
Abstract1

In this paper we discuss the assignment of priorities to the
execution of remote procedure calls in distributed real-time
systems that are programmed using the Distributed Systems
Annex (DSA) of Ada 95. We first discuss the current priority
model used in the Glade implementation of the DSA. We
then present some theoretical results that show that a more
flexible priority assignment methodology can provide much
better schedulable utilization levels. Based upon these
results we propose an implementation that would allow
using this priority assignment methodology in Glade.
Finally, we propose new features for a future DSA that
would allow prioritizing remote procedure calls in a flexible
manner.

Keywords: Ada, Real-Time, Distributed Systems, Priority
Optimization, Ada Distributed Systems Annex

1. Introduction

It is well known that the Distributed Systems Annex (DSA)
of Ada 95 [8] provides a flexible way for distributing Ada
programs in a multiple-processor platform. This
distribution is based on the concepts of program partitions,
and remote procedure calls (RPCs). But the language does
not provide interfaces nor semantics that would enable
using the DSA for distributing applications with real-time
requirements. At the time Ada 95 was standardized the
mixture of distributed and real-time systems was
considered to be insufficiently known, and thus the standard
did not attempt its specification. However, the standard is a
good starting point for further investigation into these
issues. Results from these investigations could perhaps be
standardized in a future DSA. This paper explores one

aspect of the distribution of real-time applications, which is
the prioritization of remote procedure calls.

The implementation of the DSA that is provided with the
Gnat free-software Ada compiler is called Glade [9]. In this
implementation, an attempt has been made to provide some
level of control over the priorities at which remote
procedure calls are executed. In section 2 of this paper we
review the priority model that we found in the current
implementation (version 2.01). As we will show through
theoretical results in Section 3, the simple priority model
used in Glade would achieve schedulability results that are
much poorer than those that can be achieved by using a
more flexible priority assignment. Although the problems
of priority assignment and of task allocation in distributed
systems are NP-Hard problems [6], there exist some
heuristic algorithms provide good solutions. One such
algorithm for optimizing the priority assignment is called
HOPA [1]; it is based on RMA techniques for analysing the
response times [3][4][7] and it provides usually good
results running in very short times. This is the algorithm
that we will use to assign priorities in the distributed
system.

In order to be able to apply the desired priorities to the
different tasks and remote procedure calls, we need
appropriate interfaces between the application and the
underlying DSA implementation. In Section 4 of the paper
we discuss one way in which we can use existing interfaces
to set the desired priorities for RPC’s, as well as for the
messages sent through the interconnection network, if such
priorities are supported.

Finally, Section 5 of the paper proposes changes to the DSA
that would enable applications to specify the desired
priorities for messages and RPCs in a more convenient and
efficient way.

1. This work has been funded by the Comisión Interministerial de
Ciencia y Tecnología of the Spanish Government under grant TAP97-0892

Prioritizing Remote Procedure Calls
in Ada Distributed Systems

By: J.J. Gutiérrez García, and M. González Harbour
Departamento de Electrónica y Computadores

Universidad de Cantabria
39005- Santander, SPAIN

{gutierjj, mgh}@ctr.unican.es

Of course, the issue of real-time behavior in a DSA
implementation depends on many more factors than just the
prioritization of the RPC’s. These issues will have to be
worked out to achieve predictable behavior, but they are out
of the scope of this paper.

2. Current Priority Model in the Glade
Implementation

The Ada95 DSA requires that “the implementation of the
RPC-receiver shall be reentrant, thereby allowing
concurrent calls on it from the PCS (Partition
Communication Subsystem) to service concurrent remote
subprogram calls into the partition.” It also requires the
implementation to document “whether the RPC-receiver is
invoked from concurrent tasks.” In addition, it provides the
following implementation advice: “Whenever possible, the
PCS on the called partition should allow for multiple tasks
to call the RPC-receiver with different messages and should
allow them to block until the corresponding subprogram
body returns.”

This basically means that the way in which RPCs are
handled is totally dependent on the implementation. In
Glade, a pool of tasks is created at initialization time which
can take care of concurrently executing the RPC receivers
in a given partition. This preallocation of tasks is done for
the purpose of avoiding the overhead of task creation and
destruction at each RPC. If an RPC arrives and all the tasks
in the pool are being used by previously issued RPCs, then
a new task will be created for the new RPC. Thus, the Glade
implementation follows the advice given in the language
Reference Manual.

Since in the DSA there is no provision for expressing the
priorities at which the task executing an RPC should
execute, the current implementation of Glade provides a
simple mechanism that is transparent to the user: the
priority of the task invoking the RPC is encoded in the
message sent to the receiver partition. Then, in that
partition, the task that will execute the RPC reads the
priority of the original calling task, which is encoded in the
received stream, and sets its own priority to that value
before starting the execution of the RPC-receiver
procedure. The original priority of the receiver task is set to
a medium level. But when the task finishes its work it is left
with the priority that it had been assigned for executing the
associated RPC-receiver.

One problem with this approach is that the initial priority of
the receiver task may cause priority inversion. Either when
the receiver task’s priority it is set to its initial medium
level, or when it is set to a low value because of a previous
execution, a high priority request that is about to being

serviced by that receiver task may have to wait for a long
time, blocked by some other tasks that may in fact have less
priority than the request.

Furthermore, as we will see in Section 3, assigning the
same priority to all actions in a distributed transaction is a
very suboptimal way of assigning priorities.

3. Effects of Priority Optimization in Real-
Time Distributed Systems

In this section we will show the influence that the priority
assignment methodology has on the overall schedulability
of a real-time system. In particular, we will show how the
current model used in the Glade implementation, consisting
of executing all tasks of a distributed transaction at the
same priority level, provides poor results when compared to
a method in which these tasks are allowed to have different
priorities.

For this purpose, we will show the results obtained on two
examples based on a model of an event-driven distributed
system. In these systems, there is a set of external events
sequences (generated by external devices, timers, etc.)
which activate tasks that are distributed in different
processors. These tasks may in turn generate events that
activate other tasks on the same processor, or make
synchronous or asynchronous remote procedure calls which
activate messages that are sent through a communications
network, further activating the execution of a remote
procedure by a remote receiver task. For simplicity, we are
going to assume there are only end-to-end deadlines
associated to the last task in a response to an event.

For the first example, we will consider a simple distributed
system with two processors and a communications
network, in which two distributed transactions are executed
as a response to two periodic external event sequences.
Each transaction contains one task that performs some
computation and, as its last instruction, executes an
asynchronous remote procedure call (APC). This call
implies sending a message, and then executing the call in
the remote processor, by a remote receiver task. This call is
modelled as a regular task execution. Therefore, the model
of the transaction contains two tasks, and one message sent
from one to the other. A periodic external event ei with
period Ti activates each transaction, composed of a set of
tasks and messages, each with its own worst-case execution
time, Cij , and priority, Pij . Furthermore, the last task on the
transaction has and end-to-end deadline EDi. Figure 1
shows the structure of the model that we use for this simple
example.

The only parameter that is still to be determined to perform
the timing analysis is the priority of each task and message.
The possibilities for assigning priorities according to the
current Glade implementation are just two: higher priority
for Transaction 1, or for Transaction 2. However, if we
could assign different priorities to each task and message,
the number of different priority combinations would be
eight. In order to determine which is the best approach, let
us measure the schedulability under the following three
priority assignments:

• Assignment 1: Rate Monotonic, i.e., in priority order. In
the example, if we use the Glade priority approach, the
highest priority would be for Transaction 1.

• Assignment 2: Higher priority to Transaction 2. This is
the second possible assignment in the Glade
implementation.

• Assignment 3: Higher priority to tasks τ11 and τ21, and
for message m12. This is the result of applying the HOPA
priority optimization algorithm [1] to the example.

Table 1 shows the worst-case response times (WCRT) for

tasks τ13 and τ23 when the RMA technique is applied to the
three different priority assignments described above. We
can see that both of the priority assignments that follow the
Glade model make the example unschedulable, but that the
third priority assignment allows both transactions to meet

their end-to-end deadlines. Thus, the ability to assign
different priorities to each component of the system
independently, offers better possibilities for achieving
schedulability.

With this simple example we have shown the influence of
the priority assignment on the schedulability of distributed
real-time systems. We will now show that with a flexible
priority assignment it is also possible to effectively increase
the schedulable utilization of the system.

For this purpose, we will use a simulated example of a
system that has to respond to seven external periodic events.
Each of these events activates one transaction, each of
which has one task which does one or more remote
procedure calls. The messages exchanged to perform these
remote procedure calls are also considered to be part of the
associated transaction. We model each execution of a
remote procedure call as a task execution, activated by the
arrival of the message generated by the RPC. The total
number of equivalent tasks in the model of this system is
50, and the total number of messages is 43. Each
transaction has an end-to-end deadline, which we will first
assume to be equal to 10 times the respective transaction
periods. We pick this number because in distributed
systems, to achieve high utilizations it is necessary that the
deadlines are larger than the periods by an amount roughly
similar to the number of resources used by each transaction.

All tasks and remote procedures are statically allocated in 8
processors, and we will assume that we have a variable
number of communication networks, ranging from one to
seven. By using different numbers of networks we can
check whether there is any influence of the amount of such
resources on the system schedulability achieved with the
different priority assignments.

The objective of this example is to establish a comparison
of the maximum schedulable average utilization that may
be achieved with the following priority assignments:

• RM priority assignment, with the same assignment for
all tasks and messages in the same transaction. This is
the assignment that we would use with the current Glade
implementation.

• HOPA priority assignment. In this case, each task or
message may have its own independent priority.

In order to determine the maximum schedulable utilization
we will start with a system utilization of 1%, and we will
use a simulation tool that will increase randomly the worst-
case execution times of the tasks and messages, in small
steps. At each step we perform the schedulability analysis
and the HOPA priority optimization, and we continue until

Table 1. Timing analysis

Priority
Assignment

WCRT of τ13
(ED of τ13)

WCRT of τ23
(ED of τ23)

Assignment 1 306 (600) 813 (800)

Assignment 2 604 (600) 298 (800)

Assignment 3 380 (600) 395 (800)

C11 = 59

CPU 1

Task τ11

C23 = 124

Task τ23

C13 = 209

Task τ13

C21 = 74

Task τ21

C22 = 100

Message m22

C12 = 38
Message m12

ED2 = 800

ED1 = 600

CPU 2
Network

e1 e2
T1 = 300 T2 = 400

Figure 1. Simple distributed system with real-time
constraints

P21 = ? P12 = ?

P23 = ?

P13 = ?

P22 = ? P21 = ?

we find that the system is no longer schedulable. We repeat
this experiment many times for each of the priority
assignments and for different numbers of communication
networks. Table 2 shows the average results obtained for the
maximum schedulable utilization.

These results show that, independently of the number of
networks, we can always get much better utilization values
by using the HOPA priority assignment. This is in
agreement with the fact that with the Glade implementation
only 5040 different priority assignments can be done for
this example, while with the independent priority approach
the number of possible priority assignments ranges between
1045 for seven networks and 1077 for a single network.

One problem that appears in distributed systems is the
effect of deferred activation of tasks or messages, also
called jitter. The activation time of messages generated by
the execution of periodic tasks is not perfectly periodic, but
depends on the completion time of the triggering task,
which is variable. The same happens with tasks activated
from messages. In general, jitter in one task causes delay in
the worst-case response time of lower priority tasks. To
solve this problem, there exist scheduling techniques like
the sporadic server that can eliminate the negative effects of
jitter on the schedulability of lower priority tasks. These
techniques can be applied both to the tasks [5] as well as the
messages [2].

We have repeated the simulation presented above but
assuming a jitter-free system to increase the schedulability.
The results appear in Table 3. In this case we can see that
the increase in maximum schedulability is larger than when
we suffered jitter, as is the total schedulability level that can
be achieved.

Similar results are obtained when the ratio of deadlines over
transaction periods is lower. Table 4 shows the results for
the cases of EDi/Ti equal to one, three and five, for a system
with four networks, both with jitter and jitter-free
scheduling.

4. Proposed Changes to the Glade
Implementation

Given the problems mentioned in Section 2 relative to the
handling of priorities, we can provide a simple solution by
slightly modifying the code of the Glade implementation.

First, to solve the problem of the initial priority of the
receiver task, we can just set it to the maximum priority
(System.Priority’Last). In this way, the receiver task
will start at a very high priority, and will immediately read
the desired priority from the stream and set its priority to
the appropriate value. Later, when the task finishes
executing the RPC receiver, it sends back the associated
message (in case of a synchronous RPC), and then it will
set its priority back to the highest level just before blocking
itself waiting for the next RPC request. No priority
inversion occurs using this scheme. The only drawback is
that this introduces a small overhead in the form of a
blocking term for all tasks in the system. But this blocking
is small, and does not accumulate to other similar blocking
effects: we just have to pick the maximum of all [10].

The other problem of assigning the priorities in a more
flexible way, needs some kind of interface that would allow
the application to set the priority at which each RPC should
be executed in the remote partition. Also, if a priority-based
communication system is used, the priorities of the
outgoing and the incoming messages should be specifiable.

In order not to add any new interfaces to the PCS, one way
of handling the specification of these priorities is to create
three task attributes using the facilities described in the

Table 2. Maximum schedulable utilizations (average)

Number of
networks

RM priority
assignment(%)

HOPA priority
assignment(%)

1 9.175 29.884

2 17.453 35.787

3 21.355 44.840

4 26.660 48.992

5 30.558 55.788

6 32.468 57.515

7 35.105 53.505

Table 3. Maximum schedulable utilization in a jitter-free
system

Number of
networks

RM priority
assignment(%)

HOPA priority
assignment(%)

1 18.433 100

2 31.687 100

3 42.597 100

4 50.602 100

5 61.428 100

6 67.135 100

7 66.748 100

Table 4. Maximum schedulable utilizations for different
end-to-end deadlines

EDi/Ti RM (%) HOPA
(%)

RM jitter-
free (%)

HOPA jitter-
free (%)

1 8.004 19.045 8.204 19.937

2 17.547 34.437 24.882 44.603

3 21.438 43.660 40.270 63.882

optional but standard package Ada.Task_Attributes .
These attributes support specifying for each task the
priority of the RPC handler task, of the outgoing message,
and of the incoming message, for the next RPC. The calling
task can change the values of these parameters anytime, for
example before each RPC invocation.

For this purpose, we create the following package:

package Global_Priorities is

pragma Pure (Global_Priorities);

type Priority is range ...

type RPC_Priorities is record
RPC_Handler,
Outgoing_Message,
Incoming_Message : Priority;

end record ;

end Global_Priorities;

In this package, the type Priority represents a value with
a global meaning across the distributed system. For each
CPU and network, a mapping function exists to translate a
value of this global priority type to a value of
System.Priority or of the network priority appropriate
for that resource. Using the RPC_Priorities type we
now instantiate the following package:

package RPC_Attributes is new
Ada.Task_Attributes(

Global_Priorities.RPC_Priorities,
<Initial_Values >);

We make this instantiation at the library level, so that it is
visible both by the body of the PCS package (System.RPC)
and also by the bodies of the application tasks.

The pseudocode of the application task, at the point of an
RPC would be:

...
RPC_Attributes.Set_Value(

RPC_Priorities’(
RPC_Handler => < value >,
Outgoing_Message => < value >,
Incoming_Message => < value >));

Invoke RPC;
Optionally set the task’s priority

to a new value;
...

And the implementation of the PCS would be changed in
the following way:

• Do_RPC: Instead of writing the priority of the calling
task in the stream, we need to read the
RPC_Priorities attribute, write the RPC_Handler

and Incoming_Message priorities into the stream, and

send the message at the Outgoing_Message priority
(after mapping it to the appropriate type).

• Do_APC: We do the same, except that the
Incoming_Message field is not encoded in the
message.

• Body of the task receiver: Before executing the RPC
receiver, we read the RPC_Handler (and the
Incoming_Message priority if it is a synchronous
RPC) and we set its own priority to the mapping of the
received value to the appropriate value of the type
System.Priority in that system. Later, we can set the
priority of the return message.

With the use of the task attributes facility we can pass the
desired values for the RPC priorities between the
application task and the PCS implementation in a safe way,
without adding new interfaces. Since a given application
task can only invoke one RPC or one APC at a given time,
and since Do_APC and Do_RPC are executed by the calling
task, there are no race conditions with the use of these
attributes.

5. Proposed Changes for a Future DSA

If a future DSA is to support real-time distributed systems,
new optional features and specification needs to be added to
the standard. In order to support the proper prioritization of
RPCs, according to the results of this paper, a flexible
mechanism for specifying the priorities of the RPC’s and of
the associated messages is needed. The use of task
attributes can only be considered as a workaround, and
more appropriate interfaces should be specified in the
standard.

The problem with RPCs is that they may be invoked many
times, from many different tasks with different timing
requirements, and thus each invocation may need its own
priority. Therefore a priority pragma attached to the
specification of the remote procedure is not appropriate.

We need an operation that the user can invoke before
making an RPC. This operation should be in a package that
is visible from the application. Package System.RPC does
not seem appropriate, since it is not intended for direct use
from the application. Therefore a new package like the
following could be created:

with Ada.Global_Priorities;
use Ada.Global_Priorities;

package Ada.RPC_Priorities is

procedure Set
(RPC_Handler : in Priority);

procedure Set
(RPC_Handler,
 Outgoing_Message : in Priority);

procedure Set
(RPC_Handler,
 Outgoing_Message,
 Incoming_Message : in Priority);

procedure Get
(RPC_Handler,
 Outgoing_Message,
 Incoming_Message : out Priority);

end Ada.RPC_Priorities;

Procedure Set in the above package would set the priority
or priorities used for future RPCs or APCs issued by the
calling process. These priorities would be in effect until
Set is called again. In this way, the application can specify
the priorities of its RPCs either on an individual basis, or by
grouping several calls under the same priorities. Initial
values for the priorities should be intermediate values of the
respective priority types. Procedure Get would return the
current values of the RPC priorities.

It could be argued that requiring the user to set the priorities
before making an RPC violates the intention of the DSA in
the sense that we would be making the procedure call
explicitly remote. However, in real-time applications it is
absolutely necessary to know the architecture of the
partitions and the RPCs, because the fact that a procedure
call is or is not remote has a very significant impact on the
timing response. One could always use a high level
configuration tool that would create the partitions, do the
real-time analysis, and insert the appropriate calls to
Ada.RPC_Priorities.Set before each RPC.

6. Conclusions

In this paper we have proposed a prioritization scheme for
remote procedure calls in distributed Ada real-time
systems. We have shown through theoretical results how
this prioritization scheme works much better than the one
provided by the current Glade implementation. We have
also discussed how to modify Glade to accommodate the
new priority scheme. Finally, we propose an amendment to
the Ada 95 DSA, that would allow a flexible assignment of
priorities.

It is worth mentioning that RPC prioritization is just one
issue among many that have to be worked out to achieve a
distributed systems implementation that offers a fully real-
time behaviour.

References

[1] J.J. Gutiérrez García, and M. González Harbour: “Optimized
Priority Assignment for Tasks and Messages in Distributed
Hard Real-Time Systems”. Proceedings of the 3rd Workshop
on Parallel and Distributed Real-Time Systems, Santa Barbara,
CA, pp. 124-132, April 1995.

[2] J.J. Gutiérrez García, and M. González Harbour: “Minimizing
the Effects of Jitter in Distributed Hard Real-Time Systems”.
Journal of Systems Architecture 42, pp. 431-447, October
1996.

[3] M.H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. González
Harbour. “A Practitioner’s Handbook for Real-Time Analysis”.
Kluwer Academic Pub., 1993.

[4] J.C. Palencia Gutiérrez, J.J. Gutiérrez García, and M. González
Harbour: “On the Schedulability Analysis of Distributed Hard
Real-Time Systems”. Proceedings of the 9th Euromicro
Workshop on Real-Time Systems, Toledo, pp. 136-143, June
1997.

[5] B. Sprunt, L. Sha, and J.P. Lehoczky: “Aperiodic Task
Scheduling for Hard Real-Time Systems”. The Journal of
Real-Time Systems, Vol. 1, pp. 27-60, 1989.

[6] K. Tindell, A. Burns, and A.J. Wellings: “Allocating Real-
Time Tasks. An NP-Hard Problem Made Easy”. Real-Time
Systems Journal, Vol. 4, No. 2, pp. 145-166, May 1992.

[7] K. Tindell, and J. Clark: “Holistic Schedulability Analysis for
Distributed Hard Real-Time Systems”. Microprocessing &
Microprogramming, Vol. 50, Nos.2-3, pp. 117-134, April
1994.

[8] S. Tucker Taft, and R.A. Duff (Eds.) “Ada 95 Reference
Manual. Language and Standard Libraries”. International
Standard ISO/IEC 8652:1995(E), in Lecture Notes on
Computer Science, Vol. 1246, Springer, 1997.

[9] L. Pautet and S. Tardieu, “Inside the Distributed Systems
Annex”, Intl. Conf. on Reliable Software Technologies, Ada-
Europe’98, Uppsala, Sweden, in LNCS 1411, Springer, pp. 65-
77, June 1998.

[10]J.B. Goodenough, and L. Sha. “The Priority Ceiling Protocol:
A Method for Minimizing the Blocking of High Priority Ada
Tasks”. Proceedings of the 2nd International Workshop on
Real-Time Ada Issues, June 1988.

