
1

Abstract1

In this paper we address the problem of combining two
issues that are standardized separately in two Ada 95
annexes: Real-Time Systems (Annex D) and Distributed
Systems (Annex E). With these annexes it is possible to build
applications with real-time requirements, or alternatively
distributed applications; but real-time distributed
applications are not directly supported. In this paper we
propose extensions to the Distributed Systems Annex that
would provide support for developing distributed real-time
applications in Ada. The paper proposes an interface for
assigning priorities to the messages in the interconnection
networks, and also to the tasks executing remote operations,
in a way that avoids priority inversions. It also addresses the
issues of configuration of the RPC handler tasks and non
blocking asynchronous remote procedure calls.

Keywords: Ada, Real-Time, Distributed Systems, Priority
Optimization, Ada Distributed Systems Annex

1. Introduction

Developers of distributed systems can use Ada 95 to
support the functional aspects of their systems. However, if
these systems have to meet real-time requirements then the
timeliness is as important as functionality. The Distributed
Systems Annex (DSA) of Ada 95 [5] provides a flexible
way for distributing Ada programs in a multiple-processor
platform. This distribution is based on the concepts of
program partitions, and remote procedure calls (RPCs). But
the language does not provide interfaces nor semantics that
would enable using the DSA for distributing applications
with real-time requirements. At the time Ada 95 was
standardized the mixture of distributed and real-time

systems was considered to be insufficiently known, and
thus the standard did not attempt its specification. In any
case, the standard is a good starting point for further
investigation into these issues.

Previous works explored aspects of the distribution of real-
time applications, like the prioritization of remote
procedure calls [1], and pointed out new issues that should
be covered by a new DSA with real-time characteristics [2].
This paper elaborates on these issues and provides
proposals related to other important issues that relate real-
time and the DSA. The Ravenscar profile is not addressed
in this paper because the mechanisms required to
implement the proposed real-time distributed systems
annex are far more complex than the simple tasking model
provided in that profile.

One of the issues pointed out in [2] was the use of CORBA
and specially the new real-time CORBA standard [3] as an
alternative to a new DSA extended with real-time
capabilities. However, we think that there is large value in
having solutions to support real-time distributed
applications within the Ada standard, which would provide
a much simpler and potentially more efficient mechanism
for writing distributed applications, given the complexity of
CORBA [4]. In any case, the issues addressed in real-time
CORBA can be a good reference to study the requirements
and features that a new real-time DSA should support.
CORBA will always be available for developing distributed
applications in a multi-language environment.

The paper is organized as follows. In Section 2 we provide
a quick review of the requirements that were used for the
development of the real-time CORBA standard. Sections 3
to 5 describe the issues identified in Ada real-time
distributed systems and the proposed solutions to them; in
particular, the execution model of RPC-receivers, the
priorities of RPC handler tasks and of messages in the
networks (including the mapping of priorities), the

1. This work has been funded by the Comisión Interministerial de
Ciencia y Tecnología of the Spanish Government under grant TIC99-1043-
C03-03

Towards a Real-Time Distributed Systems Annex in Ada

By: José Javier Gutiérrez García and Michael González Harbour
Departamento de Electrónica y Computadores

Universidad de Cantabria
39005- Santander, SPAIN
{gutierjj, mgh}@unican.es

2

asynchronous RPC blocking, and additional documentation
for the DSA. Finally, in Section 6 we give our conclusions.

2. RT-CORBA Requirements

Although the client-server model of CORBA differs from
the Ada model based on RPC’s, many of the issues that are
encountered when trying to define a real-time DSA have
been faced also during the standardization of Real-Time
CORBA. Consequently, we will make a quick review of the
main requirements for that standardization process:

• Define a Schedulable Entity: an activity is defined as a
design concept that uses threads provided by an
underlying OS to implement the concept. Optionally,
there is a fixed priority scheduling service to help the
application programmers schedule activities.

• Interfaces for priority control of Schedulable Entities:
CORBA priority is defined as a universal, platform-
independent scheme. A mapping interface is defined to
map CORBA priority to or from the native priority
scheme of a given scheduler.

• Mechanism for propagating client priority to the server:
a Priority Model Policy is defined to determine the
priority at which a server handles requests from clients.
It has two models: Client_Propagated (the server
honours the priority of the request set by the client), and
Server_Declared (the server handles requests at a
priority declared at the time of the server object
creation).

• Mechanism for avoiding or bounding priority inversion:
mutex interface, policies for specifying and configuring
communication protocols, a threadpool abstraction used
to manage threads of execution on the server side,
policies (that let the client set up multiple transport
connections and specify use of non-multiplexed
connections), and a server-side Priority Transform
mechanism to implement priority protocols.

• Define “resources” for the purpose of resource
management: threads, threadpools, transport connections
and request buffers.

• Mechanism for management of resource allocation: a
mutex interface to coordinate contention, management
of thread priorities, and an API for threadpool
management, protocol policies and the explicit_bind
operation to manage transport connections.

In addition, there are some optional requirements that are
also important for achieving real-time behavior: timeouts,
interface for installation of user-provided transport
protocols, interaction protocol between real-time and non

real-time objects, and runtime interfaces for a Schedulable
Entity.

3. RPC Handler and Message Priorities

The Ada 95 DSA requires that “the implementation of the
RPC-receiver shall be reentrant, thereby allowing
concurrent calls on it from the PCS (Partition
Communication Subsystem) to service concurrent remote
subprogram calls into the partition.” It also requires the
implementation to document “whether the RPC-receiver is
invoked from concurrent tasks.” In addition, it provides the
following implementation advice: “Whenever possible, the
PCS on the called partition should allow for multiple tasks
to call the RPC-receiver with different messages and should
allow them to block until the corresponding subprogram
body returns”. We will use the term RPC handler for each
of these tasks that execute an RPC-receiver.

For real-time applications it is very important that this
implementation advice is followed, because there will be
RPC execution requests with different degrees of urgency,
and thus will need to be served by tasks of different
priorities. In order to be able to predict and bound the
response times to RPC execution requests it is necessary to
be able to specify the priorities at which the different RPC
handlers execute, as well as the priorities at which the
messages are transmitted in the network, if supported. This
section discusses the different aspects that influence the
priority scheme of RPCs, by elaborating on the results of
[1].

3.1. Priority Types

The type System.Priority is not pure because it
represents relative priorities that are meaningful only to one
processor in the distributed system. In a heterogeneous
system, other processors may have different ranges for their
System.Priority type. In addition, the priorities on the
communications network may be wholly different. It is
necessary to have a global priority type that can represent
priorities that are meaningful across the whole distributed
system, and mapping functions to convert values of the
global priority type to the native priority types in each
processor or network.

For this purpose, we can create the package
Global_Priorities with a type Global_Priority

representing a value with a global meaning across the
distributed system. For each CPU and network, a mapping
function would translate a value of this global priority type
to a value of System.Priority or of the network priority
appropriate for that resource.

3

package Ada.Global_Priorities is
pragma Pure (Global_Priorities);
type Global_Priority is

range implementation-defined ;
end Ada.Global_Priorities;

The body of the mapping functions should be provided by
each implementation of the PCS. A different
implementation should be available if needed for each
processor and each network in the system. The specification
of the mapping functions should be standard, though, for
portability. The native priority types for the processors have
a standard name (System.Priority), but the native
priority types for the networks don’t. Therefore, it is
necessary to consider two groups of mapping functions, one
for the processors, and one for the networks.

Consequently, the Real-Time Distributed Systems Annex
should specify the following mandatory package:

with System;
package Ada.Global_Priorities.Mapping is

function To_Global_Priority (
The_Priority : System.Priority)
return Global_Priority;

function To_Native_Priority (
The_Priority : Global_Priority)
return System.Priority;

end Ada.Global_Priorities.Mapping;

And it should give an implementation advice
recommending that the rest of the mapping functions
between the type Global_Priority and the network
priority types should be included in package
Global_Priorities.Mapping and should use the same
naming scheme of that package.

3.2. Initial Priority of the RPC Handlers

If the initial priority of the RPC handler is left unspecified,
it could easily cause priority inversion. For example, if the
RPC handler’s priority is set initially to a medium level [6],
or if it is set to a low value because of keeping the priority
of a previous execution, a high priority request that is about
to being serviced by that RPC handler may have to wait for
a long time, blocked by some other tasks that may in fact
have less priority than the request.

To solve the problem of the initial priority of the RPC
handler, we can just set it to the maximum priority
(System.Priority’Last). In this way, the RPC handler
will start at a very high priority, and will immediately read
the desired priority from the stream and set its priority to
the appropriate value. Then it will call the RPC-receiver as
specified in the DSA. Later, when the RPC-receiver returns,
the RPC handler will send back the appropriate message (in

case of a synchronous RPC), and then it will set its own
priority back to the highest level just before blocking itself
waiting for the next RPC request. No priority inversion
occurs using this scheme.

A better approach would be to let the application set the
value of this initial priority. In this way, it could choose an
optimum value that would not cause priority inversions for
RPC’s, while keeping a lower overall blocking for very high
priority tasks in the server’s CPU.

One way to set the initial priority of each RPC handler
would be to have a configuration pragma:

pragma Initial_RPC_Handler_Priority
(Global_Priority);

This pragma specifies the initial priority of the RPC
handlers. Once the handler is servicing an RPC, its priority
is set to the priority specified for that RPC, according to the
discussion in Subsection 3.3. When the RPC is completed,
the priority of the handler is set back to the initial priority.

The default value for the initial priority for RPC handlers
should be System.Priority’Last .

3.3. Priorities of RPC Handlers

In order to achieve optimum response times, the application
should have the ability to set the priorities of the calling
tasks and of the RPCs independently [1]. In addition, if a
priority-based communication system is used, the priorities
of the outgoing and the incoming messages should be
specifiable.

One problem with RPCs is that they may be invoked many
times, from many different tasks with different timing
requirements, and thus each invocation may need its own
priority. Therefore a priority pragma attached to the
specification of the remote procedure is not appropriate to
set the different priorities involved in the RPC. We need an
operation that the user can invoke before making an RPC.
This operation should be in a package that is visible from
the application. Package System.RPC does not seem
appropriate, since it is not intended for direct use from the
application. Therefore a package like the following could
be created:

with Ada.Global_Priorities;
use Ada.Global_Priorities;
package Ada.RPC_Priorities is

procedure Set
(RPC_Handler : in Global_Priority);

procedure Set
(RPC_Handler,
 Outgoing_Message: in Global_Priority);

4

procedure Set
(RPC_Handler,
 Outgoing_Message,
 Incoming_Message: in Global_Priority);

procedure Get
(RPC_Handler,
 Outgoing_Message,
 Incoming_Message: out Global_Priority);

end Ada.RPC_Priorities;

Procedure Set in the above package would set the priority
or priorities used for future RPCs or APCs issued by the
calling task. These priorities would be in effect until Set is
called again. In this way, the application can specify the
priorities of its RPCs either on an individual basis, or by
grouping several calls under the same priorities. Initial
values for the priorities could be implementation defined.
Procedure Get would return the current values of the RPC
priorities.

3.4. Configuration of the Pool of RPC Handlers

In order to manage the pool of RPC handlers in a portable
way, a configuration mechanism of the pool should be
available to create a minimum static number of tasks at the
initialization time. It could also be interesting to be able to
add RPCs dynamically, to allow more flexibility for those
applications that could tolerate dynamic creation of more
tasks. Therefore, the following issues should be considered
for the configuration of the pool:

• Static or dynamic size of the pool: some systems need
the flexibility of dynamic size, while others need the
predictability of static size. A maximum number of tasks
is also interesting for systems with a dynamic pool size.

• Initial number of RPC handlers: This number should be
configurable. If the size is static, this would be the final
number. If dynamic, the size could grow dynamically up
to the maximum.

• Explicit or implicit creation of new RPC handlers:
Increasing the number of RPC handlers in the case of a
dynamic size pool could be done explicitly, via a
procedure, or implicitly, when an RPC arrives and there
are no RPC handlers available. Given that it is difficult
for a server to anticipate when new tasks will be
necessary, the implicit creation looks more useful.
Therefore, an implementation advice could be specified
to this effect.

• Queuing of pending RPC requests: Given that the
number of tasks in the pool may always be limited (even
in the dynamic case, the system´s maximum number of
tasks may be reached), it is necessary to specify how the
pending RPC requests are handled. The best way is to

store them in a priority queue, ordered according to the
RPC priority. This would be an implementation
requirement.

Consequently, one solution for this RPC handler pool
configuration would be to create the following
configuration pragmas:

pragma Maximum_RPC_Pool_Size
(Maximum Number of RPC Handlers);

pragma Minimum_RPC_Pool_Size
(Minimum Number of RPC Handlers);

If both pragmas specify the same value, this implies that the
size of the pool is static. Default values for these pragmas
should be implementation defined.

4. Non-Blocking Asynchronous RPC

The LRM specifies in its DSA: “The task executing a
remote subprogram call blocks until the subprogram in the
called partition returns, unless the call is asynchronous. For
an asynchronous remote procedure call, the calling task can
become ready before the procedure in the called partition
returns”. In addition it says that “All forms of remote
subprogram calls are potentially blocking operations”.

For real-time applications, it would be desirable to have a
form of asynchronous RPC that would be non blocking. A
blocking operation has the potential of introducing new
context switches, possibilities for new deadlock situations,
and other effects that an application may want to avoid. An
asynchronous operation may need to block if the resources
in the local communications driver are temporarily
unavailable (for example, a queue for storing the message).
For this case, a new exception could be declared, that would
be raised to the application requiring a non blocking APC.

Therefore, one solution to this problem would be to declare
a new pragma:

pragma Non_Blocking (local_name);

with the same effects than pragma Asynchronous , except
that the call would be required to be non blocking, and
could raise Temporarily_Unavailable , which would be
a new exception declared in System.RPC .

5. Additional Documentation for the DSA

To be able to carry out the schedulability analysis of an
application using the real-time DSA it is necessary to know
if the implementation uses additional tasks, together with
their priorities, execution activation mechanisms, and

5

worst-case execution times. This implies that there are new
documentation requirements for the real-time DSA.

The documentation requirements are split into two parts:
one part for the implementation of the compiler and run-
time part of the DSA, and the other one for the
implementation of the PCS, including the communication
network drivers.

The documentation requirements for the PCS should also
include the additional messages required to implement the
protocols, and the overhead that the protocols themselves
introduce for each message.

6. Conclusions

Although the real-time CORBA standard can be used to
accomplish the development of real-time distributed
applications, defining real-time capabilities for the Ada 95
Distributed Systems would allow the development of this
kind of application in a simpler and potentially more
efficient way.

This paper describes a set of extensions required to add
real-time capabilities to the current DSA. The number of
extensions is not very large, and it does not seem difficult to
implement. Therefore, it seems that instead of creating a
new annex for real-time distributed systems, the proposed
extensions could be incorporated into the current DSA
without much effort. The extensions would be mandatory if
both the Real-Time Systems Annex and The Distributed
Systems Annex were supported by an implementation.

References

[1] J.J. Gutiérrez García, and M. González Harbour: “Prioritizing
Remote Procedure Calls in Ada Distributed Systems”. 9th
International Real-Time Ada Workshop, ACM Ada Letters,
XIX, 2, pp. 67-72, June 1999.

[2] Scott Arthur Moody (Rapporteur): “Session Summary:
Distributed Ada and Real-Time”. 9th International Real-Time
Ada Workshop, ACM Ada Letters, XIX, 2, pp. 15-18, June
1999.

[3] Object Management Group, “Realtime CORBA Joint Revised
Submission”. OMG Document orbos/99-02-12 ed., March
1999.

[4] L. Pautet, T. Quinot, and S. Tardieu. “CORBA & DSA:
Divorce or Marriage?”. Intl. Conf. on Reliable Software
Technologies, Ada-Europe’99, Santander, Spain, in LNCS
1622, Springer, pp. 211-225, June 1999

[5] S. Tucker Taft, and R.A. Duff (Eds.) “Ada 95 Reference
Manual. Language and Standard Libraries”. International
Standard ISO/IEC 8652:1995(E), in Lecture Notes on
Computer Science, Vol. 1246, Springer, 1997.

[6] L. Pautet and S. Tardieu, “Inside the Distributed Systems
Annex”, Intl. Conf. on Reliable Software Technologies, Ada-
Europe’98, Uppsala, Sweden, in LNCS 1411, Springer, pp. 65-
77, June 1998.

