
Fixed Priority Scheduling of Periodic
Tasks with Varying Execution Priority

Michael Gonzalez Harbour Mark H. Klein
Department0 de Electronica Software Engineering Institute

Universidad de Cantabria Carnegie Mellon University
39005 - Santander, Spain Pittsburgh, PA 15213

John P. Lehoczky
Department of Statistics

Carnegie Mellon University
Pittsburgh, PA 152 13

Abstract1

This paper considers the problem of fixed priority
scheduling of periodic tasks where each task’s execution
priority may vary. Periodic tasks are decomposed into
serially executed subtasks. where each subtask is charac-
terized by an execution time and a fixed priority, and is
permitted to have a deadline. A method for determining
the schedulability of each task is presented along with its
theoretical underpinnings. This method can be used to
analyze the schedulability of complex task sets which in-
volve interrupts, certain synchronization protocols, non-
preemptible sections and, in general, any mechanism that
contributes to a complex priority structure. The method is
illustrated with a realistic example.

1 Introduction
A theoretical treatment of fixed priority scheduling

first appeared in 1973 when Liu and Layland
-[7] introduced the notion of rate monotonic priorities for
periodic tasks. They proved the optimality of a rate
monotonic priority assignment (for fixed priority
scheduling) for the case where task deadlines are coin-
cident with the end of a task’s period. They also derived
a sufficient condition for the schedulability of task sets

*Michael Gonzalez is currently on sabbatical as a resident
affiliate at the Software Engineering Institute. His research is
sponsored in part by the Direction General de Investigation
Cientifica y Tecnica of the Spanish Government.

Mark Klein’s research at the Software Engineering Institute
is sponsored by the U.S. Department of Defense.

John Lehoczky’s research is sponsored in part by the Office
of Naval Research under contract number N0014-84-K-0734, in
part by the Naval Ocean Systems Center under contract
N66001-87-C-0155. and in part by the Federal Systems Divi-
sion of IElM Corporation under University Agreement
Y-278067.

I Ih
O-8186-2450-7/91 $1.0001991 IEEE

that use a rate monotonic priority assignment. Leung and
Whitehead [6] later showed the optimality of a deadline
monotonic priority assignment for the case where periodic
tasks have deadlines that are at or before the end of their
periods.

Fixed priority scheduling theory has received renewed
consideration over the last five years. This collection of
results is proving to be very useful and is gaining
popularity as a basis for reasoning about the timing be-
havior of real-time systems. These results are sum-
marized by Sha, Klein, and Goodenough [14], and Sha
and Goodenough [111. Aperiodic task scheduling has

been treated in [151, synchronization requirements treated
in [8,9,13], and mode change requirements treated in
[lo]. In addition, hardware scheduling support has been

treated in [4, 121, implications for Ada scheduling rules
discussed in [2], and schedulability analysis of
input/output paradigms discussed in [3].

Naturally, one of the assumptions of fixed priority
scheduling is that a task executes at a constant priority
during the course of a single period. Yet there are many
occasions where this premise is violated. Even in cases
where one strives to use a fixed priority assignment for
periodic tasks, the task dispatching mechanism may vio-
late this premise since periodic tasks are generally in-
itiated by clock interrupts. Borger, Klein, and Veltre
[l] present a schedulability analysis that considers the

effects of task dispatching. The basic inheritance
protocols also change execution priority as necessary.
Sha and Goodenough [l l] discuss a mechanism for
emulating the priority ceiling protocol by setting the pri-
ority of a server task to be one level higher than the prior-
ity of all of the server’s clients. This represents another
instance of varying priorities. It is not uncommon for
operating systems to ensure internal consistency by dis-
abling interrupts for short periods of time, effectively cre-
ating small intervals of nonpreemptibility, which need to
be considered when analyzing the timing behavior of a

system. Finally, there are many systems that have been rir, 1 I r c j have been completed.
developed where a single logical thread of execution com- Assumption 4: The time required to perform task
prises a sequence of processing steps that are imple-
mented as a set of tasks that are serially executed at vary-
ing priority levels. In these cases task priority may be
based upon a deadline or based upon semantic impor-
tance. For all of these reasons a formal framework for
reasoning about the timing behavior in the context of
varying execution priority is needed. This paper presents
such a formal framework.

This paper is organized as follows. The remainder of
this section presents the framework for the scheduling
problem and discusses a difficulty that arises when task
priorities vary. Section 2 presents an algorithm and
schedulability equations for checking task set
schedulability. Section 3 introduces a simple but realistic
real-time robotics application and illustrates how one uses
the schedulability equations presented in Section 2. Sec-
tion 4 proves the method’s correctness. Section 5 offers
our conclusions.

1.1 The Framework
We assume there are n periodic tasks denoted by

rt,...,rn. Each periodic task ri has a total computation
requirement (Ci), a period cri>, and a deadline (Di). The
computation requirement must be completed by the dead-
line or a timing fault occurs. In this paper, we assume
that each periodic task may be composed of distinct sub-
tasks, each of which may have its own timing require-
ment. Thus, ri consists of subtasks T~~,...,Q,~~ Each of
these subtasks is characterized by a set of parameters. In
P&~CU~U, ~ij is characterized by (C,, Dij, Pij) where:

l Cij = worst-case computation requirement of zij,

l Dij = deadline of rg relative to the arrival time of task
‘Til taking 0 to be this arrival time,

l Pij = fixed priority level of rij.

We assume that 0 5 Di, I. . . I Dtiti) = Di, and we

allow either Di,,,(i) I Ti, or Dhci) > T,. The sum of the
execution times associated with each subtask of task ‘5i
equals Ci. Each activation of a periodic task generates an
instance of task execution called a job of that task.

Using this framework, we wish to derive a set of equa-
tions by which we can determine if all of the timing re-
quirements of all of these tasks will be met under all
possible phasings. We make the following assumptions
concerning the execution behavior of any single task:

Assumption 1: Subtasks executing at a given priority
level can be preempted by any subtask of higher priority.

Assumption 2: Tasks do not suspend themselves at
any instant between their activation and their completion.

Assumption 3: The (k+l)“’ job of ri will not execute

until the kth job of ri has been completed. Furthermore,
any subtask rij is not ready for execution until subtasks

scheduling, context swapping, and other overhead is ig-
nored.

There are situations, especially involving interrupts, in
which one would want to modify Assumption 3 to allow
early subtasks of a later job to interrupt unfinished later
subtasks of an earlier job, The analysis given in Section 4
can be modified to handle this case, but we develop the
theory specifically for Assumption 3.

To determine the schedulability of a task zi, we will
apply a transformation to its priority structure to derive its
canonical form.

Definition 1: A task is said to be in canonical form if
it consists of consecutive subtasks that do not decrease in
priority. The canonical form of a task ri is another task,
71, that is obtained by applying the following algorithm
where qj denotes the priority of subtask ‘t~j.

%?l(O = ‘h(i)

for I= m(z) downto 2
ifP> < P,, then Pi,_, = Fti
else Pit_, = pit_,

end;

After applying the algorithm, consecutive subtasks of
the transformed task with equal priority can be combined
into a single subtask, if their deadlines are the same.

We will prove in Section 4 that the completion time of
a task ri and the completion time of its canonical form 7:
are the same. The canonical form has the advantage of
being simpler for the purpose of understanding the worst-
case phasing and performing the schedulability analysis.

1.2 A Difftculty
The possibility that a task’s deadline, Di,(i), exceeds

its period, Ti, requires one to check more than just the
deadline of the first job of a particular task. As shown in
[5], all deadlines in a particular time interval called a

busy period must be checked. Suppose, however, that
Di,(;) I Ti, 1 5 i 5 n, so that a job of task ri must be
completed before the next job of ri is ready (assuming
task deadlines are met). Consequently, earlier jobs of pi
do not compete with later jobs, and it would seem that one
could follow a standard Liu and Layland approach,
namely constructing a worst-case phasing of all other
tasks and checking that the first job of ri meets its dead-
line. The difficulty with this reasoning is that it overlooks
another way in which earlier jobs of ri can influence later
jobs. If an early subtask of ri, say rip, has a relatively low
priority, Pip, while a later subtask, riir, p < r, has a rcla-
tively high priority, Pip < P,, then rir can delay a medium

priority subtask rkq, k f i where Pip < Pks < Pi,. This
delay in rkq creates an intermediate phasing which cannot
be created as an initial phasing and which can lead to

longer response times for the next job of subtask rip.
Consider the following example.

Example: Let n=2, where task rI has one subtask
given by Cl, = 4, D,, = 10, and T, = 10. Task ‘52 has

Definition 3: A zi-busy period is an interval of time
[AJ?] such that both A and B are ri-idle instants and there

is no time E (A&) such that t is a ri-idle instant.

period T2 = 14 and two subtasks characterized by C,, = 6,
Intuitively, a zi-busy period is a time interval during

D21 = 14, and C,, = 2, D,, = 14. Suppose further that
which the processor is continuously processing at priority

P21C 5 1 < P22-
level Pi or higher. It is also “self-contained” in the sense
that any job of task zi that is started during the busy
period is also completed during the busy period.
Moreover, all work of priority level Pi or higher which is
ready at some time during the busy period is also finished

0 10 20 30 40 by the end of the busy period.

=, 2 A Method for Determining Schedulability
This section describes a procedure for determining the

3 O,‘i,,,,

schedulability of a task set of the general form described
in the previous section. We will assume that we are
analyzing a single task in the task set, and the method

1-- 14
used can be subsequently applied to all of the other tasks.

2.1 Final Deadline
First, we will focus on the task’s final deadline. Our

goal is to determine if task ri will meet its final deadline.
The general strategy is very similar to that used by Liu
and Layland [7] and Lehoczky [5]. One must first find

Figure 1: Considering the First Job is Not Sufficient
the phasing of the other tasks relative to task ‘5; that results
in a critical instant for task ri. A critical instant is a point

Under the traditional (Liu and Layland) worst-case
phasing shown in Figure 1, the longest response time for
‘522 is given by 14 for the second job of r2, whereas the
first job has a response time of 12. Thus, the longest
response time of this task is associated with its second job
rather than the first. The cause of this phenomenon is the
high priority accorded to r22 which delays the start of the
second job of ‘51. This, in turn, creates the long response
times for the subtasks of 02. Note that had ri not been
divided into two parts, but had been given its rate
monotonic priority, then the task set would not be
schedulable. We will return to this point in Section 4.5.

1.3 Busy Period
The above example shows that one may need to check

the deadlines of more than one job of a particular task.
The criterion for which deadlines need to be checked is
based on the concept of a busy period. The concept of a
busy period is well known in queuing theory and was first
introduced in real-time scheduling by Lehoczky [5]; how-
ever, we need to modify this concept slightly to accom-
modate the fact that a single task may have subtasks with
different priorities, Let Pi = min(Pij, 1 < j < m(i)) denote
the minimum priority level of all of the subtasks of task
ri.

Definition 2: A Ti-idle instant is any time t such that
all work of priority Pi or higher started before t and all oi
jobs also started before t have completed at or before t.

in time such that if task zi is activated at that point, its
completion time will be the longest. In order to determine
the critical instant phasing, we will fist divide the other
n-l tasks into several groups.

2.1.1 Task Groups: Tasks are placed into groups based
upon the priorities of their subtasks. A key criterion is the
priority of the first subtask relative to the minimum prior-
ity of all subtasks of task ri. For example, a task that
starts with a high-priority subtask will eventually be able
to preempt the subtask of task ri with the minimum prior-
ity. On the other hand, a task ri that starts with a lower
priority subtask will never have this opportunity. Since
the task groupings are relative to the priority structure of
task ri, the groups will vary as a function of the task being
analyzed.

Recall that Pi = min(Pij, 1 < j < m(i)) denotes the
minimum priority of all of the subtasks of task pi. We
refer to a sequence of consecutive subtasks as a segment.
An H segment comprises a sequence of consecutive sub-
tasks, each of which has a priority equal to or greater than
Pi. Note that this is a possibly pessimistic treatment of
equal priority subtasks, allowing for a worst-case analysis
and thus covers all scheduling policies for handling equal
priorities. Similarly, an L segment refers to any set of
consecutive subtasks, each of which has priority strictly
less than Pi. In the following description of task types, a
“+‘I denotes one or more patterns. A “0” denotes zero or
one patterns. An effect due to preemption by a high prior-

I IX

ity first segment will be referred to as a preemption effect.
An effect due to a high-priority segment that occurs after
a low-priority segment will be referred to as a blocking
effect. Figure 1 shows preemption effects of ‘51 over 752 at
times t=O, t=12, t=20, and t=30; a blocking effect of z2 on
z1 is shown at time t=lO.

The five types of tasks are:

l Type 1 (H) tasks may be able to preempt task Zi more
than once per Ti-busy period. Each task in this group is
used to determine the worst-case completion time for
task 2;.

l Type 2 ((HL)+) tasks are such that each high-priority
segment is followed by a low-priority segment. Con-
sequently, each task in this set can preempt task 7i only
once per zi_buSy period because the low-priority seg-
ments will have to wait until the busy period is com-
plete before they can execute. Depending on types 3
and 4, one task in this set may be used for its blocking
effect rather than its preemption effect.

l Type 3 ((HL)+H) differ from the previous type in that
they end with a high-priority segment. In general these
tasks are treated like tasks of type 2. However, under
special circumstances (described below) one task may
exhibit both a preemption effect and a blocking effect.

l Type 4 ((LH)‘L’) tasks are solely blocking tasks.
Moreover, at most one task in this group can contribute
a blocking effect.

l Type 5 (L) tasks have no effect on the completion time
of task ~~ and thus can be ignored.

2.1.2 Schedulability Equations: In this section a step-
by-step procedure is described for determining if tasks
can meet their final deadlines. The procedure entails
methodically identifying blocking effects and preemption
effects, and constructing equations that account for how
these effects contribute to the completion time of task zi.

We will assume throughout this section that task 7i has
been transformed to canonical form and that adjacent sub-
tasks of equal priority have been compressed into a single
subtask. This results in a task where each subtask has a
priority strictly higher than its predecessor. The rest of
the tasks remain unchanged.

The procedure determines the completion time of the
first subtask of the transformed canonical form. It then
iteratively determines the completion of the (i+l)“’ sub-
task as a function of the jth subtask until the completion
time of the final subtask has been determined. This is
performed for every job in the Ti-busy period.

Some notation is needed prior to discussing the proce-
dure. Let MPii denote the set of tasks that can have more
than one preemptive effect relative to the priority of the
subtask Zij. Recall that Pp = min(Ppj, 1 <j I m(p)).

For example, since ‘5i is assumed to be in canonical
form, MP,, is simply the set of type 1 tasks for Ti. Since
the priority of the second subtask of the canonical form is
greater than the first, not all of the tasks that are multiply
preemptive (i.e., can preempt more than once during a
task Ti-busy period) relative to zil will continue to be
multiply preemptive during the execution of the second
subtask. Consider the example in Figure 1. Task 1 is
multiply preemptive until task 2 enters its second subtask;
then task 1 can no longer preempt.

Let SPq be the set of singly preemptive tasks relative

to 7ij. Furthermore, given a task 7p E SPij, let h(p,i~]
denote the number of subtasks that comprise the initial H
segment of task TV, p#i, relative to subtask 2ij, where

h(p,ij) = (h I p#i A (Ppl,...Jph 2 Pii>

* (Pph+l < P$)
The execution time associated with the leading H segment
of one of these tasks is denoted as:

Ch(p,i j) 0.Q)

P = c ‘pk
kY=l

In the context of a task zp and a subtask ‘5ij, h will serve as

notational shorthand for h(p,i~) and ch for Ch@“j).
The stepwise procedure for detedining rf task zi can

meet its final deadline follows.
Step 1: Find the worst-case phasing for the other n-l
tasks.
In this step tasks other than pi are placed into the groups
defined in the previous section, Mpit and SPiI are deter-
mined, and then the blocking term, Bi, is identified.

1. Let MPil be the set of type 1 tasks for 0; and set SP,
to the union of type 2 and tylze 3 tasks.

2. Determine the longest H seg?ent of the type 4 tasks.
Denote the length of this as B .

3. For each type 2 and 3 task, denote the length of the
longest inner blocking H segment (if any) as U, the
final blocking H segment (if any) as V, and the initial
H segment as W. If there is no inner blocking segment
then set U=O. If there is no final blocking segment
then set V=O.

Calculate max(U-W-B’, V-B’) for each task and
choose the task with the largest value (let ‘5, be this

task). If this value is negative then Bi=B’. If this
value is positive then a new blocking term must be
computed. We must determine if the blocking term
will be from the inner segment or the final segment of
task z,,.,. If U-W > V, then set Bi=U and remove task
T,,, from SPiI; otherwise set B,=V and 7m remains in
SPi,.

Step 2: Determine how many jobs of task ‘5i must be
checked.

I I’)

1. The length of the task-zi busy period is:

Li=min(t>O IBi+ C rt+,+
Tp E MP,

c
zp E SP,,

$ + rtlT$, = t>

The length of the zi-busy period is determined by con-
sidering processing contributed by:

l the blocking term,
l the multiply preemptive tasks (relative to the first

subtask),
l the singly preemptive tasks (relative to the first

subtask), and
l complete jobs of ri.

The idea is to look for the minimum time t, such that
all work of priority Pi or higher initiated in the interval
[O,t] is completed at time t. Notice that multiply
preemptive tasks and 7i may contribute processing
more than once during the ri-busy period, and the
blocking term and singly preemptive tasks contribute
exactly once during this busy period.

2. The number of jobs of ri in the busy period is:

Ni = rLiIT;i

Step 3: Check the completion time of each of the Ni jobs
in the ri-busy period.

1. The completion time of the first subtask of the kth job
of task ri is represented by Eil(k).

Eil(k) = min(t > 0 1 Bi + c
7&,’ MP,,

rt/T& +

c
TpE SP,,

c + (k-l)C, + c;, = 1)

To understand this equation, consider as an example
the first subtask of the fist job in canonical form.
Under worst-case phasing, the completion of this sub-
task is impacted by the blocking term, all higher prior-
ity processing that is initiated at the same instant and
the execution time of the subtask itself. The right side
of the equation represents the first point in time t,
where all of the processing initiated by multiply
preemptive and single preemptive tasks in the interval
[O,t], the processing associated with the blocking term,
and the processing associated with the subtask itself
has completed.

2. Given the completion time of the first subtask of the
k” job, it is possible to calculate the completion of the
second subtask of the kth job. The first step in this
calculation is to insert the correct elements into the set
SPi2. Insert into SP, those tasks that were multiply
preemptive relative to subtask ril, but due to the
higher priority of ri2, are singly preemptive relative to

52’

SPi2 is constructed by fist selecting those tasks from
MP,, that may have become singly preemptive. This
is accomplished via the set subtraction in the equation.
Secondly, one must ensure that each of the selected
tasks is actually a singly preemptive task relative to
‘52. This is accomplished by making sure that there
exists a leading segment that has a priority greater or
equal to Pi2. Notice that tasks in SPil are not included
in SPi2. This is because these tasks only preempt once
during a zi-busy period and this single preemption has
already been accounted for in the calculation of Ei,.

3. Using the completion time of the fist subtask and sets
SPi2 and MPQ, the completion time of the second seg-
ment is:

E,&) = min(t > 0 I Eil(k) +
C [rtKpl - rEiI(k)/Tpl] cp +

C min(1, [krpl-bi,ckXrpl]) dd + Ci2=r)
TpE sp,z

The equation uses the completion time of the fist sub-
task (in canonical form) as the starting point for cal-
culating the completion time of the second subtask.
The first summation represents the multiply preemp-
tive processing initiated by tasks after the completion
of the first subtask. The second summation represents
the singly preemptive processing initiated by tasks af-
ter the completion of the first subtask. The “min”
function within the second summation ensures that
singly preemptive tasks can have at most one preemp-
tion effect on the remainder of the job. The execution
time of the second subtask is then added in.

4. In general, given the completion time of the j* subtask
of the k* job, it is possible to calculate the completion
of the cj+l)st subtask of the k* job.

Once again we must fist insert the proper elements
into the set SPij+l.

SP$+,= {ZplZpE SPii A

(rEiwTpl - rE&)IT,i) = 0 A

(&p, '..JP[2 P;j+l) A VP/+1 < Pjj+l) > 1
Sqj+* is the set of singly preemptive tasks relative to
P.. that have not yet exhibited their singly preemptive
e Y feet and are also singly preemptive relative to Pij+l,
and

sp;+, = { zp I rp E (MPo-MP,i+l) A

(31 I (Pp,‘... fp, 2 Pij+l) A (Ppt+, < Pij+J > 1

Sq!+I is the set of multiply preemptive tasks relative
to 6 i. that are singly preemptive relative to Pij+ t . The
set S $. ij+t 1s the union of the above two sets.

, I, SPij+, = SPY+, v SPi+*

The calculation for Eij+ 1 (k) is:

Eii+t(k) = min(t > 0 I E&k) +
c

‘p ’ Mpij+l
[rlq - rEG(k)rpi 1 cp +

C
‘p ’ “ij+l

min(1, [rq - rE;,(k)iy 1)~; + c~+~ = r)

All jobs of task ‘5i will meet their deadlines if the follow-
ing condition is satisfied.

m~((k-l)Ti + Di - E+,>(k)) 2 0 fir k I Ni

2.2 Deadlines for Other Subtasks
The analysis of the other subtasks is very similar (and

in some cases identical) to the analysis of the final sub-
task. The only difference is in the analysis of the first job.
Assume that subtask 7ij is to be analyzed, where j f m(i>.

Let Pi(i) = min(Pik, 1 I k I j). Special analysis of the first
job of ‘5ij is necessary only if P,(j) > Pi.

If the special analysis is needed, then truncate task 7i
after subtask Zij and USA the algorithm for converting a
task to canonical form on this truncated task. Determine
task groupings for the truncated task and apply the step-
wise method from the previous section. The
schedulability test for the first job of subrask 7ij is:

DC-E&l) 20

3 Applying the Method to an Example

3.1 Problem Description
We will use an example developed from a real-time

robotics application to illustrate the utility of the theory
developed in this paper and how to perform a
schedulability analysis using the method described in the
previous section. This example is derived from a real
robot system that measures the shape of pipes inside a
nuclear reactor, by moving around them and using a dis-
tance sensor. The task set corresponding to this system
has been simplified to reflect only the important activities
relevant to our analysis, and the numbers used are not
exact, although they approximate the real magnitudes.
With no loss of generality, we will consider all tasks to be
periodic, by using a worst-case arrival assumption for
those tasks whose nature is essentially aperiodic, namely
that those tasks arrive at their maximum expected rates.

The system, which has five tasks, is represented in
Figure 2. A sequence of tasks that execute serially at
varying priorities are considered a single task with multi-
ple subtasks, for our analysis. For example, task z1 is
considered as a single task, but is in fact composed of two

system tasks, an interrupt service routine (ISR) and Servo
Control, where Servo Control executes only as a conse-
quence of being signaled by the ISR. The five tasks are:

l Robot control. Task it has to control the robot’s ser-
vomotors and has two subtasks, that have two different
deadlines. The corresponding activities are: reading the
inputs from the servo sensors and performing the con-
trol action for moving the robot.

l Measurement subsystem. Tasks z2 and 73 constitute
the measurement subsystem, and synchronize with
each other: z2 reads the distance sensors and does
some data preprocessing, while 73 does some more
processing and sends the results to a remote system.

l System command. Task $ is in charge of receiving
and interpreting commands arriving from the remote
system, while 75 has to process and execute these com-
mands. Both tasks synchronize with each other, and ‘55
also has to update some control variables that affect
the operation of the rest of the tasks.

Figure 2: System Diagram

Hardware interrupts, synchronization, and existence of
different deadlines lead to a task structure in which each
task has several subtasks, each characterized by having
different priorities and worst-case execution times. Prior-
ity ceiling protocol emulation [1 l] is being used for task
synchronization and is responsible for the assignment of
some of the priority levels. Table 1 shows the subtasks
and characteristics of each task. All time values are in
milliseconds.

l The lower level priorities of each task have been as-
signed according to rate monotonic order, using the

task periods.

l Tasks rt and r4 start with an ISR, and therefore have
the priorities of their first sections fixed by the
system’s hardware.

l Tasks 22 and 73 synchronize with each other in their
middle and final subtasks, respectively, and execute
both of these subtasks at the same elevated priority.
The reason for this elevated priority level will become
apparent in the analysis phase.

l Tasks ‘54 and 2s also synchronize with each other, and
are assumed to have their final and initial subtasks,
respectively, executing at the same priority.

l Task 2s’~ final subtask must modify some control vari-
ables, and is therefore executed at high priority to
prevent interference from some of the other tasks.

Table 1: Task Set Characteristics

Although tasks ~~ and r4 start with an ISR and could
potentially have a self-preemption effect and violate As-
sumption 3, the fact that their final deadlines are before or
at the end of their periods ensures that this effect cannot
happen, if task deadlines are met. Therefore, all of the
analysis developed in this paper applies to these two
tasks, as long as they meet their deadlines.

Each task has its final deadline at the end of its period,
and task it has an additional deadline for its first subtask,
due to physical constraints on the sensors: D,, = lms. The
total CPU utilization is 97.5%. Our goal is to derive a
worst-case phasing or critical instant for each task, to be
able to analyze the worst-case response times. In this way
we can determine if the timing requirements of each task,
and of the required associated subtasks, can be met under
all circumstances.

3.2 Problem Solution
Before starting the analysis of each task we will reduce

it to its canonical form. The fist step in the analysis will
be to determine the critical instant phasing, by identifying
the blocking term and the multiply preemptive and singly

preemptive sets. The second step is to obtain the number
of jobs that have to be checked by evaluating the length of
the task’s busy period. Finally, the worst-case completion
time for each job will be obtained by application of the
schedulability equations, and checked against the dead-
lines or timing requirements.

3.2.1. Analysis of zt: The transformed canonical form of
rt is obtained by lowering the priority of its fist subtask,
and combining the resultant equal priority subtasks into a
single segment with priority 7.

Step 1. The lowest priority level in task 75; is 7. We
will classify the rest of the tasks according to this priority
level to determine the critical instant phasing.

r2: It is an LHL task (type 4), and its only contribu-
tion to the critical instant may be a blocking seg-
ment.

73: It is an LH task (also type 4). It can only con-
tribute with a blocking segment.

Tq: It is an HL task (type 2), so it is classified as a
singly preemptive task.

‘55: It is an L task (type 5) and has no effect on the
critical instant.

Consequently, we have task ~~ in the set of single
preemptive tasks (SPtt) with its first subtask r4t acting as
the H segment, and Bt =C32 as the maximum of the
blocking terms.

Step 2. The length of the busy period is:

L, = min (t > 0 1 B, + C rt/j"plCp +
TpE MPH

c C; + h/T,& = t)
7p’ sp,,

L, = min (t > 0 1 0 t C,, + C,, + rt/T& = t)

L,=O+ 12+ lO+ 1.6=28

Therefore, there is only one job, N,=r28/T,l= 1, of
it in the busy period. As it can be seen, when the task has
only one segment of constant priority and the deadline is
before or at the end of the period, there can only be a
single job in the busy period if it makes its deadline. This
fact can be used as a shortcut for this step of the analysis.

Step 3. As the transformed canonical form has only
one segment and there is only one job in the busy period,
the completion time and the busy period expressions be-
come identical. Consequently:

El(l) = 28 I40 = D,

Intermediate Deadline. Task rt meets its final dead-
line, but it also has a deadline for its first subtask, which
has to be checked. According to the schedulability rules,
it’s critical instant is valid for all jobs of this first subtask,

122

except for the first one. For this first job we have to create
a different critical instant, according to its own priority
level. In this case, the fist subtask has the highest priority
in the system; therefore, all the rest of the tasks can be
classified as low priority (type 5), and the completion
time of this first subtask will be:

&l(l) = Cl, = 1 I 1 = D,,

3.2.2 Analysis of TV: The transformed canonical form for
z2 is a task with a single segment ~;l of priority 4.

Step 1. For task ~~ we will classify the rest of the tasks
according to its lowest priority level, which is 4.

71,~~: They are H tasks (type 1) and have to be included
among the multiply preemptive tasks.

‘54: It is an I-IL task (type 2). so it is classified into the
singly preemptive set.

z5: It is an LH task (type 4) and has a potential block-
ing effect on z2.

Thus, we have tasks rl and z3 in the set of multiply
preemptive tasks (Mp21), 241 as a singly preemptive seg-
ment, and B,= C,, as the only blocking term.

Step 2. The length of the busy period is:

L2=min(r>O(B2+ C rri7-picp+
Tp E MPz,

L, = min (t > 0 1 c,, + rti2-,ic, + rti7-31c3 +
c,, + rt~2ic, = t>

L2= 10+3.6+2.20+ 10+ 1.20=98

Finding the minimum t > 0 that satisfies the equation
above can be accomplished by supposing an initial posi-
tive but very small value for t, obtaining the ceiling func-
tions, and adding all the terms in the left-hand side of the
equality. Using this result as the new value for t, we
repeat the same process until we find a value of t that is
the same as in the last iteration and, therefore, satisfies the
equality. If the total utilization is less than or equal to
lOO%, then we know that the busy period will end (and so
will the algorithm). In this particular case, we find that
there is only one job of r2 in the busy period.

Step 3. As the transformed canonical task has only one
segment of constant priority, the completion time has the
same expression as the length of the busy period. There-
fore:

E2(l) = 98 < 100 = D,

Task 7s also meets its final deadline.

form.
Step 1. Task zs has its basic priority at level 5, and the

classification of the rest of the tasks is:

‘5,: It is an H task (type 1) and is included among the
multiply preemptive tasks.

z2: It is an LI-IL task (type 4). so its H segment has a
potential blocking effect.

‘54: It is an I-IL task (type 2), so it is classified as a
singly preemptive task.

T5: It is an LH task (type 4) and has a potential block-
ing effect on r2.

Thus, we have task 71 in the set of multiply preemptive

tasks W31), r41 as a singly preemptive segment, and
B, = Cs3 as the maximum blocking term.

Step 2. The length of its busy period is:

L, = min (t > 0 1 Bj + C rf/TplCp +
Tp E MP31

c c:, + rt~2-,lc, = t)
$ E sp,,

L, = min (t>o 1 c~3+rf~~~lc1+c41+r~~~~ic3 = d

L,= 10+2.6+ 10+2.20=72

Consequently, there are two jobs, N3 = [72&i = 2, of
73 in the busy period, which have to be checked.

Step 3. The completion time of the first segment of the
first job is:

~~~(1) = min (~0 I C53+rf/T1iC1+C41+C31=t) 

&l(l) = 10 + 1.6 + 10 + 8 = 34 

For the second segment, we have to recalculate the sets 
of multiple and single preemptive tasks. MP32 will be 
empty, as there are no tasks with all their subtasks with 
priority higher than or equal to 8. SP,, can get elements 
from the tasks that were originally in MP3, and are not in 
MP,,, if their priority is first higher and then lower than 
P,,. Task zl satisfies these conditions and therefore the 
analysis for this subtask is: 

E32(l) = min( t>O I &l(l) + 

C min(l,[rtlTpl-rE,,(l)~~l])bd+ q2= t) 
=p E sp,2 

3.2.3. Analysis of T+ Task zs is already in canonical 



E32(l) = min( 1>0 1 &l(l) + 

min(l,[rl/ql- rE31(1)i2-11])C11 + cj2 = 1) 

E&l) = 34 + 1.1 + 12 = 47 5 50 = D3 

And now we have to check the second job, in the same 
way: 

&t(2) = min (t > 0 1 C,, + rti7jicI + 
c,, + c, + c,, = t) 

&t(2)= 10+2.6+ 10+20+8=60 

E&2) = min (t>O 1 E,,(2) + 

min(l,[ rql- rE3,(2)i7gI)C,, + c,, = 1) 

E,,(2)=60+04+ 12=72150+50=T3+D3 

We can see that task z3 meets its deadlines through all 
of the busy period, thanks to the high priority of its last 
subtask. If the priority of this subtask had not been so 
high, let us say it remained at 5, then the first job would 
have missed its deadline. 

3.2.4. Analysis of TV: The transformed canonical form for 
z4 is a task with two segments: hit of priority 2 and & of 
priority 3. 

Step 1. Task zq has its lower priority subtask at level 2, 
so we will classify the rest of the tasks accordingly. 

They are H tasks (type 1) and their subtasks fall 
into the multiple preemptive set. 

75: It is an HLH task (type 3), so its last segment has 
a potential blocking effect on ‘54, and its first seg- 
ment a one-time preemptive effect. 

Thus, we have tasks ‘5t. 72, and ‘53 in the set of multiply 
preemptive tasks (hPdt), ~st as a singly preemptive seg- 
ment and B, = C,, as the only blocking term. 

Step 2.The length of the busy period is: 

Lo = min ( I > 0 1 c,, + rfi2jic1 + rfjT2ic2 + 
r 1/2-3ic3 + C, 1 + r d7gc4 = f> 

L,= 10+5.6+2.20+4.20+2+ 1.33= 195 

Consequently, there is only one job of 24 in the busy 
period. 

Step 3. We will now obtain the completion time of this 
job, starting with the first segment of its canonical form: 

E;l(l) = min ( I >o I c,, + rri2-IicI + rfi7-2ic, + 
rfi7gc, +c~~+c,,+c,,=~) 

E&(1)=10+5.6+2.20+4.20+2+ lo+20 = 192 

For the completion time of the second segment of the 
canonical form, tasks ‘5t, 22, and 73 remain as multiple 
preemptive in the MP,, set. The analysis is: 

E&l) = min( t>O I Eit(l)+ 

[ rr~~,l-r~~,(lv~,i]c, + 
[ rllr,i-rE~,(l)/T,i]c,+ 
[rr~~~i-r~~,(l)~~~i]c3 + cd3 = f> 

Ei2(l) = 192 + 0 + 0 + 0 + 3 = 195 I200 = D, 

Task ‘s4 also meets its final deadline. 

3.2.5. Analysis of zs: The transformed canonical form for 
rS is a task with two segments: ~kt of priority 1 and 7i2 
of priority 6. 

Step 1. Task ‘55 has its lower priority subtask at level 1, 
which is the lowest priority in the system, so all the rest of 
thetasksareoftype 1. 

Step 2.The length of the busy period is: 

Lo = min ( t> 0 I kIicI + rdT,ic, + rri7-,ic, + 
rdT,ic, + rli7gc5 = f> 

Lg=10.6+4~20+8~20+2~33+1~24=390 

Consequently, there is only one job of ~~ in the busy 
period. 

Step 3. We will now obtain the completion time of this 
job. The analysis of the first segment of the canonical 
form is: 

~;t(l) = min( t>O I rfr,ic, +rfjT2k2 +rl/7-,ic, + 
rti2gc, + c,, + c52 = t) 

E;t(1)=5.6+2.20+4.20+ 1.33+2+ 12= 197 

For the analysis of the second segment rt remains as a 
multiply preemptive task, TV, is a singly preemptive seg- 
ment, and the rest of the tasks have no influence. There- 
fore: 

E;2(l)=min(t>0 IE;,(l)+[rf/T,l-rE;,(i)IT,l]c,+ 
min( I,[ rf/T41 - rE;1(4)i7-Jj>C,, + c,, = t ) 

Ei2(l)= 197+ 1.6+ l.lO+ 10=2231400=DS 

Task 75 also meets its final deadline, so the total task 
set is schedulable. 



-I Thwretical Analysis 
In this section, we present the theoretical underpin- 

nings that support the rules for schedulability analysis that 
were presented and used in Sections 2 and 3. 

4.1 Busy Period Analysis 
The focus of this section is finding the longest re- 

sponse time for a particular subtask TV. Once this has been 
found, we check whether it is less than the subtask dead- 
line D9 If so, then the subtask timing requirements will 
be met under alI task phasings. We define Pi to be 

min(Pij, 1 S j 2 m(i)). If we select any particular phasing 
of the n tasks and consider the resulting processor execu- 
tion sequence that evolves over time, we can partition this 
execution sequence into intervals of time of two types: 
~i_bUSy periods, as defined in Section 1, and instants of 
zi-idleness or intervals of Ti-idleness, during which tasks 
of priority less than Pi (or no task at all) are processed. 
The execution of Zi takes place solely within the zi-busy 
period segments. Consequently, when checking any 
timing requirements associated with zi, attention can be 
restricted to T!-busy periods. 

The definmon of a T,-busy period permits two such 

periods to be “back-to-back.” In this case, we consider the 
interval of lower priority processing or idleness to exist, 
but to be of zero length. One could require that the Ti-busy 
period have strictly positive intervals of lower priority 
processing (or idleness) on each side; however, this can 
lead to unnecessary deadline checking. 

We begin our schedulability analysis by looking only 
at the final subtask deadlines, D,(;), 1 5 i I n. We later 
discuss the deadlines for the earlier subtasks in the task 
set. 

4.2 Schedulability of the Canonical Form 
We next show that for purposes of checking its timing 

requirements, ‘li can be reduced to its canonical form. 
Consider any task Zj that has two consecutive subtasks ~~ 
and ‘5i.+t with strictly decreasing priorities Pij > Pij+t . We 

*Ci cons1 er a modified version of T;, zi, obtained by reducing 
the priority of zij to Pi = PG+l. We next show that the 

completion times of zi and of the subtasks 7ik, j+l I k I 
m(i), are unchanged in the modified version. 

Theorem 1: Suppose Zi has two consecutive subtasks 
2.. and zii+t 
I% 

of strictly decreasing priority Pii 1 PG+,. 
en for any task set phasing, the completion times of a 

task 7i and its subtasks tik, j+ 1 _< k I m(i) are unchanged if 
the priority of ~~ is reduced to Pi.+t, assuming all equal 
priority segments are executed in t h e same relative order. 

Proof: Let the execution sequence for the task set be 
given. For any single job of 0; (~3 let b,, (b;J and fik (f$) 
denote the start time and the completion time of 7ik (Q. 
Notice that the completion time of 7ik (Q is the activa- 
. . 

uon time ozik+t (T&+t). The activation time is the instant 
at which a particular task or subtask becomes ready to 

execute. Preemption may cause the task to start executing 
at an instant later than the activation; we call this the start 
time. Assume that the two versions of this job of 7i are 
activated at the same time. The execution sequences will 
then be identical up to fii_,. If we prove bG+t = b$+t, then 
the execution sequences will be identical after bO+l, and 
the result will follow, assuming that segments with equal 
priority are processed in the same order in the original and 
in the modified task set. For the original task set, the 
interval [fi,, , bti+l] consists of the execution of Z~ and 
other tasks of higher or equal priority than z~+~. At time 
bij+l, all work of equal or higher priority than ~~~~ will 
have just finished, and that subtask can begin. If we now 
reduce the priority of zii to that of z9+t, then exactly the 
same work will be done during this interval, although 
possibly in another order. At time b;i+l, all work of equal 
or higher priority than zii+t will also have just finished, 
and that subtask will begin execution. Consequendy, qii+, 
= bi,,, and the results hold. Moreover, since the achva- 
tion time of both versions is the same at the beginning of 
any Ti-busy period, this result holds for the entire busy 
period. 

The above theorem can be used to simplify the deter- 
mination of whether a particular task meets its final dead- 
line. If any consecutive subtasks are of strictly decreasing 
priority, we can reduce the priority of the first to that of 
the second and merge these two into a single segment. By 
applying this theorem to all such consecutive subtasks, we 
can reduce the task to canonical form, as defined in Sec- 
tion 2. 

4.3 Worst-Case Phasing 
Recall that Pi = min(P+ 1 5 j I m(i)) and that the 

execution sequence arising from any choice of task phas- 
ings will create an alternating sequence of ci-busy periods 
and periods of less than priority level Pi execution. We 
select a Ti-busy period and seek to determine the task 
phasings that will create the longest response time for 
subtask ztici). 

Theorem 2: The longest response time for Q,,(~) is 
found during a ~i_bUSy period initiated by ri. 

Proof: Suppose that 7i does not initiate a ~;-bUSy 
period, so there exists an interval of execution of length A 
> 0 prior to the fist initiation of ‘5i during which subtasks 
of priority level Pi or higher are continuously executed. If 
the initiation time of ‘5; were moved back by A, then 7tio 
could not start its execution any earlier than it did with its 
original initiation time, because all subtasks that were in- 
itiated during the period of length A would still need to be 
executed before 5;n(,, can begin execution. Thus, the re- 
sponse times for all jobs of Q,+, would be increased by A. 
Thus, the situation in which ~~ does not initiate its ~i_bUSy 

period may not give the worst-case response time. 

According to Theorem 1, one can reduce ‘ti to its trans- 

formed canonical form. The resulting task, T:, will consist 



of m(i) subtasks $l, . . . , I’m having priorities 
pi = it ’ . , . < emu,,. The transformed canonical form 
is useful for reasoning about the phasing of the rest of the 
tasks that creates the worst-case response. This phasing 
will depend on the priority levels of each task, compared 
to the priority of the first segment of the canonical form 
task, resulting in the classification of tasks by type that 
appeared in Section 2. 

Clearly, type 5 tasks (lower priority) cannot be ex- 
ecuted during a zi_buSy period, and therefore cannot in- 
fluence the response time of ri. We now seek the phasing 
of the 4 remaining task types that will maximize the 
longest response time for Zi during the busy period. 

4.3.1. Type 1 Tasks (H): The phasing of a type 1 task 
that will create the largest response time for any job of ri 
in a ~i_buSy period is to have such a task initiated at the 
same instant that ‘5; is initiated. To see this, suppose that 
the first job of such a task within the Ti-busy period is 
initiated at time I > 0. The cumulative processor demands 
from this task during [OJ] for every t E [0,6) monotoni- 
cally increase as I decreases towards 0. Consequently, 
these demands are maximized uniformly over time by 
choosing I = 0; this maximizes the completion time of all 
subtasks and all jobs of Zi in the busy period. Therefore, 
setting I = 0 for any type 1 task will lead to the longest 
response time of ‘5? 

4.3.2. Type 4 Tasks ((LH)+L’): All H segments in type 
4 tasks are preceded by an L segment that has priority 
lower than Pi. This means that, as tasks cannot suspend 
themselves, at most one of the H segments can be proc- 
essed during the ~i-busy period. Furthermore, only one 
segment of one of the type 4 tasks can be processed dur- 
ing this entire busy period. For Zi to initiate its own busy 
period, and for a segment of a type 4 task to execute 
during the busy period, the type 4 task must be executing 
one of its high-priority segments when 7i is initiated. It 
can finish that segment, but no further processing is pos- 
sible until the busy period ends. Thus, to determine the 
worst-case phasing for all type 4 tasks, we must consider 
all of the H segments of all of these tasks and select the 
one with the longest processing requirement. That seg- 
ment should be starting just as ri is initiated. The phasing 
of the other tasks is irrelevant. We let B’ denote the length 
of this longest segment. 

4.3.3. Type 2 ((HL)+) and Type 3 ((HL)+H) Tasks: 
Type 2 tasks are similar to type 4, in that only one seg- 
ment of the task can be processed during the busy period. 
The difference is that by phasing each type 2 task to be 
initiated at time 0, each will contribute a processing re- 
quirement that must be finished during the busy period, in 
contrast to the type 4 tasks, which collectively contribute 
only a single processing requirement. However, one of 
the type 2 tasks may have a long blocking segment, so 

long that it contributes more processing requirements than 
its initial segment would contribute; we have to determine 
if this is the case. 

Type 3 tasks are the most complicated to phase. Only 
part of a type 3 task can be processed during the Ti-busy 
period, but that part can be an inner H segment, the last H 
segment, the first H segment, or the last followed by the 
first H segment. It should be noticed, however, that the 
inner H and final H segments are blocking terms and, as 
tasks do not suspend themselves, at most one blocking 
term chosen from the type 2, 3, and 4 tasks can be ex- 
ecuted during the busy period. 

To determine which task, if any, of types 2 and 3 acts 
with a blocking segment, and therefore has to be phased 
with ri at one of its inner or final H segments, we can 
follow the next procedure. For each type 2 and type 3 
task, let W be the computational requirement of the initial 
H segment, U be the requirement of the longest inner H 
segment (if any) and V be the computation requirement of 
the final H segment (for type 3 tasks). If there is no inner 
blocking segment then set U=O, and if there is no final 
blocking segment then set V=O. 

Assume that each type 2 or type 3 task is initiated at 
the same time as task zi. Now consider the two other 
possible phasings: 

1. Initiating the longest inner H segment at the same time 
as ri will increase ri’s response times by U-W-B’, 
which is the marginal gain in total computational re- 
quirement from using this inner H segment. 

2. For type 3 tasks, initiating the final H segment at the 
same time as ri may increase ~;‘S response times by 
V-B’. For type 2 tasks this value is negative or zero 
(because V=O), and will be disregarded in the next 
steps. Note that this is a pessimistic estimate in that it 
assumes that the final segment serves as a blocking 
segment and the initial segment is a preempting seg- 
ment. However, the busy period may end before the 
initial segment can preempt. 

For each type 2 and type 3 task, we calculate the gain 
in latency as mau[ (U-W-B’),(V-B’) 1, and we choose the 
task with the largest value. If this value is negative, then 
all of these tasks should be initiated at the same time as zi, 
and the blocking term would be B;=B’. If the largest value 
is positive, then either the inner blocking or final blocking 
segment should be selected. If U-W 2 V, then the inner 
segment is chosen, and B,=U; in this case the initial H 
segment does not contribute a preemption effect. If U-W 
< V then the final segment is chosen, we set B,=V, and 
this task also remains as a singly preemptive task. All the 
other tasks should be initiated at the same time as ri. 

4.4 Other Subtask Deadlines 
The preceding analysis was carried out under the as- 

sumption that each task had only a single deadline at the 
end of its final subtask. We now wish to allow additional 



subtask deadlines, for example zii having a deadline Dii 
Clearly, one must check the deadlines of each of these 
subtasks throughout the Ti-busy period for the worst-case 
phasing developed earlier. However, this is not sufficient, 
because it will only ensure that jobs of subtasks after the 
first job in the busy period will meet their worst-case 
timing requirement. It does not guarantee the first job, 
because the phasing may not be worst for the fist job of 
the subtask. The reason for this is that the phasing devel- 
oped was based on the ~i_bUSy period in which only acti- 
vity of priority Pi or higher is executed, Pi being the mini- 
mum priority of all of the subtasks of 7;. However, the 
appropriate priority level against which to create a longest 
response time phasing for the fist job should be based 
upon a possibly higher level priority, Pi0 = min(Pjk, 1 5 k 

5 J). This is the same as thinking of a 4-busy period, 

where task 4 is a task composed of the fist j subtasks of 
Zi 

Theorem 3: The deadline, Dii, of ‘5ii will be met under 
all task phasings provided: 

1. The deadline of the fist job of 7;j is met under the 

worst-case phasing for a 4-busy period, and 

2. The deadline of all jobs of zG after the first are met 
during a zi_bUSy period with worst-case phasing for 
the minimum priority level of that busy period. 

Proof: For each subtask processed during the ri-busy 
period, we record the minimum priority of it and all sub- 
tasks of pi processed before it during this busy period. 
This minimum priority is defined as PJj) for the first job 
of each subtask of Zi and will be Pi for all subtasks of 
second and later jobs. The proof has two parts: finding the 
longest response time for jobs with minimum priority Pi 
and finding the longest response time for jobs with mini- 
mum priority Pi0 > Pi 

The case of deadlines for subtasks with minimum pri- 
ority pi follows easily from the reasoning given in Section 
4.3. Specifically, type 5 tasks can be ignored, type 1 tasks 
should be phased to maximize preemption as should any 
type 2 and type 3 tasks chosen for preemption. The largest 
blocking term derived from type 2,3, and 4 tasks will also 
be the same, because a subtask of priority level Pi prior to 
the subtask in question is being blocked to the maximum 
extent, and this maximum blocking time will also delay 
all subsequent subtasks of TV. Consequently, one needs 
only to check the deadlines of all subtasks during the 
~ibUSy period using the worst-case phasing derived in 
Section 4.3. 

Subtasks z;i of the first job of pi with P;o3 greater than 
Pi must be handled separately, because their critical in- 
stant phasing can be different. One must now derive the 
worst-case phasing described in Section 4.3 for type 1 - 4 
tasks, except the priority level Pi must be replaced by 
P1+). Consider first the subtask Zik with the largest k 

among those for which P,(k) > P;. We wish to determine 
the longest response time for its first job. To do this, we 

ignore any later subtasks by considering only the task rf, 
and reduce this truncated task to its canonical form. Note 
that the minimum priority is now Pi(k) and the other n-l 
tasks must be reclassified into the five types with respect 
to Pi(k). Once this is done, the arguments of Section 4.3 
can be used to derive the worst-case phasing, and the 
longest response time of Tik can be computed. One now 
picks the subtask Q, k’<k, with the next largest k’ among 
those with Pi(k? > min(Pt, . . . Jk). truncates pi there to 

obtain or, reduces it to canonical form, classifies the other 
tasks, and invokes the worst-case phasing to derive its 
worst-case response time. This process continues until all 
deadlines of first jobs have been checked. Thus conditions 
(1) and (2) are sufficient for all subtask deadlines to be 
met. 

4.5 Scheduling Bounds 
The example presented in Figure 1 was designed to 

show the added scheduling complexity that can occur 
when tasks are composed of subtasks that are executed at 
different fixed priority levels. This example also shows a 
scheduling benefit that can accrue from such a task struc- 
ture. Using ordinary rate monotonic scheduling, a task set 
with two tasks: C, = 4, T, = 10 and C, = 6, T2 = 14, is 
schedulable, but fully utilizes the processor with total util- 
ization of .829, essentially equal to the Liu and Layland 
bound of .828 for two tasks. However, the example in 
Section 1.2 modifies task two to have two subtasks of 
differing priority. This modified task set has a total utili- 
zation of .971 and is schedulable using a fixed priority 
algorithm. Thus, we see that we can increase the fixed 
priority schedulability of a task set by decomposing one 
or more of the tasks into subtasks that are executed at 
modified priority levels, and this can offer an increase in 
schedulability over that provided by the simple rate 
monotonic algorithm. 

This paper is restricted to methods by which the 
schedulability of complex tasks can be determined for any 
fixed priority scheduling algorithm. The question of find- 
ing least upper bounds on processor utilization which gen- 
eralize the Liu and Layland bounds will be addressed in a 
second paper. However, one simple and very interesting 
result for two tasks is that by dividing the one having the 
largest period into two subtasks, one with the lowest pri- 
ority and one with globally highest priority, 100% 
schedulability can be attained. Specifically, given any 
two periodic tasks with T, c T2 and utilizations U, + U, 
= 1, one should decompose 7Z into two subtasks with C,, 

= C, - (T1 - C,), C,, = T, - C,; these values are always 
non-negative. it has intermediate priority, 221 has lowest 
priority and 222 has highest priority. The resulting task set 
is schedulable, the C’s and T’s are arbitrary and the task 
set has 100% utilization. For example, the task set 



depicted in Figure 1 with C, increased to 8.4 has 100% 
utilization, yet it is schedulable if the second task is 
broken into two subtasks with C,,=2.4, C&=6, and 222 is 
given highest priority. Ordinary rate monotonic schedul- 
ing can meet the timing requirements only if C,16. 

5 Conclusions 
Even when application-level tasks are assigned fixed 

priorities, the actual priority structure of a realistic system 
can be much more complex. Characteristics of the operat- 
ing system and underlying hardware impact the priority 
structure and consequently the timing behavior of the sys- 
tem. For example, the task dispatching mechanism of the 
operating system, the interrupt architecture of the proces- 
sor, synchronization protocols, and intertask communica- 
tion mechanisms all contribute to the system’s actual 
timing behavior. In order to accurately predict system 
behavior, these effects should be included in the 
schedulability equations that model the system’s be- 
havior. 

This paper offers a generalized model of fixed priority 
scheduling that provides a theoretical framework for 
analyzing task sets scheduled through a fixed priority 
preemptive scheduler, where each task is comprised of a 
number of subtasks, each executing at a different priority 
level. For a set of tasks with a complex priority structure, 
we offer a method of analysis with an underlying theoret- 
ical foundation. For simple task sets, our contribution is a 
formalization of techniques currently being used [3]. Fur- 
thermore, the method shows that an increase in 
schedulability can be achieved by taking advantage of the 
high-priority execution of the final subtasks of a task. 

Another very important highlight of this method is that 
it provides some simple techniques for reasoning about 
time in systems with varying priorities. The fact that 
tasks can be reduced to a canonical form simplifies anal- 
ysis and allows one to easily reason about worst-case 
phasing. It also simplifies analysis by allowing the classi- 
fication of tasks according to the priority of their first 
subtask. We feel that in practical problems the algorithm 
described in Section 2 is easily implemented and runs 
efficiently; however, the worst case complexity of this 
algorithm is an open question. 

References 

1. Borger, M. W., Klein, M. H., and Veltre, R. A. “Real- 
Time Software Engineering in Ada: Observations and 
Guidelines”. Software Engineering Institute Technical 
Review (1988). 

2. Goodenough, J. B., and Sha, L. “The Priority Ceiling 
Protocol: A Method for Minimizing the Blocking of High 
Priority Ada Tasks”. Proceedings of the 2nd Interna- 
tional Workshop on Real-Time Ada Issues (June 1988). 

3. Klein, M. H., and Ralya, T. An Analysis of 
Input/Output Paradigms for Real-Time Systems. Tech. 
Rept. CMU/SEI-90-TR-19, Software Engineering Insti- 
tute, July 1990. 

4. Lehoczky, J. P., and Sha, L. “Performance of Real- 
Time Bus Scheduling Algorithms”. ACM Performance 
Evaluation Review, Special Issue 14, 1 (May, 1986). 

5. Lehoczky, J.P. “Fixed Priority Scheduling of Periodic 
Task Sets with Arbitrary Deadline”. IEEE Real-Time Sys- 
tem Symposium ( 1990). 

6. Leung, J. and Whitehead, J. “On Complexity of 
Fixed-Priority Scheduling of Periodic Real-Time Tasks”. 
Performance Evaluation 2,237-50 (1982). 

7. Liu, CL., and Layland, J.W. “Scheduling Algorithms 
for Multi-Programming in a Hard Real-Time 
Environment”. Journal of the Association for Computing 
Machinery Vol. 20, 1 (January 1973), pp. 46-61. 

8. Rajkumar, R., Sha, L., and Lehoczky, J.P. “Real-Time 
Synchronization Protocols for Multiprocessors”. IEEE 
Real-Time Systems Symposium (December 1988). 

9. Rajkumar, R. “Real-Time Synchronization Protocols 
for Shared Memory Multi-Processors”. Proceedings of 
The 10th International Conference on Distributed Com- 
puting (1990). 

10. Sha, L., Rajkumar, R., Lehoczky, J. and Ramam- 
ritham K. “Mode Change Protocols for Priority-Driven 
Preemptive Scheduling”. The Journal of Real-Time Sys- 
tems Vol. I (1989), pp. 243-264. 

11. Sha, L. and Goodenough, J. B. “Real-Time Schedul- 
ing Theory and Ada”. IEEE Computer Vol. 23, No. 4 
(April 1990). 

12. Sha, L., Rajkumar, R., and Lehoczky, J. P. “Real- 
Time Scheduling Support in Futurebus+“. IEEE Real- 
Time Systems Symposium (1990). 

13. Sha, L., Rajkumar, R., and Lehoczky, J. P. “Priority 
Inheritance Protocols: An Approach to Real-time 
Synchronization”. IEEE Transactions on Computers 
(Sept. 1990). 

14. Sha, L., Klein, M. H., and Goodenough, J. B. Rate 
Monotonic Analysis for Real-Time Systems. In 
Foundations of Real-Time Computing: Scheduling and 
Resource Management, van Tilborg, Andre and Koob, 
Gary M., Ed., Kluwer Academic Publishers, 1991, pp. 
129-155. 

15. Sprunt, B., Sha, L., and Lehoczky, J.P. “Aperiodic 
Task Scheduling for Hard Real-Time Systems”. The 
Journal of Real-Time Systems , 1 (1989), pp. 27-60. 


