
1. INTRODUCTION1

In multiprocessor and distributed systems, the
processes or tasks of an application need to cooperate
amongst themselves in order to synchronize or
exchange information. Therefore, if we try to develop
hard real-time applications based on multiprocessor
and distributed systems, we need to use networks
capable of guaranteeing hard real-time
communication. Many conventional interfaces for
process or task intercommunication are inadequate for
use in real-time applications, because the absence of
priorities does not allow the transmission of messages
with different degrees of urgency.

In the real-time extensions for the portable operating
system interface standard (POSIX, 1996), a message

queue interface is defined for communication among
real-time processes using a priority-based message-
passing mechanism. Although this interface was
initially conceived for local communication in non-
distributed systems, in a previous work we
demonstrated that it could be extended for use in hard
real-time distributed systems (Gutiérrez and
González, 1996), mainly due to the existence of a
priority associated to each one of the messages, which
enables the use of a real-time scheduling policy in the
communications network.

To make possible the prediction of worst-case
response times in hard real-time distributed systems
scheduled with fixed-priority methods, schedulability
analysis techniques have been developed based on
rate monotonic analysis, RMA (Liu and Layland,
1973). These techniques model each network as if it
were a processor and each message as if it were a task
(Gutiérrez et al., 2000; Klein et al., 1993; Palencia
and González, 1998; Tindell and Clark, 1994). In
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addition, techniques have been developed to find a
feasible assignment of priorities that makes the
system schedulable (Gutiérrez and González, 1995;
Tindell et al., 1992). In distributed systems, the tasks
and messages can undergo a delayed activation effect
or jitter which has a negative influence on the worst-
case response times of all lower priority tasks or
messages. It can be eliminated through the use of the
sporadic server scheduling algorithm both in the
processors and in the communication networks,
achieving increases of up to 50% in the resource
utilization (Gutiérrez and González, 1996).

In this work we will demonstrate the possibility of
using Ada 95 as a platform for the development of
distributed hard real-time applications that
communicate through the POSIX message-queue
interface, and upon which the schedulability analysis
techniques based on RMA can be applied. For this
purpose, we have designed a distributed real-time
application prototyping methodology that uses the
Ada 95 priority-based scheduling mechanisms,
although we can also use sporadic server schedulers
for both processors and communication networks
(Sprunt et al., 1989; Gutiérrez and González, 1996).
Although we could have used the message queues to
implement the partition communication subsystem
defined in Ada 95, the application tasks of our
prototype use the message queues directly in order to
make the implementation simpler and more efficient.

The paper is organized as follows. In Section 2 we
provide a quick review of the distributed system
model, and of the communication support based on
message queues that we use in our distributed
application prototype. Section 3 describes the Ada 95
prototype for distributed applications with hard real-
time requirements. In Section 4, we show the design
of an integrated environment that we are currently
developing for programming distributed hard real-
time applications using the described prototyping
methodology. Finally, Section 5 gives our conclusions
and the plans for our future work in this area. 

2. MODEL USED FOR DISTRIBUTED HARD 
REAL-TIME SYSTEMS

We will use the general model of event-driven
distributed systems defined in (Gutiérrez et al., 2000),
in which there is a set of external events (generated by
external devices, timers, etc.) arriving at the system,
which generate responses in the form of sequences of
actions. These actions can be tasks, distributed in the
different processors, or messages, transmitted by the
communication networks. The actions activate each
other through internal events, that can be generated
both by tasks (to activate other tasks in the same
processor or to send messages through the

communication networks), or messages (to activate
the tasks to which they are sent). We assume that both
the external event sequences arriving at the system
and the arrival rate of these events with hard real-time
requirements are known beforehand. In our model we
allow complex signal & wait synchronization among
tasks by permitting their activation through
combinations of multiple events, and we also consider
the generation of several events by each task.

Fig. 1 shows the different patterns of action activation
and event generation that are supported in our model.
The Linear Action is the only one that is triggered by
a single event and that generates only one event. In
the Input Rate Divisors, the action is activated when it
has received N instances of a particular event. In the
Output Rate Divisor only when the action has N times
will the corresponding output event or events be
generated. In the rest of the cases, combinations of
multiple events appear at the input or output, with N-
of-N (all events must be present) or 1-of-N (only one
of the events is present) patterns. The last action in the
response to an event (generally a task) is a special
case that corresponds to one of the described input
patterns but for which no output event is generated.
All the different combinations of event patterns are
allowed with the exception of the combination in
which an event that is generated by an action with
Output 1-of-N gives rise to the activation of an action
with Input N-of-N at some point of its response
(Gutiérrez et al., 2000). The timing requirements
imposed on the actions in their response to the
external events may be of different kinds (see Fig. 1).
We call global deadline the maximum time window
that may elapse between the arrival of an external
event and the completion of a particular action of its
response sequence. We call the global deadlines
corresponding to the last action in the response
sequence to an external event end-to-end deadlines.

The analysis of a distributed system like the one
described above can be carried out using RMA
techniques, but taking into account the effect of jitter.
The solution of this problem for the linear case in
which all the response sequences are linear is given in
(Palencia and González, 1998; Tindell and Clark,

Fig. 1. Model for event-driven distributed systems



1994). The analysis technique that can be used to find
the response times in the general distributed system
model is based on an extension of the analysis for the
linear case and is described in (Gutiérrez et al., 2000).
This technique transforms the system's model into
another equivalent model over which the extended
real-time analysis can be applied.

Message queues adapt well to the construction of
distributed real-time applications that can be
represented using the described general model. In the
message queue application program interface that is
defined in real-time POSIX, there is a set of
operations that allow application tasks to send and
receive messages to and from message queues. Since
each message carries a priority with it and messages
are retrieved in priority order, each message queue is
a priority queue into which processes send messages,
or from which processes receive messages,
independently of whether the message queue is in the
same processing node as the task, or in a remote node.
Messages with equal priority are treated in FIFO
order. Message queues may use a communications
subsystem to exchange messages between nodes,
through one or more communication networks. We
have implemented the exchange of messages between
tasks and message queues in different nodes through a
mechanism that permits a priority-based
communication with two kinds of scheduling policies
(fixed priority preemptive scheduling, and sporadic
server scheduling) over standard communications
subsystems like the VME bus, and point-to-point
serial lines (Gutiérrez and González, 1996). This kind
of communication is also easy to implement over
priority-based communication networks like the CAN
bus (Tindell et al., 1994).Therefore, message queues
in our distributed system may be of two different
kinds: Local Message Queues (that connect only tasks
located in the same node), and Global Message
Queues (that connect tasks located in different nodes).

A configuration mechanism is needed to set the
information about the allocation of global message
queues to processing nodes. In this way, each node
knows where each global message queue is allocated,
and which communication networks to use when
accessing it. Each message queue has attributes that
are specified at creation time to fix the maximum
number of messages in a queue, and the maximum
length of each message. These attributes are very
important in order to implement the message queue
operations with bounded response times.

3. PROTOTYPING ADA 95 DISTRIBUTED HARD 
REAL-TIME APPLICATIONS

Distribution of application programs is addressed in
Ada 95 in its Annex E (Distributed Systems), which

standardizes the communication among partitions
using remote procedure calls. However, this Annex
does not address the distribution of applications with
real-time requirements. Although we could try to
implement the Distributed Systems Annex with real-
time performance by using our message queue
implementation to develop the partition
communication subsystem, this implementation is
complex and, besides, it would introduce a software
layer between the application tasks and the
communications that would increase the overhead,
and which would have to be modeled so that the
system were analyzable. For these reasons, we have
used the message queues directly for the distribution
of Ada programs, as an alternative to the remote
procedure calls defined in Annex E. 

In this section we describe a prototyping
methodology for building distributed applications
with real-time requirements. Our prototype uses the
message queues as communication mechanism
between the tasks distributed in different partitions.
The application is described using the model defined
in Section 2, and then it is implemented in the
prototype using message queues. The same system
model that is used to build the prototype is used to
apply the real-time analysis to determine whether the
imposed timing requirements are met or not.

3.1 Fundamentals of the Prototype

The first aspect we must consider in the design of the
prototype is the creation of a set of templates for the
implementation of each of the different actions of our
distributed real-time system model. These actions are
implemented with tasks or with protected interrupt
procedures in the processors, and with messages in
the communication networks. Each of these actions
may be either periodic or aperiodic, and may be
scheduled using sporadic servers (both in the
processors and in the communication networks) as an
aperiodicity control mechanism, or as a mechanism
for eliminating the negative effect produced by the
presence of jitter in this type of systems.

Fig. 2 shows the code template that is used for
periodic or aperiodic tasks and interrupt procedures.

Fig. 2. Action template in a distributed real-time
prototype



After the initialization and configuration, the action
will execute in an iterative way the action Code,
which is the code that carries out the work of the
action, including the management of the input and
output events. The Action Code can be structured in
four clearly different parts:

Input Code. It collects the triggering conditions of the
action which may be external events, messages
received from messages queues, etc. The input code
may be null in the case of timed activations.

Execution Code. It carries out the work of the action.
This is generally the only code that is supplied by the
application developer. Alternatively, an executable
stub may be supplied, with a timing behavior similar
to the actual execution code.

Output Code. It generates the events that trigger the
next actions in the response sequence to the external
event; these events are usually messages sent to
message queues. The output code is null for the last
action of a response.

Timing Code. It establishes the timing control of the
actions (periodicity, sporadic server scheduling, etc.)

The internal structure of these four segments of code
is conditioned by the way in which the activation and
finalization of the external event responses are carried
out, by the different patterns defined in the distributed
system model, and by the particular timing
characteristics of the application actions. We will see
the different cases below.

3.2 Distributed Model and Prototype Templates

Each of the input and output patterns of the
distributed system model will influence the
implementation of the code segments of the action
templates in our prototype. Ignoring the special case
of the first action in a response that is activated by an
external event, we can consider each input event of an
action to be a message received from a specific
message queue. Normally, the interrupt procedures
will be used only as the first action in a response,
since they respond to external events produced by
hardware devices. The intermediate or final actions in
the responses to the external events will be
implemented by tasks. When several consecutive
actions with a linear structure are allocated to the
same processing node they will be implemented as a
single task, with several consecutive action code
segments in the main loop.

Fig. 3 shows the structure of the input code that
corresponds to each of the input patterns of the model,
and also the message queues that are necessary to

implement them. The input patterns of the model only
influence the structure of Input Code segment. We
can see that all the templates include the execution of
the blocking message receive operation, which
suspends the calling task if there are no messages
available, over one or more message queues. In the
Input Rate Divisor we await the reception of N
messages before executing the rest of the code
segments of the action. The input queue for an Input
1-of-N action contains messages coming from the
responses to different event sequences. The order in
which the reception operations are called is not
important, because if the messages arrive out of order
they are stored in the message queues until they are
received. When carrying out the analysis it is
necessary to consider the worst case in which the first
message to be received is the latest to arrive, and so it
is necessary to take into account a blocking term
equal to the reception time of the rest of the messages
in the calculation of the worst-case completion time
of the input code.

Fig. 3. Action Code templates for the different input
patterns of our model



In the same way as for the input patterns of the model,
Fig. 4 shows the structure of the Output Code
segment for the different output patterns, in which the
message send operations are executed over one or
more message queues, after the execution code of the
action has finalized. In the case of the Output Rate
Divisor this operation is only executed when the task
has executed N times. The Output 1-of-N differs from
the Linear Action in that there is more than one task
available to collect the message from the message
queue to which the message is sent. As with the Input
1-of-N case, the order in which we call the send
operation for a task with Output N-of-N is not
relevant.

An important aspect which still has to be defined in
the prototype is the allocation of the message queues
that communicate actions from different nodes, or if
this allocation is really relevant for implementing the

distributed application. The solution to this problem is
more justifiable when the model for the real-time
analysis is available, and so we will discuss it in a
later subsection. However, we can conceive that, for
example, in the case of an action with an Input N-of-
N pattern it is better to locate the input message
queues in the same node as the action. In this way, the
time spent receiving the messages is minimized since
only local operations need to be invoked.

3.3 Timing Control

In this subsection we consider the issues associated
with the timing control of the actions, including the
activation of periodic activities and the use of
sporadic server scheduling for the control of aperiodic
activities and the elimination of the negative effects of
jitter. These timing control issues affect only the
Timing Code segment of the tasks.

Fig. 5 shows the Timing Code of two typical actions
in a distributed real-time application: a periodic task
and an action without explicit timing control whose
activation depends only on the arrival of an event. The
timing control for the periodic task is carried out in
the usual way, by causing the task to suspend until the
next period, after its execution code has finalized,
using a delay until sentence. The start of the period,
Next_Time, is initially made equal to the current time,
and then for the next activations the Period of the task
is added. Usually the periodic task is used as the first
action in the implementation of a distributed periodic
activity (the external event in this case is generated by
the hardware clock used for the delay until sentence).
In the actions without timing control the Timing Code
is empty. Examples of actions without timing control
include the interrupt procedures, and the intermediate
and final tasks in the response sequences to the
external events (if they do not use sporadic servers). 

Fig. 4. Action Code templates for the output patterns
of the model

Fig. 5. Timing Code for periodic tasks and actions
without timing control



The sporadic server (Sprunt et al., 1989) is a
technique for scheduling aperiodic events that
combines the predictability of the periodic polling
with the short response times of the direct processing
of events like, for example, interrupt service
procedures. It is an extremely flexible solution for the
scheduling of a large number of aperiodic activities
and, in distributed systems, it can be used to eliminate
the negative effects produced by jitter. The sporadic
server reserves a certain limited amount of execution
time for processing the application task at a given
level of priority, in such a way that the effects on
lower priority tasks is bounded. A sporadic server
controls the execution of one task, and is
characterized by two parameters: the execution
capacity, and the replenishment time. The execution
capacity represents an amount of execution time that
can be spent at the priority that was assigned to the
task. The initial execution capacity represents the
maximum capacity of the server. The replenishment
period is the time that must elapse so that the server
recovers the execution capacity spent.

The sporadic server can be implemented at the
scheduler level, but there are very few commercial
Ada run-time systems or operating systems that
support this algorithm. Thus, it is normally necessary
to implement it at application level. Fig. 6 shows the
Timing Code for an action controlled by a simple
application-level sporadic server in which the
execution capacity is equal to the worst-case
execution time of the action, and the replenishment
period is equal to the period of the action. The
activation time is the instant at which the action is
ready to execute, that is, when the Input Code
finalizes, and it is necessary to then determine the
instant when the execution capacity can be
replenished. In order to minimize the difference
between the actual event arrival and the recorded
activation time, we execute the receive operation and
the recording of the activation time at the highest
possible priority. In this way, we can avoid
preemption of the action during the execution of this
operations. Of course this introduces a small blocking

term which must be taken into account in the analysis.
There are other implementations of the sporadic
server at application level with different compromises
among performance, overhead, and complexity
(González et al., 1997). 

3.4 Modeling the Prototype for the Analysis and
Allocation of Message Queues

In order to analyze and schedule any kind of real-time
system, it is necessary to obtain a suitable model of its
timing behavior. The modeling of a distributed system
based on the Ada 95 prototype that we have defined
consists of the identification for each of the
application actions in the system of their worst-case
execution times and the blocking times that they may
suffer due to synchronization. In this model we
consider the processors and the communication
networks separately. In the processors we find two
types of actions: the application tasks, and the actions
corresponding to the implementation of the message
queues through which the tasks communicate. In the
communication networks we identify the messages
that are transmitted, divided into packets, which are
the minimum non-preemptable communication units.
There are two kinds of messages: application
messages and the messages that are necessary for the
implementation of the message queue protocol.

The identification of the actions corresponding to the
message queues and the calculation of their worst-
case execution times are dependent on the
implementation. In (González et al., 1995), the
modeling for the analysis of the implementation of
the message queues is shown in detail. The
application actions are the tasks and interrupt
procedures considered in the prototype, and the
calculation of their worst-case execution times is
carried out starting from the templates as the sum of
the worst-case times of the associated segments of
code (Input, Execution, Output and Timing codes). In
this calculation, it is necessary to consider the
different input and output patterns, and the segments
of code that are executed at higher priorities (due to
the use of message queues or sporadic servers) in
order to determine the possible blocking terms.

From the point of view of the analysis and correct
operation of the system, we can say that the allocation
of the message queues that communicate actions in
different processor nodes, and which therefore use the
communication networks, is irrelevant. However, in
order to optimize the system, it will always be more
interesting to allocate the message queues in the same
node as the action that will receive the message. In
this way, the message is always transmitted through
the network at the instant when it is sent, and not at
the instant when the corresponding action is prepared

Fig. 6. Timing and Input Code for Sporadic Server
Scheduler



to receive it (otherwise, this action would have to
await the transmission of the complete message). This
is closer to the idea of instantaneousness of the events
in event-driven systems, in which the messages
transmitted through the communication networks
carry the events that trigger the subsequent tasks in
the response sequences to external events. The only
case in which we must locate the queue in the node
where the message-sending action is located, is for
the Output 1-of-N pattern in the case when the tasks
that can receive the messages are located in different
nodes. In this case, it is not possible to establish a
unique relationship between the message queue and
the destination node because there are several
destination nodes.

4. INTEGRATED ENVIRONMENT FOR THE 
DEVELOPMENT OF DISTRIBUTED HARD 

REAL-TIME APPLICATIONS

In this section we will discuss the general lines of
design of an integrated environment for the
development of distributed real-time systems and for
their programming in Ada 95, which we are now
implementing. This environment is based on the
distributed system model described in Section 2 and
the prototyping methodology that we have extracted
from it and that has been presented in this paper.
Crespo et al developed an environment for building
real-time systems (QUISAP) which provides the users
with a specification language, a simulator, a
schedulability analyzer, reusable real-time
components and an automatic code generator (Crespo
et al., 1989; Crespo et al., 1990). Starting from this
environment Real et al (Real et al., 1996) carried out a
real-time system prototyping using Ada 95. Although
these works do not contemplate distribution nor the
use of real-time communication networks, they
constitute a good reference for approaching the
design of an integrated environment for the
development of distributed real-time systems.

The environment that we propose has the structure
shown in Fig. 7. As it can be observed, the distributed
application model along with the prototype templates
that we have developed and the timing parameters of
the application feed both a code generation tool

capable of obtaining the executable code of the
application or an executable prototype of it, and also,
an analysis tool that generates the worst-case
response times of the application. The different
elements that constitute this environment are
described in more detail below:

Application Description. It consists of a
representation of the system at application level in an
architecture independent way, that is, without
specifying the processors or communication networks
used by each task or message. All the actions of the
application and their connectivity are represented
through events. This model is used both by the code
generation tool and by the analysis tool.

System Configuration. It specifies the processors and
networks that constitute the distributed system, along
with the allocation of each of the application actions
(tasks and messages) to these system resources. The
scheduling algorithm to be used is also specified
(fixed priorities or sporadic server).

Application Timing Parameters. This contains all the
timing parameters of the application, including the
periodicity of the external events, the deadlines
assigned to the different actions, the estimation of the
worst-case execution times, and the identification of
the critical sections that exist, for the calculation of
the synchronization blocking times.

Distributed System Prototype. The prototype that we
have developed supplies a complete set of templates
to the code generation tool. The Prototype Code
includes templates for each of the input and output
patterns that have been defined, in order to be able to
obtain executable code. Furthermore, within the
prototype there is the possibility of supplying an
emulation code to the code generation tool, which
allows us to obtain an Executable Prototype of the
application, even when the Application Code is not
available (in part or in whole). The Emulation Code
consists of a time consumption code both for the
processors (tasks executing a loop for a specific
number of times) and for the communication
networks (messages of a specific length), using the
worst-case execution (or transmission) times defined
in the Application Timing Parameters.

Code Generation Tool. This tool links prototype code
with either the application of the emulation code,
according to the structure defined in the Application
Description. As a result, we obtain respectively the
executable code of the application or an executable
prototype. The application code implements the basic
actions of the application, that is, the executable code
segment of the tasks and interrupt procedures, and the
actual contents of the communication messages. In
order to read the application description automatically

Fig. 7. Environment for developing distributed
applications



we have defined a special-purpose description
language. The application itself may be described
using the language directly, or using a graphical editor
which generates the application description.

Prototype Timing Parameters. These parameters
correspond to the real-time model of the prototype
and of the message queues that are used for the
implementation of the action, including the worst-
case execution times of the different code segments
along with the blocking times that can be observed.

Analysis Tool. This tool calculates the worst-case
response times of the actions of the application so that
they can be compared with the imposed deadlines.
These times are obtained using the analysis
techniques that were mentioned in Section 2.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a prototyping
methodology for the development in Ada 95 of
distributed applications with hard real-time
requirements, which use a communication
mechanism based on message queues. In this
methodology we have defined an application
description model that allows multiple event
synchronization, and we have defined a set of
templates that are used to implement the various
possibilities that are supported in this description
model. The application code may be directly built
from the system description, the prototype templates
and the action code supplied by the application
developer. This system is implemented in such a way
that allows the realization of a real-time analysis of
the distributed application through RMA-based
techniques. Furthermore, we have shown the general
lines of the design of an integrated environment for
the development of distributed real-time systems and
for its programming in Ada 95, which is now being
implemented.
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