
1

Abstract: In previous papers we had presented an applica-
tion program interface (API) that enabled applications to
use application-defined scheduling algorithms in a way
compatible with the scheduling model defined in POSIX.
This paper presents a new more general API with three main
enhancements. First, the application scheduler is described
as an abstract object that needs not be implemented as a
thread, thus potentially increasing efficiency in some oper-
ating system architectures. Second, we define an abstract
notion of urgency that is used by the kernel to order the
threads in the scheduling queue, freeing the application
scheduler of the responsibility of keeping the desired order-
ing of threads, and thus simplifying it and reducing over-
head. In third place, we also consider thread synchroniza-
tion through mutexes by adding the Stack Resource Policy
or the Priority Inheritance Policy adapted to the generalized
concept of urgency, both of which can be used in a large va-
riety of fixed and dynamic priority scheduling policies with-
out explicit intervention of the application scheduler.

1. Introduction1

Most commercial real-time operating systems follow the
Real-Time POSIX [2][3] standard and offer just fixed-pri-
ority scheduling as the mechanism to support real-time con-
current applications. However, it would be desirable to
have dynamic priority scheduling policies available
because they allow a better usage of the available process-
ing resources. The main problem that we find is that the
amount of such policies described in the literature is quite
large and it is impractical for OS vendors to provide all of
these policies in their implementations.

In the past years we have been working on application
program interfaces (APIs) and implementations of applica-
tion-defined scheduling services that could be used in oper-
ating systems following the POSIX standard [5]. Those
APIs allowed the application to install one or more thread
schedulers implemented as special threads, and assigning
application threads to these schedulers. Although the
approach presented in [5] is flexible enough to support
many kinds of application defined scheduling policies, it
has several drawbacks that potentially limit its efficiency:

•Because the application scheduler is a special thread,
every scheduling decision requires a double context
switch that in some OS architectures may be too expen-
sive.

•The application scheduler has to keep the ordering of the
threads that are ready for execution, instead of leaving
this task to the underlying kernel where it can be made in
a more efficient way.

•Mutual exclusive synchronization requires the interven-
tion of the scheduler thread, and thus introduces at least
two double context switches for each synchronization
operation, introducing a lot of overhead.

Although the overheads measured in our MaRTE OS [1]
implementation were acceptable for common applications,
we realized that they could be too high in other OS archi-
tectures, and thus we worked towards eliminating these
sources of inefficiency. As a result we have created a fully
new API, with similar capabilities, but which is potentially
much more general and efficient than the previous
approach. This paper presents the model of the new
approach. The API will be available with MaRTE OS [8].

2. Overview of the new scheduling model
Figure 1 shows the proposed approach for application-

defined scheduling. We use a hierarchical scheduling archi-
tecture with the underlying kernel scheduler underneath,
and one or more application schedulers on top.The underly-
ing scheduler uses the thread’s fixed priority as the main
scheduling parameter.

Each application scheduler is a special software module
that can be implemented in several ways (see Section 3),
and that is responsible of scheduling a set of threads that
have been attached to it.

Implementations of the application schedulers are given
the freedom to choose where to place the schedulers: inside
the kernel for efficiency, in the user address space for iso-
lating the system form misbehaved schedulers, or even in a
separate address space for further enhancing isolation.

In our new framework, an application scheduler has the
structure shown in Figure 2. Application schedulers contain
a set of operations that are invoked by the operating system
each time an application-scheduled thread executes one of

1. This work has been funded by the Comisión Interministerial de
Ciencia y Tecnología of the Spanish Government under grant TIC 2002-
04123-C03 (TRECOM project) and by the Commission of the European
Communities under contract IST-2001-34140 (FIRST project)

A New Generalized Approach to Application-Defined Scheduling

Mario Aldea Rivas and Michael González Harbour

Departamento de Electrónica y Computadores
Universidad de Cantabria
39005-Santander, SPAIN

{aldeam,mgh}@unican.es

2

the following actions or experiences one of the following
situations which we call scheduling events:

•when a thread requests attachment to the scheduler or
terminates

•when a thread blocks or gets ready

•when a thread changes its scheduling parameters

•when a thread invokes the yield operation

•when a thread explicitly invokes the scheduler

•when a thread inherits or uninherits a priority, due to the
use of a system mutex

In addition to these situations, application scheduling
events are also generated due to other reasons not directly
caused by scheduled threads:

•when a timeout expires

•when a signal is generated for the scheduler

•when a timed notification associated with a specific
thread arrives

•when a previous operation failed

A queue of scheduler events must be used by the imple-
mentation since there could be more than one pending
scheduling event by the time the scheduler thread is chosen
to execute. The system must ensure that the application

scheduler operations are always executed before any of the
application-scheduled threads attached to their scheduler,
so they always take precedence over their scheduled
threads. The system must also ensure that the execution of
the scheduling actions and the invocation of the scheduler
primitive operations are all sequential.

3. Implementations
The abstract interface presented in this paper for appli-

cation-defined schedulers does not impose any particular
implementation. There are several implementation possi-
bilities, three of which are explained below.

The scheduler primitive operations could be executed in
the operating system context as soon as the corresponding
event is generated. So it would be executed in a non-pre-
emptible section at the maximum priority. This mechanism
could be very easy to implement in small kernels, although
it has the drawback that every application scheduler has
impact on all the threads in the system.

Another possibility could be to use an special thread that
is activated at the appropriate priority. This implementation
has the advantage that the execution of application sched-
ulers only affects lower priority threads. As a disadvantage,
efficiency may be jeopardized due to the numerous context
switches between the scheduler and its scheduled threads.

An alternative solution that has the advantages of both
implementations explained above is to execute primitive
operations in the context of scheduled threads. To serialize
execution of primitive operations they would be protected
by a mutex. When an application scheduled thread is cho-
sen by the system to execute it invokes all pending primi-
tive operations for its scheduler. Events associated to the
execution of that thread are also executed by it. A service
thread is also necessary to process scheduling events in
case there are no active scheduled threads at the current
priority level, possibly inherited, of the scheduler. With this
mechanism the scheduler only interferes with threads of
priority lower than the priorities of the service thread and
the scheduled threads; and the number of context switches
is greatly reduced because most of the events can be han-
dled in the context of the executing application scheduled
threads. This is the implementation that is being developed
in MaRTE OS.

4. Abstract Ordering of the Ready Queue
In our previous proposal for application-defined sched-

uling [5] the application schedulers were responsible for
ordering the threads that were ready. The ready queue
already existing inside the kernel was not usually practical
because for a given priority level it was just a FIFO queue,
and dynamic priority scheduling policies usually require
other orderings. In this paper we propose a generalized

Figure 1. Model for Application Scheduling

System
Scheduler

Application
Scheduler

Thread

Application
Scheduler

User Address
Space

Scheduler Address
Space

Application-
Scheduled

Thread

Application-
Scheduled

Thread

ThreadRegular
Thread

Figure 2. Structure of an Application Scheduler

Init

New thread

Terminate_thread

Ready

Block

Explicit_Call

Thread_Notification

Timeout

...

Application
Scheduler

Internal
State

scheduling
queues,...

Run-Time System

System
Priority-based
Scheduler

Invokes
Returns
Scheduling
Actions

...

3

approach, similar to the one proposed by Burns [6], in
which we can make use of the kernel’s ready queue to
order tasks based on an abstract notion of “urgency” on to
which any particular scheduling parameter that the applica-
tion scheduler chooses (e.g., deadline, laxity, value, quality
of service, ...) can be mapped. This approach is especially
suitable for scheduling policies such as EDF, in which the
urgency or priority of the thread only changes from one job
to the next, but remains constant within a specific job.

Each thread job is assigned a particular arithmetic value
of “urgency”. We have chosen a 64 bit unsigned integer
representation because it can be directly mapped to the
POSIX timespec time value or to the internal representa-
tion of time of most operating systems. The kernel uses this
urgency number to order the tasks in the ready queue at a
particular priority level, using a higher value as an indica-
tion of higher urgency. This makes it easier to implement
scheduling algorithms and more important, they become
more efficient because when a task finishes its current job
it is not necessary to invoke the application scheduler again
to determine the next task to execute. The kernel can
choose the new task by itself. In this context only when a
new job arrives it would be necessary to invoke the appli-
cation scheduler.

5. Mutual Exclusion Synchronization
In this section we integrate two classic synchronization

protocols into the application scheduling framework. Both
can address mutual exclusive synchronization for many
fixed- and dynamic-priority scheduling policies with
bounded blocking times. The same reasons that caused
POSIX to provide both priority inheritance and priority
ceiling synchronization protocols are applicable to our
framework and the two protocols chosen: the stack
resource policy (SRP) and urgency inheritance. The prior-
ity ceiling protocol (and the SRP) has shorter worst-case
blocking, is applicable to multiprocessors, and in single-
processor systems it prevents deadlocks if critical sections
do not suspend and also prevents context switches due to
synchronization. The priority or urgency inheritance proto-
col have none of these properties but is still able to bound
the blocking time and does not require specifying a priority
ceiling for each mutex or shared resource. It is more ade-
quate for dynamic systems and for the construction of inde-
pendent software components.

5.1. Stack Resource Policy

Baker presents in [4] the Stack Resource Policy (SRP)
for bounding priority inversion in real time systems, inde-
pendently from the scheduling policy used. The method
can be applied to fixed priority or EDF schedulers, for
instance. A number called the preemption level is assigned

to each thread, using the priority or importance of each
thread: the higher the priority, the higher the preemption
level. Shared resources are also assigned a preemption
level that is the highest of the preemption levels of all the
threads that may use that resource. And a new scheduling
rule is imposed: a thread can only become ready for execu-
tion if its preemption level is strictly higher than the pre-
emption levels of the resources currently locked in the
system.

To use the “Stack Resource Policy” synchronization
protocol we need to define a new attribute of type
unsigned integer, called preemptionlevel, both for
threads and for mutexes of protocol PTHREAD_PRIO-
_PROTECT. In order to make the SRP compatible with the
other pre-existing policies, the priority of the thread and the
priority ceiling of the mutex continues to be used, and is
given more weight than the new preemptionlevel
attribute.This is equivalent to defining the actual preemp-
tion level as:

where n is the number of bits used to represent the
preemption level. The default level for the preemption
level is the maximum possible value (2n-1). This allows
threads scheduled under other policies to continue working
with their usual fixed-priority scheduling rules.

For the SRP to work a new condition has to be met rep-
resented by the system ceiling rule mentioned above. Con-
sequently, ordering threads by “urgency” without
considering their preemption levels could break this SRP
rule.

To correctly implement the SRP the system will keep
track of the preemption levels inherited by the threads, so
that when a thread owns a PTHREAD_PRIO_PROTECT
mutex, it inherits its preemption level. The “activation”
action will place the thread in the ready queue for its active
priority using the “urgency” value for ordering the task, but
with the additional rule that a thread cannot be inserted
before any thread with higher or equal inherited preemp-
tion level. For example, in Figure 3 we can see how task T2
is less urgent than T3, but is placed before the latter in the
ready queue because it has an inherited preemption level of
5. When adding T5 to the queue, we place it between T2
and T3 because, although it has an urgency of 35, its pre-
emption level is not strictly higher than the inherited pre-
emption level of T2.

There is one issue that requires careful attention, which
is the interaction between the SRP and some server algo-
rithms that keep track of the execution budget of a task, to
make a scheduling decision when this budget is exhausted.
Examples of such server algorithms are the sporadic server
for fixed priorities, or the constant bandwidth server for

actual prio 2n× level+=

4

EDF. If the thread whose budget gets exhausted is holding
an SRP mutex we could break the scheduling rules if we
suspend the thread. But we can notice that it is not neces-
sary to suspend the thread, but just to change its urgency
value. In this case, the thread will continue in the same
place of the ready queue for its priority, because it contin-
ues to inherit the preemption level that keeps it in that posi-
tion of the queue. Once the critical section finishes the
thread would uninherit the mutex’s preemption level, and
would be rescheduled under its new urgency. This behavior
allows us to avoid having to defer the scheduling events
occurring while holding an SRP mutex.

5.2. Priority Inheritance

Another real-time synchronization protocol that we can
use in our application-defined scheduling framework is the
original priority inheritance protocol (PIP) defined by Sha,
Rajkumar, and Lehoczky [7]. Although initially intended
for fixed priority systems, the proofs are based on the con-
cept of a job priority and thus can be applied to any sched-
uling policy, such as EDF, in which the priority of each task
job is fixed, even if it varies dynamically between one job
and the next.

In our particular case of application-defined scheduling
the underlying scheduler is using a combination of two
parameters to schedule the threads: a fixed priority and the
urgency value. If we make a thread executing a critical sec-
tion inherit these two values from the threads it is blocking,
we can use the properties of the PIP. We therefore suggest
using this protocol for application-defined scheduled
threads that are using POSIX_PRIO_INHERIT mutexes.

The interactions of budget servers such as the SS and
CBS with the priority & urgency inheritance are also safe
for this protocol. If the execution budget of a particular
thread T expires while inside a critical section with this
protocol, the application scheduler may change its urgency
and perhaps cause a preemption effect; but if some other
thread is blocked or will become blocked by thread T, the
latter will automatically inherit the urgency of the blocked
thread and the critical section will be allowed to be com-
pleted.

6. Conclusions
In this paper we have shown a new API for a set of

application defined scheduling services that can be imple-
mented in a real-time POSIX operating system. The ser-
vices allow applications to install their own schedulers
implementing many kinds of scheduling policies, and
schedule regular threads with these schedulers. Three fun-
damental aspects of application-defined scheduling are
new in the proposal presented in this paper. In first place,
the scheduler can be implemented in many different ways,
and is no longer required for it to be executed by a special
thread. Second, an abstract notion of urgency is defined to
enhance efficiency and simplify the development of appli-
cation schedulers. In third place, we have incorporated the
stack resource policy and priority inheritance as two com-
plementary synchronization protocols that can be used for
many different kinds of schedulers, and that are capable of
working correctly in the application-defined framework.

With these enhancements it is possible to develop and
implement application-defined schedulers using a well
defined API that will enable portability of the schedulers
among different platforms.

References
[1] M. Aldea and M. González. “MaRTE OS: An Ada Kernel for

Real-Time Embedded Applications”. Proceedings of the
International Conference on Reliable Software Technologies,
Ada-Europe-2001, Leuven, Belgium, Lecture Notes in
Computer Science, LNCS 2043, May, 2001.

[2] ISO/IEC 9945-1:2003. Standard for Information Technology -
Portable Operating System Interface (POSIX).

[3] IEEE Std. 1003.13-2003. Information Technology -
Standardized Application Environment Profile- POSIX
Realtime and Embedded Application Support (AEP). The
Institute of Electrical and Electronics Engineers.

[4] Baker T.P., “Stack-Based Scheduling of Realtime Processes”,
Journal of Real-Time Systems, Volume 3, Issue 1 (March
1991), pp. 67–99.

[5] Mario Aldea Rivas and Michael González Harbour. “POSIX-
Compatible Application-Defined Scheduling in MaRTE OS”
Proceedings of 14th Euromicro Conference on Real-Time
Systems, Vienna, Austria, IEEE Computer Society Press, pp.
67-75, June 2002.

[6] A. Burns. “Support for Deadlines and Earliest Deadline First
Scheduling”. Ada Issue AI95-00357-01/02.
http://www.ada-auth.org/~acats/ais.html

[7] Sha, L., Rajkumar, R. and Lehoczky, J.P., “Priority
Inheritance Protocols: An Approach to Real-Time
Synchronization”. IEEE Transaction on Computers, vol. 39,
no. 9, pp. 1175-1185, September 1990.

[8] MaRTE OS home page: http://marte.unican.es

URG:45
PL: 2

URG:20
PL: 2

URG:30
PL: 4

URG:10
PL: 1

URG:35
PL: 3

PL(I): 5 PL(I):2

Figure 3. Rules for combining SRP and Urgency

URG: Urgency
PL: Preemption Level
PL(I): Preemption Level (Inherited)

T1 T2 T3 T4

T5
URG:35
PL: 3

