
Abstract1

The paper proposes a model for specific Ada structures that
can be integrated into our methodology for modeling and
performing schedulability analysis in the development
phases of distributed real-time applications written in Ada
95 and using its Annexes D and E. This methodology is
based on independently modeling the platform, the logical
components used, and the real-time situations of the
application itself (real-time transactions, workload or
timing requirements). The specific models presented in the
paper provide support for the automated analysis of local
and remote access to distributed services; hence, if a
procedure of a remote call interface is invoked from a
component assigned to a remote node, the corresponding
communication model (with marshalling, transmission,
dispatching, and unmarshalling of messages) is implicitly
integrated into the overall model that is being analyzed.
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1. Introduction

Several industrial environments such as avionics, space, or
robotics consider Ada as a first choice among the
programming languages to implement real-time systems,
because of its features and reliability. The Real-Time
Systems Annex (D) of the standard [1] allows users to
develop single-node applications with predictable response
times. Furthermore, there are a few implementations of the
Distributed Systems Annex (E), that support partitioning
and allocation of Ada applications on distributed systems
[2]. One of them is GLADE, which was initially developed
by Pautet and Tardieu [3] and is currently included in the
GNAT project, developed by Ada Core Technologies

(ACT) [5]. GLADE is the first industrial-strength
implementation of the distributed Ada 95 programming
model, allowing parts of a single program to run
concurrently on different machines and to communicate
with each other. Moreover, the work in [3] proposes
GLADE as a framework for developing object-oriented
real-time distributed systems. 

Unfortunately, Annexes D and E are mutually independent
and, consequently, the distributed real-time systems
environment is not directly supported in the Ada standard
[4]. Our research group has been working on the integration
of real-time and distribution issues in Ada 95. We have
proposed a prioritization scheme for remote procedure calls
in distributed Ada real-time systems [6], and in [7] we
focused on defining real-time capabilities for the Ada 95
distributed systems in order to allow the development of
this kind of applications in a simpler and potentially more
efficient way than with other standards like real-time
CORBA.

For the development of distributed applications it is
necessary to have strategies for modeling the real-time
behavior of the Ada components (reusable modules), and
also to have tools for analyzing the schedulability of the
entire application. Furthermore, in the real-time distributed
applications development, we also need to address issues
like the modeling of the communications, or the assignment
of priorities to the tasks in the processors and to the
messages in the communication networks. On these
premises, a methodology for modeling and performing
schedulability analysis of real-time distributed applications
was proposed in [10]. This methodology is based on
modeling basic Ada logical components as building blocks
and uses the MAST suite for performing the analysis [8][9].

This paper proposes a model for some of these basic Ada
structures that are commonly used in real-time distributed
applications. With them, the suitability of MAST to
precisely model and analyze real-time distributed Ada 95
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applications is shown. Although we draw out the details of
these basic Ada structures, we do not deal with the MAST
description neither with the analysis techniques themselves,
which can be found respectively in references [8][9][10]
and [11][12]. The objective is also to show through several
simple examples the feasibility of the methodology to
model critical aspects of real-time applications like
synchronization between concurrent tasks using protected
objects, interrupt handling, and the communication between
Ada partitions.

The paper is organized as follows. Section 2 presents the
conceptual environment in which real-time analysis and
modeling are considered, and summarizes the basic
structure of the UML real-time view in which our models
are hosted. In Section 3, the structure of the Ada application
as a container of the different basic structures is presented.
Sections 4 to 6 discuss and justify the feasibility of the
approach used for mapping the basic Ada structures into
analyzable real-time models. Finally, Section 7 gives our
conclusions.

2. Real-Time Analysis and UML RT View

The real-time models are based on concepts and
components defined in the Modeling and Analysis Suite for
Real-Time Applications (MAST). This suite is still under
development at the University of Cantabria [8][9] and its
main goal is to provide an open-source set of tools that
enable real-time systems designers to perform
schedulability analysis for checking hard timing
requirements, optimal priority assignment, slack
calculations, etc. Figure 1 shows a diagram of the toolset
and the associated information. At present, MAST handles
single-processor, multiprocessor, and distributed systems
based on different fixed-priority scheduling strategies,
including preemptive and non-preemptive scheduling,
interrupt service routines, sporadic server scheduling, and
periodic polling servers. 

The main goal of the methodology is to simplify the use of
well-known schedulability analysis techniques during the

object-oriented development of real-time systems with Ada.
The methodology extends the standard UML logical
description of a system with a real-time model that is
defined as an additional view [10]. In the schedulability
analysis process, the UML model is compiled to produce a
new description based on MAST components. This
description includes the information of the timing behavior
and of all the interactions among the different components.
It also includes the description of the implicit elements
introduced by the semantics of the Ada language
components that influence the timing behavior of the
system. All these elements are specified by means of UML
stereotypes. The generated MAST description is the
common base on which the real-time analysis toolset may
be applied. Finally, the analysis results may be returned into
the UML real-time view as a report for the designer. This
process is illustrated in Figure 1.

The real time model (UML RT View) is composed of three
complementary sections [10]:

•The platform model: it models the hardware and
software resources that constitute the platform in which
the application is executed. It models the processors, the
communication networks, and their configuration.

•The logical components model: it describes the real
time behavior of the logical Ada components that are
used to build the application. A component may model
packages (with libraries or tagged type descriptions),
tasks, the main procedure of the application, etc.

•Real-time situation model: it models a mode of
operation of the system and describes the hardware and
software components that take part in it, the workload
that is required and the timing requirements that are set.
The real-time situation is the framework for the
schedulability analysis tools operation.

Even though this modeling and schedulability analysis
methodology is language independent and is useful for
modeling a wide range of real-time applications, the
semantics of the high-level modeling components defined
and the syntax and naming conventions proposed are
particularly suitable and certainly adapted to represent
systems conceived and coded in Ada.

3. The Structure of the Ada Application

Instances of the Component class are used to model the
real-time behavior of packages and tagged types, which are
the basic structural elements of an Ada architecture: 

• Each Component object describes the real-time model of
all the procedures and functions included in a package or
Ada class.

Figure 1. Components of the real-time analysis process
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• Each Component object declares all other inner
Component objects (package, protected object, task,
etc.) that are relevant to model its real-time behavior. It
preserves the same visibility and scope of the original
Ada structures.

A Component object only models the code that is included
in the logical structure that it describes. It does not include
the models of other packages or components on which it is
dependent.

Figure 2 presents the Ada logical model of a simple
software pattern and its MAST real-time model, showing
the structural parallelism existing between them. This
pattern implements the periodic control of a set of servos
belonging to a robot or a machine tool (see example in
Section 5). It is composed of the active class
Servos_Controller and the passive class Target_Pos_Queue,
which represents the asynchronous communication
mechanism between Servos_Controller and the software
components that produce the servos target positions. The
class Servos_Controller is a container component designed
to group the domain-specific procedures Read_Sensors,
Process, and Do_Control, together with an instance of the
Periodic_Task class, which concurrently drives the periodic
control of the servos. The private procedure Update_Servos
holds the sequence of operations that are to be executed in
each activation of the periodic task.

Figure 2(b) shows the MAST model corresponding to the
control software pattern. The MAST components shown in
that figure model the temporal behavior and the interactions
between their corresponding logical classes. The

M_Servos_Controller component has three Simple
operations; each of them models the temporal behavior of
its corresponding logic procedure. Their wcet (worst case
execution time) argument represents the amount of
processing required to complete the  operation, and is
expressed as a normalized execution time, making its model
independent of the processor that executes the code.
M_Servos_Controller has two attributes with different
stereotypes: Attribute The_Controller has the <<obj>>
stereotype, which means that for each instance of
M_Servos_Controller, a component of the M_Update_Task
type is also instantiated; The_Target_Positions has the
<<ref>> stereotype, which indicates that for each instance
of M_Servos_Controller a reference to a
M_Target_Pos_Queue instance must be specified.

The declaration of the Control_Servos transaction is
displayed in Figure 3. This transaction uses an instance of
the Servos_Controller pattern, named as A, and  it has its
The_Target_Positions attribute referencing B, which is an
instance of M_Target_Pos_Queue.

4. The Concurrency of Ada Tasks

The <<Task>> components model the Ada tasks. Each task
component instance has an aggregated Scheduling_Server,
which is associated with the processor where the
component instance is allocated. Synchronization between
tasks is only allowed inside the operations stereotyped as
<<Entry>>. The model implicitly handles the overhead due
to the context switching between tasks.

Figure 2.  Software pattern of a servos controller artifact

Servos_Controller
- The_Controller : Update_Task

- Read_Sensors() : Status
- Process(Status, Target_Pos) : Data
- Do_Control(Data)

Update_Task
- Period : Time_Span
- The_Priority : Priority

- Update_Servos()

Target_Pos_Queue

+Next_Target_Pos():Target_Pos

The_Target_Positions

(a)Logical model of the control pattern.

M_Target_Pos_Queue

<<Simple>> + Next_Target_Pos(wcet=4.0E-6)

<<Protected>>

M_Servos_Controller
<<obj>> - The_Controller : M_Update_Task
<<ref>> - The_Target_Positions : MAST_Target_Pos_Queue

<<Simple>> - Read_Sensors(wcet = 2.4E-5)
<<Simple>> - Process(wcet = 5.0E-4)
<<Simple>> - Do_Control(wcet = 1.0E-5)

<<Component_Descr>>

M_Update_Task
- The_Policy : Fixed_Priority(The_Priority = 24)

<<Composite>> - Update_Servos

<<Task>>

(b)MAST real-time model of the control pattern.



The example described in Figure 2 shows the MAST model
of an active Ada class, which declares the task
M_Update_Task. For each instance of the task component,
a new Scheduling_Server is associated with the
corresponding host processor. Hence, in Figure 3
A.The_Controller, which is of the type M_Update_Task, is
instantiated together with the instance of the A component.
The Scheduling_Server A.The_Controller.Thread is also
instantiated with a  Fixed_Priority scheduling policy and a
priority of 24. Figure 3(b) shows that the activities included
in the Update_Servos operation are scheduled within this
thread.

5. The Contention in the Access to Protected 
Objects

A <<Protected>> MAST component models the real-time
behavior of an Ada protected object. It implicitly models
the mutual exclusion in the execution of the operations
declared in its interface, the evaluation of the guarding
conditions of its entries, the priority changes implied by  the
execution of its operations under the priority ceiling locking

policy, and also the possible delay while waiting for the
guard to become true. Even though the methodology that
we propose is not able to model all the possible
synchronization schemes that can be coded using protected
entries with guarding conditions in Ada, it does allow to
describe the usual synchronization patterns that are used in
real-time applications. Therefore, protected object-based
synchronization mechanisms like handling of hardware
interrupts, periodic and asynchronous task activation,
waiting for  multiple events, or message queues, can be
modeled in an accurate and quantitative way.

The operations involved in the declaration of a protected
MAST component  are implicitly modeled with mutual
exclusion between them by attaching an implicit shared
resource to them. Each operation in this component
implicitly locks and unlocks the shared resource before and
after the operation activities. The model of the operation
declared as <<Guarded>> is more complex and it needs an
activity diagram to describe its behavior.

As an example of the capacity of the MAST methodology
to model the real-time behavior of synchronization artifacts

Figure 3. Transaction Control_Servos with a model instance of a control pattern
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a) Declaration of the Control_Servos transaction.

b) Description of the Control_Servos transaction and automatic recursive use
of logical component models.



using protected objects in Ada, Figure 4 shows the Ada
code of one such artifact, in which a task suspends itself
executing Synchro.Await until another task activates it by
executing Synchro.Fire. The Ada code precisely establishes
the semantics of the modeled mechanism.

There is no unique MAST model for the Synchro object.
Instead, the model has to be built for each usage pattern.
The model described by Figure 5 shows two tasks
belonging to the same transaction that synchronize through
this object. Consequently they  have the same period, and
we can assure that there is no more than one task in the
Await entry queue. The model shown is built specifically
for making the schedulability analysis, so it does not model
the actual response but its worst-case behavior instead.

The M_Synchro_1 component declares an attribute of the
type Named_State, which is required for synchronizing the
operations it offers. The composite operation Fire models
the sequence of basic operations that will be executed in the
worst case by the calling thread: the code of the Fire

operation (Fire_Oper), the evaluation of the Await entry
guard (Await.GE), and the execution of the Await code
itself (Await.Exec), which will be executed only if there is a
task queued in the Await entry. Furthermore, the model
establishes that after the execution of the Fire operation the
Event state will be reached. As any <<Guarded>>
operation, Await is characterized by three elements: the
activity model that describes its behavior, the <<Simple>>
(or in other cases <<Composite>>) operation that describes
the amount of processing required to execute its code
(Await.Exec), and the guard evaluation operation that
models the amount of processing required to evaluate the
guard (Await.GE). The activity description of the Await
operation starts by the initial evaluation of the guard, then it
suspends until the Event state is reached, and in the end it
executes the entry code. The model obtained is pessimistic,
because the execution of the Await code is included in both
threads. Even though this situation will never take place, it
avoids making the model too optimistic, which would yield
incorrect results.

Figure 4. Ada synchronization artifact

-- Ada task that generates the event
..
Synchro.Fire;
..

protected is
pragma
pragma
procedure
entry

private

end

Synchro
Locking_Policy(Ceiling_Locking);
Priority(28);

Fire;
Await;

Event: Boolean:=False;
Synchro;

protected body is
procedure is
begin

end
entry when is
begin

end
end

Synchro
Fire

Event:=True;
Fire;

Await Event

Event:=False;
Await;

Synchro;

-- Ada task that waits for the event
..
Synchro.Await;
..

Figure 5. MAST model of an Ada synchronization artifact
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In our second example of an Ada protected object, Figure 6
and Figure 7 describe the Ada code and the MAST model
of an asynchronous mechanism for the execution of a
procedure triggered by a hardware interrupt, but executed
by a software task running at a user-specifiable priority. The
actual behavior can be obtained from the analysis of the
Ada code shown in Figure 6, and its proposed MAST
model is shown in Figure 7. Just like the Ada code, the
model has two components. The M_HW_Intr_Task
<<Task>> adds to the model a scheduling server in which
the Intr_Operation operation is executed. In this case, the
operations of the The_Handler object (which is the
protected object implementing the actual interrupt handler
running at the hardware interrupt priority) are executed by
the implicit scheduling server modeling the behavior of the
interrupt hardware. This scheduling server (named
System.Thread) is declared associated to the processor in
the platform model. The operations Lock and Unlock are
shown in Figure 7 only for illustrative purposes. They are
implicitly added by the <<Protected>> semantics of the
Interrupt_Handler_Type component and thus they don’t
have to be introduced by the modeler. The evaluation of the
guard Await.GE is placed after the handling on the interrupt
because this will be the last action of the handler task
before suspending itself waiting for the next interrupt.

Figure 6. Handler of a hardware interrupt

Figure 7. MAST model of the handler of a hardware interrupt

<<Task>>
M_HW_Intr_Task

<<obj>> The_Handler:Intr_Handler_Type
<<obj>> Policy=Fixed_Priority(The_Priority= 30)

<<Composite>> Handling_Process
<<Simple>> Intr_Operation(wcet=2.4E-5)

<<Protected>>
Intr_Handler_Type

<<obj>> Access_Policy=Inmediate_Ceiling(The_Priority=32)
<<Simple>> Handle(wcet=0.8E-6)
<<Guarded>> Await
<<Simple>> Await.Exec(wcet=1.8E-6)
<<Simple>> Await.GE(wcet=1.2E-6)

Description of
Handling_Process

do/ The_Handler.Handle

do/ The_Handler.Await.GE

do/ The_Handler.Await.Exec

do/ Intr_Operation

task obj.Thread system.Thread

Lock

Unlock

do/ The_Handler.Await.GE

Lock

Unlock



6. The Real-Time Communication between 
Ada Distributed Partitions

The model supports in an implicit and automated way the
local and remote access to the APC (Asynchronous
Procedure Call) and RPC (Remote Procedure Call)
procedures of a Remote Call Interface (RCI), as described
in Annex E of the Ada standard. The declaration of an RCI
includes the necessary information for the marshalling of
messages, their transmission through the network, their
management by the local and remote dispatchers and the
unmarshalling of messages to be able to be modeled and
included automatically by the tools.

Figure 8 shows an example of an Ada remote call interface.
In order to support an Ada RCI, a platform must have an
implementation of the Partition Communication Subsystem
(PCS) as it appears in Annex E, and moreover it is
necessary to have the System.RPC package, which includes
the communication between different active partitions
(which in turn can be allocated to different processors), the
necessary stubs, and the marshalling and unmarshalling
operations for the local and remote processing nodes. In the
work presented in this paper, we are modeling an
implementation of the Distributed Systems Annex of Ada
according to the criteria described in  [6] and [7] which
allows a predictable scheduling of distributed applications.

Processors with this distributed implementation have been
modeled by an <<RT_Ada_Processor>> component in the
platform model of the system. Each processor of this type
has a background thread called Dispatcher and a set of
server threads to execute the remote procedures with the
scheduling policies and priorities that are requested by the
application.

The example in Figure 8 corresponds to an RCI with an
asynchronous (APC) operation. The model of the Ada RCI
is described by a MAST component with an  <<RCI>>
stereotype, and each APC operation is modeled by a set of
four operations whose names are derived from the APC
name:

• The operation with the <<Composite>> (or
<<Simple>> in other cases) stereotype models the
operation code. It corresponds to the model used when
the operation is invoked locally.

• The <<APC>> stereotyped operation declares it as such
and brings in the following arguments:

1. Iml (Incoming message length) expressed in bytes,
describes the use of the communication network that
is required to send the incoming message.

2. APC_Parameter.InMsg_Priority is the priority of the
incoming message in the communication network.

Figure 8. Example of an Ada remote call interface and its MAST model

package is
procedure in
pragma
pragma

end

Remote_Write
Write(D: Data_Type);

Remote_Call_Interface;
Asynchronous(Write);

Remote_Write;

Caller.Thread In_Msg_1.Thread Remote.Dispatcher Remote.Msg_1.Server

Write.InMarshalling

Write.InUnMarshalling

Write.In_Msg_1

Write

End_Write

(from Local_RT_ADA_Node) (from Remote_RT_ADA_Node) (from Remote_RT_ADA_Node)(from Network)

<<APC_Parameters>>
A_Msg_Parameter

InMesg_Priority = 18
Server_Priority = 22

<<RCI_Interface>>
M_Remote_Write

<<APC>> Write(iml=256, rc:APC_Parameters)
<<Simple>> Write.InMarshalling(wcet=2.2E-5)
<<Simple>> Write.InUnmarshalling(wcet=2.5E-5)
<<Composite>> Write

End_Write: Timed_State

(a) Ada code of a remote call interface (b) MAST model of the remote call interface.

(c) Implicit activities diagram for APC Write.



3. APC_Parameters.Server_Priority is the priority for
the execution of the procedure in the remote
processor server.

As the last two attributes may vary on each invocation,
they must be established as parameters in the MAST
model, and their corresponding values must be assigned
in the description of the transaction.

• The operation with the InMarshalling extension is
simple, and models  the amount of processing required
for encoding  the input arguments of the procedure into
the appropriate network format.

• The operation with the InUnMarshalling extension is
simple, and models  the amount of processing required
for decoding  the input arguments of the procedure from
the network format used.

Figure 8(c) shows the set of activities as well as the
scheduling servers involved in the remote invocation of an
APC operation (Write). These model elements are
automatically included when a component invokes an APC
operation of an <<RCI>> component allocated in another
processor.

7. Conclusion

In this work we have presented some real-time models of
Ada structures in order to integrate them into a
methodology for modeling the real-time behavior of Ada
applications. These models are specified with the
appropriate level of detail to guarantee that, the
schedulability analysis, the optimum priority assignment,
and the slack calculations, can be applied.

Complex Ada components (packages, tagged types,
protected objects, tasks, etc.), as well as other issues like the
context switch between tasks, the background
communication management, the timer interrupt service
routines, the use of mutexes for accessing protected objects,
or mechanisms to access remote interfaces (RCI), are
modeled independently of the application in which they are
used. This property makes it possible to use the Ada
components as the basis for the support of a design
methodology for real-time systems based on Ada reusable
components.

The Ada structures presented in this paper have been
integrated in a methodology that is currently being
implemented in the UML-MAST toolset. The description
and implementation of this toolset can be found at:
http://mast.unican.es
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