
Abstract

This paper presents a modular modelling methodology to
formulate the timing behaviour of real-time distributed
component-based applications. It allows to build real-time
models of the platform resources and software components,
which are reusable and independent of the applications that
use them. The proposed methodology satisfies the
completeness, opacity and composability properties,
required to ensure that the complete real-time model of an
application, able to predict its temporal behaviour by
schedulability analysis or simulation, may be assembled by
composition of the real-time models of its constituent parts.
These real-time models present a dual descriptor/instance
based nature. A class of component, independent of any
application, is modelled as a parameterized class-type
descriptor, which describes its inherent temporal behaviour
and includes references to the real-time models of other
hardware/software modules that it requires. An instance of
the component in a concrete application context is modelled
by an instance-type model, which is generated by assigning
concrete values to the parameters and unsolved references
of its corresponding descriptor. Instances are formed and
combined by automatic tools to build complete analysis
models for each specific real-time situation.

1. Introduction1

The real-time model of a software application is an
abstraction that holds all the qualitative and quantitative
information needed to predict/evaluate its timing behav-
iour. It is used by designers to annotate timing require-
ments in the specification phase, to reason about the
prospective architecture during design phases and to certify
its schedulability when the solution is to be validated. This
work elaborates a modelling methodology founded on the
conceptual model known as the "Transactional Model"
[1][2], used for analysis, specification, and design of real-
time systems. A number of tools and techniques for sched-
ulability analysis and response time calculation have been

proposed for it [3][4], and its fundaments are referenced by
the synchronization protocols and scheduling policies used
in the vast majority of real-time as well as general purposes
operating systems [5]. Besides, the importance of the trans-
actional model as a reference for analysis may also be
noted by looking at the underlying model of the “UML
profile for Schedulability, Performance and Time” (SPT),
current OMG standard for modelling and analysis of real-
time systems [6]. The transactional methodology models a
real-time application by two complementary descriptions:

a) Control flow (transactional) model: It is a reactive
model, which describes the application as a set of concur-
rent real-time transactions, which are sequences of activi-
ties that are triggered in response to external or timed
events. A transaction is described by its causal flow of
activities, the generation pattern of the triggering events,
and the timing requirements that must be met. An activity
describes the amount of processing capacity that is
required to perform the duty that it has associated. There is
no direct activation or execution flow dependency between
activities in different transactions; they only interact by
sharing the processing-resources and the mutually exclu-
sive passive resources.

b) Resources contention model: It describes the active
and passive resources that are used by the activities in a
mutually exclusive way, showing characteristics like their
capacity, overheads, access protocols or scheduling poli-
cies. It is used to evaluate the blocking time in the access to
passive synchronization resources or while contending for
active resources like processors or networks.

The information in the transactional model of a real-
time application tend to be complex, therefore, tool support
is required for its processing and management, and useful
to exploit it effectively for analysis and design.

Traditionally, the architecture of real-time applications
has followed straightforwardly the transactional model,
and they have been programmed with bare RTOS services.
Currently, the increasing complexity and evolution of real-
time applications domains, and the necessity for managing
the software production, are pushing the introduction of
component-based strategies in the construction of OS, mid-
dleware, and applications with real-time constraints.

1. This work has been funded by the Comisión Interministerial de
Ciencia y Tecnología of the Spanish Government under grant TIC2002-
04123-C03-02

*Post-doctoral internship in the Commissariat à l’Energie Atomic, CEA
Saclay, DRT/DTSI/SOL/L-LSP, F-91191, Gif-sur-Yvette Cedex, France

Real-Time Modelling of Distributed Component-based Applications

Patricia López, Julio L. Medina* and José M. Drake

Departamento de Electrónica y Computadores, Universidad de Cantabria, 39005-Santander, SPAIN
{lopezpa, medinajl, drakej}@unican.es

The “componentization” is a structural pattern, which in
principle is independent of the real-time design process,
but, since it introduces deep changes in the development
methodology, it interferes with the methods used in the
real-time design. Traditional real-time design methodolo-
gies [7][8] conceive applications as concurrent sets of
transactions in a reactive paradigm, and it is in a later phase
when the code is organized in modules following some
domain criteria, such as objects, tasks or subsystems. On
the contrary, component-based systems are design using
reusable modules selected from catalogues in accordance
with the required functionality. It is later, in refinement
phases, when control flow lines are identified and associ-
ated to threads, being not unique the concurrency model
that can be obtained. Hence, an issue to consider in the
component-based design strategies is the compatibility
between the structural (static) point of view, in which oper-
ations are identified as services of instances of compo-
nents, and the reactive (dynamic) one, in which the
activities (invocation of operations) are organized in
threads, tasks or processes [9][10].

A modelling methodology used to describe real-time
applications that are designed using component-based tech-
niques still needs to be oriented to describe its reactive
transactional model, but it must also use modelling con-
tainer elements that may be identified with its components
structure. For this reason, it has to bring elements to formu-
late the real-time model of a component as a self-contained
set of abstractions and data that describe the timing and
synchronization characteristics inherent to its own code
and nature, and complete enough to build its corresponding
part in the real-time model of any application that may use
it. The modelling methodology must also offer the compos-
ability properties required to build the complete real-time
model of the application using the models of its constituent
components, in analogy to the composition of the applica-
tion code with the code of the components used.

Previous work [11][12] has proposed MAST (Modelling
and Analysis Suite for Real-Time Applications) as a meth-
odology for the modelling and analysis of real-time distrib-
uted systems using the transactional model, which is
compatible with the analysis approach proposed by SPT
[6]. A characteristic of MAST that makes it specially use-
ful to model component-based applications is that it formu-
lates the model in three sections: the logical part, which
model the processing capacity and synchronization ele-
ments required by the software modules; the platform used,
which models the processing capacity and resources that
are available to the system; and the real-time situations,
which describe the way the system uses the resources in
each mode of operation in response to the workload
imposed. This work describes at conceptual level the strat-

egy proposed to get the composability of real-time models.
The meta-modelling approach followed is an extension of
the MAST methodology, called CBSE-MAST, but the con-
cepts and solutions brought are directly usable in any meth-
odology derived from the SPT standard [6]. Like [17],
CBSE-MAST uses a behavioural/resource decomposition,
but it brings an explicit concurrency model, and uses holis-
tic analysis techniques to target distributed systems.

The paper is organized as follows, Section 2 shows the
basic concepts and the metamodel that defines the set of
available modelling elements. Section 3 presents as an
example a simple real-time distributed application that will
serve to illustrate the usage of the methodology. Section 4
describes relevant characteristics of the structure of soft-
ware component descriptors. Section 5 describes the way
real-time analysis models are generated for the real-time
situations of an application. Section 6 presents some of the
tools used to compose, analyse and design the application
using the proposed methodology. Finally, Section 7 sum-
marizes our conclusions.

2. “RT-Model_Descriptor” and “RT-
Model_Instance” concepts

RT-Model_Descriptor and RT-Model_Instance are the
key concepts of the real-time modelling methodology
described in this work:
• An RT-Model_Descriptor is an abstract modelling entity

that represents a generic and parameterized descriptor. It
is used to describe the real-time model of any type of
resource or service in the system. It constitutes a parame-
terized template that includes the semantic and quantita-
tive information of all the aspects that are inherent to the
component and affect its real-time behaviour. The infor-
mation that a descriptor provides is independent of the
application in which the component is used, the platform
in which it is executed, and the behaviour of other com-
ponents that it requires to implement its functionality.

• An RT-Model_Instance is a modelling entity that repre-
sents a concrete final model of a single instance of a
component, resource or service of the system, in a partic-

Figure 1. Core classes of the metamodel

ular application. In the model of a real-time situation,
each RT-Model_Instance object is declared in reference
to the corresponding RT-Model_Descriptor, which
defines its nature and semantics, assigning concrete val-
ues or instances to all the parameters, attributes and ref-
erences it has.
Figure 1 shows the root classes of the meta-model of the

proposed real-time models. RT-Model_Descriptor and RT-
Model_Instance are high level concepts used to support not
only the real-time modelling of software components, and
hardware/software modules of the platform (RT-
Component_Descriptor and RT-Component_Instance), but
also the modelling of any other basic element used to
describe the internal nature of a component (RT-Element
_Descriptor and RT-Element_Instance), as well as the serv-
ices that it offers (RT-Usage_Descriptor and RT-Usage-
_Instance). The set of concrete classes that represent the
modelling contructs used to describe the temporal behav-
iour of all the elements that take part in the execution of an
application are derived from them. A detailed description
of the aspects that these elements model and the attributes
that define their behaviour can be found in [12][13].

The MAST modelling methodology has defined a wide
range of basic modelling primitives to model real-time
applications and, as it is shown in [14], they are implemen-
tations of the entities proposed in the SPT profile [6]. These
modelling primitives are classified in two groups:
• Resources models: They model the behaviour of those

elements of the application that relate to the available
processing capacity, either because they provide it, or
reduce it, or because they modify its usage due to mutual
exclusion or synchronized access. Processors, Networks,
Timers, Drivers, Schedulers, Scheduling Servers and
Shared Resources are included in this group.

• Usage models: They describe the information required
for evaluating the timing behaviour of the activities exe-
cuted in the application. They model the consumed
processing capacity, or the resources required for execu-
tion that may generate deadlocks or delays. This group
includes Transactions, Jobs, Operations, Interfaces and
Real-Time Situations.

3. Application example
To illustrate the concepts that have been defined, a sim-

ple example is proposed. It is a distributed real-time appli-
cation that reads a set of digital signals, generating some
alarm actions like playing a sound in a speaker and setting
other digital lines, when a wrong state is detected. Figure 2
shows the logical model of the application, which is based
on three types of software components:

Agent: It is an active component that controls the con-

current execution of multiple alarm checking tasks, using
an independent thread for each one.

IO_Card: It is a passive component that offers the
I_Digital interface, which allows clients to read an input
digital line (readState function) or set an output digital line
(writeState procedure).

SoundGenerator: It is a component that offers the
I_Player interface, which allows clients to generate sounds
(play procedure). It uses some digital lines to control the
device that physically creates the sounds.

Figure 3 shows the deployment of the carAlarm applica-
tion, which is the one that will be modelled. The execution
platform consists of two nodes, panelProcessor and
engineProcessor, both use MaRTE OS as operating system
and communicate through the localBus CAN bus. The
RT_CORBA distribution services are used as middleware
in this application. The components alarmControl of the
type Agent, boardSpeaker of the type SoundGenerator, and
boardPanel of the type IO_Card, run in panelProcessor
and the components engineSensor and engineActuator,
both of the type IO_Card, are executed in engineProcessor.

The approach in this work proposes the elaboration of
the real-time models in two phases. When the components
are developed (or simply acquired) their real-time models
are also elaborated and registered with their code and meta-

1..n

1

1
speaker

instrument

actuator 0..n sensor

I_Digital

I_Player

IO_Card

SoundGenerator

Agent

1..n

1

1
speaker

instrument

actuator 0..n sensor

I_Digital

I_Player

IO_Card

SoundGenerator

Agent

Figure 2. Software architecture of the example application

Figure 3. Platform architecture and application deployment

data. Likewise, for the hardware and software platforms
that are planned to be used, their real-time models must be
formulated, validated and registered. Later, when a certain
application is under development, the models of its real-
time situations are elaborated and composed with instance
models of the software components, and the platform
resources and middleware that are part of the application.
Figure 4 shows the set of descriptors and instances that
take part in the modelling of the carAlarm application,
whose corresponding deployment is shown in Figure 3.

4. RT-Component_Descriptors of software
components

As far as the real-time model is concerned, a software
component is a reusable module of application code (a
function library, an RT-CORBA server, a CBSE-Compo-
nent, etc.). Its RT-Model_Descriptor contains all the infor-
mation that describes the timing behaviour of its offered
services, the synchronization mechanisms that it uses to
manage concurrency, and in the case of active components,
the models of the transactions that it may introduce.

In order to show the more relevant characteristics of a
software component model, components are classified, in a
non exclusive way, according to the following patterns:
• Server component: Software component whose offered

services are directly implemented inside its code, and can
be invoked locally or remotely by other components. In
the application example, SoundGenerator and IO_Card
components correspond to this pattern.

• Client component: Software component that makes use
of other components services to implement its own
offered services. Agent and SoundGenerator components

match this pattern in the example.
• Active component: Software component that can trigger

transactions, since it receives and must respond to timed
or external events. Agent and SoundGenerator compo-
nents match this pattern in the example.
The RT-Component_Descriptor of a component that

implements a server pattern must declare the models of the
services that it offers. Figure 5 shows a section of the RT-
Component_Descriptor corresponding to an IO_Card
server component. This section of the model describes the
different timing behaviours that the writeState procedure
may have:.
• The simple operation localWriteState describes its execu-

tion time (in the worst, best and average cases). Time is
expressed normalized with respect to the speed of a cer-
tain processor, taken as a reference one. The physical
execution time is calculated taking into account the rela-
tive speed of the processor in which the operation is exe-
cuted. It also defines that for the procedure execution it is
required exclusive access to the mutex resource, which
uses the immediate ceiling protocol. The value AGGRE-
GATED of the attribute tie indicates that there will be a
mutex for each instance of the component. Its priority
ceiling, @theMutexCeiling, is a parameter to which a
concrete value must be assigned for each instance of the

<<RT_Component_Descriptor>>

<<RT_Component_Descriptor>>

<<RT_Component_Descriptor>>

RT_Agent

RT_SoundGenerator

<<RT_Component_Descriptor>>

<<RT_Component_Descriptor>>

<<RT_Component_Descriptor>>

RT_CORBA

RT_CAN_ Bus

RT_PC_MarteOS

RT_IO_Card

<<RT_Component_Instance>>

<<RT_Component_Instance>>

<<RT_Component_Instance>>

<<RT_Component_Instance>>

<<RT_Component_Instance>>

<<RT_Component_Instance>>

<<RT_Component_Instance>>

<<RT_Component_Instance>>

<<RT_Component_Instance>>

<<RT_Component_Instance>>

rt_AlarmControl: RT_Agent

rt_CarAlarm: RT_Situation

rt_BoardSpeaker: RT_SoundGenerator

rt_LocalBus: RT_CAN_Bus

rt_CommService: RT_CORBA

rt_EngineNode: RT_PC_MarteOS

rt_PanelNode: RT_PC_MarteOS

rt_BoardPanel: RT_IO_Card

rt_EngineSensor: RT_IO_Card

rt_EngineActuator: RT_IO_Card

Application Modeling

Platform Module Repository

Software Component Repository

Figure 4. RT-Component_Descriptors and RT-
Component_Instances of the example

<?xml version="1.0" encoding="UTF-8" ?>
<?mast fileType="CBSE-Mast-Component-Descriptor-File"
version="1.1"?>
<MAST_COMPONENTS
xmlns:xsi=http://www.w3.org/2001/XMLSchema

instance xsi:schemaLocation="http://cbsemast/component
Mast_Component_v2.xsd" fileName="RT_IO_Card" domain="ADQ"
author="Patricia Lopez" version="2006-01-11">

 <!-- Real-time model of the logical component IO_Card.

 It controls the PCI-9111 card for digital/analog signals adquisition.
 <Component name="RT_IO_Card" tie="DECLARED"

type="RmtSoftModule" roles=”Digital_IO Analog_IO”>
 <!-- .. -->
 <:ComponentRef name="host" value="@theHost"

reqRoles="RCI_PROC_NODE" />
….

 <!-- .. -->
 <SimpleOperation name="localWriteState" wcet="2.2E+06"

 acet="2.2E+06" bcet="2.2E+06">
<SharedResources>mutex</mast_u:SharedResources>

 </SimpleOperation>
 <APCOperation name="writeState" usage="localWriteState">

<OutgoingMessage minMessageSize="32" maxMessageSize="32"/>
<OutgoingMarshalling acet="8.9E-06" bcet="8.9E-06"

wcet="8.9E-06"/>
 <OutgoingUnmarshalling acet="5.5E-06" bcet="5.5E-06"

wcet="5.5E-06"/>
 </APCOperation>
….
 <!-- .. -->
 <!-- Model of common element declared in the component -->
 <ImmediateCeilingResource name="mutex"

ceiling="@theMutexCeiling" tie="AGGREGATED" />
 </Component>
</MAST_COMPONENTS>

Figure 5. Section of the RT-Component_Descriptor of
an IO_Card component

component. This model is sufficient when the procedure
is invoked locally.

• The asynchronous procedure call (APCOperation) writ-
eState extends the model of the simple operation with the
information required to model the timing behaviour of a
remote invocation of the procedure. It describes only the
information that is consequence of the procedure nature,
like the messages length (due to the size of the argu-
ments) and the overheads introduced by the marshalling
and unmarshalling operations (used to serialize the argu-
ments to send them through the network).
@theHost is a parameter that references the model of

the processor node in which the instance of the component
is installed and executed, and it must be present in the real-
time model of any software component. It allows to access
the basic characteristics of the processor (processing speed,
scheduler nature, timer resolution, etc.). Access to them is
required by the tools that process the model in order to
evaluate the response times of the transactions that use any
of the services offered by the component.

The RT-Component_Descriptor of a component that
implements a client pattern, and consequently requires
other components to implement its functionality, must
include parametric references to the real-time models of
these required server components. These references allow
the tools to access the models of the server components in
order to evaluate the response times of the services offered
by the client component. To consider the case in which the
access to the server is remote, the descriptors include addi-
tional parameters to refer to the communication network
and protocol models used in the invocation of the service.

Figure 6 shows a section of the RT-Component
_Descriptor of an Agent component type. The parameter
@usedSpeaker is defined to make reference to the model of

the component to which the Agent will access with the role
speaker. For the case in which the client and the server are
in different processors, the descriptor includes parameters
to refer to the communication network model (@theCom-
mNetwork) and the communication middleware (@used-
SpeakerAccess) used to invoke the service. A
communication network model describes its bandwidth,
the messages granularity, the characteristics of the sched-
uler that manages messages transmission, the processing
capacity required to the processors by the drivers, and the
overhead due to synchronization protocol messages among
nodes. The middleware model describes the sequence of
activities that represents the internal code executed
between the service invocation made by the client and the
execution of the method in the server. This sequence has
two alternative models, one for local invocations and
another for remote calls.

The RT-Component_Descriptor of a software compo-
nent that corresponds to the active pattern contains parame-
terized models of the transactions that the component will
manage. Any element of a transaction can be declared as a
parameter, which includes event triggering patterns, opera-
tions, timing requirements, scheduling characteristics, etc.
Figure 7 shows a section of the Agent component model
with the description of the transaction that the component

Figure 6. Extract of the RT-Component_Descriptor of a
client type component

…
 <Component name="RT_Agent">
…
 <!-- Reference to Ext_Speaker server -->

<ComponentRef name="speaker" value="@usedSpeaker"
 reqroles="SoundGenerator"/>

 <!-- Reference to network model for remote invocation -->
 <ComponentRef name="net" value="@theCommNetwork"/>
 <!-- Reference to communication middleware to remote invocation -->
 <Component name="speakerAccess" base="@usedSpeakerAccess">
 <Job name="rmt_speakerPlay" base="call_APC">
 <AssignedParameters>
 <UsageRef name="calledUsage" value=speaker.play"/>
 <SchedulerRef name="remoteHost" value="speaker.host.scheduler"/>
 <SchedulerRef name="commScheduler" value="net.scheduler"/>
 </AssignedParameters>
 </Job>
 </Component>
 . . .
 </Component>
</MAST_COMPONENTS>

…
<Component name="RT_Agent">
…
 <SimpleOperation name="TestAlarm" wcet="7.7E-6" acet="7.2E-6"

bcet="7.1E-6"/>
…
 <Transaction name="ControlAlarmTask">
 <RegularSchedulingServer name="transServer" scheduler="host">
 <FixedPriorityPolicy priority="@controlAlarmPriority"

preassigned="NO"/>
 </RegularSchedulingServer>
 <PeriodicExternalEvent name="startControlAlarm"

period="@alarmPeriod"/>
 <RegularEvent name="ev2"/>
 <RegularEvent name="ev3"/>
 …
 <RegularEvent name="ev7"/>
 <RegularEvent name="endControlAlarm">
 <HardGlobalDeadlineReq deadline="@alarmPeriod"
 referencedEvent="startControlAlarm"/>
 </RegularEvent>
 <Activity name="ReadValue" inputEvent="ev1" outputEvent="ev2"

activityUsage="@theSensor.sensorAccess.rmt_readSensor"
activityServer="transactionServer">

 <AssignedParameters>
 <Priority name="outgoingMsgPrty" value="@readOutgoingMsgPrty"/>
 <Priority name="remoteAgentPrty" value="@readRemoteAgentPrty"/>
 <Priority name="incomingMsgPrty" value="@readIncomingMsgPrty"/>
 </AssignedParameters>
 </Activity>
 <Activity name="EvaluateRes" inputEvent="ev2" outputEvent="ev3"
 activityUsage="TestAlarm" activityServer="transactionServer"/>
 ...
 </Transaction>
…
</Component>

Figure 7. Declaration of a transaction in a RT-
Component_Descripor of an active component

can manage. Figure 8 shows its functionality.
A transaction model defines a sequence of activities.

This sequence is described using a reactive event-based
model that holds its external triggering events patterns, the
control flow dependencies between the activities, and the
timing requirements that must be met. Each activity repre-
sents the execution of a simple or composite operation
defined in any of the components declared in the model,
and indicates also the concurrency unit (SchedulingServer)
in which the operation is to be performed. In the model of
the generic transaction ControlAlarmTask, declared in
component Agent, the external event startControlAlarm
describes the periodicity and trigger frequency, the events
ev2, ev3,.. represent the control flow dependencies, and the
timing requirement relative to the transaction completion is
indicated in the last event endControlAlarm. In the segment
of the transaction model shown in Figure 7, two activities
are modelled: ReadValue, whose operation is defined in the
component with the role sensor (indicated with the parame-
ter @theSensor.SensorAccess. rmt_readSensor), and Eval-
uateRes, whose operation, TestAlarm, is declared in the
component itself.

The transaction model has several parameters that must
have concrete values assigned in the RT-Model_Instance
declaration. For example, @theSensor is the parameter that
references the concrete instance of the server component
that is used in the transaction with the role sensor, @alarm-
Period determines both the invocation period and the dead-
line that must be met, and @controlAlarmPriority defines
the scheduling priority of the SchedulingServer in which
the operations are executed.

5. Formulation of the real-time model of an
application

The first phase of modelling corresponds to identify the
different real-time situations in which the application can
operate. Each real-time situation represents a specific oper-
ation mode of the system, and it consists of a configuration
and static deployment of component instances, for which

real-time requirements have been defined. For each real-
time situation a complete and independent real-time analy-
sis model is generated, and schedulability analysis or
response time estimation tools are applied to these final
models.

Formulating the real-time model of a real-time situation
implies two tasks, the first has an structural nature and
involves collecting and linking all the RT-Model_Instances
that describe the behaviour of the software and hardware
elements that take part in the application execution. The
second comprises modelling the real-time situation from
the reactive point of view, for which it is necessary to
define the application workload and the timing require-
ments that the application must meet.

From the structural point of view, the organization of
instances in a real-time model follows the structure that the
application has, regarding the components of which it is
build up. Figure 9 shows the elements that take part in the
real-time model of an application:
• For each hardware or software resource of the execution

platform, the corresponding RT-Model_Instance must be
instantiated, which includes the models of communica-
tion nodes (Processors, timers, schedulers), communica-
tion networks (networks, schedulers, drivers) and
middleware elements (remote access resources, brokers,
etc.). These instances form the RT_Platform_Model.

• For each component that takes part in the application, the
RT-Model_Instance that describes its temporal behaviour
is instantiated. This set of instances form the
RT_Logical_Model.

• All the links that each instance requires to get access to
the other instances on which its model depends, must be
established according to the configuration and deploy-
ment of the application.
The process of instantiating the RT-Model_Instance of a

software component or a platform resource consists of tak-
ing the reference to its corresponding RT-Model_Descrip-Figure 8. Alarm transaction managed by a component of

the Agent type

n

1 1

componentList RT-Component_Descriptor

RT-Component_Repository

RT-Situation_Model
<<XML_File>>

<<RT_Component_Instance>> <<RT_Component_Instance>>

<<RT_Component_Instance>>

<<RT_Component_Instance>><<RT_Component_Instance>>

RT Application Model
<<File System>>

<<XML_File>>

<<File_System>>

1..n

1..n

1..n 1..n

RT-Transaction

RT Logical ModelRT Platform Model

RT Resource RT Component

RT Active_Component
<<RT_Usage_Instance>>

Figure 9. Elements of the real-time model of an application

tor, and considering the application context, assigning
concrete values to its parameters.

The workload in the real-time model of an application is
determined by the set of transactions that its active compo-
nents declare. The activation patterns that trigger them may
be deterministic or defined through the statistical distribu-
tion of the interarrival times between consecutive trigger-
ing events. They also provide references for defining the
global timing requirements.

There are two types of transaction instances. On the one
hand, those defined as <<Aggregated>> are inherent to the
model of the component and are automatically attached to
its instance model, so the designer do not have to declare
them explicitly in the real-time situation model. On the
other hand, those transactions that depend on the applica-
tion workload, as a consequence of the input data or the
application configuration, are defined as <<Declared>> in
the active component models. The number of instances of
these transactions present in the system and the concrete
values assigned to their parameters must be explicitly
established by the designer in the real-time situation model.

6. Analysis and design tools
The real-time modelling methodology proposed is reus-

ability and composability oriented, and the internal organi-
zation of the models reflects the structure of the modules
which the application has been designed with. In order to
structure the timing information of the system in the way
that is needed for the analysis and design of the application,
these models have to be transformed to a purely transac-
tional formulation, which is compatible with the techniques
used for schedulability analysis. As it is shown in Figure
10, the tool RT_Model_Component_Compiler has been
developed to generate this transactional model of the appli-
cation. It takes as inputs the RT-Model_Instance that repre-
sents a concrete and complete model of the application in a
particular real-time situation, and all the RT-
Model_Descriptors that are referenced in it, which are
stored in the component repository. All this models are for-
mulated as text files with XML tagged formats that follow
the meta-models defined and their corresponding Schemas.

The transactional model generated by this tool follows
the MAST methodology. The modelling resources cur-
rently defined in MAST are able to model most of the real-
time programming features included in real-time operating
systems and languages, like POSIX.13 and the real-time
and distributed Annexes of Ada95.

Figure 9 shows some of the tools included in the MAST
environment that help in the development of real-time
applications. This set of tools allow the designer to opti-
mize the values of the scheduling parameters in order to
adapt the application to the platform characteristics, and
evaluate its schedulability:
• Tools for automatic priority assignment: In monoproc-

essor systems to assign priorities to the different threads
used in the transactions, the tool makes the assignment
using Deadline Monotonic technique[15] or some of its
extensions. In multiprocessor and distributed system, pri-
ority assignment is more complex because of the strong
interconnection among the response times of different
resources, and because the number of priorities that must
be decided is very high. In this case, it is necessary not
only to assign a priority to each concurrency unit in the
application, but for each remote invocation between
components of different nodes three additional priorities
has to be defined: one for the message that makes de
invocation, one for the remote process that executes it
and another for the message that returns the results of the
invocation. For multiprocessor systems the tool uses the
HOPA algorithm, which is an optimization algorithm
based on the distribution of the end-to-end or global
deadlines of each transaction among the different actions
that compose that transaction [16]

• Tools for schedulability analysis: These tools allow to
verify if the selected platform has capacity enough to
execute de system in a way that all the activities sched-
uled in the application meet their real-time requirements.
The tools can be applied to both monoprocessor and dis-
tributed systems, and using different scheduling policies,
like fixed priority, EDF, or a combination of both.

• Tools for slack calculation: These tools allow to calcu-
late the percentage by which the execution time of the

Component Repository
« »RT-Model_Descriptor
« »RT-Model_Descriptor
« »RT-Model_Descriptor

« »RT-Model_Instance

Component A

RT-Situation of
the application

RT-Model
Component Compiler

Transactional
Model

« »MAST-model

Mast Tools
Optimal

priority assign

Scheduling
analysis

Simulator

Slack analysis

Application
tunning data

Scheduling data

Slack data

Performance data

Figure 10. Analysis and design tools

operations may be increased while keeping the system
schedulable, or that in which they must be decreased to
get the system schedulable.

• Tools for statistical estimation of performance: These
tools evaluate by simulation the average performance of
the system and are particularly useful in applications that
combine soft and hard real-time requirements.

7. Conclusions and Future Work
This work describes a methodology to formulate the

real-time model of an application, which has the composa-
bility properties needed to generate the real-time model of
a complex system by the composition of the individual
real-time models of the software and hardware components
that forms it.

This paper introduces the RT-Model_Descriptor concept
as a general real-time behaviour model for reusable soft-
ware components, like subsystems, commercial off-the-
shelf software or even a hardware processing device, an
operating system platform or a network. It does it as an
independent entity, in a way that allows the automated con-
struction of the final analyzable model by a tool with plas-
ticity and composability properties similar to those used in
the construction of the application.

The key in this methodology is the application of both
concepts, descriptor and instance, in the real-time model-
ling of components. The RT-Component_Descriptor is a
parameterized consistent form, which holds the complete
real-time data of a component disregarding the applications
in which it may be used. It includes all the internal ele-
ments of the model, and leaves the "blanks" to be filled
with references to the concrete models of components that
affect its behaviour. The RT-Component_Instance is the
final real-time model of a component instance in the con-
text of a concrete application. It is to be built by a tool after
all the necessary components in the real-time situation are
known.

The methodology has been successfully applied in the
real-time modelling of a set of components designed for
the development of industrial controllers and the automa-
tion of production lines using real-time POSIX OS, CAN
Bus, real-time protocols on Ethernet, Ada95 and
RT_CORBA software technologies.

Further work will explore the future MARTE [18] UML
2.0 based profile, for more precise constructs to hold and
treat real-time models with standard UML CASE tools.

References
[1] H. Kopetz, R. Zainlinger, G. Fohler, H. Kantz, P. Puschner,

and W. Schutz, ”The design of real-time systems: from
specification to implementation and verification” Software
Engineering Journal, Vol.6 , no. 3, pp. 72-82. May, 1991.

[2] J. Liu, Real-Time Systems. ISBN 0-13-099651-3. Prentice
Hall Inc., 2000.

[3] M. Klein, T. Ralya, B. Pollak, R. Obenza, and M. González
Harbour, A Practitioner's Handbook for Real-Time Systems
Analysis, Kluwer Academic Pub., 1993.

[4] A. Cheng, “Real-time Systems Scheduling, Analysis and
Verification”. ISBN 0-471-18406-3. J. Wiley & Sons, 2002

[5] IEEE Std 1003.13TM-2003: ”IEEE Standard for Information
Technology-Standarized Application Environment Profile
(AEP)-POSIXR Realtime and Embedded Application
Support”, 2003.

[6] Object Management Group: "UML Profile for Schedulability,
Performance and Time Specification", Version 1.1. OMG
document formal/05-01-02, January, 2005.

[7] A. Burns and A.Wellings. "HRT-HOOD: a Structured Design
Method for Hard Real-Time Ada Systems", volume 3 of Real-
Time Safety Critical Systems. Elsevier, 1995.

[8] H. Gomaa. Designing Concurrent, Distributed, and Real-Time
Applications with UML. Addison-Wesley, 2000

[9] H.Kopetz and N.Suri:“Compositional design of RT-Systems:
A Conceptual basis for specification of linking interfaces” 6th
IEEE Int. Symp. of Object-oriented Real-time Distributed
Computing (ISORT03). Hakodate (Japan). May, 2003.

[10]A. Tesanovic, D. Nyström, J. Hansson, and C. Norström:
"Aspects and Components in Real-Time System
Development: Towards Reconfigurable and Reusable
Software". Journal of Embedded Computing, February, 2004.

[11]M. González Harbour, J.J. Gutiérrez, J.C.Palencia and
J.M.Drake: "MAST: Modeling and Analysis Suite for Real-
Time Applications" Proc. of the Euromicro Conference on
Real-Time Systems, June 2001.

[12].J.L. Medina, M.González Harbour, J.M. Drake: "MAST
Real-time View: A Graphic UML Tool for Modeling
Object_Oriented Real_Time Systems", RTSS, Dec, 2001.

[13]MAST: Modeling and Analysis Suite for Real-Time
Applications. “http://mast.unican.es

[14]J.L. Medina: ”Metodología y herramientas UML para el
modelado y análisis de sistemas de tiempo real orientados a
objetos”. PhD Thesis (In Spanish), Santander (Spain), 2005.

[15]C.L. Liu and J.W. Laylan: “Scheduling Algorithms for
Multiprogramming in a Hard Real-time Enviroment” J. Of the
ACM, Vol. 29, No 1,pp46-61, 1973.

[16]JJ. Gutiérrez and M. González Harbour: “Optimized Priority
Assignment for Task and Message in Distributed Real-Time
Systems”. Proceedings of the 3rd Workshop on Parallel and
Distributed Real-time Systems, Santa Barbara (USA), 1995.

[17]E. Bondarev, P. de With, M.Chaudron, and J. Muskens:
“Modelling of Input-Parameter Dependency for Performance
Predictions of Component-Based Embeded Systems”. Proc.
of Euromicro SEAA, IEEE Computer Society Press 2005.

[18]Object Management Group: UML Profile for Modeling and
Analysis of Real-Time and Embedded systems (MARTE),
RFP. 2005. OMG document: realtime/05-02-06

