
1. INTRODUCTION1

The family of Unix-based operating system standards
called POSIX (ISO/IEC 9945-1:1996) includes real-
time and threads interfaces that allow support for
portable applications with real-time requirements.
Although POSIX is a fairly large interface, standard
subsets of POSIX have been defined in the IEEE
1003.13 standard (POSIX.13, 1998). The smallest of
these subsets requires only a reduced set of the system
services, which can be implemented as a small and
very efficient kernel that can be used to effectively
implement embedded systems with real-time
requirements.

Although there are many implementations of real-
time operating systems and kernels that are compliant
to the POSIX standards, such as LYNX, HP-RT,
VxWorks, QNX, etc., they are not available for most
of the special-purpose platforms used in embedded
systems, such as microcontrollers. In addition, they
do not provide the source code and thus they cannot

be used as a research vehicle for testing new concepts
in thread scheduling and real-time services. The
RTEMS real-time kernel (RTEMS, 1996) would be a
good candidate for such purpose because its sources
are available; however, although it offers a POSIX
interface, its internal design was not done following
the POSIX threads model, and thus the POSIX layer
represents a source of inefficiency, than can be
avoided in a kernel designed with the POSIX thread
model from the beginning.

Consequently, in our research group we decided to
design and implement a real-time kernel for
embedded applications that could be used on different
platforms, including microcontrollers, and that would
follow the Minimal Real-Time POSIX.13 subset. This
kernel will serve both as a vehicle for the
development of real-time applications such as robot
controllers, and as a research tool on which we can
prototype new OS interfaces, such as user-defined
real-time scheduling, interrupt control, etc.

This paper presents our early experience with the
implementation of this kernel. In Section 2 we present
an overview of the POSIX Minimal Real-time subset.
In Section 3 we describe the objectives and basic
requirements of our kernel. Section 4 describes its
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general architecture, and Section 5 describes some of
the most relevant aspects of the implementation of its
different components. Section 6 describes the current
status of the project, together with some performance
metrics. Finally, Section 7 gives our conclusions and
future work.

2. THE POSIX MINIMAL REAL-TIME
SYSTEM SUBSET

POSIX is the acronym for Portable Operating System
Interfaces. It is a family of standards based on the
popular UNIX operating system. The POSIX
standards define application program interfaces for
the operating system services. Only the interfaces
themselves, with their associated semantics, are
defined; the standard contains no implementation
details, which are left to the implementors to
encourage innovation. Since 1996, the POSIX
standard contains the real-time and threads extensions
(ISO/IEC 9945-1: 1996), that allow developing
portable applications with real-time requirements. 

The POSIX base standards define all the system
interfaces using the C language, but the POSIX
family of standards also includes Ada bindings for
these services, including the real-time and threads
extensions (POSIX.5b, 1996). This allows us building
real-time Ada applications running on a POSIX
compliant operating system.

Although the complete set of POSIX services is
useful to large real-time applications, it is too large
for most embedded systems, which usually have tight
memory requirements, may not have memory
management capabilities, and may not have a
secondary memory for implementing the UNIX file
system. For these reasons the POSIX standard
recognizes the need for the creation of subsets of the
operating system services, yet standard subsets that
allow portability of applications from one
implementation to another. 

The IEEE 1003.13 (POSIX.13, 1998) contains four
real-time subsets, called application environment
profiles. The smallest of these subsets, called the
Minimal Realtime System Profile, is intended for
small embedded applications. Among other things, it
does not require support for multiple UNIX
processes, nor support for a full-featured file system.
These two simplifications by themselves take away
from the OS most of the complexity of UNIX, and
allow building a small efficient kernel for embedded
real-time applications. The benefit is that an
application conforming to this minimal profile can be
ported to a larger real-time POSIX system. The main
services provided in the Minimal Real-Time Profile
are:

• Threads. They are the concurrency mechanism.
Services include thread creation and termination,
managing thread attributes and specific data,
waiting for thread termination, etc.

• Thread Priority Scheduling. Priority preemptive
scheduling for threads, with two different flavours
for equal-priority threads: FIFO or round robin.
Services include setting scheduling policies and
parameters and yielding the processor to other
equal-priority threads.

• Thread Synchronization. The synchronization
mechanisms are mutexes (for mutual exclusion),
condition variables (for signal & wait
synchronization), and counting semaphores (for
both). Mutexes include priority inheritance and
priority ceiling protocols for avoiding priority
inversion.

• Signals. They are used as a mechanism to notify
the application of the occurrence of an event.
Although traditional UNIX signals have been used
to execute asynchronous signal handlers, the
preferred approach in multi-threaded applications
is to use signals in a synchronous way, by means of
an await_signal  operation. Services include the
ability to mask signals, send signals and wait for
the arrival of a signal.

• Device I/O. Although a general file system is not
required in the Minimal Realtime System, basic
read, write, open, and close operations are
provided for using device drivers. The open
operation is restricted to opening only existing
files, defined at system configuration time and,
therefore, it cannot create new regular files.

• Time services. Time services include the high
resolution sleep operation plus clock and timer
operations. Timers can be created by the user to
measure time intervals and be notified by the
system when such interval has elapsed, or when a
given time has been reached. A signal is used as
the notification mechanism.

• Message passing. Contains operations to use a
message queue system, in which messages carry a
priority field that is used to retrieve messages in
priority order.

• Configuration services. Operations are provided to
allow the application obtaining configuration
information. 

• Dynamic memory management. Although POSIX
does not define an interface for dynamic memory
support, it requires supporting the language-
specific dynamic memory operations, such as
malloc  or new.



In addition to these services, the POSIX.13 standard
requires support for some other services for upward
compatibility of applications:

• Memory locking. These services allow preventing
the unbounded memory access time caused by
virtual memory implementations, by locking the
address space of a realtime process into physical
memory. Although most minimal realtime system
implementations will not have virtual memory
facilities, the interface is provided for upward
compatibility to other POSIX systems.
Applications are encouraged to use these services,
even though in a system without virtual memory
they will have a null implementation, since by
default all the address space is locked in physical
memory anyway.

• File synchronization and synchronized I/O. Again,
in small embedded systems most I/O is unbuffered
and thus synchronized by default. The application
is encouraged to use the services though and
request synchronized I/O, to preserve compatibility
with other POSIX systems.

• Shared memory objects. They may be used to
implement memory-mapped I/O, which is rather
common in many embedded architectures.
Although the memory may be directly accessible,
applications are advised to perform memory-
mapped I/O through shared memory objects, so
that they can be ported to larger systems in which
direct access to memory-mapped devices is
forbidden to the application. Implementation of
shared memory objects in a non-protected
architecture where all memory is directly
addressable is straightforward.

With the services described, a kernel that is compliant
with the POSIX.13 Minimal Real-Time System
Profile can be built with a very small size, and as a
highly efficient implementation.

With the recent approval of the POSIX additional
real-time extensions (POSIX.1d, 1999) and
(POSIX.1j, 2000), it is forecasted that a revision of
the real-time profiles will take place, to include the
relevant services defined in these new real-time
extensions. In order to anticipate some of this work,
we have decided to include in our kernel those
services from the new standards that we feel are most
useful for embedded real-time applications. These
services are:

• Absolute high-resolution sleep. Although periodic
tasks can be created using timers, an absolute high-
resolution sleep operation is simpler to use and
more efficient, because it does not involve the use
of signals.

• Monotonic clock. A clock whose value cannot be
changed explicitly; it only changes monotonicaly

with the passage of time. Such a clock is
interesting to prevent the effects that setting the
system clock has on the application scheduling.

• Timeouts. Bounded wait operations for mutexes,
semaphores, and message queues.

• Execution-time clocks and timers. Execution-time
clocks are useful for measuring the execution time
of the threads. More important to real-time are
execution-time timers, that allow detecting
execution-time overruns. This is a very interesting
feature for hard real-time, because the results of
real-time schedulability analysis are only valid if
the estimation of worst-case execution times are
accurate. Execution-time timers enable us to
validate this information on-line, and take
corrective actions if an overrun occurs.

• Sporadic server scheduling. This scheduling policy
allows processing aperiodic activities with low
response times, while bounding their effect on
lower priority threads, even in the presence of
unbounded aperiodic requests. It is also useful for
eliminating the negative effects that jitter has on
the schedulability of lower priority threads.

3. OBJECTIVES AND BASIC REQUIREMENTS

The main objective is to develop a real-time kernel for
embedded systems that conforms to the POSIX
minimal real-time system profile in POSIX.13. In
addition to the services defined in this profile, we plan
to implement the services from the POSIX.1d and
POSIX.1j newly approved standards that we
mentioned above. 

The applications that we plan for this kernel are
industrial embedded systems, such as data acquisition
systems and robot controllers. We also plan to use the
kernel as a research tool for investigating in operating
systems and scheduling mechanisms. In particular, we
plan to implement new OS services that we feel are
useful in many real-time applications: application-
level interrupt management, and user-defined
scheduling.

Based upon these objectives, the main requirements
that we have formulated for our kernel are:

• Conformance to the POSIX.13 Minimum Real-
Time System Profile, with the addition of some
services from POSIX.1d and POSIX.1j

• Targeted for applications that are mostly static,
with the number of threads and system resources
well known at compile time. This allows these
resources (i.e., threads, mutexes, thread stacks,
number of priority levels, timers, etc.) to be
preallocated at system configuration time, thus



saving a lot of time when the application requests
creation of one of these objects.

• All services with bounded response times, for hard
real-time performance. 

• Non protected. No protection boundaries will be
established between the application and the kernel.
This means that a misbehaved application may
corrupt kernel data, but this should be no problem
in thoroughly tested static systems, like the
targeted applications.

• Multiplatform. The kernel shall be able to run in
multiple platforms, using cross-development tools.

For the initial version of our kernel, we have restricted
the set of services required in POSIX.13, because
some of these services are redundant and are thus not
essential for applications. The main restrictions that
we plan for the initial implementation are:

• No suspension inside signal handlers. Signals will
be used in a synchronous way, through application
threads acting as signal handlers, using the
await_signal  operation. Therefore, we do not
need signal handlers for C applications. For Ada
applications, we need signal handlers for the
asynchronous select statement (asynchronous
transfer of control), but these signal handlers do
not suspend themselves. Therefore, we have
decided to implement this restricted version of
signal handlers, which is much simpler to
implement than the general model described in
POSIX. In our restricted implementation we use a
special-purpose thread to serve all signal handlers,
instead of executing the signal handler in the
context of the thread to which the signal is
delivered. This simplifies many of the kernel
functions. For example, if a thread is waiting for a
mutex, we don’t need to eliminate it from the
mutex queue while the signal handler is executing.

• No semaphores, because mutexes and condition
variables are already a complete set of
synchronization primitives. Semaphores are useful
for synchronizing with a signal handler, but we are
restricting them as well.

4. KERNEL ARCHITECTURE

The implementation language for our kernel is Ada
95, which we choose because it allows building
applications more reliably than with other languages.
We use the Gnat compiler which is integrated in the
gcc compilation environment, that provides facilities
for many targets, as well as cross compilation. 

The kernel has a low-level abstract interface for
accessing the hardware. The interface encapsulates
operations for interrupt management, clock and timer

management, and thread context switches. Its
objective is to facilitate migration from one platform
to another. Only the implementation of this hardware
abstraction layer needs to be modified. For our initial
platform (a Pentium PC) some of the functions of this
hardware abstract interface come from a publicly
available toolset called OSKit (Ford et al., 1997),
which is intended to ease the low-level aspects of the
development of an operating system. They are written
in assembly and C language. We also use the facilities
of OSKit for booting the application from a diskette or
from the net

The kernel will be directly usable as the basis for the
Gnat run-time system, and thus applications may be
programmed in Ada using its language-specific tasks.
The Gnat compiler is free software and provides the
sources; this is extremely important for us because we
need to replace part of the run time system, called
GNARL (Giering and Baker, 1994).

The kernel interface has been developed according to
the low level interface (GNULLI) defined between
the Gnat run-time system and the POSIX underlaying
implementation. This interface has been extended
according to the POSIX.5b specification to cover the
services required in POSIX.13. 

Because other application developers may wish to use
other languages, we have developed a C-Language
POSIX interface for C or C++ applications. In
addition, we plan to develop in the future an
implementation of the Java Virtual Machine for real
time, now that the real-time specification for Java is
being developed (RTSJ, 1999). This would allow
applications written in Java to also use our kernel for
embedded systems. Fig. 1 shows the layered
architecture for applications written in these
languages using our kernel.

Internally, the kernel has been divided into the
following modules, as shown in Fig. 2:

• Task_Operations : basic thread management
operations such as thread creation and finalization,
priority changes, thread suspension, etc.

Fig. 1. Layers for applications in C and Ada
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• Mutexes : operations for mutex management,
conforming to the POSIX.5b interface, and
including the priority protect protocol.

• Signals : Signal handling; currently only the
functionality required by the GNARL run-time
system is supported.

• Condition_Variables : operations for
managing condition variables, with a POSIX.5b
interface.

• Timed_Events_Queue : a queue with all the time-
related events (such as sleep or delay expirations,
timeouts, etc.), ordered by time, and with
operations to insert and delete events form the
queue.

• Ready_Queue : a queue with all the threads that
are ready to execute, organized according to their
priorities; it has operations to queue and dequeue
threads from the queue.

• Scheduler : Implements the scheduling policies
and the context switches. It is the only module that
uses the operations defined in Ready_Queue .

5. IMPLEMENTATION DETAILS

Time Management. The system timer chosen is of
the “alarm clock” kind, in which the timer is
programmed at every scheduling point to expire at the
next nearest scheduling point. This implementation
reduces the overhead of the traditional “ticker” or
periodic timer, and reduces the jitter in determining
the scheduling points, provided that the underlaying
timer has sufficient resolution. The clock resolution in
the PC architecture that we have used as our first
platform is 0.838 µs.

Ready Thread Queue. This is one of the most
fundamental objects in the kernel, because its
performance is crucial to the overall performance of
the system. For this reason, the queuing and

dequeuing operations must be extremely fast, and
with bounded execution time. We have tested
different implementations of priority queues for
numbers of threads between 20 and 50, which we
estimate typical for the kind of embedded
applications that we target. We have focused on
systems in which the number of threads per each
priority level is very low, because with normal Rate
Monotonic or Deadline Monotonic scheduling each
thread usually has a distinct priority. As a result of
these tests, we have chosen an array of ordered singly
linked lists, one for each priority level, together with a
map of bits that indicates whether there is an active
thread at any given priority. This map of bits can be
tested in a very short time (typically one instruction)
to determine the highest active priority level.

Time Events Queue. This is another structure that is
crucial to the performance of the overall system. We
cannot use the same priority queue implementation as
for the ready queue, because this queue is ordered by
time values, and the time may have very many
different values. For this queue we have chosen the
heapform heap structure, which provided the best
worst-case results for a number of time events
roughly similar to the number of threads, between 20
and 50.

Signals. As we mentioned above, we have not
implemented in this first version general signal
handlers, because signal handlers are not allowed to
suspend. Therefore, the signals used represent a
simple event mechanism. The POSIX realtime signals
behavior has been adopted for all signals; in this
behavior signals are queued, and they may carry an
additional field of information.

Mutexes and Priority Inversion Avoidance.   Each
thread contains in its thread control block the list of
mutexes that it owns, in order to keep track of priority
ceilings that need to be inherited. In turn, each mutex
has a queue with the threads that are waiting on that
mutex. Despite what would seem natural, the mutex
queues are not implemented as priority queues,
although they behave as such as required by the
POSIX specification. The reason is that we assume
that for real-time threads the priority protection
protocol will be used and, under this protocol, if
threads do not block themselves while holding a
mutex, threads will always find their mutexes
unlocked and therefore no thread will be queued in
the mutex queue as a consequence of normal mutual
exclusion. The queue is only provided for the case
when a “broadcast” operation is invoked for a
condition variable in conjunction with a mutex, of for
the rare case in which a thread would block while
holding a mutex. By not providing a priority queue,
we avoid having to reorder it whenever priorities
change.Fig. 2. Internal architecture of the kernel
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We have optimized the priority protection mechanism
for mutexes by implementing a “deferred priority
change”. In this mechanism, when a thread becomes
the owner of a mutex and thus inherits its ceiling
priority, the priority is not immediately raised, but a
flag is set to indicate that the priority change is
pending. In most of the cases, the critical section
during which the thread holds the lock is very short,
and thus the priority is returned back to its normal
level very soon, with no other thread being scheduled
in between. In that case, the deferred priority change
flag is reset and nothing else needs to be done. If
indeed a scheduling point occurs after setting the flag,
then the scheduler would check the flag and make the
required priority change. The effect of this
optimization is that in most cases we save two full
priority changes, and consequently the average-case
response time for the priority protection protocol is
extremely low, similar to that of the priority
inheritance protocol.

Condition Variables.  Each condition variable needs
a queue of waiting threads. If the number of threads
simultaneously waiting is under four, a simple linked
list is the best implementation for the queue.
However, for a larger number of threads, a priority
queue like the one used for the ready queue (with a
linked list for each priority, and a priority bit map) is
faster. This is the implementation that we have
chosen.

One possible implementation of the “Signal” and
“Broadcast” operations for condition variables would
be to put the activated thread or threads into the ready
queue, and let them “fight” for the associated mutex.
Although this is the simplest implementation, we
have chosen to complicate the implementation to
make it more efficient. As a result, we check the
priorities of the set of activated threads; within this
set, and if the mutex is not locked, the thread with the
highest priority is made the owner of the mutex, and
put into the ready queue, while the other threads, if
any, are inserted in the mutex wait queue. If the mutex
was already locked, all threads are put in the mutex
wait queue.

Dynamic Memory Management.  Current
implementation is very simple, and is optimized for
real-time threads that make the allocations at
initialization time, and then do not release the
allocated memory. For each allocation (i.e., malloc ),
a consecutive block of memory is reserved. The free

operation has no effect. Another possibility would be
to use the Buddy algorithm for memory allocation
and deallocation (Rusling, 1999), which has a
bounded response time.

6. PERFORMANCE METRICS

The implementation of the kernel is now complete
with the restrictions mentioned in Section 4, for a bare
Pentium-PC platform. We have replaced the
implementation of the low level GNULLI interface in
the Gnat run time system by our kernel, so we can
now run Ada tasks on top of it. C language
applications can also run on top of the POSIX
interface.

Table 1 shows performance metrics for some of the
most important services, measured on a Pentium III at
550 MHz. Context switch tests have been performed
with a large number of tasks (60 tasks), but only one
task per priority.

The number of lines of our implementation is around
4500, which gives an idea that the POSIX minimal
real-time profile is really suited for embedded
systems. 

7. CONCLUSIONS AND FUTURE WORK

With the kernel described in this paper we are able to
develop real-time embedded applications running on
a bare PC. More important, we can use this kernel as a
vehicle for research in new scheduling mechanisms
for real-time.

In order to complete our work we need to eliminate
the restrictions imposed, and we need to finish the
implementation of newly approved POSIX services
such as the sporadic server or execution time clocks

Table 1. Performance of some kernel services

Service Time ( µs)

Context switch, after yield  
operation, low priority thread

0.675

Context switch, after yield  
operation, high priority thread

0.668

Read the clock 3.100

Send signal followed by context 
switch and await signal

0.843

Send signal followed by context 
switch and await signal, with deferred 
priority change

1.213

Mutex lock followed by unlock (with 
deferred priority change)

0.433

Signal a condition variable on which 
a high priority thread is waiting, 
followed by context switch and end of 
condition wait call

1.410

Minimum Ada rendezvous, including 
two context switches

6.7

Two ada rendezvous, passing an 
integer from a producer task through 
a buffer task to a consumer task

14.8



and timers. In addition, we need to port the
implementation to other platforms, such as
microcontrollers, and Power PC boards.
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