Operating System Support for Execution Time Budgets for Thread Groups

Mario Aldea Rivas and Michael Gonzalez Harbour
Universidad de Cantabria
39005-Santander, SPAIN

{mgh, aldeam}@unican.es

Abstract

The recent Ada 2005 standard introduced a number of
new real-time services, with the capability of creating and
managing execution time budgets for groups of tasks. This
capability has many practical applications in real-time sys-
tems in general, and therefore it is also interesting for real-
time operating systems. In this paper we present an imple-
mentation of thread group budgets inside a POSIX real-op-
erating system, which can be used to implement the new Ada
2005 services. The architecture and details of the implemen-
tation are shown, as they may be useful to other implement-
ers of this functionality defined in the new standard.

Keywords: Real-time systems, Execution time budgets,
Thread groups, CPU time, Ada 2005.

1. Introduction!

In hard real-time systems it is essential to monitor the
execution times of all tasks and detect situations in which
the estimated worst-case execution time (WCET) is
exceeded. This detection was usually available in systems
scheduled with cyclic executives, because the periodic
nature of its cycle allowed checking that all initiated work
had been completed at each cycle. In event-driven concur-
rent systems the same capability should be available, and
can be accomplished with execution time clocks and timers.

This need for managing execution time is recognized in
standards related to real-time systems. The POSIX standard
[4] defines services for execution time measurement and
budget overrun detection, and its associated real-time pro-
files [5] require implementations to support these services.
The recent Ada 2005 standard introduced a number of new

1. This work has been funded by the Plan Nacional de I+D+I of the
Spanish Government under grant TIC2005-08665-C03 (THREAD
project), by Ada Core, and by the European Union’s Sixth Framework
Programme under contracts FP6/2005/IST/5-034026 (FRESCOR project)
and IST-004527 (ARTIST2 NoE). This work reflects only the author’s
views; the EU is not liable for any use that may be made of the information
contained herein.

real-time services intended to provide applications with a
higher degree of flexibility. In particular this standard
defines capabilities for measuring the execution time of
individual tasks, and the ability to detect and handle execu-
tion-time budget overruns.

As real-time applications evolve towards an increased
complexity level, issues such as composability of indepen-
dently developed application components and support for
legacy code introduce the need for supporting different lev-
els of hierarchy in the scheduling mechanism, leading to a
hierarchical concurrency model with different layers, and
with capabilities for establishing boundaries for the protec-
tion of different parts of the application. In this context of
hierarchical scheduling it is often required to bound the
execution time of a group of activities that are inside the
same protection boundary, so that they cannot interfere
with other activities in other protection boundaries by using
up more resources than they should. This need introduces a
requirement on the underlying implementation to support
the measurement of the execution times of groups of tasks,
and the handling of potential budget overruns, in a way
similar to what is usually done for individual tasks.

Following this general requirement, the Ada 2005 stan-
dard defines services for execution-time budgets for groups
of tasks, and is now a step forward in relation to the real-
time extensions to POSIX, which still has no such service.

In this paper we propose an implementation of a mecha-
nism to support execution-time budgets for thread groups
inside a POSIX operating system. The API of this imple-
mentation could be used as a basis for a future extension to
POSIX. It will also be used to implement the task group
budgets defined in Ada 2005. The architecture and details
of the implementation are shown, as they may be useful to
other implementers of this functionality defined in the new
standard. Some performance metrics are provided.

The paper is organized as follows. Section 2 discusses
the current services that are available in the platform chosen
for this implementation, MaRTE OS and GNAT, and that
are related to thread group budgets. Section 3 introduces the

services designed to represent sets of threads. Section 4
discusses the implementation of the execution time clocks
for groups of threads, while Section 5 does the same for
budgets and their associated handlers. Section 6 provides
some performance metrics and, finally, Section 7 gives our
conclusions.

2. Background

The implementation of execution time budgets for
thread groups presented in this paper has been developed in
MaRTE OS [1] [2], which is a real-time operating system
(RTOS) that follows the POSIX.13 [5] minimum real-time
system profile, and is mostly written in Ada. It is available
for the ix86 architecture as a bare machine, and it can also
be configured as a POSIX-thread library for GNU/Linux.
The GNAT run-time library has been adapted to run on top
of MaRTE OS, which is itself being extended in a joint
effort between Ada Core and the University of Cantabria
with the objective of providing a platform fully compliant
with Ada 2005, available for industrial, research, and
teaching environments. The implementation of thread
group budgets presented in this paper is part of the effort to
achieve this objective.

Two of the new Ada 2005 real-time services are closely
related to the thread group budgets and are already avail-
able in MaRTE OS and GNAT [3]:

e Timing events are defined in Ada 2005 as an effective
and efficient mechanism to execute user-defined time-
triggered procedures without the need to use a task. They
are very efficient because the event handler may be exe-
cuted directly in the context of the interrupt handler,
avoiding the need for a server task.

e Execution time clocks and timers are defined in Ada
2005 as a standardized interface to obtain the execution
time consumption of a task, together with a mechanism
that allows creating handlers that are triggered when the
execution time of a task reaches a given value, providing
the means to execute a user-defined action when the exe-
cution time assigned to a specific task expires.

Timing events have been implemented in MaRTE OS
through a service that we call “timed handlers”, which are
not only useful to implement their Ada counterpart, but are
also useful to other applications as a general-purpose
RTOS mechanism.

MaRTE OS supports the execution-time clocks and tim-
ers defined in POSIX.1, which would be appropriate to
implement their couterparts in Ada. However, the timers
defined in POSIX to detect execution time overruns use an
operating system signal to notify about their expiration.
Signals are a very scarce resource inside an RTOS.
Besides, the signal is usually handled through a thread that

is waiting to accept the signal, but this is a mechanism that
introduces relatively high overheads, mainly due to the
need for the handler to be a thread, with the associated
costs in context switches. This leads to the same reason for
introducing the new "timing events" mechanism for regular
time management.

As a consequence, the Ada implementation of execution
time clocks and timers has been achieved in MaRTE
through the "timed handler" mechanism, which allows a
direct handling of the event inside the hardware timer inter-
rupt handler, thus avoiding the use of a signal and the sub-
sequent double context switch that would be necessary
otherwise.

To implement thread group budgets inside MaRTE OS
we will follow an approach similar to that followed for
execution time budgets for individual threads, creating the
appropriate execution time clocks for thread groups and
extending the "timed handler" mechanism to also support
these new clocks.

3. Thread sets

Before creating the execution time clocks for thread
groups or sets, it is necessary to specify a mechanism to
represent the groups themselves. Instead of defining a
mechanism specific to execution-time clocks, we have cho-
sen to create an independent RTOS object that represents a
group of threads. In this way, we will be able to address
future extensions that require handling groups of threads
using these same objects. Examples of such new services
might be related to the requirements for supporting hierar-
chical scheduling, for instance to suspend or resume a
group of threads atomically.

A thread set is implemented by a record that may be
extended in the future to add functionality. This record has
the following fields:

e Set : A list of the threads belonging to the set.

e Jterator: A reference to the current thread in the list, used
when iterating through marte_threadset_first and
marte_threadset_next.

A restriction has been made so that a thread can belong
to only one thread set. This restriction is also made in the
Ada 2005 standard, and its rationale is that in the hierarchi-
cal scheduling environment for which thread groups are
useful, threads only belong to one specific scheduling
class, and therefore to one specific set. This restriction
allows a more efficient implementation, because at each
context switch only one of the Consumed_Time fields of
the set to which the running thread belongs needs to be
updated.

Threads can be added/removed to/from a thread set
dynamically.

Every thread has a pointer in its thread control block
(TCB) to the set it belongs to. This field is null if the thread
doesn’t belong to any thread set.

The C language API to manage thread sets from the
application level is the following:

// create an empty thread set
int marte_threadset_create
(marte_threadset_id_t *set_id);
// destroy a thread set
int marte_threadset_destroy
(marte_threadset_id_t set_id);
// empty an existing thread set
int marte_threadset_empty
(marte_threadset_id_t set_id);
// add a thread to a set
int marte_threadset_add
(marte_threadset_id_t set_id,
pthread_t thread_id);
// delete a thread from a set
int marte_threadset_del
(marte_threadset_id_t set_id,
pthread_t thread_id) ;
// check thread membership
int marte_threadset_ismember
(marte_threadset_id_t set_id,
pthread_t thread_id) ;
// reset the iterator and get the first thread id
int marte_threadset_first
(marte_threadset_id_t set_id,
pthread_t *thread_id) ;
// advance the iterator and get next thread id
int marte_threadset_next
(marte_threadset_id_t set_id,
pthread_t *thread_id);
// check whether the iterator can be advanced
int marte_threadset_hasnext
(marte_threadset_id_t set_id)
// get the set associated with the given thread
int marte_threadset_getset
(marte_threadset_id_t *set_id)
pthread_t thread_id) ;

4. Execution time clocks for thread groups

To implement execution time clocks for groups of
threads we add the following information to the object that
represents a thread set:

o Consumed_Time: CPU-time consumed for all the task in
the group. Every time a thread of a given set leaves the
CPU, the time consumed by this task since its last activa-
tion is added to the Consumed_Time of its thread set,
even if there is no timed event associated with it,
because the value of the execution-time clock may be
read at any time by the application.

e Group_Timed_Event : A reference to the internal RTOS
execution time event, used by the scheduling mecha-
nism. A set can be associated with at most one such
event.

The API to obtain an execution-time clock from a thread
set is:
// destroy a thread set
int marte_getgroupcpuclockid

(marte_threadset_id_t set_id,
clockid_t *clock_id);

The returned id represents a clock that can be read and set
through the standard POSIX API for clocks, i.e., using
functions clock_gettime, clock_settime, ... They can
also be used as the base for POSIX timers and MaRTE OS
timed events as any other clock defined in the system. They
can not however be used as the base for the
clock_nanosleep operation, as is also the case with the
single-thread CPU-time clocks. POSIX leaves this
behavior as unspecified and Ada does not define execution
time as a type that can be used in the equivalent delay
statements.

POSIX requires type clockid_t to be defined as an
arithmetic type, and therefore clock ids are implemented
using a unsigned number of 32 bits. The value stored in a
clock id can have different interpretations:

e Special values for the regular calendar-time clock
CLOCK_REALTIME, the execution time clock of the cur-
rent thread CLOCK_THREAD_CPUTIME_ID, and the
monotonic clock CLOCK_MONOTONIC.

e A pointer to a thread control block when the clock is a
thread CPU-time clock of a particular thread.

e A pointer to a thread set when it is a thread group clock.

5. Timed events based on a group clock

Group clocks can be used as the base of timers and
timed handlers. When a timer or a timed handler is armed,
a MaRTE OS timed event is enqueued in the system event
queues. Time-based events in MaRTE OS are of two kinds:
standard time and execution time. They are kept in separate
priority queues because they cannot be compared with each
other for ordering. Events based on group clocks are a spe-
cial case of execution time events. An execution time event
has the following information:

e CPU_Time: The event will expire when the execution
time consumed by the associated task reaches this value

e Group_Expiration_Time: The event will expire when the
Consumed_Time field of the task set associated with the
event reaches this value. This field is only used in events
based on a group clock.

e Is_Based_On_Group_Clock: This is a boolean used to
identify events based on group clocks

e Base_Clock: A clock id representing the clock used as
the timing base of the event. It could be a thread CPU-
time clock or a group clock.

e Task_Where_Queued : A pointer to the task that has
queued the event.

Execution time events are kept in a queue associated
with the task on which the event is based on, and stored as
the CPU_Time_Timed_Event_Queue in the task control
block. Every time a new thread gets the CPU, the events at
the head of the standard-time events queue and of the run-
ning task’s CPU_Time_Timed_Event_Queue queue are
compared. The hardware timer is programmed to expire at
the most urgent of the two.

Events based on group clocks are special CPU-time
events that “jump” between the
CPU_Time_Timed_Event_Queue of the threads in the
group. Each time the system schedules a task included in a
thread set that has an event associated, the following
actions are performed in the Do_Scheduling internal ker-
nel operation:

-- Set CPU_Time of the event according to the
-- time consumed by T
T.Set.Group_TE_Ac.CPU_Time := T.Used_CPU_Time +
(T.Set.Group_TE_Ac.Group_Expiration_Time -
T.Set.Consumed_Time) ;
-- Move Group_TE_Ac from one task to another
if T.Set.Group_TE_Ac.Task _Where_Queued /= null
then
-- Dequeue from the list it was queued
Dequeue (T.Set.Group_TE_Ac,
T.Set.Group_TE_Ac.Task_Where_Queued.
CPU_Time_TEs_0Q) ;
end if;
-- Enqueue in T's list
Enqueue_In_Order (T.Set.Group_TE_Ac,
T.CPU_Time_TEs_Q) ;
T.Set.Group_TE_Ac.Task_Where_Queued := T;

Dequeue and enqueue operations are very fast, because
the number of CPU-time events associated to a task usually
will be very small, either one or two: a CPU-time event and
a “group event”. Consequently the number of extra opera-
tions required at each context switch to manage these
clocks is kept small, and the implementation can efficiently
schedule the threads with an acceptable overhead, as can be

seen in the following performance metrics section.

6. Performance metrics

The support for group budgets has already been imple-
mented in MaRTE OS. Execution time accounting intro-
duces a small overhead: enabling this service in MaRTE
OS increments the context switch time by less than 5%.
Group execution time accounting increments the context
switch time by another 4%, representing a total of 9%
increment with respect to a system with no CPU-time
accounting in an x86 architecture.

The overheads of the budget overrun detection are also
relatively small. Table 1 shows a comparison of the over-

heads of two detection mechanisms, as measured in a
3.4GHz Pentium IV. The first one is implemented using a
regular POSIX timer that sends a signal when the budget
expires, and a handler thread that blocks waiting to accept
the signal. The second mechanism is implemented using
the new timed handler service. We can see that the over-
head of the second mechanism is much smaller.
Table 1. Overhead of budget overrun notification mechanism

Time (us) Time (us)
Metric (usingtimerand | (using timed
auxiliary thread) | handlers)
From user’s thread to 1.1 0.4
handler
From handler to user’s | 0.8 0.7
thread
Total time: 1.9 1.1

7. Conclusion

As the complexity of real-time systems evolves, hierar-
chical scheduling and partitioning are mechanisms used to
cope with it, by helping in establishing protection bound-
aries and easing the composability of independently-devel-
oped application components. One of the requirements of
this partitioning is the time protection among the different
groups of tasks in the hierarchy, which can be achieved by
using thread group budgets as those specified in the new
Ada 2005 standard.

This paper has presented an implementation of the sup-
port needed to provide such budgeting services in a real-
time operating system called MaRTE OS. The paper
describes the architecture and details of the implementa-
tion, together with the rationale for the main design deci-
sions, so that this information can be used by other
implementers of this functionality, either as part of Ada
run-time systems, or as part of a general-purpose RTOS.
The implementation has proven to be straightforward, and
the overheads introduced are small, both in the context
switch times and in the budget overrun notification mecha-
nism.

As future work, the functionality defined in Ada 2005
for group budgets will be implemented. It is anticipated
that support for the Ada group budgets will be a simple
package built on top of the MaRTE OS implementation
described in this paper.

References

[1] Aldea Rivas M. and Gonzailez Harbour M. MaRTE OS:
Minimal Real-Time Operating System for Embedded
Applications. Universidad de Cantabria. http://
marte.unican.es/

[2] Aldea Rivas M. and Gonzalez Harbour M. MaRTE OS: An

3

[4

]

—_

Ada Kernel for Real-Time Embedded Applications.
Proceedings of the International Conference on Reliable
Software Technologies, Ada-Europe-2001, Leuven, Belgium,
Lecture Notes in Computer Science, LNCS 2043, May, 2001,
ISBN:3-540-42123-8, pp. 305,316.

Aldea Rivas M. and Ruiz J.F.. Implementation of new Ada
2005 real-time services in MaRTE OS and GNAT.
International Conference on Reliable Software Technologies,
Ada-Europe-2007, Switzerland.

IEEE Std. 1003.1:2004 Edition, Information Technology —
Portable Operating System Interface (POSIX). The Institute
of Electrical and Electronics Engineers.

(5]

(6]

IEEE Std. 1003.13-2003. Information Technology -
Standardized Application Environment Profile- POSIX
Realtime and Embedded Application Support (AEP). The
Institute of Electrical and Electronics Engineers.

S. Tucker Taft, Robert A. Duff, Randall L. Brukardt, Erhard
Ploedereder, Pascal Leroy (Eds.) Ada-2005 Reference
Manual. Language and Standard Libraries. International
Standard ISO/IEC 8652/1995(E) with Technical corrigendum
1 and Amendment 1. Springer, Number 4348 in Lecture
Notes in Computer Science, Springer-Verlag (2006).

