
Abstract1

In this paper we present a schedulability analysis technique
for distributed hard real-time systems in which responses to
different events may synchronize with each other. This tech-
nique uses a representation model for distributed systems
that allows us to describe not only the task synchronization
due to resource sharing, but also the activation due to com-
binations of events or the generation of several events by a
single task. The model is representative of a large number
of systems and is suitable for the treatment of message-
passing systems or the client-server architecture. The anal-
ysis technique is based on the existing RMA techniques for
analyzing distributed real-time systems; it allows obtaining
upper bounds for the worst-case response times of the sys-
tem, thus allowing us to make guarantees about the fulfill-
ment of the timing requirements that have been imposed.

1. Introduction
Real-time systems have undergone a notable evolution

in the last few years, both in number and variety of applica-
tions and in complexity. A result of this evolution is found
in distributed real-time systems, which have an increasing
importance in today's control systems, since low-cost net-
working facilities allow the interconnection of multiple
devices and their controllers into a single large system.

This paper focuses on real-time systems built using stan-
dard operating systems, languages and networks. Most of
these systems are scheduled using fixed priorities, and thus
the real-time analysis technique that we use is Rate Monot-
onic Analysis (RMA) [5][4]. Although most of the RMA
theory is devoted to single-processor systems, the RMA
techniques can also be applied to distributed systems
[12][7] by modeling each network as if it were a processor,
and each message as if it were a task.

To analyze this type of real-time systems it is necessary
to define a model that can represent the system in a precise
and, at the same time, simple way. The model should repre-
sent, not only the characteristics of the architecture of the
distributed system, but also the hard real-time requirements
that are imposed. Most of the existing analysis techniques
for the scheduling of distributed hard real-time systems are
based on a model that we call linear, which is representa-
tive of a large number of systems. In the linear model each
task is activated by the arrival of a single event or message,
and each message is sent by a single task. However, this
linear model does not allow complex interactions among
the responses to different event sequences, except for the
shared resource synchronization, and so, the analysis is not
applicable to systems in which these interactions exist. 

Many real-time analysis techniques take into account
complex synchronization and interactions between event
sequences, but for scheduling mechanisms different than
fixed priorities. For instance [2] is applied in statically
scheduled systems, and [6] refers to the dynamic schedul-
ing mechanisms used in the Spring kernel. The real-time
model described in [9] is rather similar to the one used in
our paper, but focuses mainly on the resource and data
usage rather than on the relationships among the different
processes or tasks in the system; besides, the schedulability
analysis techniques used in that paper are not focused on
priority scheduling. 

This paper addresses the extension of the RMA tech-
niques for fixed priority systems in which tasks synchro-
nize with the arrival of multiple events or messages from
the same or other processors in the system. The model that
we use allows complex interactions between multiple
events. In order to perform the analysis, we transform the
system described with this model, into an equivalent sys-
tem that is described according to the linear model; in this
way, we can use the usual schedulability analysis tech-
niques based upon the linear model [12][7], with the appro-
priate modifications.
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The paper is organized as follows. In Section 2, we pro-
vide a quick review of the linear model that is currently
used for distributed systems. Section 3 describes our model
of representation for distributed hard real-time systems that
considers the synchronization among the responses to dif-
ferent event sequences. In Section 4, we develop the analy-
sis technique applicable to the new model, which allows us
to estimate the worst-case responses to the events, in order
to compare them with the timing requirements imposed on
the system. Section 5 shows how this analysis technique is
applied to an example of a distributed hard real-time sys-
tem. Finally, in Section 6 we draw our conclusions.

2. Linear system model
The problem of scheduling and analyzing the timing

response of concurrent programs executing in the processor
resources is quite well defined. As we mentioned before,
we shall assume preemptive scheduling based on fixed pri-
orities, and we will thus be able to use RMA for the analy-
sis of the worst-case timing behavior. The scheduling and
analysis of the worst-case timing response in the communi-
cation resources are also well established. The majority of
the standard communication networks do not adapt well to
real-time communications, and do not support priority-
based scheduling of messages. However, there are some
standard communication networks that have been used to
carry out hard real-time communications, such as the
token-bus [10], FDDI [1], the CAN bus [11], etc. The anal-
ysis of the message traffic in these communication
resources is carried out using techniques similar to RMA
with the processor resources. Thus, we will treat the mes-
sages in the communication resources in the same way as
the tasks in the processor resources, except for a small
blocking term that must be taken into account because the
messages are composed of sequences of packets, each of
which is indivisible and non preemptive.

2.1. Assumptions

We define a model of an event-driven distributed system
with the following characteristics:

• There is a set of external events sequences (generated by
external devices, timers, etc.) that activate tasks that are
distributed in different processors.

• Tasks may in turn generate internal events which activate
other tasks on the same processor, or activate messages
that are sent through a communications network. The
arrival of a message to its destination represents an inter-
nal event that may activate one or more tasks.

• We suppose that all the sequences of external events
arriving at the system are known in advance, that is, the
rates at which the events with hard real-time require-

ments arrive and the activities that these events trigger, as
well as their deadlines, are known before the system's
execution; system requirements make it necessary to
guarantee the schedulability of the system at compilation
time.

• We suppose that these events are instantaneous and
therefore they will have no influence on the calculation
of the worst-case response times of the actions which
they activate. This does not mean a loss of generality
because the overhead effects of the internal events can be
easily included in the analysis as extra execution or trans-
mission time.

• We assume that fixed priority scheduling is used, with a
FIFO policy for equal priority tasks (i.e., a task may not
preempt another task with the same priority).

• In addition, we suppose that the tasks are statically allo-
cated to the processors, and in the same way that the
messages are statically allocated to the communication
networks. In many hard real-time systems this represents
no limitation because the tasks are linked to specific pro-
cessors by the presence of special hardware devices that
are necessary for their execution.

2.2. Structure of the linear model

In the linear model, each external event arriving at the
system generates a response in the form of a sequence of
actions. Each action is activated by the internal events gen-
erated by the previous actions. The actions may be tasks (or
a part of a task) executed in a particular processor, or mes-
sages sent through a communications network. Normally,
the first action of a response is a task. We will call ei the
external event that activates action ai, and ejk the internal
event that activates action ak and was generated by action
aj. In the linear model of the distributed system, the actions
can only be activated from a single event (internal or exter-
nal), and can only generate one internal event that may in
turn activate another single action in the same or in a differ-
ent resource (processor or network).

There are different kinds of timing requirements that
may be imposed on the actions of the response to an exter-
nal event. We will call global deadline of a particular
action the maximum interval of time that may elapse
between the arrival of the external event and the finaliza-
tion of that action (as opposed to a local deadline, which is
measured relative of the arrival of the internal event). The
global deadline of the last action in a response will be
called the end-to-end deadline. We will call Dij  the global
deadline of action aj relative to the arrival of the event ei,
and EDik the end-to-end deadline for action ak (which
should be the last action in the response sequence) relative
to the event ei. The first subscript in the name of a deadline
(i) corresponds to the external event. It is not really neces-



sary in the linear model because each action responds to
only one external event, but we introduce it now so that the
naming scheme is also valid for the extended model of the
distributed system that we will see later.

According to this definition of the linear model, Figure 1
shows a diagram of a linear action that is triggered by an
input event and that can only generate one output event.
The response to the external event sequence is composed of
a chain of such linear actions. The period of the external
event is inherited by the linear action and also by the output
event that it may generate. The figure also shows an exam-
ple of a response to an external event that is composed of
three linear actions (two tasks and a message). Most often,
the final action in the response to an external event is a task
that is modeled as a special case of a linear action in which
the output event is not generated.

3. Extending the distributed system model
In this section we will extend what so far we have called

the linear model of distributed hard real-time systems, to a
new model that is more general and representative of a
greater number of systems. The multiple-event model that
we are going to define for distributed systems is based on
the same principles and assumptions as the linear model,
but the new model allows signal & wait synchronization
among tasks by permitting their activation through combi-
nations of multiple events, and also the generation of sev-
eral events by each task. In addition, the multiple-event
model takes into account the possible changes in the peri-
ods of the actions through rate divisors.

3.1. Structure of the multiple-event model

We will consider the more general case in which an
action can generate one or more internal events and thus
may activate several actions in the same or in different
resources (processors or networks), and which can also be

activated by one or several events (internal, external or a
combination of both). The timing requirements that we
consider are the same as in the linear model, that is, the
global deadlines (relative to the arrival of the event) and the
end-to-end deadlines (global deadlines corresponding to
the last actions in the response to an event). We will con-
tinue to call Dij  the global deadline of action aj relative to
the arrival of the event ei, and EDij  the end-to-end deadline
(for action aj relative to the event ei). It should be noted that
in the multiple-event model a specific action aj can be exe-
cuted as a consequence of the arrival of different events,
and so, it can have several global deadlines corresponding
to different events.

According to the definition of the multiple-event model
of distributed systems, Figure 2 shows the different classes
of input and output event patterns that we support. Each
input event pattern is a combination of events that can acti-
vate an action and each output event pattern is a combina-
tion of events that are generated upon the finalization of the
action. Next, we describe in a more detailed way each of
the patterns that we consider in this model:

A) Linear Action. It corresponds to the linear model
described in Section 2. The action is triggered by a single
event and can only generate one event.

B) Input Rate Divisor. The action is activated when it has
received N instances of the specified event. An example of
this situation is a task that periodically samples a signal,
but only processes it when a predetermined number of
samples have been recorded.

C) Output Rate Divisor. Only when the associated action
has executed N times will the corresponding output event
or events be generated. An example is the periodic

Figure 1. Linear model of an event-driven system

Figure 2. Elements of the multiple-event model



sampling of a signal, in which each sample needs some
preprocessing, and only when a number of samples have
been processed is the output event generated.

D) Input 1-of-N. This is the case of an action that can be
triggered by any of its input events. As an example for this
case we can consider an image processing system in which
there are several cameras capturing images periodically.
One task per camera preprocesses the images, and then
sends the results to a single task which further processes
each image. This latter task would be activated each time
there was an image available, and therefore it would
correspond to the Input 1-of-N pattern.

E) Input N-of-N. This case corresponds to an action that
is triggered by a combination of several events with the
same period. The action is only executed when all the input
events have arrived. There is no point in considering that
the input events have different periods since this would
imply the unbounded accumulation of the fastest events.
This case corresponds to the situation in which we need to
distribute a set of calculations among distinct processors
and there is a task that collects the results. The latter task is
only executed when all the results are available.

F) Output 1-of-N. This corresponds to the case in which
an action can generate one output event out of several
possible choices. An example of this case could be a
message queue to which a task sends messages (specific
data for processing) and there are several tasks available to
receive them. The first task that is ready for the reception of
a message will be the one that processes the data.

G) Output N-of-N. This is the case in which an action
simultaneously generates several events. We can find an
example of such an output pattern in a task that distributes
a complicated mathematical operation among various
processors for parallel execution.

We have not added a rate multiplier because activations
of real-time tasks are originated by external events, and
thus the execution rates are not faster than the associated
rates of the external events.

3.2. Restrictions

Although with the multiple-event model we can describe
complex systems using the patterns that we have defined, it
is necessary to consider as a restriction the combination by
which an event generated by an action with an Output
1-of-N gives rise to the activation of an action with an Input
N-of-N at some point of its response sequence. Figure 3
shows this situation and, as we can see, if action ak or
another later action had a global deadline assigned, we
could not assure its fulfillment because, since we don't
know whether the output event of aj is ej j+1  or ej j+2 , we
cannot specify the periodicity with which event ek-1 k

would be generated. We need to consider the condition
imposed on the Input N-of-N actions, by which all the input
events must have the same period. Only if we did not have
real-time requirements on the action ak and later actions
then we could allow the existence of this combination of
event arrival and generation patterns.

3.3. Applicability of the model

The model described adapts well to the representation of
a large number of real-time architectures that can be found
in practice. For example, many distributed systems use a
message-queue architecture [3]; as we show in Figure 4,
using the multiple-event model we can describe many pos-
sible situations with this architecture. When two tasks
located in the same processor communicate through a mes-
sage queue, the message will be modeled as an internal
event, and a certain amount of execution time will be added
to each task to account for the overhead due to the use of
message queues.

In the same way as with the linear model, we can con-
sider the example of a system that uses a client-server
approach with remote servers. Here as well, we can decom-

Figure 3. Prohibited event pattern combination

Figure 4. Message queue model



pose each part of a task that requests a service from a
remote server in the following sequence of actions: the
action before invoking the service, the message sent to the
server, the server's action, the reply message, and the action
after invoking the server. However, in this case the servers
can serve more than one client, and so they will be modeled
as a task with an Input 1-of-N and an Output 1-of-N with
certain restrictions on their output events. These restric-
tions are introduced to consider the correspondence
between inputs and outputs, to avoid the combinations of
inputs and outputs that are not possible (each output event
corresponds to only one input event, always the same one).
Figure 5 shows the model of a distributed system with two
nodes and a network, that uses the client-server approach.

4. Real-time analysis of the new distributed 
system model

To extend the real-time analysis to the multiple-event
model of distributed system, we use the analysis techniques
that exist for the linear model, which are pessimistic but
allow us to guarantee the schedulability of these real-time
systems. Thus, the analysis will be carried out applying the
RMA techniques applicable to the linear model [7][8][12],
extended to take into account the interactions between
events. For this purpose, we are going to transform this
model into an equivalent model for which these analysis
techniques can be applied. The equivalent model has a tim-
ing response that represents an upper bound for the worst-
case response time of the actual real-time system. Hence,
below we will see how to extract the equivalent model for
each of the event arrival and generation patterns defined in
the multiple-event model.

4.1. Equivalent model for the analysis

The equivalent model is a transformation of the multi-
ple-event model of a distributed system that allows the
application of the real-time analysis techniques that are
used for the linear model. In the transformation to the
equivalent model, the parameters (periods and deadlines)
corresponding to each of the actions are obtained from the
characteristics of the events of the system and of their
responses and, furthermore, each input or output pattern is
transformed to a new linearized pattern that can be ana-
lyzed using the technique developed in [7][8][12] with a
few extensions that we will describe here. 

Starting from the multiple-event model of a distributed
hard real-time system, the equivalent model for the analysis
is obtained in the way shown in Figure 6 and Figure 8.
Next, we describe in detail the transformations required for
each of the event patterns defined in the multiple-event
model: 

A) Linear Action. Its own period and that of the event that
it generates, are both equal to the period of the input event.

B) Input Rate Divisor. Here the action is activated when it
has recorded N arrivals of a specific event, and thus, both
the periods of the action and of the events that it generates
are N times the period of the input event. All the actions
that are activated after the Rate Divisor have their periods
different than the period of the originating external event,
and thus it is necessary to define a criterion to establish the

Figure 5. Client-server model

Figure 6. Equivalent model transformations



global deadlines. The global deadlines for the actions after
the Rate Divisor will be defined according to a worst-case
assumption, from the time when the first external event
arrives until the execution of the action associated to the
global deadline has finalized.

C) Output Rate Divisor. An action with an Output Rate
Divisor is activated and executed with the arrival of an
event, but only when it has executed N times will the
corresponding output event or events be generated.
Therefore, its period is equal to that of the input event, and
the periods of its output events are N times larger. The
global deadlines are defined in an analogous way to the
Input Rate Divisor. 

D) Input 1-of-N. In this case the action can be triggered by
any of the input events. In the equivalent model we will
separate the response sequences associated with each of the
different input events in such a way that an analyzable
linear structure is obtained. For this purpose, we replicate
all the sequence of actions and events starting at the action
with the Input 1-of-N a number of times equal to the
number of input events, obtaining independent responses
for each of these events (see Figure 6.d).

The replication of an action aj gives rise to the set of
actions aj_1…aj_N in the equivalent model, each one
belonging to one of the input events. Furthermore, the
names eij…ekj of the input events are changed to
eij_1…ekj_N, due to the creation of new actions. All the rep-
licated actions are located in the same resource and they are
assigned the same priority as the action from which they
derive. Each sequence of actions depends on one of the
input events and inherits the period of this event. Each
action resulting from the replication inherits the global
deadline or the end-to-end deadline of the original action
for the event to whose response sequence it belongs.

The replication of each chain of actions leads us to an
equivalent model with identical response times to that of
the original model, if priority scheduling is used with the
FIFO policy for equal priority tasks, and the input events
are all independent. This scheduling policy would not per-
mit the simultaneous activation of the replicated actions in
the equivalent model, since they all have the same priority.
In Figure 7 we can see that if the events that activate a1 and
a2 are queued in FIFO order, the execution sequences in the
multiple-event model and in the equivalent model are iden-
tical. For example, if ei 1 arrives before ej 1, a1 always
attends ei 1 first and in the same way a2 will attend the
result of ei 1 first. The equivalent model would execute in
the same way, since if ei 1_1 arrives before ej 1_1, a1_1 will
be executed before a1_2 and in the same way a2_1 will be
executed before a2_2.

E) Input N-of-N. The case of an action that is executed
only when all the input events have arrived (all with

identical periods) is modeled in the equivalent model by
making the periods of the action itself and all the later
actions equal to the period of the input events.

F) Output 1-of-N. In the case of an action that can
generate different output events, but only one in each
period, we will consider three situations in the equivalent
model (Figure 8), which give rise to different modes of
analysis depending on the periods, deadlines and global
worst-case response times of the actions:

F.1) Output N-of-N. We can consider a situation that is
always worse than the real system in which instead of
generating only one of the output events of the action with
Output 1-of-N, all of them are generated. When calculating
the worst-case global responses, actions will be taken into
account that will possibly never be executed
simultaneously. Therefore, we can pessimistically treat the
action with an Output 1-of-N as an action with an Output
N-of-N. The periods of the later actions and events are
equal to the period of the action with Output 1-of-N. The
analysis in this case will be pessimistic, so next we are
going to consider two specials situations (usual in
distributed hard real-time applications) in which some of
this pessimism can be eliminated.

F.2) Static Configurations. For those cases in which all the
actions after the Output 1-of-N in the response sequence to
an event have global deadlines less than or equal to the
associated periods (Dij≤Tj), we can consider the existence
of different configurations of the response, one for each of
the events that can be generated by the action with Output

Figure 7. Example of an Input 1-of-N equivalent pattern

Figure 8. Output 1-of-N pattern in the equivalent model



1-of-N. In each configuration we only consider active those
actions triggered by just one of the generated events, and
we consider that all the actions triggered by the rest of the
generated events are not active. From the point of view of
the analysis, it is only necessary to take into account those
actions that are active. The periods of the later actions and
events are equal to the period of the action with Output 1-
of-N. For the analysis of a given response to an event
sequence, each one of its configurations must be analyzed,
and only if all the configurations are schedulable we can
guarantee the schedulability of the original response. 

The restriction of global deadlines less than or equal to
the periods guarantees the correctness of the different con-
figurations for the purpose of analysis, since it would be
impossible that two response sequences corresponding to
two different events generated by the action with Output 1-
of-N were simultaneously active and at the same time, that
they met their global deadlines.

The number of configurations in a response to an event
sequence depends exponentially on the number of actions
with Output 1-of-N with deadlines within their periods.
This means that the configuration analysis can only be car-
ried out for responses with only a few of these actions. For
larger responses, the Output N-of-N model must be
adopted. The configurations that we are considering here
are said to be static because they can be determined before
carrying out the analysis. 

F.3) Dynamic Configurations. In the previous case we
have seen that under special conditions (Dij≤Tj for the
actions of the responses to the output events) we can
identify within the model a certain number of static
configurations for the analysis. For those actions with
deadlines larger than their periods, if we use their global
worst-case responses instead of their global deadlines and
Rij≤Tj for them, we could continue to apply the same kind
of analysis as in the static configurations, given that it is
guaranteed that two response sequences corresponding to
two different events generated by the action with Output 1-
of-N cannot be simultaneously active and at the same time
meet their global deadlines.

Now however the fulfillment of the conditions that iden-
tify the configurations must be carried out during the analy-
sis, since it is necessary to know the global worst-case
response times. Thus, starting from an initial situation in
which we consider that all the Output 1-of-N patterns give
rise to configurations, we apply an iterative analysis
method. For each iteration we identify the valid configura-
tions checking that the associated Output 1-of-N verifies
that Rij≤Tj; otherwise the Output 1-of-N is changed to an
Output N-of-N, and a new analysis iteration is applied, until
a stable solution is reached. These configurations are called
dynamic, because they are dynamically identified during

the analysis of the system. The number of dynamic config-
urations cannot be determined in advance.

It is possible that static configurations that are identified
before carrying out the analysis coexist in the same system
with dynamic configurations that are identified when carry-
ing out the analysis.

G) Output N-of-N. For the case in which an action
simultaneously triggers several events, we consider that all
the actions and the events following an action with an
Output N-of-N have the same period as that action. The
linear analysis can be applied directly because in the
calculation of the global worst-case responses for each of
the later actions the rest of the actions are taken into
account.

The equivalent model for an Output 1-of-N operation
with restrictions, as in the example of the system which
uses a client-server approach shown in Figure 5, can be
obtained in two different ways:

• Starting from the multiple-event model with which we
represent the client-server approach. Considering the
restriction imposed on the output events, the replication
of actions for this case due to the Input 1-of-N implies
only the replication of the servers and not of the clients.
Furthermore, in this replication the connection between
the output events and the replicated servers must be done
correctly, so that the action invoking the service, and the
action executed after the service is completed correspond
to the same client. 

• Directly from the client-server model. Starting from the
client-server model, we can arrive at the same equivalent
model through the replication of the servers for the cli-
ents invoking their services.

4.2. Real-time analysis for the equivalent model

Starting from the multiple-event model of distributed
systems, to carry out the analysis we extract the equivalent
model in the way described in the previous section. The
equivalent model may have replicated actions and events,
and may have different static configurations (the dynamic
ones will appear during the execution of the analysis itself).
For the analysis, we will focus on the following points:

• Analysis of the configurations. The configurations appear
as a division of a response to an event sequence for the
purpose of the analysis, motivated by the actions with
Output 1-of-N. Consequently, in the case where configu-
rations can be identified in a response to an event
sequence (static, dynamic, or both), the analysis tech-
nique for that response will be based on the application
of the analysis for each configuration of the equivalent
model. We consider the response to be schedulable when
each and every one of its configurations is schedulable. 



The response time and jitter analysis of the overall
system is performed iteratively, like in the linear system
[7][12], with the difference that for each iteration of the
analysis, each response configuration and each response
without configurations is analyzed by converting the
Output 1-of-N actions of all the other responses into
Output N-of-N actions. The response times obtained from
the analysis are used to obtain the jitter terms of each
response, and the analysis is then repeated like in the
linear analysis until a stable solution is obtained. This is
a pessimistic solution, but ensures obtaining an upper
bound for the worst-case response times.

• Analysis of the Rate Divisors. The existence of a Rate
Divisor in the response to an event must not only be
taken into account when obtaining the periods of the
actions following it in the event response sequence, but
must also be considered in the calculation of the global
worst-case responses of these actions. If we consider a
Rate Divisor with period T and period factor N, the
actions following the divisor in the response sequence
will not be executed until the N-th activation of the Rate
Divisor. Consequently, in the global worst-case response
times of these later actions we must take into account an
additional term equal to (N-1)T, that represents a delay of
N-1 periods. Thus, the impact of the Rate Divisor before
the action aj in the response to the event ei on the global
worst-case response can be expressed as follows:

where Nf is the period factor of the Rate Divisor closest
(starting from the external events) to action aj, or its own
if aj has an Input Rate Divisor (Nf equals 1 if there is no
rate divisor); and Tf-1f is the period of the input event of
the Rate Divisor with period factor Nf (if the event were
external it would be Tf).

• Analysis of the Input N-of-N patterns. These event arrival
patterns may give rise to merging the response sequences
to different events. These mergers require the incorpora-
tion into the analysis of the effects of the associated syn-
chronization, to make the calculation of global worst-
case responses valid. Even when all the input events to an
action with an Input N-of-N have the same period, it is
necessary to take into account that the action will be acti-
vated on the arrival of the slowest event (the last one to
arrive). Supposing that all the external events that give
rise to input events to an action with an Input N-of-N are
generated at the same time, the global worst-case
response time for this action would simply be the great-
est of the global response times of the action for each
external event. However, in real systems we cannot
always assure that the generation of the events will be
simultaneous, in fact usually they will be out of phase.

So, in order to assure the creation of a worst-case situa-
tion it is necessary to take into account the maximum
phase differences among the external events when calcu-
lating the global worst-case response times for the
actions with Input N-of-N. An identical treatment must
be applied to the actions following an action with Input
N-of-N since, in the same way, they will form part of the
response to various external events. We define the phase
φi of each external event ei as the distance between time
zero (an arbitrary instant in which the origin of time is
considered), and the instant when the first event is pro-
duced. Often the phase is unknown, but it is possible to
determine an upper limit for the maximum phase differ-
ence among different events, which will be the only fac-
tor influencing the analysis. We define the maximum
phase difference Φil  between the external events ei and el
as the maximum difference in absolute terms between the
phases of both events. An upper bound for the maximum
phase difference for periodic events that are generated in
a continuous way is equal to the period.

In the analysis of an action aj with an Input N-of-N
pattern it is necessary to consider a delay term equal to
the maximum phase difference (Φil) and we must choose
the maximum global response time to all the associated
external events to whose response the action aj belongs.
We call the set of these external events Ej.

• Linear analysis. The cases which we have so far not con-
sidered (Linear, Input 1-of-N and Output N-of-N) give
rise to a linear-type analysis similar to that used for the
linear model. For each external event ei, we define its
period Ti as the inverse of the worst-case rate with which
the event can arrive at the system. In the same way, we
define the period Tjk corresponding to the internal event
ejk. The estimation of the global worst-case responses for
an action aj in the response sequence to an external event
ei, as a result of the analysis [7][8] is represented by the
term Rij .

Taking into account all the issues that we have men-
tioned, we will now see how the global worst-case response
times are calculated for each configuration or for the whole
system in the case when there is only one configuration.
Starting from the multiple-event model (and its transforma-
tion to the equivalent model) for each action aj in the
response to an external event ei, we define the global worst-
case response time R*

ij  (relative to the arrival of the event
ei) in the following way:

where Ej is the set of external events to whose response the
action aj belongs.

Fij Nf 1–( )Tf 1f–=

Rij
*

max
l Ej∈

Φi l Rlj Fij+ +( )=



Finally, the schedulability of any system configuration
(or of the complete system if there are no static or dynamic
configurations) is determined through the comparison of
the global response times (R*

ij) with the global deadlines
(Dij) of the active actions in this configuration. 

5. Example: applying schedulability analysis 
to a distributed hard real-time system

In this section we show an example of a distributed sys-
tem that responds to the multiple-event model for which
the analysis techniques developed in this paper can be
applied. Through this example we will show how to obtain
the equivalent model starting from the initial specification
of the problem, and then how to carry out the analysis. The
example is based on a system that was built to detect
defects in steel bars using artificial vision, in which our
research group was involved. The example has been simpli-
fied in order to explain how the analysis is applied.

The problem of defect detection in steel bars is solved
by magnetizing the bar, and then submerging it in a solu-
tion containing microscopic magnetic particles which,
when illuminated with ultraviolet light, emit light in the
visible spectrum. The magnetic particles concentrate in
greater quantities in the parts of the steel bar that have
defects. Thus, the defects of the bar can be seen as different
geometric forms that appear on the surface and which can
be recognized and analyzed by a vision system. The detec-
tion process finalizes with the marking of the recognized
defects (with some type of paint for example), and the sort-
ing of the defective and non-defective bars.

In the artificial vision system of our example (Figure 9)
we have four processors that communicate through a single
communications network, and which have to carry out the
following operations: digitalization of the bar image, defect
recognition, and control of the marking and sorting actua-
tors. Our system has two cameras for capturing images and
an ultrasonic sensor that carries out an additional inspec-
tion of the bar. The two cameras are used to increase the

surface of the bar that can be captured each time. The ultra-
sonic sensor is capable of transmitting an “image” of a seg-
ment of the bar in a single block. 

The tasks that must be carried out by the different opera-
tions in the system are located in the processors according
to their associated hardware. Processor 1 carries out the
acquisition of images from the cameras and from the ultra-
sonic sensor. This processor also does a preprocessing of
the images obtained. Processor 2 is a high-speed processor
that detects the defects of the steel bars from the images
obtained by the cameras and the ultrasonic sensor. Proces-
sors 3 and 4 have identical characteristics, and control the
different marking and sorting actuators of the bars accord-
ing to the position of the detected defects.

As can be seen in Figure 9, the software architecture of
the system is composed of a set of tasks that carry out the
described operations and which communicate through mes-
sage queues. All the queues are located in the same proces-
sor, and for the analysis we will consider the overhead they
introduce to be added to the different actions using them.
This system can be represented using the multiple-event
model that we defined in Figure 10. The timing require-
ments are also described in that figure.

The analysis begins with the obtention of the equivalent
model from the description of the system. First, the actions
with an Input 1-of-N pattern are identified in order to carry

Figure 9. Example of a distributed system

Figure 10. Multiple-event model of the example

Figure 11. Equivalent model for the example



out the replication of actions, according to the procedure
described in the definition of the equivalent model (see sec-
tion 4.1). Figure 11 shows the structure of the response
sequences to the external events after the replication of the
actions. It can be seen in this figure that action t3 has an
Input 1-of-N pattern and, therefore, t3 itself and all the
actions following it are replicated.

The following step is the identification of the static con-
figurations resulting from the actions with Output 1-of-N
patterns. Considering the timing characteristics of our sys-
tem we can identify two static configurations for each of
the responses to e1 and e7, because each has an Output 1-
of-N pattern and both verify that D ≤ T for the last actions
in their respective response sequences. Figure 12 shows all
the response configurations that we have to include in the
analysis of our example.

Now we can perform the analysis of each of the
response configurations that we have identified. The worst-
case response times obtained as a result of the analysis of
each of these configurations for those actions with global
deadlines are shown in Table 1. The relevant response times
are those in cells with a grey background. As it can be seen,
the deadlines are met in every configuration, so all the con-

figurations are schedulable and, thus, the entire system is
schedulable. The average utilization of the resources of this
distributed hard real-time system is 93.3%.

6. Conclusions
In the work presented in this paper we extend the exist-

ing linear model of distributed hard real-time systems to a
generalized model that allows the representation of a larger
number of distributed real-time systems. This model takes
into account the synchronization among tasks, and also
their activation by combinations of events and the genera-
tion of several events by each task. This model is very suit-
able for the treatment of message passing systems or for
the client-server architecture.

With the definition of the multiple-event model, we have
also developed a schedulability analysis technique based
on the techniques applied to the linear model. This tech-
nique transforms the multiple-event model into an equiva-
lent model over which the linear model analysis can be
applied, with the appropriate extensions. Although this
analysis technique is slightly pessimistic in some cases, it
allows obtaining an upper bound of the system's worst-case
response time, thus making it possible to guarantee the ful-
fillment of the timing requirements of the system.
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