
Integrating Application-Defined Scheduling
 with the New Dispatching Policies for Ada Tasks

Mario Aldea Rivas1, Javier Miranda2, and Michael González Harbour1

aldeam@unican.es, jmiranda@iuma.ulpgc.es, mgh@unican.es

1Departamento de Electrónica y Computadores, Universidad de Cantabria,
39005-Santander, SPAIN,

2Applied Microelectronics Research Institute, Univ. Las Palmas de Gran Canaria,
35017 Las Palmas de Gran Canaria, SPAIN

Abstract: In previous papers we had presented an application program interface
(API) that enabled applications to use application-defined scheduling algorithms
for Ada tasks in a way compatible with the scheduling model defined in the real-
Time Annex of the language. Each application scheduler was implemented with
a special task. This paper presents a new implementation in which the applica-
tion scheduler actions are executed as part of the kernel on which the run-time
system is based, thus increasing the efficiency. This paper also presents modifi-
cations to the proposed API that align it with the evolution of the Ada Issues
being considered in the Ada 200Y standardization. First, we use the new concept
of deadline as an abstract notion of urgency, to order the tasks in the scheduling
queue of the underlying kernel, freeing the application scheduler of the responsi-
bility of keeping the desired ordering of tasks, and thus simplifying it and reduc-
ing its overhead. In second place, we also consider task synchronization through
protected objects using the new Stack Resource Policy proposed for the EDF
task dispatching policy in Ada 200Y, which can be used in a large variety of
fixed and dynamic priority scheduling policies without explicit intervention of
the application scheduler.

Keywords: Real-Time Systems, Kernel, Scheduling, Compilers, Ada, POSIX

1 Introduction1

Although the Ada standard allows implementations to add their own task dispatching
policies, most commercial run-time systems just offer the standard fixed-priority
scheduling as the mechanism to support real-time concurrency. Scheduling theory and
practice shows that fixed priorities can be used to build predictable and analyzable
real-time applications, but it is well known that the use of dynamic priority scheduling
algorithms in which priorities may vary depending on the passage of time or on other
system parameters, allows a better usage of the available processing resources [16].
Current scheduling theory provides enough results to allow schedulability analysis in
these systems.

1. This work has been funded by the Comisión Interministerial de Ciencia y Tecnología of the Spanish
Government under grant TIC 2002-04123-C03 and by the Commission of the European Communities
under contract IST-2001-34140 (FIRST project).

As a consequence, it would be desirable to have dynamic priority scheduling policies1

available in the Ada language. A major evolution in this direction is an Ada Issue
being considered for the next revision of the Ada language [10], proposing an Earliest
Deadline First (EDF) task dispatching policy [13]. However, this policy by itself is not
enough for real-time applications. It is important, for instance, to have a server policy
that can handle aperiodic activities in a predictable way; for example, the constant
bandwidth server (CBS) [1] is an example of such server. In fact the number of task
dispatching policies described in the literature is quite large because dynamic priority
approaches are very flexible, and they can be tailored to adapt to many kinds of
application requirements. It is impractical for Ada run-time system developers to
provide all of these policies in their implementations.

In the past years we have been working on application program interfaces (APIs) and
implementations of application-defined scheduling services that could be used for
dispatching Ada tasks [8][9]. Those APIs allow the application to install one or more
task schedulers, and assigning application tasks to these schedulers. The schedulers
would receive the relevant scheduling events to make the appropriate scheduling
decisions, and then suspend or resume their scheduled tasks. Other authors
[17][18][19] have also worked in other application-defined scheduling services, but
they did not provide a full solution covering both scheduling and the associated
synchronization protocols.

A previous approach [9] was flexible enough to support many kinds of application
defined scheduling policies, but it had several drawbacks that potentially limit its
efficiency:

• Because the application scheduler is a special thread, every scheduling decision
requires a double context switch, which in some OS architectures may be too
expensive.

• The application scheduler has to keep the ordering of the threads that are ready for
execution, instead of leaving this task to the underlying kernel where it can be
made in a more efficient way.

• Mutual exclusive synchronization requires special support.

Although the overheads measured in our MaRTE OS [2] implementation were
acceptable for common applications, we realized that they could be too high in other
OS architectures, and thus we worked towards eliminating these sources of
inefficiency. As a result we have created a fully new implementation, with similar
capabilities, but which is much more efficient than the previous approach. This paper
presents the details of this implementation model.

In addition, this paper also presents a new API that aligns the application-defined
scheduling proposal with the evolution of the Ada Issues being considered in the Ada

1. Although Ada offers “dynamic priority” facilities that allow the application to explicitly change the
priority of a task, the term “dynamic priority policies” is usually applied to those policies in which the
priority may change without explicit intervention of the application.

200Y standardization [10]. First, we use the new concept of deadline defined in [13] as
an indication of urgency that is used by the underlying kernel to order the tasks in the
scheduling queue. By mapping application-defined scheduling parameters into this
urgency concept in a way transparent to the remainder of the application, we can free
the application scheduler of the responsibility of keeping the desired ordering of tasks,
and thus we can simplify it and reduce its overhead. In second place, in this paper we
also consider task synchronization through protected objects using the new Stack
Resource Policy proposed for the EDF task dispatching policy [13] in Ada 200Y,
which can be used in a large variety of fixed and dynamic priority scheduling policies
without explicit intervention of the application scheduler.

This paper is organized as follows: Section 2 gives an overview of the application-
defined scheduling proposal. Section 3 discusses the use of deadlines as an abstract
notion of urgency to order the tasks in the ready queue. Section 4 provides an overview
of the proposed API. Section 5 discusses the implementation details: inside the kernel,
the run-time system, and the compiler. Section 6 shows an example of a non-trivial
application-defined scheduler. Section 7 contains an evaluation of the new
implementation with performance metrics that compare it to previous
implementations. Finally, we give our conclusions in Section 8.

2 Overview of the New Application-Defined Scheduling Proposal

Fig. 1 shows the proposed approach for application-defined scheduling. Each
application scheduler is a special software module that is responsible of scheduling a
set of tasks that have been attached to it. According to the way a task is scheduled, we
can categorize the tasks as:

• System-scheduled tasks: these tasks are scheduled directly by the run-time system
and/or the operating system, without intervention of an application scheduler.

• Application-scheduled tasks: these tasks are also scheduled by the run-time
system and/or the operating system, but before they can be scheduled, they need
to be made ready by their application-defined scheduler.

Because the scheduler may execute in an environment different than that of the
application tasks, it is an error to share information between the scheduler and the rest
of the application. An API is provided for exchanging information when needed.
Application schedulers may share information among them.

The new scheduling API is designed to be compatible with the new task dispatching
policies under the framework initially described in [6] that has evolved during the Ada
200Y standardization process [14]. In that proposal, compatible scheduling policies
are allowed in the system by specifying the desired policy for each particular priority
range, with the Priority_Specific_Dispatching pragma; three values are
allowed: Fifo_Within_Priorities, Round_Robin_Within_Priorities, and
EDF_Across_Priorities [13]. At each priority level or priority band, only one
policy is available, thus avoiding the potentially unpredictable effects of mixing tasks
of different policies at the same level.

We propose adding one more value that could be used with the
Priority_Specific_Dispatching pragma: Application_Defined; it
represents tasks that are application scheduled, in a particular priority band.

The following language-defined library package serves as the parent of other
language-defined library units concerned with dispatching, including the proposed
application scheduling unit [14]:

 package Ada.Dispatching is
 pragma Pure (Dispatching);
 Dispatching_Policy_Error : exception;
 end Ada.Dispatching;

Application schedulers have the structure shown in Fig. 2 and are defined by extending
the Scheduler abstract tagged type defined in the new package
Ada.Dispatching.Application_Scheduling [8]. This type contains primitive
operations that are invoked by the system when a scheduling event occurs. To create
an application-defined scheduler the type can be extended by adding the data
structures required (for example, a ready queue and a delay queue), and by overriding
the primitive operations of interest to perform the scheduling decisions required to
implement the desired scheduling policy. Each of these primitive operations returns as
a result an object containing a list of scheduling actions to be executed by the system,
such as the requests to suspend, resume, or change the urgency of specific tasks

When defining an application scheduler we also need to extend the
Scheduling_Parameters tagged type defined in Ada.Dispatching.-

Application_Scheduling, to contain all the information that is necessary to spec-
ify the scheduling parameters of each task (such as its deadline, execution-time budget,
period, and similar parameters).

Fig. 1. Model for Application Scheduling

System
Scheduler

Application
Scheduler

Thread
Normal

Application
Scheduler

User Address
Space

Scheduler Ad-
dress Space

Application-
Scheduled

Task

Application-
Scheduled

Task

Thread
Normal
Regular

Task

3 Abstract Ordering of the Ready Queue

In the framework proposed in [9] the application schedulers were responsible for
ordering the tasks that were ready storing them in a specific queue inside the
application scheduler, and required an extra overhead of invoking the scheduler for
every scheduling decision. The run-time system’s ready queue was not usually
practical because for a given priority level it was just a FIFO queue, and dynamic
priority scheduling policies usually require other orderings.

In this paper we propose taking advantage of the EDF_Across_Priorities policy
defined in [13], using the deadline to order the tasks in the ready queue and
interpreting it as an abstract notion of “urgency” on to which any particular scheduling
parameter that the application scheduler chooses (e.g., deadline, value, quality of
service, ...) can be mapped. This approach is especially suitable for scheduling policies
in which the urgency or priority of the task only changes from one job to the next, but
remains constant within a specific job. For example, for EDF scheduling the absolute
deadline of the task does not change for a specific job, because it is defined as the
release time plus the relative deadline. In any case, the approach continues to be valid
for policies that do change the priority in the middle of a job, such as in the
proportional time-sharing scheduler shown in the example of Section 6.

The scheduling deadline assigned to each job makes it easier to implement scheduling
algorithms than in our previous application-defined scheduling proposal and, more
important, the schedulers become more efficient because when a task finishes its
current job it is not necessary to invoke the application scheduler again to determine

Init

New Task

Terminate_Task

Ready

Block

Explicit_Call

Task_Notification

Timeout

...

Application
Scheduler

Internal
State:

scheduling
queues,...

Run-Time System

System
Priority-based
Scheduler

Invokes Returns
Scheduling
Actions

Fig. 2. Structure of an Application Scheduler

...

the next task to execute. The system can choose the new task by itself. In this context
only when a new job arrives, or when the relative priority or deadline of a job changes,
it would be necessary to invoke the application scheduler.

The way chosen to inform the system about the “deadline” of a task is by adding a new
parameter to the operation that adds the “ready” action:

 procedure Add_Ready
 (Sched_Actions : in out Scheduling_Actions;
 Tid : in Ada.Task_Identification.Task_Id;
 Urg : in Ada.Dispatching.EDF.Deadline);

If this action is performed on a task that is already active, it changes the deadline of the
task forcing the reordering of the ready queue.

As in the proposal for supporting deadlines and EDF scheduling in Ada 200Y [13], in
our framework we have also chosen the Stack Resource Policy (SRP) [5] as the
synchronization protocol for protected objects. We can use the same rules described in
[13] to implement the SRP in the context of application-defined scheduling, by using
the priorities in the EDF priority band as the actual preemption levels of the SRP. The
priority ceilings in this band will have to be assigned according to the rules of the SRP,
if we want to eliminate priority inversion effects.

4 Overview of the API

The package Ada.Dispatching.Application_Scheduling contains the
proposed interface for the application scheduling operations.

In first place, there is an set of operations for the application scheduler to ask the
system to execute scheduling decisions through what we call the scheduling “actions”.
We add these actions to an object of the type Scheduling_Actions. One of these
operations is Add_Ready, mentioned above. The scheduling action operations are
shown next:

 type Scheduling_Actions is private;

 procedure Add_Accept
 (Sched_Actions : in out Scheduling_Actions;
 Tid : in Ada.Task_Identification.Task_Id);

 procedure Add_Reject
 (Sched_Actions : in out Scheduling_Actions;
 Tid : in Ada.Task_Identification.Task_Id);

 procedure Add_Ready
 (Sched_Actions : in out Scheduling_Actions;
 Tid : in Ada.Task_Identification.Task_Id);

 procedure Add_Ready
 (Sched_Actions : in out Scheduling_Actions;
 Tid : in Ada.Task_Identification.Task_Id;
 Urg : in Ada.Dispatching.EDF.Deadline);

 procedure Add_Timed_Task_Activation
 (Sched_Actions : in out Scheduling_Actions;
 Tid : in Ada.Task_Identification.Task_Id;
 Urg : in Ada.Dispatching.EDF.Deadline;
 At_Time : in Ada.Real_Time.Time);

 procedure Add_Suspend
 (Sched_Actions : in out Scheduling_Actions;
 Tid : in Ada.Task_Identification.Task_Id);

 procedure Add_Timeout
 (Sched_Actions : in out Scheduling_Actions;
 At_Time : in Ada.Real_Time.Time);

 procedure Add_Timed_Task_Notification
 (Sched_Actions : in out Scheduling_Actions;
 Tid : in Ada.Task_Identification.Task_Id;
 At_Time : in Ada.Real_Time.Time);

 procedure Add_Timer_Expiration
 (Sched_Actions : in out Scheduling_Actions;
 T : in out Ada.Execution_Time.Timers.Timer;
 Abs_Time : in Ada.Execution_Time.CPU_Time);

 procedure Add_Timer_Expiration
 (Sched_Actions : in out Scheduling_Actions;
 T : in out Ada.Execution_Time.Timers.Timer;
 Interval : in Ada.Real_Time.Time_Span);

The application-defined scheduling package provides operations for the application to
directly invoke the scheduler. For instance, the usual way in which an application task
informs the scheduler that it has finished its current job is by calling these operations.
Information can be passed from the application task to its scheduler, and viceversa, by
extending the abstract types Message_To_Scheduler and Reply_From_-

Scheduler, as needed. The explicit scheduler invocation types and operations are:

 type Message_To_Scheduler is abstract tagged null record;

 type Reply_From_Scheduler is abstract tagged null record;

 procedure Invoke
 (Msg : access Message_To_Scheduler’Class);

 procedure Invoke
 (Msg : access Message_To_Scheduler’Class;
 Reply : access Reply_From_Scheduler’Class);

The scheduler is declared as an abstract tagged type with primitive operations that
represent the code to be executed when a specific scheduling event occurs:

 type Scheduler is abstract tagged null record;

The actions to be executed by the system, described above, are passed as a parameter
to each of the primitive operations. The specifications of the most important of these
operations are:

 type Error_Cause is
 (SRP_Rule_Violation, Invalid_Action_For_Task);

 procedure Init
 (Sched : out Scheduler) is abstract;

 procedure New_Task
 (Sched : in out Scheduler;
 Tid : in Ada.Task_Identification.Task_Id;
 Actions : in out Scheduling_Actions);

 procedure Terminate_Task
 (Sched : in out Scheduler;
 Tid : in Ada.Task_Identification.Task_Id;
 Actions : in out Scheduling_Actions);

 procedure Ready
 (Sched : in out Scheduler;
 Tid : in Ada.Task_Identification.Task_Id;
 Actions : in out Scheduling_Actions);

 procedure Block
 (Sched : in out Scheduler;
 Tid : in Ada.Task_Identification.Task_Id;
 Actions : in out Scheduling_Actions);

 procedure Yield
 (Sched : in out Scheduler;
 Tid : in Ada.Task_Identification.Task_Id;
 Actions : in out Scheduling_Actions);

 procedure Abort_Task
 (Sched : in out Scheduler;
 Tid : in Ada.Task_Identification.Task_Id;
 Actions : in out Scheduling_Actions);

 procedure Change_Sched_Param
 (Sched : in out Scheduler;
 Tid : in Ada.Task_Identification.Task_Id;
 Actions : in out Scheduling_Actions);

 procedure Explicit_Call
 (Sched : in out Scheduler;
 Tid : in Ada.Task_Identification.Task_Id;
 Msg : access Message_To_Scheduler’Class;
 Reply : access Reply_From_Scheduler’Class;
 Actions : in out Scheduling_Actions);

 procedure Task_Notification
 (Sched : in out Scheduler;
 Tid : in Ada.Task_Identification.Task_Id;
 Actions : in out Scheduling_Actions);

 procedure Timeout
 (Sched : in out Scheduler;
 Actions : in out Scheduling_Actions);

 procedure Execution_Timer_Expiration
 (Sched : in out Scheduler;
 Expired_Timer : in out Ada.Execution_Time.Timers.Timer;
 Actions : in out Scheduling_Actions);

 procedure Error
 (Sched : in out Scheduler;
 Tid : in Ada.Task_Identification.Task_Id;
 Cause : in Error_Cause;
 Actions : in out Scheduling_Actions) is abstract;
 -- Non-abstract operations have a null body

The final part of the API contains operations to handle event masks, and an operation
to set the mask of events that should be filtered out. The Init primitive operation of
the example shown in Section 6 illustrates the usage of these operations to create a set
of events and set the event mask. The set mask operation is:

 procedure Set_Event_Mask (Mask : in Event_Mask);

For an in-depth description of the API shown in this section please refer to [8].

5 Implementation Details

5.1. Changes to the Compiler and the Run-Time System

The prototype implementation of this new proposal required the implementation of the
new priority dispatching mechanism proposed for Ada 200Y [14]. For this purpose we
modified the GNAT GAP 1.0 compiler to give support to the new configuration
pragma Priority_Specific_Dispatching. This pragma allows one or more
priority levels to be scheduled according to a given priority policy. In addition, we
modified the semantic analyser to allow the programmers the use of the
Application_Defined policy described in this paper. Hence, the form of this
pragma as well as the supported values for the policy identifier in our prototype
implementation is as follows:

 pragma Priority_Specific_Dispatching
 (Policy_Identifier,
 -- Valid policy names:
 -- FIFO_Within_Priorities (Ada 1995)
 -- Round_Robin_Within_Priorities (Ada 200Y)
 -- EDF_Across_Priorities (Ada 200Y)
 -- Application_Defined (new!)
 First_Priority_Expression, Last_Priority_Expression);
 -- Static expressions of type System.Any_Priority

The implementation of application-defined schedulers requires some additional
mechanism that allows the programmer to register its scheduler with the run-time
system. For this purpose we also give support to the following new pragma:

 pragma Application_Scheduler
 (Application_Defined_Scheduler,
 -- Tagged type derived from
 -- Ada.Dispatching.Application_Scheduling.Scheduler
 First_Priority_Expression, Last_Priority_Expression);
 -- Static expressions of type System.Any_Priority

The first argument is the name of a type derived from the tagged type defined in
package Ada.Dispatching.Application_Scheduling. In addition to the static
check required to verify that all the priority levels specified in the range of priorities
are allowed to have an application-defined scheduler (by means of pragma
Priority_Specific_Dispatching), the compiler also checks that the first
argument corresponds with a tagged-type derived from the correct type and that has
been defined at the library level. This is required to ensure that the scheduler is
available during the whole execution of the program. The implementation of pragma
Application_Defined_Sched_Parameters is the same as was described in [9].

The information provided by these pragmas is also used by the compiler to generate
additional code. For example, the arguments given in the pragma
Application_Scheduler are used to modify the elaboration-code of the library-
level package containing the definition of the application-defined scheduler: the
corresponding call to the underlying operating system to create an application
scheduler is performed and this scheduler is registered into the run-time for the
specified range of priorities.

Concerning the run-time system, the code associated with the elaboration of the tasks
has been modified. When the priority of a task is inside the range of priorities
associated with an application-defined scheduler, the task is registered with it. In
addition, the run-time must also take care of the re-allocation of a task to another
scheduler when the priority of the task changes.

5.2. Changes to the Underlying Operating System

The implementation of the ordering of tasks by urgency in the ready queue required
changing its enqueue operation. In the fixed-priority implementation, a new task was
added at the tail of the queue for its priority. Now, the position depends on the urgency
and the preemption level. This change is isolated to just one operation in the kernel.

In our previous implementation of application-level scheduling [9], all the scheduling
operations were executed by a special task. Now, some of the scheduler operations are
executed by the regular application tasks, namely Explicit_Call, New_Task,
Block, Yield, and Change_Sched_Param. This simplification causes these
operations to execute much faster because we can save the double context switch
required to execute in the context of the special task, and return from it. Implementing
this change has been very simple, because to accomplish the required mutual exclusion
with the scheduler we just need to raise the urgency and preemption level of the task
executing these operations to the same levels of that scheduler. This change of
scheduling parameters does not imply reordering the queue, because the task was
already executing; therefore, it is very fast.

In the new implementation, the scheduling operations triggered by asynchronous
events and which cannot be executed in the context of the running task are handled by
an auxiliary task created for each application scheduler. This is a kernel task that has a
very simple, much faster context switch, compared to the regular Ada tasks, because it
crosses less software layers. It has urgency and preemption level values higher than
those of their associated application-scheduled tasks, to take precedence in execution.
This auxiliary task can be eliminated completely once the “Timing events” [15] or a
similar OS functionality are available. In the current implementation we don’t yet have
timing events available, and the only alternative to the auxiliary tasks would be the use
of signal handlers, which would have more overhead than the auxiliary task.

6 Example: Proportional Share Scheduler

The following example shows the pseudocode of and application scheduler that
implements a simple proportional share scheduling policy, which is useful in the
context of soft real-time systems in which all tasks have to make progress but some
tasks are more important than others. The policy can be easily adapted so that hard
real-time tasks can coexist in the system at higher priority levels. We will make the
following declaration to reduce the length of the code in this section:

 package App_Sched renames
 Ada.Dispatching.Application_Scheduling;

Under the proportional share policy, each application-scheduled task has two specific
scheduling parameters called “importance” and “period” that will be notified to the
scheduler using the following types:

 type Task_Importance is new Positive range 1..100;

 type Share_Parameters is new
 App_Sched.Scheduling_Parameters with record
 Importance : Task_Importance;
 Period : Ada.Real_Time.Time_Span;
 end record;

The application scheduler will ensure that each task has a percentage of the CPU time
allocated to it, proportionally to its importance according with the following
expression:

That is, the percentage or CPU time (Wt) granted to a task t is equal to its importance
(It) divided by the sum of the importances of all the tasks scheduled by the application
scheduler. That means each task will be allowed to execute at most Wt·Pt units of time
in each period (Pt). In order to enforce that constraint, the application scheduler will
make use of the execution-time timers. As soon as a task reaches its allowed execution
time for its current period the application scheduler lowers its “urgency” to a
background level, so that it can only execute in the case that there are no other tasks
with remaining execution time. When a new period for a task starts, the application
scheduler raises the “urgency” of the task to a value proportional to its importance.

The application scheduler is defined as an extension of the abstract Scheduler.

 type Share_Scheduler is
 new App_Sched.Scheduler with private;

And then it is defined in the private part of the package to contain the total importance
and a list of items with the information associated with each task:

 type Share_Task_Data is tagged record
 Importance : Task_Importance;
 Period : Ada.Real_Time.Time_Span;
 Next_Period_Start : Ada.Real_Time.Time;
 Budget : Ada.Real_Time.Time_Span;
 Task_Id : aliased Ada.Task_Identification.Task_Id;
 Timer : access Ada.Execution_Time.Timers.Timer;
 end record;

 package Task_Data_Lists is new
 Singly_Linked_Lists (Share_Task_Data);

 subtype Task_Data_Ac is Task_Data_Lists.Element_Ac;

Wt
It

Iτ
τ T{ }∈
∑

------------------=

 type Share_Scheduler is new App_Sched.Scheduler with
 record
 List : Task_Data_Lists.List;
 Total_Importance : Natural;
 end record;

In the body of the proportional share scheduler a new task attribute is defined as an
instance of Ada.Task_Attributes, so that each task can access its own scheduler
information, by accessing the list element represented by a value of the type
Task_Data_Ac .

 package Share_Data is new
 Ada.Task_Attributes (Task_Data_Ac, null);

The primitive operations of Share_Scheduler perform the following actions,
illustrated with the relevant calls to the application scheduling API:

• Init: initializes the list of tasks and sets the event mask (with
App_Sched.Set_Event_Mask) to filter out all the events except New_Task,
Execution_Timer_Expiration, and Task_Notification.

 App_Sched.Fill (Mask);
 App_Sched.Delete(App_Sched.New_Task, Mask);
 App_Sched.Delete(App_Sched.Execution_Timer_Expiration,Mask);
 App_Sched.Delete(App_Sched.Task_Notification, Mask);
 App_Sched.Set_Event_Mask (Mask);

• New_Task:

• If there are no erroneous parameters accept the new task by adding an Accept
action

 App_Sched.Add_Accept (Actions, Tid);

• Create an execution-time timer
 T.Timer := new
 Ada.Execution_Time.Timers.Timer(T.Task_Id’Access);

• Create a new item in the list of tasks, with information on the period, the
importance, and the execution-time timer, and set the task’s attribute to point to
that value

 Share_Data.Set_Value (T, Tid);

• Update the total importance and recalculate the budgets of all tasks in the list

• Activate the new task by adding a Ready event with an urgency equal to the
importance plus the last value of importance (obtained with a trivial conversion
function called Urg_Foreground)

 App_Sched.Add_Ready
 (Actions, Tid, Urg_Foreground(T.Importance));

• Program a timed task notification, adding a Timed_Task_Notification action, to
occur at the next period

 App_Sched.Add_Timed_Task_Notification
 (Actions, Tid, T.Next_Period_Start);

• Program the execution-time timer

 App_Sched.Add_Timer_Expiration
 (Actions, T.Timer.all, T.Budget);

• Execution_Timer_Expiration: This function is called by the system when
the task’s execution-time budget gets exhausted for the current period. It has to
lower the urgency to a value equal to the importance (obtained with the trivial
conversion function Urg_Background)

 App_Sched.Add_Ready
 (Actions, T.Task_Id, Urg_Background(T.Importance));

• Task_Notification:

• Obtain the task data using the corresponding task attribute

 T := Share_Data.Value (Tid);

• Raise the task’s urgency

 App_Sched.Add_Ready
 (Actions, Tid, Urg_Foreground (T.Importance));

• Calculate the new ready time by adding the period to the previous one and
program a task notification to occur at start of the next period

 App_Sched.Add_Timed_Task_Notification
 (Actions, Tid, T.Next_Period_Start);

• Reprogram the execution-time timer to check the budget for the next period
 App_Sched.Add_Timer_Expiration
 (Actions, T.Timer.all, T.Budget);

The configuration pragmas in the system will be defined as follows:

 pragma Priority_Specific_Dispatching
 (Application_Defined, 14, 18); -- for instance

 pragma Locking_Policy (Ceiling_Locking);

And the pragma to define the application scheduler would be:

 pragma Application_Scheduler
 (Share_Scheduling.Share_Scheduler,14,18);

The specification of an application-scheduler task type would be:

 task type Share_Task_1
 (Param : access Share_Scheduling.Share_Parameters;
 Prio : System.Any_Priority)
 is
 pragma Priority (Prio);
 pragma Application_Defined_Sched_Parameters (Param);
 end Share_Task_1;

And the body would just be the desired computation with no explicit relation with the
scheduler:

 task body Share_Task is
 begin
 loop
 -- do useful work
 end loop;
 end Share_Task;

To create a scheduler type task we would declare the importance and period inside an
object of the Share_Parameters type, and then we would declare the task as:

 T1_Paramters : aliased Share_Scheduling.Share_Parameters :=
 (Importance => 60,
 Period => Ada.Real_Time.To_Time_Span (4.0));

 T1 : Share_Task (T1_Paramters’Access, Scheduler_Priority_Low);

7 Evaluation

We have made some experiments to compare the overheads of the new
implementation of application-defined scheduling presented in this paper with the
previous one [9]. Table 1 shows some of the average results of this evaluation as
measured on a 1.1 GHz Pentium III processor.

We can see that the timed task notification (first row in Table 1) is now smaller mainly
because of the use of a kernel task, instead of a regular Ada task. The explicit
scheduler invocation (second row) is much smaller because it is now executed in the
context of the application task, avoiding a double context switch. Execution of
scheduling actions (third row) is also faster because in the new implementation, for the
application scheduler to request a context switch it is no longer necessary to suspend a
task and make the new one ready, but just to lower the urgency of the task that must
leave the CPU.

We have measured a common context switch time for a specific policy with the old
and the current implementation. The policy chosen was EDF, and the results appear in
the fourth row 4 of Table 1. The scenario measured is a typical EDF context switch in
which the most urgent task finishes its current job and explicitly invokes its scheduler
to notify this situation and wait for the following activation. Once that task leaves the
CPU the new most urgent task starts executing. We can see that the overhead drops to
around one third of that of the old implementation, from 3.3 µs to just 1.0 µs. The
reason is that now the explicit invocation is done as part of the calling task, and the
new task is chosen by the operating system based on its urgency, and therefore without
intervention of the application scheduler. The new context switch is under the time of a
context switch due to a regular delay statement (1.6 µs for the same processor). This
kind of overhead is more than acceptable for common real-time applications which
usually have timing requirements in the range of milliseconds or tens of milliseconds.

Table 1. Comparison of overhead measurements

Metric Time (µs)
old approach

Time (µs)
new approach

Timed task notification event (from the execution of a user
task, until the execution of the application scheduler)

1.3 1.0

Explicit scheduler invocation (from the call to the invoke
operation, until the application scheduler executes)

0.9 0.23

Execute scheduling actions (switch from a running user task to
a new one)

2.0 1.3

Context switch for an EDF application-defined scheduler 3.3 1.0

8 Conclusion

In this paper we have presented the implementation of the application-defined
scheduling framework defined in [8], augmented with the inclusion of an abstract
notion of urgency defined to enhance efficiency and simplify the development of
application schedulers. To implement this notion of urgency we take advantage of the
new EDF dispatching policy and associated SRP synchronization protocol proposed
for Ada 200Y.

The compiler and run-time system modifications presented in [9] have been adapted
to the new version of the GNAT compiler (GAP 1.0) in a straightforward manner. Also
the kernel support for urgency ordering of ready queues has been implemented with
only a moderate effort in our operating system MaRTE OS (a standard priority-based
operating system).

To prove the flexibility and usage simplicity of our framework an example of a non-
trivial application scheduler has been presented. Performance measurements show
more than acceptable overheads, moreover if the important advantages of having a
framework as the proposed are taken into account.

We have also shown the usefulness of the EDF task dispatching policy proposed for
Ada 200Y. Although this policy by itself may not be enough for all applications, thus
motivating the presence of application defined schedulers, our proposal builds on top
of it and takes advantage of the notion of deadline as well as the SRP implementation
for protected objects using just the priority ceilings as preemption level control values.

We believe that an application-defined scheduling framework for Ada like the one
presented in this paper represents an opportunity for this language to continue to be the
reference language for real-time systems, by supporting the new application
requirements for more flexible and resource-efficient scheduling.

References

[1] L. Abeni and G. Buttazzo. “Integrating Multimedia Applications in Hard Real-Time
Systems”. Proceedings of the IEEE Real-Time Systems Symposium, Madrid, Spain,
December 1998

[2] M. Aldea and M. González. “MaRTE OS: An Ada Kernel for Real-Time Embedded
Applications”. Proceedings of the International Conference on Reliable Software
Technologies, Ada-Europe-2001, Leuven, Belgium, Lecture Notes in Computer Science,
LNCS 2043, May, 2001.

[3] IEEE Std 1003.1-2003. Information Technology -Portable Operating System Interface
(POSIX). Institute of Electrical and electronic Engineers.

[4] IEEE Std. 1003.13-2003. Information Technology -Standardized Application Environment
Profile- POSIX Realtime and Embedded Application Support (AEP). The Institute of
Electrical and Electronics Engineers.

[5] Baker T.P., “Stack-Based Scheduling of Realtime Processes”, Journal of Real-Time
Systems, Volume 3, Issue 1 (March 1991), pp. 67–99.

[6] A. Burns, M. González Harbour and A.J. Wellings. “A Round Robin Scheduling Policy
for Ada”. Proceedings of the International Conference on Reliable Software Technologies,
Ada-Europe-2003, Toulouse, France, in Lecture Notes in Computer Science, LNCS 2655,
June, 2003, ISBN 3-540-40376-0.

[7] Alan Burns, Andy J. Wellings and S. Tucker Taft. “Supporting Deadlines and EDF
Scheduling in Ada”. 9th International Conference on Reliable Software Technologies,
Ada-Europe, Palma de Mallorca (Spain), in Lecture Notes on Computer Science, Springer,
LNCS 3063, June, 2004, ISBN:3-540-22011-9, pp. 156-165.

[8] Mario Aldea Rivas and Michael González Harbour. “Application-Defined Scheduling in
Ada”. Proceedings of the International Real-Time Ada Workshop (IRTAW-2003), Viana
do Castelo, Portugal, September 2003.

[9] Mario Aldea Rivas, J. Miranda and M. González Harbour. “Implementing an Application-
Defined Scheduling Framework for Ada Tasking”. 9th International Conference on
Reliable Software Technologies, Ada-Europe, Palma de Mallorca (Spain), in Lecture
Notes on Computer Science, Springer, LNCS 3063, June, 2004, ISBN:3-540-22011-9, pp.
283-296.

[10] Pascal Leroy. “An Invitation to Ada 2005”. International Conference on Reliable Software
Technologies, Toulouse, France, in Lecture Notes on Computer Science, LNCS 2655,
Springer, June 2003.

[11] Ada Rapporteur Group (ARG). “Execution-Time Clocks”, Ada Issue AI95-00307-1.13 .
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00307.TXT

[12] Ada Rapporteur Group (ARG). “Group Execution-Time Timers”. Ada Issue AI95-00354-
1.8.
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00354.TXT

[13] Ada Rapporteur Group (ARG). “Support for Deadlines and Earliest Deadline First
Scheduling”. Ada Issue AI95-00357-1.12.
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00357.TXT

[14] Ada Rapporteur Group (ARG). “Priority Specific Dispatching including Round Robin”.
Ada Issue AI95-00355-1.9.
 http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00355.TXT

[15] Ada Rapporteur Group (ARG). “Timing events”. Ada Issue AI95-00297/10.
 http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00297.TXT

[16] Giorgio C. Buttazo. “Rate Monotonic vs. EDF: Judgment Day”. Journal of Real-Time
Systems, Volume 29, Number 1, Jan 2005.

[17] Y.C. Wang and K.J. Lin, “Implementing a General Real-Time Scheduling Framework in
the Red-Linux Real-Time Kernel”. Proceedings of IEEE Real-Time Systems Symposium,
Phoenix, December 1999.

[18] Bryan Ford and Sai Susarla, “CPU Inheritance Scheduling”. Proceedings of OSDI,
October 1996.

[19] George M. Candea and Michael B. Jones, “Vassal: Loadable Scheduler Support for Multi-
Policy Scheduling”. Proceedings of the Second USENIX Windows NT Symposium,
Seattle, Washington, August 1998.

