PINROB: A Portable API for
Industrial Robots

M. Gonzalez Harbodr R. Gomez SomarriBaA. Strohmeiet and J. Jacét

IDepartamento de Electrénica y Computadores
Universidad de Cantabria
39005 Santander, Spain
email: mgh@ctr.unican.es, gomezr@ctr.unican.es

2Swiss Federal Institute of Technology
Department of Computer Science &
Department of Micro-Engineering
1015 Lausanne, Switzerland
email: alfred.strohmeier@di.epfl.ch, jacques.jacot@epfl.ch

Abstract: This paper describes a software architecture for industrial robots used
in manufacturing equipment. In order to achieve software portability, the appli-
cation software is dissociated from the low-level robot controller software. The
interaction between these two pieces of software is achieved by a portable appli-
cation programming interface (API) for industrial robots. We discuss the
requirements for such an API, and propose a design called PINROB.

Keywords: Robot, Manufacturing Cell, Production Cell, Robot Programming
Language, Application Programming Interface, API, Software Portability, Ada.

1 Introduction

Industrial robots are in large use in manufacturing equipment. Production cells are
designed around one or several robots. In a typical simple system, a robot sits in the
middle of a cubicle surrounded by “peripherals”. One of the “peripherals” is usually a
buffer store, containing pieces to be worked on, and the others are “dumb” machines.
Their kinds depend on the manufacturing process: measuring and marking, assembly
by gluing, insertion of parts, adjusting mechanical pieces, polishing, etc. Production
cells are usually custom-made, the specifications being defined by the customer. Little
design work is required to tailor the mechanical components to the intended use. The
provider of the manufacturing cell is used to only a few number of robots, with the
right physical characteristics, and the design and selection of the peripheral machines
is largely based on past experience. However, the application software is usually
developed from scratch, which is expensive, time-consuming and error prone.
Software appears to be on the critical path of quality, but also for the time-to-the-
customer. It should be noticed that the customer in turn sometimes adapts the
application software, with or without the help of the vendor. Up to three months might
be needed for such an adaptive maintenance operation. The loss of the corresponding
production cycles has a major negative impact on the profitability of the equipment.

1. Supported in part by t@omision Interministerial de Ciencia y Tecnologfahe Spanish
Government under grant number TAP97-892

Robot Controller

Application Program

@ Special Language Interpreter | |

|
Robot Control Softwarg Other RTS

I/O & Specialized HW ' cpy [

Fig. 1. Layers in a Robot Computer System

The robot integrates a computer system (see Fig. 1), usually called a robot controller,
which not only controls the robot, but also runs the application program specific to the

production cell. The robot vendor provides all the hardware, but also the robot control

software, and some kind of programming environment. This environment is usually

built around a proprietary interpreted programming language. Technical details about
the robot control software, especially the so-called servo loop, and other pieces of the
run-time support system are not disclosed by the robot vendor to his customers.

The robot control programming language varies therefore with the robot vendor (or the
kind of robot controller), and also over time, because robot vendors improve constantly
their programming languages. Production cell specialists explained us that all the robot
control programming languages were very similar in purpose and functionality, but
quite different in form. Different software development teams are therefore needed if
several different robots are used.

As in other fields of software, we thought it should be possible to use a single high-
level programming language, together with an application programming interface
(API) for robots. Such an APl would provide the basis for writing portable application
programs. The purpose of this paper is to discuss the requirements and design of such a
portable API, that we are currently implementing for several industrial robots. We call

it PINROB, for_Portable API for_INlustrial ROBts.

In a first step, we examined the following robot control programming languages:
Adept V and V+ [3], Adept SILTOOLS [4], ABB-IRB 200 S3 programming language,
ABB S4 Rapid programming language [2], AUTOMELEC Lucie [5], Siemens
SIROTEC ACR-20 [10], and Demaurex Delta95 [6]. All of them support the normal
programming language constructs such as conditional and loop statements, input and
output statements, data types and variables, expressions and assignment. In addition,
they provide robot-specific operations, such as the ability to move the robot to a
particular point, or through a specified trajectory, or to read the position of the robot.

Some of these languages allow for some degree of multitasking, i.e. concurrent
execution of different tasks or programs.

We believe that the features to be considered in the API are basically the union of the
features found in these robot controllers, rather than their intersection. Otherwise, all
robots would become functionally alike, and any competitive advantage would be lost.
The chosen approach implies that sometimes a feature cannot be implemented on a
particular controller. In that case, we define the acceptable behaviour that the robot
application must tolerate.

We have chosen to use the Ada language as the programming language for the robot
applications. In this way we can use all the normal constructs of a high-level language
without having to implement them ourselves (such as data types, variables,
expressions, conditional and loop statements, etc.). In addition, we can exploit the
advantages of Ada over other standard languages, such as packaging in modules, data
abstraction, encapsulation, object-oriented features, and well-defined real-time
multitasking. What is missing is a set of robot-specific operations, similar to those of
the robot programming languages, such as moving the robot to a particular point or
reading its position. These operations together with the necessary data types are
integrated into the PINROB API.

It might appear that the Ada language is more difficult to learn and use than a
conventional robot programming language. However, it is always possible to describe
a small subset of the Ada language that, together with the robot API, would be no more
complex than an average robot programming language. Of course, advanced
programmers could always make use of all the advanced features of the Ada language.

2 Architecture of the Robot Programming Environment

Because the robot controller is usually a special-purpose computer with a proprietary
operating system, it is not possible to integrate Ada programs into it. Consequently, the
programming environment that we have designed consists of an external computer
linked to the robot controller through a communications channel (e.g. serial line or
network). The application program written in Ada and using the PINROB interface
runs in the external computer and sends commands to the robot controller. A command
executive program written in the controller’'s special-purpose language, and running in
the robot controller, receives the commands, and interprets them. Then, if the
command is a request to execute an action, it performs it by invoking the appropriate
operations in the controller; if the command is a request for information about the
robot, it obtains this information and returns it.

Fig. 2 shows a diagram with the basic architecture. The execution of the robot
application at one end and the subsequent execution of the associated commands at the
controller end are synchronized by an acknowledge message that the command
executive sends back for every command processed.

External Computer Robot Controller

Application Program] Command Executive B
8 L
PINROB =1 § Special Language Interpreter
2 5 '

. | L

Operating System & Ada RTS G Robot Control Softwarg Other RTS
CPU : I/O Devices | » 1/0 & Specialized HW ' cpu ||

, Serial !
| Line I

Fig. 2 Basic architecture of the robot programming environment

The advantages of this approach are that we reuse all the robot controller software
without having to interact with internal aspects of its implementation. In addition, the
remote computer can be any general-purpose computer, and both the robot application
and most of the PINROB implementation will be portable. The non portable part of
this architecture is the command executive, that has to be rewritten for every special
controller, and part of the PINROB implementation.

3 Basic Requirements

The requirements for the PINROB API have been inspired by different robot
programming languages. All the systems that we investigated were capable of
controlling one robot with its arm and gripper, a control pendant keyboard and display
used by the robot operator to program and supervise the robot operations, as well as
digital input and output, analog input and output, and independent axes. In addition,
some systems were capable of controlling several secondary robots, each with its arm
and a gripper. Among the requirements, we have included the capability to control and
monitor all of these objects.

Some other systems have image processors, conveyor belts, welding tools, and many
special tools that can be controlled from the controller. Since these are too system-
specific, we have not included them in the PINROB interface, although they can be
included in particular systems as extensions.

All of the robot controllers that we have checked have the capability to execute robot
movement operations in parallel with instructions that use other objects such as digital
or analog I/O, or the control pendant. We have required this behaviour as the default
for the PINROB API, to increase the level of concurrency, which can then be exploited
by the application program using Ada tasking. Also required are operations to
synchronize the execution of the task controlling the robot movements with their
finalization. In this way the program may be synchronized with the robot movements.

Another important requirement derived from most robot controllers is the ability to
create “interrupt service routines” that are triggered by a digital input. In the PINROB
API this is accomplished by requiringveait_Until_Signaloperation, that blocks the
calling task until a given digital line changes its state. In this way, that task itself
becomes the “interrupt service routine”.

In order to take full advantage of the learning capabilities of the robot (to learn about

the position of objects, the size and orientation of its tools, etc.), we also require

operations to read the values of variables defined in the robot controller. Another way

of learning about positions of objects is accomplished through a requirement for the

robot program to be able to stop temporarily, passing control to the robot controller. In

this situation, the operator can move the robot to the desired position using the manual
movement operations provided by the robot controller. Once the robot has been
moved, the robot application program can resume its execution right after the point

where it stopped. At that point, it can read the new position of the robot and store it for
future reference.

The requirements for the PINROB robot library [7] as well as the PINROB
specification [8] are available from the authors upon request.

4 PINROB Software Architecture

One of the first design criteria for the robot library has been the simplicity of the
interface, to make it easier for robot programmers to use it for writing robot
application programs. We think that this is an extremely important criterion because if
the interface is complex it will not be used.

The simplicity criterion has driven us to avoid using advanced features of the Ada
language. In this way, the interface is simpler to understand by robot programmers.
Among such unused features, we can mention unconstrained data types, generics, and
object-oriented features, such as inheritance and polymorphism. This limits the
extension of the library in the sense that it will be necessary to recompile it and
perhaps make slight changes to the applications when new features are added, but still
we want to give more importance to simplicity.

In the design of the architecture we have used encapsulation techniques to make the
library interface implementation-independent. We have used private types for those
data structures that are usually implemented in different ways in different robots (e.g.
position frames). However, some other common data types have been defined as
visible types because, traditionally, they are always used in the same way (e.g. joint
coordinates as an array).

We have also used the Ada 95 hierarchical library facility, to make the interface
modular. However, we have kept the hierarchy to mostly two levels, in order to keep
the simplicity. Fig. 3 shows the hierarchy of modules in the robot library.

Joints

I

Legend .
Transformations \‘

7

— Child Unit

7

Status

- - ® “with” dependency

-

Basic_Motion [y,

~
- -

Location

Speed_And_Accel
PINROB

Motion_Modifiers | ; ! :

~

Special_Motion)\, ,

Tools }4'—/H Gripper

I
/

'

Pendant
Digital_1O
Analog_lO

>
Qo
@
k=]
@
>
o
@
>
=
>
X
@
%)

Fig. 3 Hierarchy of the PINROB API

A short description of the modules of the robot library appears next. A complete
description can be found in [8].

* PINRORB It is the parent unit of the robot library. It defines the basic data types,
the elementary operations for these basic data types, the geometrical operations,
and also defines all the exceptions that may be raised by the different operations of
the robot library.

The elementary data types used in addition to the predefined Ada data types are
angle, angular speed, length, linear speed, weight, and robot identifier. Some
arithmetic operations are provided to allow operations between some of the

elementary data types (for example, angular speed times duration, returning
angle).

For geometry, PINROB specifies the data types cartesian position (X, Y, Z) and
orientation (yaw, pitch, roll). In addition, it defines the tygsamethat represents

an absolute or relative position and orientation of an object in space. This type is
defined as private, because different systems may prefer to use different
representations of the orientation, such as yaw-pitch-roll or Euler angles.
Operations are provided to build a frame from position and orientation data, and
vice versa. In order to allow different coordinate systems and geometrical
transformations, PINROB defines operations to calculate the absolute position of
a position that is specified relative to a given coordinate system; to calculate the
relative position, relative to a given coordinate system, of an absolute position; and
to invert a relative position. These operations give PINROB full capabilities for

performing geometrical transformations and for using different coordinate
systems. For example, this may be used to handle a robot that is upside-down and
located at a particular point in space, or to manipulate objects whose coordinates
are given relative to some particular frame.

Joints It defines the robot-dependent location data types, which are the joint
coordinates and the robot configuration. The names of these types are portable,
but their internal structures are robot-dependent. Operations are provided to set or
retrieve the limits for each joint.

Transformations It defines the operations required to operate robots with
different coordinate basis, and different tools with different sizes. It also provides
operations to perform direct and inverse transformations between the two basic
location types: joint coordinates and frames.

Status The operations in this module allow the application to read the current

status of the robot and the controller, attaching or detaching robots to or from the
application program, setting and reading the power status of each robot,
determining whether communications with the robot are OK or not, stopping the

program temporarily to allow the robot controller to move the robot, and stopping

the robot under a panic situation.

Basic_Motion It contains the operations that allow absolute or relative
movements in straight-line, circle, or joint coordinates. All the motion instructions
are asynchronous, i.e. the actual movement is performed concurrently with the
execution of the program, up to a system-dependent number of pending movement
operations. For each of the basic movement instructions there are two versions:
one that accepts positions in joint coordinates, and one that accepts positions in
frame units.

The module also defines operations to allow the program to synchronize with the
movement operations, by waiting until all the previously issued movement
operations have been completed. Defer-movement operations are provided to
specify an interval of time during which the robot movement needs to be stopped.
The time interval may be fixed, or may depend on a signal condition (i.e. the state
of a digital input). ABrakeoperation is provided to allow the application program

to stop the robot, even if there are pending movement operations. Usually this
operation is invoked after an abnormal condition. Bnake operation may be
unconditional, or conditional depending upon a signal condition (i.e. the state of a
digital input). In this latter case, the brake operation is asynchronous to the
program.

Location It defines functions that allow the application program to read the
robot’s current position or its current target position, in different units. The target
position is the final position of the current movement instruction.

Speed_and_Accelt provides operations to set and read the different speed and
acceleration factors that are used in all subsequent movement operations.

* Motion_Modifiers The motion modifier operations allow the application program
to manipulate and read the conditions under which other movement operations
work. Continuous path enables a set of subsequent robot move operations to be
considered as a continuous trajectory in which the robot does not stop at each
point, but rather it approximates the trajectory to follow a smooth path between
the different points. Continuous path may be broken explicitly, with the
Disable_Continuous_Patbperation, or implicitly (and only temporarily) with the
instructions that require synchronization sucMast Until_Stopped

The stopping mode determines when a movement operation is considered to have
been finished. There are different criteria to establish whether the robot is or not
stopped, and operations are provided to specify the stopping mode desired by the
application. Singular points are points in which the angular position of one or
more joints may be arbitrary. Some systems provide different motion modes to
deal with paths that come close to singular points, and thus operations are
provided for the application to specify the desired behaviour. In some systems the
servo control parameters may be adjusted to accommodate for different payloads,
or different precision and force requirements. Consequently, this module defines
operations that affect the servo control parameters. Finally, an operation is
provided to adjust the advanced run setting, which allows the program to control
the maximum number of simultaneously pending movement operations.

* Special_Motion It defines operations that imply moving the robot to perform
some special action. A special operation is provided for moving the robot in a
single drive mode. A calibration move operation is necessary in some systems to
initialize relative position encoders. In those systems in which this operation is not
required, calibration move may be a null operation. This module also provides
operations to change the robot configuration, which can be used when the target
position of a movement is unreachable in the current configuration, or when
movements in the current working area would become more comfortable.

* Tools It defines the typd&ool and its associated basic operations. This type is
defined as a private type because different implementations may have different
parameters associated with a tool. The operations associated with the tools are
setting and reading its dimensions and weight. Other operations that control the
tool are tool-dependent, and thus are not provided in this module.

* Gripper. The gripper operations initiate an action (open or close) on the gripper.
This action starts after the last issued movement operation has been completed and
it may proceed in parallel with the execution of the program and subsequent
movement operations. If the system does not have a gripper attached, these
operations fail silently.

* Pendant Some robot applications may need to interact with a human operator. For
example, the robot application may have to wait until the operator changes a tool
in the robot and then presses a button. This kind of communication with a human
operator is best accomplished through the control pendant. The pendant is

assumed to have a small display, and a keyboard. In addition, it may have other
devices such as a potentiometer, joystick, or beeper. Operations are provided to
control all such devices. In addition, there are functions to check for the presence
of the pendant and of some of its devices.

* Digital_lO: Most controllers support digital I/O, and thus this module provides
operations for reading from and writing to individual digital input or output lines,
or ranges of them. It is also possible to wait for a digital input to reach a given
state, or to set the outputs to default values. There are two interrogation functions
to determine whether the system supports digital 1/0, and whether it is concurrent
with the program operation or not.

* Analog_IQ It defines operations for reading or setting analog inputs and outputs.

* Independent_AxeSome systems have one or more independent axes that may be
moved independently of the robot without coordination with it. In other systems,
independent axes may be moved in a coordinated motion with the robot. This
module defines a constant that specifies how many independent axes are present.
It also defines operations for moving an independent axis, reading its position, and
moving one or more independent axes together with the robot in a coordinated
manner.

5 Operating Procedures

Programming in the PINROB architecture is different than the usual approach with
most industrial robots, because the language is not interpreted, but compiled. This
means that the execution and debugging of the program need different approaches.
Usually, when a robot operator is using a program, he or she uses the robot to learn the
positions of the different objects it has to manipulate. These positions are stored into
variables defined in the controller, which are then read and used by the program itself.
In the PINROB environment, we can take a similar approach, but we must also
program the learning phase into the application. We can define a number of variables,
and ask the robot operator to move the robot manually, with the application program
temporarily stopped, and store different robot positions into the variables defined.
After this learning procedure finishes, the application program may continue at the
point where it was stopped. Alternatively, if we do not wish to use robot variables, the
position of the robot may be “learnt” by the application program, by invoking the
Current_Positionoperation.

Since the external computer used to program the robot is a general-purpose computer,
it can have a nice windows-based user-interface, which can be used to implement user-
friendly communication with the robot operator, during the learning or configuration
phase, as well as for monitoring the robot during its productive operation.

One of the advantages of interpreted robot programming languages is that debugging
the program is very easy. The programmer can run the program step by step, or
manually insert breakpoints (stop instructions) without having to recompile the

application. However, debugging technology for high-level language compilers is
pretty mature, and thus we can use a conventional debugger to execute the Ada
application program step by step, or manually insert breakpoints and read the values of
variables. Of course, any modification of the program will require recompilation, but
since the compiler will usually reside in the same machine as the Ada application, this
should not represent any major difficulty.

6 Robot Application Example

In this section we will present a simple example of a typical robot application, to give a
flavour of the PINROB interface and how it can be used. The system consists of a
robot whose job is to pick up objects from a conveyor belt and put them in another one.
Each object is picked up at a fixed position but, since it is moving, we use an
optoelectronic sensor to determine when the object is ready to be picked up. This
sensor is connected to digital input channel number one, which can be read by the
application program. When the object is ready, the robot closes its gripper, moves up
by 200 mm, and then moves in straight line to a point positioned 200 mm above the
dropping position. There, the robot moves down by 200 mm and opens the gripper to
drop the object. Finally, the robot moves back along the same trajectory to begin a new
cycle. Table 1 shows the application code that performs this task.

We can see that the application is self-configurable, because it includes operations to
learn the positions of both the pick-up and the drop points, prior to the start of the
normal operation cycles. This is achieved by making two calls to procedure
Learn_Point to learn each point. This procedure displays a message asking the
operator to move the robot manually to the desired point, and then stops the program
execution. When the operator resumes the application program, the current robot
position is learnt. For convenience, before the two points are learnt, the robot's
orientation is changed to make the gripper point down.

After the two points are learnt, the robot is moved to its initial position (200 mm above
the pick-up point) and the gripper is opened. For the main cycle we select the
continuous path mode, which does not require the robot to stop after every movement.
We break continuous path temporarily both at the pick-up point and at the drop point,
with theWait_Until_Stopped¢ommand.

7 Conclusion and Future Work

In this paper we have shown the design of a portable API for industrial robots. This
interface is based on the use of Ada as the robot programming language. It can be
implemented on top of existing robot controllers from different manufacturers, and
thus it provides for application program portability, which is not possible today
because of the different programming languages used for each robot. We have
described the main features of this API, and through a simple example we have shown
that it is easy to use and yet very powerful. The use of the Ada language makes the

with PINROB, PINROB.Status,
PINROB.Transformations, PINROB.Basic_Motion,
PINROB.Speed_And_Accel, PINROB.Tools,
PINROB.Tools.Gripper, PINROB.Motion_Modifiers,
PINROB.Digital_IO, PINROB.Location,
PINROB.Pendant;

use PINROB;

procedure Move_Objects is

Pick_Up_Pos, Above_Pick_Up_Pos,
Drop_Pos, Above_Drop_Pos : Frame;

The_Tool :Tools.Tool:=Tools.Gripper.Gripper_Parameters;

Height constant Length := 200.0; -- millimeters
Object_Ready: constant Digital_lO.Input_Channel:=1;
Timeout : constant Duration:= 300.0; -- seconds
Vertical constant YPR_Orientation :=

(Yaw=> 0.0, Pitch=> 180.0, Roll=>0.0);

procedure Learn_Point (Message: in String;
Point : out Frame) is

begin
Pendant.Write_To_Display (Message);
Status.Stop; -- The robot is now driven with the robot

-- controller to the desired position
Point:=Location.Current_Position;
end Learn_Point;

begin
Status.Attach;
Motion_Modifiers.Enable_Continuous_Path;
Transformations.Set_Tool(The_Tool);
Basic_Motion.Move_To (To_Frame(
Position_Of(Location.Current_Position), Vertical));
Learn_Point("Drive robot to pick up position",Pick_Up_Pos);
Learn_Point("Drive robot to drop position”, Drop_Pos);
Above_Pick_Up_Pos := Retract (Pick_Up_Pos, Height);
Above_Drop_Pos := Retract (Drop_Pos, Height);
Speed_And_Accel.Set_Linear_Speed_Factor (40.0); --percent
Basic_Motion.Move_To (Above_Pick_Up_Pos);
Tools.Gripper.Open;
loop
Basic_Motion.Move_To_Straight (Pick_Up_Pos);
Basic_Motion.Wait_Until_Stopped;
Digital_10.Wait_Until_State (Object_Ready,
Digital_10.Asserted, Timeout);
Tools.Gripper.Close;
Basic_Motion.Move_To_Straight (Above_Pick_Up_Pos);
Basic_Motion.Move_To_Straight (Above_Drop_Pos);
Basic_Motion.Move_To_Straight (Drop_Pos);
Basic_Motion.Wait_Until_Stopped;
Tools.Gripper.Open;
Basic_Motion.Move_To_Straight (Above_Drop_Pos);
Basic_Motion.Move_To_Straight (Above_Pick_Up_Pos);
end loop ;
end Move_Obijects;

Table 1 Moving objects from one conveyor belt to another one

application code almost self-explaining and the compiler helps in eliminating many
programming errors.

We are currently implementing PINROB for several robot controllers, including self-
developed robots as well as commercial ones. When these implementations are
finished, we will know to what extent the API is portable. We also intend to translate
production cell software into Ada and PINROB. The first goal is to assess the difficulty
of the translation process. The second goal is to measure the time-behaviour of the new
software. We will then port the Ada production cell software to a “foreign” robot in
order to evaluate the level of portability of an application, rather than of the API.

Acknowledgements

The authors would like to thank Mfernando Gémez Estefaniaf Equipos Nucleares
S.A, for his many contributions to the definition of the requirements of the PINROB
API.

References

[1] A. Aasten, G. Elia, G. Menga. “G++: A Pattern Language for Computer Integrated
Manufacturing”; Proceedings PLOPS'94, (J. Coplien and D. Schmidt, eds.), Addison-
Wesley, Reading, Mass., 1995, pp. 91-118.

[2] ABB Robotics Products AB. “ABB S4 Rapid programming language. User’s Guide”.

[3] Adept Technology Inc. “V and V+ Reference Guide”, Vol. 1/2, Version. 10.1, Oct. 1990.
[4] Adept Technology Inc. “SILTOOLS Developer’s Guide.”, 1996.

[5] AUTOMELEC. “Lucie. Description des Instructions.”

[6] Demaurex. “Logiciel Delta95: Fonctionnalités de la couche haut niveau”, Version. 4.0.

[71 M. Gonzéalez Harbour and A. Strohmeier. “Requirements for Portable API for Industrial
Robots. Version 2.1". Internal report, February 1998.

[8] M. Gonzéalez Harbour and A. Strohmeier. “PINROB Specification. Version 2.1". Internal
report, February 1998.

[9] H. A. Schmid. “Creating Applications from Components: A Manufacturing Framework
Design” in IEEE Software, Nov. 1996, pp. 75.

[10] Siemens. “SIROTEC ACR-20. Software Version 4. Programming, parts 1-3".

