
Abstract1

In this paper we propose extending the scheduling model of
the Ada 95 Real-Time Systems Annex with the services
specified in the Real-Time POSIX standard. These services
include a round robin within priorities scheduling policy, a
sporadic server scheduling policy, and execution time
clocks and timers. With these services the Ada Real-Time
Annex will enable addressing a larger number of
application requirements.

Keywords: Ada, Real-Time, Scheduling, POSIX,
Execution-time limits

1. Introduction

The Real-Time Annex in Ada 95 [1] defines an extensible
mechanism for specifying scheduling policies, and defines
only one scheduling policy: FIFO_Within_Priorities .
Although this policy is an excellent choice for real-time
systems, there are application requirements that cannot be
fully accomplished with this policy only:

• Many applications have a mixture of real-time and non
real-time activities. The natural way of scheduling non
real-time activities is by time sharing the processor, like
in most general purpose operating systems. A fixed
priority scheduling policy can be used, but it requires
long computations to be broken into segments, and yield
operations (delay 0.0) to be inserted at the segment
boundaries to allow other non real-time tasks to make
progress. This may be difficult when using standard
libraries that have been designed for systems with a time
sharing scheduling.

• Many applications have aperiodic activities activated
through events whose arrival pattern is of unbounded
nature. There is often a need to accomplish high average
response times for some or all of these aperiodic
activities, and at the same time guarantee that the hard
real-time requirements of periodic or sporadic activities
are still met. Several flexible scheduling policies exist
for this purpose, such as the slack stealing algorithm
[9][8], dual priorities [7], the sporadic server [6] or the
deferrable server [5]. Although these policies can be
implemented at the application level in a system with
fixed priority scheduling [10][11], these
implementations are usually inefficient and do not
exploit the possibilities that a full kernel-level
implementation would have.

In addition, the current Real-Time Annex does not support
the measurement and limitation (budgeting) of task
execution times. Real-time analysis techniques are always
based on the assumption that the application developer can
accurately measure the worst-case execution time (WCET)
of each task. This measurement is always very difficult,
because, with effects like cache misses, pipelined and
superscalar processor architectures, etc., the execution time
is highly unpredictable. There are models that allow
calculation of WCET’s for some architectures, but they are
generally very complex and not widely available for all
architectures.

In hard real-time systems is essential to monitor the
execution times of all tasks and detect situations in which
the estimated WCET is exceeded. This detection was
usually available in systems scheduled with cyclic
executives, because the periodic nature of its cycle allowed
checking that all initiated work had been completed at each
cycle. In event-driven concurrent systems the same
capability should be available, and this can be
accomplished with execution time clocks and timers.

1. This work has been funded by the Comisión Interministerial de
Ciencia y Tecnología of the Spanish Government under grant TIC99-1043-
C03-03

Extending Ada's Real-Time Systems Annex with the POSIX Scheduling Services

By: Mario Aldea Rivas and Michael González Harbour
Departamento de Electrónica y Computadores

Universidad de Cantabria
39005- Santander, SPAIN
{aldeam, mgh}@unican.es

In recognition of all these application requirements, the
Real-Time extensions to POSIX [3] have recently
incorporated support for them [2]. Real-Time POSIX
supports a “round robin within priorities” scheduling policy
that is adequate for scheduling non real-time tasks in
conjunction with real-time tasks. It also supports the
sporadic server scheduling policy for efficiently scheduling
aperiodic activities. In addition, it provides execution time
clocks and timers that allow an application to monitor the
consumption of execution time by its tasks, and to set limits
for this consumption.

In this paper we propose that the next revision of the Ada
language supports a scheduling model similar to the Real-
Time POSIX model, so that the requirements of a larger set
of applications can be met.

It could be argued that given that the POSIX standard
already defines an appropriate scheduling model it would
not be necessary to have the same in the Ada language
standard, because the POSIX services can be accessed
through the appropriate bindings. This is true for Ada
platforms built on top of POSIX OS implementations, but
not for bare-machine implementations, like the ones used in
embedded systems, avionics, etc. For portability purposes it
would be interesting to have this scheduling model
supported in a homogeneous way for all the
implementations that choose to support it.

It could also be argued that scheduling policies different
than those standardized in POSIX could have better
performance or less overhead. For example, a deferrable
server might be preferred over the sporadic server. But the
fact that the latter is standardized in POSIX makes it more
probable that the underlaying OS supports the policy, and
therefore that it can also be supported in the Ada runtime
system.

A proposal for application-defined scheduling policies is
currently under study for consideration in the Real-Time
POSIX Standard, but it is still too preliminary to be
discussed for its standardization also in the Ada Real-Time
Annex.

The paper is organized as follows: Section 2 discusses the
proposal for a round robin scheduling policy. Section 3
discusses the sporadic server proposal. Section 4 has a
proposal for adding execution time clocks and timers.
Finally, Section 5 gives our conclusions.

2. Round Robin Scheduling Policy

The POSIX scheduling model is a fixed-priority model in
which there are three compatible scheduling policies

defined. These policies can be set on a task by task basis,
because the effects of mixing them are well defined. For
example, when a round robin task is running, its execution
time is limited to its time quantum. After the quantum is
elapsed, the task is sent to the tail of the ready queue for its
priority. If a FIFO within priorities task now comes into
execution, it runs until completion (possibly preempted by
higher priority tasks during its execution). It is the
responsibility of the application developer to make sure that
no mixture of round robin and FIFO tasks is made at the
same priority level, if the round robin semantics is to be
preserved.

In Ada 95 there is only one pragma for setting the task
dispatching policy. It is a configuration pragma, that affects
the behaviour of all tasks in the partition. In order to be able
to have a mixed task dispatcher with both FIFO and round
robin tasks, it is necessary to define a new partition-wide
task dispatching policy, and a new pragma to specify the
task dispatching policy individually for each task.

The new partition-wide task dispatching policy could be
described in the Task_Dispatching_Policy

configuration pragma as:

pragma Task_Dispatching_Policy
(Fixed_Priorities);

The Fixed_Priorities dispatching policy is the same as
the FIFO_Within_Priorities policy except that a new
pragma is allowed for specifying the task-specific
dispatching policy. This pragma would be:

pragma Individual_Task_Dispatching_Policy
(policy);

This pragma would be allowed only immediately within a
task definition or the declarative part of a subprogram body
(for the main task). For a partition with a
FIFO_Within_Priorities policy, the only value
allowed for this pragma would be
FIFO_Within_Priorities . For a partition with the new
Fixed_Priorities policy, the values allowed for this
pragma would be FIFO_Within_Priorities , or
Round_Robin_Within_Priorities (or
Sporadic_Server , as we will see in Section 3). The
default value would be FIFO_Within_Priorities . The
locking policy associated with the Fixed_Priorities

partition task dispatching policy would be
Ceiling_Locking .

The rules for the Round_Robin_Within_Priorities

policy are the same as for FIFO_Within_Priorities ,
with the additional condition that when the implementation
detects that a running task has been executing for a time
interval called the round-robin quantum, it becomes the tail

of its ready queue and the head of that queue is removed
and made a running task. A task under this policy that is
preempted and subsequently resumes execution as a
running task continues to use the unexpired portion of its
round-robin interval.

This new requirement can be envisioned as a new execution
resource that exists for each processor. This resource, called
the round-robin resource must be acquired by a task
scheduled with the Round_Robin_Within_Priorities

policy before it can execute. It is acquired when the task is
made the running task, with an interval value equal to the
round robin quantum. The interval value is consumed as the
task executes. While the task is preempted by a higher
priority task the remaining time interval does not get
consumed. When the time interval has been totally
consumed, the task looses the round robin resource, and
goes to the tail of the ready queue for its priority; in this
case, the task at the head of the ready queue is made a
running task; if its policy is
Round_Robin_Within_Priorities , the round robin
resource is granted to it, with its time interval reset to the
initial round robin quantum.

The round robin quantum is implementation defined. Its
value can be read via the following constant defined in
package System :

Round_Robin_Quantum : constant :=
implementation-defined-real-number ;

Because a task might consume its round robin quantum
while inside a protected operation, it is no longer true that
the task can only be preempted by tasks whose active
priorities are higher than the ceiling priority of the
protected object. A task with the same active priority as the
ceiling could cause a preemption-like effect when the
quantum is consumed. This implies that the implementation
must not just rely on the priority protection mechanism to
implement the protected object lock in single processor
systems, and should implement a real lock. Alternatively,
an implementation permission could be given to defer the
expiration of the round robin quantum until the end of the
protected operation. In any case, for portability with
POSIX-based implementations, this behavior should not be
required.

3. Sporadic Server Scheduling Policy

The POSIX.1d sporadic server scheduling policy is
compatible with the FIFO and round robin policies. It
assigns two priority levels to each task scheduled with this
policy (a normal priority and a low priority), a queue of
pending replenishment operations, and a value of execution
capacity. The sporadic server policy could be defined for a

task with the task-specific pragma defined in Section 2
called Individual_Task_Dispatching_Policy , with
the value Sporadic_Server . For tasks with this policy, a
new pragma would be supported:

pragma Sporadic_Server_Parameters
(Low_Priority => value,
 Replenishment_Period => value,
 Max_Pending_Replenishments => value,
 Initial_Budget => value);

The meaning of the arguments of this pragma is the
following:

• Low_Priority : its expected type is
System.Priority . It specifies the low scheduling
priority for the task scheduler under a sporadic server.

• Replenishment_Period : its expected type is
Ada.Real_Time.Time_Span . It specifies the
replenishment period for the sporadic server.

• Max_Pending_Replenishments : its expected type is
a positive integer value within one and an
implementation-defined maximum. It specifies the
maximum size of the queue of pending replenishments.
As in POSIX, all implementations shall support a
maximum number of at least four.

• Initial_Budget : its expected type is
Ada.Real_Time.Time_Span . It specifies the initial
value for the execution capacity.

The normal priority level of the task scheduled under a
sporadic server is the one specified via pragma Priority ,
and possibly changed via
Ada.Dynamic_Priorities.Set_Priority.

The sporadic server policy is based primarily on two
parameters: the replenishment period and the available
execution capacity. The replenishment period is given by
the Replenishment_Period argument. The available
execution capacity is initialized to the value given by the
Initial_Budget argument. The sporadic server policy is
identical to the FIFO_Within_Priorities policy with
some additional conditions that cause the task’s base
priority to be switched between normal priority and the
Low_Priority .

The priority assigned to a task using the sporadic server
scheduling policy is determined in the following manner: if
the available execution capacity is greater than zero and the
number of pending replenishment operations is strictly less
than Max_Pending_Replenishments , the base priority
of the task is set to the priority specified via pragma
Priority . Otherwise, the base priority shall be
Low_Priority . When active, the task shall belong to the

ready queue corresponding to its base priority level,
according to the mentioned priority assignment. The
modification of the available execution capacity and,
consequently of the assigned base priority, is done as
follows:

(1) When the task at the head of the ready queue for its
normal priority becomes a running task, its execution
time shall be limited to at most its available execution
capacity, plus the resolution of the execution time clock
used for this scheduling policy. This resolution shall be
implementation defined.

(2) Each time the task is inserted at the tail of the list
associated with its normal priority (either because as a
blocked task it became ready with a base priority equal
to the normal priority or because a replenishment
operation was performed) the time at which this
operation is done is posted as the activation_time.

(3) When the running task with base priority equal to its
normal priority becomes a preempted task, it becomes
the head of the ready queue for its priority, and the
execution time consumed is subtracted from the
available execution capacity. If the available execution
capacity would become negative by this operation, it
shall be set to zero.

(4) When the running task with assigned priority equal to
its normal priority becomes a blocked task, the
execution time consumed is subtracted from the
available execution capacity, and a replenishment
operation is scheduled, as described below. If the
available execution capacity would become negative by
this operation, it shall be set to zero.

(5) When the running task with assigned priority equal to
its normal priority reaches the limit imposed on its
execution time, it becomes the tail of the ready queue
for Low_Priority , the execution time consumed is
subtracted from the available execution capacity
(which becomes zero), and a replenishment operation
is scheduled, as described below.

(6) Each time a replenishment operation is scheduled, the
amount of execution capacity to be replenished,
replenish_amount, is set equal to the execution time
consumed by the task since the activation_time. The
replenishment is scheduled to occur at activation_time
plus Replenishment_Period . If the scheduled time
obtained is before the current time, the replenishment
operation is carried out immediately. Notice that there
may be several replenishment operations pending at the
same time, each of which will be serviced at its
respective scheduled time. Notice also that with the
rules defined for this policy, the number of

replenishment operations simultaneously pending for a
given task that is scheduled under the sporadic server
policy shall not be greater than
Max_Pending_Replenishments .

(7) A replenishment operation consists of adding the
corresponding replenish_amount to the available
execution capacity at the scheduled time. If as a
consequence of this operation the execution capacity
would become larger than Initial_Budget , it shall
be rounded down to a value equal to
Initial_Budget . Additionally, if the task was ready
or running, and with base priority equal to
Low_Priority , then it becomes the tail of the ready
queue for its normal priority.

4. Execution-Time Clocks and Timers

4.1. The POSIX Model

The execution time clocks and timers interface defined in
the proposed standard POSIX.1d [2] is based on the
POSIX.1b [3] clocks and timers interface used for normal
real time clocks. The new interface creates two functions to
access the execution time clock identifier of the desired
process or thread, respectively: clock_getcpuclockid() and
pthread_getcpuclockid().

An execution time clock “id” can be used to read or set the
time using the same functions clock_gettime() and
clock_settime() that are used for the standard
CLOCK_REALTIME clock, which measures real time. In
addition, timers may be created using either the
CLOCK_REALTIME or a CPU-time clock as their time
base. A POSIX timer is a logical object that measures time
based upon a specified time base. The timer may be armed
to expire when an absolute time is reached, or when a
relative interval elapses. When the expiration time has been
reached, a signal is sent to the process, to notify about the
timer expiration. The timer can be rearmed or disarmed at
any time. In addition, it is possible to program the timer so
that it expires periodically, after the first expiration.

If a timer is created using a CPU-time clock of a particular
thread, and a relative expiration time is given, it can be used
to notify that a certain budget of execution time has elapsed,
for that thread. If the timer is armed each time a thread is
activated, and the relative expiration time is set to the
thread’s estimated worst-case execution time (plus some
small amount to take into account the limited resolution and
precision of the CPU-time clock), then the timer will only
expire if the thread suffers an execution time overrun.

4.2. Proposed Ada Specification

The requirements for the Ada specification are the
following:

• Should be implementable on top of POSIX CPU-time
clocks and timers.

• Each task should have a CPU-time clock.

• It should be possible to read the value of a CPU-time
clock. Setting the value is not considered necessary,
because usually time differences between two events are
calculated. Besides, setting the clock has implementation
difficulties, when timers are running based on a specified
clock.

• It should be possible to create a timer based on a CPU
time clock.

• A CPU-time timer should have operations to arm it,
disarm it, or read its value. The timer would be armed in
a one-time shot. Given the usage schemes shown below,
periodic timers do not seem to be necessary

• It should be possible to determine if a timer has expired,
or to wait for a timer expiration with an entry call. In this
way, selective abort, conditional entry calls, and other
language constructs could be used based upon the timer
expiration condition.

The interface to the execution time clocks and timers can be
specified in a standard package, called
Ada.Real_Time.Execution_Time , which would follow
the specification shown below. The implementation of this
package would encapsulate the internal aspects of the use of
the POSIX services for clocks and timers, including the use
of signals to notify the occurrence of timer expirations
caused by an execution time overrun. Alternatively, in a
bare-machine implementation, it would provide access to a
full implementation of the CPU time clocks and timers.

with Ada.Task_Identification;
package Ada.Real_Time.Execution_Time is

Disarmed : exception ;
-- raised by Timer.Time_Exceeded,
-- Timer.Time_Was_exceeded, and
-- Timer.Time_Remaining

type Clock_ID is private ;
type CPU_Time is private ;
Time_Unit : constant := impl.def.real-num ;
function Clock_Of

(T : Ada.Task_Identification.Task_ID)
 return Clock_ID;

function Clock
(C : Clock_ID)
return CPU_Time;

function "+"

(Left : CPU_Time; Right : Time_Span)
return CPU_Time;

function "+"
(Left : Time_Span; Right : CPU_Time)
return CPU_Time;

function "-"
(Left : CPU_Time; Right : Time_Span)
return CPU_Time;

function "-"
(Left : CPU_Time; Right : CPU_Time)
return Time_Span;

function "<"
(Left, Right : CPU_Time)
return Boolean;

function "<="
(Left, Right : CPU_Time)
return Boolean;

function ">"
(Left, Right : CPU_Time)
return Boolean;

function ">="
(Left, Right : CPU_Time)
return Boolean;

protected type Timer is
procedure Initialize

(C : Clock_ID);
procedure Finalize;
procedure Arm

(Interval : Time_Span);
procedure Disarm;
entry Time_Exceeded;
function Time_Was_Exceeded

return Boolean;
function Time_Remaining

return Time_Span;
private

...
 end Timer;
private

...
end Ada.Real_Time.Execution_Time;

The central part of package Execution_Time is a
protected object called Timer . This protected object has
visible operations for the application tasks to initialize or
finalize a CPU-time timer, to arm or disarm a timer, and to
determine whether a timer has expired or not
(Time_Was_Exceeded). In addition, Timer has an entry
(Time_Exceeded) that can be used by application tasks to
block until an execution time overrun is detected, or as an
event that triggers the abortion of the instructions of a select
statement with an abortable part. The type CPU_Time

represents absolute values of CPU time, relative to an
arbitrary start time. Operations are provided to operate
between values of this type and of the type
Ada.Real_Time.Time_Span .

A more detailed description of the operations related to the
CPU clocks and timers follows:

• Clock_Of : Returns the clock identifier of the specified
task.

• Clock : Returns the value of the execution time clock
specified by C.

• Timer.Initialize : Allocates and initializes the
resources required to operate a CPU-time timer based on
the execution time clock specified by C. If the operation
would exceed the limit of the maximum number of
timers in the system, the Storage_Error exception is
raised. The timer is initialized in the disarmed state.

• Timer.Finalize : Deallocates the system resources
used by the timer. No other calls to the timer operations
of the associated timer may be made, except another
Initialize call. Constraint_Error will be raised if
such attempt is detected.

• Timer.Arm : The timer is loaded with the value specified
by Interval and set to the armed state. In this state the
timer counts execution time and, when the CPU clock
associated with the timer measures the passage of
Interval , it is said to have expired. If the timer was
already armed, it is rearmed.

• Timer.Disarm : The timer is set to the disarmed state.
In this state no timer expirations occur.

• Timer.Time_Exceeded : If the timer is in the armed
state but has not yet expired, the calling task is
suspended. The entry is allowed to complete when the
timer is in the armed state and has expired. If the timer is
in the disarmed state, the Disarmed exception is raised.

• Timer.Time_Was_Exceeded : If the timer is in the
armed state, the function returns True if the timer has
expired, and False otherwise. If the timer is in the
disarmed state, the Disarmed exception is raised.

• Timer.Time_Remaining : If the timer is in the armed
state, the function returns the CPU time interval that
remains until the timer will expire, or a value
representing zero if the timer has expired. If the timer is
in the disarmed state, the Disarmed exception is raised.

There are different ways of using the services offered in
package Execution_Time , depending on the application
requirements [11]:

• Handled: When an execution time overrun is detected,
an error handling operation is performed, but the task is
allowed to complete its execution. Used for testing or for
highly critical tasks.

• Stopped: When an execution time overrun is detected,
the associated task execution is stopped, to allow lower
priority tasks to execute within their deadlines. The
whole instance of the stopped task is aborted and is never
repeated. The task itself waits until its next activation
and then proceeds normally.

• Imprecise: This usage scheme corresponds to the case in
which the task is designed using the imprecise
computation model [12], in which the task has a
mandatory part (generally short and for which it is easier
to estimate a worst-case execution time), and an optional
part that refines the calculations made by the task. Since
the worst-case execution time of this optional part is
usually more difficult to estimate, this part will be
aborted if an execution time overrun is detected.

• Lowered: This usage scheme can be used to limit the
effects of an execution time overrun of a particular task,
on lower priority tasks, when asynchronous select
statements are not allowed or are not available for an
application task. In this case, when the overrun is
detected, the priority of the task is lowered to a
background level, lower than the priorities of all real-
time tasks. When the task that overrun its execution time
has the opportunity to finish its execution, it can
determine that it overrun by invoking
Time_Was_Exceeded , and then it can take a corrective
action or report the error.

5. Conclusions

The scheduling model defined in the real-time POSIX
standard is richer than the Ada 95 model and, thus, is able
to meet the requirements of a larger set of real-time
applications. Currently real-time POSIX supports two
scheduling policies that are not supported in Ada: round
robin within priorities and the sporadic server. The first is
very useful in applications with a mixture of real-time and
non real-time tasks, which are very common in practice.
The second policy is very useful for processing unbounded
aperiodic events with short response times, while
guaranteeing a given bandwidth for preserving the
schedulability of lower priority tasks.

In addition, real time POSIX supports execution time
clocks and timers, that allow assigning execution time
budgets to each task, thus making it possible to rely on the
results of schedulability analysis.

In this paper we have made proposals to include all these
policies and scheduling services in the next revision of the
Real-Time Systems Annex.

References

[1] S. Tucker Taft, and R.A. Duff (Eds.) “Ada 95 Reference
Manual. Language and Standard Libraries”. International
Standard ISO/IEC 8652:1995(E), in Lecture Notes on
Computer Science, Vol. 1246, Springer, 1997.

[2] IEEE Standard 1003.1d:1999, “Standard for Information
Technology -Portable Operating System Interface (POSIX)-
Part d: Additional Realtime Extensions”. The Institute of
Electrical and Electronics Engineers, 2000.

[3] ISO/IEC Standard 9945-1:1996. “Information Technology -
Portable Operating System Interface (POSIX)- Part 1: System
Application Program Interface (API) [C Language]”. The
Institute of Electrical and Electronics Engineers, 1996.

[4] M. González Harbour, J.J. Gutiérrez García, and J.C Palencia
Gutiérrez. “Implementing Application-Level Sporadic Server
Schedulers in Ada 95”. Proceedings of the 1997 Ada-Europe
International Conference on Reliable Software Technologies,
in Lecture Notes in Computer Science, Vol. 1251, Springer,
June 1997.

[5] J. P. Lehoczky, L. Sha and J. K. Strosnider, “Enhanced
Aperiodic Responsiveness in Hard Real-Time Environments”,
Proceedings IEEE Real-Time System Symposium, San Jose,
California, pp. 261-270 (1987).

[6] L. Sha, B. Sprunt and J. P. Lehoczky, “Aperiodic Task
Scheduling for Hard Real-Time Systems”, The Journal of
Real-Time Systems 1, pp. 27-69 (1989).

[7] Robert Davis and Andy Wellings “Dual Priority Scheduling”
Proceedings IEEE Real-Time System Symposium, pp. 100-
109, 1995.

[8] R. I. Davis, K. W. Tindell and A. Bums, “Scheduling Slack
Time in Fixed Priority Pre-emptive Systems”, Proceedings
IEEE Real-Time Systems Syposium, pp. 222- 231 (December
1993).

[9] John P. Lehoczky and Sandra Ramos-Thuel. “An optimal
algorithm for scheduling soft aperiodic tasks in fixed-priority
preemptive systems”. In Real-Time Systems Symposium,
pages 110-123, Dec.1992

[10]A. Espinosa, V. Julián, C. Carrascosa, A. Terrasa, and A.
García-Fornes. “Programming Hard Real-Time Systems with
Optional Components in Ada”. Proceedings of the 1998 Ada
Europe International Conference on Reliable Software
Technologies, Uppsala, Sweden; in Lecture Notes on
Computer Science, Vol. 1411, Springer, June 1998.

[11]M. González Harbour, M. Aldea Rivas, J.J. Gutiérrez García,
and J.C. Palencia Gutiérrez, “Implementing and using
Execution Time Clocks in Ada Hard Real-Time Applications”.
Proceedings of the 1998 Ada Europe International Conference
on Reliable Software Technologies, Uppsla, Sweden; in
Lecture Notes on Computer Science, Vol. 1411, Springer, June
1998.

[12] J. Liu, K.J. Lin, W.K. Shih, A. Chuang-Shi Yu, J.Y. Chung,
and W. Zhao. “Algorithms for Scheduling Imprecise
Computations”. IEEE Computer, pp. 58-68, May 1991.

