
Abstract: This paper presents an application program
interface (API) that enables Ada applications to use
application-defined scheduling algorithms in a way
compatible with the scheduling model of the Ada 95 Real-
Time Systems Annex. Several application-defined
schedulers, implemented as special user tasks, can coexist in
the system in a predictable way. This API is currently
implemented on our operating system MaRTE OS.

Keywords: Real-Time Systems, Kernel, Scheduling,
Operating Systems, Ada 95, POSIX.

1. Introduction1

The Real-Time Annex in Ada 95 defines only one
scheduling policy: FIFO_Within_Priorities. Real-time
POSIX [3][5] also defines a preemptive fixed priority
scheduling policy similar to it, together with two other
compatible scheduling policies: a round robin within
priorities policy and the sporadic server policy. These
policies are accessible to Ada tasks running on a POSIX-
compliant real-time operating system. Although fixed
priority scheduling is an excellent choice for real-time
systems, there are application requirements that cannot be
fully accomplished with these policies only. It is well
known that with dynamic priority scheduling policies it is
possible to achieve higher utilization levels of the system
resources than with fixed priority policies. In addition, there
are many systems for which their dynamic nature make it
necessary to have very flexible scheduling mechanisms,
such as multimedia systems, in which different quality of
service properties need to be traded against one another.

It could be possible to incorporate into the Ada and POSIX
standards new dynamic scheduling policies to be used in
addition to the existing policies. The main problem is that

the variety of these policies is so great that it would be
difficult to standardize on just a few. Different applications
needs would require different policies. Instead, in this paper
we propose defining an interface for application-defined
schedulers that could be used to implement a large variety
of scheduling policies. This interface is integrated into the
POSIX Ada Binding [5] and, together with its C language
version, it is being submitted for consideration by the Real-
Time POSIX Working Group.

The proposed interface is currently implemented in our
operating system MaRTE OS (Minimal Real-Time
Operating System for Embedded Applications) [1]. MaRTE
OS is a real-time kernel for embedded applications that
follows the Minimal Real-Time POSIX.13 subset [4],
providing both the C and Ada language POSIX interfaces.
It allows cross-development of Ada and C real-time
applications. Mixed Ada-C applications can also be
developed, with a globally consistent scheduling of Ada
tasks and C threads. It is directly usable as the basis for the
gnat run-time system (GNARL) [8].

The paper is organized as follows: Section 2 discusses some
related work on application-defined scheduling and sets the
justification for our proposal. Section 3 discusses our model
for application-defined scheduling. In Section 4 the Ada
API is described and in Section 5 an example of its use is
shown. Section 6 presents some performance metrics
showing the overhead of using our implementation. Section
7 gives our conclusions and future work.

2. Related Work and Motivation

The idea of application-defined scheduling has been used in
many systems. A solution is proposed in RED-Linux [10],
in which a two-level scheduler is used, where the upper
level is implemented as a user process that maps several
quality of service parameters into a low-level attributes
object to be handled by the lower level scheduler. The
parameters defined are the task priorities, start and finish

1. This work has been funded by the Comisión Interministerial de
Ciencia y Tecnología of the Spanish Government under grants TIC99-
1043-C03-03 and 1FD 1997-1799 (TAP)

Application-Defined Scheduling in Ada

Mario Aldea Rivas and Michael González Harbour

Departamento de Electrónica y Computadores
Universidad de Cantabria
39005-Santander, SPAIN
{aldeam,mgh}@unican.es

times, and execution time budget. With that mechanism
some scheduling algorithms can be implemented but there
may be others that cannot be implemented if they are based
on parameters different from those included in the
aforementioned attributes object. In addition, this solution
does not address the implementation of protocols for shared
resources that could avoid priority inversion or similar
effects.

A different approach is followed in the CPU Inheritance
Scheduling [6], in which the kernel only implements task
blocking, unblocking and CPU donation, and the
application defined schedulers are tasks which donate the
CPU to other tasks. In this approach the only method used
to avoid priority inversion is the priority inheritance, which
may be a limitation for special application-defined policies.
In addition this approach is not designed for
multiprocessors, because only one task can execute at a
time.

Another common solution is to implement the application
scheduling algorithms as modules to be included or linked
with the kernel (S.Ha.R.K [7], RT-Linux [11], Vassal [2]).
With this mechanism the functions exported by the modules
are invoked from the kernel at every scheduling point. This
is a very efficient and general method, but it has the
drawback that the application scheduling algorithms can
neither be isolated from each other nor from the kernel
itself, so, a bug in one of them could affect the whole
system.

In our approach the application scheduler is invoked at
every scheduling point like with the kernel modules, so the
scheduler can have complete control over its scheduled
tasks. But in addition, our application scheduling algorithm
is executed by a user task. This fact implies two important
advantages from our point of view:

a) The system reliability can be improved by protecting
the system from the actions of an erroneous application
scheduler. For efficiency, our interface allows execution
of the application-defined scheduler in an execution
environment different than that of regular application
tasks, for example inside the kernel. But alternatively,
the interface allows the implementation to execute the
scheduler in the environment of the application, to
isolate it from the kernel.

b) The application scheduling code can use standard
interfaces like those defined in the POSIX standard. In
some systems part of these interfaces might not be
accessible for invocation from inside the kernel.

We have designed our interface so that several application-
defined schedulers can be defined, and so that they have a
behaviour compatible with other existing scheduling

policies in POSIX, both on single processor and
multiprocessor platforms. In addition, the interface needs to
take into account the implementation of application-defined
synchronization protocols.

One of the design criteria for our Ada interface has been to
avoid requiring changes to existing run-time systems or to
the compilers. This is important to make it easier to
implement the interface and thus increase the chances that it
is widely used.

The dynamic scheduling mechanism proposed for Real-
Time CORBA 2.0 [9] represents an object-oriented
interface to application-defined schedulers, but it does not
attempt to define how that interface communicates with the
operating system. The interface presented in this paper is
the OS low-level interface, and thus an RT CORBA
implementation could use it to support the proposed
dynamic scheduling interface.

In summary, the motivation for this work is to provide
developers of applications running on top of standard
operating systems (POSIX) with a flexible scheduling
mechanism, handling both task scheduling and
synchronization, that enables them to schedule dynamic
applications that would not meet their requirements using
the more rigid fixed-priority scheduling provided in those
operating systems. This mechanism allows isolation of the
kernel from misbehaved application schedulers. In addition,
we wish to provide this mechanism both for applications
developed in C or Ada.

3. Model for Application-Defined Scheduling

Figure 1 shows the proposed approach for application-
defined scheduling. Each application scheduler is a special
kind of task, that is responsible of scheduling a set of tasks
that have been attached to it. This leads to two classes of
tasks in this context:

System-scheduled
Tasks App. Scheduled

Tasks

Application
Scheduler

Application
Scheduler App. Scheduled

Tasks

System
Scheduler

User Space

Scheduler Space

Figure 1. Model for Application Scheduling

Regular Tasks

Application scheduler tasks

• Application scheduler tasks: special tasks used to run
application schedulers.

• Regular tasks: regular application tasks

The application schedulers can run in the context of the
kernel or in the context of the application. This allows
implementations in which application tasks are not trusted,
and therefore their schedulers run in the context of the
application, as well as implementations for trusted
application schedulers, which can run more efficiently
inside the kernel. Because of this duality we will model the
scheduler tasks as if they run in a separate context, which
we call the scheduler space. The main implication of this
separate space is that for portability purposes the
application schedulers cannot directly share information
with the kernel, nor with regular tasks, except by using the
POSIX shared memory objects, which is the mechanism for
sharing memory among entities with different address
spaces.

According to the way a task is scheduled, we can categorize
the tasks as:

• System-scheduled tasks: these tasks are scheduled
directly by the run-time system and/or the operating
system, without intervention of a scheduler task.

• Application-scheduled tasks: these tasks are also
scheduled by the run-time system and/or the operating
system, but before they can be scheduled, they need to
be activated by their application-defined scheduler.

Although an application scheduler task can itself be
application scheduled, implementations should not be
required to support this feature, because usually these tasks
will be system scheduled.

Because the use of protected resources may cause priority
inversions or similar delay effects, it is necessary that the
scheduler task knows about their use, to establish its own
protocols adapted to the particular task scheduling policy.
As we mentioned above, one of the goals of our interface is
that it does not require changes to existing Ada run-time
systems, and this means that we cannot change the priority
ceiling locking defined in Ada’s Real-Time Annex for
protected objects. For this reason, we have designed our
scheduling interface around the POSIX mutexes, which are
accessible through the POSIX Ada Bindings. The
application can still use protected objects if the
Ceiling_Locking policy is acceptable for the chosen
scheduling policy, and also for synchronization between
system- and application-scheduled tasks. Figure 2 shows
the basic model of these scheduling interfaces, in which
two kinds of mutexes will be considered:

• System-scheduled mutexes. Those created with the
current POSIX protocols:
No_Priority_Inheritance,
Highest_Ceiling_Priority (immediate priority
ceiling), or Highest_Blocked_Task (basic priority
inheritance). They can be used to access resource shared
between application schedulers, between sets of
application-scheduled threads attached to different
schedulers, or even between an application scheduler
and its scheduled threads (in this case the mutex and its
protected state must be placed in a POSIX shared
memory object).

• Application-scheduled mutexes: Those created with the
protocol Appsched_Protocol. The behaviour of the
protocol itself is defined by the application scheduler.

3.1. Relations with Other Tasks

Each task in the system, whether application- or system-
scheduled, has a system priority:

• For system-scheduled tasks, the system priority is the
priority assigned using pragma Priority or the sub-
program Ada.Dynamic_Priorities.Set_Priority,
possibly modified by the inheritance of other priorities
through the use of mutexes or protected objects.

• For application-scheduled tasks, the system priority is
lower than or equal to the system priority of their
scheduler. The system priority of an application-
scheduled task may change because of the inheritance of
other system priorities through the use of mutexes or
protected objects. In that case, its scheduler also inherits
the same system priority (but this priority is not inherited
by the rest of the tasks scheduled by that scheduler). In
addition to the system priority, application-scheduled
tasks have application scheduling parameters that are
used to schedule that task contending with the other
tasks attached to the same application scheduler. The
system priority always takes precedence over any
application scheduling parameters. Therefore,

System-scheduled
Tasks App. Scheduled

Tasks

Application
Scheduler

Application
Scheduler App. Scheduled

Tasks

Regular
Mutex or PO

Regular
Mutex or PO

App. Sched.
Mutex

App. Sched.
Mutex

Regular
Mutex or PO

Figure 2. Model for Application-Defined
Synchronization

application-scheduled tasks and their scheduler take
precedence over tasks with lower system priority, and
they are always preempted by tasks with higher system
priority that become ready. The scheduler always takes
precedence over its scheduled tasks.

If application-scheduled tasks coexist at the same priority
level with other system-scheduled tasks, then the Real-
Time Annex scheduling rules apply as if the application-
scheduled tasks were scheduled under the
FIFO_Within_Priorities policy; so a task runs until
completion, until blocked, or until preempted, whatever
happens earlier. Of course, in that case the interactions
between the different policies may be difficult to analyse,
and thus the normal use will be to have the scheduler task
and its scheduled tasks running at an exclusive range of
system priorities.

In the presence of priority inheritance, the scheduler
inherits the same priorities as its scheduled tasks, to prevent
priority inversions from occurring. This means that high
priority tasks that share resources with lower system-
priority application tasks must take into account the
scheduler overhead when accounting for their blocking
times.

3.2. Relations Between the Scheduler and its
Attached tasks

When an application-defined task is attached to its
application scheduler, the latter has to either accept it or
reject it, based upon the current state and the scheduling
attributes of the candidate task. Rejection of a task causes
POSIX_Error to be raised during the attachment process.

Each application-defined scheduler may activate many
application-scheduled tasks to run concurrently. The
scheduler may also block previously activated tasks.
Among themselves, concurrently scheduled tasks are
activated like FIFO_Within_Priorities tasks. As
mentioned previously, the scheduler always takes
precedence over its scheduled tasks.

For an application-scheduled task to become ready it is
necessary that its scheduler activates it. When the
application task executes one of the following actions or
experiences one of the following situations, a scheduling
event is generated for the scheduler, unless the scheduling
event to be generated is being filtered out (discarded).

•when a task requests attachment to the scheduler

•when a task blocks or gets ready

•when a task changes its scheduling parameters

•when a task invokes the yield operation (i.e., delay 0.0)

•when a task explicitly invokes the scheduler

•when a task inherits or uninherits a priority, due to the
use of a system mutex or a protected object

•when a task does any operation on a application-
scheduled mutex.

The application scheduler is a special task whose code is
usually a loop where it waits for a scheduling event to be
notified to it by the system, and then determines the next
application task to be activated.

The scheduler being a single task implies that its actions are
all sequential. For multiprocessor systems this may seem to
be a limitation, but for these systems several schedulers
could be running simultaneously on different processors,
cooperating with each other. For single processor systems
the sequential nature of the scheduler should be no
problem. Again, it is possible to have several scheduler
tasks running at the same time, and cooperating with each
other by synchronizing through regular mutexes and
condition variables, or protected objects.

4. Interface

The interface offered to the programmer is divided into
three packages:

• POSIX_Application_Scheduling: a completely new
package where the main part of the interface is defined.
This package defines the scheduling events and actions
and also operations to manage scheduler and scheduled
tasks.

• POSIX_Mutexes: This is an existing package in the
POSIX Ada Bindings, to which we have added the
interface for management of application-scheduled
mutexes.

• POSIX_Timers: This is also an existing package in the
POSIX Ada Bindings, to which we have added the CPU-
Time clocks. This functionality is not yet included in the
POSIX Ada binding but it has already been standardized
in the C family of POSIX standards [3]. It is very
interesting for implementing scheduling algorithms
based on the execution time consumed by the tasks, such
as the sporadic server, round robin, and others.

The main elements of the interface are in package POSIX_-
Application_Scheduling, and they are described in
detail in the following subsections.

4.1. Interfaces for the Scheduler Tasks

4.1.1. Scheduling Events

The interface describes an abstract data type for the
scheduling events that the system may report to a scheduler
task. The system stores the scheduling events in a FIFO
queue until processed by the scheduler. The information
included in these events is:

• the event code,

• the identifier of the task that caused the event,

• and additional information associated with the event, and
dependent on it; it can be an inherited (or uninherited)
system priority, information related to an accepted
signal, a pointer to an application-scheduled mutex, or
application-specific information.

The specific events that may be notified to a scheduler task
are shown in Table 1.:

There are some Ada-specific events that might have been
useful to a scheduler, but that are not available because the
underlying POSIX standard does not know about them. For
example, a task becoming completed, or a task blocked
waiting for a child to elaborate. In the schedulers that we
have built, these situations can be handled through the usual
BLOCK event. If more accurate handling of these events is
desired, cooperation from the application developer would
be required, by establishing additional communication
between the scheduled thread and its scheduler, via
Invoke_Scheduler (see section 4.2) and/or by accessing
shared data structures.

4.1.2. Executing Scheduling Actions

Another important abstract data type is the interface for
storing a list of scheduling actions. This list will be
prepared by the scheduler task and reported to the system
via a call to one of the Execute_Actions operations. The
possible actions that can be added to one of these lists are
the following:

•Accept or reject a task that has requested attachment to
this scheduler

•Activate or suspend an application scheduled task

•Accept or reject initialization of an application-
scheduled mutex

•Grant the lock of an application-scheduled mutex

The main operations of our interface are the
Execute_Actions family of procedures, which allow the
application scheduler to execute a list of scheduling actions
and then wait for the next scheduling event to be reported
by the system. If desired, a timeout can be set as an
additional return condition which will occur when there is
no scheduling event available but the timeout expires. The

Table 1: Scheduling Events

Event Code Description
Additional
info

NEW_TASK A new task has requested
attachment to the scheduler

none

TERMINATE_-
TASK

A task has been terminated none

READY A task has become unblocked
by the system

none

BLOCK A task has blocked none

YIELD A task yields the CPU (due to a
delay 0.0)

none

SIGNAL A signal belonging to the
requested set has been accepted
by the scheduler task.

Signal-
related
information

CHANGE_-
SCHED_PARAM

A task has changed its schedul-
ing parameters

none

EXPLICIT_-
CALL

A task has explicitly invoked
the scheduler

Applica-
tion mes-
sage

TIMEOUT A timeout has expired none

PRIORITY_-
INHERIT

A task has inherited a new sys-
tem priority due to the use of
system mutexes or protected
objects

Inherited
system pri-
ority

PRIORITY_-
UNINHERIT

A task has finished the inherit-
ance of a system priority

Uninher-
ited system
priority

INIT_MUTEX A task has requested initializa-
tion of an application-sched-
uled mutex

Pointer to
the mutex

DESTROY_-
MUTEX

A task has destroyed an applica-
tion-scheduled mutex

Pointer to
the mutex

LOCK_MUTEX A task has invoked a “lock”
operation on an available appli-
cation- scheduled mutex

Pointer to
the mutex

TRY_LOCK_-
MUTEX

A task has invoked a “try lock”
operation on an available appli-
cation- scheduled mutex

Pointer to
the mutex

UNLOCK_-
MUTEX

A task has released the lock of
an application-scheduled mutex

Pointer to
the mutex

BLOCK_AT_-
MUTEX

A task has blocked at an appli-
cation-scheduled mutex

Pointer to
the mutex

CHANGE_-
MUTEX_-
SCHED_PARAM

A task has changed the schedul-
ing parameters of an applica-
tion-scheduled mutex

Pointer to
the mutex

Table 1: Scheduling Events (Continued)

Event Code Description
Additional
info

system time measured immediately before the procedure
returns can be requested if it is relevant for the algorithm.

The Execute_Actions procedures can also be
programmed to return when a POSIX signal is generated
for the task. This possibility eases the use of POSIX timers,
including CPU-time timers, as sources of scheduling events
for our scheduler tasks. Use of CPU-time timers allows the
scheduler to impose limits on the execution time that a
particular task may spend. The specification of the
Execute_Actions procedures is:

procedure Execute_Actions
 (Sched_Actions : in Scheduling_Actions;
 Set : in POSIX_Signals.Signal_Set;
 Event : out Scheduling_Event;
 Current_Time : out POSIX.Timespec);

procedure Execute_Actions_With_Timeout
 (Sched_Actions : in Scheduling_Actions;
 Set : in POSIX_Signals.Signal_Set;
 Event : out Scheduling_Event;
 Timeout : in POSIX.Timespec;
 Current_Time : out POSIX.Timespec);

Other overloaded versions of these procedures with less
parameters are available for the cases in which the
application is not interested in obtaining the current time, or
is not interested in waiting for a signal to be received.

4.1.3. Other Interfaces

The Become_An_Application_Scheduler procedure
allows a regular task to become an application scheduler:

procedure Become_An_Application_Scheduler;

The ideal interface for this purpose would be a pragma that
would enable the task to be created as an application
scheduler from the beginning, but that would imply a
modification to the compiler.

After the task has become an application scheduler it can
set its attributes through different operations in the
interface. The attributes are the kind of timeout that is
supported (relative or absolute), the clock used to determine
when the timeout expires, and the event mask that allows
scheduling events to be discarded by the system, and thus
are not reported to the application scheduler. A subset of the
scheduler attributes interface is shown below:

procedure Set_Clock
 (Clock : in POSIX_Timers.Clock_Id);
procedure Set_Flags
 (Flags : in Scheduler_Flags);
type Event_Mask is private;
procedure Set_Event_Mask
 (Mask : in Event_Mask);

4.2. Interfaces for the Application-Scheduled
Tasks

The Change_Task_Policy_To_App_Sched procedure
allows a regular task to set its scheduling policy to
application-scheduled, attaching itself to a particular
scheduler. The scheduling parameters associated with the
task can be set via the Change_Task_Policy procedure of
the generic package Application_Defined_Policy. In
this package the generic parameter is the scheduling
Parameters type, which of course must be defined by the
application.

procedure Change_Task_Policy_To_App_Sched
 (Scheduler : in Task_Identification.Task_Id);

generic
 type Parameters is private;
package Application_Defined_Policy is
 procedure Change_Task_Policy
 (Scheduler : in Task_Identification.Task_Id;
 Param : in Parameters);
 procedure Get_Parameters
 (T : in Task_Identification.Task_Id;
 Param : out Parameters);
end Application_Defined_Policy;

The Invoke_Scheduler procedure allows a scheduled
task to explicitly invoke its scheduler. A generic version of
this procedure is also offered for the case in which the
scheduled task needs to send a message with information to
its scheduler. The type of this message is the generic
parameter.

procedure Invoke_Scheduler;

generic
 type Message is private;
package Explicit_Scheduler_Invocation is
 procedure Invoke (Msg : in Message);
 function Get_Message
 (Event : in Scheduling_Event)
 return Message;
end Explicit_Scheduler_Invocation;

An interface for handling task-specific data has been added.
At first we had planned using the task-specific data
interface defined in package Ada.Task_Parameters

defined in Ada 95 Annex C, but we found out that this
package did not allow us handling tasks that had
terminated, and it is usually an important part of the
application scheduler to do cleanup operations after a task
terminates. For this reason we have defined our own generic
package for task-specific data that may be shared between
the scheduler and its scheduled tasks.

5. Example of an Application-Defined
Policy: EDF

The following example shows the pseudocode of a set of
periodic tasks scheduled under an application-defined
Earliest Deadline First (EDF) scheduling policy. In first
place we define a data type for the scheduling parameters,
and we instantiate the generic package
Application_Defined_Policy using this type:

type EDF_Parameters is record
 Deadline, Period : POSIX.Timespec;
end record;
package EDF_Policy is new
 Application_Defined_Policy (EDF_Parameters);

The scheduler can be in one of the three following states:
Idle, when there are no tasks registered to be scheduled;
Waiting, when there are tasks registered but none active;
and Running, when there are one or more active tasks:

type EDF_State is (Idle, Waiting, Running);

The EDF scheduler has a list of tasks that are registered for
being scheduled under it. Each of these tasks can be active,
blocked, or timed (when it has finished its current execution
and is waiting for its next period):

type Scheduled_Task_State is
 (Active, Blocked, Timed);

The scheduler uses the following operations:

• The Schedule_Next procedure uses the current time
and the list of registered tasks to update the list,
calculate the current state, the next task to be executed,
and the earliest start time of the set of active tasks (not
including the next one to run).

• The Add_To_List_Of_Tasks procedure adds a new
task to the list of scheduled tasks.

• The Eliminate_From_List_of_tasks procedure
eliminates a terminated task from the list of scheduled
tasks.

• The Make_Active procedure changes the state of a task
in the list to Active.

• The Make_Blocked procedure changes the state of a
task in the list to Blocked.

• The Make_Timed procedure changes the state of a task
in the list to Timed.

The pseudocode of the scheduler is the following:

task body EDF_Scheduler is
 Sch_State : EDF_State;
 Current_Task : Task_Id;
 Now, Earliest_Start : POSIX.Timespec;
 Event : Scheduling_Event;

 Sched_Actions : Scheduling_Actions;
begin
 Become_An_Application_Scheduler;
 Set_Clock(Clock_Realtime);
 Set_Flags(Absolute_Timeout);
 Now:=Get_Time(Clock_Realtime);
 loop
 Schedule_Next(Sch_State, Current_Task,
 Earliest_Start, Now);
 case Sch_State is
 when Idle =>
 Execute_Actions
 (Null_Sched_Actions, Event, Now);
 when Waiting =>
 Execute_Actions_with_Timeout
 (Null_Sched_Actions, Event,
 Earliest_Start,Now);
 when Running =>
 Add_Activate
 (Sched_Actions,Current_Task)
 Execute_Actions_with_Timeout
 (Sched_Actions, Event,
 Earliest_Start,Now);
 end case;
 -- process scheduling events
 case Get_Event_Code(Event) is
 when New_Task =>
 Add_To_List_of_Tasks
 (Get_Task(Event),now);
 when Terminate_Task =>
 Eliminate_From_List_of_Tasks
 (Get_Task(Event));
 when Ready =>
 Make_Active(Get_Task(Event));
 when Block =>
 Make_Blocked(Get_Task(Event));
 when Explicit_Call =>
 Make_Timed(Get_Task(Event));
 when Timeout => null;
 when Others => null;
 end case;
 end loop;
end EDF_Scheduler;

Finally, the pseudocode of one of the application-scheduled
tasks is the following:

task body Periodic_Task is
 Param : EDF_Parameters:=(Deadline,Period);
begin
 EDF_Policy.Change_Task_Policy
 (Task_Id_of(EDF_Scheduler),Param);
 loop
 -- do useful work
 Invoke_Scheduler; -- task will wait
 end loop; -- until the next period
end Periodic_Task;

6. Performance Metrics

The final paper will include performance metrics on the use
of different application-defined scheduling policies.
Preliminary results show quite promising results. For a

round robin scheduler the context switch between two tasks
was 2.9 microseconds on a 550 MHz Pentium III. This is
about three times the context switch for regular fixed-
priority tasks, and is a reasonable number if we take into
account that now to execute one task the scheduler task also
has to execute. The result is efficient enough to be able to
run high frequency tasks that are scheduled by application
defined policies.

7. Conclusions and Further Work

We have defined a new API for application-defined
scheduling. There are two versions of the API, one in C
and the other one in Ada. Both are designed in the context
of a POSIX operating system. The main design
requirements have been to have a compatible behaviour
with other existing POSIX fixed priority scheduling policy,
to be able to isolate the scheduler from the kernel and from
other application schedulers, to be able to run both on
single processor and multiprocessor systems, and to be able
to describe application-defined synchronization protocols.

The proposed API has been implemented in MaRTE OS,
which is a free software implementation of the POSIX
minimal real-time operating system, intended for small
embedded systems. It is written in Ada but provides both
the POSIX Ada and the C interfaces. Using this
implementation we have programmed and tested several
scheduling policies, such as a priority-based round robin
scheduler, EDF, and more complex dynamic scheduling
policies. We have also tested some application-defined
synchronization protocols, such as the full Priority Ceiling
Protocol. Preliminary performance data show a nice level of
efficiency.

The main limitations of our proposed interface from the
point of view of an Ada application are:

•We cannot use protected objects for application-defined
synchronization protocols. We can only use POSIX
mutexes for this purpose.

• The scheduler task cannot be created as a scheduler task
from the beginning; it has to be created dynamically. In
addition, its scheduled tasks must be created with one of
the POSIX fixed-priority scheduling policies, and then
switched to become application scheduled tasks.

The reason for these limitations has been our desire to keep
the implementation simple and not require changing the
run-time system nor the compiler. In the future, it would be
interesting to make these changes so that we could use
protected objects for application-defined synchronization,
and pragmas for setting the scheduler task and the
scheduled tasks properties from the beginning.

MaRTE OS, including the application-defined scheduling
services defined in this paper can be found at: http://
marte.unican.es

References

[1] M. Aldea and M. González. “MaRTE OS: An Ada Kernel for
Real-Time Embedded Applications”. Proceedings of the
International Conference on Reliable Software Technologies,
Ada-Europe-2001, Leuven, Belgium, Lecture Notes in
Computer Science, LNCS 2043, May, 2001.

[2] G.M. Candea and M.B. Jones, “Vassal: Loadable Scheduler
Support for Multi-Policy Scheduling”. Proceedings of the
Second USENIX Windows NT Symposium, Seattle,
Washington, August 1998.

[3] IEEE Std 1003.1-2001. Information Technology -Portable
Operating System Interface (POSIX). Institute of Electrical
and electronic Engineers.

[4] IEEE Std. 1003.13-1998. Information Technology -
Standardized Application Environment Profile- POSIX
Realtime Application Support (AEP). The Institute of
Electrical and Electronics Engineers.

[5] IEEE Std 1003.5b-1996, Information Technology—POSIX Ada
Language Interfaces—Part 1: Binding for System Application
Program Interface (API)—Amendment 1: Realtime
Extensions. The Institute of Electrical and Engineering
Electronics.

[6] B. Ford and S. Susarla, “CPU Inheritance Scheduling”.
Proceedings of OSDI, October 1996.

[7] P. Gai, L. Abeni, M. Giorgi, G. Buttazzo, "A New Kernel
Approach for Modular Real-Time Systems Development",
IEEE Proceedings of the 13th Euromicro Conference on Real-
Time Systems, Delft, The Netherlands, June 2001.

[8] E.W. Giering and T.P. Baker (1994). The GNU Ada Runtime
Library (GNARL): Design and Implementation. Wadas’94
Proceedings.

[9] OMG. Real-Time CORBA 2.0: Dynamic Scheduling, Joint
Final Submission. OMG Document orbos/2001-06-09, June
2001.

[10]Y.C. Wang and K.J. Lin, “Implementing a general real-time
scheduling framework in the red-linux real-time kernel”.
Proceedings of IEEE Real-Time Systems Symposium, Phoenix,
December 1999.

[11]V. Yodaiken, “An RT-Linux Manifesto”. Proceedings of the
5th Linux Expo, Raleigh, North Carolina, USA, May 1999.

