
1

Abstract: A proposal for adding execution time clocks and
timers to the Ada language through a new package called
Ada.Real_Time.Execution_time is being considered
by the ARG. In that proposal, execution time budgets can be
managed through protected objects that provide an entry to
detect execution time budget overruns. With that interface, a
given task can only wait for one budget overrun, thus mak-
ing it impossible for a single task to manage the execution-
time budgets of several other tasks. In this paper we propose
an extension to the Execution_Time package that would
allow a monitoring task to manage multiple budgets.

Keywords: Real-Time Systems, Execution time budgets,
CPU time, Ada 95.

1. Introduction1

In hard real-time systems it is essential to monitor the
execution times of all tasks and detect situations in which
the estimated worst-case execution time (WCET) is
exceeded. This detection was usually available in systems
scheduled with cyclic executives, because the periodic
nature of its cycle allowed checking that all initiated work
had been completed at each cycle. In event-driven concur-
rent systems the same capability should be available, and
this can be accomplished with execution time clocks and
timers.

Moreover, many flexible real-time scheduling algorithms
require the capability to measure execution time and be able
to perform scheduling actions when a certain amount of
execution time has been consumed (for example, sporadic
servers in fixed priority systems, or the constant bandwidth
server in EDF-scheduled systems). Support for execution
time clocks and timers will ease implementation of such
flexible scheduling algorithms in Ada 95 and is being con-

sidered by the Ada Rapporteur Group (ARG) for inclusion
in the next revision of the language standard [6].

The proposed approach lacks the ability to manage sev-
eral execution-time budgets from a single task. We consider
that this functionality is important to reduce the amount of
tasks dedicated to monitoring activities, and to ease cooper-
ative management. Consequently, in this paper we propose
a simple extension to the Execution_Time package, add-
ing a new protected object that can store a set of execution
time timers, and with an operation to simultaneously wait
for the expiration of any of them.

In Section 2 of the paper we show an overview of the
current proposal. Section 3 describes our proposed exten-
sion; an example of its usefulness is shown in Section 4.
Section 5 discusses some implementation issues. In Section
6 we propose adding a cancellation functionality to the tim-
ers defined in the current proposal. Finally, Section 7 con-
tains some conclusions.

2. Overview of the Execution-Time package
This is a summary of the most relevant parts of the pro-

posed Ada.Real_Time.Execution_Time package in [6].

with Ada.Task_Identification;
package Ada.Real_Time.Execution_Time is

 type CPU_Time is private;

 function Clock
 (T : Ada.Task_Identification.Task_ID
 := Ada.Task_Identification.Current_Task)
 return CPU_Time;

 -- Arithmetic and relations functions for
 -- managing CPU_Time and Time_Span omitted

 -- Split and Time_Of conversion operations
 -- omitted

 protected type Timer
 (T : access Ada.Task_Identification.Task_ID)
 is

1. This work has been funded by the Comisión Interministerial de
Ciencia y Tecnología of the Spanish Government under grant TIC 2002-
04123-C03 and by the Commission of the European Communities under
contract IST-2001-34140 (FIRST project)

Managing Multiple Execution-Time Timers from a Single Task

Michael González Harbour and Mario Aldea Rivas

Departamento de Electrónica y Computadores
Universidad de Cantabria
39005-Santander, SPAIN

{mgh, aldeam}@unican.es

2

 procedure Arm (Interval : Time_Span);
 procedure Arm (Abs_Time : CPU_Time);
 procedure Disarm;
 entry Timer_Expired;
 function Timer_Has_Expired return Boolean;
 function Time_Remaining return Time_Span;
 private
 ... -- not specified by the language
 end Timer;

 Timer_Error : exception;
 -- may be raised by Timer_Expired,
 -- Timer_Has_Expired, and Time_Remaining

 Timer_Resource_Error : exception;
 -- may be raised on the declaration of a
 -- Timer or calls to either Arm

private
 ... -- not specified by the language
end Ada.Real_Time.Execution_Time;

The CPU_Time type represents execution time of a given
task as measured approximately from its activation. The
Clock function returns the execution time of the given
task. Execution time budgets are managed through objects
of the protected type Timer, which represent software tim-
ers that are able to detect an execution time overrun, speci-
fied either in a relative or absolute way, for a given task.

A timer can be in one of two states: armed or disarmed.
It is created in association with a given task in the disarmed
state, and it can be armed later through one of the Arm pro-
tected operations. When armed, the timer starts counting
execution time until it expires. Expiration can be detected
asynchronously through the Timer_Has_Expired opera-
tion. It can also be detected synchronously, by waiting
upon the Timer_Expired entry call. Among other usage
schemes, this entry call may be used in an asynchronous
transfer of control to abort the execution of some piece of
code that overrun its budget. References [3] and [6] include
some usage examples for this kind of timer.

In addition to the described proposal, some time ago an
implementation of execution-time clocks and timers that
was integrated into the language was presented [5]. In that
proposal, CPU_Time was an Ada time type and could be
used in delay statements. The ARG has chosen the package
approach presented in this section because it is easier to
implement as it does not require changes to the compiler.

One major difference between the two proposals is that
in the proposal integrated into the language it was possible
for a given task to manage the budgets of several other
tasks, by using a select statement with several delay alter-
natives:

loop
 select
 accept Set_Task_Budget ...
 or
 delay until Task_1_Budget;
 -- lower task 1 priority
 or
 delay until Task_2_Budget;
 -- lower task 3 priority
 or
 delay until Task_3_Budget;
 -- lower task 3 priority
 end select;
 -- recalculate budgets
end loop;

This functionality is not possible with the original package
proposal, because a given task cannot wait upon several
Timer_Expired entry calls simultaneously. In the next
section we show an extension to this package that would
make this functionality possible.

3. Extension of the Execution-Time Package
To allow a given task to manage multiple budgets it is

necessary that there is an operation that allows the task to
simultaneously wait for several timer expirations. This wait
semantics is better described through a protected entry, that
allows the calling task to use it in conjunction with the dif-
ferent select statements (i.e, conditional entry call, timed
call, or asynchronous transfer of control).

Consequently, we propose adding the following type,
protected type, and exception to the
Ada.Real_Time.Execution_Time package:

 type Timer_Ref is access all Timer;

 protected type Set_Of_Timers (Max : Integer)
 is
 procedure Add (T : in Timer_Ref);
 procedure Delete (T : in Timer_Ref);
 entry Timer_Expired
 (Cancelled : out Boolean;
 Reason : out Integer;
 T : out Timer_Ref);
 procedure Cancel (Reason : in Integer);
 private
 ... -- not defined by the language
 end Set_Of_Timers;

 Max_Timers_Error : exception;
 -- Raised by Add if total number exceeds Max

The protected type Set_Of_Timers internally stores a
set of references to protected objects of the Timer type. It
has a discriminant, Max, that sets the maximum number of
different timers that may be added to the set. The set is
managed through the Add and Delete operations. Adding
a timer already belonging to the set or deleting a non

3

included one have no effects, as is usual in set data struc-
tures. Add may fail raising Max_Timers_Error if an
attempt is made to exceed the maximum number Max. A
given timer may be added to different sets.

The protected object has an internal cancellation state
and associated reason. Initially the cancellation state is not
set; it may be set later by calling the Cancel operation,
which registers the integer reason given as an argument.

Once the set of timers is established, it may be used
through the Timer_Expired entry. This entry will sus-
pend the calling task if the cancellation state is not set and
if all of the calls to the Timer_Expired entry of the differ-
ent timers attached to the set that are in the armed state
would have blocked. If the cancellation state is set, the
entry is allowed to complete and, in this case, it resets the
cancellation state, and returns True in the Cancelled
parameter and the reason registered by the last Cancel
operation in the Reason parameter. Otherwise, if the can-
cellation state is not set and one or more of the armed tim-
ers attached to the sets has expired the entry call is allowed
to complete, returning False in the Cancelled parameter
and a reference to one of the timers that had expired; in this
case, the Reason parameter is unspecified. If the set con-
tains no timers the Timer_Expired entry can only com-
plete when the cancellation state is set.

4. Example
The following code is an example of the structure of a

monitoring task that lowers the priority of any of its moni-
tored tasks that exceeds its execution time budget. First we
define some constants and static objects, including the set
of timers:

Max : constant Integer:=5;
Reason_Attach : constant Integer:=0;
Reason_Set_Budget : constant Integer:=1;

My_T : array (1..Max) of aliased Task_Id;
T_Set : Set_Of_Timers(Max);

The task specification contains two entries:
Attach_Task is used to attach a new task to the set.
Set_Budget is used to set the budget timer for a specific
task in the set:

task Budget_Monitor is
 entry Attach_Task
 (T : Task_Id; Id : out Integer);
 entry Set_Budget
 (Id : Integer; Budget : Time_Span);
end Budget_Monitor;

The task’s body invokes the Timer_Expired operation
of the set of timers. Cancellation is used to report the bud-

get monitor about a new task that requires attachment, or
about a task that wants to set its execution time budget. The
Reason_Attach and Reason_Set_Budget constants are
respectively used for those purposes. After cancellation,
the task accepts the appropriate call. If no cancellation had
occurred, then one of the monitored tasks has overrun its
budget, and in that case the monitor will lower its priority
to a background level and report the error; of course, other
appropriate actions could be taken at this point.

task body Budget_Monitor is
 The_Timer : array (1..Max) of Timer_Ref;
 Next_Budget : Execution_Time.CPU_Time;
 Num : Integer range 0..Max:=0;
 Canceled : Boolean;
 Expired : Timer_Ref;
 Reason : Integer;
begin
 loop
 T_Set.Timer_Expired
 (Canceled,Reason,Expired);
 if Canceled then
 case Reason is
 when Reason_Attach =>
 accept Attach_task
 (T : Task_Id; Id : out Integer)
 do
 Num:=Num+1;
 My_T(Num):=T;
 The_Timer(Num):= new
 Execution_Time.Timer
 (My_T(Num)'Access);
 T_Set.Add(The_Timer(Num));
 Id:=Num;
 end Attach_Task;
 when Reason_Set_Budget =>
 accept Set_Budget
 (Id : Integer;
 Budget : Time_Span)
 do
 Next_Budget:=
 Execution_Time.Clock
 (My_T(Id))+Budget;
 The_Timer(Id).Arm(Next_Budget);
 end Set_Budget;
 when others => null;
 end case;
 else
 -- lower the priority
 Set_Priority(System.Priority'First,
 Expired.T.all);
 Report_Error;
 end if;
 end loop;
end Budget_Monitor;

The code of a task using the budget monitor is shown
below:

4

task body Work is
 Budget : Time_Span:=<value>;
 Id : Integer;
 Next_Period : Real_Time.Time;
begin
 -- attach the task to the budget monitor
 T_Set.Cancel(Reason_Attach);
 Budget_Monitor.Attach_Task(Work'Identity,Id);
 loop
 -- set the budget
 T_Set.Cancel(Reason_Set_Budget);
 Budget_Monitor.Set_Budget(Id,Budget);
 -- do normal work
 Do_Useful_Work;
 Update_Next_Period;
 delay until Next_Period;
 end loop;
end Work;

We can see that after attaching itself to the budget moni-
tor, the task enters a loop setting its budget, and later doing
some useful work and waiting for its next period.

5. Implementation issues
The implementation of the set of timers and the multiple

wait operation is relatively simple if POSIX execution time
clocks and timers [4] are used as the underlying services
for implementing the Execution_Time package. In
POSIX, timers generate a signal when they expire; it is
possible to simultaneously wait for a set of signals, through
one of the sigwait functions. Cancellation is easy if an
additional signal is used, or if one of the signals reserved
for the timers is used with information attached to repre-
sent cancellation. A POSIX implementation of execution
time clocks and timers is available in our free software ker-
nel MaRTE OS [1][2].

In bare-machine implementations of Execution_Time,
it is easy to connect the expiration of a timer with the
change in the state of the barrier guarding the
Timer_Expired entry.

6. Adding a Cancellation Entry to the
Timers

We have seen that the Cancel operation is important to
be able to interrupt the wait operation on the timers, for
example to report a change in the state or the working con-
ditions of the budget monitor. In fact, the same functional-
ity would be interesting for a single timer, for example if
the monitored task is aborted.

In this case we consider that the Reason parameter is
not so useful as for the Set_Of_Timers protected objects,
as the number of different reasons for interrupting a timer
wait is probably not as high as in a multi-purpose task that
is managing several budgets.

As a consequence, we propose adding the following
entry and procedure to the Timer protected object (in addi-
tion to the existing ones):

 entry Timer_Expired
 (Cancelled : out Boolean);
 procedure Cancel;

The new Timer_Expired entry would be allowed to
complete when the cancellation state of the object was set,
in addition to the conditions defined by the parameterless
Timer_Expired entry. It would return True in the Can-
celled parameter if it had completed because of cancella-
tion, and False otherwise. The call would reset the
cancellation state. The Cancel operation would set the
cancellation state.

7. Conclusion
The ability to manage several execution-time budgets

from a single task is important to reduce the amount of
tasks dedicated to monitoring activities, and to ease coop-
erative management. To include this functionality, in this
paper we have proposed a simple extension to the
Execution_Time package that is under consideration for
the next revision of the Ada Language. The extension con-
sists of a new protected type whose objects can store sets of
execution-time timers. The set has an operation to simulta-
neously wait for one of many execution-time timers to
expire. We have shown the applicability of this interface
through a simple example.

References
[1] Aldea Rivas M. and González Harbour M. “MaRTE OS:

Minimal Real-Time Operating System for Embedded
Applications” Departamento de Electrónica y Computadores.
Universidad de Cantabria. http://marte.unican.es/

[2] Aldea Rivas M. and González Harbour M. “MaRTE OS: An
Ada Kernel for Real-Time Embedded Applications”.
Proceedings of the International Conference on Reliable
Software Technologies, Ada-Europe-2001, Leuven, Belgium,
Lecture Notes in Computer Science, LNCS 2043, May, 2001,
ISBN:3-540-42123-8, pp. 305,316.

[3] González-Harbour M., Aldea Rivas M., Gutiérrez García J.J.,
Palencia Gutiérrez J.C. “Implementing and using Execution-
Time Clocks in Ada Hard Real-Time Applications”.
International Conference on Reliable Software Technologies,
Ada-Europa’98, Uppsala, Sweden, in Lecture Notes in
Computer Science No. 1411, June, 1998, ISBN:3-540-64563-
5, pp. 91,101.

[4] IEEE Std. 1003.1:2001, Information Technology —Portable
Operating System Interface (POSIX).

[5] J. Miranda and M. González Harbour. “A Proposal to
Integrate the POSIX Execution-Time Clocks into Ada 95”.

5

Proceedings of the International Conference on Reliable
Software Technologies, Ada-Europe-2003, Tolouse, France,
in Lecture Notes in Computer Science, LNCS 2655, June,
2003, ISBN 3-540-40376-0.

[6] AI95-00307/03 “Execution-time Clocks”, February 2003.

