RT-EP: Real-Time Ethernet Protocol for Analyzable Distributed Applications
on a Minimum Real-Time POSIX Kernel

José Maria Martinez, Michael Gonzalez Harbour and J. Javier Gutiérrez

Departamento de Electronica y Computadores, Universidad de Cantabria, 39005-Santander, SPAIN
{martinjm,mgh,gutierjj}@unican.es

Abstract

This paper presents the design and implementation of RT-
EP (Real-Time Ethernet Protocol), which is a software-
based token-passing Ethernet protocol for multipoint com-
munications in real-time applications, that does not require
any modification to existing Ethernet hardware. This proto-
col allows the designer to model and analyze the real-time
application using it, because it is based on fixed priorities
and well-known schedulability analysis techniques can be
applied. Furthermore, this protocol provides the applica-
tions the capacity of recovering from some fault conditions.
It has been ported to an implementation of the Minimal
Real-Time POSIX standard called MaRTE OS.

1. Introduction!

Ethernet is by far the most widely used local area net-
working (LAN) technology in the world today, although it
has unpredictable transmission times because it uses a non-
deterministic arbitration mechanism (CSMA/CD). Several
approaches and techniques have been used to make Ether-
net deterministic in order to take advantage of its low cost
and higher speeds than those of real-time field buses avail-
able today (like the CAN bus [10], for example). Some of
these approaches are the modification of the Medium
Access Control [8], the addition of transmission control
[7], a protocol using time-triggered traffic [4], or the usage
of a switched Ethernet [9].

The objective of this work is to add a real-time commu-
nication network to MaRTE OS [3], which is a real-time
kernel on which our research group has been working in
the last few years. We want to achieve a relatively high
speed mechanism for real-time communications at a low
cost, while keeping the predictable timing behavior
required in distributed hard real-time applications. The
communications protocol proposed in this work is called
RT-EP, and can be classified as an addition of a transmis-

1. This work has been funded by the Comision Interministerial de
Ciencia y Tecnologia of the Spanish Government under grant TIC2002-
04123-C03-02, and by the Commission of the European Communities
under contract IST-2001-34140 (FIRST project)

sion control layer over Ethernet, since it is basically a
token-passing protocol in a bus [2]. It provides a Real-Time
Ethernet communication without modifying the existing
hardware, and has been designed to avoid collisions in
Ethernet media.

In a previous work we presented a preliminary version
of RT-EP [5], which did not take faults into account and
which was tested under Linux. This paper discusses the
fault recovery mechanism designed for this protocol. This
extension can be modeled using the MAST [6] Real-time
Modeling and Analysis Suite. We also discuss the imple-
mentation of RT-EP in MaRTE OS and we also show the
overheads it introduces.

The paper is organized as follows. Section 2 introduces
how the protocol works. In Section 3 we describe and dis-
cuss the fault conditions considered and how we have
achieved the recovery method of the protocol. In Section 4
we explain the resulting frame formats of the protocol. Sec-
tion 5 gives some details about the model describing the
timing behavior of the implementation handling faults. In
Section 6 we show the MaRTE implementation and pro-
vide some results with the overheads introduced by this
protocol. Finally, Section 7 gives our conclusions.

2. Description of the Communication
Protocol

RT-EP has been design to avoid collisions in the Ether-
net media by the use of a token. Each station (processing
node or CPU) has a transmission queue, which is a priority
queue where all the packets to be transmitted are stored in
priority order. Packet information size is limited to 1492
bytes and fragmentation of messages is not allow at this
layer. Each station also has a set of reception queues that
are also priority queues. Packets with the same priority are
stored in FIFO order. The number of reception queues can
be configured depending on the number of application
threads (or tasks) running in the system and requiring
reception of messages. Each application thread should have
its own reception queue attached. The application has to
assign a number, the channel ID, to each application thread
that requires communication through the protocol.

The network is logically organized as a ring. Each sta-
tion knows which other station is its predecessor and its
successor, so the logical ring can be built. The protocol
works by rotating a token in this logical ring. The token
holds information about the station having the highest pri-
ority packet to be transmitted and its priority value. The
network operates in two phases. The first phase corre-
sponds to the priority arbitration, and the second phase to
the transmission of an application message.

For the transmission of one message, an arbitrary station
is designated as the token master. During the priority-arbi-
tration phase the token travels through the whole ring, vis-
iting all the nodes. Each station checks the information in
the token to determine if one of its own packets has a prior-
ity higher than the priority carried by the token. In that
case, it changes the highest priority station and associated
priority in the token information; otherwise the token is left
unchanged. Then, the token is sent to the successor station.
This process is followed until the token arrives at the
token_master station, finishing the arbitration phase.

In the message-transmission phase the token_master sta-
tion sends a message to the station with the highest priority
message, which then sends the message. The receiving sta-
tion becomes the new token_master station.

So far, the protocol is not fault tolerant. The loss of a
token, for example, will cause the stop of the communica-
tion. An extended description of the preliminary protocol
implementation can be found in [5]; here we have intro-
duced some changes to deal with the recovery of faults.

3. Handling Faults in RT-EP

Since this protocol is designed for real networks it has to
be able to deal with real fault situations that can occur in
the life of a system.

We have considered three possible faults to be handled
by the protocol:

* Failure of a Station: A reconfiguration of the ring is per-
formed.

* Loss of a packet: A retransmission takes place.

* Busy station (a station that takes too long to respond):
Duplicate packets are trashed.

The Real-Time behavior is guaranteed in case of the loss
of a packet. The other faults are consequence of bad design
or a hardware failure in the system.

The recovery method is based on simultaneous listening
to the media by all the stations, in a promiscuous mode.
Each station, after sending a packet, listens to the media for
an acknowledge, which is the transmission of the next
frame by the receiving station. If no acknowledge is
received after some specified timeout, the station assumes
that the packet is lost and retransmits it. The station repeats

this process until an acknowledge is received or a specified
number or retransmissions is produced. In the latter case
the receiving station is considered as a failing station and
will be excluded from the logical ring. Because retransmis-
sion opens the door to duplicate packets if a station does
not respond in time, a sequence number is used to discard
duplicates at the receiving end.

We can describe the full protocol implementation as a
state machine for each station. There are only two addi-
tional states to be added for fault recovery, as shown in Fig-
ure 1:

Handling

Send Initial
Token

Figure 1RT-EP state machine including faults

* Error Check. The station starts listening to the media
after transmitting a frame.

* Error Handling: In case no acknowledge is received, the
station attempts to recover the communication.

4. RT-EP Frame Formats

The extension to the RT-EP protocol to handle faults
makes it necessary to modify the packets; the token needs
to carry more information about the state of the logical ring
and a sequence number must be added to both bus arbitra-
tion (token) packets and information packets.

RT-EP packets are carried in the Data field of the Ether-
net frame, that must be at least 46 bytes long [1]. Due to
this restriction, even though our packets can be less than 46
bytes long, a 46 bytes data field will be built. Our protocol
has two types of packets:

e Token Packet: it is used to transmit the token and has the
following structure:

1 byte | 1 byte |2 bytes | 6 bytes |2 bytes| 6 bytes | 6 bytes |22 bytes

Packet Priovit Packet MT(;]::r Failing| Failing | Station Extra
Identifier| Y\ Number Address Station | Address | Address

The Packet Identifier field is present also in the Info
Packet and is used to identify the type of the packet. It
can hold two different values for this type of packet:

Token (used in the arbitration phase to get the highest
priority packet) or Transmit Token (it grants the
destination station permission to transmit a message).
The Priority indicates the highest priority element on the
LAN at the rotation time. The Packet Number is used as
a sequence number. Token Master Address will store the
address of the current foken master station, this is
needed to recover from a foken _master failure. Failing
Station and Failing Address are used to handle the failure
of a station. By including this information in the token it
is possible for the stations in the ring to remove the
failing station from their local configuration, discarding
any further messages to this station. The Station Address
stores the address of the station with the highest priority
packet. Finally, the 22 Extra bytes are needed to be
compliant with the Ethernet protocol.

* Info Packet: it is used to transmit data and has the follow-
ing structure:

1 byte 1 byte | 2 bytes 2 bytes 2 bytes | 0-1492 bytes
Packet L Packet Info .
Identifier Priority Number Channel ID Length Info

The Packet Identifier has a value that identifies it as an
Info Packet. The Priority field holds the priority of the
packet being transmitted. As well as in the Token Packet,
Packet Number is the sequence number. The Channel ID
is used to identify the destination queue in the destination
station. The Info Length is the size of the data stored in
the Info field. If the information to be transmitted is less
than 38 bytes long, padding is performed in order to get
the 46 data bytes required in an Ethernet frame.

5. MAST Model of RT-EP with Error
Handling

We can build a MAST [6] model to characterize RT-EP
with fault recovery, so that the timing behavior of a distrib-
uted hard real-time application can be analyzed. The result-
ing model is similar to the one for same protocol without
faults [S]. An RT-EP Packet Driver models the overhead of
the protocol in a processor; its attributes are:

* Packet Server (the thread executing the driver).

* Packet Send Operation (PSO): code executed in the Idle
state followed by the Send Info state, and Error_Check.

* Packet Receive Operation (PRxO): code executed in the
Idle state followed by the Recv Info state, by the
Send_Initial Token state, and by the Error Check state.

* Number of Stations (N).

* Token Manage Operation (TMO): 1t corresponds to TMO
without errors plus the Error Check state.

* Token Check Operation (TCO).

* Token Delay Operation (TDO).
* Packet Discard (PD).
* Token Transmission Retry (TR): maximum number of

faults (and their retransmissions) that we allow in each
token arbitration.

* Packet Transmission Retry (PR): maximum number of
retransmissions when transmitting an Info Packet.

* Timeout (T): timeout of the protocol.

* Token Retransmission Operation (TRO): Time consumed
in a token retransmission. It corresponds to the part of

Error_Handling that is in charge of the token retransmis-
sion.

* Packet Retransmission Operation (PRO): Time con-
sumed in an Info_Packet retransmission. It corresponds
to the part of the Error Handling state that is in charge
of Packet retransmission.

And the attributes of the Fixed Priority Network
resource for RT-EP are:

* Max Packet Transmission Time (MaxPTT) and Min
Packet Transmission Time (MinPTT).

* Packet Overhead. Considering retransmissions:

(N+1)(MinPTT+ TCO + TMO) + (N LID) +

26 [B
b

(MinPTT+TRO+T) IR +

Max Blocking:

(NY(MinPTT+ TCO + TMO) + ((N— 1) (D) +

26 [B 26 (B
MaxPTT + + PR RO+T+MaxPTT+—D+
b [%) R,

(MinPTT+ TRO+T) IR

Ry, is the binary rate.

6. Evaluation under MaRTE OS

This protocol has been ported to MaRTE OS [3]. The
architecture is the same as in the protocol without fault
recovery (Figure 2). The Linux “socket” that appears in the
figure corresponds directly to the network driver in MaRTE
OS.

Since MaRTE is a Real-Time OS we can have metrics of
the worst, average, and best case response times. In [5], the
metrics shown were only average cases, since the imple-
mentation was on GNU/Linux, which is not a Real-Time

Main

Tasks
i i
lellre)
=g =
o a
=1 i=1
o (¢
Communication
Thread
Socket
LAN

Figure 2Functionality and details of RT-EP

OS, and the worst case metrics were about three orders of
magnitude higher than the average ones.

We have provided Ada and C interfaces to the protocol.
The times has been measured in a minimum platform com-
posed by two PCs (Pentium III 700 MHz) running MaRTE
OS and connected by a 10 Mbps network. The application
consisted of five threads in each PC sending each other
average-size messages through five different channels.

RT-EP CPU Overheads | Worst (us) | Best (us) | Av (us)
Idle State (+ Error_Check) 48.35 10.8 11.16
Send_Initial Token 41.16 30.85 31.44
Check_Token 18.51 9.32 9.45
Send Permission 25.93 24.40 24.75
Send_Token 41.39 24.30 24.74
Send_Info 41.63 37.44 38.36
Recv_Info 37.21 21.19 21.9

7. Conclusions

We have presented a method for dealing with fault situa-
tions that can occur in the context of the RT-EP protocol
(loss of a packet, failure of a station, and delays caused by
a busy station). A precise timing model of the extended
protocol has been obtained, which enables us to perform a
schedulability analysis of a distributed application using
this protocol. With this full implementation (RT-EP +
MaRTE OS) we can have a real-time communication sys-
tem over Ethernet.

Although the current implementation is in MaRTE OS,
it is important to say that the protocol is suitable for other
Real-Time OSs.

Future work plans for this protocol are to provide sup-
port for multicast traffic and wireless LANs.

REFERENCES

[1] IEEE Std 802.3, 2000 Edition: “IEEE Standard for
Information technology--Telecommunications and
information exchange between systems--Local and
metropolitan area networks--Common specifications--Part 3:
Carrier sense multiple access with collision detection
(CSMA/CD) access method and physical layer
specifications”

[2] ANSI/IEEE Std 802.4-1990. “IEEE Standard for Information
technology--Telecommunications and information exchange
between systems--Local and metropolitan area networks--
Common specifications--Part 4: Token-Passing Bus Access
Method and Physical Layer Specifications”.

[3] M. Aldea and M. Gonzélez. “MaRTE OS: An Ada Kernel for
Real-Time Embedded Applications”. Proceedings of the
International Conference on Reliable Software Technologies,
Ada-Europe-2001, Leuven, Belgium, Lecture Notes in
Computer Science, LNCS 2043, May, 2001.

[4] Paulo Pedreiras, Luis Almeida, Paolo Gar. “The FTT-
Ethernet protocol: Merging flexibility, timeliness and
efficiency”. Proceedings of the 14th Euromicro Conference
on Real-Time Systems, Vienna, Austria, June 2002.

[5] JM. Martinez, M. Gonzalez Harbour, and J.J. Gutiérrez. “A
Multipoint Communication Protocol based on Ethernet for
Analyzable Distributed Real-Time Applications”. Proceeding
of the 1st International Workshop on Real-Time LANS in the
Internet Age, RTLIA 2002, Vienna (Austria), June 2002.

[6] M. Gonzalez Harbour, J.J. Gutiérrez, J.C. Palencia and J.M.
Drake: “MAST: Modeling and Analysis Suite for Real-Time
Applications”. Proceedings of the Euromicro Conference on
Real-Time Systems, Delft, The Netherlands, June 2001

[7] Chiveh Tzi-Cker and C. Venkatramani. “Fault handling
mechanisms in the RETHER protocol”. Symposium on Fault-
Tolerant Systems, Pacific Rim International, pp. 153-159,
1997.

[8] Jae-Young Lee, Hong-ju Moon, Sang Yong Moon, Wook
Hyun Kwon, Sung Woo Lee, and Ik Soo Park. “Token-
Passing bus access method on the IEEE 802.3 physical layer
for distributed control networks”. Distributed Computer
Control Systems 1998 (DCCS'98), Proceedings volume from
the 15th IFAC Workshop. Elsevier Science, Kidlington, UK,
pp. 31-36, 1999.

[9] Choi Baek-Young, Song Sejun, N. Birch, and Huang Jim.
“Probabilistic approach to switched Ethernet for real-time
control applications”. Proceedings of Seventh International
Conference on Real-Time Computing Systems and
Applications, pp. 384-388, 2000.

[10]K. Tindell, A. Burns, and A.J. Wellings, “Calculating
Controller Area Network (CAN) Message Response Times”.
Proceedings of the 1994 IFAC Workshop on Distributed
Computer Control Systems (DCCS), Toledo, Spain, 1994.

