
Real-Time Distribution Middleware from the Ada
Perspective1

Héctor Pérez, J. Javier Gutiérrez, Daniel Sangorrín, and Michael González Harbour
Computers and Real-Time Group

Universidad de Cantabria, 39005 - Santander, SPAIN
{perezh, gutierjj, daniel.sangorrin, mgh}@unican.es

http://www.ctr.unican.es/

Abstract. Standards for distribution middleware sometimes impose restrictions
and often allow the implementations to decide on aspects that are fundamental to
the correct and efficient behaviour of the applications using them, especially
when these applications have real-time requirements. This work presents a study
of two standard approaches for distribution middleware that can be used from
Ada applications: RT-CORBA, and the Distributed Systems Annex (DSA) of
Ada. The study focuses on the problems associated with the real-time behaviour
of some implementations of these approaches, and on possible solutions that can
be derived from our experience with Ada implementations. Moreover, the paper
considers the problem of integration of the distribution middleware with a new
generation of scheduling mechanisms based on contracts.

Key words: distribution middleware, real-time, communications, RT-CORBA,
Ada DSA, performance.

1 Introduction
The concept of a distributed application is not new; it has existed since two computers
were first connected. However, the programming techniques of these systems have
evolved greatly and they have become especially relevant in the last decade.
Traditionally, message-passing mechanisms were used for communication among the
parts of a distributed application where the communications among the application
parts were done explicitly by the programmer. Since then, new object distribution
techniques have evolved, for instance using Remote Procedure Calls (RPCs) that allow
operations to be transparently used regardless of whether the functionality is offered in
the local processor or in a remote one.

The object distribution paradigm is probably the most relevant in current industrial
applications, and an important example is the CORBA standard [12] which provides a
language for the specification of interfaces (IDL, Interface Definition Language) that
enables the use of different programming languages in the development of an
application. There exist other distribution techniques of higher level coming from
CORBA such as CCM (CORBA Component Model), or DDS (Data Distribution
Service), but their degree of acceptance in industry is still lower compared to CORBA.

1. This work has been funded in part by the Spanish Ministry of Science and Technology under grant
number TIC2005-08665-C03-02 (THREAD), and by the IST Programme of the European
Commission under project FP6/2005/IST/5-034026 (FRESCOR). This work reflects only the
author’s views; the EU is not liable for any use that may be made of the information contained herein.

In addition to distribution standards, there are programming languages that allow the
development of distributed applications. This is the case of Java (a de facto standard)
with its specification for distributed systems, Java RMI (Java Remote Method
Invocation) [17], based on the distribution of objects. Also, the Ada standard allows
distribution through its DSA (Distributed Systems Annex, Annex E) [19], which
supports both distribution of objects and RPCs.

This work will focus on analysing the real-time characteristics for distribution within
the CORBA and Ada standards. It does not consider Java RMI because the real-time
aspects of Java have not been fully addressed yet. RT-CORBA [13] offers the CORBA
specification for real-time systems, and although Ada’s DSA is not specifically
designed for real-time systems, there are works that demonstrate that it is possible to
write real-time implementations within the standard [14][7][8]. One goal of this paper
is to make a comparative study of the scheduling models offered by these standards for
implementing distributed real-time applications, an analysis of some of their
implementations from the viewpoint of management of calls to remote resources, and
an experimental evaluation on a real-time platform of the response times that can be
obtained in remote calls in order to get an idea of the overheads introduced. Another
objective of this work is to establish the basis for incorporating the experience
acquired in systems programmed in Ada into the world of RT-CORBA.

The evolving complexity of real-time systems has lead to the need for using more
sophisticated scheduling techniques, capable of simultaneously satisfying multiple
types of requirements such as hard real-time guarantees and quality of service
requirements, in the same system. To better handle the complexity of these systems,
instead of asking the application to interact directly with the scheduling policies,
scheduling services of a higher level of abstraction are being designed, usually based
on the concept of resource reservations [2]. The FRESCOR European Union project
[3] in which we are participating is aimed at investigating these aspects by creating a
contract-based scheduling framework. In [8], some initial ideas were given about the
integration of middleware and advanced scheduling services, and in this paper we
extend those ideas to address the problem of handling distributed transactions.

The document is organized as follows. Section 2 is dedicated to the presentation of the
basic characteristics of the distribution middleware based on RT-CORBA and Ada’s
DSA, and their implementations. Section 3 analyses in detail the aspects of scheduling,
distribution mechanisms, and management of the remote calls proposed in the two
standards and their implementations. The evaluation and discussion of the overheads
in remote operations for these implementations is dealt with in Section 4. Section 5
proposes the integration of the distribution middleware with the framework for flexible
scheduling. Finally, Section 6 draws the conclusions and considers future work.

2 Real-Time Distribution Middleware
This section will describe the scheduling models of RT-CORBA and of the DSA for
the execution of remote calls and will discuss how the distributed transaction model

can be supported. Furthermore, the different implementations to be analysed, all of
which are open source code, will be briefly introduced.

A distributed transaction is defined as a part of an application consisting of multiple
threads executing code in multiple processing nodes, and exchanging messages with
information and events through one or more communication networks. In a
transaction, events arriving at the system trigger the execution of activities, which can
be either task jobs in the processors or messages in the networks. These activities, in
turn, may generate additional events that trigger other activities, and this gives way to
a chain of events and activities, possibly with end-to-end timing requirements [8]. This
model is traditionally used for analysing the response time in real-time distributed
applications. We will discuss how this model can be supported by the middleware.

2.1. RT-CORBA Model

The main characteristics of the architecture proposed by RT-CORBA in its
specification [12] with respect to scheduling are the following:

• Use of threads as scheduling entities, for which an RT-CORBA priority can be
applied and for which there are functions for conversion to the native priorities of
the system on which they run.

• Use of two models for the specification of the priority of remote calls (following
the Client-Server model): Client_Propagated (the invocation is executed in the
remote node at the priority of the client, which is transmitted with the request
message), and Server_Declared (all the requests to a particular object are
executed at a priority preset in the server). In addition, it is possible for the user to
define priority transformations that modify the priority associated with the server.
This is done with two functions called inbound (which transforms the priority
before running the server's code) and outbound (which transforms the priority
with which the server makes calls to other remote services).

• Definition of Threadpools as mechanisms for managing remote requests. The
threads in the pool may be preallocated, or can be created dynamically. There may
be several groups of threadpools, each group using a specific priority band.

• Definition of Priority-Banded Connections. This mechanism is proposed for
reducing priority inversions when a transport protocol without priorities is used.

The specification of RT-CORBA incorporates a chapter dedicated to dynamic
scheduling, which basically introduces two concepts:

• The possibility of introducing other scheduling policies in addition to the fixed
priority policy, such as, EDF (Earliest Deadline First), LLF (Least Laxity First),
and MAU (Maximize Accrued Utility). The scheduling parameters are defined as
a container that can contain more than one simple value, and can be changed by
the application dynamically.

• The Distributable Thread that allows end-to-end scheduling and the identification
of Scheduling Segments each one of which can be run on a processor. This
concept is similar to the distributed transaction presented in [8].

RT-CORBA does not consider explicitly the possibility of passing scheduling
parameters to the communications networks.

2.2. Ada DSA Model

Ada DSA does not have any mechanism for transmission of priorities and so its
implementation is left up to the criterion of the implementation. The specification
requires support for executing concurrent remote calls and for waiting until the return
of the remote call. The communication among active partitions is carried out in a
standard way using the Partition Communication Subsystem (PCS).

The concurrency and the real-time mechanisms are supported by the language itself
with tasks, protected types and the services specified in Annex D. In [4], a mechanism
for handling the transmission of priorities in the DSA is proposed. This mechanism is
in principle more powerful than that of RT-CORBA, as it allows total freedom in the
assignment of priorities both in the processors and in the networks used.

Ada included in its latest revision the scheduling policies EDF and Round Robin as
part of its Real-Rime Systems Annex (Annex D). Nevertheless, it does not
contemplate the existence of distributed transactions. Like RT-CORBA, Ada DSA
does not consider the possibility of passing scheduling parameters to the
communications networks.

2.3. Implementations under study

This work analyses and assesses the following implementations of RT-CORBA and
the DSA:

• TAO [18] is an open source implementation of RT-CORBA that has been evolving
for several years. The applications are programmed in C++ and the version we
have used (1.5) runs on Linux and TCP/IP. It is offered as an implementation of
the complete specification.

• PolyORB [15][20] is presented as a “schizophrenic” middleware that can support
distribution with different personalities such as CORBA, RT-CORBA, or DSA. It
is distributed with the GNAT compiler [1] and in principle it is envisaged for
applications programmed in Ada. The version used (2007) supports CORBA and
some basic notions of RT-CORBA (priorities and their propagation), and allows
distribution through the DSA although it does not allow specifying scheduling
parameters. The execution platform is Linux and TCP/IP.

• GLADE [14] is the original implementation of the DSA offered by GNAT [1] to
support the development of distributed applications with real-time requirements.
The scheduling is done through fixed priorities and implements two policies for
distribution of priorities in the style of RT-CORBA (Client Propagated and Server
Declared). The 2007 version is used, and once again the execution platform is
Linux and TCP/IP.

• RT-GLADE is a modification of GLADE that optimizes its real-time behaviour.
There are two versions: in the first one [7], free assignment of priorities in remote

calls is allowed (both in the processors and in the communication networks). The
second version [8] proposes a way of incorporating distributed transactions into
the DSA and giving support to different scheduling policies in a distributed
system. The execution platform is MaRTE OS [9] and the network protocol is RT-
EP [10]. This communication protocol is based on token passing in a logical ring
over standard Ethernet, and it supports three different scheduling policies: fixed
priorities, sporadic servers, and resource reservations through contracts [2][3].

3 Analysis of Distribution Middleware Implementations
The objective of this section is to analyse the scheduling aspects of the mechanisms for
management of remote calls used by the implementations of RT-CORBA or DSA to
support their respective specifications. It also discusses the properties of the solutions
adopted and proposes some improvements that could be made both in the standards
and in their implementations.

3.1. Implementations of RT-CORBA and DSA

From the viewpoint of management of remote calls, TAO defines several elements that
can be configured [16]:

• Number of ORBs. The ORB is the management unit of the calls to a service.
There may be several or only one, given that each ORB can accept requests from
different parts of the application.

• The strategy of the concurrency server. Two models are defined: Reactive, in
which a thread is executed to provide service to multiple connections; and thread-
per-connection, in which the ORB creates a thread to serve each new connection.

• The threadpools. Two types of thread groups are defined with two different
behaviours. In the ORB-per-Thread model each thread has an associated ORB that
accepts and processes the services requested. In the Leader/Followers model the
user can create several threads and each ORB will select them in turns so they
await and process new requests arriving from the network.

For the management of remote calls, PolyORB defines the following configurable
elements [15]:

• ORB tasking policies. Four policies are defined:
- No_Tasking: the ORB does not create threads and uses the environment task to

process the jobs
- Thread_Pool: a set of threads is created at start-up time; this set can grow up to

an absolute maximum, and unused threads are removed from it if its size
exceeds a configurable intermediate value.

- Thread_per_Session: a thread is created for each session that is opened
- Thread_per_Request: a thread is created for each request that arrives and is

destroyed when the job is done

• Configuration of the tasking runtimes. It is possible to choose among a Ravenscar-
compliant, no tasking, or full tasking runtime system.

• ORB control policies. Four policies are defined that affect the internal behaviour
of the middleware:
- No Tasking: a loop monitors I/O operations and processes the jobs
- Workers: all the threads are equal and they monitor the I/O operations

alternatively
- Half Sync/Half Async: one thread monitors the I/O operations and adds the

requests to a queue, and the other threads process them
- Leader/Followers: Several threads take turns to monitor I/O sources and then

process the requests once arrived. However, if RT-CORBA is in use, the
selected thread will add the request to an intermediate queue where another
thread will process it at the proper priority.

The implementation of the DSA carried out in GLADE [14] defines a group of threads
to process the requests with similar parameters to those of PolyORB in terms of the
number of threads (minimum number of threads created at start-up time, stable value
and absolute maximum), and uses another two intermediate threads for the requests;
one awaits the arrival of requests from the network, and the other one processes these
requests and selects one of the threads of the group to finally process the job.

The modifications made to GLADE to obtain the first version of RT-GLADE [7]
eliminated one of the intermediate threads, so that there was a thread waiting for
requests arriving from the net, which in turn activated one of the threads of the group
to carry out the job. In the second version of RT-GLADE [8], an API was provided to
allow an explicit configuration of the threads that execute the jobs, and they are
designed to wait directly on the net. This is done through the definition of
communication endpoints which handle the association with the remote thread and
support the scheduling parameters for the network. These parameters, that can be
complex, are associated with the appropriate entity when a distributed transaction is
installed and do not need to be transmitted each time the remote service is called.

TAO, PolyORB, and GLADE all use the priority assignment policies defined in RT-
CORBA. In contrast, in the first version of RT-GLADE [7] free assignment of
priorities is allowed for the remote services and for the request and reply messages.
This approach enables the use of optimization techniques in the assignment of
priorities in distributed systems.

In the second version of RT-GLADE [8], the definition of the connection endpoints
allows the programming of distributed transactions, which are identified just by
specifying a small number at the beginning of the transaction. Moreover, the
transaction is executed with the scheduling parameters associated to its threads and
messages. This concept is similar to the distributable thread of RT-CORBA, except
that this specification never takes the network scheduling into account. TAO
implements this part of the dynamic scheduling of RT-CORBA, in which dynamic
changing of the scheduling parameters of a scheduling segment is permitted [5].

In this work, we have made a prototype porting of PolyORB to the MaRTE OS [9]
real-time operating system and we have adapted it to the RT-EP real-time network
protocol [10]. The personality of CORBA (PolyORB-CORBA) allows the use of the
control policies of the ORB defined in PolyORB. The DSA personality of PolyORB
does not currently allow choosing among different control policies. For this
personality (PolyORB-DSA), a basic version of the scheduling defined in [8] has been
implemented over our real-time platform to obtain results comparable to those of RT-
GLADE.

3.2. Discussion

Based on the analysis above, this subsection discusses some objectives that the real-
time distribution middleware must pursue, and proposes solutions or extensions that
the standards and/or the implementations should incorporate.

• Allow a schedulability analysis of the complete application. Although the
middleware is executed in the processor, in many cases the timing behaviour of
the networks has a strong influence on the overall response times, and therefore
the networks should be scheduled with appropriate techniques [6]. The
middleware should have the ability to specify the scheduling parameters of the
networks through suitable models. RT-GLADE could be used as a reference [8].

• Transactions or distributable threads. In agreement with the previous point, the
transactions or distributable threads should incorporate all the information about
scheduling in the processors and networks, either in the model proposed by RT-
CORBA or in the one proposed in RT-GLADE [8].

• Control of remote calls. The task models implemented in TAO and PolyORB can
be used as a reference, adding an extra case in which there is one dedicated thread
per kind of request, directly waiting on the net (as in the second version of RT-
GLADE). The latter case can be useful in flexible scheduling environments when
threads execute under contracts and the cost of negotiating or changing contracts
is very high. In the case when there are intermediate threads for managing remote
calls (GLADE, RT-GLADE or PolyORB) it is important to control their
scheduling parameters. This is also the case of groups of threads in which threads
can execute with different parameters each time.

• Allow the free assignment of scheduling parameters. This is the approach used in
RT-GLADE. In RT-CORBA there is a specification for static real-time systems,
and an extension for dynamic real-time systems (see Section 3 in [13]). The
specification for static systems imposes restrictions on the assignment of
priorities, but these restrictions are removed in the specification for dynamic
systems, which allows implementations to define scheduling policies.

4 Evaluating Distribution Middleware Implementations
The objective of this section is to provide an idea about the predictability and the
overhead introduced by the analysed implementations in a distributed application, but
not to make a straight comparison among them, as they are of different nature.

In this work, we have made a prototype porting of PolyORB to the MaRTE OS [9]
real-time operating system and we have adapted it to the RT-EP real-time network
protocol [10]. The personality of CORBA (PolyORB-CORBA) allows the use of the
control policies of the ORB defined in PolyORB. The DSA personality of PolyORB
does not currently allow the definition of any particular control policy. For this
personality (PolyORB-DSA), a basic version of the scheduling defined in [8] has been
implemented over our real-time platform. Furthermore, GLADE 2007 has been
modified to support the mechanisms included in the second version of RT-GLADE.

In flexible scheduling environments threads are executed under contracts and the cost
of negotiating or changing them could be very high for the system. To minimize
context switches and therefore fit those requirements, RT-GLADE uses dedicated
threads that wait for the event arrivals and then process the received events. The
Leader/Followers pattern uses a similar concept, with threads that perform both
communication and processing roles, thus minimizing context switches. This pattern is
the one that is most similar to the RT-GLADE approach, and consequently it will be
used in this evaluation both for TAO and PolyORB.

A hardware platform consisting of two 800-MHz AMD Duron processors and a
dedicated 100-Mbps Ethernet has been used. The following two software platforms
have also been used:

• Linux kernel 2.6.10 with TCP/IP to evaluate the implementations of TAO
(version 5.5), PolyORB (version 2.3) with CORBA personality and GLADE
(version 2007).

• MaRTE OS 1.7 with RT-EP [10] to evaluate PolyORB-CORBA (version 2.3),
PolyORB-DSA (version 2.3) and RT-GLADE (adapted from GLADE 2007).

The tests will measure the execution time of a remote operation that adds two integers
and returns the result. The measurement is carried out from the time when the call is
made until the response is returned. This operation will be carried out in two modes:
alone, and with four other clients carrying out the same operation, but at a lower
priority. The objective is not to obtain exhaustive measurements of the platform, but to
get a rough idea of the performance (predictability and overheads) that can be achieved
with the middleware. In all the tests the operation to be evaluated is executed 10,000
times, and the average, maximum, and minimum times are evaluated, together with the
standard deviation and the relative frequency of time values that are within a deviation
from the maximum of 10% of the difference between the maximum and average
values.

Table 1 and Table 2 show the results of the measurements taken with the Linux
platforms, using the middleware configurations that introduce the least overhead. For
the case of a single client in TAO the reactive concurrency model with a single thread
in the group has been used. In PolyORB the model with full tasking without internal
threads has been used for the experiment with one client. For the five-client case both
in TAO and in PolyORB a configuration of a group of 5 threads with a Leader/
Followers model has been used. In GLADE, a static group of threads equal to the
number of clients is defined. The priority specification model for TAO, PolyORB and

GLADE was client propagated. In order to make the middleware overhead
measurements more comparable, the temporal cost of using the net is also evaluated.
Thus, Table 1 includes the average, maximum and minimum times for the case when a
message is sent and a response is received; the program on the server side answers
immediately upon reception.

In the results obtained for one client in Linux, it can be observed that GLADE achieves
better average and minimum response times than TAO and PolyORB, which can be
explained because it has a lighter code. The maximum times obtained for PolyORB
and GLADE in the case of one client are much higher than the average times compared
to TAO. The average numbers for one and five clients show large differences in
PolyORB and GLADE, while in TAO they are relatively similar. We can conclude that
this configuration of TAO makes a better management of the priorities and the queues
on this platform.

Table 3 and Table 4 show the results of the measurements carried out over the three
implementations on the MaRTE OS/RT-EP platform. The configuration of PolyORB-
CORBA is the same as for Linux. The PolyORB-DSA configuration creates a task
explicitly to attend the remote requests. The group of threads for RT-GLADE is
configured to be equal to the number of clients. As for RT-EP, the parameter
corresponding to the delay between arbitration tokens is set to a value of 150 μs. This
value limits the overhead in the processor due to the network. A simple transmission in
the network is also evaluated for the same reason as in the case of Linux (see Table 3).

From the results obtained in the evaluation on the real-time platform, it can be
observed that, firstly, the network protocol has a greater latency and it makes the times
of a simple round-trip transmission higher than in Linux; the trade-off is that this is a
predictable network with less dispersion among the values of the measurements.
Furthermore, the minimum and average times of RT-GLADE for one client are also
greater than those of GLADE over Linux, although the maximum time remains within
a bound indicating a much lower dispersion. An important part of the response times
obtained for RT-GLADE is due to the network, but is also due to the operating system

Table 1. Measurements in Linux for one client (times in μs)

Avg. Time Max. Time Min. Time Std. Deviation 10% from Max. (%)

TAO 998 1380 914 75 0.06

PolyORB-CORBA 1424 4302 1189 373 0.01

GLADE 415 3081 340 261 0.02

Stand-alone network 129 678 118 40 0.12

Table 2. Measurements in Linux for the highest priority client, five clients (times in μs)

Avg. Time Max. Time Min. Time Std. Deviation 10% from Max. (%)

TAO 1371 6376 889 356 0.02

PolyORB-CORBA 5399 11554 1593 1050 0.02

GLADE 1700 5953 595 496 0.12

and the dynamic memory manager used [11] (to make the timing predictable). If we
observe the times of RT-GLADE for five clients, we can see that only the minimum
time is worse than in GLADE, although with less difference; in contrast the average
time and specially the maximum are now clearly better. The increase in the maximum
times of RT-GLADE with respect to the case of one client is reasonable and can be
justified by the blocking times that can be suffered both in the processor and in the
network.

In the measurement of the times of PolyORB-CORBA over MaRTE OS we have
found a great disparity of the measurements for five clients depending on the priorities
used in them. This can be explained because of the architecture used to implement the
Leader/Followers model. This is a part which could be improved by using an
implementation model similar to TAO. In any case, the measurements reflected in
Table 4 for PolyORB-CORBA with five clients have been obtained in a best-case
scenario in which the low-priority clients are not preempted by any of the threads in
the thread pool. Referring to PolyORB-DSA, the response times obtained are
comparable to those of PolyORB-CORBA, but with higher predictability.

As a consequence of the response times of PolyORB over MaRTE OS, it is again
shown, by comparing the results with those of RT-GLADE, that the pure
implementation of the DSA can be much lighter than that of RT-CORBA. Comparing
the tests of PolyORB-CORBA for one and for five clients it can be seen that there is an
important difference between the minimum and maximum times for five clients, which
is due to the priority inversion introduced by the intermediate tasks.

5 Integration of the Distribution Middleware with a Contract-
Based Scheduling Framework

The FRESCOR (Framework for Real-time Embedded Systems based on COntRacts)
EU project [3] has the objective of providing engineers with a scheduling framework
that represents a high-level abstraction that lets them concentrate on the specification

Table 3. Measurements in MaRTE OS for one client (times in μs)

Avg. Time Max. Time Min. Time Std. Deviation 10% from Max. (%)

PolyORB-CORBA 2997 3012 2770 6 0.01

PolyORB-DSA 4117 4487 3835 300 42.50

RT-GLADE 1080 1151 955 23 0.03

Stand-alone network 959 964 707 3 0.01

Table 4. Measurements in MaRTE OS for the highest priority client, five clients (times in μs)

Avg. Time Max. Time Min. Time Std. Deviation 10% from Max. (%)

PolyORB-CORBA 3527 6566 2748 727 0.11

PolyORB-DSA 4516 5299 3531 320 0.02

RT-GLADE 1000 1462 896 27 0.06

of the application requirements, while the system transparently uses advanced real-
time scheduling techniques to meet those requirements. In order to keep the
framework independent of specific scheduling schemes, FRESCOR introduces an
interface between the applications and the scheduler, called the service contract.
Application requirements related to a given resource are mapped to a contract, which
can be verified at design time by providing off-line guarantees, or can be negotiated at
runtime, when it may or may not be admitted. As a result of the negotiation a virtual
resource is created, representing a certain resource reservation. The resources managed
by the framework are the processors, networks, memory, shared resources, disk
bandwidth, and energy; additional resources could be added in the future.

Careful use of virtual resources allows different parts of the system (whether they are
processes, applications, components, or schedulers) to use budgeting schemes. Not
only can virtual resources be used to help enforce temporal independence, but a
process can interact with a virtual resource to query its resource usage and hence
support the kinds of algorithms where execution paths depend on the available
resources.

When distribution middleware is implemented on operating systems and network
protocols with priority-based scheduling, it is easy to transmit the priority at which a
remote service must be executed inside the messages sent through the network.
However, this solution does not work if more complex scheduling policies, such as the
FRESCOR framework, are used. Sending the contract parameters of the RPC handler
and the reply message through the network is inefficient because these parameters are
large in size. Dynamically changing the scheduling parameters of the RPC handler is
also inefficient because dynamically changing a contract requires an expensive
renegotiation process.

The solution proposed in [8] consisted in explicitly creating the network and processor
schedulable entities required to establish the communication and execute the remote
calls. The contracts of these entities are negotiated and created before they are used.
They are then referenced with a short identifier that can be easily encoded in the
messages transmitted. For identifying these schedulable entities the transactional
model is used and the identifier, called an Event_Id, represents the event that triggers
the activity executed by the schedulable entity.

In the current FRESCOR framework, support for the transactional model is being
built. A tool called the Distributed Transaction Manager (DTM) is a distributed
application responsible for the negotiation of transactions in the local and remote
processing nodes in a FRESCOR system that implements the contract-scheduling
framework. Managing distributed transactions cannot be done on an individual
processing node because it requires dynamic knowledge of the contracts negotiated in
the other nodes, leading to a distributed consensus problem. The objective of the
Distributed Transaction Manager is to allow the remote management of contracts in
distributed systems, including capabilities for remote negotiation and renegotiation,
and management of the coherence of the results of these negotiation processes. In this
way, FRESCOR provides support for distributed global activities or transactions

consisting of multiple actions executed in processing nodes and synchronized through
messages sent across communication networks.

The implementation of the DTM contains an agent in every node, which listens to
messages either from the local node or from remote nodes, performs the requested
actions, and sends back the replies. In every node there is also a DTM data structure
with the information used by the corresponding agent. Part of this information is
shared with the DTM services invoked locally from the application threads. This
architecture could benefit from the presence of a distribution middleware, by making
the agents offer operations that could be invoked remotely, thus simplifying the
current need for a special communications protocol between the agents.

The current version of the transaction manager limits its capabilities just to the
management of remote contracts. In the future, the DTM should also provide a full
support for the transactional model, integrated with the distribution middleware. For
this purpose the following services would need to be added to it:

• Specification of the full transaction with identification of its activities, remote
services and events, and contracts for the different resources (processors and
networks).

• Automatic deployment of the transaction in the middleware. This would require:
- choosing unused Event_Ids for the transaction events
- choosing unused ports in the involved nodes, for the communications
- creating send endpoints for the client-side of the communications, using the

desired contracts and networks
- creating receive endpoints for the reception of the reply in the client-side of the

communications, using the desired networks, ports, and event ids.
- creating the necessary RPC handlers with their corresponding contracts
- creating the receive endpoints of the server-side of the communications using

the desired contracts and networks
- creating the send endpoints of the server-side of the communication using the

desired contracts and networks.

All this deployment would be done by the DTM from the information of the
transaction, which could be written using a suitable deployment and configuration
language. After this initialization, the transaction would start executing, its RPCs
would be invoked and the middleware would automatically direct them through the
appropriate endpoints and RPC handlers almost transparently. We would just specify
the appropriate event ids.

With the described approach we would achieve a complete integration of the
distribution middleware and the transactional model in a system managed through a
resource reservation scheduler.

6 Conclusions and Future Work
The work presented here reports an analysis and evaluation of some implementations
of distribution middleware from the viewpoint of their suitability for the
implementation of real-time systems. Specifically, the following aspects have been
highlighted: the way remote calls are managed, the mechanisms for establishing the
scheduling parameters, and the importance of giving support to the transactions or
distributable threads.

The time measurements have been carried out over Linux as the native operating
system of the middleware analysed, and over a real-time platform based on the
MaRTE operating system and the RT-EP real-time network protocol, to which
PolyORB has been ported in this work. In the measurements obtained, it can be
observed that the implementations of Ada’s DSA are lighter than the implementations
of RT-CORBA. This suggests that Ada is a good option for programming distributed
systems, and that it could find its niche in medium-sized embedded distributed real-
time systems. The measurements on the real-time platform also show that the
predictability has a cost in terms of overhead in the network and in memory
management.

Furthermore, new mechanisms for contract-based resource management in a
distributed real-time system have been identified, and the necessity to integrate the
distribution middleware with them has been described, together with some ideas on
future work needed to support this integration.

Our work will continue with experimentation on the PolyORB real-time platform that
we already have, given our experience in Ada and in GLADE. The objective will be to
progress with the improvement of specific real-time aspects over this platform both for
the DSA and for RT-CORBA, and to integrate the distributed transaction model along
with their managers and the new contract-based scheduling mechanisms for processors
and networks using the ideas described in this paper. The ultimate goal would be to
make proposals for inclusion in the corresponding standards and implementations.

References
1. Ada-Core Technologies, The GNAT Pro Company, http://www.adacore.com/

2. M. Aldea, G. Bernat, I. Broster, A. Burns, R. Dobrin, J.M. Drake, G. Fohler, P. Gai, M.
González Harbour, G. Guidi, J.J. Gutiérrez, T. Lennvall, G. Lipari, J.M. Martínez, J.L.
Medina, J.C. Palencia, and M. Trimarchi. “FSF: A Real-Time Scheduling Architecture
Framework”. Proc. of the 12th IEEE Real-Time and Embedded Technology and
Applications Symposium, RTAS 2006, San Jose (CA, USA), 2006.

3. FRESCOR project web page: http://frescor.org

4. J.J. Gutiérrez, and M. González Harbour. “Prioritizing Remote Procedure Calls in Ada
Distributed Systems”. Proc. of the 9th International Real-Time Ada Workshop, ACM Ada
Letters, XIX, 2, pp. 67–72, June 1999.

5. Y. Krishnamurthy, I. Pyarali, C. Gill, L. Mgeta, Y. Zhang, S. Torri, and D.C. Schmidt.
“The Design and Implementation of Real-Time CORBA 2.0: Dynamic Scheduling in

TAO”. Proc. of the 10th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS'04), Toronto (Canada), May 2004.

6. J. Liu. “Real-Time Systems”. Prentice Hall, 2000.

7. J. López Campos, J.J. Gutiérrez, and M. González Harbour. “The Chance for Ada to
Support Distribution and Real Time in Embedded Systems”. Proc. of the International
Conference on Reliable Software Technologies, Palma de Mallorca, Spain, in LNCS, Vol.
3063, Springer, June 2004.

8. J. López Campos, J.J. Gutiérrez, and M. González Harbour. “Interchangeable Scheduling
Policies in Real-Time Middleware for Distribution”. Proc. of the 11th International
Conference on Reliable Software Technologies, Porto (Portugal), in LNCS, Vol. 4006,
Springer, June 2006.

9. MaRTE OS web page, http://marte.unican.es/

10. J.M. Martínez, and M. González Harbour. “RT-EP: A Fixed-Priority Real Time
Communication Protocol over Standard Ethernet”. Proc. of the 10th International
Conference on Reliable Software Technologies, York (UK), in LNCS, Vol. 3555, Springer,
June 2005.

11. M. Masmano, I. Ripoll, A. Crespo, and J. Real. “TLSF: A New Dynamic Memory
Allocator for Real-Time Systems”. Proc of the 16th Euromicro Conference on Real-Time
Systems, Catania (Italy), June 2004.

12. Object Management Group. “CORBA Core Specification”. OMG Document, v3.0 formal/
02-06-01, July 2003.

13. Object Management Group. “Realtime CORBA Specification”. OMG Document, v1.2
formal/05-01-04, January 2005.

14. L. Pautet, and S. Tardieu. “GLADE: a Framework for Building Large Object-Oriented
Real-Time Distributed Systems”. Proc. of the 3rd IEEE Intl. Symposium on Object-
Oriented Real-Time Distributed Computing, (ISORC'00), Newport Beach, USA, March
2000.

15. PolyORB web page, http://polyorb.objectweb.org/

16. I. Pyarali, M. Spivak, D.C. Schmidt, and R. Cytron. “Optimizing Thread-Pool Strategies
for Real-Time CORBA”. Proc. of the ACM SIGPLAN Workshop on Optimization of
Middleware and Distributed Systems (OM 2001), Snowbird, Utah, June 2001.

17. Sun Developer Network, http://java.sun.com

18. TAO web page, http://www.cs.wustl.edu/~schmidt/TAO.html

19. S. Tucker Taft, Robert A. Duff, Randall L. Brukardt, Erhard Ploedereder, and Pascal
Leroy (Eds.). “Ada 2005 Reference Manual. Language and Standard Libraries.
International Standard ISO/IEC 8652:1995(E) with Technical Corrigendum 1 and
Amendment 1”. LNCS 4348, Springer, 2006.

20. T. Vergnaud, J. Hugues, L. Pautet, and F. Kordon. “PolyORB: a Schizophrenic
Middleware to Build Versatile Reliable Distributed Applications”. Proc.of the 9th
International Conference on Reliable Software Technologies, Palma de Mallorca (Spain),
in LNCS, Vol. 3063, June 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

