
Abstract1

This paper describes a model for representing the temporal
and logical elements of real-time applications, called
MAST. This model allows a very rich description of the sys-
tem, including the effects of event or message-based syn-
chronization, multiprocessor and distributed architectures
as well as shared resource synchronization. The model is
directly obtainable from a description of the system design
using a UML tool. A system representation using this model
is analyzable through a set of tools that has been developed
within the MAST suite, including worst-case schedulability
analysis for hard timing requirements, and discrete-event
simulation for soft timing requirements. Although the cur-
rent model only includes fixed priority systems, it is con-
ceived as an open model and is easily extensible to accom-
modate other kinds of systems.

1. Introduction
In this paper we describe the basic characteristics of

MAST, a Modeling and Analysis Suite for Real-Time
Applications. MAST is still under development and its
main goal is to provide an open source set of tools that
enables engineers developing real-time applications to
check the timing behavior of their application, including
schedulability analysis for checking hard timing require-
ments.

The schedulability analysis techniques have evolved a
lot in the past decade, and in particular for fixed priority
scheduled systems, such as those built with commercial
operating systems or commercial languages. Although
fixed priority schedulability analysis techniques were ini-
tially developed for single processor systems [7][6], today
a full set of techniques exists for distributed real-time sys-
tems [9][10][17].

A model for describing real-time applications should
represent not only the characteristics of the architecture of
the distributed system, but also the hard real-time require-
ments that are imposed. Most of the existing analysis tech-
niques for the scheduling of distributed hard real-time
systems are based on a model that we call linear, which is
representative of a large number of systems. In the linear
model each task is activated by the arrival of a single event
or message, and each message is sent by a single task.
However, this linear model does not allow complex interac-
tions among the responses to different event sequences,
except for the shared resource synchronization, and so, the
analysis is not applicable to systems in which these interac-
tions exist.

Many real-time analysis techniques take into account
complex synchronization and interactions between event
sequences, but for scheduling mechanisms different than
fixed priorities. For instance [2] is applied in statically
scheduled systems, and [8] refers to the dynamic schedul-
ing mechanisms used in the Spring kernel. The real-time
model described in [14] is rather similar to the MAST
model, but focuses mainly on the resource and data usage
rather than on the relationships among the different pro-
cesses or tasks in the system; besides, the schedulability
analysis techniques used in that paper are not focused on
priority scheduling.

The MAST model described in this paper uses a very
rich representation of the real time system. It is an event-
driven model in which complex dependence patterns
among the different tasks can be established [4]. For exam-
ple, tasks may be activated with the arrival of several
events, or may generate several events at their output. This
makes it ideal for analyzing real-time systems that have
been designed using object-oriented methodologies, and
event-driven architectures. Indeed tools have been devel-
oped for automatically obtaining a MAST model descrip-
tion of a real-time application from a standard UML1. This work has been funded by the Comisión Interministerial de

Ciencia y Tecnología of the Spanish Government under grant TIC99-
1043-C03-03

MAST: Modeling and Analysis Suite for Real Time Applications

By: M. González Harbour, J.J. Gutiérrez García, J.C. Palencia Gutiérrez, and J.M. Drake Moyano
Departamento de Electrónica y Computadores, Universidad de Cantabria

39005 - Santander, SPAIN
{mgh, gutierjj, palencij, drakej}@unican.es

description to which a real-time view of the system has
been added.

The MAST suite includes schedulability analysis tools
that use the latest offset-based techniques [9][10] to
enhance the results of the analysis. These techniques are
much less pessimistic than previous schedulability analysis
techniques [17], which are also included in the toolset for
completeness. The toolset also includes tools for assigning
optimized priorities, and for the simulation of the timing
behavior of the system.

The MAST toolset is open source and is fully extensible.
That means that other research teams may provide
enhancements. The first versions are intended for fixed pri-
ority systems, but dynamically scheduled systems may be
added in the future.

The paper is organized as follows. In Section 2 we dis-
cuss the main features of the MAST suite. In Section 3 the
most relevant aspects of the analysis tools are reviewed,
and the current status of the project is described. In Section
4 we describe the general structure and the main elements
of the MAST model for representing real-time applica-
tions. Section 5 contains an example of the modeling and
analysis of a simple application. Finally, Section 6 gives
our conclusions and discusses further work.

2. Main Features of MAST
MAST is an open model for describing event-driven real

time systems, that is designed to be extensible so that it can
support new characteristics or viewpoints of the system. It
is designed to handle most real-time systems built using
commercial standard operating systems and languages (i.e.,
POSIX and Ada). This implies fixed priority scheduled
systems, but the system will be extended in the future to
other scheduling algorithms, such as those with dynamic
priorities. Within fixed priorities, different scheduling strat-

egies are allowed, including preemptive and non preemp-
tive scheduling, interrupt service routines, sporadic server
scheduling, and periodic polling servers.

The MAST model is designed to handle both single-pro-
cessor as well as multiprocessor or distributed systems. In
both cases, emphasis is placed on describing event-driven
systems in which each task may conditionally generate
multiple events at its completion. A task may be activated
by a conditional combination of one or more events. The
external events arriving at the system can be of different
kinds: periodic, unbounded aperiodic, sporadic, bursty, or
singular (arriving only once).

The system model facilitates the independent descrip-
tion of overhead parameters such as processor overheads
(including the overheads of the timing services), network
overheads, and network driver overheads. This frees us
from the need to include all these overheads in the actual
application model, thus simplifying it and eliminating a lot
of redundancy.

The model supports both hard and soft timing require-
ments, because it is very common to find systems with both
kinds of requirements. For hard real-time requirements we
consider deadlines and maximum output jitter require-
ments. Among the soft real-time requirements, MAST pro-
vides soft deadlines and maximum deadline miss ratios.

3. The MAST Tools
The MAST suite will contain the tools described in Fig-

ure 1. The MAST system description is specified through
an ASCII description that serves as the input to the analysis
tools. A parser converts the ASCII description of the sys-
tem into a data structure that is used by the tools. The
parser has been built using ayacc [18], which is an Ada-
language equivalent of the popular yacc parser generator.

M AST system
description

Graphical
Editor

Analysis and
simulation

Results
Description

Graphic
display of

results

Standard UML Model +
Real-Time View

tools

Figure 1. MAST toolset environment

This gives us a high degree of flexibility for adding new
capabilities to the description language.

The data structure generated by the parser is built using
object-oriented techniques, to make it easily extensible.
The analysis tools operate on this data structure and are
capable of using different kinds of worst-case schedulabil-
ity analysis techniques to produce a set of results with the
timing behavior of the system. Among the techniques pro-
vided we can mention the varying priorities analysis for
event-driven single processor systems [6], and the holistic
[17] and offset-based techniques [9][10] for multiprocessor
or distributed systems. All the techniques used include
analysis capabilities for arbitrary deadlines (such as pre-
and post-period deadlines), handling of input and output
jitter, periodic, sporadic and aperiodic events, and different
fixed-priority compatible scheduling policies, such as pre-
emptible and non preemptible, polling servers, sporadic
servers, etc.

Blocking times relative to the use of shared resources
and non-preemptible sections are calculated automatically.
The analysis tool provides the user with capabilities to
automatically calculate a suitable optimized set of priori-
ties [3] and priority ceilings (for shared resources), that
makes the system schedulable. It also allows checking the
possibility of deadlocks.

The timing results of the worst-case analysis tools can
be compared against the timing requirements to determine
the schedulability. The toolset also includes discrete-event
simulation tools that are able to simulate the behavior of
the system to check soft timing requirements.

Using a UML tool, it is possible to describe a real-time
view of the system [12] by adding the appropriate classes
and objects that are necessary to describe the real-time
behavior of the system. The application design is linked
with the real-time view to get a full description of the sys-
tem and its timing behavior and requirements. An auto-
matic tool [1] has been developed within the Rose UML
CASE tool [11]; it extracts the real-time description of the
system from the UML description, generating the MAST
description file. No special framework is needed with this
approach, but the designer must incorporate the real-time
view into the UML description. This methodology follows
the approach that is being standardized as a real-time
extension to UML [13].

Some of the tools that appear in Figure 1 are not yet
available. For example, a graphical editor will be created to
generate the system using the MAST ASCII description.
This allows users not interested in following the UML
approach to use the MAST analysis tools. A graphical dis-
play of results will also be available in the future.

The implementation language of the parser and analysis
tools is Ada, which we consider best due to its full support
of object-oriented features and its built-in constructs that
facilitate producing reliable software.

4. The MAST Model
A real-time system is modeled in MAST as a set of

transactions. Each transaction is activated from one or
more external events, and represents a set of activities that
will be executed in the system. Activities generate events
that are internal to the transaction, and that may in turn

External

Event

Event
Handler

Event
Handler

Event
Handler

Event
Handlers

Activity Activity Multicast

...

Timing
Requirement

Transaction

Transaction

Internal

Event

Figure 2. Real-Time System composed of transactions

activate other activities. Special event-handling structures
exist in the model to handle events in special ways. Internal
events may have timing requirements associated with them.

Figure 2 shows an example of a system with one of its
transactions highlighted. Transactions are represented
through graphs showing the event flow among the event
handlers, which are represented as boxes in the graph. This
particular transaction is activated by only one external
event; after two activities have been executed, a multicast
event handling object is used to generate two events that, in
turn, activate the last two activities in parallel.

In the MAST model there are two kinds of event han-
dlers:

• The structural handler just manipulates events and does
not consume resources or execution time; the Multicast
event handler in the figure above is an example of this
kind of handler.

• The Activity represents the execution of an operation, i.e.,
a procedure or function in a processor, or a message
transmission in a network.

The elements that define an activity are described in Fig-
ure 3. We can see that each activity is activated by one
input event, and generates an output event when completed.
If intermediate events need to be generated, the activity
would be partitioned into the appropriate parts. Each activ-
ity executes an Operation, which represents a piece of code
(to be executed on a processor), or a message (to be sent

through a network). An operation may have a list of Shared
Resources that it needs to use in a mutually exclusive way.

The activity is executed by a Scheduling Server, which
represents a schedulable entity in the Processing Resource
to which it is assigned (a processor or a network). For
example, the model for a scheduling server in a processor
is a task. A task may be responsible of executing several
activities, and thus the associated operations (procedures).
The scheduling server is assigned a Scheduling Parameters
object that contains the information on the scheduling pol-
icy and parameters used. Some processing resources may
contain references to System Timers or Network Drivers,
which represent various overhead effects in the system.

In the following subsections we review in detail the par-
ticular classes and respective attributes, for the different
elements currently defined in the MAST model. As we
have mentioned, these classes may be easily extended to
incorporate other features of real-time systems.

4.1. Processing Resources

They represent resources that are capable of executing
abstract activities. This includes both conventional proces-
sors and communication networks. Each processing
resource is identified through a name. Among its attributes
we can mention the range of priorities valid for normal
operations on that processing resource, and the speed fac-
tor. All the execution times of the operations are expressed

Event
Handler

Activity

Timing
Requirement

Operation

Shared
Resources

Scheduling
Server

Processing
Resources

Scheduling
Parameters

Event Event

Figure 3. Elements that define an activity

Event

Reference

in normalized units. The real execution time is obtained by
dividing the normalized execution time by the speed factor.

There are two classes of processing resources currently
defined: Processors and Networks. These are abstract
classes and the only concrete classes that are currently
defined as extensions of them are, respectively:

• Fixed Priority Processor. It represents a processor sched-
uled under a fixed-priority scheme. In addition to the
mentioned attributes, it has: a range of priorities valid for
activities scheduled by interrupt service routines; the
context switch overheads (worst, average, and best), the
interrupt service overheads; and a reference to the system
timer (see below) that influences the overhead of the Sys-
tem Timed Activities (see Section 4.10).

• Fixed Priority Network. It represents a network that uses
a priority-based protocol for sending messages. There are
networks that support priorities in their standard proto-
cols (i.e., the CAN bus [16], or the token ring [15]), and
other networks that need an additional protocol that
works on top of the standard ones (i.e., serial lines, ether-
net). In addition to the common attributes, it has the fol-
lowing additional attributes: packet send overhead,
because of the protocol messages that need to be sent
before or after each packet; transmission kind (Simplex,
Half Duplex, of Full Duplex); maximum packet trans-
mission time, which represents a blocking time in the
overhead model of the network, because packets are
assumed to be non preemptible; minimum packet trans-
mission time, which represents the shortest period of the
overheads associated to the transmission of each packet;
and a list of drivers (see below) that contain the processor
overhead model associated with the transmission of mes-
sages through the network.

4.2. System Timers

They represent the different overhead models associated
with the way the system handles timed events. There are
two classes:

• Alarm Clock. This represents systems in which timed
events are activated by a hardware timer interrupt. The
timer is programed to generate the interrupt at the time of
the closest timed event. The attributes are the overheads
of the timer interrupt.

• Ticker. This represents a system that has a periodic ticker,
i.e., a periodic interrupt that arrives at the system. When
this interrupt arrives, all timed events whose expiration
time has already passed, are activated. Other non-timed
events are handled at the time they are generated. In this
model, the overhead introduced by the timer interrupt is
localized in a single periodic interrupt, but jitter is intro-
duced for all timed events, because the time resolution is

the ticker period. The attributes are the overheads and
period of the ticker interrupt.

4.3. Network Drivers

They represent operations executed in a processor as a
consequence of the transmission or reception of a message
or a message packet through a network. We define two
classes:

• Packet Driver. Represents a driver that is activated at
each message transmission or reception. Its attributes
are: the packet server, which is a reference to the sched-
uling server that is executing the driver (which in turn has
a reference to the processor, and the scheduling parame-
ters); and references to the packet send and receive oper-
ations that are executed each time a packet is sent or
received, respectively.

• Character Packet Driver. It is a specialization of a packet
driver in which there is an additional overhead associated
to sending each character, as happens in some serial
lines. Its attributes are those of a packet driver plus the
character server, the character send and receive opera-
tions, and the character transmission time.

4.4. Scheduling Parameters

They represent the scheduling policies and their associ-
ated parameters. There is an abstract class defined for fixed
priority scheduling parameters, for which the common
attribute is the priority used for scheduling. The concrete
classes defined are:

• Non Preemptible Fixed Priority Policy.

• Fixed Priority Policy.

• Interrupt Fixed Priority Policy. Represents an interrupt
service routine.

• Polling Policy. Represents a scheduling policy in which
there is a periodic server task that polls for the arrival of
its input event. Thus, execution of the event may be
delayed until the next period. Its additional attributes are
the polling period and the polling overhead.

• Sporadic Server Policy. Represents the sporadic server
scheduling algorithm as defined in the POSIX standard
[5]. Its additional attributes are the background priority,
the initial server capacity, the replenishment period, and
the maximum number of simultaneously pending replen-
ishment operations.

4.5. Scheduling Servers

They represent schedulable entities in a processing
resource. If the resource is a processor, the scheduling
server is a process, task, or thread of control. There is only
one class defined, named Regular. Its attributes are the

name, a reference to the scheduling parameters, and a refer-
ence to the scheduling resource.

4.6. Shared Resources

They represent resources that are shared among different
tasks, and that must be used in a mutually exclusive way.
Only protocols that avoid unbounded priority inversion are
allowed. There are two classes, depending on the protocol:

• Immediate Ceiling Resource. Uses the immediate prior-
ity ceiling resource protocol. This is equivalent to Ada’s
priority ceiling, or the POSIX priority protect protocol.
Its attributes are the name, and the priority ceiling (which
may be computed automatically by the tool, upon
request).

• Priority Inheritance Resource. Uses the basic priority
inheritance protocol. Its only attribute is the name.

4.7. Operations

They represent a piece of code to be executed by a pro-
cessor, or a message that is sent through a network. They
all have the following common attributes: execution time
(worst, average, and best), in normalized units (for mes-
sages, this represents the transmission time); and overrid-
den scheduling parameters, which represents a priority
level above the normal priority level at which the operation
would execute; the overridden priority is in effect only until
the operation is completed.

The following classes of operations are defined:

• Simple. Represents a simple piece of code or a message.
Additional attributes are: the list of shared resources to
lock before executing the operation, and the list of shared
resources that must be unlocked after executing the oper-
ation. These lists need not be equal.

• Composite. Represents an operation composed of an
ordered sequence of other operations, simple or compos-
ite. The execution time attribute of this class cannot be
set, because it is the sum of the execution times of the
comprised operations.

• Enclosing. As the composite operation, it represents an
operation that contains other operations as part of its exe-
cution, but in this case the total execution time must be
set explicitly; it is not the sum of execution times of the
comprised operations, because other pieces of code may
be executed in addition. The enclosed operations still
need to be considered for the purpose of calculating the
blocking times associated with their shared resource
usage.

4.8. Events

Events may be internal or external, and represent chan-
nels of event streams, through which individual event

instances may be generated. An event instance activates an
instance of an activity, or influences the behavior of the
event handler to which it is directed.

Internal events are generated by an event handler. Their
attributes are the name and associated timing requirements
imposed on the generation of the event. See the description
of the timing requirements below.

External events model the interactions of the system
with external components or devices through interrupts,
signals, etc., or with hardware timing devices. They have a
double role in the model: on the one hand they establish the
rates or arrival patterns of activities in the system. On the
other hand, they provide references for defining global tim-
ing requirements. The following external event classes are
defined for representing different arrival patterns:

• Periodic. Represents a stream of events that are gener-
ated periodically. Its attributes are the period; maximum
jitter, i.e., the maximum amount of time that may be
added to the activation time of each event instance; and
the phase, which is the instant of the first activation if it
had no jitter (after that time, the following events are
periodic, possibly with jitter).

• Singular. Represents an event that is generated only
once. Its only attributes are the name and the phase, or
instant of the first activation.

• Sporadic. Represents a stream of aperiodic events that
have a minimum interarrival time. They have the follow-
ing attributes: minimum interarrival time, which is the
minimum time between the generation of two events; the
average interarrival time; and the distribution function of
the aperiodic events (which can be Uniform or Poisson).

• Unbounded. Represents a stream of aperiodic events for
which it is not possible to establish an upper bound on
the number of events that may arrive in a given interval.
They have the following attributes: average interarrival
time, and distribution function.

• Bursty. Represents a stream of aperiodic events that have
an upper bound on the number of events that may arrive
in a given interval. Within this interval, events may arrive
with an arbitrarily low distance among them (perhaps as
a burst of events). They have the following attributes:
bound interval, which is the interval for which the
amount of event arrivals is bounded; the maximum num-
ber of events that may arrive in the bound interval; the
average interarrival time; and the distribution function.

4.9. Timing Requirements

They represent requirements imposed on the instant of
generation of the associated internal event. There are dif-
ferent kinds of requirements:

• Deadlines. They represent a maximum time value
allowed for the generation of the associated event. They
are expressed as a relative time interval that is counted in
two different ways:

• Local Deadlines: they appear only associated with
the output event of an activity; the deadline is
relative to the arrival of the event that activated that
activity.

• Global deadlines: the deadline is relative to the
arrival of a Referenced Event that is an attribute of
the deadline.

In addition, deadlines may be hard or soft:

• Hard Deadlines: they must be met in all cases,
including the worst case

• Soft Deadlines: they must be met on average.

This gives way to four kinds of deadlines:

• Hard Global Deadline. Attributes are the value of
the Deadline, and a reference to the Referenced
Event.

• Soft Global Deadline. Attributes are the value of
the Deadline, and a reference to the Referenced
Event.

• Hard Local Deadline. The only attribute is the
value of the Deadline.

• Soft Local Deadline. The only attribute is the value
of the Deadline.

• Max Output Jitter Requirement: Represents a require-
ment for limiting the jitter with which a periodic internal

event is generated. Output jitter is calculated as the dif-
ference between the worst-case response time and the
best-case response time of the activity that generates the
associated event, relative to a Referenced Event that is an
attribute of this requirement. Consequently, the attributes
are the maximum output jitter, and the referenced event.

• Max Miss Ratio: Represents a kind of soft deadline in
which the deadline cannot be missed more often than a
specified ratio. Its attributes are the deadline and the
ratio, or percentage representing the maximum ratio of
missed deadlines. There are two kinds of Max Miss Ratio
requirements: global or local.

• Composite: An event may have several timing require-
ments imposed at the same time, which are expressed via
a composite timing requirement. It contains just a list of
simple timing requirements.

4.10.Event Handlers

Event handlers represent actions that are activated by the
arrival of one or more events, and that in turn generate one
or more events at their output. There are two fundamental
classes of event handlers. The Activities represent the exe-
cution of an operation by a scheduling server, in a process-
ing resource, and with some given scheduling parameters.
The other operations are just a mechanism for handling
events, with no runtime effects. Any overhead associated
with their implementation is charged to the associated
activities. Figure 4 shows the different classes of event han-
dlers.

• Activity. It represents an instance of an operation, to be
executed by a scheduling server. Its attributes are its
input and output events, the reference to the operation,
and the reference to the scheduling server (which in turn

Activity / Rate Divisor / Delay / Offset

Concentrator

... +

Barrier

...

Delivery / Query Server

...+

.

Multicast

....

Figure 4. Classes of Event Handlers

contains references to the scheduling parameters and the
processing resource). See Figure 3.

• System Timed Activity. It represents an activity that is
activated by the system timer, and thus is subject to the
overheads associated with it. It only makes sense to have
a System Timed Activity that is activated from an external
event, or an event generated by the Delay or Offset event
handlers (see below). It has the same attributes as the reg-
ular activity.

• Concentrator. It is an event handler that generates its out-
put event when any one of its input events arrives. Its
attributes are its input and output events.

• Barrier. It is an event handler that generates its output
event when all of its input events have arrived. For worst-
case analysis to be possible it is necessary that all the
input events are periodic with the same periods. This
usually represents no problem if the concentrator is used
to perform a “join” operation after a “fork” operation car-
ried out with the Multicast event handler (see below). Its
attributes are its input and output events.

• Delivery Server. It is an event handler that generates one
event in only one of its outputs each time an input event
arrives. The output path is chosen at the time of the event
generation. Its attributes are its input and output events,
and the delivery policy, which is used to determine the
output path. It may be Scan (the output path is chosen in
a cyclic fashion) or Random.

• Query Server. It is an event handler that generates one
event in only one of its outputs each time an input event
arrives. The output path is chosen at the time of the event
consumption by one of the activities connected to an out-
put event. Its attributes are its input and output events,
and the request policy, which is used to determine the
output path when there are several pending requests from
the connected activities. It may be Scan (the output path
is chosen in a cyclic fashion), Priority (the highest prior-
ity activity wins), FIFO or LIFO.

• Multicast. It is an event handler that generates one event
in every one of its outputs each time an input event
arrives. Its attributes are its input and output events.

• Rate Divisor. It is an event handler that generates one
output event when a number of input events equal to the
Rate Factor have arrived. Its attributes are its input and
output events, and the rate factor, which is the number of
events that must arrive to generate an output event

• Delay. It is an event handler that generates its output
event after a time interval has elapsed from the arrival of
the input event. Its attributes are its input and output
events and the longest and shortest time intervals used to
generate the output event.

• Offset. It is similar to the Delay event handler, except that
the time interval is counted relative to the arrival of some
(previous) event. If the time interval has already passed
when the input event arrives, the output event is gener-
ated immediately. Its attributes are the same as for the
Delay event handler, plus the reference to the appropriate
event.

4.11.Transactions

The transaction is a graph of event handlers and events,
that represents interrelated activities that are executed in
the system. A transaction is defined with three different
components: a list of external events, a list of internal
events (with their timing requirements if any), and a list of
Event handlers.

In addition, each transaction has a Name attribute. There
is only one class of transaction defined, called Regular
transaction.

5. An Example
The following example will show the aspect of the

MAST file format that has been chosen to represent the
timing behavior of real-time applications. The example is a
simplification of the control system of a teleoperated robot.
This is a distributed system with two specialized nodes: a
local robot controller, and a remote teleoperation station,

GUI

Trajectory
Planner

Reporter

Command
Manager

Servo
Control

Data
Sender

Command
Message

Status
Message

Teleoperation Station Ethernet Network Local Controller

Figure 5. Architecture of the teleoperated robot controller

1sec

50ms
5ms

where the operator manipulates the controls, and gets infor-
mation about the system status. Figure 5 shows a diagram
of the software architecture. The system has three transac-
tions; one of them, the main control loop, implies execution
in different processing resources, and has a global end-to-
end deadline. Communication is through an ethernet net-
work used in master-slave mode to achieve hard real-time
behavior.

Some parts of the MAST description of the system fol-
low:
-- Processing Resources
Processing_Resource (

Type => Fixed_Priority_Processor ,
Name => Local_Ctler,
Worst_Context_Switch => 15,
System_Timer =>

Type => Alarm_Clock ,
Worst_Overhead => 10));

...
Processing_Resource (

Type => Fixed_Priority_Network ,
Name => Ethernet,
Transmission => Half_Duplex);

-- Scheduling Servers
Scheduling_Server (

Type => Fixed_Priority ,
Name => Servo_Control,
Server_Sched_Parameters => (

Type => Fixed_Priority_Policy ,
The_Priority => 415),

Server_Processing_Resource => Local_Ctler);
...
-- Shared Resources
Shared_Resource (

Type => Immediate_Ceiling_Resource ,
Name => Servo_Data);

...
-- Operations
Operation (

Type => Simple ,
Name => Read_Servos,
Worst_Case_Execution_Time => 74,
Shared_Resources_List => (Servo_Data));

Operation (
Type => Enclosing ,
Name => Servo_Control,
Worst_Case_Execution_Time => 1019,
Composite_Operation_List =>

(Read_Servos,Write_Servos));
Operation (

Type => Simple ,
Name => Command_Message,
Worst_Case_Execution_Time => 4850);

...
-- Transactions
Transaction (

Type => Regular ,
Name => Servo_Control,
External_Events => (

(Type => Periodic ,

 Name => E1,
 Period => 5000)),

Internal_Events => (
(Type => Regular ,
 Name => O1,
 Timing_Requirements => (

 Type => Hard_Global_Deadline ,
 Deadline => 5000,
 Referenced_Event => E1))),

Event_Handlers => (
(Type => System_Timed_Activity ,
 Input_Event => E1,
 Output_Event => O1,
 Activity_Operation => Servo_Control,
 Activity_Server => Servo_Control)));

...

In the MAST description we can see that we declare, in
this order, the processing resources, the scheduling servers,
the shared resources, the operations, and finally, the trans-
actions. The timing requirements are embedded in the
events described in the transactions. The timers (and also
the network drivers) are embedded in the description of the
processing resources. The scheduling parameters are
embedded in the description of the scheduling servers.
Finally, the events and event handlers are embedded in the
description of the transactions.

If we feed the MAST worst-case analysis tools with this
description we obtain the results of the worst case response
times of all the activities, which we can compare with the
deadlines to determine the system schedulability.

Although the overall schedulability is an interesting
piece of data, it does not tell the designer whether the sys-
tem is barely schedulable, or has enough margin for error
or change. In order to get a better estimation of how close
we are to being schedulable (or unschedulable), the MAST
toolset is capable of providing the transaction and system
slacks. These are the percentages by which the execution
times of the operations of a transaction (or of the system)
can be increased while keeping the system schedulable (or
decreased to make it schedulable if it wasn’t). Table 1
shows the slack times obtained for the example, using both
the holistic and offset-based analysis tools. We can see that
the execution times can be increased by 34.28% and the
system would still be schedulable with the offset-based
analysis. The results of the holistic analysis are much

Table 1. Slacks calculated for the example

Slack for: Holistic (%)
Offset-
Based (%)

Transaction Servo Control -100.00 204.69

Transaction Main_Loop -24.22 47.66

Transaction GUI -100.00 434.38

Whole system -21.09 38.28

worse, and the execution times would need a reduction of
21.09% to achieve schedulability according to that tech-
nique. Since both techniques obtain upper bounds for the
worst-case response time, we can discard the results of the
holistic analysis and assure that the system is schedulable.

6. Conclusions and Further Work
The MAST suite defines a model capable of describing

the timing behavior of a large set of real-time systems,
including distributed systems and event-driven systems
with complex synchronization schemes. The model is
appropriate for UML system descriptions in which a real-
time view of the system is added to the design, and then an
automatic tool is used to generate the MAST description.
This description, in text format, is used as the input to the
MAST tools for hard and soft real-time analysis, that incor-
porate the latest developments in scheduling theory. Cur-
rently MAST is defined for fixed priority systems, but has
been designed to be easily extensible to other kinds of sys-
tems, such as those scheduled with dynamic priority poli-
cies.

The MAST suite is still under development and there are
some missing tools: worst-case analysis for systems with
multiple-event synchronization, calculation of the possibil-
ity of deadlocks, event-driven simulation, and the graphical
editor are not yet available. But the current set of tools is
already useful to a large number of applications, and the
rest of the tools will be available soon.

There is still some scheduling theory needed to elimi-
nate some of the restrictions, and we plan to work on these
in the near future. The most important missing pieces are:
the calculation of remote blocking times in distributed sys-
tems when the blocking terms depend on each other; and
the enhancement of the multiple-event analysis, to make it
less pessimistic.

The MAST suite is open source software, distributed
under the gnu license. It can be found at:
http://ctrpc17.ctr.unican.es/mast

References
[1] J.M. Drake, M. González Harbour J.L. Medina: “MAST Real-

Time View: Graphic UML tool for modeling object-oriented
real time systems.” Group of Computers and Real-Time
Systems. University of Cantabria (Internal report), 2000.

[2] G. Fohler, “Joint Scheduling of Distributed Complex Periodic
and Hard Aperiodic Tasks in Statically Scheduled Systems”.
16th Real-Time Systems Symposium, Pisa, Italy, 1995.

[3] J.J. Gutiérrez García and M. González Harbour. “Optimized
Priority Assignment for Tasks and Messages in Distributed
Real-Time Systems”. Proceedings of 3rd Workshop on
Parallel and Distributed Real-Time Systems, Santa Barbara,
California, pp. 124-132, 1995.

[4] J.J. Gutiérrez García, J.C. Palencia Gutiérrez, and M.
González Harbour, “Schedulability Analysis of Distributed
Hard Real-Time Systems with Multiple-Event
Synchronization”. Euromicro Conference on Real-Time
Systems, Stockholm, Sweden, 2000.

[5] IEEE Standard 1003.1d:1999, “Information Technology -
Portable Operating System Interface (POSIX)- Part 1: System
Application Program Interface (API) [C Language].
Additional Realtime Extension”. The Institute of Electrical
and Electronics Engineers, 1999.

[6] M. Klein, T. Ralya, B. Pollak, R. Obenza, and M. González
Harbour, “A Practitioner's Handbook for Real-Time Systems
Analysis”. Kluwer Academic Pub., 1993.

[7] C.L. Liu, and J.W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment”.
Journal of the ACM, 20 (1), pp 46-61, 1973.

[8] L. Molesky, K. Ramamritham, C. Shen, J. Stankovic, and G.
Zlokapa, “Implementing a Predictable Real-Time
Multiprocessor Kernel - The Spring Kernel”. IEEE Workshop
on Real-Time Operating Systems and Software, 1990.

[9] J.C. Palencia, and M. González Harbour, “Schedulability
Analysis for Tasks with Static and Dynamic Offsets”. Proc. of
the 19th IEEE Real-Time Systems Symposium, 1998.

[10]J.C. Palencia, and M. González Harbour, “Exploiting
Precedence Relations in the Schedulability Analysis of
Distributed Real-Time Systems”. Proceedings of the 20th
IEEE Real-Time Systems Symposium, 1999.

[11]T. Quatrany: “Visual Modeling with Rational ROSE 2000 and
UML” Addison Wesley Longman, Reading, Mass., 2000.

[12]B. Selic: “A Generic Framework for Modeling Resources
with UML”. IEEE Computer, Vol. 33, N. 6, pp. 64-69. June,
2000.

[13]B. Selic, A. Moore, M. Bjorkander, M. Gerhardt, and B.
Watson: “Response to the OMG RFP for Schedulability,
Performance and Time” OMG document n. Ad/2000-08-04.
August, 2000.

[14]A.D. Stoyenko, T.J. Marlowe, and P.A. Laplante, “A
description Language for Engineering of Complex Real-Time
Systems”. Real-Time Systems Journal 11(3) 1996.

[15]J.K. Strosnider, T. Marchok, J.P. Lehoczky, “Advanced Real-
Time Scheduling Using the IEEE 802.5 Token Ring”.
Proceedings of the IEEE Real-Time Systems Symposium,
Huntsville, Alabama, USA, pp. 42-52, 1988.

[16]K. Tindell, A. Burns, and A.J. Wellings, “Calculating
Controller Area Network (CAN) Message Response Times”.
Proceedings of the 1994 IFAC Workshop on Distributed
Computer Control Systems (DCCS), Toledo, Spain, 1994.

[17]K. Tindell, and J. Clark, “Holistic Schedulability Analysis for
Distributed Hard Real-Time Systems”. Microprocessing &
Microprogramming, Vol. 50, Nos.2-3, pp. 117-134, 1994.

[18]http://www.ics.uci.edu/~arcadia/Aflex-
Ayacc/aflex-ayacc.html

