Fixed Priorities or EDF for Distributed Real-Time Systems?

Juan M. Rivas, J. Javier Gutiérrez and Michael González Harbour

Computers and Real-Time Group, Universidad de Cantabria, 39005-Santander, SPAIN
{rivasjm, gutierjj, mgh}@unican.es

GOAL: to compare how FP and EDF can influence the schedulability of a distributed real-time system under a variety of conditions: different system sizes, deadline/period ratios, different lengths of end-to-end flows, ...; inspired by [1]

Example specification:
- 20 E2E flows
- Up to 8 steps per E2E flow
- 10 single step E2E flows
- 5 processors
- Maximum periods ratio= 1000
- D=Num. of steps in E2E flow*T
- FP, local and global EDF
- PD and HOSPA

Evolution rules:
- 50 seed models
- Initial and last utilizations: 40%-99%
- Utilization step: 1%
- Uniform utilization distribution

24000 tests executed
- Analysis, optimization and calculation of slacks

Computation times:
- Almost 4 months of CPU time
- Less than 15 hours of supercomputer usage

Results for an Example

- Maximum utilizations reached for scheduling optimization techniques
- Slacks when applying schedulability analysis techniques
- Computation times for tests

GEN4MAST (Results Processing)

- Database (HDF5)
- MAST Results Description

Other MAST Tools

- Model Builders
 - (Graphical editor, UML profile, Ada components, etc.)
- Results Viewer
- Simulator

GEN4MAST (Generator)

- MAST System Description
- Supercomputer scripts
- GEN4MAST (Results Processing)

MAST Analysis Tool

- Sensitivity Analysis
 - Slacks:
 - System
 - Processing Resource
 - End-to-end Flow
 - Operation
- E2E Flow Model

- Scheduling Parameters Assignment Techniques
- Schedulability Analysis Techniques
- Distributed Systems
 - HOSPA [9]
 - Simulated Annealing
 - PD [4]
 - NPD [4]
- Distributed Systems:
 - Offset-Based [6][7]
 - Local EDF [8]
 - Global EDF [10]
 - Heterogeneous [9]

Evolution Rules

- Number of seed models with the same specification
- Initial and last utilization values (%)
- Utilization step (%)
- Utilization distribution (uniform/non-uniform)

System Specification

- Number of end-to-end (E2E) flows
- Maximum number of steps per E2E
- Number of E2Es with a single step
- Number of processors and networks
- Deadline and period ranges and ratios
- Type of schedulers: FP, local or global EDF

GEN4MAST (Generator)

- Application Profiles
- MAST home page: http://mast.unican.es/

Computation times:
- Less than 15 hours of supercomputer
- Almost 4 months of CPU time

Example specification:
- 20 E2E flows
- Up to 8 steps per E2E flow
- 10 single step E2E flows
- 5 processors
- Maximum periods ratio= 1000
- D=Num. of steps in E2E flow*T
- FP, local and global EDF
- PD and HOSPA

Evolution rules:
- 50 seed models
- Initial and last utilizations: 40%-99%
- Utilization step: 1%
- Uniform utilization distribution

24000 tests executed
- Analysis, optimization and calculation of slacks

Computation times:
- Almost 4 months of CPU time
- Less than 15 hours of supercomputer usage

GOAL: to compare how FP and EDF can influence the schedulability of a distributed real-time system under a variety of conditions: different system sizes, deadline/period ratios, different lengths of end-to-end flows, …; inspired by [1]

Example specification:
- 20 E2E flows
- Up to 8 steps per E2E flow
- 10 single step E2E flows
- 5 processors
- Maximum periods ratio=1000
- D=Num. of steps in E2E flow*T
- FP, local and global EDF
- PD and HOSPA

Evolution rules:
- 50 seed models
- Initial and last utilizations: 40%-99%
- Utilization step: 1%
- Uniform utilization distribution

24000 tests executed
- Analysis, optimization and calculation of slacks

Computation times:
- Almost 4 months of CPU time
- Less than 15 hours of supercomputer usage

Results for an Example

- Maximum utilizations reached for scheduling optimization techniques
- Slacks when applying schedulability analysis techniques
- Computation times for tests

GEN4MAST (Results Processing)

- Database (HDF5)
- MAST Results Description

Other MAST Tools

- Model Builders
 - (Graphical editor, UML profile, Ada components, etc.)
- Results Viewer
- Simulator

GEN4MAST (Generator)

- Application Profiles
- MAST home page: http://mast.unican.es/