A Proposal to I ntegrate the POSI X Execution-Time
Clocksinto Ada 95*

J.Miranda andM. GonzlezHarbou?
j m randa@ uma. ul pgc. es, ngh@ini can. es

1 Applied Microelectronis Researh Institute, Univ. Las Palmagde GranCanaria
35017LasPalmasde GranCanariaSPAIN
2 Departamentale Electdnicay Computadoresniv. Cantabria
39005- SantanderSPAIN

Abstract. Inthispapemwe presenaproposatointegratehePOSIX.1lexecution-
time clocksand execution-timetimersinto the Ada 95 language This proposal
definesa new packagenamedAda.CPU_Time and describeshe modifications
doneto the GNAT front-endand run-time to supportit. Additionally this pro-

posaldiscussesomeusagescheme®f this newinterface.

Keywords: SchedulingHardReal-Time Ada 95, Execution-TimeGNAT.

1 Introduction

Traditionalreal-timesystemaverebuilt (andstill are)usingexecutiveschedulers[4]in
thesesystemsif a particulartaskor routine exceededts budgete executiontime, the
systemcould detectthe situation.Basically,whenevetthe minor cycleinterruptcame
in, it could checkwhetherthe currentactionhad completedor not. If not, that meant
anoverrun.Unfortunately,in concurrenteal-timesystemsuilt with multitaskingpre-
emptiveschedulersthereis no equivalenimethodto detectandhandleexecution-time
overrunsThisis the casefor systemsuilt usingthe Ada taskingmodelandtheassoci-
atedReal-TimeAnnex[9].

In additionto detectingbudgetoverrunsmary flexible real-time schedulingalgo-
rithmsrequie thecapabilityto measurexecutiortime andbeableto performschedul-
ing actionswhena certainamountof executiortime hasbeenconsumedfor example,
sporadicserversin fixed priority systemspr the constantbandwidthserverin EDF-
scheduleadystems)Supportfor execution-timelocksandtimersis essentiato beable
to implement such flexible scheduling algorithms.

In recognition of all these application requirements, the Real-Time extensions to

POSIXhaverecentlyincorporatedgupporfor them. Real-TimePOSIXsupportexe-

cution-time clocks and timers that allow an application to monitor the consumption of
execution time by its tasks, and to set limits for this consumption. The next revision of

* Thiswork has been partially funded by the Spanish Research Council (CICYT), contract num-
bers TIC2001-1586—-C03-03 and TIC99-1043-C03-03, and by the Commission of the Euro-
pean Communities under project |ST-2001-34820 (FIRST).

the Ada language should suppdrigt functionality in order for the language to continue
to be the best for programming real-time applications.

There has been a previous proposal to include execution-time clocks and timers
into the Ada language [6, 3]. That proposal defines a new package that includes all
the operations required to access the execution-time monitoring functionality. Some of
those operations belong to a protected object type that represents execution-time timers.
That approach does not require modification of the compiler, nor of the run-time system
(provided that the POSIX execution-time functionality is available), but its execution-
time type is not integrated in the Ada language as a Time type.

In this paper we present a proposal to integrate the POSIX.1 execution-time clocks
and timers into the Ada 95 language. In this proposal we try to minimize the implemen-
tation impact on the compiler and run-time system, and therefore we will not include
any new language construct. It is composed of a new package natagdPU_Time
and the proposed modifications to the GNAT[5] front-end and run-time to efficiently
support the execution-time clocks and timefhe proposal is being submitted to the
Ada Rapporteur Group (ARG) for possible inclusion in a future revision of the Ada
standard.

This paper is organized as follows. In Section 2 we present the interface of our pro-
posedAda.CPU_Time Ada package. In Section 3 we present five basic usage schemes of
the execution-time clocks and timers. In Section 4 we briefly present the modifications
done to the GNAT compiler to allow the use of execution-time timers in the Ada 95
timed sentences. We close withnse conclusions and references.

2 AdaCPU_Time

Our proposed interface to handle CHWne is based on the standard Ada.R€ehe
interface. The major differences between our Ada.CRtde interface and the standard
Ada.RealTime interface are:

— The new data typ€lock_Id is used to represent execution-time clocks. A value
of this type represents the execution-time clock of a given task. According to the
POSIX definition of execution time[7], it is implementation defined to whom will
be charged the effects of interrupt handlers and run-time services on behalf of the
system.

— TheTimetype represents absolute valuegrécution time as measured by a given
execution-time clock. Values of this type have an internal Clmtkalue that ties
the value of execution time to its assoeidtclock. If a variable of type Time is not
initialized, the value of its internal Clocld is undefined. The type Time is a time
type as defined by ARM95, Section 9.6, and thus values of this type may be used
in a delayuntil_statement.

— TheTime_Spantype represents length of execution-time duration, and its values are
not dependent upon any particular execution-time clock (or task).

— The new functionCPU_Clock is used to get the execution-time clock identifier
associated with each Ada task.

— The functionClock has a new parameter used to specify the execution-time clock
to be read. In order to keep compatibility with the A@Galendar and Real _Time
packages, if no parameter is passed then the execution-time clock of the calling
task is returned.

— The new functionClock_1d_Of returns the identifier of the execution-time clock
associated with the Time parameter T.

— The functionTime_Of has a new parameter used to associate the time to an execution-
time clock.

— The exceptioime_Error is raised by the function Clock if the Clodkl parameter
is not valid. This exception is also raised by operators “+” and “-”, and the function
Clockd_Of, if an execution-time parameter is not valid (for example, if it is not
initialized). In addition, it is also raised by a delantil_statement if a Time value
corresponding to the task executing theesta¢nt is used, because otherwise this
situation would cause a deadlock.

— The exceptiorincompatible_Times is raised by operator “-” if the execution-time
parameters correspond to different execution-time clocks.

with Ada. Task_l dentification;
package Ada. CPU Tine is
type C ock_l d is private;

type Tine is private
Time_First : constant Tinme;
Time_Last : constant Tine;

Time_Unit : constant := inpl ementation-defined-real - nunber;
type Ti ne_Span is private,

Time_Span_First : constant Ti me_Span;

Time_Span_Last : constant Ti me_Span;

Time_Span_Zero : constant Ti me_Span;

Time_Span_Unit : constant Ti me_Span;

Tick : constant Ti me_Span;

function CPU_C ock
(Task_Id : Ada.Task_ldentification.Task_Id
:= Ada. Task_l dentification.Current_Task) return O ock_ld,;

function O ock (C: dock_ld) return Tineg;
function ock_Id_O (T : Time) return C ock_|d;

function "-"
function "*"
function "*"
function "/ "

Right : Time_Span) return Ti me_Span;

Left : Time_Span; Right : Integer) return Time_Span;
Left : Integer; Right : Time_Span) return Ti me_Span;
Left, Right : Tinme_Span) return |Integer;

function "+" (Left : Tineg; Right : Time_Span) return Tineg;
function "+" (Left : Tinme_Span; Right : Tine) return Tine;
function "-" (Left : Tineg; Right : Time_Span) return Tine;
function "-" (Left : Tineg; Right : Tine) return Ti me_Span;
function "<" (Left, Right : Time) return Bool ean;
function "<=" (Left, Right : Tinme) return Bool ean;
function “>" (Left, Right : Tinme) return Bool ean;
function “>=" (Left, Right : Tinme) return Bool ean;
function "+" (Left, Right : Tinme_Span) return Tine_Span;
function “-" (Left, Right : Time_Span) return Tine_Span;

(

(

(

(

function “/" (Left : Time_Span; Right : Integer) return Ti ne_Span;
function "abs"” (Right : Time_Span) return Ti ne_Span;

function "<" (Left, Right : Time_Span) return Bool ean;

function "<=" (Left, Right : Time_Span) return Bool ean;

function ">" (Left, Right : Time_Span) return Bool ean;

function ">=" (Left, Right : Tinme_Span) return Bool ean;

function To_Duration (TS : Time_Span) return Duration;
function To_Ti me_Span (D : Durati on) return Ti me_Span;
function Nanoseconds (NS : Integer) return Time_Span;
function M croseconds (US : Integer) return Ti nme_Span;
function M| 1iseconds (M5 : Integer) return Time_Span;

type Seconds_Count is new Integer range -lnteger’Last .. Integer’Last;
procedure Split (T : Time; SC: out Seconds_Count; TS : out Time_Span);
function Tine_Of (SC. Seconds_Count; TS : Time_Span; C: Cock_ld)

return Tine;
Ti me_Error . exception;
I ncompati bl e_Tines : exception;
private

end Ada. CPU_Ti ne:

3 Usage Schemesfor Ada.CPU_TimeTimers

Using packagé&da.CPU _Time, described above, we can design some basic usage schemes
that depend on the particular needs of the application task whose execution time is being
monitored. We have identified five major schemes:

— Handled[6]. This is the case in which an egution-time overrun is detected, but
the task is allowed to complete its execution. This is applicable to systems under
testing, or for tasks that have a high degree of critically (an thus cannot be stopped)
or for which an occasional execution-tiragerrun can be tolerated, but needs to be
reported.
In this scheme, the application task uses a single variable T to remember the value
of the execution-time clock and to evaluate the execution time of the work. If the
execution time is higher than MAXIME then it handles the execution-time error.

task body Periodi c_Handl ed is

C: Cock_ID:=CPUOock;, -- M execution-tinme clock identifier.
T: Tine
begin
loop
T:=dock (O;

do task useful work;
if dock (Q - T > MAX_TIME then
Handl e the error;
end if;
delay until Next_Start; -- G obal clock del ay.
end loop;
end Periodi c_Handl ed;

— Priority change[6]. In this scheme when the overrun is detected the priority of the
task is lowered or increased (depending on the application requirements). A sim-
ple implementation of this scheme uses two nested taskd\hieer task and the
Supervisor task. The Supervisor task sleeps until the execution time of the Worker
task reaches the instant of the priorityatiye. When this happens the supervisor
lowers (or increases) the priority of the worker task. If the Worker task completes
the work before the instant of the priority change then it aborts the Supervisor task.

task body Wrker is
task Supervi sor;
task body Supervisor is
C: Cock_ ID:= CPU Oock (Wrker'ldentity);
T: Time := Gock (C + To_Tinme_Span (TI ME_OF_PRI ORI TY_CHANGE) ;
begin
delay until T,
Lower (or increase) the priority of the worker task;
end Supervi sor;
begin
do useful work;
abort Supervi sor;
end Worker;

An alternative implementation of this scheme does not recabiet. It can be

done by means of the Adalect statement and onantry (i.e, Work_Done). When

the worker completes its work calls Waikone. The supervisor can then be imple-
mented by means of a timed selective accept. If the entry call is received before the
instant of priority change ireached then the work hasén successfully completed

in time; otherwise the time-budget has expired and the Supervisor lowers (or in-
creases) the priority of the worker task. In addition the Supervisor task must accept
the call to WorkDone that will be issued by the Worker at the end of its work.

task Wor ker;

task Supervisor is
entry Work_Done;
end Supervi sor;

task body Wrker is
begin
do useful work;
Super vi sor . Wr k_Done;
end Worker;

task body Supervisor is
C: Cock_ ID:= CPU Cock (Wrker'ldentity);
T: Tinme := Qock (C + To_Tinme_Span (TIME_OF_PRI ORI TY_CHANGE) ;
begin
select
accept Wor k_Done;
or
delay until T,
Lower (or increase) the priority of the worker task;
accept Wor k_Done;
end select;
end Supervi sor;

— Stopped[6]. This is the case in which if an exution-time overrun is detected, the
associated task execution is stopped to allow lower priority tasks to execute within
their deadlines. The task itself waitstilrits next activation and then proceeds
normally.

In the implementation of this scheme an asynchronous select statement is used to
abort the task’s work if an execution-time overrun is detected.

task body Periodi c_Stopped is
C: Cock_ID:=CPUOock; -- M execution-tinme clock identifier
T: Tine;
Next _Start : Duration;
begin
loop
T:=Cock (C + To_Tinme_Span (WORST_CASE EXEC TI ME);
select
delay until T, -- Execution-tine clock
Handl e the error;
then abort
do useful work;
end select;
Next Start :=...;
delay until Next_Start; -- G obal clock
end loop;
end Peri odi c_St opped;

— Imprecisg[6]. This scheme corresponds to the case in which the task is designed
using the imprecise computation model[10], in which the task has a mandatory part
(generally short and for which it is easieréstimate a worst-case execution time),
and an optional part that refines the calculations made by the task. Since the worst-
case execution time of this optional part is usually more difficult to estimate, this
part will be aborted if an execution-time overrun is detected. This technique is also
valid for cases in which the optional parontinuously refines the quality of the
results; we can let the optional part run until it exhausts its execution-time budget,
and then use the last valid result obtained.

The implementation of this scheme consists of using the “handled” approach for
the mandatory part of the task, and the “stopped” approach for the optional part.
After the optional part, whether it is aborted or not, another mandatory part may
exist to cause outputs of the task to be generated. Therefore this scheme can be
implemented as follows:

task body Periodic_| nprecise is

C: Cdock_ID:= CPUCock; -- M execution-time clock identifier
T: Ting;
Next _Start : Duration;
begin
loop

T:=Cock (C + To_Tinme_Span (WORST_CASE EXEC TI ME);
do mandatory part I;
select

delay until T, -- Execution-tine clock
then abort

do optional part;
end select;

do mandatory part 11;
Next _Start :=...;
delay until Next_Start; -- G obal clock
end loop;
end Periodi c_| npreci se;

4 Detailed Description of the Integration of the Execution-Time
Timersinto the GNAT Compiler

In this section we describe the modifications done to the GNAT compiler to support
the POSIX execution-time timers in Ada. For each Ada timing statement (delay until,
timed entry call, and timed selective actepe present the modifications done to the
GNAT front-end and run-time.

4.1 Delay Until Statement

Front-end

— Semantics. The subprograninalyze Delay_Until has been modified to allow the
use of theAda.CPU_Time.Time type in the Ada 9%lelay until statement.

— Expander. When arAda.CPU_Time.Time type variable is used to specify the time-
out, the expander has been modified to transforndéhay until statement as fol-

lows:
Original Ada Code Expanded Code
delay until T, Ada. CPU_Ti ne. Del ays. Del ay_Until (T);
Run-Time

— Packagesystem.Tasking. A POSIX execution-time timer and two flags have been
added to the Ada Task Control Block (ATCB). The flags are used to remember if
the timer has been created (and therefore the execution-time timer field is valid),
and if the ATCB timer is currently in use.

— Packag&dda.CPU_Time.Delays. The subprograrelay_Until has been program-
med to do the following actions:

1. Defer the abortion of the calling task.

2. Lock the ATCB of the calling task.

3. If the ATCB has not been created then create, program, and arm the ATCB
execution-time timer; if the ATCB had been created but it is notin use then pro-
gram and arm the ATCB execution-tirtiemer; otherwise create, program and
arm a new execution-time timen kll these cases the address &fehay Block
register composed of the following fields is associated with the execution-time
timer:

e The ATCB address of the calling task.

¢ A boolean field Timed_Out) initialized to false. This field will be used by
the timed statements to differentiate the case of the timeout expiration from
the case in which the blocked task is awakened by some other task (i.e. the
acceptor of a timed entry call, ordlcaller of a selective walit).
4. Pass the calling task to tielay_Seep state.
5. Stop the calling task until the tirnat expires. This is done by blocking the
calling task using the callenutex andcondition variable declared by GNAT
in the ATCB for this purpose.
. Pass the calling task to tiiReinnable state.
7. If the ATCB timer was re-used then mark it as “not in use”. Otherwise, remove
the execution-time timer.
. Unlock the ATCB of the calling task.
9. Verify if a request to abort the calling task has been received during this delay.
If true then abort the task; otherwise undefer its abortion.

(o]

(o]

A task is used to handle the signal associated with all the execution-time timers.
This task does following actions:
1. Block all the signals.
2. Activate the signal associated with all the execution-time timers.
3. Await for the execution-time timers signal.
4. Get the address of thgelay Block register associated with the execution-time
timer.
. Set toTrue the field Timed_Out of this Delay Block register.
. Awaken the task that programmed this execution-time timer.
. Goto step 3.

~N O O

Behavior The calling task programs an execution-time timer and becomes blocked
until this timer expires.

4.2 Timed Entry Call
Front-end

— Semantics. No modification was required.

— Expander. When anAda.CPU_Time.Time variable is used to specify the timeout
the expander has been modified to transform the Ada timed entry call statement in
the following way:

Original Ada Code Expanded Code
select declare
T.E P : paranms := (param param paranj;
<<S1>>: B : Bool ean;
or begin
delay until <<CPU_TI MEQUT>>; CPU_Ti med_Entry_Cal |
<<82>> (Acceptor => <Acceptor-Task_| D>,
end select; Entry_Id => <Entry_I ndex>,

Uninterpreted_Data => P Address,

Ti meout => <<CPU_TI MEQUT>>,
Mbde => Absol ut e_CPU_Mde,
Successful => B);

if B then
<<S1>>;

else
<<S2>>:

end if;

end;

Run-Time

— PackageSystem.Tasking.Rendezvous The newCPU_Timed_Entry_Call subpro-
gram is based on the GNATimed_Entry_Call subprogram. The main differences
with the original GNAT version are:

e The data type of th@&imeout parameter i®\da.CPU_Time.Time (instead oDu-
ration).

e Its body callsCPU_Wait_For_Completion_Wth_Timeout instead of the GNAT
Wait_For_Compl etion_Wth_Timeout version.

— Packagesystem.Tasking.Entry_Calls The new subprogra@PU_Wait_For_Com-
pletion_.With_Timeout is based on the GNAT subprogravit_For_Completion._-
With_Timeout. The only difference is that it callSPU_Timed_Seep (instead of the
GNAT subprogranTimed_Seep).

— Packagesystem.Task _Primitives.Operations The new subprogramda.CPU_Ti-
med_Seep calls Ada.CPU_Time.Delays.Delay_Until.

Ada GNAT Object
Source | —> Front-end | —> Ccide
l Run-Time
' CPU_Timed_Entry_Call '
' CPU_Wait_For_Completion_With_Timeout'
! CPU_Timed_Sleep !

CPU_Time.Delay_Until

Fig. 1. Run-Time Calls to Implement the CPU Timed Entry Call.

Behavior. If the rendezvous can be immetiely accepted the subprogr&RU_Timed-
_Entry_Call completes the rendezvous and retufinge in the out mode parameter
Successful. Otherwise it programs an exeaairtime timer by calling the subprogram
Ada.CPU_Time.Delays.Delay_Until.

— If the call is accepted before the timeodp@es then the receiver task unblocks the
caller by callingWakeup, the same subprogram called by the CPithe signal han-
dler. The unblocked calling task a@ets this state by evaluating tBgnaled field
associated with its execution-time timetil{$alse because the execution-time time-
out has not expired). Therefore the calling task removes its execution-time timer
and returngruein its out mode paramet&uccessful.

— Otherwise (the timeout expires) the CHlime signal handler sets frue the Sig-
naled field associated with the executitme timeout, and the unblocked calling
task removes its execution-time timer and retufakse in its out mode parameter
Successful.

4.3 Timed ATC
Front-end

— Semantics. No modification required.
— Expander. When the Ada.CPWime time variable is used to specify the timeout
the GNAT expander has been modified to generate the following block of code:

Original Ada Code Expanded Code
select declare

delay until <T>; D : aliased Del ay_Bl ock;

<<S1>>; begin
or Abort _Defer;

<<abort abl e_part >> CPU_Arm Timer (<T>, D access);
end select; begin

begin

Abort _Undefer;
<<abort abl e_part>>
at end
Async_Cancel _Tiner (D access);
end;
exception
when _abort_signal =>
Abort _Undefer;
end,
if Tined_Qut (D) then
<<S1>>;
end if;
end;

Run-Time

— PackageSystem.Tasking.Async_Delays. The new CPUArm_Timer subprogram
does the following actions:
1. Increments the ATC nesting level of the calling task.
2. Initializes all the fields of the DelaBlock.
3. Calls the subprogramda.CPU_Time.Delays. Arm_Timer.
— Package&dda.CPU_Time.Delays. The new CPUArm_Timer subprogram arms the
execution-time timer and returns.

Behavior First of all let’s briefly explain the seantics of the GNAT “at end” statement.
It is a handler which provides a common way out of a block of statements even when
an exception is propagated.

In the above code, after the execution-time timer is armed the abortable part is exe-
cuted. If the abortable part completes its execution before the execution-time timer ex-
pires then thésync_Cancel _Timer is called to disarm the timer. Otherwise the execution-
time timer expires and the signal catcher calls the run-time subpradgoeeked_Abort-
_To_Level which defers the abortion of the blocked task, and cancels all the nested ATC
(if any) done in the abortable part by raising the internal exceptibart_signal. After
the abortion is undefered (in the exceptiankler) if the timeout had expired then the
block of statements < S1 > > is executed.

4.4 Timed Selective Accept
Front-end

— Semantics. It has been modified to disallow the simultaneous ugelafCPU _Time
andAda.Real _Timetime variables to specify multiple timeouts in the Ada 95 timed
selective accept

— Expander. When the Ada.CPWime time variable is used to specify the timeouts
of the following Ada 95 timed-selective statement the GNAT expander has been
modified to generate the following block of code:

Original Ada Code Expanded Code
select declare
accept E1 ...; S : Entry Barriers := (others => True);
or P : parans := (param param paranj;
accept EN ... ; D: time_array (1 .. N :=
or (<CPU_TI MEQUT 1>, <CPU_TI MEQUT_N>);
delay until <CPU_TI MEQUT_1>; E Index : integer := 0;
or D Index : integer := 0;
delay until <CPU_TI MEQUT_N>; begin
end select; CPU_Ti med_Sel ective_Wait
(Open_Accept s => S address,
Sel ect _Mode => del ay_node,
Uninterpreted_Data => P Address,
Ti meout => D,
Mbde => Absol ute_CPU_Mbde,
| ndex => E | ndex,
CPU_Ti me_I ndex => D | ndex);

if E_ Index = 0 then
-- Sone tinmeout has expired.
case D I ndex is
when 1 => <<CPU_S1>>

when N => <<CPU SN>>
end casg

3“f a selectiveaccept contains more than one deliernative, then all shall be de-
lay_relative statements, or all shall be delamtil_statements for the same time type.”
ARMO95[9], Section 9.7.1(13).

else
-- Sone entry call has
-- been accepted.
case E | ndex is
when 1 => <<S1>>

when N => <<SN\>>
end case
end if;
end;

Run-Time

— PackageSystem.Tasking.Rendezvous. The newCPU_Timed_Selective Wait sub-
program is based on the GNATmed_Sel ective_Wait subprogram. The main differ-
ences with the original GNAT version are:

e The data type of th&meout parameter is an array where all the timeouts spec-
ified in the Adaselect statement are passed by the front-end.
¢ Its body calls a variant of th€EPU_Timed_Seep which receives the timeouts
array and returns the index of the expired CPU timeout. This index is returned
in the CPU_Time_Index parameter. The possible values of the out mode param-
etersindex andCPU_Time_Index are:
I ndex CPU_Ti me_| ndex

Sonme entry call was accepted: <entry index> 0
Some deadl i ne expired: 0 <timeout index>

— Packagesystem.Task_Primitives.Operations. The new variant of the subprogram
Ada.CPU_Timed_Seep calls Ada.CPU_Time.Delays.Multiple_Delay_Until.

— Packagé\da.CPU_Time.Delays.M ultiple_Delay_Until. This subprogram does the
same actions aBelay_Until (described in Section 4.1jlowever, instead of using
a single execution-time timer, it programs as many execution-time timers as the
number ofdelay until alternatives specified by the programmer in the Ada 95 timed
selective accept.
In order to identify the execution-time timer which expired, an arrayaty Block
registers containing the address of the caller's ATCB andTthed_Out field is
used. When one execution-time timeout expires the unblocked task traverses this
array to look for the execution-time timeout which hasTitsed_Out field set to
True. If no execution-time timer has itEmed_Out field set to true it means that
some entry call was accepted, and therefore the task was unblocked by the caller.

Ada GNAT Object

Source | —> Front-end | —> Colde
l Run-Time
! CPU_Timed_Selective_Accept '
' CPU_Timed_Sleep '

CPU_Time.Multiple_Delay_Until !

Fig. 2. Run-Time Calls to Implement the CPU Timed Selective Accept.

5 Discussion

A prototype implementation has been developed for the execution-time budgeting pro-
posal presented in this paper, using the MaRTE operating system [1, 2] that provides a
POSIX.13 [8] minimal real-time system interface and includes execution-time clocks
and timers. As we have shown, the implementation requires small modifications to the
compiler and to the run-time. The modifications were implemented in a short period
of time and should not represent a large effort to current compiler implementors. We
have compared this implementation with the one presented in [3] defining support for
the execution-time clocks and timers as a library package. This latter implementation is
very simple, because it does not require madifions to the compiler nor to the runtime
system. The overheads are quite similar in both implementations, and are small.

For both approaches, implementations on bare machines or systems without the
POSIX execution-time clockand timers would be a bit more complex because the
underlaying execution-time monitoring fuimmality would have to be implemented in
the scheduler. Reference [6] describes smeh implementation and it can be seen that
it is relatively simple, and that it does not introduce any significant overhead into the
scheduler.

Both approaches were discussed at the International Real-Time Ada Workshop in
2002. The conclusion from the Workshop was to recommend the approach presented
in this paper, with execution-time functiditg integrated in the Ada language, because
it provides a simpler model to programmers. However, the group felt that there is a
strong need to have the execution-time fiiwrality in Ada, so if the second proposal,
with a library implementation, has moregbability of success, the group would also
recommend its adoption.

Both proposals have been submitted to the Ada Rapporteur Group (ARG) for the
inclusion of the execution-time clocks in the next revision of the Ada language. At the
time of writing this paper the ARG has expressed preference for the package solution
because it has less implementation imphat a final decision has not been made, and
discussions will continue.

6 Conclusions

We have presented a proposal to integrate the POSIX.1 execution-time clocks and
timers into the Ada 95 language. This proposal defines a new package Aden€BU-

_Time and describes the modifications done to the GNAT front-end and run-time to al-
low the use of the execution-time timers in the timed Ada statements. We have also
discussed some usage schemes oflieeCPU _Time interface.

As a proof of concepts we have modified the GNAT sources to support the execution-
time timers with all the Ada 95 timed statements: delay until, timed entry call (to tasks
and to protected objects), timed asynchronous transfer of control (ATC). and timed se-
lective accept. We have a modified versminthe GNAT compiler which implements
all the proposals presented in this paper, and which can be used on top of the MaRTE
Operating System [1, 2]. Among the different options for implementing execution-time
clocks in the Ada language, this proposal represents an easy to use alternative with lim-
ited implementation impact. It is now the task of the ARG and the Ada community to
decide which of the alternatives is best for inclusion in the next revision of the Ada
language.

References

1. Aldea Rivas M. and Goméz Harbour MMaRTE OS Minimal Real-Time Operating Sys-
tem for Embedded Applications Departamento de Electnica y Computadores. Universidad
de Cantabriahttp://marte.unican.es/

2. Aldea Rivas M. and Gom#éz Harbour MMaRTE OS An Ada Kernel for Real-Time Embed-
ded Applications. Proceedings of the International Cerdnce on Reliable Software Tech-
nologies, Ada-Europe-2001, Leuven, Belgium, Lecture Notes in Computer Science, LNCS
2043, May, 2001, ISBN:3-540-42123-8, pp. 305,316.

3. Aldea Rivas M. and Goréz Harbour MExtending Ada’'s Real-Time Systems Annex with
the POS X Scheduling Services. IRTAW-2000, Las Navas, Avila, Spain.

4. Burns A. and Wellings AReal-Time Systems and Programming Languages. 3rd edition.
Addison-Wesley, 2001.

5. Comar, C., Gasperoni, F., and Schonbergltie. GNAT Project: A GNU-Ada9X Compiler.
Technical report. New York University. 1994.

6. Gonalez-Harbour M., Aldea Rivas M., Getifez Gar@ J.J., Palencia Gatifez J.Clm-
plementing and using Execution-Time Clocks in Ada Hard Real-Time Applications. Interna-
tional Conference on Reliable Software Technologies, Ada-Europa’98, Uppsala, Sweden, in
Lecture Notes in Computer Science No. 1411, June, 1998, ISBN:3-540-64563-5, pp. 91,101.

7. |IEEE Std. 1003.1:2001, Information Technology —Portable Operating System Interface
(POSIX).

8. |IEEE Std. P1003.13-1998, Information Technology —Standarized Application Environment
Profile— POSIX Realtime Application SuppoAEP). The Institute of Electrical and Elec-
tronics Engineers.

9. Intermetrics, IncAda 95 Language Reference Manual. Intermetrics, Inc., Cambridge, Mass.,
January, 1995.

10. J. Liu, K.J. Lin, W.K. Shih, A. Chang-Shi Yu, J.Y. Chung, and W. Zhalgorithms for
Scheduling Imprecise Computations. IEEE Computer, pp. 56—68, May 1991.

