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Abstract—This paper reports solutions to the 2017 edition of 

the Formal Methods and Timing Verification (FMTV) challenge, 

which builds upon the 2016 FMTV challenge dealing with 

calculating latencies in a complex engine management system. The 

new challenge proposes two new strategies/semantics for task 

communication through local or global memory in a multi-core 

platform: (1) implicit communication, which allows access to 

global memory only at the task boundaries and (2) Logical 

Execution Time (LET), in which tasks only read global memory at 

the beginning of their activation interval and write at the end. 

Based on our previous experience in translating the provided 

Amalthea model into the MAST model, we propose using the latter 

and also the associated suite of tools for schedulability analysis and 

optimization to solve the challenge. Once the new memory access 

strategies have been properly modelled with MAST, we try to 

answer some of the questions raised by the challenge using 

response time analysis. Finally, we discuss the strengths and 

limitations of our approach according to the results obtained. The 

solutions are available to the public in electronic form to facilitate 

their assessment by the community. 

Keywords— Amalthea; MAST; engine management system; task 

communication; multi-core; response-time analysis; real-time. 

I.  INTRODUCTION 

The 2017 FMTV Challenge [1] extends the 2016 version [2] 
by adding two new mechanisms for task communication through 
shared memory. Thus, the challenge asks for a qualitative and 
quantitative comparison of three different memory access 
strategies: (1) explicit, which is the 2016 strategy, allowing 
unrestricted access to both local or global memory from the 
tasks, (2) implicit, which allows access to global memory only 
at the task boundaries and (3) Logical Execution Time (LET), in 
which periodic tasks can only read global memory at the 
beginning of their activation interval and write at the end. An 
engine management system (EMS) is provided as a case study 
through an Amalthea [3] model. 

For the 2016 challenge, we proposed in [4] the verification 
of this system by applying response time analysis (RTA) 
available in the MAST [5][6] analysis suite. Accordingly, we 
defined an Amalthea to MAST model transformation path 
dealing with the explicit memory access strategy. Once this 
equivalent MAST model was generated, the MAST analysis 
tools could be used to calculate latencies using common 

response-time analysis techniques, such as the offset-based 
analysis [7]. In our approach we had to make some assumptions 
when (1) interpreting and transforming the provided model, (2) 
selecting the most appropriate and less pessimistic analysis 
technique and (3) interpreting the results provided by the tools, 
especially to compute the latencies of the event chains. 

In the previous challenge, we used an incorrect contention 
model for the access to global memory leading to safe but 
pessimistic results. We assumed a worst-case situation in which 
all cores could access global memory at the same time for each 
label, at a cost of 4*9=36 cycles. The crossbar interconnection 
network, which imposes 8 out of the 9 cycles required for a 
single global memory access [8], has no contention. Thus, the 
worst-case cost for each access to a label located in global 
memory is 4*1+8=12 cycles (instead of 36 cycles). This issue 
was clarified during the workshop. Taking into account our 
previous work on the 2016 FMTV challenge, we propose: 

 To reevaluate the behavior of the explicit memory 
access strategy according to the right contention model 
for global memory. 

 To extend the transformation of the Amalthea model 
into the MAST model for the new memory access 
strategies: implicit and LET. 

 To reuse the event chain model proposed in our solution 
to the past challenge, based on the results of the response 
time analysis obtained by MAST. 

 A fair comparison of the latencies calculated by MAST 
for the three memory access strategies in order to 
highlight their advantages and drawbacks. 

 To use the mapping of labels that we proposed in [4], 
i.e., mapping into global memory only the labels shared 
among different cores, thus achieving absence of 
contention in local memory accesses. 

The paper is organized as follows. Section II describes the 
MAST environment focusing on the most relevant elements 
used to solve the challenge. Section III summarizes the work 
done with MAST for the previous challenge. In Section IV, we 
propose the interpretation of the implicit and LET strategies, and 
how they are modelled using MAST. Section V, shows the 
results of the challenge. Finally, in Section VI the conclusions 
of this work are presented. This work has been funded in part by the Spanish Government under grant 

number TIN2014-56158-C4-2-P (M2C2), and by the Walloon Region in 

Belgium with the BEWARE Project PARTITA (convention no. 1610375). 



II. MAST TOOL SUITE 

MAST consists of a model [5] and an open source set of tools 
to perform schedulability analysis and optimization of real-time 
systems [6]. The MAST model is aligned with MARTE 
(Modeling and Analysis of Real-Time Embedded systems) [9], 
a standard of the Object Management Group (OMG) for 
modeling and analysis of real-time and embedded systems. 

A. The MAST model 

The MAST model follows an event-driven approach, and 
assumes a real‐time distributed system with multiple processing 
resources (CPUs and communication networks). The system is 
composed of distributed end‐to‐end flows, which are released by 
periodic, sporadic or aperiodic sequences of external events. The 
relative phasing of the activations of different end-to-end flows 
is assumed to be arbitrary. An end-to-end flow is composed of a 
sequence of steps, which represent the execution of a thread in a 
processor, or the transmission of a message through a network. 
Each release of an end‐to‐end flow causes the execution of one 
instance of its sequence of steps. Each step is released when the 
preceding one in its end‐to‐end flow finishes its execution. We 
assume that the steps are statically mapped to processing 
resources. The model also allows mutual exclusion 
synchronization in the processors. 

Fig. 1 shows an example of an end-to-end flow (i) with 

three steps (i1, i2, i3), each executing in a different processing 
resource PRk. The end-to-end flow is released by the arrival of 
the external event ei. This external event has a period Ti, which 
can also represent the minimum inter-arrival time of a sporadic 

arrival pattern. Steps can have an initial offset (ij) associated, 
which is the minimum imposed release time of the step, relative 
to the arrival of the external event. Each step has a worst-case 
execution time (WCET), Cij, and a best-case execution time 
(BCET), 𝐶𝑖𝑗

𝑏 . MAST supports Fixed Priorities (FP) and Earliest 

Deadline First (EDF) scheduling. The timing requirements that 
we consider are end-to-end deadlines (Di), which must be met 
by the completion of the last step in the end-to-end flow, relative 
to the arrival of the external event. The deadlines can be larger 
than or within the periods.  

As a result of the response time analysis, each step ij has a 
worst-case response time (or an upper bound on it) Rij, and a 
best-case response time (or a lower bound on it) 𝑅𝑖𝑗

𝑏 . These 

response times are relative to the arrival of the external event 
(global response times). The worst-case response time of an end-
to-end flow (Ri) is the worst-case response time of its last step. 
The system is said to be schedulable if the worst-case response 
times of the end-to-end flows are lower than or equal to their 
end-to-end deadlines (Ri ≤ Di). The completion time of the steps 
can vary for different activations. As a consequence, the step 

activation time also varies. For a step ij, we define its release 
jitter (Jij) as its worst-case variation in activation times. The jitter 
is taken into account by the analysis techniques. 

B. MAST analysis tools 

MAST implements several analysis techniques that can be 
applied to an FP system with end-to-end flows, ranging from the 
holistic analysis, to various offset-based techniques [10]. In the 
same way as for the 2016 challenge [4], we use the technique 
called offset_based_approx_w_pr in MAST (Offset-Based 

Analysis with Precedence Relations [7]). This technique 
supports steps with offsets, and is capable of reducing the 
pessimism in the results, especially for end-to-end flows with 
sequential steps in the same processing resource, as it will be the 
case in this challenge.  

Finally, for calculating latencies in event chains, we will 
need local response times of the steps. We will use the same 
modified tool as in [4] to provide these local response times 
according to [11], taking into account offsets. Local worst-case 
response times (rij), and local best-case response times (𝑟𝑖𝑗

𝑏) are 

defined as upper and lower bounds, respectively, on the 
completion times of steps, relative to their own local activations 
(see Fig. 1). This custom version of MAST will be made 
available in addition to the transformation and generated 
models. 

III. SOLUTIONS TO THE 2016 FMTV CHALLENGE WITH MAST 

We have recalculated the solutions for the 2016 FMTV 
challenge [4], which uses the explicit memory access model, 
taking into account the right contention model for global 
memory, as indicated in the introduction. This section 
summarizes the assumptions made on the model transformation 
to MAST and also on the calculation of latencies of event chains. 
The complete information can be found in [4]. 

A. Amalthea to MAST model transformation 

Amalthea tasks represent the schedulable elements in the 
model. For the case of the challenge, they have the following 
characteristics: 

 Tasks are activated by periodic or sporadic stimuli with 
minimum inter-arrival times. Stimuli are assumed to 
have arbitrary phasings. Timing constraints are given as 
deadlines that the tasks must meet. In this case, deadlines 
are equal to the periods. 

 Tasks are statically assigned to cores, and are scheduled 
with a fixed priority policy. Tasks can be preemptive, or 
cooperative (they can preempt lower priority cooperative 
tasks only at the termination of runnables). In the 
provided model, cooperative tasks always have lower 
priority than preemptive tasks.  

 

Fig. 1. Example of a simple MAST end-to-end flow with three steps. 
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 Each Amalthea task in the model executes a sequential 
list of runnables. Each runnable is composed of three 
sequential stages: (1) label (memory) read accesses, (2) 
execution of instructions in the assigned processing core, 
and (3) label (memory) write accesses. Some runnables 
don’t write or read from memory.  

We interpret Amalthea tasks as MAST end-to-end flows, in 
which each runnable is transformed into a MAST step. For 
sporadic Amalthea tasks, the resulting MAST end-to-end flow 
will be periodic, with a period equal to the minimum inter-arrival 
time. This interpretation is only correct for flows with offsets 
within the periods [12]. Since in the Amalthea model the flow 
deadlines are within the periods so are the step offsets. If the 
offsets were larger than the periods, the MAST flows would 
need to be sporadic and the worst-case response times would be 
larger. The deadline of the Amalthea task is directly used as the 
end-to-end deadline of its corresponding MAST end-to-end 
flow.  

We will model the memory accesses as execution time added 
to the MAST steps, accounting for the worst-case and best-case 
costs of accessing the memory. The worst-case cost of accessing 
a label pessimistically assumes that every core is accessing that 
memory at the same time. According to [8], the worst-case cost 
of accessing a label in global memory is 4*1+8=12 cycles. 
Similarly, the best-case cost of accessing a label assumes that no 
other core is in the queue for that memory, so this value is just 9 
cycles (no contention). Thus, in the runnable to MAST step 
transformation, the worst-case execution time of the step (Cij) is 
calculated as the sum of two elements: (1) the execution time of 
the upper bound of the number of instructions of the runnable 
(including local memory label accesses with their frequencies), 
and (2) the worst-case cost of reading the global labels at the 
beginning and writing them at the end of the runnable. If a 
runnable accesses N global labels (read and/or write), the worst-
case cost would be N*12 cycles. Likewise, the best-case 
execution time (𝐶𝑖𝑗

𝑏 ) of the step is calculated as the sum of the 

lower bound of the instructions of the runnable (also including 
local memory label accesses with their frequencies), and the 
best-case cost of accessing the global labels (N*9 cycles). Fig. 2 
depicts the transformation of a simple Amalthea task (Fig. 2a) 
into a MAST end-to-end flow (Fig. 2b) for the explicit memory 
access model. 

Additionally, we can also model the blocking effect in a 
thread accessing the memory due to a local label being accessed 
by a lower priority thread in the same core, although we will not 
consider it as its effect is negligible [4]. To model cooperative 
tasks, we will take into account that in the worst-case scenario, 
these tasks will be blocked by an amount equal to the longest 
cooperative runnable with lower priority. In MAST we can 
induce this blocking adding a dummy shared resource that is 
used by the longest runnable of each cooperative task. This 
resource uses the immediate ceiling protocol with a ceiling equal 
to the highest cooperative task’s priority. MAST automatically 
finds the longest possible blocking that affects each task. 

B. Analysis of event chains 

We interpret event chains as a latency model for non-
consecutive runnables communicating via shared memory. The 
first runnable in the event chain writes a result in a label. Then 

the next runnable in the chain reads this label, process it, and 
writes its result in another label, and so on. Runnables in an 
event-chain can belong to the same Amalthea task or not. MAST 
does not support this kind of “virtual” end-to-end flows, but it 
provides results that can be used to calculate bounds for the best 
and worst-case latencies of the event chains. 

We distinguish two types of event chains [4]: 

 Event chains that stay in the same Amalthea task 
(EffectChain_1). We can notice that to go backwards, 
the chain requires an additional activation of the 
Amalthea task. The worst-case latency (L) occurs when 
the first label in the chain is read as soon as possible, so 
the chain has to wait the maximum amount of time until 
the next activation of the end-to-end flow. Then, the 
event chain must wait for the worst-case completion 
time of the last step. Since the end-to-end flow must 
finish before its next activation, the response times of 
middle steps are irrelevant in this calculation. Likewise, 
the best-case latency (Lb) of the event chain occurs when 
the first label is read as late as possible and the last step 
finishes as soon as possible. 

 Event chains that traverse different Amalthea tasks 
(EffectChain_2 and EffectChain_3). The worst-case 
latency of the event-chain (L) comprises the sum of the 
worst-case local response times of the steps in the chain 
(rij), and the periods of all the end-to-end flows involved 
in the chain except the one hosting the initial step in the 
chain. The periods should be added because in the 
worst-case situation it is assumed that at the time a label 
is written, the next runnable in the chain has just 
executed, so the chain cannot continue until the next 
period. For sporadic stimuli, the period added must be 
its upper bound. Similarly, the best-case latency (Lb) is 
calculated by adding the best-case local response times 
(𝑟𝑖𝑗

𝑏). In this case periods are not added, because the best 

case is built when a label is read immediately after the 
previous runnable in the chain updated its value. 

The formulation for the worst and best case latencies for the 
event chains as well as a further explanation can be found in [4]. 

 
Fig. 2. (a) Example of a simple Amalthea task with three Runnables, and (b) 

its MAST end-to-end flow equivalent used in this work  
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IV. IMPLICIT AND LET MEMORY ACCESS IN MAST 

The current challenge introduces new memory access 
models that group read and write memory operations of tasks to 
be performed at the beginning or at the end of the task execution 
(implicit model) or at the beginning or at the end of the period 
(LET model). This organization of read and write memory 
operations affects the transformation of the original Amalthea 
model to the MAST model, as well as the interpretation of the 
event chains according to the information obtained by the 
schedulability analysis for these new models. 

A. Amalthea to MAST model transformation 

The interpretation of an Amalthea task for the implicit and 
LET memory access models as MAST end-to-end flows differs 
from the explicit model only in the organization of steps 
representing the execution of runnables and read and write 
operations, and in the specific instants at which some of these 
steps can be executed. Fig. 3 shows the equivalent MAST model 
for the implicit memory access model (Fig. 3a) and for the LET 
memory access model (Fig. 3b).  

As it can be seen, for simplicity, the implicit model considers 
all runnables of a task (including global read and write 
operations) grouped into a single step (Fig. 3a). This is possible 
because all these actions are executed at the same priority. In the 
same way done for the explicit memory access model, the 
memory accesses are considered as execution times added to this 
step according to the mapping of labels. In this model, read and 
write operations are executed at the priority of the task and they 
can be preempted or not depending on the kind of task (non-
cooperative or cooperative). This interpretation does not 
compromise data coherence within the task itself. Inter-task data 
coherence is not assured as it is possible to have concurrent data 
access from different cores and there is no mutual exclusion 
mechanism specified.  

The LET memory access model needs to control the instants 
at which read and write operations should be executed. For this 
reason, the equivalent MAST model of an Amalthea task is an 
end-to-end flow composed of three steps (Fig. 3b): (1) an initial 
step grouping all the global-memory read operations, (2) a 
middle step grouping all the activities performed by the 
runnables (except global reads and writes) and (3) a final step 
grouping all the global-memory write operations. The execution 
of the first step should be as close as possible to the beginning 
of the period, and the final step is delayed with an offset trying 
to make it coincide with the end of the period. To accomplish 
these requirements it is necessary to achieve low jitter in the 
execution of the initial and final step, which requires executing 
them at high priority levels. In our model, these steps are 
executed by different tasks making it possible to assign different 
priorities to them. Please note that modeling these steps with 
different tasks does not require having different tasks in the 
actual implementation. It is possible to have a single task for 
each end-to-end flow, dynamically setting its priority according 
to the step that is being executed. To assign priorities to each 
step we propose the use of priority bands in the following way: 

 2 priority bands: a low priority band for the execution of 
runnables at the priority assigned in the Amalthea 
model, and a high priority band for the execution of read 

and write operations under the following conditions: (1) 
reads and writes of the same end to-end flow are 
executed at the same priority and (2) the original priority 
order is preserved in this band. 

 3 priority bands: a low priority band for the execution of 
runnables, a medium priority band for the execution of 
read operations and a high priority band for the 
execution of write operations. The same criteria as for 
the previous case is used inside each band. 

The use of priority bands allows minimizing jitter. In 
addition, it is necessary to use offsets to control the timing of the 
write operations, so that their execution is postponed to the end 
of the period. We consider two different offset assignment 
strategies: 

 LET-Static. Offsets are set equal to periods, thus write 
operations are always performed as the first operation of 
the next activation, except for the first one.  

 LET-Dynamic. The objective is that the worst case 
response times of the write operations equal the 
corresponding periods, thus ensuring that these 
operations finish as close as possible to the end of their 
instance period. An algorithm is needed for assigning 
offsets, as response times depend on offsets and the 
assignment of offsets depends on the response times. 
We propose the following one: 

Offsets calculation for LET-Dynamic 

begin 

   offset=T for all end-to-end flows; 

   loop 

      Calculate response times; 

      exit when R=T for all end-to-end flows; 

      for each end-to-end flow 

      loop 

         if R>=T then 

            offset=offset-(R-T); 

         else 

            offset=T-(R-offset); 

         end if; 

      end loop; 

   end loop; 

end; 

 

 
Fig. 3. MAST end-to-end flow equivalent to an Amalthea task for (a) the 

implicit and (b) the LET memory access models 
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For the challenge example this algorithm requires only one 
iteration for the model with 3-priority bands, and three iterations 
for 2-priority bands. 

B. Analysis of event chains 

In the explicit memory access model the execution of each 
runnable includes read-execute-write operations, and thus the 
analysis of the chain can focus on the individual local response 
times of each runnable. However, in the implicit or LET models 
reads and writes are only performed at the beginning or at the 
end of the task, and thus the complete task global response times 
must be considered. Based on this observation, we reformulate 
the equations proposed in [4] for the two types of event chains: 

 Event chains that stay in the same Amalthea task. For 
the implicit memory access model, we use the same 
formulation than for the explicit model to calculate 
latencies, but changing local response times into global 
response times: 

𝐿 = (𝑇 − 𝑅𝑏) + 𝑅 

𝐿𝑏 = (𝑇 − 𝑅) + 𝑅𝑏 

For the LET memory access model, independently of 
whether the task finishes within the period or just after 
the period, the second activation to conclude the event 
chain always finishes with the worst or the best case 
response times after the first period, i.e.: 

𝐿 = 𝑇 + 𝑅 

𝐿𝑏 = 𝑇 + 𝑅𝑏 

 Event chains that traverse different Amalthea tasks. In 
this case, both the implicit and LET memory access 
models share the equations to calculate latencies, which 
can be expressed as for the explicit model changing 
local response times into global response times, as 
follows: 

𝐿 = 𝑅1 + 𝑇2 + 𝑅2 + 𝑇3 + 𝑅3 

𝐿𝑏 = 𝑅1
𝑏 + 𝑅2

𝑏 + 𝑅3
𝑏 

V. EVALUATION 

To transform the Amalthea model to MAST we use an 
updated version of the ad-hoc tool written in Java developed for 
the previous challenge [4]. This tool reads Amalthea models 
using the Eclipse EMF framework [13], and builds equivalent 
MAST models using the interpretations described in Section III 
and Section IV. We provide end-to-end latencies and jitters for 
the Amalthea tasks and for the event-chains described in the 
model, as well as offsets and jitters for the write operations of 
the LET-Dynamic case. The analysis technique used has been 
the Offset-Based Analysis with Precedence Relationships [7]. 
This is the least pessimistic technique for end-to-end flows that 
only traverse one processor. 

We test two cases: (1) with contention, i.e., considering the 
contention effect in the crossbar when accessing global memory 
(12 cycles in the worst case) and (2) without contention, i.e., 
assuming that access to global memory is always performed 
without waiting other cores (9 cycles in the worst case). The 
latter leads to an optimistic calculation of latencies, but it serves 

as an estimation of the influence of the contention in the 
calculation of latencies. 

As we pointed out in [4], the total utilization of the system is 
above 100% using the 200 MHz processor specified in the 
challenge, and thus this workload cannot be managed by using 
response time analysis. We will assume that we have hardware 
that is fast enough to execute the code below 100% utilization 
even in the worst-case scenario. We explore common CPU clock 
frequencies and we find that 300 MHz is the first one that allows 
the schedulability of the proposed application. Table I shows the 
utilization of the different cores for the original and the selected 
frequencies, and also for the cases with and without contention. 
All the experiments reported have been done for a 300 MHz 
processor. We can also notice a low variation (less than 0.2% for 
300 MHz) in the core utilizations between the cases with and 
without contention. The reason for this low variation is that our 
mapping allocates most of the labels in local memory and the 
access to a global label is only reduced from 12 to 9 cycles 
between one case and the other. 

Tables II, III and IV show the latencies and jitters for all the 
tasks and also the worst and best case latencies for the event 
chains, for the explicit, implicit and LET-Static memory access 

TABLE II. END-TO-END LATENCIES AND JITTERS (MILLISECONDS) FOR TASKS 

AND EVENT CHAINS IN THE EXPLICIT MEMORY ACCESS MODEL. 

 With contention Without contention  

 L J L J D 

Angle_Sync 5.684 4.766 5.671 4.760 6.66 

ISR_1 0.024 0.013 0.024 0.013 9.5 

ISR_10 0.021 0.009 0.020 0.009 0.7 

ISR_11 1.297 1.205 1.297 1.204 5 

ISR_2 0.036 0.029 0.036 0.029 9.5 

ISR_3 0.052 0.043 0.052 0.043 9.5 

ISR_4 0.459 0.347 0.458 0.347 1.5 

ISR_5 0.193 0.107 0.193 0.107 0.9 

ISR_6 0.214 0.204 0.214 0.204 1.1 

ISR_7 0.899 0.783 0.899 0.783 4.9 

ISR_8 0.662 0.574 0.661 0.574 1.7 

ISR_9 2.227 2.108 2.226 2.107 6 

Task_1000ms 31.346 31.293 31.324 31.272 1000 

Task_100ms 31.162 29.031 31.142 29.016 100 

Task_10ms 7.960 5.201 7.946 5.201 10 

Task_1ms 0.516 0.343 0.515 0.343 1 

Task_200ms 31.252 31.198 31.231 31.178 200 

Task_20ms 9.629 7.179 9.623 7.178 20 

Task_2ms 0.271 0.177 0.271 0.177 2 

Task_50ms 13.068 12.182 13.060 12.176 50 

Task_5ms 0.895 0.649 0.894 0.649 5 

 L Lb L Lb  

EffectChain_1 10.305 3.761 10.312 3.769  

EffectChain_2  25.517 0.033 25.509 0.033  

EffectChain_3 63.920 0.030 63.913 0.030  

 

TABLE I. CORE UTILZATIONS (%) FOR THE ORIGIAL FREQUENCY AND THE ONE 

USE IN OUR TESTS. 

 With contention Without contention 

 200 MHz 300 MHz 200 MHz 300 MHz 

CORE0 Util. (%) 97.35 64.90 97.31 64.88 

CORE1 Util. (%) 135.69 90.46 135.39 90.26 

CORE2 Util. (%) 107.51 71.68 107.45 71.63 

CORE3 Util. (%) 119.43 79.62 119.22 79.48 

 



models, respectively. Table V presents the offsets calculated for 
the LET-Dynamic memory access model using the algorithm 
proposed in Section IV, as well as jitters for tasks and the worst 
and best case latencies for the event chains. In Tables II and III 

the results are presented for the cases with and without 
contention for the implicit and explicit memory access models. 
As there are no significant variations in latencies or jitters for 
these cases, the results for LET-Static and LET-Dynamic 
included in Tables IV and V show only the case with contention, 
focusing on the differences for the cases with 2 or 3 priority 
bands.  

The worst-case latencies for the explicit memory access 
model (Table II) are slightly lower than those obtained in [4] due 
to the more precise model used for the contention in the crossbar. 
Compared to the implicit memory access model (Table III), we 
can see that similar latencies and jitters are obtained for the tasks, 
but the worst case latencies of the event chains are higher in the 
implicit memory access model. Looking at the temporal 
behavior, this implicit model does not seem to be a good solution 
as it has similar or worst latencies than the explicit model 
without having any significant reduction of jitter. 

Finally, the LET memory access model (Table IV and Table 
V) minimizes jitter at the cost of increasing of the worst and best 
case latencies for both tasks and event chains. Using 3 priority 
bands allows a better control of writing activities. The LET-
Dynamic model allows tasks to finish their executions within the 
deadlines through the configuration of offsets, while in the LET-
Static model the tasks always finish behind the deadlines. 

VI. CONCLUSIONS 

This paper builds upon the work done in the previous FMTV 
challenge to provide solutions to the two new memory access 
models proposed for the multicore platform: implicit and LET. 
We extend the general guidelines to transform an Amalthea 
timing model into a MAST equivalent model that can be used in 

TABLE IV. END-TO-END LATENCIES AND JITTERS (MILLISECONDS) FOR TASKS 

AND EVENT CHAINS IN THE LET-STATIC MODEL WITH CONTENTION. 

 2 priority bands 3 priority bands  

 L J L J D 

Angle_Sync 6.694 0.023  6.672 0.001  6.66 

ISR_1 9.500 0.000  9.500 0.000  9.5 

ISR_10 0.700  0.000  0.700  0.000  0.7 

ISR_11 5.002 0.001  5.002 0.001  5 

ISR_2 9.500 0.000  9.500 0.000  9.5 

ISR_3 9.500 0.000  9.500 0.000  9.5 

ISR_4 1.501 0.001  1.501 0.001  1.5 

ISR_5 0.900  0.000  0.900  0.000  0.9 

ISR_6 1.101 0.000  1.101 0.000  1.1 

ISR_7 4.901 0.001  4.901 0.001  4.9 

ISR_8 1.701 0.001  1.701 0.001  1.7 

ISR_9 6.002 0.002  6.002 0.002  6 

Task_1000ms 1.000.056 0.055  1.000.027 0.025  1000 

Task_100ms 100.049 0.037  100.024 0.012  100 

Task_10ms 10.059 0.028  10.032 0.000  10 

Task_1ms 1.004 0.003  1.001 0.000  1 

Task_200ms 200.054 0.052  200.025 0.024  200 

Task_20ms 20.023 0.014  20.010 0.001  20 

Task_2ms 2.001 0.000  2.000 0.000  2 

Task_50ms 50.028 0.026  50.012 0.010  50 

Task_5ms 5.002 0.001  5.001 0.000  5 

 L Lb L Lb  

EffectChain_1 20.059 20.032 20.032 20.032  

EffectChain_2  124.109 112.044 124.056 112.044  

EffectChain_3 104.729 52.703 104.712 52.702  

 

TABLE V. OFFSETS, JITTERS AND END-TO-END LATENCIES (MILLISECONDS) FOR 

TASKS AND EVENT CHAINS IN THE LET-DYNAMIC MODEL WITH CONTENTION. 

 2 priority bands 3 priority bands  

  J  J D 

Angle_Sync 6.645 0.004  6.648 0.001  6.66 

ISR_1 9.500 0.000  9.500 0.000  9.5 

ISR_10 0.700  0.000  0.700  0.000  0.7 

ISR_11 4.998 0.001  4.998 0.001  5 

ISR_2 9.500 0.000  9.500 0.000  9.5 

ISR_3 9.500 0.000  9.500 0.000  9.5 

ISR_4 1.499 0.001  1.499 0.001  1.5 

ISR_5 0.900  0.000  0.900  0.000  0.9 

ISR_6 1.099 0.000  1.099 0.000  1.1 

ISR_7 4.899 0.001  4.899 0.001  4.9 

ISR_8 1.699 0.001  1.699 0.001  1.7 

ISR_9 5.998 0.002  5.998 0.002  6 

Task_1000ms 999.945 0.054  999.973 0.025  1000 

Task_100ms 99.960 0.028  99.976 0.012  100 

Task_10ms 9.968 0.000  9.968 0.000  10 

Task_1ms 0.999  0.000  0.999  0.000  1 

Task_200ms 199.949 0.049  199.975 0.024  200 

Task_20ms 19.989 0.002  19.990 0.001  20 

Task_2ms 2.000 0.000  2.000 0.000  2 

Task_50ms 49.975 0.023  49.988 0.010  50 

Task_5ms 4.999 0.001  4.999 0.000  5 

 L Lb L Lb  

EffectChain_1 20.000 20.000 20.000 20.000  

EffectChain_2  124.000 112.000 124.000 112.000  

EffectChain_3 104.700 52.700 104.700 52.700  

 

TABLE III. END-TO-END LATENCIES AND JITTERS (MILLISECONDS) FOR TASKS 

AND EVENT CHAINS IN THE IMPLICIT MEMORY ACCESS MODEL. 

 With contention Without contention  

 L J L J D 

Angle_Sync 5.684 4.766 5.671 4.760 6.66 

ISR_1 0.024  0.013  0.024  0.013  9.5 

ISR_10 0.021  0.009  0.020  0.009  0.7 

ISR_11 1.297 1.205 1.297 1.204 5 

ISR_2 0.036  0.029  0.036  0.029  9.5 

ISR_3 0.052  0.043  0.052  0.043  9.5 

ISR_4 0.459  0.347  0.458  0.347  1.5 

ISR_5 0.193  0.107  0.193  0.107  0.9 

ISR_6 0.214  0.204  0.214  0.204  1.1 

ISR_7 0.899  0.783  0.899  0.783  4.9 

ISR_8 0.662  0.574  0.661  0.574  1.7 

ISR_9 2.227 2.108 2.226 2.107 6 

Task_1000ms 31.345 31.292 31.324 31.271 1000 

Task_100ms 31.161 29.031 31.141 29.016 100 

Task_10ms 7.959 5.201 7.945 5.201 10 

Task_1ms 0.516  0.343  0.515  0.343  1 

Task_200ms 31.252 31.197 31.231 31.177 200 

Task_20ms 9.629 7.179 9.623 7.178 20 

Task_2ms 0.271  0.177  0.271  0.177  2 

Task_50ms 13.068 12.182 13.060 12.175 50 

Task_5ms 0.895 0.649  0.894  0.649  5 

 L Lb L Lb  

EffectChain_1 15.201 4.799 15.201 4.799  

EffectChain_2  51.391 4.982 51.357 4.963  

EffectChain_3 65.360 0.992 65.351 0.990  

 



the MAST Analysis Tool Suite. Thus, response time analysis has 
been applied to calculate latencies and jitters of tasks and event 
chains for the different memory access models (explicit, implicit 
and LET). To guarantee LET behavior, offsets have been 
obtained for the write operations. 

The paper partially answers the five main questions of the 
challenge: (1) we have proposed solutions for the implicit and 
LET memory access models with the objective of minimizing 
jitter, (2) we have modeled and computed the overheads for the 
three different memory access models; additionally we have 
calculated latencies, jitters and offsets for the tasks, (3) we have 
calculated the latencies (worst and best) for the event chains, (4) 
we have used a mapping of labels that reduces overheads in 
memory access and (5) we have studied the effects of contention 
in the crossbar. 

From the evaluation of the temporal behavior done in this 
work for the three memory access models, we can extract the 
following conclusions: (1) none of the strategies is a clear 
winner, i.e., there is not a best one that allows the reduction of 
latencies and jitters at the same time, (2) the implicit model has 
similar latencies than the explicit one for the tasks and higher 
latencies for the event chains without getting a reduction of 
jitter; so there is a penalty to keep data consistency and (3) the 
LET model has a good control of jitter at the cost of a significant 
increase of latencies for both tasks and event chains.  

A straightforward modification of the LET model using 
shorter offsets would allow keeping a small jitter on the write 
operations while minimizing the worst-case response time at the 
same time. The offsets would just need to be calculated equal to 
the worst-case response times of the tasks executing the 
runnables. 

The workspace used in this paper can be downloaded from 
[14]. 
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