
A Proposal to Integrate the POSIX Execution-Time
Clocks into Ada 95�

J. Miranda1 and M. González Harbour2

jmiranda@iuma.ulpgc.es, mgh@unican.es

1 Applied Microelectronics Research Institute, Univ. Las Palmas de Gran Canaria
35017 Las Palmas de Gran Canaria, SPAIN

2 Departamento de Electrónica y Computadores, Univ. Cantabria
39005 - Santander, SPAIN

Abstract. In this paper we present a proposal to integrate the POSIX.1 execution-
time clocks and execution-time timers into the Ada 95 language. This proposal
defines a new package named Ada.CPU Time and describes the modifications
done to the GNAT front-end and run-time to support it. Additionally this pro-
posal discusses some usage schemes of this new interface.

Keywords: Scheduling, Hard Real-Time, Ada 95, Execution-Time, GNAT.

1 Introduction

Traditional real-time systems were built (and still are) using executive schedulers[4]. In
these systems, if a particular task or routine exceeded its budgeted execution time, the
system could detect the situation. Basically, whenever the minor cycle interrupt came
in, it could check whether the current action had completed or not. If not, that meant
an overrun. Unfortunately, in concurrent real-time systems built with multitasking pre-
emptive schedulers, there is no equivalent method to detect and handle execution-time
overruns. This is the case for systems built using the Ada tasking model and the associ-
ated Real-Time Annex[9].

In addition to detecting budget overruns, many flexible real-time scheduling algo-
rithms require the capability to measure execution time and be able to perform schedul-
ing actions when a certain amount of execution time has been consumed (for example,
sporadic servers in fixed priority systems, or the constant bandwidth server in EDF-
scheduled systems). Support for execution-time clocks and timers is essential to be able
to implement such flexible scheduling algorithms.

In recognition of all these application requirements, the Real-Time extensions to
POSIX have recently incorporated support for them. Real-Time POSIX supports exe-
cution-time clocks and timers that allow an application to monitor the consumption of
execution time by its tasks, and to set limits for this consumption. The next revision of

� This work has been partially funded by the Spanish Research Council (CICYT), contract num-
bers TIC2001–1586–C03–03 and TIC99-1043-C03-03, and by the Commission of the Euro-
pean Communities under project IST-2001-34820 (FIRST).

the Ada language should support this functionality in order for the language to continue
to be the best for programming real-time applications.

There has been a previous proposal to include execution-time clocks and timers
into the Ada language [6, 3]. That proposal defines a new package that includes all
the operations required to access the execution-time monitoring functionality. Some of
those operations belong to a protected object type that represents execution-time timers.
That approach does not require modification of the compiler, nor of the run-time system
(provided that the POSIX execution-time functionality is available), but its execution-
time type is not integrated in the Ada language as a Time type.

In this paper we present a proposal to integrate the POSIX.1 execution-time clocks
and timers into the Ada 95 language. In this proposal we try to minimize the implemen-
tation impact on the compiler and run-time system, and therefore we will not include
any new language construct. It is composed of a new package namedAda.CPU Time
and the proposed modifications to the GNAT[5] front-end and run-time to efficiently
support the execution-time clocks and timers. The proposal is being submitted to the
Ada Rapporteur Group (ARG) for possible inclusion in a future revision of the Ada
standard.

This paper is organized as follows. In Section 2 we present the interface of our pro-
posedAda.CPU Time Ada package. In Section 3 we present five basic usage schemes of
the execution-time clocks and timers. In Section 4 we briefly present the modifications
done to the GNAT compiler to allow the use of execution-time timers in the Ada 95
timed sentences. We close with some conclusions and references.

2 Ada.CPU Time

Our proposed interface to handle CPUTime is based on the standard Ada.RealTime
interface. The major differences between our Ada.CPUTime interface and the standard
Ada.RealTime interface are:

– The new data typeClock Id is used to represent execution-time clocks. A value
of this type represents the execution-time clock of a given task. According to the
POSIX definition of execution time[7], it is implementation defined to whom will
be charged the effects of interrupt handlers and run-time services on behalf of the
system.

– TheTime type represents absolute values ofexecution time as measured by a given
execution-time clock. Values of this type have an internal ClockId value that ties
the value of execution time to its associated clock. If a variable of type Time is not
initialized, the value of its internal ClockId is undefined. The type Time is a time
type as defined by ARM95, Section 9.6, and thus values of this type may be used
in a delayuntil statement.

– TheTime Span type represents length of execution-time duration, and its values are
not dependent upon any particular execution-time clock (or task).

– The new functionCPU Clock is used to get the execution-time clock identifier
associated with each Ada task.

– The functionClock has a new parameter used to specify the execution-time clock
to be read. In order to keep compatibility with the AdaCalendar andReal Time
packages, if no parameter is passed then the execution-time clock of the calling
task is returned.

– The new functionClock Id Of returns the identifier of the execution-time clock
associated with the Time parameter T.

– The functionTime Of has a new parameter used to associate the time to an execution-
time clock.

– The exceptionTime Error is raised by the function Clock if the ClockId parameter
is not valid. This exception is also raised by operators “+” and “-”, and the function
Clock Id Of, if an execution-time parameter is not valid (for example, if it is not
initialized). In addition, it is also raised by a delayuntil statement if a Time value
corresponding to the task executing the statement is used, because otherwise this
situation would cause a deadlock.

– The exceptionIncompatible Times is raised by operator “-” if the execution-time
parameters correspond to different execution-time clocks.

with Ada.Task_Identification;
package Ada.CPU_Time is

type Clock_Id is private;

type Time is private;
Time_First : constant Time;
Time_Last : constant Time;
Time_Unit : constant := implementation-defined-real-number;

type Time_Span is private;
Time_Span_First : constant Time_Span;
Time_Span_Last : constant Time_Span;
Time_Span_Zero : constant Time_Span;
Time_Span_Unit : constant Time_Span;

Tick : constant Time_Span;

function CPU_Clock
(Task_Id : Ada.Task_Identification.Task_Id

:= Ada.Task_Identification.Current_Task) return Clock_Id;
function Clock (C : Clock_Id) return Time;
function Clock_Id_Of (T : Time) return Clock_Id;

function "+" (Left : Time; Right : Time_Span) return Time;
function "+" (Left : Time_Span; Right : Time) return Time;
function "-" (Left : Time; Right : Time_Span) return Time;
function "-" (Left : Time; Right : Time) return Time_Span;
function "<" (Left, Right : Time) return Boolean;
function "<=" (Left, Right : Time) return Boolean;
function ">" (Left, Right : Time) return Boolean;
function ">=" (Left, Right : Time) return Boolean;
function "+" (Left, Right : Time_Span) return Time_Span;
function "-" (Left, Right : Time_Span) return Time_Span;
function "-" (Right : Time_Span) return Time_Span;
function "*" (Left : Time_Span; Right : Integer) return Time_Span;
function "*" (Left : Integer; Right : Time_Span) return Time_Span;
function "/" (Left, Right : Time_Span) return Integer;

function "/" (Left : Time_Span; Right : Integer) return Time_Span;
function "abs" (Right : Time_Span) return Time_Span;
function "<" (Left, Right : Time_Span) return Boolean;
function "<=" (Left, Right : Time_Span) return Boolean;
function ">" (Left, Right : Time_Span) return Boolean;
function ">=" (Left, Right : Time_Span) return Boolean;

function To_Duration (TS : Time_Span) return Duration;
function To_Time_Span (D : Duration) return Time_Span;
function Nanoseconds (NS : Integer) return Time_Span;
function Microseconds (US : Integer) return Time_Span;
function Milliseconds (MS : Integer) return Time_Span;

type Seconds_Count is new Integer range -Integer’Last .. Integer’Last;
procedure Split (T : Time; SC : out Seconds_Count; TS : out Time_Span);
function Time_Of (SC: Seconds_Count; TS : Time_Span; C : Clock_Id)

return Time;

Time_Error : exception;
Incompatible_Times : exception;

private
. . .

end Ada.CPU_Time;

3 Usage Schemes for Ada.CPU Time Timers

Using packageAda.CPU Time, described above, we can design some basic usage schemes
that depend on the particular needs of the application task whose execution time is being
monitored. We have identified five major schemes:

– Handled[6]. This is the case in which an execution-time overrun is detected, but
the task is allowed to complete its execution. This is applicable to systems under
testing, or for tasks that have a high degree of critically (an thus cannot be stopped)
or for which an occasional execution-timeoverrun can be tolerated, but needs to be
reported.
In this scheme, the application task uses a single variable T to remember the value
of the execution-time clock and to evaluate the execution time of the work. If the
execution time is higher than MAXTIME then it handles the execution-time error.

task body Periodic_Handled is
C : Clock_ID := CPU_Clock; -- My execution-time clock identifier.
T : Time;

begin
loop

T := Clock (C);
do task useful work;
if Clock (C) - T > MAX_TIME then

Handle the error;
end if;
delay until Next_Start; -- Global clock delay.

end loop;
end Periodic_Handled;

– Priority change[6]. In this scheme when the overrun is detected the priority of the
task is lowered or increased (depending on the application requirements). A sim-
ple implementation of this scheme uses two nested tasks: theWorker task and the
Supervisor task. The Supervisor task sleeps until the execution time of the Worker
task reaches the instant of the priority change. When this happens the supervisor
lowers (or increases) the priority of the worker task. If the Worker task completes
the work before the instant of the priority change then it aborts the Supervisor task.

task body Worker is
task Supervisor;
task body Supervisor is

C : Clock_ID := CPU_Clock (Worker’Identity);
T : Time := Clock (C) + To_Time_Span (TIME_OF_PRIORITY_CHANGE);

begin
delay until T;
Lower (or increase) the priority of the worker task;

end Supervisor;
begin

do useful work;
abort Supervisor;

end Worker;

An alternative implementation of this scheme does not requireabort. It can be
done by means of the Adaselect statement and oneentry (i.e, Work Done). When
the worker completes its work calls WorkDone. The supervisor can then be imple-
mented by means of a timed selective accept. If the entry call is received before the
instant of priority change isreached then the work has been successfully completed
in time; otherwise the time-budget has expired and the Supervisor lowers (or in-
creases) the priority of the worker task. In addition the Supervisor task must accept
the call to WorkDone that will be issued by the Worker at the end of its work.

task Worker;

task Supervisor is
entry Work_Done;

end Supervisor;

task body Worker is
begin

do useful work;
Supervisor.Work_Done;

end Worker;

task body Supervisor is
C : Clock_ID := CPU_Clock (Worker’Identity);
T : Time := Clock (C) + To_Time_Span (TIME_OF_PRIORITY_CHANGE);

begin
select

accept Work_Done;
or

delay until T;
Lower (or increase) the priority of the worker task;
accept Work_Done;

end select;
end Supervisor;

– Stopped[6]. This is the case in which if an execution-time overrun is detected, the
associated task execution is stopped to allow lower priority tasks to execute within
their deadlines. The task itself waits until its next activation and then proceeds
normally.
In the implementation of this scheme an asynchronous select statement is used to
abort the task’s work if an execution-time overrun is detected.

task body Periodic_Stopped is
C : Clock_ID := CPU_Clock; -- My execution-time clock identifier
T : Time;
Next_Start : Duration;

begin
loop

T := Clock (C) + To_Time_Span (WORST_CASE_EXEC_TIME);
select

delay until T; -- Execution-time clock
Handle the error;

then abort
do useful work;

end select;
Next_Start := ...;
delay until Next_Start; -- Global clock

end loop;
end Periodic_Stopped;

– Imprecise[6]. This scheme corresponds to the case in which the task is designed
using the imprecise computation model[10], in which the task has a mandatory part
(generally short and for which it is easier to estimate a worst-case execution time),
and an optional part that refines the calculations made by the task. Since the worst-
case execution time of this optional part is usually more difficult to estimate, this
part will be aborted if an execution-time overrun is detected. This technique is also
valid for cases in which the optional part continuously refines the quality of the
results; we can let the optional part run until it exhausts its execution-time budget,
and then use the last valid result obtained.
The implementation of this scheme consists of using the “handled” approach for
the mandatory part of the task, and the “stopped” approach for the optional part.
After the optional part, whether it is aborted or not, another mandatory part may
exist to cause outputs of the task to be generated. Therefore this scheme can be
implemented as follows:

task body Periodic_Imprecise is
C : Clock_ID := CPU_Clock; -- My execution-time clock identifier
T : Time;
Next_Start : Duration;

begin
loop

T := Clock (C) + To_Time_Span (WORST_CASE_EXEC_TIME);
do mandatory part I;
select

delay until T; -- Execution-time clock
then abort

do optional part;
end select;

do mandatory part II;
Next_Start := ...;
delay until Next_Start; -- Global clock

end loop;
end Periodic_Imprecise;

4 Detailed Description of the Integration of the Execution-Time
Timers into the GNAT Compiler

In this section we describe the modifications done to the GNAT compiler to support
the POSIX execution-time timers in Ada. For each Ada timing statement (delay until,
timed entry call, and timed selective accept) we present the modifications done to the
GNAT front-end and run-time.

4.1 Delay Until Statement

Front-end

– Semantics. The subprogramAnalyze Delay Until has been modified to allow the
use of theAda.CPU Time.Time type in the Ada 95delay until statement.

– Expander. When anAda.CPU Time.Time type variable is used to specify the time-
out, the expander has been modified to transform thedelay until statement as fol-
lows:

Original Ada Code Expanded Code
-------------- -------------
delay until T; Ada.CPU_Time.Delays.Delay_Until (T);

Run-Time

– PackageSystem.Tasking. A POSIX execution-time timer and two flags have been
added to the Ada Task Control Block (ATCB). The flags are used to remember if
the timer has been created (and therefore the execution-time timer field is valid),
and if the ATCB timer is currently in use.

– PackageAda.CPU Time.Delays. The subprogramDelay Until has been program-
med to do the following actions:

1. Defer the abortion of the calling task.
2. Lock the ATCB of the calling task.
3. If the ATCB has not been created then create, program, and arm the ATCB

execution-time timer; if the ATCB had been created but it is not in use then pro-
gram and arm the ATCB execution-timetimer; otherwise create, program and
arm a new execution-time timer. In all these cases the address of aDelay Block
register composed of the following fields is associated with the execution-time
timer:
� The ATCB address of the calling task.

� A boolean field (Timed Out) initialized to false. This field will be used by
the timed statements to differentiate the case of the timeout expiration from
the case in which the blocked task is awakened by some other task (i.e. the
acceptor of a timed entry call, or the caller of a selective wait).

4. Pass the calling task to theDelay Sleep state.
5. Stop the calling task until the timeout expires. This is done by blocking the

calling task using the callermutex andcondition variable declared by GNAT
in the ATCB for this purpose.

6. Pass the calling task to theRunnable state.
7. If the ATCB timer was re-used then mark it as “not in use”. Otherwise, remove

the execution-time timer.
8. Unlock the ATCB of the calling task.
9. Verify if a request to abort the calling task has been received during this delay.

If true then abort the task; otherwise undefer its abortion.

A task is used to handle the signal associated with all the execution-time timers.
This task does following actions:
1. Block all the signals.
2. Activate the signal associated with all the execution-time timers.
3. Await for the execution-time timers signal.
4. Get the address of theDelay Block register associated with the execution-time

timer.
5. Set toTrue the fieldTimed Out of this Delay Block register.
6. Awaken the task that programmed this execution-time timer.
7. Go to step 3.

Behavior The calling task programs an execution-time timer and becomes blocked
until this timer expires.

4.2 Timed Entry Call

Front-end

– Semantics. No modification was required.
– Expander. When anAda.CPU Time.Time variable is used to specify the timeout

the expander has been modified to transform the Ada timed entry call statement in
the following way:

Original Ada Code Expanded Code
-------------- -------------
select declare
T.E P : params := (param, param, param);
<<S1>>; B : Boolean;

or begin
delay until <<CPU_TIMEOUT>>; CPU_Timed_Entry_Call
<<S2>> (Acceptor => <Acceptor-Task_ID>,

end select; Entry_Id => <Entry_Index>,
Uninterpreted_Data => P’Address,

Timeout => <<CPU_TIMEOUT>>,
Mode => Absolute_CPU_Mode,
Successful => B);

if B then
<<S1>>;

else
<<S2>>;

end if;
end;

Run-Time

– PackageSystem.Tasking.Rendezvous The newCPU Timed Entry Call subpro-
gram is based on the GNATTimed Entry Call subprogram. The main differences
with the original GNAT version are:
� The data type of theTimeout parameter isAda.CPU Time.Time (instead ofDu-

ration).
� Its body callsCPU Wait For Completion With Timeout instead of the GNAT

Wait For Completion With Timeout version.
– PackageSystem.Tasking.Entry Calls The new subprogramCPU Wait For Com-

pletion With Timeout is based on the GNAT subprogramWait For Completion -
With Timeout. The only difference is that it callsCPU Timed Sleep (instead of the
GNAT subprogramTimed Sleep).

– PackageSystem.Task Primitives.Operations The new subprogramAda.CPU Ti-
med Sleep callsAda.CPU Time.Delays.Delay Until.

 Ada
Source

 GNAT
Front-end

Object
 Code

CPU_Timed_Entry_Call

CPU_Wait_For_Completion_With_Timeout

CPU_Timed_Sleep

CPU_Time.Delay_Until

Run-Time

Fig. 1. Run-Time Calls to Implement the CPU Timed Entry Call.

Behavior. If the rendezvous can be immediately accepted the subprogramCPU Timed-
Entry Call completes the rendezvous and returnsTrue in the out mode parameter

Successful. Otherwise it programs an execution-time timer by calling the subprogram
Ada.CPU Time.Delays.Delay Until.

– If the call is accepted before the timeout expires then the receiver task unblocks the
caller by callingWakeup, the same subprogram called by the CPUTime signal han-
dler. The unblocked calling task detects this state by evaluating theSignaled field
associated with its execution-time timer (still false because the execution-time time-
out has not expired). Therefore the calling task removes its execution-time timer
and returnsTrue in its out mode parameterSuccessful.

– Otherwise (the timeout expires) the CPUTime signal handler sets toTrue the Sig-
naled field associated with the execution-time timeout, and the unblocked calling
task removes its execution-time timer and returnsFalse in its out mode parameter
Successful.

4.3 Timed ATC

Front-end

– Semantics. No modification required.
– Expander. When the Ada.CPUTime time variable is used to specify the timeout

the GNAT expander has been modified to generate the following block of code:

Original Ada Code Expanded Code
-------------- -------------
select declare

delay until <T>; D : aliased Delay_Block;
<<S1>>; begin

or Abort_Defer;
<<abortable_part>> CPU_Arm_Timer (<T>, D’access);

end select; begin
begin
Abort_Undefer;
<<abortable_part>>

at end
Async_Cancel_Timer (D’access);

end;
exception

when _abort_signal =>
Abort_Undefer;

end;
if Timed_Out (D) then
<<S1>>;

end if;
end;

Run-Time

– PackageSystem.Tasking.Async Delays. The new CPUArm Timer subprogram
does the following actions:
1. Increments the ATC nesting level of the calling task.
2. Initializes all the fields of the DelayBlock.
3. Calls the subprogramAda.CPU Time.Delays.Arm Timer.

– PackageAda.CPU Time.Delays. The new CPUArm Timer subprogram arms the
execution-time timer and returns.

Behavior First of all let’s briefly explain the semantics of the GNAT “at end” statement.
It is a handler which provides a common way out of a block of statements even when
an exception is propagated.

In the above code, after the execution-time timer is armed the abortable part is exe-
cuted. If the abortable part completes its execution before the execution-time timer ex-
pires then theAsync Cancel Timer is called to disarm the timer. Otherwise the execution-
time timer expires and the signal catcher calls the run-time subprogramLocked Abort-
To Level which defers the abortion of the blocked task, and cancels all the nested ATC

(if any) done in the abortable part by raising the internal exceptionabort signal. After
the abortion is undefered (in the exception handler) if the timeout had expired then the
block of statements�� S1�� is executed.

4.4 Timed Selective Accept

Front-end

– Semantics. It has been modified to disallow the simultaneous use ofAda.CPU Time
andAda.Real Time time variables to specify multiple timeouts in the Ada 95 timed
selective accept3.

– Expander. When the Ada.CPUTime time variable is used to specify the timeouts
of the following Ada 95 timed-selective statement the GNAT expander has been
modified to generate the following block of code:

Original Ada Code Expanded Code
-------------- -------------

select declare
accept E1 ...; S : Entry_Barriers := (others => True);

or P : params := (param, param, param);
accept EN ...; D : time_array (1 .. N) :=

or (<CPU_TIMEOUT_1>, <CPU_TIMEOUT_N>);
delay until <CPU_TIMEOUT_1>; E_Index : integer := 0;

or D_Index : integer := 0;
delay until <CPU_TIMEOUT_N>; begin

end select; CPU_Timed_Selective_Wait
(Open_Accepts => S’address,
Select_Mode => delay_mode,
Uninterpreted_Data => P’Address,
Timeout => D,
Mode => Absolute_CPU_Mode,
Index => E_Index,
CPU_Time_Index => D_Index);

if E_Index = 0 then
-- Some timeout has expired.
case D_Index is

when 1 => <<CPU_S1>>
...
when N => <<CPU_SN>>

end case;

3 “If a selectiveaccept contains more than one delayalternative, then all shall be de-
lay relativestatements, or all shall be delayuntil statements for the same time type.”
ARM95[9], Section 9.7.1(13).

else
-- Some entry call has
-- been accepted.
case E_Index is

when 1 => <<S1>>
...
when N => <<SN>>

end case;
end if;

end;

Run-Time

– PackageSystem.Tasking.Rendezvous. The newCPU Timed Selective Wait sub-
program is based on the GNATTimed Selective Wait subprogram. The main differ-
ences with the original GNAT version are:

� The data type of theTimeout parameter is an array where all the timeouts spec-
ified in the Adaselect statement are passed by the front-end.

� Its body calls a variant of theCPU Timed Sleep which receives the timeouts
array and returns the index of the expired CPU timeout. This index is returned
in theCPU Time Index parameter. The possible values of the out mode param-
etersIndex andCPU Time Index are:

Index CPU_Time_Index
----- --------------

Some entry call was accepted: <entry index> 0
Some deadline expired: 0 <timeout index>

– PackageSystem.Task Primitives.Operations. The new variant of the subprogram
Ada.CPU Timed Sleep callsAda.CPU Time.Delays.Multiple Delay Until.

– PackageAda.CPU Time.Delays.Multiple Delay Until. This subprogram does the
same actions asDelay Until (described in Section 4.1).However, instead of using
a single execution-time timer, it programs as many execution-time timers as the
number ofdelay until alternatives specified by the programmer in the Ada 95 timed
selective accept.
In order to identify the execution-time timer which expired, an array ofDelay Block
registers containing the address of the caller’s ATCB and theTimed Out field is
used. When one execution-time timeout expires the unblocked task traverses this
array to look for the execution-time timeout which has itsTimed Out field set to
True. If no execution-time timer has itsTimed Out field set to true it means that
some entry call was accepted, and therefore the task was unblocked by the caller.

 Ada
Source

 GNAT
Front-end

Object
 Code

CPU_Timed_Selective_Accept

CPU_Timed_Sleep

CPU_Time.Multiple_Delay_Until

Run-Time

Fig. 2. Run-Time Calls to Implement the CPU Timed Selective Accept.

5 Discussion

A prototype implementation has been developed for the execution-time budgeting pro-
posal presented in this paper, using the MaRTE operating system [1, 2] that provides a
POSIX.13 [8] minimal real-time system interface and includes execution-time clocks
and timers. As we have shown, the implementation requires small modifications to the
compiler and to the run-time. The modifications were implemented in a short period
of time and should not represent a large effort to current compiler implementors. We
have compared this implementation with the one presented in [3] defining support for
the execution-time clocks and timers as a library package. This latter implementation is
very simple, because it does not require modifications to the compiler nor to the runtime
system. The overheads are quite similar in both implementations, and are small.

For both approaches, implementations on bare machines or systems without the
POSIX execution-time clocks and timers would be a bit more complex because the
underlaying execution-time monitoring functionality would have to be implemented in
the scheduler. Reference [6] describes onesuch implementation and it can be seen that
it is relatively simple, and that it does not introduce any significant overhead into the
scheduler.

Both approaches were discussed at the International Real-Time Ada Workshop in
2002. The conclusion from the Workshop was to recommend the approach presented
in this paper, with execution-time functionality integrated in the Ada language, because
it provides a simpler model to programmers. However, the group felt that there is a
strong need to have the execution-time functionality in Ada, so if the second proposal,
with a library implementation, has more probability of success, the group would also
recommend its adoption.

Both proposals have been submitted to the Ada Rapporteur Group (ARG) for the
inclusion of the execution-time clocks in the next revision of the Ada language. At the
time of writing this paper the ARG has expressed preference for the package solution
because it has less implementation impact, but a final decision has not been made, and
discussions will continue.

6 Conclusions

We have presented a proposal to integrate the POSIX.1 execution-time clocks and
timers into the Ada 95 language. This proposal defines a new package namedAda.CPU-
Time and describes the modifications done to the GNAT front-end and run-time to al-

low the use of the execution-time timers in the timed Ada statements. We have also
discussed some usage schemes of theAda.CPU Time interface.

As a proof of concepts we have modified the GNAT sources to support the execution-
time timers with all the Ada 95 timed statements: delay until, timed entry call (to tasks
and to protected objects), timed asynchronous transfer of control (ATC). and timed se-
lective accept. We have a modified versionof the GNAT compiler which implements
all the proposals presented in this paper, and which can be used on top of the MaRTE
Operating System [1, 2]. Among the different options for implementing execution-time
clocks in the Ada language, this proposal represents an easy to use alternative with lim-
ited implementation impact. It is now the task of the ARG and the Ada community to
decide which of the alternatives is best for inclusion in the next revision of the Ada
language.

References

1. Aldea Rivas M. and Gonz´alez Harbour M.MaRTE OS: Minimal Real-Time Operating Sys-
tem for Embedded Applications Departamento de Electr´onica y Computadores. Universidad
de Cantabria.http://marte.unican.es/

2. Aldea Rivas M. and Gonz´alez Harbour M.MaRTE OS: An Ada Kernel for Real-Time Embed-
ded Applications. Proceedings of the International Conference on Reliable Software Tech-
nologies, Ada-Europe-2001, Leuven, Belgium, Lecture Notes in Computer Science, LNCS
2043, May, 2001, ISBN:3-540-42123-8, pp. 305,316.

3. Aldea Rivas M. and Gonz´alez Harbour M.Extending Ada’s Real-Time Systems Annex with
the POSIX Scheduling Services. IRTAW-2000, Las Navas, Avila, Spain.

4. Burns A. and Wellings A.Real-Time Systems and Programming Languages. 3rd edition.
Addison-Wesley, 2001.

5. Comar, C., Gasperoni, F., and Schonberg, E.The GNAT Project: A GNU-Ada9X Compiler.
Technical report. New York University. 1994.

6. González-Harbour M., Aldea Rivas M., Guti´errez Garc´ıa J.J., Palencia Guti´errez J.C.Im-
plementing and using Execution-Time Clocks in Ada Hard Real-Time Applications. Interna-
tional Conference on Reliable Software Technologies, Ada-Europa’98, Uppsala, Sweden, in
Lecture Notes in Computer Science No. 1411, June, 1998, ISBN:3-540-64563-5, pp. 91,101.

7. IEEE Std. 1003.1:2001, Information Technology —Portable Operating System Interface
(POSIX).

8. IEEE Std. P1003.13-1998, Information Technology —Standarized Application Environment
Profile— POSIX Realtime Application Support (AEP). The Institute of Electrical and Elec-
tronics Engineers.

9. Intermetrics, Inc.Ada 95 Language Reference Manual. Intermetrics, Inc., Cambridge, Mass.,
January, 1995.

10. J. Liu, K.J. Lin, W.K. Shih, A. Chang-Shi Yu, J.Y. Chung, and W. Zhao.Algorithms for
Scheduling Imprecise Computations. IEEE Computer, pp. 56–68, May 1991.

