
An Ada 2005 Technology for Distributed and Real-Time
Component-based Applications

Patricia López Martínez, José M. Drake, Pablo Pacheco, Julio L. Medina

Departamento de Electrónica y Computadores, Universidad de Cantabria,
39005-Santander, SPAIN

{lopezpa,drakej,pachecop,medinajl}@unican.es

Abstract: The concept of interface in Ada 2005 significantly facilitates its usage
as the basis for a software components technology. This technology, taking ben-
efit of the resources that Ada offers for real-time systems development, would be
suitable for component-based real-time applications that run on embedded plat-
forms with limited resources. This paper proposes a model based technology for
the implementation of distributed real-time component-based applications with
Ada 2005. The proposed technology uses the specification of components and
the framework defined in the LwCCM standard, modifying it with some key fea-
tures that make the temporal behaviour of the applications executed on it, pre-
dictable, and analysable with schedulability analysis tools. Among these
features, the dependency on CORBA is replaced by specialized communication
components called connectors, the threads required by the components are cre-
ated and managed by the environment, and interception mechanisms are placed
to control their scheduling parameters in a per-transaction basis. This effort aims
to lead to a new IDL to Ada mapping, a prospective standard of the OMG.

Keywords: Ada 2005, Component-based technology, embedded systems, real-
time, OMG standards

1 Introduction1

While in the general-purpose software applications domain the component-based soft-
ware engineering (CBSE) approach is progressing as a promising technology to
improve productivity and to deal with the increasing complexity of applications, in the
embedded and real-time systems domain, instead, its usage has evolved significantly
slower. The main reason for this delay is that the most known CBSE technologies like
EJB, .NET, or CCM, are inherently heavy and complex, they introduce not easily pre-
dictable overheads and do not scale well enough to fit the significant restrictions on the
availability of resources usually suffered by embedded systems.

Trying to find an appropriate solution to this problem, european research projects
like COMPARE [1] and FRESCOR [2], tackle from different points of view, the

1. This work has been funded by the European Union’s FP6 under contracts FP6/2005/IST/5-034026
(FRESCOR project) and IST-004527 (ARTIST2 One) and by the Spanish Government under grant
TIC2005-08665-C03 (THREAD project) and the ITEA SPICES project. This work reflects only the
author’s views; the EU is not liable for any use that may be made of the information contained herein.

development of a real-time component-based technology compatible with the
embedded systems constraints. Their approach is based on the usage of the Container/
Component model pattern defined in the LwCCM specification developed by OMG
[3], but avoiding the usage of CORBA as communication middleware, which is too
heavy for this kind of applications. With this pattern, the interaction of the component
with the run-time environment is completely carried out through the container, whose
code is generated by automatic tools with the purpose of isolating the component
developer from the details concerning the code of the execution environment.

The recent modification of the Ada language specification [4], so called Ada 2005,
provides an enhanced option for the implementation of fully Ada native component-
based technologies, which is really suitable for embedded platforms. Ada’s native
support for concurrency, scheduling policies, synchronization mechanisms, and remote
invocations has always been a strength for implementing real-time and distributed
systems. New to Ada 2005 is the concept of interface, which provides support for
multiple inheritance. This is a key aspect in a component-based technology because it
allows the components to inherit characteristics from both the technology with which
they are developed as well as the application domain to which they belong. Besides,
interfaces are used to encapsulate the services offered by the components (Facets in
LwCCM) and also as the mechanism to make reference to the required services
(Receptacles in LwCCM).

This paper proposes a component-based technology based on Ada. It implements the
LwCCM framework, with the container/component model, and both the code of the
environment and the code of the components are written in Ada 2005. The technology
incorporates mechanisms to the running environment, and extends the specification of
the components, in such a way that the timing behaviour of the final application is
totally controlled by the automatically generated execution environment. In this way,
real-time models of the application can be elaborated and analysed in order to verify its
schedulability when the application is run in closed platforms, or to define the resource
usage contracts required to operate in open environments like FRESCOR[2][5]. The
description and deployment of applications and components in the technology follow
the “Deployment and Configuration of Component-Based Distributed Applications”
standard of the OMG [6] (D&C). The paper is focused in the description of the
framework that is the base of the technology, particularly on the resources used to
guarantee the required predictability.

Various proposals dealing with the adaptation of CBSE to real-time systems have
appeared in the last years, though none of them have fully satisfied the industry
requirements [7]. In the absence of a standard, some companies have developed their
own solutions, adapted to their corresponding domains. Examples of that kind of
technologies are Koala [8], developed by Philips, or Rubus [9], developed by Arcticus
Systems and used by Volvo. These technologies have been successfully applied in the
companies that created them, though none of them have stimulated an inter-enterprise
software components market. However, they have served as the basis of other
academic approaches. The Robocop component model [10] is based on Koala and
adds some features to support analysis of real-time properties; Bondarev et al. [11]
have developed an integrated environment for the design and performance analysis of
Robocop models. Similarly, Rubus has been used as the starting point of the SaveCCT

technology [12]; the component concept in SAVE is applied at a very low granularity.
Under appropriate assumptions for concurrency, simple RMA analysis can be applied
and the resulting timing properties introduced as quality attributes of the assemblies.
SaveCCT focuses on control systems for the automotive domain. In a similar way,
COMDES-II [13] encapsulates control tasks following a hierarchical composition
scheme, applied in an ad-hoc C based RT-kernel. The technology presented in this
paper follows the idea proposed by PECT (Prediction-Enabled Component
Technology) [14]. Sets of constraints in the components allow one to predict the
behaviour of an assembly of components. In our case, this approach is applied to
obtain the complete real-time model of the application. Though the Ada language is
significantly used in the design and implementation of embedded real-time systems,
we have not found references of its usage in support of component-based
environments. This is probably due to the lack of support for multiple inheritance in
the previous versions of the language.

The rest of this paper is organized as follows. Section 2 describes the two main
processes involved in a components technology, emphasizing the main contributions
of the proposal. Section 3 describes in detail the reference model of the framework,
and the aspects included for developing analysable applications. Section 4 details the
architecture and classes to which a component is mapped in the technology. Finally,
Section 5 and 6 shows some practical experiences, conclusions and future work.

2 Real-time component-based development

A component technology defines two different development processes, shown in Fig-
ure 1. The components development process comprises the specification, implementa-
tion, and packaging of components as reusable and independently distributable
entities. The development of component-based applications includes specification,
configuration, deployment and launching of applications built as assemblies of availa-
ble components. Both processes are independent and they are carried out by different
agents in different stages, however, they require to be coordinated because the final
products of the first process are the inputs for the second. So, in order to guarantee

Fig. 1. Main processes in a component technology

Components development

Required
functionality

Component
specification

(idl3 file)

Component
specification

(idl3 file)

Component
Implementation

Component
Implementation

Component
Implementation

Component
Description

(code,metadata,
real-time model…)

Component
Description

(code,metadata,
real-time model…)

Application development

Application
Specification Deployment

Plan
Deployment

Plan
Application
Execution

Application
Execution

Ada 2005
Code generation

Automatic
tool

Packager
Tool

Design
Tool

Launching
Tool

Real-Time
Model

Real-Time
Model

Real-Time
Model

Workload
Model

Workload
Model RT Model

Compiler
Application
RT Model

Application
RT Model

RT Analysis
Tool

Component package

Repository

Platform
description & model Component package

Repository

Platform
description & model

Specifier Developer

Packager

Assembler/
Planner

Executor

Real-time
Requirements

their coherence, a component technology must define a set of rules about the kind of
products and information that are generated in each phase of the process, and the for-
mats in which they are supplied. A key aspect in a component technology is the opac-
ity of the components; during the process of application development, components
must be used without any knowledge of the internal details of their implementation or
code. To achieve this opacity, models and information concerning functional and non-
functional aspects of the component must be added to its implementation in the pack-
age that describes the component.

A component development process starts when the “specifier”, who is an expert in a
particular application domain, creates the specification of a component with concrete
functionality in the domain. The “developer” implements this specification and creates
models that describe the installation requirements of the component. This work is
supported by automatic tools, which generate the skeletons for the code of the
component based on the selected technology. Therefore, the developer task is reduced
to design and implement the specific business code of the component without having
to be aware of internal details about the technology. Finally, the “packager” gathers all
the information required to make use of the component, and creates and publishes the
distributable element that constitutes the component. Relevant aspects of the proposed
technology related to components development are:
• The methodology for functional specification of components and the framework

proposed by the LwCCM specification have been adopted as the basis for the
technology. Hence, a container/component model is used in the component
implementations, but CORBA is replaced by simpler static communication
mechanisms with predictable behaviour, and suitable for the execution platform.
Remote communication between components is achieved by using connectors.
They are special components whose code is completely generated by the tools and
which encapsulate all the support for interactions among components.

• Since component implementations are generated in Ada2005, it has been
necessary to define the set of Ada packages to which the components and the
elements of the LwCCM framework are mapped. An automatic code generation
tool has been developed. This tool takes the specification of a component as input
and generates all the code elements that provide support for the component inside
the framework.

• The technology follows the D&C specification for the description of the package
that holds the distributable component.

In order to apply the technology to hard real-time component-based applications, both
standard specifications, D&C and LwCCM, have been extended with new elements
that are used to describe the temporal behaviour of components and the requirements
they impose on the resources in order to meet timing requirements:
• D&C specification has been extended in order to associate a temporal behaviour

model to the specifications and implementations of components. This real-time
model is used to describe the temporal responses of the component and the
configuration parameters that it requires. This paper does not detail the modelling
approach used. For a complete explanation of the approach see [15]. The basic
idea is that the real-time model of a component is a parameterized model,

independent of the application in which the component is used, which describes
the component temporal behaviour through references to the models of the
platform in which the component is executed and to the models of other
components that it uses in order to implement its functionality. Once all these
elements are known in the context of an application deployed in a concrete
platform, as it is shown in Figure 2a, the real time model of the complete
application can be generated by composition of the individual real-time models of
the software and hardware components that form it. This model describes the set
of real-time transactions [16] executed in the application, as the one in Figure 2b,
and can be used to obtain the response time of services, analyse the schedulability
or evaluate the scheduling parameters required to satisfy the timing requirements
imposed to the application. In our case, the real-time models of the components
are formulated according to the MAST model [16], so that the set of tools offered
by the MAST environment can be used to analyse the system.

• The LwCCM functional specification of a component has been refined with the
purpose of controlling threading characteristics of the components. These
characteristics include the number and assignment of threads and scheduling
parameters. A component can not create threads inside its business code. Instead
of that, for each thread that a component requires, it declares a port in its
specification. This port implements one of the predefined interfaces
OneShotActivation or PeriodicActivation (see Section 3).

• Interception mechanisms are used to control the scheduling parameters with
which each invocation received by a component is executed. The specification of
a component declares the configuration parameters required to assign concrete
values of these scheduling parameters to a component instance.

The application development process consists in assembling component instances,
choosing them from those which have been previously developed, and stored in the
repository of the design environment. This process is carried out by three different
agents in three consecutive phases. The “assembler” builds the application choosing
the required component instances and connecting them according to their instantiation
requirements. This work is led by the functional specification of the application, the
real-time requirements of the application, and the description of the available compo-

Fig. 2. RT Modeling of component-based applications

Client
component

Processor A

<<periodicActivation>>
Client thread

Client
Thread

Dispatch A
Thread

Dispatch B
Thread

Servant
Thread

Activation period
from Cliente RT-Model

update() processing time
from Cliente RT-Model

operation() processing time
from Server RT-Model

Communication processing time
from Connector RT-Model

Scheduling parameters
from Proc. A RT_ model

Scheduling parameters
from Client RT_ model

Scheduling parameters
from Servant RT_ model

Scheduling parameters
from Proc. B RT_ model

<<active>>

Server
component

<<passive>>

Client
RT-model

Platform
RT-model

Servant
RT-model

Processor B

Network

Connector
<<OneShotActivation>>

Servant thread

Connector
RT-model

(a) Component model (b) Reactive and RT-Model

nents. The result of this first stage is a description of the application as a composite
component, which is useful by itself. The “planner” (usually the same agent as the
assembler) takes this description and designs a deployment model for the application.
This model includes assigments of component instances to nodes and the communica-
tion mechanisms between them. The result of this stage is the deployment plan, which
completely describes the application and the way in which it is planned to be executed.
Finally, the “executor” deploys, installs, and executes the application, taking the
deployment plan and the information about the execution platform as inputs. This
labour is usually assisted by automatic tools. Relevant aspects of the proposed technol-
ogy regarding application development are:
• As well as describing components, the D&C specification is the basis for the

process of designing and deploying an application. D&C defines the structure of
the deployment plan that leads this process. It describes the component instances
that form the application, their connections, the configuration parameters assigned
to each instance and the assignment of instances to nodes.

• A deployment tool processes the information provided by the deployment plan. It
selects the code of the components suitable for the target platform and generates
the code required to support the execution of the components in each node.
Specifically, it automatically generates the connectors, which provide the
communication mechanisms between remote component instances, as well as the
code for the main procedures executed on each node.

The specific aspects included in the application development process to support hard
real-time applications are:
• Once the planner has developed the deployment plan, the local or remote nature of

each connection between component ports is defined. Then, an automatic tool
generates the code of the connectors based on the selected communication service
and its corresponding configuration parameters, which were assigned to the
connection in the deployment plan. The communication service used must hold a
predictable behaviour, hence, the tool generates also the real-time models that
describe the temporal behaviour of those connectors.

• Once the connectors have been developed together with their real-time models,
and based on the deployment plan, a tool elaborates the real-time model of the
application by composition of the real-time models of the components that form it
(connectors included) and the models of the platform resources. This model is
used either to analyse the schedulability of the application under a certain
workload, or to calculate the resource usage contracts necessary to guarantee its
operation in an open contractual environment [5]. In the latter case, these
contracts will be negotiated, prior to the application execution, by the launching
tool.

• The execution environment includes a special internal service as well as
interception mechanisms that are used to manage in an automated way the
scheduling parameters of the threads involved in the application execution. The
configuration parameters of this service, whose values may be obtained by

schedulability analysis, are specified in the deployment plan and assigned to the
service at launching time.

3 Reference model of the technology

The proposed technology is based on the reusability (with no modification) of the busi-
ness code of the components, and the complete generation by automatic tools of the
code that adapts the component to the execution environment. This code is generated
according to the reference model shown in Figure 3. It takes the LwCCM framework
as a starting point, and adds to it the features required to control the real-time behav-
iour of the application execution. Each of the elements that take part in the execution
environment are explained below.

Component: A component is a reusable software module that offers a well-defined
business functionality. This functionality is specified through the set of services that
the component offers to other components, grouped in ports called facets, and the set
of services it requires from other components, grouped in ports called receptacles.

With the purpose of having complete control of the threading and scheduling
characteristics of an application, and in the look for being able to analyse it,
components in our technology are passive. The operations they offer through their
facets are made up of passive code that can call protected objects. But this does not
mean that there can not be active components in the framework, concurrency is
provided by means of activation ports. When a component requires a thread for
implementing its functionality, it declares a port that implements one of the two special
interfaces defined in the framework: OneShotActivation or PeriodicActivation. These
ports are recognized by the environment, which creates and activates the
corresponding threads for their execution once the component is instantiated,
connected and configured. The interface OneShotActivation declares a run()
procedure, which will be executed once by the created thread, while the interface
PeriodicActivation declares an update() procedure, which will be invoked
periodically. A component can declare several activation ports, each of them
representing an independent unit of concurrency managed by the component, and
which are independent of the business invocations.

 Activation ports are declared in the component specification (in the IDL file), and
all the elements required for their execution are created by the code generation tool.
Their configuration parameters, which include the scheduling parameters of the

Fig. 3. Reference model of the technology

Client
Component
(bussiness

code)

Server
Component
(business

code)

Connector instance

Proxy
fragment

Servant
fragment

Client
Adapter

Server
Adapter

Interceptor

Execution environment

Activation
port

Environment services

Scheduling
Attribute Service

Receptacle Facet

threads as well as the activation period (in case of PeriodicActivation ports) are
assigned for each component instance in the deployment plan.

Adapter: An adapter is the part of the component’s code which provides the run-time
support for the business code. All the platform related aspects are included in the
adapter. Its code is automatically generated according to the component/container
model. With this programming approach the component developer does not need to
know any detail about the underlying technology, he is only in charge of business code
development.

Connector: A connector is the mechanism through which a component
communicates with another component connected to it through a port. In our
technology, a connector has the same structure as a component, but its business code is
also generated by the deployment tool, based on:
• The interface of the connected ports. The connectors are generated from a set of

templates which are adapted so that they implement the operations of the required
interface.

• The location of the components (local vs remote), and the type of invocation (syn-
chronous or asynchronous). Combinations among these different characteristics
lead to different types of connectors. For local and synchronous invocations, the
connector is not necessary, the client component invokes the operation directly on
the server. For local and asynchronous invocations the connector requires an addi-
tional thread to execute the operation (obtained through activation ports). If the
invocation is distributed, the connector is divided in two fragments: the proxy
fragment, which is instantiated in the client node, and the servant fragment, which
is instantiated in the server node. The communication between the two fragments
is achieved by means of the communication service selected for the connection. In
this case, the connector can also implement synchronous or asynchronous invoca-
tions, including the required mechanisms in the proxy fragment.

• The communication service or middleware used for the connection and its corre-
sponding configuration parameters, which are assigned for each connection
between ports in the deployment plan.

Interceptors: The concept of interception is taken from QoSforCCM [17]. It brings
a way to support the management of non-functional features of the application. An
interceptor allows to incorporate calls to the environment services inside the sequence
of an invocation by executing certain actions before and after the operation is executed
on the component. The support for interceptors is introduced in the adapter, so it is
hidden to the component developer. Their introduction is optional for each operation,
and it is specified in the deployment plan.

In our technology, interceptors are used to control the scheduling parameters with
which each received invocation is executed. Based on the configuration parameters
assigned to it in the deployment plan, each interceptor knows the scheduling parameter
which corresponds to the current invocation, and uses the SchedulingParameterService
to modify it in the invoking thread. With this strategy, different schemes for scheduling
parameters assignment can be implemented. Besides common assignment policies,
like Client Propagated or Server Declared [18], our technology allows to apply an
assignment based on the transactional model of the application. With this policy, a

service can be executed with different scheduling parameters inside the same end-to-
end flow depending on the particular step inside the flow in which the invocation takes
place. This scheme enables better schedulability results [19]. The values of these
parameters are obtained from the analysis using holistic priority assignment tools like
the ones included in MAST, which is used as analysis environment in our technology.
SchedulingParameterService: It is an internal environment service which is invoked
by the interceptors to change the scheduling parameters of the invoking thread. The
kind of scheduling parameters that will be effectively used depends strongly on the
execution platform, it may be a single priority, deadline, or the contract to use in the
case of a FRESCOR flexible scheduling platform.

4 Architecture of a component implementation

There are two complementary aspects that a component implementation must address:
• The component has to implement the functionality that it offers through its facets,

making use of its own business logic and the services of other components.
• The implementation must include the necessary resources to instantiate, connect

and execute the component in the corresponding platform. This aspect is
addressed by implementing the appropriate interfaces which allow to manage the
component in an standard way. In our case, those defined by LwCCM.

Each aspect requires knowledge about different domains. For the first aspect, an expert
on the application domain corresponding to the component functionality is required.
For the second, however, what it is required is an expert on the corresponding compo-
nent technology. The proposed architecture for a component implementation tries to
find an structural pattern to achieve independency of the Ada packages that implement
each aspect. Besides, the packages that implement the technology related aspects are to
be automatically generated according to the component specification. With this
approach, the component developer only has to design and implement the business
code of the component.
The proposed architecture is based on the reference one proposed by LwCCM, but
adapted for:
• Making use of the abstraction, security and predictability characteristics of Ada.
• Including the capacity for controlling threading characteristics of the components.
• Facilitating the automatic generation of code taking the IDL3 specification of the

component as input and generating the set of classes that represent a component in
the technology.

• Providing a well-defined frame in which the component developer designs and
writes the business code.

In the proposed technology, the architecture of a component is significantly simplified
as a consequence of the usage of connectors. When two connected components are
installed in different nodes, the client component interacts only with the proxy frag-
ment of the connector, while the server component interacts only with the servant frag-
ment of the connector. Therefore, all the interactions between components are local,

since it is the connector who hides the communications mechanisms used for the inter-
action.

For each component, four Ada packages are generated. Three of them are
completely generated by the tool, while the last package leaves the “blank” spaces in
which the component developer must include the business code of the component. The
first module represents the adapter (or container) of the component. It includes the set
of resources that adapt the business code of the component to the platform, following
the interaction rules imposed by the technology. It defines three classes:
• The wrapper class of the component, called {ComponentName}_Wrapper, which

represents the most external class of the component. It offers the equivalent inter-
face of the component, which LwCCM establishes as the only interface that can
be used by clients or by the deployment tool to access to the component. With this
purpose, the class implements the CCMObject interface, which, among others,
offers operations to access to the component facets, or to connect the correspond-
ing server components to the receptacles. Besides, the capacity to incorporate
interceptors is achieved by implementing the Client/ServerContainerInterceptor-
Registration interfaces, a modified version of the interfaces with the same name
defined in QoSCCM [17]. As it is shown in Figure 4, this class is a container
which aggregates or references all the elements that form the component:
- The component context, through which components access to their receptacles.
- The home, which represents the factory used to create the component instance.
- The executor of the component, which represents its real business code imple-

mentation. Its structure is explained below.
- An instance of a facet wrapper class that is aggregated for each facet of the

component. They capture the invocations received in the component and trans-
fer them to the corresponding facet implementations, which are defined in the
executor. The facet wrappers are the place in which the interceptors for manag-
ing non-functional features are included.

Fig. 4. Example of Component Wrapper Structure for ComponentX

CCMObject

provide_facet()
connect()

<<Interface>>

ServerContainerInterceptorRegistration

register_server_interceptor()

<<Interface>>

ClientContainerInterceptorRegistration

register_client_interceptor()

<<Interface>>

Interface_A

operA()

<<Interface>>

CCM_ComponentX_Context

get_connection_thePortU()

<<Interface>>

ComponentX_Context

CCM_ComponentX
<<Interface>>

CCMHome

create_component()

<<Interface>>

ServerInterceptor

receive_request ()

<<Interface>>

wrapper_Interface_A

delegated : CCM_Interface_A

0..n

interceptor_for_OperA

0..n

ComponentX_Wrapper
1

theContext
1

1

theHome

1
1

thePort_A_Facet
1

1 theExecutor1

• The class that represents the context implementation, called {Component-
Name}_Context. It includes all the information and resources required by the
component to access to the components which are connected to its receptacles.

• The {ComponentName}_Home_Wrapper, which implements the equivalent inter-
face of the home of the component. It includes the class procedures (static) that
are used as factories for component instantiation.

The rest of generated Ada packages contain the classes that represent the implementa-
tion of the business code of the component (the executor). The LwCCM standard fixes
a set of rules that define the programming model to follow in order to develop a com-
ponent implementation. Taking the IDL3 specification of a component, LwCCM
defines a set of abstract classes and interfaces which have to be implemented, either
automatically or by the user, to develop the functionality of the component. This set of
root classes and interfaces are grouped in the generated package {Component-
Name}_Exec. The {ComponentName}_Exec_Impl package includes the concrete
classes for the component implementation which inherit from the classes defined in the
previous package. The class that represents the component implementation, {Compo-
nentName}_Exec_Impl, which is shown in Figure 5, has the following attributes:
• A reference to the component context. It is set by the environment through the

set_session_context() operation, and it is used to access to the receptacles.
• An aggregated object of the {ComponentName}_Impl class, whose skeleton is

generated by the tool and has to be completed by the developer.
• Each activation port defined in the specification of the component, represents a

thread that is required by the component to implement its functionality. For
implementing those threads two kinds of Ada task types have been defined. The
OneShotActivationTask executes once the corresponding run() procedure of the
port, while the PeriodicActivationTask executes periodically the update()
procedure of the corresponding port. Both types of task receive as a discriminant
during its instantiation, a reference to the data structure that qualify their
execution, including scheduling parameters, period, state of the component and
the procedure to execute. For each activation port defined in the component, a
thread of the corresponding type is declared. They will be activated and

Fig. 5. Example of Component Implementation Structure for ComponentX

CCM_ComponentX

set_session_context()
get_thePortA()
set_attribute1()

<<Interface>>

Interface_A
<<Interface>>

thePortA_Port

ComponentX_State

thePortU : Interface_U
attribute1 : Attr_Type_1
...

OneShotActivationBlock

PeriodicAct ivationBlock

theState

CCM_ComponentX_Context
<<Interface>>

ComponentX_Impl

get_state() : ComponentX_State
theOSAPort_run()
thePAPort_update()

thePortA_facet

1

theState

1

OneShotActivationTask

1

1

1
block

1

PeriodicActivationTask

1block 1

ComponentX_Exec_Impl

theContext

1

theImpl

1

1

theOSAPort

1

1

-thePAPort

1

terminated by the environment by means of standard procedures that LwCCM
includes in the CCMObject interface to control the lifecycle of the component.

The {ComponentName}_Impl class, represented in Figure 5, is defined in a new pack-
age, in order to hide the environment internals to the code developer. It represents the
reference frame in which the developer introduces the business code. Relevant ele-
ments of this class are:
• For each facet offered by the component, a facet implementation object is aggre-

gated. However, in the case of simple components, the class itself can implement
the interfaces supported by the facets.

• All the implementation elements (facet implementations, activation tasks, etc.)
operate according to the state of the component, which is unique for each instance.
Based on that, the state has been implemented as an independent aggregated class,
which can be accessed by the rest of the elements, avoiding cyclic dependencies.

• For each activation port defined in the component specification, the corresponding
{PortName}_run() or {PortName}_update procedures are declared.

Most of the code of this class is generated automatically, the component developer
only has to write the body of the activation port procedures (run or update), and the
body of the operations offered by each of the facets implementations. The developer,
who knows the temporal behaviour of the code, must also elaborate the real-time
model of the component. In the case of a connector, the structure generated is exactly
the same, but the “business” code, which in that case consists in the code required to
implement remote invocations, is also automatically generated by the deployment tool.

The current available Ada mapping for IDL [20] is based in Ada95, so for the
development of the code generation tool, it has been necessary to define new mappings
for some IDL types in order to get benefit of the new concepts introduced in Ada 2005.
The main change concerns to the usage of interfaces. The old mapping for the IDL
“interface” type led to a complex Ada structure while now can be directly mapped to
an Ada interface. Besides, some data structures defined in IDL, as for example the
“sequence” type, can be implemented now with the new Ada 2005 containers.

5 Practical experience

At the time of the first attempts made to validate the proposed technology, there was
no real-time operating system with support for Ada 2005 applications, so the tests
were run on a Linux platform, using the GNAT (GAP) 2007 compiler. The construc-
tion of the connectors for the communication between remote components, was made
using the native Ada Distributed System Annex (DSA), Annex E of the Ada specifica-
tion. The implementation of DSA used was GLADE [21]. Distributed test applications
were developed and executed successfully. The platforms used in this evaluation were
sufficient for the conceptual validation of the technology, since from the point of view
of the software architecture the final code is equivalent, but of course, it is not appro-
priate for the validation of the timing properties of real-time applications.

The recently released new version of MaRTE_OS [22] provides now support for the
execution of Ada 2005 applications, and allows to test the technology over a hard real-

time environment. Still there is a lack for a real-time communication middleware. An
enhanced version of GLADE that enables messages priority assignment exists for
MaRTE_OS & GNAT [23], but it has not been ported to the new versions. To
overcome this limitation, we have developed simpler connectors using a link layer
real-time protocol. Our first tests on a real-time platform have been done with
connectors that use directly the RT-EP [24] protocol for the communication between
remote components. The same application tested in the linux platform was used in
MaRTE_OS, and as expectable, the code of the components did not require any
modification, the only necessary change was the development of the new connectors
suitable for the new communication service (RT-EP) used.

6 Conclusions and future work

This paper proposes a model based technology for the development of real-time com-
ponent-based applications. The usage of the Ada language for its implementation,
makes it particularly suitable for applications that run in embedded nodes with limited
resources and strict timing requirements. The technology is based on the D&C and
LwCCM standard specifications, which have been extended in order to support the
development of applications with a predictable and analysable behaviour.
The key features of this technology have been specified and tested successfully. Never-
theless some challenges arise for this community to face. The most rewarding of them
is the availability of an Ada native communication middleware, here used in the devel-
opment of connectors, which must hold predictable behaviour, and allow a priority
assigment for the messages based on the transactional (or so called end-to-end flow)
model. Our aim is to develop the connectors using the Ada Distributed System Annex
so that applications rely only on the Ada run-time infrastructure with no additional
middleware, which is highly desirable to target small embedded systems.
As future work, some more tests have to be applied in order to quantify the concrete
overheads introduced by the technology. A planned enhancement for the technology is
the construction of a graphical environment to integrate all the stages of development
of an application: design, code generation, analysis, and finally, execution. Another
effort that has been started in the OMG and arise from this work is the elaboration of
an updated version of the mapping from IDL to Ada 2005 [25].

References
[1] IST project COMPARE: Component-based approach for real-time and embedded systems

http://www.ist-compare.org
[2] IST project FRESCOR: Framework for Real-time Embedded Systems based on Contracts

http://www.frescor.org.
[3] OMG: Lightweight Corba Component Model, ptc/03-11-03, November 2003
[4] T. Taft et al. editors: Ada 2005 Reference Manual. Int. Standard ISO/IEC 8652/1995(E)

with Technical Corrigendum 1 and Amendment 1. LNCS 43-48, Springer-Verlag 2006.
[5] Aldea M. et al. FSF: A Real-Time Scheduling Architecture Framework. In: Proc. of 12th

RTAS Conference, San Jose (USA), April 2006

[6] OMG: Deployment and Configuration of Component-Based Distributed Applications
Specification, version 4.0, Formal/06-04-02, April 2006

[7] A. Möller, M. Åkerholm, J. Fredriksson y M. Nolin: Evaluation of Component Technolo-
gies with Respect to Industrial Requirements. In: Proc. of 30th Euromicro Conference on
Software Engineering and Advanced Applications, August 2004.

[8] R. Ommering, F. Linden, J. Kramer: The koala component model for con-sumer electron-
ics software. In: IEEE Computer, IEEE (2000) 78-85.

[9] Lundbäck K-L., Lundbäck J., Lindberg M.: Component based development of dependable
real-time applications Arcticus Systems, http://www.arcticus-systems.com

[10] Bondarev E., de With P., Chaudron M.: Predicting Real-Time Properties of Component-
Based Applications In: Proc. of 10th RTCSA Conference, Goteborg, August 2004.

[11] Bondarev E. et al.: CARAT: a toolkit for design and performance analysis of component-
based embedded systems. In: Proc. of DATE 2007 Conference, April 2007.

[12] M. Åkerholm et al.: The SAVE approach to component-based development of vehicular
systems. In: Journal of Systems and Software, Vol. 80, 5, May 2007.

[13] Ke X., Sierszecki K. and Angelov C. “COMDES-II: A Component-Based Framework for
Generative Development of Distributed Real-Time Control Systems” Proc. of 13th
RTCSA Conference, August 2007.

[14] K. C. Wallnau.: Volume III: A Technology for Predictable Assembly from Certifiable
Components, Technical report, Software Engineering Institute, Carnegie Mellon Univer-
sity, April 2003, Pittsburgh, USA.

[15] P. López, J.M. Drake, and J.L. Medina: Real-Time Modelling of Distributed Component-
Based Applications In: Proc. of 32h Euromicro Conference on Software Engineering and
Advanced Applications, Croatia, August 2006.

[16] M. González Harbour, J.J. Gutiérrez, J.C.Palencia and J.M.Drake: MAST: Modeling and
Analysis Suite for Real-Time Applications. In: Proc. of the Euromicro Conference on
Real-Time Systems, June 2001.

[17] OMG: Quality of Service for CORBA Components, ptc/06-04-05. April 2006
[18] OMG: Real-Time CORBA Specification, v1.2 formal/05-01-04. Enero 2005
[19] J.J.Gutiérrez García and M. González Harbour: Prioritizing Remote Procedure Calls in

Ada Distributed Systems. In: Proc. of the 9th Intl. Real-Time Ada Workshop, ACM Ada
Letters, XIX, 2, pp. 67 72, Junio 1999.

[20] OMG: Ada Language Mapping Specification - Version 1.2. October 2001.
[21] L. Pautet and S. Tardieu.: GLADE: a Framework for Building Large Object-Oriented

Real-Time Distributed Systems. In: Proc. of the 3rd IEEE Intl. Symposium on Object-
Oriented Real-Time Distributed Computing, Newport Beach, USA, March 2000.

[22] M. Aldea and M. González.: MaRTE OS: An Ada Kernel for Real-Time Embedded Appli-
cations. In: Proc. of the International Conference on Reliable Software Technologies, Ada-
Europe 2001, Leuven, Belgium, Springer LNCS 2043, May 2001.

[23] López-Campos, J.-J. Gutiérrez and M. González-Harbour: The chance for Ada to support
distribution and real-time in embedded systems. In: Proc. of the 8th Intl. Conference on
Reliable Software Technologies, Ada-Europe 2004, Palma de Mallorca, Spain , June 2004.

[24] J.M.Martínez and M. González.: RT-EP: A Fixed-Priority Real Time Communication Pro-
tocol over Standard Ethernet In: Proc. of the 10th Int. Conference on Reliable Software
Technologies, Ada-Europe 2005, York(UK), June 2005

[25] J.Medina.: Status report of the Ada2005 expected impact on the IDL to Ada Mapping.
OMG documents mars/07-09-12 and mars/07-06-13. http://www.omg.org 2007

