_File
(Fd, POSIX.IO_Count (Length));

Start_Addr:=POSIX_Memory_Mapping.Map_Memory
(Storage_Offset (Length), Protection,
 POSIX_Memory_Mapping.Map_Shared, Fd, 0);

return Start_Addr;
end Create_Object;

package Process_Shared_Object is
procedure P1(...);
procedure P2(...);

end Process_Shared_Object;

package body Process_Shared_Object is

Ceiling_Prio: constant System.Priority:=...;
Semaphore :

POSIX_Semaphores.Semaphore_Descriptor;
Object_Name : String :="/shared_object";
type Object_Type is ...;
Length : Integer:=Object_Type’Size;
Object_Address : constant System.Address:=

Create_Object(Object_Name,Length);
Shared_Object : Object_Type;
for Shared_Object use at Object_Address;

procedure P1(...) is
Old_Prio : System.Priority:=Get_Priority;

begin
Set_Priority(Ceiling_Prio);
POSIX_Semaphores.Wait(Semaphore);
--do work with shared_object
POSIX_Semaphores.Post(Semaphore);
Set_Priority(Old_Prio);

end P1;

procedure P2(...) is ...;
-- identical structure

begin

Semaphore:=POSIX_Semaphores.Open_Or_Create(
Name=>To_POSIX_Str(Object_Name&".sem"),
Value=>1,...);

end Process_Shared_Object;

POSIX, because all tasks in the process must mask or block
the signal used by the timer. If any individual thread forgets
to mask it or inadvertently unmasks it at a later stage, the
signal generated by the timer will be delivered to the wrong
thread.

4.4. Systems Programming Issues

Many real-time systems use special I/O hardware and
therefore it is usually necessary to be able to write your own
device drivers. The POSIX standard does not specify the
way in which device drivers can be programmed or used,
and thus this is left as an implementation dependent part of
the application. It is important that the operating system
provides the user with enough information to allow him to
write his own device drivers, including the handling of
hardware interrupts. The non portability of device drivers
may soon be solved because a standardization effort called
Uniform Driver Interface (UDI) is currently under way for
device drivers [7]. This industry standard will provide
platform- and operating system-independent interfaces for
device driver implementation. It is being developed by
many of the main computer software and hardware
companies.

In addition, since standard device drivers such as disk I/O,
ethernet communications, terminal I/O, etc., are going to be
used in a real-time application together with the
application-specific drivers, it is extremely important that
the system provides a way to choose the priority at which
each of these device drivers run. Otherwise, it would be
very difficult to guarantee the timing response of tasks with
tight deadlines. An ethernet driver, for example, may
sometimes take several milliseconds to execute and, if this
execution is performed at a high priority level, this may
compromise the response of a task with deadlines in the
millisecond range.

5. The HP-RT platform

The HP-RT platform is based on an HP-PA 7100 processor
on an VME bus board, and running under a POSIX-like
real-time operating system (a port of the LYNX operating
system [5] to the HP processor). It has a cross development
system in which the host computer is a conventional HP
workstation. The OS is POSIX-like because it was
developed before the real-time POSIX standards were
approved, and thus it follows old drafts of these standards.
It is expected that now that the standards are approved, a
fully conforming version will appear. The OS comes with
Xwindows software, sockets for LAN communications,
POSIX threads, and all the real-time POSIX services.

Table 3. Periodic activation operations

generic
Signal_Used : POSIX_Signals.Signal;

package Periodic_Activation is
procedure Initiate (Period:Duration);
procedure Wait_For_Next_Period;
Already_Initiated : exception ;

end Periodic_Activation;

package body Periodic_Activation is

The_Id : POSIX_Timers.Timer_Id;
The_Set : POSIX_Signals.Signal_Set;
Initiated : Boolean:=False;

procedure Initiate (Period:Duration) is
Event : POSIX_Signals.Signal_Event;
State : POSIX_Timers.Timer_State;

begin
if Initiated then

raise Already_Initiated;
else

Initiated:=True;
POSIX_Signals.Delete_All_Signals(

The_Set);
POSIX_Signals.Add_Signal(

The_Set,Signal_Used);
POSIX_Signals.Set_Notification(

Event,
POSIX_Signals.Signal_Notification);

POSIX_Signals.Set_Signal
(Event,Signal_Used);

The_Id:=POSIX_Timers.Create_Timer(
POSIX_Timers.Clock_Realtime,Event);

POSIX_Timers.Set_Initial(
State,To_POSIX_Timespec(Period));

POSIX_Timers.Set_Interval(
State,To_POSIX_Timespec(Period));

POSIX_Timers.Arm_Timer (
Timer => The_Id,
Options=>

Timer_Options(POSIX.Empty_Set),
New_State => State);

end if ;
end Initiate;

procedure Wait_For_Next_Period is
Sig : POSIX_Signals.Signal;

begin
Sig:=POSIX_Signals.Await_Signal(The_Set);

end Wait_For_Next_Period;

end Periodic_Activation;

task Periodic_Task is
package The_Timer is new Periodic_Activation

(POSIX_Signals.Realtime_Signal’FIRST);
-- for example

begin
The_Timer.Initiate(Period);
loop

-- do useful work
The_Timer.Wait_For_Next_Period;

end loop ;
end Periodic_Task;

With respect to the options that have been mentioned in this
paper as being important for real-time applications, we can
briefly state the level of support for each of them:

• Scheduling: All threads are scheduled with system-wide
contention scope.

• Synchronization: Process-shared mutexes are not
supported, and thus we need to use semaphores for inter-
process synchronization. Although the implementation
supports priority inheritance for semaphores, this is not a
standard feature and, besides, the worst-case response
time for the priority ceiling synchronization is better. For
this reason we have implemented inter-process
synchronization according to the pseudocode given in
Table 2.

• Timing: The OS provides a low resolution “system
clock” (10 ms) and three high resolution clocks (1 µs).
All of them may be used to create timers.

• I/O Drivers: They may be programmed by the
application developer, may handle hardware interrupts,
and may use their own threads of control, with a user-
assigned priority. System-provided drivers can also be
assigned the desired priorities.

• Embeddable: The file system may reside in RAM, and
the system may boot from a LAN or from non-volatile
memory (through a PCMCIA interface)

The Ada compiler that we have used is the Thomson cross
compiler for HP-RT, which has the following
characteristics:

• Each Ada task is associated with an OS thread. This
introduces some inefficiency, but it allows a global
scheduling of all the tasks, independently of the program
to which they belong. This allows a real-time multi-
process application to meet its timing requirements,
while providing memory protection between the
different processes.

• The compiler provides the pragma Monitor
optimization for data synchronization, but it does not
support priority ceiling and, therefore, a scheme like the
one shown in Table 1 must be used.

• The delay statement is bound to the low resolution
clock (10 ms), and there is no support for delay
until , so a scheme using POSIX timers like the one
shown in Table 3 should be used.

6. Results Obtained

Using the HP-RT and the LYNX OS platforms we have
developed three robot controllers for Equipos Nucleares
S.A, funded in part by the Spanish Government:

• Mobile Teleoperated Robot (RMT). Joint project with
Equipos Nucleares S.A. and Construcciones
Aeronáuticas S.A. The robot is designed for
maintenance operations inside nuclear power plants. It is
a mobile robot, with a six-joint arm, and video and
radiation sensing capabilities. The teleoperation station
has two units, one for the control of the robot and display
of information, and the other one for video image
processing. The embedded local controller was
originally programmed in C, but an Ada implementation
is now being developed.

• Telemanipulated Arm: It is a six-joint arm designed for
inspection and maintenance operations in nuclear power
stations. The embedded controller acts both as the
teleoperation station and the robot controller. The
commands from the operator are input through a remote
non-intelligent special-purpose command unit.

• CASEVA: It is a five-joint arm designed for welding
pieces for nuclear power stations. The pieces are very
thick and hundreds or thousands of welding layers are
needed. The trajectory of the welding tool must be
controlled depending on the location of the previous
welding layers, and thus image processing is required to
control the trajectory.

The results obtained have been extremely successful. A
single robot controller architecture was designed, and this
has allowed us to reuse a large portion of the controller for
building the others. The HP-RT operating system together
with the Thomson compiler allow us to meet all the timing
requirements of the application. The HP-PA processor is
extremely fast and has allowed us a quick development of
the trajectory planning software, using floating point
arithmetic. In previous controllers where floating point
arithmetic was very expensive, the use of integer arithmetic
made this part of the application extremely complex and
non portable.

7. Conclusion

Recent advances in software technology have enabled the
implementation of portable and reliable real-time software.
The concurrent approach is much more flexible and
maintainable than the cyclic executive model. Fixed priority
scheduling is currently supported both in the Ada and
POSIX standards, and Rate Monotonic Analysis allows us
to predict the timing behaviour of fixed-priority concurrent

software. The use of Ada with is support both for
concurrency and software engineering principles has played
an essential role in the success of our implementations. The
use of a standard real-time OS facilitates advanced features
such as GUIs, network communications, etc.

The HP-RT platform, although is not yet strictly
conforming to the POSIX standards, presents operating
systems services that have a predictable timing response,
together with other services of modern operating systems,
such as network communications, file system, Xwindows,
etc. The high resolution timing services provided allow sub-
millisecond timing requirements to be met. The software
developed is quite portable, although it will be much more
portable when the platform evolves to Ada 95 and the final
POSIX standards. I/O drivers would remain non portable
for the moment, until a standard is approved in this area,
and the corresponding implementations become available.

References

[1] M.H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. González
Harbour. “A Practitioner’s Handbook for Real-Time Analysis”.
Kluwer Academic Pub., 1993.

[2] IEEE Standard 1003.1b:1993, “Information Technology -
Portable Operating System Interface (POSIX)- Part 1: System
Application Program Interface (API) -- Amendment 1:
Realtime Extension [C Language]”. Institute of Electrical and
Electronic Engineers, 1993.

[3] ISO/IEC Standard 9945-1:1996 (E), “Information Technology
-Portable Operating System Interface (POSIX)- Part 1: System
Application Program Interface (API) [C Language]”. Institute
of Electrical and Electronic Engineers, 1996.

[4] IEEE Std. 1003.5b:1996, “Information Technology -POSIX
Ada Language Interfaces- Part 1: Binding for System
Application Program Interface (API)-- Amendment 1:
Realtime. Institute of Electrical and Electronic Engineers,
1996

[5] Lynx Real-Time Systems Inc. “LynxOS User’s Manual”, 1992.

[6] Hewlett Packard. “HP-RT Reference Manual”, 1994

[7] Project UDI Working Group. “Uniform Driver Interface.
Environment Specification”, 1996.

[8] Thomson Software Products. “Adaworld for HP Series 700
Workstations under HP-UX to HP-PA under HP-RT:
Application Developer’s Guide”, 1993.

