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Abstract1

The assignment of scheduling parameters under the Earli-
est Deadline First (EDF) scheduling policy is trivial in sin-
gle processor systems because deadlines are used directly.
However, it is still difficult to find a feasible deadline as-
signment for EDF distributed systems when the utilization
levels of the CPUs and communication networks are pushed
near to their limits. Most distributed applications specify
end-to-end deadlines for each transaction and there are no
individual deadlines assigned to their tasks or messages.
This paper presents a new heuristic algorithm, called HOS-
DA (Heuristic Optimized Scheduling Deadline Assign-
ment), for optimizing the assignment of deadlines to tasks
and messages in distributed hard real-time systems. The al-
gorithm is based on HOPA (Heuristic Optimized Priority
Assignment), a previous method for the assignment of pri-
orities in fixed priority distributed systems. The results of
the proposed algorithm are compared with two other algo-
rithms that exist for solving the same problem, and show
that a utilization increase of up to 18% is possible. The pa-
per also proposes a new schedulability analysis technique
for EDF distributed systems with local scheduling dead-
lines.

1. Introduction
Distributed real-time systems are increasingly important

in today's embedded systems, since low-cost networking
facilities allow the interconnection of multiple devices and
their controllers into a single large system. The system's
software is composed of concurrent tasks that are often
statically allocated to processing nodes where each task
may exchange messages with other tasks in the same pro-
cessing node or in a different one. 

Although fixed priority scheduling is the most popular
on-line scheduling policy, usage of the Earliest deadline

first (EDF) policy is starting to get more attention in indus-
trial environments, given its benefits in terms of increased
resource usage. Analysis techniques are available to deter-
mine whether a given system, either single processor or
distributed, will meet all of its timing requirements. EDF is
now available in real-time languages like Ada 2005 [21] or
RTSJ [23]. It is available in real-time operating systems
such as SHaRK [18] or ERIKA [4], and has been imple-
mented at the application level in OSEK/VDX embedded
operating systems [2]. There are also real-time networks
using EDF for scheduling messages, for instance in general
purpose networks [3], or in the CAN Bus [14]. Given its
maturity, it is expected that the number of industrial appli-
cations using EDF will increase in the near future.

One of the problems for scheduling distributed real-time
systems is finding an assignment of scheduling parameters
that leads to a feasible scheduling. This problem is fully
solved for single processor systems. However, most timing
requirements for distributed transactions are in the form of
end-to-end deadlines, and finding scheduling parameters
for the tasks and messages that constitute the transaction
has no known optimum solution other than an intractable
brute-force mechanism.

Different heuristics that can provide acceptable solu-
tions to the assignment of scheduling parameters in a rea-
sonable time have been studied for fixed priorities:
simulated annealing or genetic algorithms can be used, as
general-purpose optimization techniques; in [6] an algo-
rithm called HOPA (Heuristic Optimized Priority Assign-
ment), based on iteratively applying response time analysis
(RTA), is shown to usually find better solutions than simu-
lated annealing, in less time. There are also some algo-
rithms for EDF that distribute end-to-end deadlines into
individual deadlines for tasks and messages. The technique
presented in [10] tries to reduce the number of missed
deadlines in soft real-time systems. In [8][9] the assign-
ment of deadlines is solved together with the allocation of
tasks to processors; only a subset of the tasks are con-
strained by predetermined assignments to specific proces-
sors while the others can be allocated by the algorithm in
order to make the system schedulable with the deadlines
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previously assigned. Other works, like the one proposed in
[7], deal with strategies to analyze the schedulability of the
distributed system based on pipelines, which is a restrictive
model.

In [11], Liu proposes four basic strategies for assigning
deadlines in EDF distributed systems. However these are
not iterative algorithms capable of improving on the solu-
tion found. In this paper we explore a new heuristic algo-
rithm that tries to reuse some of the ideas of HOPA [6]. We
call the new algorithm HOSDA (Heuristic Optimized
Scheduling Deadline Assignment), and its goal is to find a
feasible assignment of deadlines in a real-time distributed
system by distributing end-to-end deadlines into intermedi-
ate deadlines, and by iterating over response time analysis
to improve on the solution found.

In distributed EDF scheduling it is possible to find two
kinds of schedulers: global-deadline schedulers have their
deadlines referenced to the arrival of the event that releases
the transaction, possibly in a different resource; local-
deadline schedulers have deadlines referenced to the
release time of each task in its own processing resource.
Global-deadline schedulers require clock synchronization
among all the processing resources involved, and the preci-
sion of the deadlines depends on the precision of the clock
synchronization mechanism. While some systems do have
precise clock synchronization this is not always the case.
Local-deadline schedulers just use the local clock of each
processor and are more general and easier to implement.
The techniques proposed in [8][9][11] for assigning dead-
lines are based on local-deadline schedulers, and [10] used
global deadlines.

It is interesting to notice that current response-time anal-
ysis techniques for EDF [20][13] are developed for global-
deadline schedulers. Since local-deadline schedulers are
more useful to general distributed platforms, in this paper
we show how to adapt RTA techniques to support local-
deadline schedulers. These RTA techniques are the basis
for the HOSDA deadline distribution algorithm that we
propose in this paper. In addition, by using the new analy-
sis we are able to compare the results with those obtained
by applying the techniques in [11]. As we will see,
HOSDA outperforms the basic algorithms and is able to
increase the processor utilization by up to 18% in some of
the tested examples.

The paper is organized as follows. In Section 2 we pro-
vide a quick review of the model that we use for the distrib-
uted system, and we briefly describe the state of the art for
the analysis techniques. Section 3 describes the proposed
analysis algorithm for EDF with local scheduling dead-
lines. In Section 4 we show the details of the heuristic algo-
rithm for optimizing the assignment of deadlines in
distributed real-time systems. Section 5 evaluates the

results of our algorithm by comparing them with those
obtained by current deadline distribution strategies, show-
ing that in most cases our algorithm finds better solutions
in a reasonable time. Finally, in Section 6 we give our con-
clusions.

2. System Model and Current Analysis 
Techniques

For our system model we assume a real-time distributed
system with multiple processing resources (CPUs) and one
or more communication networks. We will use EDF sched-
uling in both the processors and the networks. Since the
analysis of message traffic on the networks can be carried
out using the same techniques that are used in the CPUs, in
our distributed system we treat messages and communica-
tion resources exactly as if they were tasks in processing
resources, except for a small amount of non preemption
that must be taken into account because messages can only
be preempted at packet boundaries. Consequently, for sim-
plifying the analysis we assume a model equivalent to the
distributed system with only processing nodes and tasks,
and we model the non-preemptive effects as blocking
times. The set of available processors is {PR1, PR2, ...}.

In our hard real-time system model we assume that all
event sequences that arrive to the system are known in
advance, and that the worst-case rates of those events with
hard real-time requirements are also known. We also
assume that tasks are statically assigned to processors (sim-
ilarly messages to communication networks). In many hard
real- time systems tasks are tied to specific processors
because of the presence of special hardware devices that
are needed by the tasks. 

We will consider a task model with periodic distributed
transactions. Each transaction Γi is released by a periodic
sequence of external events with period Ti, and contains a
set of mi tasks, each one statically assigned to a specific
processor, PRk. Each periodic release of a transaction
causes the execution of one instance of that transaction
called a transaction job. Each task is released when the
previous task in its transaction finishes its execution. Each
release of a task causes the execution of one instance of
that task, that we will call a task job or simply a job. 

Although we assume a periodic task model, the tech-
niques presented in this paper can be applied to sporadic
transactions (i.e., aperiodic transactions with a specific
minimum interarrival time that can be used as the period
for the purpose of worst-case analysis).

Figure 1 shows an example of one of these transactions,
with just three tasks, each executing in a different resource
(two CPUs and one network in this case). The external
event that releases the transaction is represented by a hori-
zontal arrow labeled ei, and has a period of Ti. The other
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horizontal arrows represent the internal events by which
each task releases the following task in its transaction.
These internal events represent a kind of precedence con-
straints because a task job cannot execute before it is
released.

Each task is identified with two subscripts: the first one
identifies the transaction to which it belongs, and the sec-
ond one the position that the task occupies within the tasks
of its transaction, when they are ordered by precedence. In
this way, τij will be the j-th task of transaction Γi, with a
worst-case execution time of Cij. 

The timing requirements that we consider are end-to-
end deadlines that start at the transaction job’s period, and
must be met by the final task in the transaction. We will
call Di the relative end-to-end deadline of Γi. We allow
deadlines to be larger than the periods, and thus at each
time there may be several jobs of the same transaction
pending. Each task also has an associated local deadline,
dij, which is relative to the release time of the task job, and
a global deadline, Dij, which is relative to the start of the
transaction job’s period. The global deadline of the last task
in the transaction coincides with the end-to-end deadline,

.
For each task τij job we define its response time as the

difference between its completion time and the instant at
which the period of the transaction job started, tn. The
worst-case response time will be called Rij. 

We allow the external event that triggers a transaction to
have a maximum release jitter Ji1 in relation to the theoret-
ical start of each period. This implies that the release time
of the first task of the n-th transaction job is in [tn, tn+Ji1].
Despite this jitter, global deadlines and response times
always refer to the theoretical start of their respective job’s
period (tn), not to the actual release of the transaction.

In addition to jitter originated by the timing of the exter-
nal event, tasks after the first are also affected by the vari-
ability of the response times of the preceding tasks in the
transaction. This implies that every task may have release
jitter, which we will call Jij. If we conservatively assume
that best case execution times are zero, the best case
response time of any task is zero and therefore the release

time of the n-th job of task τij, , is in [tn ,tn+Jij] with Jij
being equal to the worst-case response time of the previous
task, Ri,j-1. We assume that Jij may be larger than the period
of its transaction, Ti.

We will assume that if tasks synchronize for using
shared resources in a mutually exclusive way they will be
using a hard real-time synchronization protocol such as
Baker’s protocol [1]. Under this assumption, the effects of
other tasks on a task under analysis τij, as well as the
effects of any small non-preemptive section (such as the
non-preemptible network packets), are bounded by an
amount called the blocking term, Bij.

In summary, the notation used for the parameters of each
transaction Γi is the following:

Ti Period ( )
Di End-to-end deadline ( )

And for each task, τij, 
Cij Worst-case execution time ( )
dij Relative local deadline ( )
Dij Relative global deadline ( )
Rij Worst-case response time ( )
Jij Maximum release jitter ( )
Bij Blocking time ( )

This model described here is well-suited to represent a
large number of real-time architectures that are found in
practice. For example, if the system is using a client-server
approach, each portion of a task that invokes a service from
a remote server may be decomposed into the following
activities: the activity before invoking the service, the mes-
sage sent to the server, the server's activity, the reply mes-
sage, and the activity after invoking the server. 

There are different analysis techniques that can be used
to analyze a system model like the one proposed here.
Spuri presents the so-called holistic response-time analysis
[20], an extension of the analysis for fixed priority systems
by Tindell and Clark [22], that is based on the assumption
that all tasks of a transaction are independent of the others,
except that the variability of the response time of each task
can cause release jitter for the next task in the transaction.
This analysis is pessimistic because it can create initial
conditions for the analysis that may not occur in practice.
Palencia et al provide an improvement of this algorithm
[13] that better exploits the interdependencies among tasks
of the same transaction by considering offsets for the
release of each task. This offset-based analysis is still pes-
simistic, but offers better results than the holistic analysis
at the expense of more complexity. Pellizzoni and Lipari
further improve schedulability by using offsets to eliminate
the negative effects of jitter [15][16]. However, all these
techniques rely on global-deadline schedulers, and for that

Figure 1. System model
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reason we develop a new analysis here to address local-
deadline schedulers. 

3. EDF Response-Time analysis for Local 
Deadlines

In this section we will extend the holistic analysis
[20][22] for EDF distributed systems to support local dead-
line schedulers. Even though the new analysis is based on
similar principles, the underlying model and the resulting
equations are different. 

In the holistic analysis we assume for each analysis step
that every task is independent of the other tasks, even from
those belonging to the same transaction. After each analy-
sis step, the dependencies are captured into the jitter terms
of each task. 

Response time analysis is based on the creation of the
longest busy period, found from a critical instant. The fol-
lowing theorem helps us to find the critical instant for a
task in the context of the independent tasks assumption. It
was proven by Spuri [19] for global deadlines but we adapt
it to local deadlines.

Theorem 1. The worst-case response time of a task τab
is found in a busy period in which each task τij in the same
processor (different from τab) is scheduled such that its
first job that is inside the busy period is released at the
beginning of that busy period, after having experienced its
maximum jitter (i.e., the start of the corresponding task
job’s period was Jij time units before the start of the busy
period), and the remainder of the jobs are released with the
minimum jitter that makes the job start inside the busy
period.

Proof: The proof can be found in [17] and is omitted
here because it is similar to the one provided by Spuri in
[19]. 

Note that, contrary to the other tasks, releasing the ana-
lyzed task at the start of the busy period may not lead to its
worst-case response time. So, the critical instant for a task
is found in a busy period that is started by the simultaneous
release of all tasks except perhaps the one under analysis.

Under the conditions of theorem 1, the worst-case con-
tribution of a task τij to a busy period of length l when the
deadline of τab occurs at instant D is [17]:

where pl is the number of releases of τij in the busy period:

and pD the number of releases with deadline before or at D:

Using this expression we can calculate the worst-case
response time of task τab. Unfortunately, we don't know
how to phase the release time of τab in relation to the busy
period, but it is easy to see that the worst case situation
must be found when the release time is placed at the begin-
ning of the busy period, or at an instant such that the dead-
line of the analyzed job of τab coincides with the deadline
of a task τij’s job. The set of instants, Ψij, at which the
deadline of τab’s job coincides with the deadlines of one of
the task jobs in the busy period is:

where L corresponds to longest busy period, calculated as: 

This set Ψij must be augmented with the deadlines corre-
sponding to task τab 

And so the full set of situations for which τab has to be
analyzed corresponds to those releases whose deadline is in
the set

Each potential release time for τab is obtained by sub-
tracting dab from each value in Ψ. Checking the response
times under all these release times we can find the one that
causes the worst-case response time of the task. Given that
there may be several releases of τab in the busy period, we
must analyze them all. For each value , the comple-
tion time of release p of τa, , can be calculated by
adding the worst-case contribution of all tasks in the same
processor, and the blocking term:

Wij l D,( ) min pl pD,
⎝ ⎠
⎛ ⎞ Cij⋅= (1)

pl
l Jij+

Ti
-------------= (2)

pD

0 if D dij<

Jij D dij–+
Ti

---------------------------- 1+ otherwise
⎩
⎪
⎨
⎪
⎧

= (3)

Ψij p 1–( )Ti Jij dij+–{ }∪= p∀ 1… L Jij+
Ti

---------------=

(4)

L L Jij+
Ti

--------------- Cij⋅
τij∀
∑= (5)

Ψab p 1–( )Ta dab+{ }∪= p∀ 1… L
Ta
-----= (6)

Ψ Ψij Ψ∪ ab= (7)

ψ Ψ∈
wab

ψ p( )

wab
ψ p( ) Bab pCab Wij wab

ψ p( ) ψ,( )
i j ab≠∀
∑+ += (8)
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The worst-case response time is calculated by subtract-
ing the start of the job’s period from the resulting comple-
tion time:

For each value of p, we only need to check the values of
ψ in one period, because if the release time corresponding
to ψ was greater than the corresponding period, then we
would be analyzing another job with a different value of p.
This allows us to restrict the set of values to be checked:

Finally, to calculate the worst-case response time of task
τab we must determine the maximum response times within
all the potential release times examined:

We can now feed these response times into the holistic
analysis loop like in [20], obtaining new jitter values from
the response times and repeating the analysis until a stable
solution is obtained. Since the dependencies of response
times on jitters are monotonically increasing, the algorithm
is known to converge to the final solution, except when the
utilization is close to 100% and in special cases that experi-
ence shows that are uncommon.

4. Heuristic Algorithm for Optimized 
Deadline Assignment

Paper [6] proposes the HOPA algorithm that, unlike
general-purpose optimization algorithms such as simulated
annealing, uses knowledge of the factors that influence the
timing behavior to find an optimized solution to the prior-
ity assignment problem in fixed-priority distributed sys-
tems.

HOPA is based on the distribution of the global dead-
lines of each transaction among the different tasks that
compose it. Once each task is assigned an artificial local
deadline, deadline monotonic priorities are assigned in
each processing resource and an analysis of the whole sys-
tem is carried out. As a result of the analysis, new local
deadlines are calculated. The iteration proceeds until a
schedulable solution is found or some stopping condition is
reached.

In this section we propose a new heuristic algorithm
called HOSDA which is the adaptation of HOPA to sys-
tems scheduled by EDF. The objective is to check if the
basic method to calculate the artificial deadlines that lead
to schedulable solutions for fixed priorities can also be

used to assign scheduling deadlines for EDF distributed
systems. From a high-level point of view, the algorithm is:
algorithm HOSDA is
begin

assign initial scheduling deadlines;
loop

calculate worst-case response times;
exit when some stopping criterion;
calculate new scheduling deadlines;

end loop;
end HOSDA;

The scheduling deadlines should be assigned in some
way that preserves the global deadlines: 

where:
Dij is the global deadline (intermediate or end-to-end) of

task τij.
dij is the local scheduling deadline of task τij.
pri(j) is the set of tasks preceding task τij in the transaction i

to which it belongs, including itself.
The proportional deadline assignment algorithm pro-

posed in [11] can be used as the initial deadline assignment.
After all the scheduling deadlines have been assigned,

the system is analyzed using the technique described in
Section 3 which is adapted to systems with local deadlines.
If the solution is not schedulable, new scheduling deadlines
are calculated by redistributing the global deadlines among
the tasks of each transaction.

The redistribution of local deadlines uses the  concept of
“excess” of each task which, intuitively and in the same
way than in HOPA, measures the distance that separates
each task from schedulability. To avoid convergence prob-
lems or very long calculations that the holistic analysis
may have when utilizations are very high, we have added a
termination condition to the holistic analysis that makes it
stop when the response time of a task exceeds the imposed
deadline by a configurable factor. In this way we bound
and shorten the analysis time and we assure that the assign-
ment algorithm can continue working.

The original algorithm for fixed priorities had two dif-
ferent definitions for the  excess  of a particular task τij that
made it behave differently. The first definition, “excess of
response time”, was based on the difference between the
local response time and the local deadline, and led to faster
solutions; the second definition, “excess of compute time”,
was based on the calculation of the slack time [6] and led to
more schedulable solutions.

For the HOSDA algorithm we have made extensive
experiments trying to find a suitable definition for the
excess that would give reasonable results in most cases,

Rab
ψ p( ) wab

ψ p( ) ψ dab– Jab–( )–= (9)

Ψ∗ ψx Ψ∈ p 1–( )Ta dab+ ψx pTa dab+<≤{ }=

(10)

Rab max Rab
ψ p( )( )= p∀ 1… L

Ta
-----= ψ Ψ∗∈∀, (11)

Dij dik
k pri j( )∈
∑= (12)
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and as a result we have redefined the “excess of response
time” in two different ways:

where:
ΔRij is the difference between the worst case global

response times of the task before τij that has a global
deadline and the task after τij that also has a global
deadline.

ΔDij is the difference between the global deadlines of the
tasks before and after τij that have a global deadline.

If there is no previous task with a global deadline, then 0 is
used to find the difference in ΔRij and ΔDij. In the common
case when there is only a single end-to-end deadline for the
transaction all the ΔRij terms of the same transaction have
the same value related to the response time of the last task
in the transaction, , and the same applies to

.
Both definitions of excess can lead separately to feasible

deadline assignments. As in our tests the majority of the
cases are solved with definition (2) this is the recom-
mended option to try first.

Currently we do not use the excess of computation time
as it is defined in [6] because the calculation of slack time
requires a repetitive utilization of the analysis algorithm,
and given the much longer computation times of the analy-
sis for EDF scheduling there is a huge cost in time of anal-
ysis except for very small examples.

We use the same definitions as in [6] for the excess of
each processing resource, exc(PRk), the maximum excess
of all the processing resources, Mex(PR), and the maxi-
mum of the excesses of all the tasks belonging to a particu-
lar transaction responding to external event ei, which we
call Mex(ei).

Given these definitions of excess times, we calculate the
new scheduling deadline for each task dij(new) as a func-
tion of the old scheduling deadline for that task, the excess
for that task, the excess for the resource to which that task
belongs, and the values of two empirical constants kR and
ka. 

The kR and ka constants, like in HOPA, control the rela-
tive influence of the processing resource and task compo-
nents, respectively, in the calculation of the new deadline.
HOSDA uses an array of pairs of constants allowing the
algorithm to evolve with the current pair for a bounded
number of iterations; then the pair is changed to the next
one. In order to empirically determine which values give
the best results, extensive experiments were made. These
experiments consisted of applying the HOSDA algorithm
over a wide set of examples. This examples are comprised
of systems with different number of processors (2-15),
transaction lengths (number of tasks between 1 and the
number of processors) and periods (differences of up to 3
orders of magnitude), and end-to-end deadlines (between
the period, T, and 2*T*number of processors). 

For each example generated, different sets of values for
kR and ka were applied. We found out that higher utiliza-
tions could be reached if the values for this parameters
were between 1.0 and 3.0. Normally, in the HOSDA algo-
rithm we start with values of kR=ka=1.5, and we then
change both values to 2.0, 2.5, 3.0, etc., until one stopping
condition is reached.

Like in HOPA, once the new local deadlines dij have
been obtained for all the tasks in the transaction, we adjust
them proportionally to make them fit into the global dead-
lines.

The HOSDA algorithm stops whenever one of the fol-
lowing stopping conditions is met:
•A schedulable solution has been found.
•Two consecutive deadline assignments are identical (in

which case the algorithm would continue providing the
same solution).

•A maximum number of iterations has been reached. This
number is configurable and, for a given size of the sys-
tem, it sets a limit to the time that the user is willing to
wait for obtaining a solution.
After the algorithm finds a deadline assignment that

makes the system schedulable, it is capable of finding a
better optimized solution by executing more iterations, up
to an adjustable limit. The best way to compare the sched-
ulability of a system is by making a sensitivity analysis
using the slack of the system as it is defined in the MAST
tools [12]. However, sensitivity analysis is slow, and in
order to faster determine how good a solution is, compared
to others, we define a normalized schedulability index, the
transaction index, which is a function of the worst distance

exc τi j( )

Rij Jij– dij–( )
RΔ ij

DΔ i j
---------- 1( )

or

Rij dij–( )
RΔ ij

DΔ i j
---------- 2( )

⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

= (13)

ΔRij Rimi
=

ΔDij Di=

dij new( ) dij old( ) 1
exc PRk( )

kR Mex PR( )⋅
--------------------------------+⎝ ⎠

⎛ ⎞ 1
exc τij( )

ka Mex ei( )⋅
----------------------------+⎝ ⎠

⎛ ⎞=

(14)
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between the worst-case response times and the global
deadlines for each transaction:

Finally, the normalized schedulability index is the average
of the transaction indexes for all the transactions of the
system. The larger the index becomes, the better the
schedulability of the system is in terms of distance between
the response times and the deadlines.

5. Evaluation of the Heuristic Algorithm
In this section we compare the performance of the heu-

ristic algorithm proposed with existing techniques for
deadline distribution described by J. Liu in [11]. We choose
the best two of them: Proportional Deadline (PD) and Nor-
malized Proportional Deadline (NPD).

In order to carry out the comparison between the
HOSDA algorithm and the two selected techniques (PD,
NPD), we have implemented and integrated the deadline
assignment algorithms and the analysis technique into the
MAST suite of tools [12]. This allows us to use both a pre-
cise model [5] to describe the systems under test and a uni-
form way to check the results. Since MAST is free
software this also makes the implementation of the tech-
niques available to the community.

A generator of examples has also been developed to test
the execution of the algoritms over a wide spectrum of
cases. This generator starts with a base system, character-
ized by the number of processors and transactions, and for
each generated example, it assigns a random number of
tasks and periods to each transaction. The WCET of each
task is sequentially increased from a very low utilization
until the utilization of the system reaches 100%. Systems
generated by this tool are stored to be processed later.

In order to illustrate the performance of the HOSDA
algorithm, we have chosen three base systems with differ-
ent levels of complexity: a Small, Intermediate, and Big
Size Example (SSE, ISE, and BSE respectively). Table 1
shows the number of processors and the number of transac-
tions for each base system. The number of tasks in each
transaction varies randomly from 1 to the number of pro-
cessors, and can be different in each example. We have
generated 100 examples for each base system, and we
apply five types of end-to-end deadlines to the transac-
tions: deadline equal to period (D=T); deadline propor-
tional to the period and the number of processors (N)
traversed by the transaction multiplied by 0.5
( ), one ( ), or two

( ); and finally a random deadline between T
and .

The deadline assignment algorithms PD, NPD and
HOSDA have been applied to the resulting set of 1500
examples. Starting from the very low utilization assigned
to each example, our purpose is to measure which is the
highest utilization reached by each technique while keep-
ing the system schedulable, and the CPU time spent in
finding every solution. We have run the test with three
fixed values of kR=ka=[1.5,2.0,3.0]. 

Figure 2 shows the average maximum schedulable utili-
zation reached by the algoritms for each  case-study. In this
figure we can see that, on average, HOSDA can schedule
systems with higher utilizations than PD and NPD. How-
ever, there is a small amount of examples in which
HOSDA, at its first attempt with the constants selected, has
not been better than NPD. Of course, HOSDA is always
better or equal than PD, as this is the starting assignment.
For each base system, Table 2 shows the  percentage of
examples in which HOSDA has obtained higher, equal, or
lower utilizations than NPD. Despite of this small set of

TransactionIndex
Di Ri–( )

Di
-----------------------= (15)

D 0.5 N T⋅ ⋅= D N T⋅=

Table 1. Base systems for the examples generator

SSE ISE BSE

Number of Processors 3 5 8

Number of Transactions 6 8 12

D 2 N T⋅ ⋅=
2 N T⋅ ⋅

59,01

57,69

84,32

97,64

88,94

58,04

56,69

83,92

97,68

87,98

60,24

60,79

92,72

98,77

93,85

50,00 60,00 70,00 80,00 90,00 100,00

D = T

D = NT/2

D = NT

D = 2NT

D = Random 
(T,2NT)

SSE Average Maximum Schedulable Utilization (%)

HOSDA

NPD

PD

42,04

52,50

73,18

89,90

76,43

41,38

52,40

72,84

89,95

76,40

43,22

57,54

84,30

98,25

86,84

40,00 60,00 80,00 100,00

D = T

D = NT/2

D = NT

D = 2NT

D = Random 
(T,2NT)

ISE Average Maximum Schedulable Utilization (%)

HOSDA

NPD

PD
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examples in favor of NPD, we can also appreciate that on
average NPD found worst solutions than PD.

In Figure 3 we can see the average CPU time spent by
each algorithm to find a feasible solution for the BSE base
system. For the PD and NPD algorithms this CPU time is
composed of the time needed to make the assignment of
the deadlines plus the time to run the schedulability analy-
sis over the solution proposed. The time spent by HOSDA
depends on the number of iterations needed to find the
solution. Of course HOSDA has higher execution times as
it repeats the analysis potentially many times, but as can be
seen, it finds feasible solutions in reasonable times. Figure
3 only shows the average execution times for the cases
when schedulable solutions have been found for each algo-
rithm (see that in the tested cases, nor PD or NPD found
solutions above 94% utilization). The time spent by the
algorithm when a solution is not found is adjustable with
the maximum number of iterations and the limit on the
response times that is used to stop the analysis.

HOSDA has been applied to many more examples with
very similar results. The best results are obtained in sys-
tems with deadlines larger than periods, usually in those in
which deadlines are proportional to the period multiplied
by the number of tasks in the transaction. 

In some cases, the kR and ka constants used in the calcu-
lation of the excess (14) can be rebalanced to minimize the
influence of the excess in the resource (e.g., by assigning
values of kR=10ka, or kR=100ka) or the excess in the trans-
actions (e.g., by assigning values of ka=10kR, or ka=100kR),
which increase the possibility of reaching a feasible solu-

tion. As future work we plan to automate the selection and
application of different sets of ka and kR, in order to seek
better deadline assignments.

6. Conclusions
In this paper we propose a heuristic algorithm for

assigning scheduling deadlines in distributed hard real-time
systems. It is an adaptation to EDF of a previous algorithm
called HOPA, designed for fixed priorities. We have shown
that this method can find feasible optimized solutions in a
reasonable amount of time, even in situations where the
utilization of the resources is high and thus the number of
solutions is small.

Since HOSDA is based on iteratively applying response
time analysis and previous techniques for EDF scheduling
were based on global deadlines, in this paper we have
extended the analysis techniques to support local deadlines,
which are more useful in distributed environments because
they do not require global clock synchronization.

We have compared HOSDA with two other reference
algorithms previously proposed to address the same prob-
lem but which are not able to optimize. The results of the
comparison are that our method finds feasible solutions in
many cases where these other methods fail. This is espe-
cially noticeable when utilizations are high or when the
deadlines of the transactions are larger than the periods of
the events that release them.

The quality of the results obtained by HOSDA are quite
similar to those obtained by HOPA. Although both use the
concept of excess to assign virtual or scheduling deadlines,
they define these concepts in a different way. We are cur-
rently working on comparing whether HOPA for fixed pri-
orities or HOSDA for EDF can find better solutions to
schedule the same system. We are also working on the
assignment of scheduling parameters in mixed systems

Table 2. HOSDA/NPD (% of examples)

Higher Equal Lower

SSE 59,4 35 5,6

ISE 79,4 15,2 5,4

BSE 87,0 7,6 5,4

33,81

53,15

67,54

77,95

67,49

32,76

52,99

66,83

77,31

66,63

34,55

59,50

75,84

88,07

76,14

20,00 40,00 60,00 80,00 100,00

D = T
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BSE Average Maximum Schedulable Utilization (%)
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Figure 2. Schedulability results of the three algorithms
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where some processing resources are scheduled with fixed
priorities while the others are scheduled with EDF. Finally,
we also plan to test HOSDA with more advanced RTA
techniques, such as those based on offsets, and to give
HOSDA the capability to manage preassigned or local
deadlines, i.e. respectively, deadlines that cannot be
changed or that can be less than or equal to a specific value.
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Appendix A. EDF Response-Time analysis for 
Local Deadlines

In this appendix we will fully describe the extension of
the holistic analysis [20][22] for EDF distributed systems
to support local deadline schedulers. Even though the new
analysis is based on similar principles, the underlying
model and the resulting equations are different. In the
holistic analysis we assume for each analysis step that
every task is independent of the other tasks, even from
those belonging to the same transaction. After each analy-
sis step, the dependencies are captured into the jitter terms
of each task. Therefore we will rely on this assumption of
independent tasks for the purpose of each analysis step.
With this assumption, each task assumes a possibly differ-
ent start of the transaction period, which is impossible in
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practice and leads to pessimism in the results of the analy-
sis. In this section we will refer to the start of the period of
the n-th job of a task τab as tnab. With this notation, the
release time of that job is in [tnab,tnab+Jab].

Response time analysis is based on the creation of the
longest busy period. A busy period is defined for EDF
scheduling as an interval of time during which the CPU is
busy processing pending jobs of any task. In fixed priority
scheduling, the worst-case response time of a task τab is
found from a critical instant, when the release of τab coin-
cides with the release of all tasks with higher priority after
having experienced the maximum jitter. In that situation,
the critical instant coincides with the start of a busy period.
In EDF scheduling that property is not true, but the busy
period concept is still useful. The following theorem helps
us to find the critical instant for a task in the context of the
independent tasks assumption. It was proven by Spuri [19]
for global deadlines but we rework the proof here to adapt
it to local deadlines.

Theorem 1. The worst-case response time of a task τab
is found in a busy period in which each task τij in the same
processor (different from τab) is scheduled such that its
first job that is inside the busy period is released at the
beginning of that busy period, after having experienced its
maximum jitter (i.e., the start of the corresponding task
job’s period was Jij time units before the start of the busy
period), and the remainder of the jobs are released with the
minimum jitter that makes the job start inside the busy
period.

Proof: Without loss of generality let us assume the start
of the busy period to the origin of time, t=0. Let t0 be the
instant at which a task τij is released the first time in the
busy period, and let D be the absolute deadline of an
instance of the analyzed task, τab. Suppose that t0 does not
coincide with the beginning of the busy period: in this cir-
cumstance, if we move the release pattern of τij to occur
earlier, down to the point when the first release coincides
with the beginning of the busy period, it is possible that
new releases occur inside the busy period, making it lon-
ger. The deadlines of each release of τij will be earlier, so a
release with a deadline after instant D may have been
moved to have a deadline before that time, and in that case
the response time of that job of task τab would be
increased. In addition, if this first job of τij would not have
experienced its maximum jitter, by increasing it and simul-
taneously decreasing times of the release pattern so that the
job continues to coincide with the start of the busy period,
we would cause the following jobs to be released earlier,
which would also cause their deadlines to be earlier and
possibly increment the response time of τab. 

Under these conditions in which the first job of τij in the
busy period experiences its maximum jitter, we can antici-

pate the deadlines of the following jobs of τij, and possibly
increase the response time of τab, if these jobs are released
as early as possible inside the busy period, by changing
their jitters to the minimum value that makes them fall
inside the busy period. 

Note that, contrary to the other tasks, releasing the ana-
lyzed task at the start of the busy period may not lead to its
worst-case response time. If we move the release pattern of
τab to occur later, we are causing the deadline at D to be
later too, and this could imply that some deadlines of other
tasks that previously occurred after D could now occur
before the modified D, and thus make the response time of
task τab become larger. So, the critical instant for a task is
found in a busy period that is started by the simultaneous
release of all tasks except perhaps the one under analysis.

In order to calculate the worst-case response time of task
τab, we will now calculate, under the conditions of theorem
1, the worst-case contribution of a task τij to a busy period
of length l when the deadline of τab occurs at instant D. We
will name this contribution Wij(l,D). Figure 4 shows a sce-
nario for calculating this contribution.

When we calculate the worst-case contribution of a task
τij to the response time of τab we must consider from the
releases that occur in the interval [0,l) only those with
deadline before or at D. Each of the releases will be identi-
fied with a sequence number p, starting at p=1. In Figure 4,
release p=4 occurs before t, but its deadline is after D, so
under the EDF rules it must not be considered for the
worst-case contribution.

To calculate the number of releases of τij in the busy
period we can see that the identifier of the last release in
that busy period, pl, is the only value of p that simultane-
ously satisfies:

and:

from which we get:

J

T

d

l

t=0

p=1 p=2 p=3 p=4

t=T - Jt=-J T -Jt=2T - J t=3

D

C C C Cij

ij

ij

iij i iij ij

ij

ij

ij ij ij

Figure 4. Scenario for the worst-case contribution

p 1–( )Ti Jij– l< (16)

pTi Jij– l≥ (17)

p
l Jij+

Ti
------------- 1+< and p

l Jij+
Ti

-------------≥ (18)
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Given that pl is an integer number, the solution to the
above two expressions is:

To calculate the last release that verifies the deadline
condition, pD, we need to distinguish between those
releases produced at the start of the busy period (corre-
sponding to jobs with periods that started before the busy
period and with deadlines at t=dij) from those releases that
are after the start of the busy period. In the latter case, pD is
the only value of p that simultaneously verifies:

and:

from which we get:

so, we get the expression:

In case the last release inside the busy period would be
one released at t=0, the above condition is only true if

 (because if D<dij, the value pD = 0). Therefore, the
number of releases of task τij with deadlines smaller than D
is:

Given that the releases that contribute to the worst case
are those with p≤pl and p≤pD, using eqs. (19) and (24) the
worst-case contribution of task τi to the busy period is:

Using this expression we can calculate the worst-case
response time of task τab. The worst-case situation for the
analyzed task occurs when all its jobs experience their
maximum jitter, because in this way release times are as
late as possible (compared to the start of the period to
which the response times are relative) and so are the
response times. Unfortunately, we don't know how to phase
the release time of τab in relation to the busy period, but it
is easy to see that the worst case situation must be found
when the release time is placed at the beginning of the busy
period, or at an instant such that the deadline of the ana-

lyzed job of τab coincides with the deadline of a task τij’s
job. Otherwise the release of task τab could be moved to the
previous such earlier time without changing the execution
schedule, but making the response time larger. The set of
instants, Ψij, at which the deadline of τab’s job coincides
with the deadlines of one of the task jobs in the busy period
is:

where L corresponds to longest busy period, calculated as: 

The equation above is one of many recurrence equations
found in response time analysis in which the value to be
calculated is in both sides of the equation; of the many
solutions, only the one with the minimum positive value is
valid. These equations can be easily solved iteratively by
starting with a small value of L and using the value
obtained from the equation in the next iteration, until a
stable solution is found. The equation is guaranteed to have
a solution if the utilization of the task set is under 100%.
Although the computation time is pseudopolynomial, it is
usually short except for utilizations very close to 100%.

This set Ψij must be augmented with the deadlines corre-
sponding to task τab 

And so the full set of situations for which τab has to be
analyzed corresponds to those releases whose deadline is in
the set

Each potential release time for τab is obtained by sub-
tracting dab from each value in Ψ. Checking the response
times under all these release times we can find the one that
causes the worst-case response time of the task. Given that
there may be several releases of τab in the busy period, we
must analyze them all. For each value , the comple-
tion time of release p of τa, , can be calculated by
adding the worst-case contribution of all tasks in the same
processor, and the blocking term:

pl
l Jij+

Ti
-------------= (19)

Jij– p 1–( )Ti dij++ D≤ (20)

Jij– pTi dij++ D> (21)

p
Jij D dij–+

Ti
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Jij D dij–+
Ti

----------------------------> (22)

pD
Jij D dij–+

Ti
---------------------------- 1+= (23)

D dij≥

pD

0 if D dij<
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⎪
⎨
⎪
⎧
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⎝ ⎠
⎛ ⎞ Cij⋅= (25)

Ψij p 1–( )Ti Jij dij+–{ }∪= p∀ 1… L Jij+
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L L Jij+
Ti
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τij∀
∑= (27)

Ψab p 1–( )Ta dab+{ }∪= p∀ 1… L
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The worst-case response time is calculated by subtract-
ing the start of the job’s period from the resulting comple-
tion time:

For each value of p, we only need to check the values of
ψ in one period, because if the release time corresponding
to ψ was greater than the corresponding period, then we
would be analyzing another job with a different value of p.
This allows us to restrict the set of values to be checked:

Finally, to calculate the worst-case response time of task
τab we must determine the maximum response times within
all the potential release times examined:

We can now feed these response times into the holistic
analysis loop like in [20], obtaining new jitter values from
the response times and repeating the analysis until a stable
solution is obtained. Since the dependencies of response
times on jitters are monotonically increasing, the algorithm
is known to converge to the final solution, except when the
utilization is close to 100% and in special cases that experi-
ence shows that are uncommon.

Appendix B. HOSDA Algorithm
This appendix provides a more complete description of

the HOSDA algorithm. From a high-level point of view,
the algorithm is:
algorithm HOSDA is
begin

assign initial scheduling deadlines;
loop

calculate worst-case response times;
exit when some stopping criterion;
calculate new scheduling deadlines;

end loop;
end HOSDA;

The scheduling deadlines should be assigned in some
way that preserves the global deadlines: 

where:
Dij is the global deadline (intermediate or end-to-end) of

task τij.
dij is the local scheduling deadline of task τij.
pri(j) is the set of tasks preceding task τij in the transaction i

to which it belongs, including itself.

One possible initial assignment is to distribute the dead-
line proportionally to the worst-case execution time of each
task (Cij), which is similar to proportional deadline assign-
ment algorithm proposed in [11].

After all the scheduling deadlines have been assigned,
the system is analyzed using the technique described in
Section 3 which is adapted to systems with local deadlines.
The analysis provides the worst-case response times for
each task, for that scheduling deadline assignment. If the
solution is not schedulable, new scheduling deadlines are
calculated by redistributing the global deadlines among the
tasks of each transaction.

The redistribution of local deadlines uses the  concept of
“excess” of each task which, intuitively and in the same
way than in HOPA, measures the distance that separates
each task from schedulability. The new scheduling dead-
lines are obtained as a function of two factors: on the one
hand, the excess of each task relative to other tasks in the
same transaction; on the other hand, the excess of each task
relative to the other tasks in the same processing resource.
To avoid convergence problems or very long calculations
that the holistic analysis may have when utilizations are
very high, we have added a termination condition to the
holistic analysis that makes it stop when the response time
of a task exceeds the imposed deadline by a configurable
factor. In this way we bound and shorten the analysis time
and we assure that the assignment algorithm can continue
working.

The original algorithm for fixed priorities had two dif-
ferent definitions for the  excess  of a particular task τij that
made it behave differently. The first definition, “excess of
response time”, was based on the difference between the
local response time and the local deadline, and led to faster
solutions; the second definition, “excess of compute time”,
was based on the calculation of the slack time and led to
better solutions because, for deadlines smaller than periods,
the slack time is a much better representation of the excess.
The slack time of a task τij is defined as the amount of exe-
cution time that must be subtracted from task τij for it to
meet its local deadline dij, if τij is not schedulable, or the
amount of execution time that may be added to task τij for
it to continue being schedulable, if it is schedulable.

For the HOSDA algorithm we have made extensive
experiments trying to find a suitable definition for the
excess that would give reasonable results in most cases,

Rab
ψ p( ) wab

ψ p( ) ψ dab– Jab–( )–= (31)

Ψ∗ ψx Ψ∈ p 1–( )Ta dab+ ψx pTa dab+<≤{ }=

(32)

Rab max Rab
ψ p( )( )= p∀ 1… L

Ta
-----= ψ Ψ∗∈∀, (33)

Dij dik
k pri j( )∈
∑= (34)
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and as a result we have redefined the “excess of response
time” in two different ways:

where:
ΔRij is the difference between the worst case global

response times of the task before τij that has a global
deadline and the task after τij that also has a global
deadline.

ΔDij is the difference between the global deadlines of the
tasks before and after τij that have a global deadline.

If there is no previous task with a global deadline, then 0 is
used to find the difference in ΔRij and ΔDij. In the common
case when there is only a single end-to-end deadline for the
transaction all the ΔRij terms of the same transaction have
the same value related to the response time of the last task
in the transaction, , and the same applies to

.
Both definitions of excess can lead separately to feasible

deadline assignment. As in our tests the majority of the
cases are solved with definition (2) this is the recom-
mended option to try first.

Currently we do not use the excess of computation time
as it is defined in [6] because the calculation of slack time
requires a repetitive utilization of the analysis algorithm,
and given the much longer computation times of the analy-
sis for EDF scheduling there is a huge cost in time of anal-
ysis except for very small examples.

For each processing resource PRk we define the  excess
in that resource as:

In addition, we define the maximum excess of all the
processing resources PR, and the maximum of the excesses
of all the tasks belonging to a particular transaction
responding to external event ei as the maximum of the
absolute values of their corresponding values:

We use the absolute value because the maximum is used to
normalize the individual excess values in Eq. (38) below.

Given these definitions of excess times, we calculate the
new scheduling deadline for each task as a function of the
old scheduling deadline for that task, the excess for that
task, and the excess for the resource to which that task
belongs, as:

where  kR and ka, like in HOPA, are constants that control
the relative influence of the processing resource and task
components, respectively, in the calculation of the new
deadline. The smaller these constants are, the higher this
influence is. HOSDA is defined to use an array of pairs of
constants allowing the algorithm to evolve with the current
pair for a bounded number of iterations; then the pair is
changed to the next one. By extensive experimentation, we
have found that recommended empirical values for these
constants are between 1.0 and 3.0. Normally, in the
HOSDA algorithm we start with values of kR=ka=1.5, and
we then change both values to 2.0, 2.5, 3.0, etc., until one
stopping condition is reached.

Once the new local deadlines have been obtained for all
the tasks in the transaction, we adjust them proportionally
to make them fit into the global deadlines. For an end-to-
end deadline we do:

The HOSDA algorithm stops whenever one of the fol-
lowing stopping conditions is met:
•A schedulable solution has been found.
•Two consecutive deadline assignments are identical (in

which case the algorithm would continue providing the
same solution).

•A maximum number of iterations has been reached. This
number is configurable and, for a given size of the sys-
tem, it sets a limit to the time that the user is willing to
wait for obtaining a solution.
After the algorithm finds a deadline assignment that

makes the system schedulable, it is capable of finding a
better optimized solution by executing more iterations, up
to an adjustable limit. The best way to compare the sched-
ulability of a system is by making a sensitivity analysis
using the slack of the system as it is defined in the MAST

exc τi j( )

Rij Jij– dij–( )
RΔ ij

DΔ i j
---------- 1( )

or

Rij dij–( )
RΔ ij

DΔ i j
---------- 2( )

⎩
⎪
⎪
⎪
⎨
⎪
⎪
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= (35)
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tools [12]. However, sensitivity analysis is slow, and in
order to faster determine how good a solution is, compared
to others, we define a normalized schedulability index, the
transaction index, which is as a function of the worst dis-
tance between the worst-case response times and the global
deadlines for each transaction:

Finally, the normalized schedulability index is the average
of the transaction indexes for all the transactions of the
system. The larger the index becomes, the better the
schedulability of the system is in terms of distance between
the response times and the deadlines.

TransactionIndex
Di Ri–( )

Di
-----------------------= (40)


