
Abstract

The specification data sheet given by the suppliers of Com-
mercial Off-the-Shelf (COTS) components that are planned
to be used in distributed real-time systems, like those in-
tended by the AUTOSAR initiative, must include informa-
tion about their timing behaviour. A first version of this in-
formation must be initially stated by the car manufacturers
at the specification of future components, but its final accu-
rate model is indispensable at integration time in order to
evaluate the schedulability of the complete applications that
may use them. This position paper suggests a prismatic
modeling approach that allows the timing behavior specifi-
cation of the services and resources offered by the real-time
components to be expressed independently of the models of
the other components and the platform they rely upon. This
opacity is strictly required by the automotive industry to
preserve the intellectual properties on the implementation
of the delivered components. The analysis model used fol-
lows the transactional approach implemented in the MAST
component-based real-time modeling methodology. It satis-
fies the opacity and composability properties required for
the automatic assembly of models that hold the temporal be-
havior of component based applications. Some configura-
tion-time services are required to suppliers to tune the anal-
ysis models at integration and deployment time.

1. Introduction
Along the last decades, a significant part of the evolu-

tion in functionality and novelty in the automotive domain
has relied on the advances in microelectronics, networks
and software that have been introduced on it. The number
of microprocessor based controllers, known in this domain
as electronic control units or ECUs, has raised in at least an
order of magnitude, and most importantly, the structure of
their relationships has changed from stand-alone to largely
distributed systems.

This technological trend represents a big change in the
automotive industry, not only for the development costs
structure, whose bigger part is shortly about to shift to the

electronics and embedded software side, but mostly
because of the new role of the car manufacturers in the
development process.

Traditionally the car builders, known as the Original
Equipment Manufacturers or OEMs, outsource the devel-
opment of parts to external suppliers, who specialize and
serve parts as black boxes to different OEMs. This policy
extends from mechanical parts to complete ECU-based
subsystems. OEMs give to suppliers precise specifications,
and take the responsibility of verifying and integrating
them in their final products. The verification of each ECU
and its corresponding wiring subsystem can be made in
isolation since the interactions between subsystems are
limited and known by the OEM, and furthermore they are
able to be stated in the part specifications as maximum rat-
ings, typically temperature, vibration or electromagnetic
interferences. The temporal properties can also be tested in
isolation by the supplier prior to delivery since there is not
timing expected interference from the rest of the system.
This model works fine with a reduced number of isolated
components, but quickly collapse when the number of
them rises at the current trend, particularly because for
cost-efficiency reasons they are forced to share the process-
ing and communication platforms. In a component based
approach for development, like the one proposed by the
AUTOSAR initiative [1], the OEM must not integrate and
verify complete loosely coupled subsystems, but fine grain
third party black-box software components delivered by
the suppliers, whose operation may be easily affected by
other components in the system. This becomes even more
challenging when the timing properties are to be evaluated,
specially when the components are part of larger control
loops, for which the timing requirements can only be
expressed as maximum end-to-end deadlines and jitters.
These challenges require from the OEMs more than regular
software engineering capabilities, they are now being
invited to be full members of the selective club of compa-
nies developing hard real-time distributed systems.

A Modeling Approach for the Timing Verification of COTS Components-based
Distributed Hard Real-Time Systems

Julio L. Medina1,2, Patricia López1, José M. Drake1, François Terrier2, and Sèbastien Gerard2

1 Universidad de Cantabria, Computers and Real-Time Group, Av Los Castros s/n, 39005-Santander, SPAIN
2 Commissariat al’Energie Atomique - Saclay, DRT/DTSI/SOL/LLSP, F-91191, Gif-sur-Yvette Cedex, FRANCE

{medinajl, lopezpa, drakej}@unican.es, {julio.medina, sebastien.gerard, francois.terrier}@cea.fr

2. A new OEM-Supplier relationship
Besides the real-time constraints, other aspects like the

important influence of the final user in the overall design,
the high dependability expected, the heterogeneity of the
models of computation involved in the distributed control
algorithms, or the constraint resources in the embedded
platforms used, post to the OEM a significant effort to
define an architectural description of the prospective soft-
ware components involved. This implies a richer definition
of components, which is made not only at the functional
assembly level, it requires also a description of the mini-
mum internal aspects of the components that will serve to
infere the expected Non Functional Properties (NFPs) of
the entire system. In particular the models to evaluate its
timing behaviour. The timing budgets and resource alloca-
tion validated in this primary stage must be able to be veri-
fied after. The models used to describe NFPs at this stage
may be used as part of the specifications in the contracts
with suppliers.

This intra components models will be of course much
complete and close to the final ones as experience is gained
by the OEM, but at least for the complex software compo-
nents a certain degree of interaction supplier-OEM is envi-
sioned along the development process. This interaction
claims at the minimum for the confidence that the final ver-
ifiable timing models of a component returned by the sup-
plier match the binaries delivered. Nevertheless, for new
and/or risky projects, it is advisable to consider a slightly
closer collaboration with suppliers, in such a way that any
unveiled architectural interaction that may be discovered
by them shall be reported to the OEM soon in the develop-
ment process. These refined views may be formalized by
concrete deliverables that report about the feasibility of the
specification at concrete stages of the development. In par-
ticular, the models used to describe the timing, reliability/
safety, dynamic memory consumption, or any other rele-
vant NFP must be kept up to date as soon as possible.

Considering the complexity and variability of execution
platforms, the final delivered components must include
deployment oriented specific services. These services will
be used to measure the execution times over the concrete
platform on which it is deployed for all (or the critical set
of) the sections of code used in the characterization of the
timing behaviour of the functional component services.
These validation specific services are to be programmed by
suppliers and included in the binary code, in such a way
that they return the worst, the best, and the average values
for the execution times to be used in the analysis models.

3. A breif overview of real-time CBSE
Component-based software engineering (CBSE) is one

of the most promising technologies to be applied in the

real-time domain, in order to rise software quality, reduce
time to market and manage its ever growing complexity.
Even though an increasing demand of real-time CBSE
technologies is pointed out by the automation, power sys-
tems, avionics, or automotive industries [2][3], its actual
usage is limited due to the lack of experiences in the effec-
tive implementation, analysis, and verification of predict-
able components.

In this work we understand a component as “A non triv-
ial, nearly independent, and replaceable part of a system
that fulfills a clear function in the context of a well-defined
architecture, and conforms and provides the physical real-
ization of a set of interfaces” [4]. This concept stresses
components as coarse grain reusable modules, developed
independently of its usage in a particular application and
replaceable by others functionally equivalent. The compo-
nents modeling methodology used here not only considers
the modeling of real-time software applications, but also
the middleware modules and software/hardware platforms,
are conceived as components, since the main abstraction
behind their models is the predictability of the temporal
response of their offered software services. Some of the
key issues to be addressed in the real-time modeling of ser-
vices offered by components in a CBSE environment are:
•The real-time behavior of a service depends not only on

the code that actually implements it, but also on the
behavior of the other components’ services used for its
instantiation. This forces to describe the collaboration
and synchronization mechanisms at a level quite lower
than the usual functional specification of the interfaces.

•Real-time applications are often embedded and limited in
resources, hence general purpose technologies like EJB/
J2EE, CCM or COM+ are not directly suitable, particu-
larly without disks or secondary memory. Others like
CIAO, Lightweight CCM or TimeWeaver are useful, and
despite the huge complexity of the resulting hard real-
time models, they are able to be analyzed.

•The Timing response of a component depends also on the
platform in which it is deployed (hardware, operating
system, communication resources, etc.). Real-time com-
ponents require real-time platforms, whose services have
predictable timing responses and offer the proper timing
management primitives and scheduling services.

•Predictability of a real-time application is affected by the
others running on the same platform. For embedded sys-
tems it is usual to apply offline schedulability and perfor-
mance analysis techniques since the whole system load is
known. However for complex component based distrib-
uted system, it is rather difficult to known in advance the
actual total workload, so platforms must support run time
services for the reservation of processing capacity at
components instantiation time [5].

4. The transactional analysis approach
One of the scientific approaches that promise to be

effective in the validation of component based models for
timing analysis is the one based in transactional models [8].
A number of tools and techniques for schedulability analy-
sis and response time calculation have been proposed for it
[9] [10], and its fundaments are referenced by the synchro-
nization protocols and scheduling policies used in the vast
majority of real-time as well as general purposes operating
systems [11]. The transactional model is used as a refer-
ence for analysis by the "UML profile for Schedulability,
Performance and Time" (SPT), current OMG standard for
modelling and analysis of real-time systems [12].

The transactional methodology models a real-time
application by two complementary descriptions:

a) Control flow (transactional) model: It is a reactive
model, which describes the application as a set of concur-
rent real-time transactions, which are sequences of activi-
ties that are triggered in response to external or timed
events. A transaction is described by its causal flow of
activities, the generation pattern of the triggering events,
and the timing requirements that must be met. An activity
describes the amount of processing capacity that is
required to perform the duty that it has associated. There is
no direct activation or execution flow dependency between
activities in different transactions; they only interact by
sharing the processing-resources and the mutually exclu-
sive passive resources.

b) Resources contention model: It describes the active
and passive resources that are used by the activities in a
mutually exclusive way, showing characteristics like their
capacity, overheads, access protocols or scheduling poli-
cies. It is used to evaluate the blocking time in the access to
passive synchronization resources or while contending for
active resources like processors or networks.

One of the major assets of this modelling strategy is that
partial transactional models can be generated, stored, and
characterized in a parametric way. These models represent
the ways in which the relevant services of the components
are used in the critical situations to be analyzed, and may
be associated with the components at different stages of
their development. This permits to formulate the real-time
model of a system wide application with end-to-end con-
straints by composition of the individual real-time models
of the software and hardware components that forms it.
The modeling approach is said to be prismatic in the sense
that components are not grey-boxes, they have a number of
coloured reflective models, each for a particular purpose.

This approach allows for the schedulability analysis of
both, hard real-time configurations, and soft real-time situ-
ations. The first are made using the worst and best case

timing values, while the latter uses average and probability
distribution values. These timing values are estimations or
measurements of both, the CPU execution time of code
segments, and the time used to transmit messages through
the networks. The techniques available include holistic
analysis, which take advantage of priority based networks
(like CAN Bus) and make the calculus less pessimistic.
Design tools are available to obtain feasible sets of locally
optimized priorities for messages and threads in distributed
systems, though unfortunately currently no absolute opti-
mal solutions exist in this general case.

Among the limitations of this approach should be con-
sidered the fact that complete models are necessary to
make any sort of prediction of the system behaviour. No
independent or partial evaluation of components is possible
if they require others to operate. Of course estimated mod-
els may be used, but there is not guarantee of a linear or
"smooth" adjustment along the development process, in
particular in presence of strong architectural changes like
the introduction of mutually exclusive shared resources, or
significant new functionality. For small adjustments in tim-
ing values instead, response time analysis techniques do
allow to get some feed back, like the proportion in which
timing values of a transaction may be enlarged or should be
reduced to get schedulability.

But maybe the characteristic of this approach that
requires more effort to apply it in a component technology
framework like AUTOSAR, is the fact that one, both, or a
combination of these two solutions are necessary: Whether
the OEMs build very precise architectural and behavioural
specifications of the components they need, and/or the sup-
pliers are obliged to bring the precise timing behavioural
models of the code corresponding to the binaries delivered.
This may seem to be a partial infringement of the IPs, but
there is still a significant margin for creativity between the
timing abstraction model and the binary code. This is more
a management than a technical challenge that it is worth to
face, particularly considering the predictability gained.

The information in the transactional model of a real-
time application tend to be complex, therefore, specific and
commercial tool support shall be required for its processing
and management. Standards for interoperability among
tools are also useful to exploit it effectively for analysis and
design. This standardization effort is currently under devel-
opment [15], and a response is expected to the OMG
request for proposals for the UML Profile for Modeling
and Analysis of Real-Time and Embedded systems [13].

5. Relevant features of MAST
The aim of the MAST methodology [6][7][8] is to

enable the modeling of the temporal behavior of a real-time
situation, in order to evaluate its schedulability and predict

its timing responses by means of automatic tools. A real-
time situation represents a specific mode of operation of
the system, characterized in the transactional approach by
the workload that it is demanded, the set of transactions
involved, and the platform resources used. Complete infor-
mation, and download is at http://mast.unican.es

With the analysis and design tools that are available in
the MAST environment, the model can be analyzed in
order to generate results such as:
•Whether the set of transactions is schedulable or not.
•The worst-case response times, which can be compared

to the respective deadlines.
•The system and per-transaction slacks. They are the per-

centage by which the execution time of all operations (of
the system or of the transactions) in the rt-situation may
be increased while still keeping the system schedulable.

•The processing resource slack, evaluated as the percent-
age by which the speed factor of each processing
resource may be decreased while still keeping the real
time situation schedulable.

•The utilization of the resources, evaluated as the relation,
in percentage, between the time that the resource is being
used, and the total elapsed time.

•The local optimal sets of priorities to assign to threads,
and messages in order to have the system schedulable.

6. Conclusions and future work
This paper suggest the usage of the transactional

approach for the analysis of temporal properties of compo-
nent based models like the one in the AUTOSAR initiative.
To accomplish this goal the expected real-time behaviour
of each component must be stated by the OEM as part of its
initial specification, but must be also re-stated posibly
refined, by the component supplier at the delivery of the
binaries. This implies the statement from the supplier that
the given real-time models faithfully reflect the internal
structure of the binary code. The supplier must also provide
run-time services useful to measure the worst, best, and
average execution times for the running platform, so that
accurate analysis models could be created. This data will
give the time they take all the operations for the real-time
situations of interest.

The MAST modeling methodology and the set of tools
that it brings are useful for the modeling, composition, and
evaluation of component base distributed real-time sys-
tems, provided they are annotated with the necessary infor-
mation for the analysis. The transactional models are a
good modeling abstraction, that may preserve the IPs of the
suppliers while giving to the OEMs the necessary informa-
tion to evaluate the system performance at integration time.

Further work must be made to explore the feasibility of
coarse granularity abstractions, like those proposed by the
Accord Modeling Suite [14], so that a high level design
methodological approach may drive the automatic obten-
tion of the models.

References
[1] http://www.autosar.org/index.php
[2] Crnkovic I. and Larsson M.: "Building Reliable Component-

Based Software Systems" Artech House Publishers, 2002.
[3] Norström C. et al.: "Experiences from Introducing State-of-

the-art real-time Techniques in the Automotive Industry".
Proc. Of 8th IEEE Int. Conf. On Engineering of Computer
Based Systems (ECBS01) Washington, April, 2001.

[4] A. Brown and K. C. Wallnau: “The current state of CBSE”,
IEEE Software, pp.37-46, September-October 1998.

[5] M. Aldea, G. Bernat, I. Broster, A. Burns, R. Dobrin, J. M.
Drake, G. Fohler, P. Gai, M. González Harbour, G. Guidi, J.J.
Gutiérrez, T. Lennvall, G. Lipari, J.M. Martínez, J.L. Medina,
J.C. Palencia, M. Trimarchi. “FSF: A Real-Time Scheduling
Architecture Framework”. RTAS'06 pp. 113-124, april 2006

[6] M. González Harbour, J.J. Gutiérrez, J.C. Palencia and J.M.
Drake: “MAST: Modeling and Analysis Suite for Real-Time
Applications”. Proceedings of 13th Euromicro Conference on
Real-Time Systems, Delft, The Netherlands, June 2001

[7] J.L. Medina, M.González Harbour, J.M. Drake:" "MAST
Real-time View: A Graphic UML Tool for Modeling Object-
Oriented Real-Time Systems", RTSS, December, 2001.

[8] P. López, J.L. Medina y J.M. Drake. Real-Time Modelling of
Distributed Component-based Applications. Procc of the
EUROMICRO-SEAA'06. IEEE Press, august 2006.

[9] M. Klein, T. Ralya, B. Pollak, R. Obenza, and M. González
Harbour, A Practitioner's Handbook for Real-Time Systems
Analysis, Kluwer Academic Pub., 1993.

[10]A. Cheng, "Real-time Systems Scheduling, Analysis and
Verification". ISBN 0-471-18406-3. J. Wiley & Sons, 2002

[11]IEEE Std 1003.13TM-2003: "IEEE Standard for Information
Technology-Standardized Application Environment Profile
(AEP)-POSIXR Realtime and Embedded Application
Support", 2003.

[12]Object Management Group: "UML Profile for Schedulability,
Performance and Time Specification", Version 1.1. OMG
document formal/05-01-02, January, 2005.

[13]Object Management Group: UML Profile for Modeling and
Analysis of Real-Time and Embedded systems (MARTE),
RFP. 2005. OMG document: realtime/05-02-06.

[14]Gerard S. and Terrier F. “Intensive use of UML model
transformations: the ACCORD environment”. WTUML:
Workshop on Transformations in UML, (ETAPS 2001)

[15]Medina J., Lopez P. and Drake J.M. “Towards a UML Profile
for Real-Time Modelling of Component-Based Distributed
Embedded Systems”. FDL'06, 2006, ISSN: 1636-9874

