Enabling Model-Driven Schedulability Analysis in the Development of
Distributed Component-Based Real-Time Applications

Patricia Lopez Martinez, Jos¢ M. Drake and Julio L. Medina

Departamento de Electronica y Computadores, Universidad de Cantabria, 39005-Santander, SPAIN
{lopezpa, drakej, medinajl}(@unican.es

Abstract

This paper presents a strategy to include temporal behav-
iour metadata in the descriptors of software components in
order to develop hard real-time component-based distribut-
ed applications, keeping the opacity and composability fea-
tures that are inherent to the components paradigm. The
Deployment and Configuration of Component-based Dis-
tributed Applications Specification of the OMG has been
extended to include and manage the information that is re-
quired to design, analyse, and configure component-based
applications with hard real-time requirements. The real-
time data added to a component interface enable the appli-
cation designers to validate scheduling and design deci-
sions without any knowledge of the component’s code. Be-
sides, real-time reusable and composable analysis models,
developed according to a concrete modelling methodology,
are added to each implementation of the component inter-
face. In the context of a concrete application, they are proc-
essed by tools to generate the complete real-time analysis
model of the application, which is used to evaluate the con-
figuration parameters that guarantee its schedulability.

1. Component-based real-time applications1

Component-based software development reveals as one
of the most promising software engineering approaches to
be applied in the industry nowadays [1]. In the case of
applications with real-time requirements, a temporal
behaviour model of the application must be built to evalu-
ate the scheduling parameters configuration. With that pur-
pose, the designer of a component must generate, together
with the component’s code, a parameterized model, which
abstracts the timing and sequence of all the actions per-
formed by the component, and includes all the scheduling,
synchronization and resources information that is neces-
sary to predict the real-time qualities of the applications in
which the component is integrated. This model must be

1. This work has been funded by the EU under contracts FP6/2005/I1ST/
5-034026 (FRESCOR), FP7/NoE/214373 (ArtistDesign), FP7/CSA/
224330 (ADAMS); and by the Spanish Government under grants
TIN2008-06766-C03-03 (RT-MODEL), and TFI-020400-2008-99
(EVOLVE). This work reflects only the author’s views; the EU is not
liable for any use that may be made of the information contained herein.

included as non-functional metadata in the package with
which the component is delivered. Later, when an applica-
tion is built as an assembly of components, the application
designer, in analogy to the generation of the application’s
code as a composition of the code of its constituent compo-
nents, can also compose the set of real-time models and
build the real-time analysis model of the application.

Nowadays, there are several methodologies for the anal-
ysis and design of component-based real-time systems.
Some of them [2,3] elaborates a model specific for the
complete assembled application. Similarly to our approach,
[4] addresses model composability, but the formulation of
the real-time models that is proposed in this paper,
improves the reusability and opacity inherent to compo-
nents.

The models are handled by means of an extension of the
Deployment and Configuration of Component-based Dis-
tributed Applications Specification of the OMG [5]
(D&C), called RT-D&C [6]. The process followed for the
design of real-time characteristics must be consistent with
the general purpose development process of component-
based applications, so this approach considers the process
defined in D&C, which is shown in Figure 1 with some of
the real-time extensions proposed. In order to design appli-
cations with real-time requirements, the components used
to build them must offer predictable temporal behaviour,
and the resources and services provided by the execution
platform must also exhibit bounded timing responses. As
shown in Figure 1, the actors involved in the development
of real-time applications have access to the models that
describe the temporal behaviour of the components, which
are provided as part of the packages in which the compo-
nents are delivered. They also can access the real-time
models of the platform resources. The strategy used to for-
mulate these models is introduced in Section 2.

The assembler builds the application as an assembly of
component instances that implements the functional and
non-functional requirements of the application specifica-
tion. According to D&C, he takes his decisions based only
on the metadata available in the component interfaces
descriptors, which are independent of the component

Configuration phase

Installation phase
> Application requirements

v AN
Component package

Planning phase

Execution platform :

Preparation & Launching phases

Schedulability

Deployment plan

|
: Functional ” Real-time | |
~.— | Workload
| g e |
| CB-Application -
| Assembl
I (y) 4
| N N
Installer : nedormler Configuration data /

Executor

% P 4 configuration) - Exit;L;t:ble
~
|

Planner |
| /

Repository of the

’Q Functional metadata | Real-Time metadata% | Code

development suite [4
ﬁ Platform metadata ’

Fig. 1. Development process of component-based real-time applications

implementations that might be chosen later. If the applica-

tion has real-time requirements, the assembler has two new

responsibilities:

e He must select the components so that the application
can fulfil its real-time requirements. A reactive model
based on transactions [7][8] is considered for the real-
time requirements specification. The activities executed
in the application are formulated as a set of end-to-end
flow transactions, each of them representing the
sequence of activities executed in the application in
response to an external or timed event. The timing
requirements are formulated on them, as temporal con-
straints between their internal execution states. The RT-
D&C descriptor of a component interface includes the
declaration of the transactions that can have origin in the
component. So, in a real-time application, the assembler
chooses the components not only based on their provided
functionality, but also because they implement the appro-
priate transactions. Together with the description of the
application, the assembler must formulate, by means of a
new descriptor defined in RT-D&C, its workload, i.e., the
set of concurrent transactions executed on the applica-
tion, with their corresponding timing requirements.

e He must select only components that lead to an applica-
tion with predictable behaviour, i.e. for which an analyz-
able behaviour model can be obtained. With that aim, in
RT-D&C the metadata related to the components ports
include the enumeration of the operations offered by the
component that has a real-time model defined, and the
enumeration of the operations whose real-time models
are needed by the component. Two components are com-
posable from the real-time predictability point of view,
i.e. its connection has predictable behaviour, when the
server component provides real-time models of the serv-
ices required by the client component.

The responsibility of the assembler is different regard-
ing the functional and the real-time requirements. The
assembler buils an assembly that guarantees the fulfilment
of the functional requirements of the application. However,
regarding real-time requirements, he can only guarantee

that it is possible to generate an analyzable temporal
behaviour model of the application, which can be used to
verify if the timing requirements are met. This is because
the information available in the component interfaces is not
enough to evaluate their temporal behaviour. The assem-
bler does not know the concrete implementation of each
component, neither the processing capacity of the platform,
both of which are required with that purpose.

The planner defines the concrete implementations used
for each component instance, and the processing nodes in
which they are installed. He does have all the information
required to evaluate the application’s temporal behaviour,
so, he is responsible of designing the application to make it
schedulable, i.e, to make it meet all its timing require-
ments. This real-time design process includes:

® Obtaining the values to assign to the schedulability con-
figuration parameters of the components that make the
application schedulable. These parameters can be priori-
ties of threads, priority ceilings, EDF deadlines, etc.

e Obtaining the values to assign to the configuration
parameters of the execution platform that guarantee the
schedulability of the application. Example of this kind of
parameters are the number of available threads or com-
munication channels, the priority of transmission of mes-
sages through the network, etc.

Designing the schedulability of a real-time application is
a very complex task, which can not be based on the
designer intuition or expertise. To deal with it, the planner
must be able to build the reactive model that describes the
application temporal behaviour, and apply real-time analy-
sis tools to it, in order to calculate the set of schedulability
configuration values that leads to an schedulable applica-
tion. This process is explained in Section 3.

2. Reactive model of an application

The description of the temporal behaviour of an applica-
tion constitutes the basis for determining the configuration
of the components and the platform that guarantees the
application schedulability. It is described by means of a
reactive model, which conceptually corresponds to the one

introduced in the “UML Profile for Modelling and Analy-
sis of Real-Time and Embedded systems” (MARTE) [7] of
the OMG. The model is organized around the concept of
AnalysisContext, which represents a specific operational
mode of the system taken as the basis for the analysis. It is
described by means of two complementary aspects:

® The ResourcePlatform comprises the resources available
in the execution platform, like ProcessingResources
(processors or networks), SchedulableResources
(threads, processes, etc.), SharedResources (synchroniza-
tion mechanisms, critical sections, etc.). The execution
times of the components depend on their speed, and,
being mutually exclusive, they cause interdependencies
in the execution of the activities deployed on them.

® The WorkloadBehavior declares the load imposed over
the activities performed by the system. This is organized
according to a reactive model that describes the set of
independent EndToEndFlow transactions that execute
concurrently in response to external (coming from the
environment) or timed (sent by the system timer) Work-
loadEvents. The time instants in which the events are
generated are defined by means of a deterministic or
probabilistic pattern. The end-to-end flow transactions
constitute also the scenarios in which the timing require-
ments (deadlines, jitters, miss-ratios, etc.) are expressed
by means of TimingObservers. Each EndToEndFlow is
described as an ordered set of Steps that take place
according to the expected causal control flow.

In classic hard real-time systems design strategies, this
reactive model is used to conceive the system timing
behaviour and to devise its implementation. However,
when the application is built by assembling reusable,
opaque code components, the reactive model has to be

<<creates>> I Universal unique identifier
~ - Port description
A\ Y
Speciier <<RT-D&C>> i - Configuration declaration
P Component Interface i - RT transaction templates
Ve \ <<references>> - Operation signatures
<<uses>>

<<rdsS - Types and excep.tinns
Interface description |- Offered oper. with rt-model

|- Required oper. with rt-model
<< >>
% ;\creates
Developer <<RT-D&C>>

Component Implementation

Assembler

\ - Implemented interface reference
- Artifacts

- Deployment requirements

| - Schedulability parameters

| - Parametized rt-model

£~ i
/zz<uses>> \ <<references>> 7, ion tompl
<<cbs-Mast>> - Req. of processing capacity
Planner Real-time model Req. of synchronizarion rsrc.
<<creates> External model references

BN <<RT-D&C>> p 3 _ Single interface descriptions
Component package {*1 - Multiple implementations
Packager - Code artifacts

[\ <<references>>{ - Installation metadata

<<uses <<C/C++| Adal...>> B‘

Compiled code files
Binding metadata

Component code

Installer

Fig. 2. Description of a real-time component.

Assembler

' - Universal unique identifier
- Component instances enumeration
- Inter-component connections

<<RT-D&C>>
--2| Composite component
N (Application description)

<<creates\>3 , - Business configuration data
i \- Real-time analysis context
<<use§bl> <SRI-D&C>> End-to-end ﬂow. trans. declaration
(DI Workload - Pattern generation of external events
lil - Timing restrictions

{- Processing nodes
Communication networks

<<RT-D&C>>
%-s

Planner Domain Descriptor - Communication services
. - Shared-resources
N <<references>> o
1 - Provided processing capacity
<< S>>0 | g . .
creates ¥ <<chs-Mast>> i- Provided comm. bandwith
i'\‘ Platform rt-model i~ Overhead models
i N Component Implementations selection
<<uses?,'> <<RT-D&C>> “ Component instances assignments
S DeploymentPlan i- Connection mechanisms selection
VL |- Real-time configuration data
\ <<references>>
<<RT-D&C>> ’ Component sched. config.
Schedulability Configuration| |~ Flatform sched. config.
Executor i- Connections sched. config.
<<creates>‘>* <<RT-D&C>> | - Executable final code files
Executable code

Fig. 3. Description of a real-time component-based application

obtained by the aggregation of various pieces of informa-
tion: a) the description of the execution platform, (b) the
deployment plan, that describes the application and the
instances involved in it, and (c) the workload of the con-
crete mode of operation of the application to analyse. The
extension to the OMG’s D&C specification on which this
work relies defines and organizes as metadata the informa-
tion provided by each component to build the application
reactive model, in such a way that it is stored with it, and it
can be reused in any application built with instances of the
component. These models are composed with those of the
platforms and the workload to build the full reactive model
for each analysis context. Figure 2 resumes the functional
and real-time metadata that are included in the description
of a component when RT-D&C is used.

The model that describes the temporal behaviour of a
component must include all the information related to its
internal code that is required to predict the behaviour of
any application in which the component may be used. It is
not a complete “model” because the information it defines
is not enough to predict the complete behaviour of the
component services. Only in the context of an application it
can be composed with the models of the rest of the compo-
nents that form the application, and with the model of the
platform in which the application is execute, to generate a
complete real-time analysis model, from which the actual
response times of the component services can be extracted.
Figure 3 resumes the functional and real-time information
that is included in the RT-D&C description of a real-time
component-based application, from which its reactive
model can be built.

The model of each component and platform resource
must be formulated following a concrete real-time model-

ling methodology, which offers the composability features
required to generate the model of the final application by
composition of the models of the elements that forms it.
The modelling methodology is independent of the D&C
specification, although the usage of modelling standards,
as MARTE, could ease the compatibility between compo-
nents and platforms of independent vendors. In our case,
the CBSE-MAST [9] modelling methodology is used. It
implements the fundamental structure of the SAM (Sched-
ulability Analysis Model) model in MARTE, brings param-
eterizable models to formulate the components behaviour,
and facilitates their composition into full reactive models,
able to be analized with the MAST [8] tools.

3. Schedulability design process

Evaluating the application schedulability configuration
is the most specific and critical phase of the design of a
real-time component-based application. As it is shown in
Figure 4, this process starts from the real-time application
description that is created by the assembler, that includes
both the structural (Composite Component), and the reac-
tive (Workload) points of view. The planner is the actor
who deals with the schedulability design process, and as a
result, he generates a deployment plan in which the schedu-
lability parameters of the components and the platform
resources have assigned values that guarantee that the tim-
ing requirements of the application are met during the exe-
cution. The design process is iterative, model-driven and
assisted by tools. The planner starts each iteration with a
deployment plan proposal. The rtModelComposer tool,
based on the workload description and the information pro-
vided by the deployment plan, generates the real-time reac-
tive model of the application by composing the partial
models of the components and the platform resources,
which are stored in the repository. This application real-
time model is processed by real-time design tools, which
evaluates the set of optimal values that must be assigned to
the priorities (or other scheduling parameters) in order to
make the application schedulable. The obtained schedula-

<<RT-D&C>>
Domain description

<<RT D&C>>
DeploymentPIan

<<RT-D&C>>
--> | Composite component
(Application description)

A
Assembler\\\l

<<RT-D&C>>
Workload
Repository

<<cbs-Mast>>
rt-componet model ||

0

rt-| model composer
Planner /

------------------ g-_v-------------

<<Mast>> <<Mast>>)
Apphcatlon RT-Model [rt- analy5|s tools :
L}

1

Ma;
<<Mast>> Sl
rt- deS|gn tools

Fig. 4. Real-time design of component-based applications

<<cbs-Mast>>
rt-resource model

<<RT-D&C>>
Schedulability
Configuration

bility configuration values must be validated by real-time
analysis tools. If the application results schedulable, the
process finalizes. If not, the planer must use the informa-
tion obtained from the analysis tools about slacks or utili-
zation levels of the platform resources, to propose a new
deployment plan. The modelling methodology and the real-
time analysis and design tools used in our approach are
those available in the MAST suite, which offer a full set of
techniques for event-driven distributed real-time systems.

4. Conclusions

D&C supports composition based on functional aspects.
The development strategy and tools proposed in this work
uses an extension of this specification that incorporates
metadata representing the temporal behaviour of compo-
nents and platforms. This allows the designers of real-time
component-based applications to build their models and
then analyse them using only the set of basic concepts
included in the extension, without requiring expertise in the
real-time modelling methodology used by the developers
of the components to formulate their analysis models.

References

[1] L. Crnkovic, and M. Larsson, Building Reliable Component-
Based Software Systems, Artech House Publishers, 2002.J.

[2] A. Stankovic et al., VEST: An Aspect-Based Composition
Tool for Real-Time Systems, in Proc. of the 9th IEEE Real-
Time and Embedded Technology and Applications Symp.
Washington, DC, USA, 2003.

[3] GA.Moreno, P. Merson, Model-driven performance analysis,
in Proc. of the 4th Intl. Conf. on Quality of Sofiware
Architectures, Germany, 2008.

[4] E.Bondarev et al. CARAT: a toolkit for design and
performance analysis of component-based embedded
systems, Proc. Design, Automation and Test in Europe, 2007

[5] Object Management Group, Deployment and Configuration
of Component-based Distributed Applications Specification,
OMG doc. formal/06-04-02 (2006).

[6] P. Lopez Martinez et al., Real-time Extensions to the OMG's
Deployment and Configuration of Component-based
Distributed Applications. OMG's 9th Work. Distributed
Object Computing for Real-time and Embedded Systems,
Arlington, VA, USA, 2008.

[7] Object Management Group, UML Profile for Modeling and
Analysis of Real-Time and Embedded systems (MARTE)
RFP, OMG doc. ptc/07-08-04, 2007

[8] M. Gonzalez Harbour et al., MAST: Modeling and Analysis
Suite for Real-Time Applications, in Proc. of the Euromicro
Conference on Real-Time Systems, June 2001.

[9] P. Lopez, J.M. Drake, and J.L. Medina, Real-Time Modelling
of Distributed Component-Based Applications, In Proc. of
32h Euromicro Conference on Software Engineering and
Advanced Applications, Croatia, August 2006.

