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Abstract1. Off-line analysis techniques for hard real-time systems are all based
on the assumption that we can estimate the worst-case execution time of the dif-
ferent tasks executing in the system. In the traditional cyclic-executive schedul-
ers, execution time limits were enforced for each task by the scheduler.
Unfortunately, in concurrent hard real-time systems such as those using the task-
ing model defined in Ada, no bound on the execution time of tasks is enforced,
which may result in a system timing malfunction not detected by the analysis
techniques. In this paper we explore the implementation of execution time
clocks within the task scheduler, and we describe methods to detect execution
time overruns in the application, and to limit their effects. We also discuss the
use of execution time clocks to enhance the performance of sporadic server
schedulers implemented at the application level.
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1 Introduction

All the hard real-time analysis techniques used to get off-line guarantees on the
schedulability of the system, such as Rate Monotonic Analysis (RMA)[5][1], rely on
the estimation of the worst-case execution times of the different tasks and actions that
execute in the system. Although there are techniques to measure or calculate these
execution times [9][10], this is always a difficult task because of the unpredictability of
the different execution paths within the program. Today’s computer architectures with
superscalar processors [11] and caches [8] make the prediction of execution times even
more difficult, specially in the context of concurrent programs in which cache misses
are frequent after interrupt service routines or context switches. If the worst-case
execution time is underestimated, severe timing errors may occur, causing the system
to fail. These faults are not always detectable during testing, because they may only
happen under particularly improbable circumstances. Besides, an overrun of the
execution time of a particular task may not cause that task to miss its deadlines, but
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perhaps it will be a lower priority task the one missing them. In systems with a large
number of tasks, the problem of finding the task that overrun its execution time may be
practically intractable.

Traditional real time systems were built (and still are) using cyclic executive
schedulers [1]. In these systems, if a particular task or routine exceeded its budgeted
execution time, the system could detect the situation. Basically, whenever the minor
cycle interrupt came in, it could check whether the current action had completed or
not. If not, that meant an overrun. Unfortunately, in concurrent real-time systems built
with multitasking preemptive schedulers, there is no equivalent method to detect and
handle execution time overruns. This is the case for systems built using the Ada
tasking model and the associated Real-Time Annex.

As part of the development of the real-time extensions to POSIX [3], the standard for
open operating system interfaces, execution time clocks and timers have been
proposed as a new extension within the POSIX.1d standards project [2]. The purpose
of this extension is precisely to provide a way to measure the execution time of real-
time processes and threads, and to be able to detect and handle execution time
overruns. If the POSIX.1d standard is approved, real-time systems built using a
concurrent threads model will have the same capabilities that are available in
traditional systems based on the cyclic executive approach.

In this paper we present an implementation of the POSIX execution time clocks and
timers within an implementation of threads that follows the real-time POSIX standard
very closely. We have used the Florida State University (FSU) threads implementation
[7] because it is free software and the sources are available. The GNAT compilation
system uses threads to implement the Ada tasks, and it can work on top of FSU
threads. This means that we can access the thread/task execution time clocks and
timers from the Ada application. 

We will use execution time timers to detect execution time overruns. We have created a
software package to encapsulate the use of the low-level POSIX primitives that are
needed to handle the execution time timers and associated signals. Using this package,
periodic or aperiodic hard real-time tasks written in Ada 95 can detect and limit the
effects of execution time overruns in various ways, that will be described here. 

In this paper we also show how to improve the throughput of sporadic server
schedulers built at the application level [4]. If execution time clocks are not available,
the scheduler must assume that each response to an event consumed an amount of
execution capacity equal to the estimated worst-case execution time. By consuming
only the actual execution time used, if the variability in execution time is large a fair
amount of extra execution capacity is made available to schedule new events.

The paper is organized as follows. First, in Section 2 we present the POSIX model for
execution time clocks and timers and we give details about their implementation. In
Section 3 we present the design of the software package CPU_Time that provides
operations to detect and limit execution time overruns. We also show four schemes for



using this package from real-time application tasks. In section 4 we show how to take
advantage of execution time clocks to implement application-level sporadic servers. In
Section 5 we discuss implementation issues and we give performance metrics that help
in evaluating the overhead associated with the execution time clocks. Finally, Section 6
gives our conclusions.

2 Execution Time Clocks and Timers

2.1 The Proposed POSIX Model

The execution time clocks interface defined in the proposed standard POSIX.1d [2] is
based on the POSIX.1b [3] clocks and timers interface used for normal real time
clocks. The new interface creates two functions to access the execution time clock
identifier of the desired process or thread, respectively: clock_getcpuclockid() and
pthread_getcpuclockid(). In addition, it defines a new thread-creation attribute, called
cpu_clock_requirement, which allows the application to enable or disable the use of
the execution time clock of a thread, at the time of its creation. Once the thread is
created, this attribute cannot be modified. Therefore, if we want to use CPU-time
clocks for threads, we must set the cpu_clock_requirement attribute to the value
CLOCK_REQUIRED_FOR_THREAD. 

An execution time clock “id” can be used to read or set the time using the same
functions clock_gettime() and clock_settime() that are used for the standard
CLOCK_REALTIME clock, which measures real time. In addition, timers may be
created using either the CLOCK_REALTIME or a CPU-time clock as their time base. A
POSIX timer is a logical object that measures time based upon a specified time base.
The timer may be armed to expire when an absolute time is reached, or when a relative
interval elapses. When the expiration time has been reached, a signal is sent to the
process, to notify the timer expiration. The timer can be rearmed or disarmed at any
time. In addition, it is possible to program the timer so that it expires periodically, after
the first expiration.

If a timer is created using a CPU-time clock of a particular thread, and a relative
expiration time is given, it can be used to notify that a certain budget of execution time
has elapsed, for that thread. If the timer is armed each time a thread is activated, and
the relative expiration time is set to the thread’s estimated worst-case execution time
(plus some small amount to take into account the limited resolution and precision of
the CPU-time clock), then the timer will only expire if the thread suffers an execution
time overrun.

2.2 Implementation Details

The implementation of CPU time clocks and timers within the FSU threads requires on
the one hand modification of the data structure that defines each thread, the thread con-
trol block, and on the other hand modifying the scheduler code to include the neces-
sary steps to update each thread’s CPU-time clock and to operate the associated timers.



The information that must be added to the thread control block consists of:

• cpu_clock_requirement: a boolean that indicates whether the thread has a CPU-
time clock enabled; it is set at the time of thread creation using the value specified
in the thread attributes object used to create the thread.

• cpuclk: a structure with the information needed for the CPU time clock, including
the clock identifier, the time of the last activation of the thread, and the total CPU-
time consumed by that thread.

• associated_timers: an array with the information needed for each of the timers
associated with that thread’s CPU-time clock; this includes the timer identifier, a
boolean indicating whether the timer is in use, a boolean indicating whether the
timer is armed, and the timer’s expiration time.

The FSU scheduler does not operate on a periodic basis, as it is invoked only at the
points when the running task gets blocked or when a blocked task is activated. Thus,
the modification required to support CPU time clocks and timers consists of adding
code at the point where a new thread becomes the running thread. This code must: read
the real-time clock storing the value as the “current time”, perform the “actions for pre-
vious thread” if there was one running, and perform the “actions for new thread”:

• Actions for previous thread: update the value of the CPU time clock by adding the
difference between the current time and the activation time to the total CPU time
of that thread; in addition, disarm any associated timers that were armed and had
expired.

• Actions for new thread: store the current time as the activation time of the thread.
In addition, if there are armed timers associated with this thread, calculate the time
remaining until the nearest timer expiration as the difference between the
minimum of the expiration times of the associated timers and the total CPU time
of that thread. In this case, program an operating system timer to send a signal to
the process when the calculated remaining time elapses. If there are no armed
timers associated with the new thread, disarm the operating system timer. The
operating system timer that we have used in our implementation is the “virtual
time” timer that is accessible through the setitimer() OS function.

In addition, it is necessary to add the following actions at the point where a thread
becomes blocked and there are no more active threads in the ready queue: read the
real-time clock storing the value as the “current time”, perform the “actions for
previous thread”, and disarming the operating system timer.

The implementation described above only works when there is just one active process
in the system. It would be necessary to have a process cpu-time clock available (like
the one defined in POSIX.1d) to create an implementation that would work with
multiple processes.



3 Execution Time Limits

3.1 Package CPU_Time

We have created an Ada package to encapsulate the internal aspects of the use of the
POSIX interface for clocks and timers, including the use of signals to notify the
occurrence of timer expirations caused by an execution time overrun. This package,
called CPU_Time, contains the objects and operations that appear in Fig. 1.

The central part of package CPU_Time is a protected object called Monitor . This
protected object has visible operations for the application tasks to initialize or finalize
a CPU-time timer, to arm or disarm a timer, and to determine whether a timer has
expired or not (Time_Was_Exceeded). In addition, Monitor has a family of entries
(Time_Exceeded), one entry per timer, which can be used by application tasks to block
until an execution time overrun is detected or, as we will see later, as an event that
triggers the abortion of the instructions of a select statement with an abortable part.

Task Signal_Handler is a very high priority task that takes care of accepting all the
signals generated by the different timers, identifying the particular timer, and notifying
the Monitor protected object through operation Set_Time_Exceeded. This follows the
recommended way of handling signals in multithreaded POSIX applications, using
threads to accept signals with a sigwait() operation, instead of using signal handlers.
The advantage is that the thread executes in a well-defined context, with well-defined
scheduling behaviour, while a signal handler executes in a much more unspecified
context.

3.2 Usage Schemes for CPU-Time Timers

Using package CPU_Time, described above, we can design different usage schemes,
that depend on the particular needs of the application task whose execution time is
being monitored. We have identified four major schemes:

Fig. 1 Architecture of package CPU_Time
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• Handled: This is the case in which an execution time overrun is detected, but the
task is allowed to complete its execution. This is applicable to systems under
testing, or for tasks that have a high degree of criticality (and thus cannot be
stopped) or for which an occasional execution time overrun can be tolerated, but
needs to be reported.

In this scheme, the application task arms the execution-time timer at the beginning
of its regular execution (after initialization). At the end of its execution, it uses
function Time_Was_Exceeded to determine whether the execution time was
exceeded or not. If an overrun is detected, the error can be reported. Table 1 shows
the pseudocode of the application task under this scheme.

• Stopped: This is the case in which if an execution time overrun is detected, the
associated task execution is stopped, to allow lower priority tasks to execute
within their deadlines. The whole instance of the stopped task is aborted and is
never repeated. The task itself waits until its next activation and then proceeds
normally.

The implementation of this scheme consists of executing the regular instructions
of the task inside the abortable part of an asynchronous select statement. The event
that triggers abortion in this case is a call to the entry Time_Exceeded of
CPU_Time.Monitor. As a consequence, if an execution time overrun occurs, the
task instructions are aborted for that instance of the task execution. The
pseudocode of the application task under this scheme is shown in Table 2.

• Imprecise: This scheme corresponds to the case in which the task is designed
using the imprecise computation model [6], in which the task has a mandatory part
(generally short and for which it is easier to estimate a worst-case execution time),
and an optional part that refines the calculations made by the task. Since the worst-
case execution time of this optional part is usually more difficult to estimate, this
part will be aborted if an execution time overrun is detected. This allows us to use

Table 1. Periodic task under the “handled” scheme.

task body  Periodic_Handled is
Timer_Id : CPU_Time.Monitor_Id;

begin
CPU_Time.Monitor.Initialize(Timer_Id);
loop

CPU_Time.Monitor.Arm(Timer_Id, Worst_Case_Exec_Time);
Do Task’s Useful Work;
if  CPU_Time.Monitor.Time_Was_Exceeded(Timer_Id) then

Handle the Error;
end if ;
CPU_Time.Monitor.Disarm(Timer_Id);
delay until  Next_Start;

end loop ;
end  Periodic_Handled;



fixed priority scheduling in applications in which the optional part has an
unpredictable execution time. The technique is also valid for cases in which the
optional part continuously refines the quality of the results; we can let the optional
part run until it exhausts its execution time budget, and then use the last valid
result obtained. The implementation of this scheme consists of using the
“handled” approach for the mandatory part of the task, and the “stopped”
approach for the optional part. After the optional part, whether it is aborted or not,
another mandatory part may exist to cause the outputs of the task to be generated.
Table 3 shows the pseudocode of the application task under this scheme. 

task body  Periodic_Stopped is
Timer_Id : CPU_Time.Monitor_Id;

begin
CPU_Time.Monitor.Initialize(Timer_Id);
loop

CPU_Time.Monitor.Arm(Timer_Id, Worst_Case_Exec_Time);
select

CPU_Time.Monitor.Time_Exceeded(Timer_Id);
Handle the Error;

then abort
Do Task’s Useful Work;

end select ;
CPU_Time.Monitor.Disarm(Timer_Id);
delay until  Next_Start;

end loop ;
end  Periodic_Stopped;

Table 2. Application task under the “Stopped” scheme

task body  Periodic_Imprecise is
Timer_Id : CPU_Time.Monitor_Id;

begin
CPU_Time.Monitor.Initialize(Timer_Id);
loop

CPU_Time.Monitor.Arm(Timer_Id,Worst_Case_Exec_Time_I);
Do Task’s Mandatory Part I;
select

CPU_Time.Monitor.Time_Exceeded(Timer_Id);
then abort

Do Task’s Optional Part;
end select ;
CPU_Time.Monitor.Disarm(Timer_Id);
Mandatory Part II: Generate Task’s Outputs;
delay until  Next_Start;

end loop ;
end  Periodic_Imprecise;

Table 3. Application task under the “Imprecise” scheme



• Lowered: This scheme can be used to limit the effects of an execution time
overrun of a particular task, on lower priority tasks, when asynchronous select
statements are not allowed or are not available for an application task. In this case,
when the overrun is detected, the priority of the task is lowered to a background
level, lower than the priorities of all real-time tasks. When the task that overrun its
execution time has the opportunity to finish its execution, it can determine that it
overrun by invoking Time_Was_Exceeded, and then it can take a corrective action
or report the error; if it wishes so, it can raise its priority back to its normal level.

This scheme requires a different implementation of package CPU_Time. In the
new implementation, operation Initialize must store the task identifier of the
calling task. This identifier is then used to lower the priority of the task when an
execution time overrun is detected. This is done by the signal handler task (see
Fig. 1) by using the facilities of package Ada.Dynamic_Priorities.

4 Enhancing Sporadic Server Schedulers

In [4] we presented a number of application-level implementations of the sporadic
server scheduling algorithm. This algorithm is designed to schedule aperiodic
activities in hard real-time systems, while bounding the effects of these activities on
lower priority tasks. The sporadic server scheduler is based on keeping record of the
amounts of execution time consumed by the aperiodic activities, and allowing them to
consume only a certain execution time capacity during an interval of time called the
replenishment period. In the implementations presented in [4] we always assumed that
the consumed execution time for processing one event was equal to the worst-case
execution time. In addition, we would only allow the aperiodic task to run at its normal
priority level if the available execution capacity was at least equal to the worst-case
execution time. Now, we can take advantage of execution time clocks and timers to
enhance the performance of the sporadic server schedulers by eliminating both
restrictions, as we describe in the following two subsections. Both enhancements
increase the throughput of the sporadic server scheduler, while still preserving the
schedulability of lower priority tasks in the system.

4.1 Accounting for the Execution Time Spent

In this first enhancement, we account for the actual execution time spent, instead of
assuming that the worst-case execution time was spent. This makes sense in the
sporadic server schedulers that allow multiple events per replenishment period. The
sporadic server implementations do not need to change; we only need to change the
application task to use a CPU-time clock to measure the execution time spent during
the response to each event, and to pass the actual time spent to the sporadic server
scheduler, as a parameter to the Schedule_Next operation. In tasks that have a high
variability of their execution time, this approach allows the scheduler to save execution
capacity for processing future events. The pseudocode of the application task for this
case is shown in Table 4.



4.2 Detecting When the Execution Capacity Gets Exhausted

In this second enhancement, we create one execution time timer per sporadic server
scheduler, to measure the consumption of execution time, and to detect the case in
which the sporadic server runs out of execution capacity. This is particularly useful in
the schedulers using a replenishment manager like the background manager, that
allows the application task to run at a background priority level when it does not have
enough capacity available. Each time the aperiodic task is activated, we arm the timer
with an expiration time equal to the available execution capacity. The aperiodic task is
allowed to execute at its normal priority level. If the application task consumes all of
the available capacity, the execution time timer expires, sending the associated signal.
A signal handler task shared by all the schedulers, similar to the one shown in Fig. 1,
accepts this signal and invokes the sporadic server protected manager to lower the
priority of the application task, and schedule the corresponding replenishment
operation. The advantage of using the execution time timer in this case is that we can
use all of the available capacity; before, we could only use it if at the activation of the
task the available capacity was larger than or equal to the worst-case execution time of
the task.

Fig. 2 shows the basic architecture of the new replenishment manager called CPU-time
manager. This manager is derived from the Queued manager and has the same
attributes as the Background manager, except for a different Protected_Manager and
with the addition of a new attribute to hold the CPU-time timer. The new CPU-time
manager can be used by the Simple, High_Priority, and High_Priority_Polled sporadic
server schedulers, giving way to three new implementations.

task body  Application_Task is
SS : Sporadic_Server.Scheduler;
Last_Time, Now : POSIX.Timespec;

begin
Sporadic_Server.Initialize(SS);
Last_Time:=POSIX_Timers.Get_Time(pthread_getcpuclockid);
loop

Sporadic_Server.Prepare_To_Wait(SS);
Wait for Event;
Sporadic_Server.Prepare_To_Execute(SS);
Do Task’s Useful Work;
Now:=POSIX_Timers.Get_Time(Thread_CPUtime_Clock);
Sporadic_Server.Schedule_Next

(SS, Spent=> Now-Last_Time);
Last_Time:=Now;

end loop ;
end  Application_Task;

Table 4. Aperiodic task under a sporadic server scheduler



5 Performance Considerations

The use of execution time clocks affects the performance of the system because it adds
a fixed overhead to each context switch. There are two different classes of thread
scheduler implementations that must be considered:

• Ticker implementation. In this implementation a periodic signal or interrupt
activates the task scheduler. A simple way to count execution time in this case is to
have an integer value counter for each thread and, each time the tick interrupt
comes in, increment the counter associated to the task that was running. The
resolution of such clock is one tick, but it is relatively cheap, since it only involves
an addition operation during each tick.

• Alarm clock implementation. In this implementation, each task is allowed to run
until it gives up the processor. A time-ordered delay queue is used to store the next
activation time for timed tasks that are currently blocked. An alarm clock is set to
invoke the task scheduler when the first task of the delay queue needs to be
activated. In this case, the scheduler is not invoked periodically, and thus at each
invocation it must read a hardware clock to determine how much time has elapsed
since the last scheduling operation. This time must be added to the execution time
of the task that was just running. Execution time clocks may be expensive in this
implementation, depending on how much time it takes to read the hardware clock.

The FSU threads that we have used in our implementation of CPU-time clocks and
timers follow the “alarm clock” model, and thus at each context switch we need to read
the real-time clock and to program an operating system timer to take care of CPU-time

Fig. 2. Basic architecture of the new implementations using the CPU-time manager
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timer expirations. We have measured the overhead associated with each context switch
by creating a task that reads the clock continuously, and a second higher priority task
that preempts the former task periodically, and finishes immediately. In this way, by
measuring the difference between the two clock readings before and after the
preemption from the higher priority task, we can determine the time required to
perform two context switches (and thus dividing by two, we obtain the time for one
context switch). The results of the time required for one context switch are shown in
Table 5, in microseconds, for three experiments with different numbers of tasks. We
can see that the overhead is between 13 to 19 microseconds per context switch, which
represents an increase between 10% and 17%. This increase should be acceptable for
most real-time applications, since tasks usually run at frequencies smaller than one
kilohertz.

Table 6 shows the results of average execution time measured for the different POSIX
CPU-time clock services that we have implemented, as well as the times for the
operations of package CPU_Time. All results have been obtained in a Pentium-133
CPU running under Linux.

6 Conclusion

We have discussed the importance of enforcing the worst-case execution estimates in
hard real-time systems. In an application designed under a concurrent tasking
architecture, such as in the Ada tasking model, detecting and limiting execution time
overruns may be achieved by using the proposed POSIX model for execution time
clocks and timers. In this paper we describe how to implement these CPU-time clocks
in the context of a POSIX threads implementation.

Table 5. Comparison of context switch times (µs)

Experiment FSU
Threads

FSU threads with CPU-
time Clocks

FSU with CPU-time 
Clocks and Timers

Cs Cs ∆ %∆ Cs ∆ %∆

2 tasks 110 128 18 14% 129 19 17%

2+10 tasks (low priority) 117 130 13 10% 132 15 13%

2+10 tasks (high priority) 115 130 15 12% 131 16 14%

Table 6. Execution times of the different operations (µs)

Posix_Timers µs CPU_Time µs

Get_Time(pthread_getcpuclockid) 4 Monitor.Arm 62

Get_Time(CLOCK_REALTIME) 4 Monitor.Disarm 55

Arm_Timer 12 Monitor.Time_Was_Exceeded 12

Disarm_Timer 12 Monitor.Set_Time_Exceeded 35

Monitor.Time_Exceeded 84



We have also described an implementation scheme that allows application tasks to use
the POSIX execution time clocks to detect execution time overruns and limit their
effects. We have also described how to take advantage of execution time clocks to
enhance the behaviour of application-level sporadic servers. As a guide to users of
these clocks, we have discussed some performance considerations that allow the
application developer to determine the amount of overhead that he or she will suffer by
using execution time clocks, for a particular application.
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