
Abstract: This paper presents an application program in-
terface (API) that enables applications to use application-
defined scheduling algorithms in a way compatible with the
scheduling model defined in POSIX. Several application-
defined schedulers, implemented as special user threads,
can coexist in the system in a predictable way. This API is
currently implemented on our operating system MaRTE OS.
We plan to propose it for a future revision of the POSIX
standard.

1. Introduction1

Real-time POSIX [1][7] defines a preemptive fixed pri-
ority scheduling policy, together with two other compatible
scheduling policies: a round robin within priorities policy
and the sporadic server policy [5]. Although fixed priority
scheduling is an excellent choice for real-time systems,
there are application requirements that cannot be fully
accomplished with these policies only. It is well known that
with dynamic priority scheduling policies it is possible to
achieve higher utilization levels of the system resources
than with fixed priority policies. In addition, there are
many systems for which their dynamic nature make it nec-
essary to have very flexible scheduling mechanisms, such
as multimedia systems, in which different quality of ser-
vice properties need to be traded against one another.

It could be possible to incorporate into the POSIX stan-
dard new dynamic scheduling policies to be used in addi-
tion to the existing policies [14]. The main problem is that
the variety of these policies is so great that it would be dif-
ficult to standardize on just a few. Different applications
needs would require different policies. Instead, in this
paper we propose defining an interface for application-
defined schedulers that could be used to implement a large
variety of scheduling policies. A preliminary version of this

interface was presented in [3]. This interface is integrated
into the POSIX standard and it is being submitted for con-
sideration by the Real-Time POSIX Working Group.

The proposed interface is currently implemented in our
operating system MaRTE OS (Minimal Real-Time Operat-
ing System for Embedded Applications) [4], which is a
real-time kernel that follows the Minimal Real-Time
POSIX.13 subset [6], providing both the C and Ada lan-
guage POSIX interfaces. It allows cross-development of
Ada and C real-time applications. Mixed Ada-C applica-
tions can also be developed, with a globally consistent
scheduling of Ada tasks and C threads.

The paper is organized as follows: Section 2 discusses
some related work on application-defined scheduling and
sets the justification for our proposal. Section 3 discusses
our model for application-defined scheduling. In Section 4
the C language application program interface (API) is
described and in Section 5 an example of its use is shown.
Section 6 presents some performance metrics showing the
overhead of using our implementation. Section 7 gives our
conclusions and future work.

2. Related Work and Motivation
The idea of application-defined scheduling has been

used in many systems. A solution is proposed in RED-
Linux [8], in which a two-level scheduler is used, where
the upper level is implemented as a user process that maps
several quality of service parameters into a low-level
attributes object to be handled by the lower level scheduler.
The parameters defined are the thread priorities, start and
finish times, and execution time budget. With that mecha-
nism some scheduling algorithms can be implemented but
there may be others that cannot be implemented if they are
based on parameters different from those included in the
aforementioned attributes object. In addition, this solution
does not address the implementation of protocols for
shared resources that could avoid priority inversion or sim-
ilar effects.

1. This work has been funded by the Comisión Interministerial de
Ciencia y Tecnología of the Spanish Government under grants TIC99-
1043-C03-03 and 1FD 1997-1799 (TAP)

POSIX-Compatible Application-Defined Scheduling in MaRTE OS

Mario Aldea Rivas and Michael González Harbour

Departamento de Electrónica y Computadores
Universidad de Cantabria
39005-Santander, SPAIN
{aldeam,mgh}@unican.es

A different approach is followed in the CPU Inheritance
Scheduling [9], in which the kernel only implements thread
blocking, unblocking and CPU donation, and the applica-
tion defined schedulers are threads which donate the CPU
to other threads. In this approach the only method used to
avoid priority inversion is the priority inheritance.
Although other synchronization policies could be imple-
mented, the lack of an interface to trigger scheduling deci-
sions by the use of mutexes makes it difficult or impossible
to implement general synchronization protocols, which
may be a limitation for special application-defined policies.
In addition although this approach supports multiprocessor
schedulers, it is not possible to have one single-threaded
scheduler to schedule threads in other processors. Some
multiprocessor architectures, for example using one gen-
eral-purpose processor running the scheduler and an array
of digital signal processors running the scheduled threads,
may require that capability.

Another common solution is to implement the applica-
tion scheduling algorithms as modules to be included or
linked with the kernel (S.Ha.R.K [10], RT-Linux [12], Vas-
sal [13]). With this mechanism the functions exported by
the modules are invoked from the kernel at every schedul-
ing point. This is a very efficient and general method but as
a drawback, the application scheduling algorithms can nei-
ther be isolated from each other nor from the kernel itself,
so, a bug in one of them could affect the whole system.

In our approach the application scheduler is invoked at
every scheduling point like with the kernel modules, so the
scheduler can have complete control over its scheduled
threads. But in addition, our application scheduling algo-
rithm is executed by a user thread. This fact implies two
important advantages from our point of view:

a) The system reliability can be improved by protecting
the system from the actions of an erroneous application
scheduler. For efficiency, our interface allows
execution of the application-defined scheduler in an
execution environment different than that of regular
application thread, for example inside the kernel. But
alternatively, the interface allows the implementation to
execute the scheduler in the environment of the
application, to isolate it from the kernel. In this way,
high priority threads that are critical cannot be affected
by a faulty scheduler executing at a lower priority level.

b) The application scheduling code can use standard
interfaces like those defined in the POSIX standard. In
some systems part of these interfaces might not be
accessible for invocation from inside the kernel.

We have designed our interface so that several applica-
tion-defined schedulers can be defined, and so that they
have a behavior compatible with other existing scheduling
policies in POSIX, both on single processor and multipro-

cessor platforms. In addition, the interface needs to take
into account the implementation of application-defined
synchronization protocols.

The dynamic scheduling mechanism proposed for Real-
Time CORBA 2.0 [11] represents an object-oriented inter-
face to application-defined schedulers, but it does not
attempt to define how that interface communicates with the
operating system. The interface presented in this paper is
the OS low-level interface, and thus an RT CORBA imple-
mentation could use it to support the proposed dynamic
scheduling interface.

In summary, the motivation for this work is to provide
developers of applications running on top of standard oper-
ating systems (POSIX) with a flexible scheduling mecha-
nism, handling both thread scheduling and
synchronization, that enables them to schedule dynamic
applications that would not meet their requirements using
the more rigid fixed-priority scheduling provided in those
operating systems. This mechanism allows isolation of the
kernel from misbehaved application schedulers. In addi-
tion, we wish to provide this mechanism both for applica-
tions developed in C or Ada.

3. Model for Application-Defined
Scheduling

Figure 1 shows the proposed approach for application-
defined scheduling. Each application scheduler is a special
kind of thread, that is responsible of scheduling a set of
threads that have been attached to it. This leads to two
classes of threads in this context:

•Application scheduler threads: special threads used to
run application schedulers.

•Regular threads: regular application threads

The application schedulers can run in the context of the
kernel or in the context of the application. This allows
implementations in which application threads are not
trusted, and therefore their schedulers run in the context of

Figure 1. Model for Application Scheduling

System-scheduled
Tasks App. Scheduled

Tasks

Application
Scheduler

Application
Scheduler App. Scheduled

Tasks

System
Scheduler

User Space

Scheduler Space

Regular Tasks

Application scheduler tasks

the application, as well as implementations for trusted
application schedulers, which can run more efficiently
inside the kernel. Because of this duality we will model the
scheduler threads as if they run in a separate context, which
we call the scheduler space. The main implication of this
separate space is that for portability purposes the applica-
tion schedulers cannot directly share information with the
kernel, nor with regular threads, except by using the
POSIX shared memory objects, which is the mechanism
for sharing memory among entities with different address
spaces.

According to the way a thread is scheduled, we can cate-
gorize the threads as:

•System-scheduled threads: these threads are scheduled
directly by the operating system, without intervention of
a scheduler thread.

•Application-scheduled threads: these threads are also
scheduled by the operating system, but before they can
be scheduled, they need to be activated by their applica-
tion-defined scheduler.

Although an application scheduler thread can itself be
application scheduled, implementations should not be
required to support this feature, because usually these
threads will be system scheduled.

Because the use of mutexes may cause priority inver-
sions or similar delay effects, it is necessary that the sched-
uler thread knows about their use, to establish its own
protocols adapted to the particular thread scheduling pol-
icy. As we show in Figure 2, two kinds of mutexes will be
considered:

•System-scheduled mutexes. Those created with the cur-
rent POSIX protocols: no priority inheritance
(PTHREAD_PRIO_NONE), immediate priority ceiling
(PTHREAD_PRIO_PROTECT), or basic priority inherit-
ance (PTHREAD_PRIO_INHERIT). They can be used to
access resources shared between application schedulers,
between sets of application-scheduled threads attached to
different schedulers, or even between an application

scheduler and its scheduled threads (in this case the
mutex and its protected state must be placed in a POSIX
shared memory object).

•Application-scheduled mutexes: Those created with
PTHREAD_APPSCHED_PROTOCOL. The behavior of the
protocol itself is defined by the application scheduler.
The kernel notifies the scheduler about the request to
lock one such mutex, the execution of an unlock opera-
tion, or when a thread blocks on one of these mutexes.
After the lock request operation the application scheduler
can chose to grant or not the mutex to the requesting
thread. The block event might not be necessary in some
schedulers that implement non-blocking synchroniza-
tion protocols.

3.1. Relations with Other Threads

Each thread in the system, whether application- or sys-
tem-scheduled, has a system priority:

•For system-scheduled threads, the system priority is the
priority defined in its scheduling parameters
(sched_priority field of its sched_param structure),
possibly modified by the inheritance of other priorities
through the use of mutexes.

•For application-scheduled threads, the system priority is
lower than or equal to the system priority of their sched-
uler thread. The system priority of an application-sched-
uled thread may change because of the inheritance of
other system priorities through the use of mutexes. In
that case, its scheduler also inherits the same system pri-
ority (but this priority is not inherited by the rest of the
threads scheduled by that scheduler). In addition to the
system priority, application-scheduled threads have
application scheduling parameters that are used to
schedule that thread contending with the other threads
attached to the same application scheduler. The system
priority always takes precedence over any application
scheduling parameters. Therefore, application-sched-
uled threads and their scheduler take precedence over
threads with lower system priority, and they are always
preempted by threads with higher system priority that
become ready. The scheduler always takes precedence
over its scheduled threads.

If application-scheduled threads coexist at the same pri-
ority level with other system-scheduled threads, then
POSIX scheduling rules apply as if the application-sched-
uled threads were scheduled under the FIFO within priori-
ties policy (SCHED_FIFO); so a thread runs until
completion, until blocked, or until preempted, whatever
happens earlier. A thread running under the round-robin
within priorities policy (SCHED_RR) runs until completion,
until blocked, until preempted, or until its round robin
quantum has been consumed, whatever happens earlier. Of

Figure 2. Model for Application-Defined
Synchronization

System-scheduled
Tasks App. Scheduled

Tasks

Application
Scheduler

Application
Scheduler App. Scheduled

Tasks

Regular
Mutex or PO

Regular
Mutex or PO

App. Sched.
Mutex

App. Sched.
Mutex

Regular
Mutex or PO

course, in that case the interactions between the different
policies may be difficult to analyze, and thus the normal
use will be to have the scheduler thread and its scheduled
threads running at an exclusive range of system priorities.

In the presence of priority inheritance, the scheduler
inherits the same priorities as its scheduled threads, to pre-
vent priority inversions from occurring. This means that
high priority threads that share resources with lower sys-
tem-priority application threads must take into account the
scheduler overhead when accounting for their blocking
times.

3.2. Relations Between the Scheduler and its
Attached Threads

When an application-defined thread is attached to its
application scheduler, the latter has to either accept it or
reject it, based upon the current state and the scheduling
attributes of the candidate thread. Rejection of a thread
causes the thread creation function to return an error.

Each application-defined scheduler may activate many
application-scheduled threads to run concurrently. The
scheduler may also block previously activated threads.
Among themselves, concurrently scheduled threads are
activated like SCHED_FIFO threads. As mentioned previ-
ously, the scheduler always takes precedence over its
scheduled threads.

When an application-scheduled thread executes one of
the following actions or experiences one of the following
situations, a scheduling event is generated for its scheduler,
unless the scheduling event to be generated is being filtered
out (discarded).

•when a thread requests attachment to the scheduler

•when a thread blocks or gets ready

•when a thread changes its scheduling parameters

•when a thread invokes the yield operation

•when a thread explicitly invokes the scheduler

•when a thread inherits or uninherits a priority, due to the
use of a system mutex

•when a thread does any operation on a application-sched-
uled mutex.

The application scheduler is a special thread whose code
is usually a loop where it waits for a scheduling event to be
notified to it by the system, and then determines the next
application thread or threads to be activated.

Although the scheduler can activate many threads at
once, it is a single thread and therefore its actions are all
sequential. For multiprocessor systems this may seem to be
a limitation, but for these systems several schedulers could
be running simultaneously on different processors, cooper-
ating with each other by synchronizing through regular

mutexes and condition variables. For single processor sys-
tems the sequential nature of the scheduler should be no
problem.

4. Interface
As said before, the proposed interface is integrated into

POSIX. Some extra functionality has been added to the
header files <pthread.h> and <sched.h> in order to
allow the application to:

•handle scheduling events,

•manage and execute scheduling actions,

•create scheduler and scheduled threads,

•set and get application-defined scheduling parameters
and the scheduling status of the scheduled threads,

•explicitly invoke the scheduler from a scheduled thread,

•and create application-scheduled mutexes.

The main aspects of this interface are described in detail
in the following subsections.

4.1. Interfaces for the Scheduler threads

4.1.1. Scheduling Events

The scheduling events are stored in a FIFO queue until
processed by the scheduler. The information included in
these events is:

•the event code,

•the identifier of the thread that caused the event,

•and additional information associated with the event, and
dependent on it: it can be an inherited (or uninherited)
system priority, information related to an accepted signal
stored in a siginfo_t object, a pointer to an applica-
tion-scheduled mutex, or application-specific informa-
tion.

The specific events that may be notified to a scheduler
thread are shown in Table 1. An event for notifying pre-
emption of a scheduled thread is not included. Although
such event might seem to be useful to measure execution
times from an application scheduler, it was difficult for the
scheduler to know when a scheduled thread actually started
executing. If measuring execution time is required, it is
much simpler to use a POSIX execution time clock for that
purpose.

4.1.2. Executing Scheduling Actions

Our interface defines an opaque type for storing a list of
scheduling actions. The possible actions that can be added
to one of these lists are the following:

•Accept or reject a thread that has requested attachment to
this scheduler

•Activate or suspend an application scheduled thread

•Accept or reject initialization of an application-sched-
uled mutex

•Grant the lock of an application-scheduled mutex

The list of actions will be prepared by the scheduler
thread and reported to the system via a call to the
posix_appsched_execute_actions() function. This
function is the main operation in our interface. It allows the
application scheduler to execute a list of scheduling actions
and then it suspends waiting for the next scheduling event
to be reported by the system. If desired, a timeout can be
set as an additional return condition which will occur when
there is no scheduling event available but the timeout

expires. The system time measured immediately before the
function returns can be requested if it is relevant for the
algorithm.

The posix_appsched_execute_actions() func-
tion can also be programmed to return when a POSIX sig-
nal is generated for the thread. This possibility eases the
use of POSIX timers, including CPU-time timers, as
sources of scheduling events for our scheduler threads. The
prototype of this function is:

int posix_appsched_execute_actions
 (const posix_appsched_actions_t *sched_actions,
 const sigset_t *set,
 const struct timespec *timeout,
 struct timespec *current_time,
 struct posix_appsched_event *event);

Table 1: Scheduling Events

Event Code Description
Additional
information

POSIX_APPSCHED_NEW A new thread has requested attachment to the scheduler none

POSIX_APPSCHED_TERMINATE A thread has been terminated none

POSIX_APPSCHED_READY A thread has become unblocked by the system none

POSIX_APPSCHED_BLOCK A thread has blocked none

POSIX_APPSCHED_YIELD A thread yields the CPU none

POSIX_APPSCHED_SIGNAL A signal belonging to the requested set has been
accepted by the scheduler thread.

Signal-related
information

POSIX_APPSCHED_CHANGE_SCHED_PARAM A thread has changed its scheduling parameters none

POSIX_APPSCHED_EXPLICIT_CALL A thread has explicitly invoked the scheduler Application
message

POSIX_APPSCHED_TIMEOUT A timeout has expired none

POSIX_APPSCHED_PRIORITY_INHERINT A thread has inherited a new system priority due to the
use of system mutexes

Inherited system
priority

POSIX_APPSCHED_PRIORITY_UNINHERIT A thread has finished the inheritance of a system priority Uninherited
system priority

POSIX_APPSCHED_INIT_MUTEX A thread has requested initialization of an application-
scheduled mutex

Pointer to the
mutex

POSIX_APPSCHED_DESTROY_MUTEX A thread has destroyed an application-scheduled mutex Pointer to the
mutex

POSIX_APPSCHED_LOCK_MUTEX A thread has invoked a “lock” operation on an available
application- scheduled mutex

Pointer to the
mutex

POSIX_APPSCHED_TRY_LOCK_MUTEX A thread has invoked a “try lock” operation on an
available application- scheduled mutex

Pointer to the
mutex

POSIX_APPSCHED_UNLOCK_MUTEX A thread has released the lock of an application-
scheduled mutex

Pointer to the
mutex

POSIX_APPSCHED_BLOCK_AT_MUTEX A thread has blocked at an application-scheduled mutex Pointer to the
mutex

POSIX_APPSCHED_CHANGE_MUTEX_SCHED_PARAM A thread has changed the scheduling parameters of an
application-scheduled mutex

Pointer to the
mutex

4.1.3. Scheduled Thread-Specific Data

When a scheduler is processing an event, the scheduling
actions to execute will depend on the current scheduling
status of its scheduled threads and particularly on the status
of the thread which caused that event. It would be very
interesting to have a mechanism for obtaining that informa-
tion in a straightforward and efficient way. Because the
POSIX thread identification type, pthread_t, is opaque,
it is not possible to build a portable hashing function at the
application level, and thus a list indexed by thread ids
would be inefficient.

Consequently, our interface extends the POSIX “thread-
specific data” functionality. Two new functions are defined
(pthread_getspecific_thread() and
pthread_setspecific_thread()) that permit setting
and getting thread-specific data from a thread different
from the owner. The scheduler thread can use those func-
tions for attaching and retrieving the scheduling status of
its scheduled threads.

4.2. Create scheduler and scheduled threads

In our interface a scheduler thread is created as such. A
scheduled thread can be created attached to a particular
thread. For these purposes our interface extends the thread
creation attributes, the scheduling policies, and scheduling
parameters defined in the POSIX standard.

A new policy “Application-defined Scheduling Policy”
(SCHED_APP) is defined to distinguish between system-
scheduled and application-scheduled threads. For a thread
to be created with this policy it is necessary to define which
thread is going to act as its application scheduler and,
optionally, an application-defined scheduling parameters
object to be interpreted by this scheduler thread. Both, the
scheduler and the application-defined parameters are
included as new members of the POSIX scheduling param-
eters structure (sched_param).

Whether a thread is an application scheduler or not is
determined by the value of its appscheduler attribute.
After its creation, an application scheduler thread can set
some of its properties through different functions defined
in the interface. The properties are the kind of timeout that
is supported (relative or absolute), the clock used to deter-
mine when the timeout expires, and the event mask that
allows scheduling events to be filtered out by the system,
and thus are not reported to the application scheduler.

4.3. Explicit Scheduler Invocation

Explicit scheduler invocation from the scheduled thread
could be necessary in some scheduling algoritms (for
example as a mechanism to inform the scheduler a thread
has finish its work for the current activation). For this pur-

pose, our interface defines the posix_appsched_-

invoke_scheduler() function. Calling this function
will cause a scheduling event of type
POSIX_APPSCHED_EXPLICIT_CALL to be generated for
the scheduler. Optionally, a message can be attached to the
event.

4.4. Application-Scheduled Mutexes

As explained above, our interface allows creating
mutexes whose synchronization protocol is defined by the
application scheduler. These special mutexes are created
like any other POSIX mutex but specifying the value
PTHREAD_APPSCHED_PROTOCOL for they protocol

attribute. For this kind of mutexes two new attributes have
been defined: the appscheduler attribute and the app-
schedparam attribute. The appscheduler attribute iden-
tifies the scheduler thread the mutex is attached to. The
optional appschedparam attribute can be used for passing
application-defined mutex scheduling attributes to the
scheduler.

As for the application-scheduled threads, it is also
important for the scheduler to have a simple mechanism to
attach and retrieve the scheduling specific data associated
with an application-scheduled mutex. With this purpose
our interface introduces a new functionality not defined in
POSIX: the mutex-specific data, and two functions:
posix_appsched_mutex_setspecific() and
posix_appsched_mutex_getspecific(), to get and
set the value currently bound to a mutex.

5. Example of an Application-Defined
Policy: EDF with CBS

The following example shows the pseudocode of an
application scheduler that implements the Earliest Deadline
First (EDF) scheduling policy along with the Constant
Bandwidth Server (CBS) [2] scheduling policy. The latter
policy allows scheduling soft real-time tasks without jeop-
ardizing the priority guarantee of hard real-time activities.
The CBS assigns each soft task a maximum bandwidth and
assures that it is not overcome even in the presence of over-
loads. In our example the asynchronous arrival of a new job
for a CBS thread causes the generation of a signal
(NEW_JOB_SIGNAL) to be caught by the scheduler
thread.

In order to assure that a CBS thread does not overcome
its assigned bandwidth its execution time must be limited.
To achieve that, a POSIX CPU-time timer is associated
with each CBS thread, and the signal generated by the
timer expiration is caught by the scheduler thread to per-
form the appropriate scheduling actions.

The EDF/CBS scheduler has a list of threads that are
registered for being scheduled under it, either as EDF or

CBS threads. The state of each EDF thread can be active or
timed (when it has finished its current execution and is
waiting for its next period), while the CBS threads can be
active or idle (a CBS thread with not pending jobs).

The schedule_next() function invoked by the sched-
uler updates the list of registered threads based upon the
current time. It switches into the active state those timed
threads whose activation time has been reached, and then
calculates the next thread to be executed and the earliest
start time of the new set of timed threads.

The pseudocode of the scheduler is the following:
void *edf_scheduler (void *arg)
{
 ...;
 while (1) {
 schedule_next (&next_thread, &earliest_start,
 &now);
 /* Thread activation and suspension actions*/
 if (next_thread != NULL)
 posix_appsched_actions_addactivate
 (&actions, next_thread);
 if (current_thread != NULL)
 posix_appsched_actions_addsuspend
 (&actions, current_thread);
 current_thread = next_thread;
 /* Execute scheduling actions */
 posix_appsched_execute_actions
 (&actions, &awaited_signal_set,
 &earliest_start, &now, &sched_event);
 /* Process scheduling events */
 switch (sched_event.event_code) {
 case POSIX_APPSCHED_NEW :
 Get thread EDF/CBS specific sched param;
 if (CBS thread) { Create CPU-time timer; }
 Add thread to list of scheduled threads;
 break;
 case POSIX_APPSCHED_TERMINATE :
 if (CBS thread) { Delete CPU-time timer; }
 Remove thread from scheduled threads list;
 break;
 case POSIX_APPSCHED_EXPLICIT_CALL :
 if (CBS thread) {
 thread.number_of_pending_jobs--;
 if (thread.number_of_pending_jobs == 0)
 thread.state=CBS_IDLE;
 } else { // is EDF
 thread.state=TIMED;
 Obtain next deadline & activation time;
 } break;
 case POSIX_APPSCHED_SIGNAL :
 switch (received signal) {
 case END_OF_BUDGET_SIGNAL :
 thread.deadline += thread.period;
 thread.budget = thread.max_budget;
 Arm CPU-timer for 'thread.budget' secs;
 break;
 case NEW_JOB_SIGNAL :
 thread.number_of_pending_jobs++;
 if (thread.state==CBS_IDLE) {
 thread.state=ACTIVE;
 if (not enough time until deadline) {

 thread.deadline += thread.period;
 thread.budget = thread.max_budget;
 Arm CPU-timer for
 'thread.budget' secs;
 }
 }
 }
 break;
 case POSIX_APPSCHED_TIMEOUT :
 break; // threads will be rescheduled
 } // switch
 } // while (1)
}

The pseudocode of one of the application-scheduled
threads is the following:
void * edf_or_cbs_thread (void * arg)
{
 while (1) {
 // do useful work
 ...
 // tell the scheduler that the
 // current job has finished
 pthread_appsched_invoke_scheduler ();
 }
}

The scheduler needs to know the period and the deadline
of the EDF periodic threads and the maximum budget of
the CBS threads. To store that information, the
edf_cbs_parameters_t type is created:
typedef struct {
 int cbs_thread;
 struct timespec deadline, period, max_budget;
} edf_cbs_parameters_t;

The posix_appsched_param field of the
sched_param structure assigned to an EDF or CBS thread
will point to an object of this type. Using the POSIX func-
tion pthread_getschedparam() the scheduler will be
able to get the scheduling parameters of its attached
threads.

Finally, the pseudocode of a thread that creates the
scheduler, a periodic EDF thread and a CBS thread is:
int main ()
{
 ...;

 // Set attr object for the scheduler thread
 Set policy to FIFO;
 Set the thread type to “application scheduler”;
 // Create scheduler thread
 pthread_create (attr object, edf_scheduler);

 // Set the attributes object for an EDF thread
 Set policy to application-defined;
 Set the thread type to “regular”;
 Set edf_scheduler as its application scheduler;
 Set period and deadline in the application
 defined scheduling parameters;
 // Create EDF thread
 pthread_create (attributes object, edf_thread);

 // Set the attributes object for a CBS thread
 Set policy to application-defined;
 Set the thread type to “regular”;
 Set edf_scheduler as its application scheduler;
 Set period, deadline and max_budget in the
 application defined scheduling parameters;
 // Create CBS thread
 pthread_create (attributes object, cbs_thread);
}

6. Performance Metrics
Table 2 shows some performance metrics measured on a

1.1 GHz Pentium III, relative to a context switch between a
CBS thread that consumes its execution time budget, and
an EDF thread that becomes active. The first three entries
in the table show the execution times of different parts of
this context switch. The total is 4.1 µs, which represents an
overhead of 0.82% for a 1KHz periodic thread, assuming
two context switches per execution. Of course, this over-
head would be lower for lower frequency threads. As a
comparison, the last entry in the table shows the context
switch time associated with a timer expiration, using the
kernel-level fixed-priority scheduler. This time (1.1 µs)
must be compared with the time needed to activate the
scheduler (1.8 µs) and to activate a new thread (1.0 µs) to
determine the overhead of the application-defined schedul-
ing mechanism. We can see that this overhead is around
2.54 times the overhead of the internal kernel scheduler. In
our opinion, this penalty is small compared to the benefits
of being able to define application schedulers in a flexible
and portable way.

7. Conclusions and Further Work
We have defined a new API for application-defined

scheduling. There are two versions of the API, one in C
and the other one in Ada. Both are designed in the context
of a POSIX operating system. The main design require-
ments have been to have a compatible behavior with other
existing POSIX fixed priority scheduling policy, to be able
to isolate the scheduler from the kernel and from other
application schedulers, to be able to run both on single pro-
cessor and multiprocessor systems, and to be able to
describe application-defined synchronization protocols.

The proposed API has been implemented in MaRTE OS,
which is a free software implementation of the POSIX min-
imal real-time operating system, intended for small embed-
ded systems. It is written in Ada but provides both the
POSIX Ada and the C interfaces. Using this implementa-
tion we have programmed and tested several scheduling
policies, such as a priority-based round robin scheduler,
EDF, and more complex dynamic scheduling policies. We
have also tested some application-defined synchronization
protocols, such as the full Priority Ceiling Protocol. Pre-
liminary performance data show a good level of efficiency.

MaRTE OS, including the application-defined schedul-
ing services defined in this paper can be found at:
http://marte.unican.es

References
[1] ISO/IEC 9945-1 (1996). ISO/IEC Standard 9945-1:1996.

Information Technology -Portable Operating System Interface
(POSIX)- Part 1: System Application Program Interface (API)
[C Language]. Institute of Electrical and electronic
Engineers.

[2] L. Abeni and G. Buttazzo. “Integrating Multimedia
Applications in Hard Real-Time Systems”. Proceedings of the
IEEE Real-Time Systems Symposium, Madrid, Spain,
December 1998

[3] M. Aldea Rivas and M. González Harbour. “POSIX-
Compatible Application-Defined Scheduling in MaRTE OS”.
Proceedings of the Work in Progress Session, 13th Euromicro
Conference on Real-Time Systems, Delft, The Netherlands,
June 2001.

[4] M. Aldea and M. González. “MaRTE OS: An Ada Kernel for
Real-Time Embedded Applications”. Proceedings of the
International Conference on Reliable Software Technologies,
Ada-Europe-2001, Leuven, Belgium, Lecture Notes in
Computer Science, LNCS 2043, May, 2001.

[5] POSIX.1d (1999). IEEE Std. 1003.d-1999. Information
Technology -Portable Operating System Interface (POSIX)-
Part 1: System Application Program Interface (API)
Amendment: Additional Realtime Extensions [C Language].
The Institute of Electrical and Electronics Engineers.

[6] POSIX.13 (1998). IEEE Std. 1003.13-1998. Information
Technology -Standardized Application Environment Profile-
POSIX Realtime Application Support (AEP). The Institute of
Electrical and Electronics Engineers.

[7] POSIX.5b (1996). IEEE Std 1003.5b-1996, Information
Technology—POSIX Ada Language Interfaces—Part 1:
Binding for System Application Program Interface (API)—
Amendment 1: Realtime Extensions. The Institute of
Electrical and Engineering Electronics.

[8] Y.C. Wang and K.J. Lin, “Implementing a general real-time
scheduling framework in the red-linux real-time kernel”.
Proceedings of IEEE Real-Time Systems Symposium,
Phoenix, December 1999.

Table 2. Performance on a 1.1 GHz Pentium III

Description Time (µs)

Scheduler activation after CPU-timer expiration 1.8

Scheduling algorithm time 1.3

EDF thread activation 1.0

Total context switch time 4.1

Context switch after timer expiration 1.1

[9] Bryan Ford and Sai Susarla, “CPU Inheritance Scheduling”.
Proceedings of OSDI, October 1996.

[10]P. Gai, L. Abeni, M. Giorgi, G. Buttazzo, "A New Kernel
Approach for Modular Real-Time Systems Development",
IEEE Proceedings of the 13th Euromicro Conference on Real-
Time Systems, Delft, The Netherlands, June 2001.

[11]OMG. Real-Time CORBA 2.0: Dynamic Scheduling, Joint
Final Submission. OMG Document orbos/2001-06-09, June
2001.

[12]Yodaiken V., “An RT-Linux Manifesto”. Proceedings of the
5th Linux Expo, Raleigh, North Carolina, USA, May 1999.

[13]George M. Candea and Michael B. Jones, “Vassal: Loadable
Scheduler Support for Multi-Policy Scheduling”. Proceedings
of the Second USENIX Windows NT Symposium, Seattle,
Washington, August 1998.

[14]F. Mueller, V. Rustagi, and T.P. Baker. “MiThOS - A Real-
Time Micro-Kernel Threads Operating System”. Proceedings
of the IEEE Real-Time Systems Symposium, December
1995.

