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Abstract: This paper proposes a technology for the development of distributed
real-time component-based applications, which takes advantage of the features
that Ada offers for the development of applications with predictable temporal
behaviour, and which can be executed in embedded platforms with limited
resources. The technology uses the Deployment and Configuration of Compo-
nent-based Distributed Applications Specification of the OMG for describing
the components, the execution platforms and the applications. The framework
defined in the Lightweight CCM standard of the OMG is taken as the basis of
the internal architecture of the components and the applications. It has been
extended with a number of features to make the temporal behaviour of the appli-
cations predictable. Among these extensions, the usage of CORBA has been
replaced by special distributed components, called connectors, which implement
the interaction between components by means of predictable and customizable
communication services. Besides, special mechanisms have been introduced in
the environment to make the threading characteristics of the components config-
urable. The technology fixes the responsibilities and the knowledge required by
each actor involved in the component-based development process, and for each
of them it defines the input and output artifacts that they have to manage.
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1 Introduction1

The design of real-time software for embedded systems has a strategic interest in the
industry nowadays. In many application areas, like robotics, industrial control, auto-
motive, etc., systems are built by assembling subsystems (controllers, vision systems,
carburation systems, etc.). A subsystem may be equipped with its own embedded proc-
essor, or deployed in a number of them, each of which is in charge of controlling its
own hardware, and the communication among them is achieved by means of a dedi-
cated network (Ethernet, CAN bus, firewire, etc.). This architecture provides consider-
able modularity and reconfigurability, and it minimizes and standardizes the wiring.

1.  This work has been funded by the European Union’s FP6 under contracts FP6/2005/IST/5-034026
(FRESCOR), FP7/224330 (ADAMS) and ArtistDesign, EU FP7 NoE 214373 and by the Spanish
Government under grant TIC2005-08665-C03 (THREAD) and EVOLVE. This work reflects only the
author’s views; the EU is not liable for any use that may be made of the information contained herein. 



The increasing capacity and memory provided by the processors, and the subsequent
rise in the amount of functionality that they must support, together with the distributed
nature of the execution platforms, and the real-time requirements of the final
applications involved, make the software for this kind of systems very complex.
Applying component-based design strategies to this domain offers several advantages:
• It provides a simple architecture based on interfaces instead of protocols between

subsystems.
• The reconfiguration of a system can be achieved by modifying the deployment

plan, without requiring any hand-made code modification. It also simplifies the
evolution and versioning of systems since it is only required to replace or add new
components with well-defined functionalities. 

Conventional component technologies are not easily adaptable to embedded
systems, since they require a large amount of services from the operating systems, file
systems, middleware or networks, which are not compatible with the limitation of
resources suffered by them. Various proposals dealing with the adaptation of CBSE to
real-time systems have appeared in the last years. Some companies have developed
their own solutions, adapted to their corresponding domains. Examples of that kind of
technologies are Koala [1], developed by Philips, or Rubus [2], used by Volvo. These
technologies have been successfully applied in the companies that created them,
though none of them have stimulated an inter-enterprise software components market.
However, they have served as the basis of other academic approaches. The Robocop
component model [3] is based on Koala and adds some features to support analysis of
real-time properties. Similarly, Rubus has been used as the starting point of the
SaveCCT technology [4], which is focused on control systems for the automotive
domain; and under appropriate assumptions for concurrency, simple RMA analysis can
be applied and the resulting timing properties introduced as quality attributes of the
assemblies. From the Ada language perspective, even though it is significantly used in
the design and implementation of embedded real-time systems, we have not found
references of its usage in support of component-based environments. 

This paper proposes a component-based technology, denominated Ada-CCM, which
is specifically conceived for embedded, distributed and real-time systems. The key
aspects of the technology are:
• It follows the components specification style and the programming model

proposed in the Lightweight CCM (LwCCM) [5] specification of the OMG.
Therefore, a container/component pattern is used, though with an essential
difference: CORBA is not the communication mechanism used. The connection
between a facet and a receptacle is always local, and the communication between
remote components is achieved by means of special distributed components called
connectors. Besides, special mechanisms have been included in the containers to
make the temporal behaviour of the application execution predictable.

• Both the business component implementations and the containers code are written
in Ada 2005 [6]. Making use of the Ada’s native support for concurrency,
scheduling policies and synchronization mechanisms, it is possible to generate
code with predictable temporal behaviour. Ada is intended for embedded systems,
and there are small foot-print run-time libraries for Ada that can be executed on



bare embedded computers. The new version of the language is essential to this
work, since it introduces support for multiple inheritance based on interfaces,
which are key aspects in the development of component-based technologies.

• The external interface and the internal implementations of components, execution
platforms and deployment plans are described following the Deployment and
Configuration of Component-based Distributed Applications Specification of the
OMG (D&C) [7]. It has been extended to include metadata about the temporal
behaviour of components, platforms and applications. This information is used to
analyse the schedulability of the application as part of the development process.

The responsibilities and the artifacts that serve as inputs and outputs for the different
actors that take part in the development process of an application are precisely defined
in the proposed technology; they are briefly sketched in Figure 1. A detailed
explanation of the development process and the involved actors and artifacts is given
along the paper. Due to the real-time nature of the developed applications, this process
adds a number of aspects to the standard one. The developer must formulate, together
with the business code, the description of the temporal behaviour of the component.
Real-time models describing the capacity provided by the elements of the execution
platforms are also required. After defining the structure of an application by means of
the deployment plan, the planner can build its temporal behaviour model. Based on the
real-time requirements established in the specification of the application, he defines
the workloads, which are the basis for the schedulability analysis. The results of the
analysis are the set of scheduling parameters with which the component instances are
configured, as well as the specification of the platform resources that shall be reserved
in order to schedule their execution timely. 

The paper is organized as follows, Section 2 describes the process of generation of a
deliverable component in the technology. In Section 3, the reference model of the
technology is explained, together with the structure of Ada packages to which a
component is mapped. Section 4 details the process of development of an application
built as an assembly of components. Section 5 describes the development suite.
Section 6 details the features of the execution platform and an application example.
Section 7 presents the way in which real-time models are added to the description of
components and platforms, and introduces the modelling and analysis suite used in the
technology. Finally, Section 8 summarizes our conclusions and future work.

Fig. 1. Actors and main artifacts in components and applications design
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2 Component development process

Figure 2 shows the process that is followed to generate a deliverable component,
which will be able to be automatically assembled and executed in future applications. 

When the specifier, who is an expert in the application domain, finds out that a
certain functionality is demanded, he creates the specification of a new component that
satisfies it. The component specification is formulated according to the D&C
specification, by means of a Component Interface Description (.ccd file). As it is
explained in Section 7, the D&C specification has been extended to incorporate special
real-time composability requirements, and the metadata related to the temporal
behaviour of the component. Besides, with the purpose of controlling the number of
threads managed by a component, and making their scheduling parameters
configurable (i.e. the priority), an important aspect has been introduced in the
technology. Each thread needed by the business implementation of a component to
implement its functionality, is required by means of an special activation port declared
on its specification (the way in which the container manages these activation ports is
explained in Section 3).

As an example, using the LwCCM graphical notation, Figure 3 shows the
specification of the SoundGenerator component. This component is part of an
application we have developed to test the technology. It offers a facet, playerPort,
which implements the I_Player interface and is used by the client components to
generate different sounds. It is an active component, since it requires a thread to play
the sound without forcing the client to be blocked until the sound is completed. The
thread is demanded by means of the declaration of the soundThread activation port.
The component declares a configurable property, soundThreadPeriod, which
represents the period with which the thread provided by the container will invoke the
update() procedure corresponding to the soundThread port (see Section 3).

The developer writes the business code of the component as a set of Ada packages
(.ads and .adb files). The code has to implement the Component Business Interface.
This interface is generated using the ComponentTemplateGenerator tool, which takes
the specification of the component, and the IDL descriptions of the related functional
interfaces as inputs. It defines the set of methods that the business code must
implement in order to be managed by the container in an automatic way. It has no
dependencies with the technology, so the component developer is free to design the
business code without having to be aware of any internal detail of the technology. The

Fig. 2. Actors and artifacts involved in component development with AdaCCM
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developer has complete knowledge about the internal behaviour of the component, so
he has to create, together with the code, the real-time model that describes the temporal
behaviour of the component. Besides, the developer has to specify the requirements
that the component imposes on the platform to be able to execute. All this information
is described by means of a D&C’s Component Implementation Description (.cid file).

The packager carries out the last phase of the process, which consists in building the
package that constitutes the deliverable component. Taking the specification of the
component as input, a new code generation tool, called Component
ContainerGenerator, generates the set of Ada source files (.ads and .adb files) that
implement the container of the component. The container groups all the resources that
are used to adapt the business code implementation to the execution environment (its
structure is explained in the next section). These files are compiled together with the
business code using the standard GNAT Ada compiler and a library is generated (.a
file). This library is the only artifact that is required to execute the component on the
target platform. Finally, the packager gathers all the information available about the
component, and creates and publishes the package that describe the component. This
package includes both the binary code of the component and the metadata (both
functional and non-functional) that allow a future user to decide about the suitability of
the component in an application, and also describe the way in which the component
can be instantiated and executed. This package constitutes the deliverable component
and the corresponding metadata is defined according to the Package Configuration
Description element of the D&C (.pcd file).

3 Component Architecture

A full component implementation must address two complementary aspects:
• It has to implement the business functionality that it offers through its facets,

making use of its own business logic and the services of other components
accessed through its receptacles. This aspect concerns the application domain in
which the component functionality is required.

• It must include the mechanisms that are required to instantiate, connect and
execute the component in the corresponding platform and framework. This aspect
is addressed by implementing the appropriate interfaces that allow managing the
component in a standard way. This aspect is related to the component technology
used, in our case LwCCM.

The architecture of a component proposed in this technology follows an structural
pattern that achieves independency of the Ada packages that implement each aspect.

Fig. 3. SoundGenerator component declaration

SoundGenerator

soundThreadperiod

playerPort
soundThread

PeriodicActivation

<<interface>>
I_Player

play()
fail()

<<interface>>
PeriodicActivation

Update()

I_Player

Facet

Activation port

SoundGenerator

soundThreadperiod

playerPort
soundThread

PeriodicActivation

<<interface>>
I_Player

play()
fail()

<<interface>>
PeriodicActivation

Update()

I_Player

Facet

Activation port



The packages that implement the technology related aspects are completely generated
by automatic tools, taking the specification of the component as the only input. The
component developer only has to design and implement the business code of the
component, without having to have any knowledge about the underlying technology.

The architecture of a component is generated according to the reference model of the
technology, which is shown in Figure 4. It is based in the container-component
framework proposed in LwCCM, but it has been extended with some new features
required to make the behaviour of the application execution predictable:
• In order to make the threading and scheduling characteristics of an application

configurable, and therefore, to control its schedulability, the business code of a
component has not internal threads. The internal activity of a component is
defined through the set of activation ports declared in its specification. These ports
are recognized by the container, which creates and activates the corresponding
controlled threads to execute the activity of the component once it is instantiated,
connected and configured. These activation ports can implement one of the
predefined interfaces: PeriodicActivation or OneShotActivation. The
OneShotActivation interface declares a run() procedure, which will be executed
once by the created thread, while the PeriodicActivation interface declares an
update() procedure, which will be invoked periodically. A component can
declare several activation ports, each of them representing an independent entity
of concurrency. Activation ports are declared in the component specification, and
all the elements required for their execution are created automatically by the
container generation tool. Their configuration parameters, which include the
thread priorities as well as the activation periods (in case of PeriodicActivation
ports), are assigned to each component instance in the deployment plan.

• The connection established by each receptacle in a component is always local and
it is implemented by an Ada pointer to the corresponding interface. If the
connection between components is local, the pointer access directly to the facet of
the server component. If the connection is remote, it is implemented by an
specialized component called connector. As it is shown in Figure 5, a connector is
a distributed component, composed by two parts: the proxy side which is
instantiated in the client node, and the servant side, which is instantiated in the
server node. The proxy offers a local facet to the client component and it includes
the synchronization mechanisms for the invoking thread. The servant side has a
receptacle which connects with the server facet and it includes and manages the

Fig. 4. Reference model of the technology
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threads that carry out the remote invocations. The communication mechanisms
between the two parts (marshalling and unmarshalling of the invocation and
return parameters, and transmission and dispatching of messages) are internal to
the connector and depend on the communication service chosen for its
implementation. The code of the connector is completely generated by automatic
tools according to the interface of the connected ports, the location of the
components, and the communication service used for the connection. We have
developed connectors which use directly the RT-EP protocol [8], which is a real-
time protocol implemented over Ethernet. This kind of connectors are suitable for
connections with real-time requirements. An alternate implementation with no
prioritized messages has been made using GLADE [9], an implementation of the
Ada Distributed Systems Annex (DSA).

• Interception mechanisms [10] and a special internal service are introduced in the
container to control non functional features of the component service executions.
In our technology they are specifically used to control the scheduling parameters
with which each invocation received in a component operation is executed. Based
on the configuration parameters assigned to each instance in the deployment plan,
each interceptor knows the scheduling parameter which corresponds to the current
invocation, and uses the SchedulingAttributeService to modify it in the invoking
thread. With this strategy, different schemes for scheduling parameters assignment
can be implemented. Besides common assignment policies, like Client Propagated
or Server Declared [11], our technology allows to apply an assignment based on
the transactional model of the application. With this policy, a service can be
executed with different scheduling parameters inside the same end-to-end flow
depending on the particular step inside the flow in which the invocation takes
place. This scheme enables better schedulability results [12]. 

For each component specification, four Ada packages are generated. The first
package represents the adapter of the component and includes all the resources to
adapt the business code of the component to the platform, following the interaction
rules imposed by the technology. The wrapper class of the component is defined in this
package. This class implements the equivalent interface of the component, which
LwCCM establishes as the only interface that can be used by clients or by the
deployment tools to access to the component. With that purpose, the class implements
the CCMObject interface, which, among others, offers operations to access to the
component facets, or to connect the corresponding server components to the
receptacles. Besides, the capacity to incorporate interceptors is achieved by
implementing the Client/ServerContainerInterceptorRegistration interfaces, a

Fig. 5. Connector component 
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modified version of the homonymous interfaces defined in QoSCCM [10]. As it is
shown in Figure 6 for the SoundGenerator component, this class is a container which
aggregates or references all the elements that form the component:
• The component context, which includes all the resources required by the

component to access to the components that are connected to its receptacles.
• The home, which represents the factory used to create the component instances.
• The executor of the component, which represents the link to the real business code

implementation and whose structure is explained below.
• An instance of a facet wrapper class is aggregated for each facet of the

component. They capture the invocations received in the component and transfer
them to the corresponding facet implementations, which are defined in the
executor. The facet wrappers are the place in which the interceptors for managing
non-functional features are included.

• Each activation port defined in the specification of the component represents a
thread that is required by the component to implement its functionality. To
implement those threads two kinds of Ada task types have been defined. The
OneShotActivationTask executes the corresponding run() procedure of the port
once, while the PeriodicActivationTask executes the update() procedure of the
corresponding port periodically. Both types of task receive as a discriminant
during its instantiation, a reference to the data structure that qualify their
execution, which includes scheduling parameters, period, and the procedure to
call. For each activation port defined in the component, a thread of the
corresponding type is declared. They will be activated and terminated by the
environment by means of the standard procedures that LwCCM specifies in the
CCMObject interface to control the lifecycle of the component.

 The rest of generated Ada packages represent the executor of the component.
LwCCM defines a set of abstract classes and interfaces which have to be implemented,
either automatically or by the user, to develop the executor of the component. This set
of root classes and interfaces are grouped in the generated package
{ComponentName}_Exec. The {ComponentName}_Exec_Impl package includes the
concrete class for the component implementation which inherits directly from the
interfaces defined in the previous package, and therefore, includes dependencies on the
technology. As it is shown in Figure 7, this class contains as an aggregated object, the

Fig. 6. Component wrapper structure
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business code implementation of the component, which must implement the
{ComponentName}_Business_Interface interface. As it has been said before, this
interface includes all the methods that the business implementation must implement in
order to be managed by the environment in an automatic way. By using this interface
together with the aggregation pattern, the environment internals are hidden to the code
developer, who is completely free to implement the business code of the component.
The only requirement to meet is that the implementation must offer the
{ComponentName}_Business_Interface interface, however, relevant aspects that
should be included in a correct implementation are:
• For each facet offered by the component, a facet implementation object should be

aggregated. In the case of simple components, the class itself can implement the
interfaces supported by the facets. 

• For each activation port defined in the component, the corresponding implementa-
tion object should be aggregated. 

• All the implementation elements (facet implementations, activation ports, etc.)
operate according to the state of the component, which is unique for each instance.
Based on that, the state can be implemented as an independent aggregated class,
which can be accessed by the rest of the elements, avoiding cyclic dependencies. 

The current available Ada mapping for IDL [13] is based in Ada95, so for the
development of the code generation tool, new mappings for some IDL types have been
defined in order to get benefit of the new concepts introduced in Ada 2005. The main
change concerns the usage of interfaces. The old mapping for the IDL “interface” type
led to a complex structure, now, it can be directly mapped to an Ada interface.

4 Application development process

The development process of component-based applications, as it is shown in Figure 8,
includes the design, configuration, deployment and launching of applications built as
assemblies of components previously installed in the development environment.

The assembler describes the application as an assembly of component instances,
selecting them among those stored in the repository of the design environment, and
connecting them according to their requirements. The description is made by means of
a Component Assembly Description (.cad file), as it is defined in the D&C
specification. For real-time applications, this structural description must be
complemented with the description of their workload. The workload of an application
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is defined as the set of real-time end-to-end flow transactions concurrently executed on
it [14]. For each operational mode of the application with real-time requirements to
meet (real-time situation), a workload model must be defined. Schedulability analysis
tools can then be applied to each real-time situation. The real-time extension of the
D&C includes also the definition of special metadata to describe the workload of an
application. 

In the next phase of the process, the planner takes the assembly description, and
designs a deployment planning for the application. This process consists in assigning
component instances to nodes, and deciding the mechanisms used for the
communication between instances. The result of this stage is the deployment plan
(.cdp file), which completely describes the application and the way in which it is
planned to be executed.

At this point, a real-time design specific task is included in the process. The
deployment plan defines the nature of the communication between component
instances, assigning to each connection between component ports, the communication
service to use and its corresponding configuration parameters (D&C has been
extended to include this kind of information). These data will be used by the
deployment tool to generate the corresponding connectors between components, but at
this moment it is used to generate the real-time models of those connectors, whose
templates should be stored in the repository or must be developed together with the
deployment plan. Obviously, the communication services used for the connections
must hold predictable behaviour. So, the deployment plan includes all the information
required to generate the real time model of the complete application by composition of
the real-time models of the components that form it, the platform resources (which
must be also stored in the repository) and the connectors used for the interaction
between components. This final model is used to calculate the optimal values for the
scheduling parameters and to analyse the schedulability of the application under each
workload.

Finally, in the last stage of the process, the executor makes use of a launching tool,
which performs the following sequence of tasks:
• Using the deployment plan as input, it generates the code of the connectors

involved in the application and the code of the main Ada procedures that have to
be executed on each node in order to launch the application. These procedures
instantiate, connect and configure the components and the connectors according to

Fig. 8. Component-based application development process in AdaCCM
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the information defined in the deployment plan. They also include the
configuration of the internal service of the execution environment
(SchedulingAttributeService) which, together with the interceptors, manage in an
automated way the scheduling parameters of the threads during the application
execution. The configuration parameters of this service, whose values may be
obtained by schedulability analysis or other verification techniques, are also
specified in the deployment plan. 

• The code of the generated main procedures is compiled and linked with the
libraries corresponding to the components, and the code of the connectors
involved in the application.

• The resulting executables are moved to and executed in the corresponding nodes.

5 Design environment and tools for components development

The design of a new component or the deployment of an application are processes
which are performed in the development environment. They are to be assisted by tools
to guarantee the correctness “by construction” of the generated artifacts. A design
environment based in Eclipse has been defined for the Ada-CCM technology. It pro-
vides a set of frameworks and services which simplify resource management and tools
development. The environment is composed of two key elements: the repository, in
which the intermediate and final products are organized, and the tools which carry out
the transformations between those products.

The information is organized in three Eclipse
projects:
• The repository project is a general project. It

stores and organizes the information relative to
the registered elements. It is divided in five
main sections: applications, components,
interfaces, platforms and technology. Inside
each section, the information is divided in
domains which define different namespaces.
Each element inside the repository is identified
by the chain <section>/<domain>/<name>/
<extension>.

• The adaccm project is an Ada project. It stores
the source or compiled Ada code which is required to build a deliverable
component or execute an application. Its internal structure corresponds to the
structure of Ada packages suitable for compiling and linking with the tools
provided by the Ada development plug-in for Eclipse.

• The tools project is a Java project. It includes the code of the tools developed for
the transformation processes. The currently developed tools are:
- Tools for importing and exporting deliverable elements: ComponentImport,

ComponentExport, InterfaceImport e InterfaceExport.

Fig. 9. Repository Structure



- Tools for components development: ComponentTemplateGenerator and
ComponentContainerGenerator.

- Tools for application management: ConnectorGenerator, ApplicationGenerator
y ApplicationLauncher.

- The tool which generates the final real-time model of an application:
ApplicationMastModeler. 

The Eclipse environment is provided with specialized editors, so it has not been
necessary to develop specific tools for editing Ada source code, or the XML files
corresponding to the D&C descriptors. For the latter, W3G-Schemas have been
defined to facilitate the elaboration of this kind of files.

6 Execution Platform

Applications developed with Ada-CCM can be executed in distributed platforms
which provide a run-time library with support for Ada applications. If the applications
have hard real-time requirements, all the services of the run-time library and the com-
munication mechanisms must have bounded response times. Likewise, for being able
to port the applications to minimal embedded platforms, the run-time must be light,
compatible with different targets (including microcontrollers), and it should not
require a full file system or support for a hard disk. Figure 10a shows an example of
the kind of applications that can be developed with this technology. It is an application
whose purpose is to follow the trajectory of a moving object with a camera. The soft-
ware architecture of the application is shown in Figure 10b. It is composed of six com-
ponents which come from different application domains. The TrackFollower
component plays the role of client component, since it is source of business end-to-end
flow transactions. It has been specifically designed for this concrete application. The
rest of the components have a broad scope of applicability, so they can be reused in
different systems. The ServoController component performs the control closed loop of
the n servos controllers. In the example, it controls the two degree-of-freedom of the
camera orientation. The rest of the components (Tracker, Logger, IOCard and Sound-
Generator) are leaves components and their function is to control different resources of
the system (vision system, I/O cards, sound generators).

An application like this has been used to probe and experiment with the technology.
It has been run on a MaRTE OS (Minimal Real Time Operating System for Embedded
Applications) [15] target. MaRTE OS is a real-time kernel which follows the Minimal

Fig. 10. Application example
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Real-Time POSIX subset, defined in the IEEE 1003.13 standard. Besides, it offers
support for hierarchical scheduling. The target hardware platform is any 386 PC or
higher, with at least 512KByte of memory and with a device for booting the
application (such as a floppy disk, flash memory, etc.), but not requiring a hard disk.
Real-time communication mechanisms currently supported by MaRTE OS include
CAN bus, and ethernet with the RT-EP protocol (Real-Time Ethernet Protocol) [8].

7 Real-time modelling and analysis of component-based systems

A real-time model is a timing abstraction that holds all the qualitative and quantitative
information needed to predict/evaluate the timing behaviour of an application. It is
used by designers to annotate timing requirements in the specification phase, to reason
about the prospective architecture during design phases, and to guarantee its schedula-
bility when the system is to be validated. 

Software componentization is a structural pattern, which in principle is independent
of the real-time design process, but, since it introduces deep changes in the
development phases, it interferes with the traditional real-time design. An issue to
consider in the component-based design strategies is the coordination between the
structural (static) point of view, in which operations are identified as services of
instances of components, and the reactive (dynamic) one, in which the activities
(invocation of operations) are serialized in threads.

A real-time component must include metadata that allow a designer to predict its
timing behaviour and analyse the schedulability of the applications that make use of it.
The modelling methodology must provide two elements:
• Composable and formalized entities to hold the information about the timing and

synchronization characteristics of the internal code of the component in a self-
contained way and independent of any external elements (other components or
platform resources). 

• A systematic composition process that allows building the complete real-time
model of an application using the models of its constituent parts: business
components and platform resources.

An extension to the D&C specification is proposed to add real-time metadata to the
descriptions of components, platform resources and applications. These metadata have
been distributed according to the phase of the process in which they are required.

The D&C component interface description (.ccd file) includes the information about
the temporal behaviour of a component that an application designer needs to decide the
utility and the compatibility of the component inside an application. It declares:
• The set of operations with real-time behaviour offered by each facet. Any

implementation of the component will include models for these operations.
Likewise, for each receptacle of the component, the interface description must
declare the operations whose real-time model is required to develop the real-time
model of the component itself. Two components will be composable when the
server component provides the real-time models of the operations that the client
component requires through its receptacles. 



• The parameters of the real-time model of the component. The real-time model of a
component is a parameterized template which can be configured to describe the
component behaviour according to the specific way in which the component is
planned to be used in an application. Concrete values must be assigned to each
parameter of each component instance declared in an application.

• Components with client role, i.e., components which can trigger business end-to-
end flow transactions, must include the declaration of the kind of business
transactions that they can initiate. The schedulability analysis of an application is
performed regarding the workload of the application, and this workload is defined
as the set of  transactions concurrently executed in the application.

The D&C description of a component implementation (.cid file) must include the
elements that describe the real-time behaviour of the internal code of the component:
• The execution time of the operations offered by the component. They are

described through their worst, best, and average case values and are related to a
reference processor, the one defined as having speed factor equals to 1.

• The synchronization resources that are used during the operations execution. They
are necessary since they can cause blocking delays during execution.

• The scheduling entities in which the code execution is organized. These represent
the execution capacity of the threads required to the environment.

• The description of the end-to-end flow transactions that are triggered in the
component. Each transaction describes the set of activities that are executed in the
system in response to external or timed events. 

 The D&C description of a platform (.tdm files) has been extended to include its
real-time model. The platform model defines the models of the software resources (os,
mutexes, drivers, etc.) and hardware resources (processors, networks, timers, etc.) that
qualify and quantify the available processing capacity, the overheads associated to
their management, the policies for the management of their access queues, etc.

The D&C description of the deployment plan that describes an application (.cdp
files) incorporates two aspects regarding temporal behaviour:
• Each connection between component ports includes a reference to the

corresponding real-time model of the connector used for the communication. The
real-time model of a connector includes the information that describes the
processes of marshalling and unmarshalling for the invocation parameters and
return values, the activities involved in the transmission of messages and the
processes of message dispatching.

• A deployment plan is associated with one or more declarations of the application
workload. Each workload corresponds to a specific operation mode of the
application that have timing requirements to meet, and for each of which
schedulability analysis can be applied to verify that the requirements are met.
Special metadata have been defined to declare the workload associated to an
application.

Once an application is defined through a deployment plan, the planner can build its
real-time model by means of the ApplicationMastModeler tool. As it is shown in Fig-



ure 8, this tool takes the information provided by the deployment plan, the metadata
associated to the component descriptions and the metadata associated to the platform
descriptions, and generates the final real-time model of the application. The real-time
modelling and analysis methodology applied in Ada-CCM is MAST [14]. Specifically,
an extension to MAST which incorporates the composability properties needed to gen-
erate the real-time model of a complex system by the composition of the individual
real-time models of the software and hardware components that forms it [16].

MAST conceives the real-time model of an application as a description of its
reactive behaviour. An application is modelled as a set of end-to-end flow transactions
(“transactions” in MAST), which are sequences of activities that are triggered in
response to external or timed events. A transaction is described by its set of activities,
the generation pattern of the triggering events, and the timing requirements that must
be met. The activities in different transactions only interact by sharing the processing-
resources and the mutually exclusive passive resources. 

The MAST environment includes several tools for real-time applications design:
• Schedulability analysis tools: They can be applied to both monoprocessor (RM

Analysis y EDF Monoprocessor Analysis) and distributed systems (Holistic
Analysis y Offset Based Analysis). They allow to certify that, in the worst case,
the activities scheduled in the application meet their real-time requirements. 

• Automatic priority assignment tools: Their usage is required, specially in
distributed systems, when the amount of priorities or scheduling parameters to
adjust makes the calculation process too complex to be developed without tool
assistance. They can be applied to monoprocessor (Rate Monotonic and Deadline
Monotonic) and distributed (Simulated Annealing and HOPA) platforms.

• Slack calculation tools: These tools calculate the percentage by which the
execution time of the operations may be increased while keeping the system
schedulable, or must be decreased to get the system schedulable. 

8 Conclusions and future work

The proposed technology enables the development of hard real-time embedded
component-based applications, whose temporal behaviour can be modelled and
analysed by schedulability analysis tools. This is achieved by the combination and
enhancement of well known technologies. (i) The usage of Ada makes the technology
particularly suitable for applications that run in embedded nodes with limited
resources, and interconnected with real-time communication networks. (ii) Some
extensions introduced in the LwCCM container/component framework, together with
the Ada's native support for concurrency and synchronization, provide the capacity of
developing the code of the components with predictable temporal behaviour. (iii) The
technology follows the D&C standard for the specification of components, platforms
and applications. A real-time extension of D&C has been proposed to incorporate
metadata describing the temporal behaviour of components and platforms. These
metadata is used to analyse the schedulability of the application during the
development process. The concepts and semantics added with the real-time extensions



allow the assembler or the planner to design the real-time aspects of the application
without knowing the modelling methodology used by the analysis tools. The developer
formulates the real-time models of the components following a concrete modelling and
analysis methodology, which in the case of Ada-CCM is MAST.

Relevant future work concerns reducing the cost of real-time components design.
They have to be designed so that their execution holds bounded timing behaviour, this
behaviour should be modelled in detail, and all the execution times used in the model
must be consciously evaluated. This latter task is currently very costly, though recent
advances in techniques and tools promise to help reducing this cost in the future.
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