
Comparison of Memory Access Strategies in

Multi-core Platforms Using MAST

Juan M. Rivas1, J. Javier Gutiérrez2, Julio L. Medina2 and Michael González Harbour2

1 PARTS Research Center, Université Libre de Bruxelles (ULB), Belgium.
2 Software Engineering and Real-Time Group, University of Cantabria (UC), Spain.

1jrivasco@ulb.ac.be 2{gutierjj, medinajl, mgh}@unican.es

Abstract—This paper reports solutions to the 2017 edition of

the Formal Methods and Timing Verification (FMTV) challenge,

which builds upon the 2016 FMTV challenge dealing with

calculating latencies in a complex engine management system. The

new challenge proposes two new strategies/semantics for task

communication through local or global memory in a multi-core

platform: (1) implicit communication, which allows access to

global memory only at the task boundaries and (2) Logical

Execution Time (LET), in which tasks only read global memory at

the beginning of their activation interval and write at the end.

Based on our previous experience in translating the provided

Amalthea model into the MAST model, we propose using the latter

and also the associated suite of tools for schedulability analysis and

optimization to solve the challenge. Once the new memory access

strategies have been properly modelled with MAST, we try to

answer some of the questions raised by the challenge using

response time analysis. Finally, we discuss the strengths and

limitations of our approach according to the results obtained. The

solutions are available to the public in electronic form to facilitate

their assessment by the community.

Keywords— Amalthea; MAST; engine management system; task

communication; multi-core; response-time analysis; real-time.

I. INTRODUCTION

The 2017 FMTV Challenge [1] extends the 2016 version [2]
by adding two new mechanisms for task communication through
shared memory. Thus, the challenge asks for a qualitative and
quantitative comparison of three different memory access
strategies: (1) explicit, which is the 2016 strategy, allowing
unrestricted access to both local or global memory from the
tasks, (2) implicit, which allows access to global memory only
at the task boundaries and (3) Logical Execution Time (LET), in
which periodic tasks can only read global memory at the
beginning of their activation interval and write at the end. An
engine management system (EMS) is provided as a case study
through an Amalthea [3] model.

For the 2016 challenge, we proposed in [4] the verification
of this system by applying response time analysis (RTA)
available in the MAST [5][6] analysis suite. Accordingly, we
defined an Amalthea to MAST model transformation path
dealing with the explicit memory access strategy. Once this
equivalent MAST model was generated, the MAST analysis
tools could be used to calculate latencies using common

response-time analysis techniques, such as the offset-based
analysis [7]. In our approach we had to make some assumptions
when (1) interpreting and transforming the provided model, (2)
selecting the most appropriate and less pessimistic analysis
technique and (3) interpreting the results provided by the tools,
especially to compute the latencies of the event chains.

In the previous challenge, we used an incorrect contention
model for the access to global memory leading to safe but
pessimistic results. We assumed a worst-case situation in which
all cores could access global memory at the same time for each
label, at a cost of 4*9=36 cycles. The crossbar interconnection
network, which imposes 8 out of the 9 cycles required for a
single global memory access [8], has no contention. Thus, the
worst-case cost for each access to a label located in global
memory is 4*1+8=12 cycles (instead of 36 cycles). This issue
was clarified during the workshop. Taking into account our
previous work on the 2016 FMTV challenge, we propose:

 To reevaluate the behavior of the explicit memory
access strategy according to the right contention model
for global memory.

 To extend the transformation of the Amalthea model
into the MAST model for the new memory access
strategies: implicit and LET.

 To reuse the event chain model proposed in our solution
to the past challenge, based on the results of the response
time analysis obtained by MAST.

 A fair comparison of the latencies calculated by MAST
for the three memory access strategies in order to
highlight their advantages and drawbacks.

 To use the mapping of labels that we proposed in [4],
i.e., mapping into global memory only the labels shared
among different cores, thus achieving absence of
contention in local memory accesses.

The paper is organized as follows. Section II describes the
MAST environment focusing on the most relevant elements
used to solve the challenge. Section III summarizes the work
done with MAST for the previous challenge. In Section IV, we
propose the interpretation of the implicit and LET strategies, and
how they are modelled using MAST. Section V, shows the
results of the challenge. Finally, in Section VI the conclusions
of this work are presented. This work has been funded in part by the Spanish Government under grant

number TIN2014-56158-C4-2-P (M2C2), and by the Walloon Region in

Belgium with the BEWARE Project PARTITA (convention no. 1610375).

II. MAST TOOL SUITE

MAST consists of a model [5] and an open source set of tools
to perform schedulability analysis and optimization of real-time
systems [6]. The MAST model is aligned with MARTE
(Modeling and Analysis of Real-Time Embedded systems) [9],
a standard of the Object Management Group (OMG) for
modeling and analysis of real-time and embedded systems.

A. The MAST model

The MAST model follows an event-driven approach, and
assumes a real‐time distributed system with multiple processing
resources (CPUs and communication networks). The system is
composed of distributed end‐to‐end flows, which are released by
periodic, sporadic or aperiodic sequences of external events. The
relative phasing of the activations of different end-to-end flows
is assumed to be arbitrary. An end-to-end flow is composed of a
sequence of steps, which represent the execution of a thread in a
processor, or the transmission of a message through a network.
Each release of an end‐to‐end flow causes the execution of one
instance of its sequence of steps. Each step is released when the
preceding one in its end‐to‐end flow finishes its execution. We
assume that the steps are statically mapped to processing
resources. The model also allows mutual exclusion
synchronization in the processors.

Fig. 1 shows an example of an end-to-end flow (i) with

three steps (i1, i2, i3), each executing in a different processing
resource PRk. The end-to-end flow is released by the arrival of
the external event ei. This external event has a period Ti, which
can also represent the minimum inter-arrival time of a sporadic

arrival pattern. Steps can have an initial offset (ij) associated,
which is the minimum imposed release time of the step, relative
to the arrival of the external event. Each step has a worst-case
execution time (WCET), Cij, and a best-case execution time
(BCET), 𝐶𝑖𝑗

𝑏 . MAST supports Fixed Priorities (FP) and Earliest

Deadline First (EDF) scheduling. The timing requirements that
we consider are end-to-end deadlines (Di), which must be met
by the completion of the last step in the end-to-end flow, relative
to the arrival of the external event. The deadlines can be larger
than or within the periods.

As a result of the response time analysis, each step ij has a
worst-case response time (or an upper bound on it) Rij, and a
best-case response time (or a lower bound on it) 𝑅𝑖𝑗

𝑏 . These

response times are relative to the arrival of the external event
(global response times). The worst-case response time of an end-
to-end flow (Ri) is the worst-case response time of its last step.
The system is said to be schedulable if the worst-case response
times of the end-to-end flows are lower than or equal to their
end-to-end deadlines (Ri ≤ Di). The completion time of the steps
can vary for different activations. As a consequence, the step

activation time also varies. For a step ij, we define its release
jitter (Jij) as its worst-case variation in activation times. The jitter
is taken into account by the analysis techniques.

B. MAST analysis tools

MAST implements several analysis techniques that can be
applied to an FP system with end-to-end flows, ranging from the
holistic analysis, to various offset-based techniques [10]. In the
same way as for the 2016 challenge [4], we use the technique
called offset_based_approx_w_pr in MAST (Offset-Based

Analysis with Precedence Relations [7]). This technique
supports steps with offsets, and is capable of reducing the
pessimism in the results, especially for end-to-end flows with
sequential steps in the same processing resource, as it will be the
case in this challenge.

Finally, for calculating latencies in event chains, we will
need local response times of the steps. We will use the same
modified tool as in [4] to provide these local response times
according to [11], taking into account offsets. Local worst-case
response times (rij), and local best-case response times (𝑟𝑖𝑗

𝑏) are

defined as upper and lower bounds, respectively, on the
completion times of steps, relative to their own local activations
(see Fig. 1). This custom version of MAST will be made
available in addition to the transformation and generated
models.

III. SOLUTIONS TO THE 2016 FMTV CHALLENGE WITH MAST

We have recalculated the solutions for the 2016 FMTV
challenge [4], which uses the explicit memory access model,
taking into account the right contention model for global
memory, as indicated in the introduction. This section
summarizes the assumptions made on the model transformation
to MAST and also on the calculation of latencies of event chains.
The complete information can be found in [4].

A. Amalthea to MAST model transformation

Amalthea tasks represent the schedulable elements in the
model. For the case of the challenge, they have the following
characteristics:

 Tasks are activated by periodic or sporadic stimuli with
minimum inter-arrival times. Stimuli are assumed to
have arbitrary phasings. Timing constraints are given as
deadlines that the tasks must meet. In this case, deadlines
are equal to the periods.

 Tasks are statically assigned to cores, and are scheduled
with a fixed priority policy. Tasks can be preemptive, or
cooperative (they can preempt lower priority cooperative
tasks only at the termination of runnables). In the
provided model, cooperative tasks always have lower
priority than preemptive tasks.

Fig. 1. Example of a simple MAST end-to-end flow with three steps.

Thread 1

ei

Di

Ri3=Ri

 i2

ri2

Ri2

 Ti

Thread 2i

Step i1 Step i2 Step i3

 Each Amalthea task in the model executes a sequential
list of runnables. Each runnable is composed of three
sequential stages: (1) label (memory) read accesses, (2)
execution of instructions in the assigned processing core,
and (3) label (memory) write accesses. Some runnables
don’t write or read from memory.

We interpret Amalthea tasks as MAST end-to-end flows, in
which each runnable is transformed into a MAST step. For
sporadic Amalthea tasks, the resulting MAST end-to-end flow
will be periodic, with a period equal to the minimum inter-arrival
time. This interpretation is only correct for flows with offsets
within the periods [12]. Since in the Amalthea model the flow
deadlines are within the periods so are the step offsets. If the
offsets were larger than the periods, the MAST flows would
need to be sporadic and the worst-case response times would be
larger. The deadline of the Amalthea task is directly used as the
end-to-end deadline of its corresponding MAST end-to-end
flow.

We will model the memory accesses as execution time added
to the MAST steps, accounting for the worst-case and best-case
costs of accessing the memory. The worst-case cost of accessing
a label pessimistically assumes that every core is accessing that
memory at the same time. According to [8], the worst-case cost
of accessing a label in global memory is 4*1+8=12 cycles.
Similarly, the best-case cost of accessing a label assumes that no
other core is in the queue for that memory, so this value is just 9
cycles (no contention). Thus, in the runnable to MAST step
transformation, the worst-case execution time of the step (Cij) is
calculated as the sum of two elements: (1) the execution time of
the upper bound of the number of instructions of the runnable
(including local memory label accesses with their frequencies),
and (2) the worst-case cost of reading the global labels at the
beginning and writing them at the end of the runnable. If a
runnable accesses N global labels (read and/or write), the worst-
case cost would be N*12 cycles. Likewise, the best-case
execution time (𝐶𝑖𝑗

𝑏) of the step is calculated as the sum of the

lower bound of the instructions of the runnable (also including
local memory label accesses with their frequencies), and the
best-case cost of accessing the global labels (N*9 cycles). Fig. 2
depicts the transformation of a simple Amalthea task (Fig. 2a)
into a MAST end-to-end flow (Fig. 2b) for the explicit memory
access model.

Additionally, we can also model the blocking effect in a
thread accessing the memory due to a local label being accessed
by a lower priority thread in the same core, although we will not
consider it as its effect is negligible [4]. To model cooperative
tasks, we will take into account that in the worst-case scenario,
these tasks will be blocked by an amount equal to the longest
cooperative runnable with lower priority. In MAST we can
induce this blocking adding a dummy shared resource that is
used by the longest runnable of each cooperative task. This
resource uses the immediate ceiling protocol with a ceiling equal
to the highest cooperative task’s priority. MAST automatically
finds the longest possible blocking that affects each task.

B. Analysis of event chains

We interpret event chains as a latency model for non-
consecutive runnables communicating via shared memory. The
first runnable in the event chain writes a result in a label. Then

the next runnable in the chain reads this label, process it, and
writes its result in another label, and so on. Runnables in an
event-chain can belong to the same Amalthea task or not. MAST
does not support this kind of “virtual” end-to-end flows, but it
provides results that can be used to calculate bounds for the best
and worst-case latencies of the event chains.

We distinguish two types of event chains [4]:

 Event chains that stay in the same Amalthea task
(EffectChain_1). We can notice that to go backwards,
the chain requires an additional activation of the
Amalthea task. The worst-case latency (L) occurs when
the first label in the chain is read as soon as possible, so
the chain has to wait the maximum amount of time until
the next activation of the end-to-end flow. Then, the
event chain must wait for the worst-case completion
time of the last step. Since the end-to-end flow must
finish before its next activation, the response times of
middle steps are irrelevant in this calculation. Likewise,
the best-case latency (Lb) of the event chain occurs when
the first label is read as late as possible and the last step
finishes as soon as possible.

 Event chains that traverse different Amalthea tasks
(EffectChain_2 and EffectChain_3). The worst-case
latency of the event-chain (L) comprises the sum of the
worst-case local response times of the steps in the chain
(rij), and the periods of all the end-to-end flows involved
in the chain except the one hosting the initial step in the
chain. The periods should be added because in the
worst-case situation it is assumed that at the time a label
is written, the next runnable in the chain has just
executed, so the chain cannot continue until the next
period. For sporadic stimuli, the period added must be
its upper bound. Similarly, the best-case latency (Lb) is
calculated by adding the best-case local response times
(𝑟𝑖𝑗

𝑏). In this case periods are not added, because the best

case is built when a label is read immediately after the
previous runnable in the chain updated its value.

The formulation for the worst and best case latencies for the
event chains as well as a further explanation can be found in [4].

Fig. 2. (a) Example of a simple Amalthea task with three Runnables, and (b)

its MAST end-to-end flow equivalent used in this work

Instructions_1
stimuli

 [Tmin ,Tmax]

Instructions_2 Instructions_3

AMALTHEA Task

M

Labels read

M M M M M

Runnable_3Runnable_2Runnable_1

External

event

 Tmin

End-to-end deadline = D

Step 11

Labels written

(a)

(b)

C11

Worst-case

memory access cost

Step WCET as instructions +

worst-case memory accesses

Step 12 Step 13

C12 C13

IV. IMPLICIT AND LET MEMORY ACCESS IN MAST

The current challenge introduces new memory access
models that group read and write memory operations of tasks to
be performed at the beginning or at the end of the task execution
(implicit model) or at the beginning or at the end of the period
(LET model). This organization of read and write memory
operations affects the transformation of the original Amalthea
model to the MAST model, as well as the interpretation of the
event chains according to the information obtained by the
schedulability analysis for these new models.

A. Amalthea to MAST model transformation

The interpretation of an Amalthea task for the implicit and
LET memory access models as MAST end-to-end flows differs
from the explicit model only in the organization of steps
representing the execution of runnables and read and write
operations, and in the specific instants at which some of these
steps can be executed. Fig. 3 shows the equivalent MAST model
for the implicit memory access model (Fig. 3a) and for the LET
memory access model (Fig. 3b).

As it can be seen, for simplicity, the implicit model considers
all runnables of a task (including global read and write
operations) grouped into a single step (Fig. 3a). This is possible
because all these actions are executed at the same priority. In the
same way done for the explicit memory access model, the
memory accesses are considered as execution times added to this
step according to the mapping of labels. In this model, read and
write operations are executed at the priority of the task and they
can be preempted or not depending on the kind of task (non-
cooperative or cooperative). This interpretation does not
compromise data coherence within the task itself. Inter-task data
coherence is not assured as it is possible to have concurrent data
access from different cores and there is no mutual exclusion
mechanism specified.

The LET memory access model needs to control the instants
at which read and write operations should be executed. For this
reason, the equivalent MAST model of an Amalthea task is an
end-to-end flow composed of three steps (Fig. 3b): (1) an initial
step grouping all the global-memory read operations, (2) a
middle step grouping all the activities performed by the
runnables (except global reads and writes) and (3) a final step
grouping all the global-memory write operations. The execution
of the first step should be as close as possible to the beginning
of the period, and the final step is delayed with an offset trying
to make it coincide with the end of the period. To accomplish
these requirements it is necessary to achieve low jitter in the
execution of the initial and final step, which requires executing
them at high priority levels. In our model, these steps are
executed by different tasks making it possible to assign different
priorities to them. Please note that modeling these steps with
different tasks does not require having different tasks in the
actual implementation. It is possible to have a single task for
each end-to-end flow, dynamically setting its priority according
to the step that is being executed. To assign priorities to each
step we propose the use of priority bands in the following way:

 2 priority bands: a low priority band for the execution of
runnables at the priority assigned in the Amalthea
model, and a high priority band for the execution of read

and write operations under the following conditions: (1)
reads and writes of the same end to-end flow are
executed at the same priority and (2) the original priority
order is preserved in this band.

 3 priority bands: a low priority band for the execution of
runnables, a medium priority band for the execution of
read operations and a high priority band for the
execution of write operations. The same criteria as for
the previous case is used inside each band.

The use of priority bands allows minimizing jitter. In
addition, it is necessary to use offsets to control the timing of the
write operations, so that their execution is postponed to the end
of the period. We consider two different offset assignment
strategies:

 LET-Static. Offsets are set equal to periods, thus write
operations are always performed as the first operation of
the next activation, except for the first one.

 LET-Dynamic. The objective is that the worst case
response times of the write operations equal the
corresponding periods, thus ensuring that these
operations finish as close as possible to the end of their
instance period. An algorithm is needed for assigning
offsets, as response times depend on offsets and the
assignment of offsets depends on the response times.
We propose the following one:

Offsets calculation for LET-Dynamic

begin

 offset=T for all end-to-end flows;

 loop

 Calculate response times;

 exit when R=T for all end-to-end flows;

 for each end-to-end flow

 loop

 if R>=T then

 offset=offset-(R-T);

 else

 offset=T-(R-offset);

 end if;

 end loop;

 end loop;

end;

Fig. 3. MAST end-to-end flow equivalent to an Amalthea task for (a) the

implicit and (b) the LET memory access models

All runnables

Implicit memory access model

All reads All writes

External

event

 Tmin

All reads

step11

(a)

(b)

C11

All runnables step 12

All writes

step13

C12 C13

LET memory access model

A single step 11

C11

External

event

 Tmin

13

For the challenge example this algorithm requires only one
iteration for the model with 3-priority bands, and three iterations
for 2-priority bands.

B. Analysis of event chains

In the explicit memory access model the execution of each
runnable includes read-execute-write operations, and thus the
analysis of the chain can focus on the individual local response
times of each runnable. However, in the implicit or LET models
reads and writes are only performed at the beginning or at the
end of the task, and thus the complete task global response times
must be considered. Based on this observation, we reformulate
the equations proposed in [4] for the two types of event chains:

 Event chains that stay in the same Amalthea task. For
the implicit memory access model, we use the same
formulation than for the explicit model to calculate
latencies, but changing local response times into global
response times:

𝐿 = (𝑇 − 𝑅𝑏) + 𝑅

𝐿𝑏 = (𝑇 − 𝑅) + 𝑅𝑏

For the LET memory access model, independently of
whether the task finishes within the period or just after
the period, the second activation to conclude the event
chain always finishes with the worst or the best case
response times after the first period, i.e.:

𝐿 = 𝑇 + 𝑅

𝐿𝑏 = 𝑇 + 𝑅𝑏

 Event chains that traverse different Amalthea tasks. In
this case, both the implicit and LET memory access
models share the equations to calculate latencies, which
can be expressed as for the explicit model changing
local response times into global response times, as
follows:

𝐿 = 𝑅1 + 𝑇2 + 𝑅2 + 𝑇3 + 𝑅3

𝐿𝑏 = 𝑅1
𝑏 + 𝑅2

𝑏 + 𝑅3
𝑏

V. EVALUATION

To transform the Amalthea model to MAST we use an
updated version of the ad-hoc tool written in Java developed for
the previous challenge [4]. This tool reads Amalthea models
using the Eclipse EMF framework [13], and builds equivalent
MAST models using the interpretations described in Section III
and Section IV. We provide end-to-end latencies and jitters for
the Amalthea tasks and for the event-chains described in the
model, as well as offsets and jitters for the write operations of
the LET-Dynamic case. The analysis technique used has been
the Offset-Based Analysis with Precedence Relationships [7].
This is the least pessimistic technique for end-to-end flows that
only traverse one processor.

We test two cases: (1) with contention, i.e., considering the
contention effect in the crossbar when accessing global memory
(12 cycles in the worst case) and (2) without contention, i.e.,
assuming that access to global memory is always performed
without waiting other cores (9 cycles in the worst case). The
latter leads to an optimistic calculation of latencies, but it serves

as an estimation of the influence of the contention in the
calculation of latencies.

As we pointed out in [4], the total utilization of the system is
above 100% using the 200 MHz processor specified in the
challenge, and thus this workload cannot be managed by using
response time analysis. We will assume that we have hardware
that is fast enough to execute the code below 100% utilization
even in the worst-case scenario. We explore common CPU clock
frequencies and we find that 300 MHz is the first one that allows
the schedulability of the proposed application. Table I shows the
utilization of the different cores for the original and the selected
frequencies, and also for the cases with and without contention.
All the experiments reported have been done for a 300 MHz
processor. We can also notice a low variation (less than 0.2% for
300 MHz) in the core utilizations between the cases with and
without contention. The reason for this low variation is that our
mapping allocates most of the labels in local memory and the
access to a global label is only reduced from 12 to 9 cycles
between one case and the other.

Tables II, III and IV show the latencies and jitters for all the
tasks and also the worst and best case latencies for the event
chains, for the explicit, implicit and LET-Static memory access

TABLE II. END-TO-END LATENCIES AND JITTERS (MILLISECONDS) FOR TASKS

AND EVENT CHAINS IN THE EXPLICIT MEMORY ACCESS MODEL.

 With contention Without contention

 L J L J D

Angle_Sync 5.684 4.766 5.671 4.760 6.66

ISR_1 0.024 0.013 0.024 0.013 9.5

ISR_10 0.021 0.009 0.020 0.009 0.7

ISR_11 1.297 1.205 1.297 1.204 5

ISR_2 0.036 0.029 0.036 0.029 9.5

ISR_3 0.052 0.043 0.052 0.043 9.5

ISR_4 0.459 0.347 0.458 0.347 1.5

ISR_5 0.193 0.107 0.193 0.107 0.9

ISR_6 0.214 0.204 0.214 0.204 1.1

ISR_7 0.899 0.783 0.899 0.783 4.9

ISR_8 0.662 0.574 0.661 0.574 1.7

ISR_9 2.227 2.108 2.226 2.107 6

Task_1000ms 31.346 31.293 31.324 31.272 1000

Task_100ms 31.162 29.031 31.142 29.016 100

Task_10ms 7.960 5.201 7.946 5.201 10

Task_1ms 0.516 0.343 0.515 0.343 1

Task_200ms 31.252 31.198 31.231 31.178 200

Task_20ms 9.629 7.179 9.623 7.178 20

Task_2ms 0.271 0.177 0.271 0.177 2

Task_50ms 13.068 12.182 13.060 12.176 50

Task_5ms 0.895 0.649 0.894 0.649 5

 L Lb L Lb

EffectChain_1 10.305 3.761 10.312 3.769

EffectChain_2 25.517 0.033 25.509 0.033

EffectChain_3 63.920 0.030 63.913 0.030

TABLE I. CORE UTILZATIONS (%) FOR THE ORIGIAL FREQUENCY AND THE ONE

USE IN OUR TESTS.

 With contention Without contention

 200 MHz 300 MHz 200 MHz 300 MHz

CORE0 Util. (%) 97.35 64.90 97.31 64.88

CORE1 Util. (%) 135.69 90.46 135.39 90.26

CORE2 Util. (%) 107.51 71.68 107.45 71.63

CORE3 Util. (%) 119.43 79.62 119.22 79.48

models, respectively. Table V presents the offsets calculated for
the LET-Dynamic memory access model using the algorithm
proposed in Section IV, as well as jitters for tasks and the worst
and best case latencies for the event chains. In Tables II and III

the results are presented for the cases with and without
contention for the implicit and explicit memory access models.
As there are no significant variations in latencies or jitters for
these cases, the results for LET-Static and LET-Dynamic
included in Tables IV and V show only the case with contention,
focusing on the differences for the cases with 2 or 3 priority
bands.

The worst-case latencies for the explicit memory access
model (Table II) are slightly lower than those obtained in [4] due
to the more precise model used for the contention in the crossbar.
Compared to the implicit memory access model (Table III), we
can see that similar latencies and jitters are obtained for the tasks,
but the worst case latencies of the event chains are higher in the
implicit memory access model. Looking at the temporal
behavior, this implicit model does not seem to be a good solution
as it has similar or worst latencies than the explicit model
without having any significant reduction of jitter.

Finally, the LET memory access model (Table IV and Table
V) minimizes jitter at the cost of increasing of the worst and best
case latencies for both tasks and event chains. Using 3 priority
bands allows a better control of writing activities. The LET-
Dynamic model allows tasks to finish their executions within the
deadlines through the configuration of offsets, while in the LET-
Static model the tasks always finish behind the deadlines.

VI. CONCLUSIONS

This paper builds upon the work done in the previous FMTV
challenge to provide solutions to the two new memory access
models proposed for the multicore platform: implicit and LET.
We extend the general guidelines to transform an Amalthea
timing model into a MAST equivalent model that can be used in

TABLE IV. END-TO-END LATENCIES AND JITTERS (MILLISECONDS) FOR TASKS

AND EVENT CHAINS IN THE LET-STATIC MODEL WITH CONTENTION.

 2 priority bands 3 priority bands

 L J L J D

Angle_Sync 6.694 0.023 6.672 0.001 6.66

ISR_1 9.500 0.000 9.500 0.000 9.5

ISR_10 0.700 0.000 0.700 0.000 0.7

ISR_11 5.002 0.001 5.002 0.001 5

ISR_2 9.500 0.000 9.500 0.000 9.5

ISR_3 9.500 0.000 9.500 0.000 9.5

ISR_4 1.501 0.001 1.501 0.001 1.5

ISR_5 0.900 0.000 0.900 0.000 0.9

ISR_6 1.101 0.000 1.101 0.000 1.1

ISR_7 4.901 0.001 4.901 0.001 4.9

ISR_8 1.701 0.001 1.701 0.001 1.7

ISR_9 6.002 0.002 6.002 0.002 6

Task_1000ms 1.000.056 0.055 1.000.027 0.025 1000

Task_100ms 100.049 0.037 100.024 0.012 100

Task_10ms 10.059 0.028 10.032 0.000 10

Task_1ms 1.004 0.003 1.001 0.000 1

Task_200ms 200.054 0.052 200.025 0.024 200

Task_20ms 20.023 0.014 20.010 0.001 20

Task_2ms 2.001 0.000 2.000 0.000 2

Task_50ms 50.028 0.026 50.012 0.010 50

Task_5ms 5.002 0.001 5.001 0.000 5

 L Lb L Lb

EffectChain_1 20.059 20.032 20.032 20.032

EffectChain_2 124.109 112.044 124.056 112.044

EffectChain_3 104.729 52.703 104.712 52.702

TABLE V. OFFSETS, JITTERS AND END-TO-END LATENCIES (MILLISECONDS) FOR

TASKS AND EVENT CHAINS IN THE LET-DYNAMIC MODEL WITH CONTENTION.

 2 priority bands 3 priority bands

 J J D

Angle_Sync 6.645 0.004 6.648 0.001 6.66

ISR_1 9.500 0.000 9.500 0.000 9.5

ISR_10 0.700 0.000 0.700 0.000 0.7

ISR_11 4.998 0.001 4.998 0.001 5

ISR_2 9.500 0.000 9.500 0.000 9.5

ISR_3 9.500 0.000 9.500 0.000 9.5

ISR_4 1.499 0.001 1.499 0.001 1.5

ISR_5 0.900 0.000 0.900 0.000 0.9

ISR_6 1.099 0.000 1.099 0.000 1.1

ISR_7 4.899 0.001 4.899 0.001 4.9

ISR_8 1.699 0.001 1.699 0.001 1.7

ISR_9 5.998 0.002 5.998 0.002 6

Task_1000ms 999.945 0.054 999.973 0.025 1000

Task_100ms 99.960 0.028 99.976 0.012 100

Task_10ms 9.968 0.000 9.968 0.000 10

Task_1ms 0.999 0.000 0.999 0.000 1

Task_200ms 199.949 0.049 199.975 0.024 200

Task_20ms 19.989 0.002 19.990 0.001 20

Task_2ms 2.000 0.000 2.000 0.000 2

Task_50ms 49.975 0.023 49.988 0.010 50

Task_5ms 4.999 0.001 4.999 0.000 5

 L Lb L Lb

EffectChain_1 20.000 20.000 20.000 20.000

EffectChain_2 124.000 112.000 124.000 112.000

EffectChain_3 104.700 52.700 104.700 52.700

TABLE III. END-TO-END LATENCIES AND JITTERS (MILLISECONDS) FOR TASKS

AND EVENT CHAINS IN THE IMPLICIT MEMORY ACCESS MODEL.

 With contention Without contention

 L J L J D

Angle_Sync 5.684 4.766 5.671 4.760 6.66

ISR_1 0.024 0.013 0.024 0.013 9.5

ISR_10 0.021 0.009 0.020 0.009 0.7

ISR_11 1.297 1.205 1.297 1.204 5

ISR_2 0.036 0.029 0.036 0.029 9.5

ISR_3 0.052 0.043 0.052 0.043 9.5

ISR_4 0.459 0.347 0.458 0.347 1.5

ISR_5 0.193 0.107 0.193 0.107 0.9

ISR_6 0.214 0.204 0.214 0.204 1.1

ISR_7 0.899 0.783 0.899 0.783 4.9

ISR_8 0.662 0.574 0.661 0.574 1.7

ISR_9 2.227 2.108 2.226 2.107 6

Task_1000ms 31.345 31.292 31.324 31.271 1000

Task_100ms 31.161 29.031 31.141 29.016 100

Task_10ms 7.959 5.201 7.945 5.201 10

Task_1ms 0.516 0.343 0.515 0.343 1

Task_200ms 31.252 31.197 31.231 31.177 200

Task_20ms 9.629 7.179 9.623 7.178 20

Task_2ms 0.271 0.177 0.271 0.177 2

Task_50ms 13.068 12.182 13.060 12.175 50

Task_5ms 0.895 0.649 0.894 0.649 5

 L Lb L Lb

EffectChain_1 15.201 4.799 15.201 4.799

EffectChain_2 51.391 4.982 51.357 4.963

EffectChain_3 65.360 0.992 65.351 0.990

the MAST Analysis Tool Suite. Thus, response time analysis has
been applied to calculate latencies and jitters of tasks and event
chains for the different memory access models (explicit, implicit
and LET). To guarantee LET behavior, offsets have been
obtained for the write operations.

The paper partially answers the five main questions of the
challenge: (1) we have proposed solutions for the implicit and
LET memory access models with the objective of minimizing
jitter, (2) we have modeled and computed the overheads for the
three different memory access models; additionally we have
calculated latencies, jitters and offsets for the tasks, (3) we have
calculated the latencies (worst and best) for the event chains, (4)
we have used a mapping of labels that reduces overheads in
memory access and (5) we have studied the effects of contention
in the crossbar.

From the evaluation of the temporal behavior done in this
work for the three memory access models, we can extract the
following conclusions: (1) none of the strategies is a clear
winner, i.e., there is not a best one that allows the reduction of
latencies and jitters at the same time, (2) the implicit model has
similar latencies than the explicit one for the tasks and higher
latencies for the event chains without getting a reduction of
jitter; so there is a penalty to keep data consistency and (3) the
LET model has a good control of jitter at the cost of a significant
increase of latencies for both tasks and event chains.

A straightforward modification of the LET model using
shorter offsets would allow keeping a small jitter on the write
operations while minimizing the worst-case response time at the
same time. The offsets would just need to be calculated equal to
the worst-case response times of the tasks executing the
runnables.

The workspace used in this paper can be downloaded from
[14].

REFERENCES

[1] 2017 Formal Methods for Timing Verification (FMTV) challenge, co-
located with the 8th International Workshop on Analysis Tools and

Methodologies for Embedded and Real-time Systems (WATERS).
https://waters2017.inria.fr/challenge/

[2] 2016 Formal Methods for Timing Verification (FMTV) challenge, co-
located with the 7th International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS).
https://waters2016.inria.fr/challenge/

[3] AMALTHEA: An Open Platform Project for Embedded Multicore
Systems, http://www.amalthea-project.org/

[4] J.M. Rivas, J.J. Gutiérrez, J.L. Medina, and M. González Harbour,
“Calculating Latencies in an Engine Management System Using
Response Time Analysis with MAST,” 7th International Workshop on
Analysis Tools and Methodologies for Embedded and Real-time Systems
(WATERS), FMTV Challenge 2016, Toulouse (France), 2016.

[5] M. González Harbour, J.J. Gutiérrez García, J.C. Palencia Gutiérrez, and
J.M. Drake Moyano, “MAST: Modeling and Analysis Suite for Real Time
Applications,” Proceedings of 13th ECRTS conference, Delft, The
Netherlands, IEEE Computer Society Press, pp. 125-134, June 2001.

[6] MAST web-page, http://mast.unican.es/

[7] J. C. Palencia and M. González Harbour, “Exploiting Precedence
Relations in the Schedulability Analysis of Distributed Real-Time
Systems,” Proceedings of the 20th Real-Time Systems Symposium, IEEE
Computer Society Press, pp 328-339, December 1999.

[8] I. Stierand, P. Reinkemeier, S. Gerwinn, and T. Peikenkamp,
“Computational Analysis of Complex Real-Time Systems - FMTV 2016
Verification Challenge,” 7th International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems (WATERS),
FMTV Challenge 2016, Toulouse (France), 2016.

[9] Object Management Group, “UML Profile for MARTE: Modeling and
Analysis of Real-Time Embedded systems,” 2011 OMG Document, v1.1
formal/2011-06-02.

[10] MAST Analysis Techniques,
http://mast.unican.es/mast_analysis_techniques.pdf

[11] J.C. Palencia, J.J. Gutiérrez, and M. González Harbour. “On the
Schedulability Analysis for Distributed Hard Real-Time Systems,” Proc.
of the 9th Euromicro Workshop on Real-Time Systems, pp. 136-143, June
1997.

[12] J. C. Palencia. “Análisis de planificabilidad de sistemas distribuidos de
tiempo real basados en prioridades fijas”, Phd Thesis, University of
Cantabria, July 1999.

[13] Eclipse Modeling Framework (EMF), https://eclipse.org/modeling/emf/

[14] Amalthea workspace used for this solution,
www.istr.unican.es/members/rivasjm/workspace_fmtv17_public.html

https://waters2017.inria.fr/challenge/
https://waters2016.inria.fr/challenge/
http://www.amalthea-project.org/
http://mast.unican.es/
http://mast.unican.es/mast_analysis_techniques.pdf
https://eclipse.org/modeling/emf/
http://www.istr.unican.es/members/rivasjm/workspace_fmtv17_public.html

