Towards a UML-Based Modeling Standard for
Schedulability Analysis of Real-Time Systems

Huéscar Espinoza, Julio Medina*, Hubert Dubois, Sébastien Gérard, and Francgois Terrier

CEA Saclay, DRT/DTSI/SOL/L-LSP, F-91191, Gif-sur-Yvette Cedex, France
{huascar. espi noza, julio.nedina, hubert.dubois, sebastien.gerard} @ea.fr

Abstract

This paper presents a generic modeling framework for
specifying analyzable UML models of real-time systems.
The underlying work was carried out in the context of the
OMG initiative for standardizing a UML profile for
Modeling and Analysis of Real-Time and Embedded
systems (MARTE), which replaces and extends the profile
for Schedulability, Performance, and Time Specification
(SPT). We focus on some usability and flexibility
weaknesses of the SPT modeling framework and describe
the improvements brought off in MARTE. The UML
extensions include new analysis-specific concepts aimed
to support a broader range of quantitative analysis
techniques. Additionally, the modeling approach involves
a precise language to unambiguously declare and
annotate non-functional properties with extended data
types, variables, and complex expressions. As illustration,
we show how this profile is used in the ACCORD|yyy
methodology to enable schedulability analysis of
annotated UML models.

1. Introduction

The creation of models suitable for predictive and
quantitative analysis is a key concern in any methodology
for real-time systems development. The tighter the link
between the real-time annotations and the modeling
artifacts used along the development process, the sooner
the verifications for detecting and removing errors can be
done, and the easier the design tradeoffs for resources
allocation become [11]. Indeed, the ability to evaluate
Non-Functional ~ Properties (NFPs) based on
mathematically derived results stemming from accurate
models is far better than relying exclusively on intuition.
The real-time systems community has invested special
efforts in incorporating the abilities to describe timeliness
properties with enough expressive power, while still
preserving the modeling abstraction level used by
practitioners.

Like in other software engineering domains, the
necessity to raise the level of abstraction, in order to

" Post-Doctoral internship. Grupo de Computadores y Tiempo Real,
Universidad de Cantabria, Spain.

increase designers’ productivity and cope with
complexity, as well as the facility that it brings to
communicate design intents and generate documentation,
have encouraged the usage of the Unified Modeling
Language (UML) [13] in the real-time domain. As a
standard, it adds a number of other well-known
advantages that make it a primary modeling language
along the software life cycle. Moreover, the Model Driven
Development paradigm, and particularly the Model
Driven Architecture (MDA) initiative [12] whose
modeling support is provided by UML, lead a promising
approach for reducing time-to-market and enrich software
engineering practices, by moving the development process
from lines-of-code to coarser-grained architectural
elements.

However, UML per se is somehow still imprecise, and
therefore in many cases insufficient for enabling
quantitative analysis of real-time systems [2], [3], [14].
The question of how to add real-time modeling
capabilities to UML has been addressed in different
research and industrial contexts, mostly by the definition
of “profiles”, which is the built-in mechanism to extend
UML to different specialized domains. Thus, for example,
the OMEGA [14] profile provides a precise formal
semantics dedicated to temporal aspects, UML-MAST
[10] considers timing properties and schedulability
analysis for distributed real-time systems, and recently a
(draft) UML profile for the Avionics Architecture
Description Language (AADL) has been proposed [19],
which would allow to easily integrate AADL analysis
tools with UML CASE tools. Profiles are a powerful
extension mechanism; however, most of these profiles
suffer a lack of standardization. This is very problematic
as the idea of a standard language would get lost.

Standardization provides common semantics and
notations, while adopting the best practices for modeling
real-time systems. Standards are also a cost effective
solution, since interoperability allows using different tools
on the same model, and because of the lower overall
training costs. Additionally, this helps to manage the risk
on the evolution of the tools providers market, reducing
the dependency on one single tool. As an industrial
standardization board, the Object Management Group
(OMG) has been carrying out important efforts to provide

UML extensions for modeling temporal properties as well
as other non-functional aspects of computer systems.

The UML Profile for “Modeling Quality of Service
and Fault Tolerance Characteristics and Mechanisms”
(QoS&FT) [5] makes up part of these efforts. It defines a
framework to define and annotate QoS properties in UML
models (QoS is here used as a general term to denote
NFPs). The QoS&FT profile provides a flexible
mechanism to define most common QoS characteristics
for different application domains, by means of QoS
catalogs. The QOoS&FT annotation mechanism is
supported on a two-step process which implies the
creation of extra objects required just for annotation
purposes. This two-step process, however, requires too
much effort for the users and may induce not readable
models [17]. Moreover, QoS&FT ignores some necessary
aspects to model NFP specifications in the real-time
domain, such as variables specification, and complex
expressions (e.g., time expressions).

The recent SysML language [8], is being considered to
be adopted by the OMG as a language to model complex
systems, including software, hardware, facilities, and
process aspects. Although still insufficient for the real-
time domain, SysML provides some useful mechanisms to
model this kind of concerns. For instance, the “block”
modular unit provides capabilities to specify reusable
“model-oriented components”, defining a collection of
features that includes parameters, constraints, and value
specifications qualified by measurement units.

A third OMG standard intended to support non-
functional annotations is the UML profile for
Schedulability, Performance and Time specification (SPT)
[1]. It provided a straightforward annotation mechanism
with a minimal set of common annotations to perform
very basic quantitative analysis (essentially RMA and
queuing theory based analysis). Nevertheless, its structure
was not flexible enough to allow for new user-defined
annotations or for different analysis techniques. Most
experiences of the profile have led to a number of
significant suggestions for improvement and consolidation
[2, 3] deemed too disruptive for a simple revision. This
included also new requirements for specifying both,
software, and hardware aspects, MDA compliance for
defining separately the platform, the application and
allocation models, and modeling of other kinds of NFPs
such as power consumption or memory size.

Hence, the OMG called for the development of a new
UML profile for the Modeling and Analysis of Real-Time
and Embedded systems (MARTE) [4]. The results
presented in this paper were performed in the framework
of the ProMARTE [20] working team, and comprise some
of our proposals integrated in the definition of this new
profile [18]. We particularly deal with MARTE modeling
capabilities to enable predictive quantitative analyses,

namely schedulability. We incorporate in MARTE a
number of additional features while reduces the implicit
complexity of QoS&FT. MARTE also introduces a
precise value specification language that supports
symbolic variables and complex expressions for
specifying NFPs. But mainly, this framework provides a
common modeling framework for different schedulability
analysis techniques by factorizing out concepts used in
different analysis models.

The paper is organized as follows. In the next section,
we present a quick view of the MARTE profile. Section 3
describes its modeling framework to specify NFPs.
Section 4 describes the framework for Schedulability
Analysis Modeling (SAM). In Section 5, we show the
usage of the profile by means of an example in the
framework of the ACCORD|yy. methodology [7].

2. The UML profile for MARTE

UML uses the metamodeling technique to define its
abstract syntax. Metamodels define languages enabling to
express models. This means that a metamodel describes
the various kinds of contained model elements and the
way they are arranged, related and constrained. Hence, a
UML model is said to conform to its metamodel.

Profiles customize UML for a specific domain or
purpose using extension mechanisms able to enrich the
semantics and notation of the metamodel elements. A
stereotype is the basic notion that allows extending UML.
A stereotype can be viewed as a subclass of an existing
UML concept, which provides the capability of modeling
domain-specific concepts or patterns. Stereotypes may
have typed properties called tag definitions, which may
represent attributes or relations with other metamodel
elements. Complementary, stereotypes can be also
influenced by restrictions expressed in constraints.

The MARTE standard comprises both a conceptual
domain model and the concrete UML extension profile.
The first one defines key concepts and relationships
between them used for describing real-time computing
systems. The second one is the specification of how the
elements of the domain model are realized by means of
stereotypes, and how they extend UML metaclasses.

As Figure 1 shows, MARTE is structured around a
core package (TCRM), which describes modeling
constructs for time, resources, concurrency, allocation and
NFPs, and two main groups of specialized packages that
use and refine the core one. One group to model
development features of real-time and embedded systems
(RTEM), and the other one to annotate real-time models
S0 as to support quantitative analysis (GQAM).

RTEM provides means to define application-modeling
patterns, and refined modeling constructs to model
hardware and software execution platforms.

On the other hand, the GQAM package provides a
generic basis for different quantitative analysis sub-
domains. The GQAM package supports two main sub-
profiles for schedulability analysis to predict whether a
set of software tasks meets its timing constraints, and
performance analysis to determine if a system with non-
deterministic behavior can provide adequate performance.
Additionally, the profile structure allows for adding
further analysis domains, such as power consumption,
memory use or reliability. It is the intention to encourage
modular sub-profiles for such domains.

Figure 1 also describes some of the main potential
actors that may use this specification. Thus, model
designers are dedicated to define the hardware and
software architecture of real-time systems. Model analysts
are modelers concerned with annotating system models in
order to perform specific analysis techniques. Execution
platform providers are developers and vendors of run-
time technologies (hardware- or/and software-based
platforms) such as Real-Time CORBA, real-time
operating systems and specific hardware components.

TCRM (Time, Concurrency and Resources) ‘
1 1
NFP ‘ Time ‘ RTComponent
1 1 1
Resources Concurrency ‘ Allocation ‘
. i . A Model Designer
« |mpon » « import »
—
GQAM RTEM (Real-Time and Embedded) ‘
(Generic Quantitative Analysis)
N % REAM
«import» «import »| Platform Provider (RT/E Application)
ModelAnalyst |
< —
‘ L | HEPM SEPM
SAM PAM (Hardware E ti (Softy E
(Schedulability (Performance Platform) Platform)
Analysis) Analysis)

Figure 1. Architecture of the MARTE Profile

In the context of UML-based quantitative analysis,
annotating NFPs is of fundamental relevance and implies
a number of modeling mechanisms for complexity
management in the development cycle, but mainly, for
specifying time expressions semantically well formed. The
following section describes the NFP modeling package as
the basic framework to model quantitative analysis
aspects.

3. The NFP Modeling Framework

The model of a computing system describes its
architecture and behavior by means of model elements
(e.g., resources, resources services, behavior features,

logical operations, configurations modes, modeling
views), and the properties of those model elements. It is
common to group element properties into two categories:
functional properties, which are primarily concerned with
the purpose of an application (i.e., what it does at run
time); and non-functional properties (NFPs), which are
more concerned with its fitness for purpose (i.e., how well
it does it or it has to do it) [18]. NFPs provides
information about different characteristics, as for
example throughput, delays, overheads, scheduling
policies, correctness, security, memory usage, and so on.

The NFP modeling framework [17][18] is especially
focused on formalizing a set of modeling UML constructs
to specify non-functional information in a precise way. In
fact, one of the common criticisms to the SPT profile is
the very superficial semantic information that it provides;
in particular, for promoting common understanding of
specification and exchange of specifications between
different tools. Thus, different tools or analysis techniques
could use different metrics for the same concept. For
instance, a task priority attribute, from a scheduling
perspective, is defined in the context of a “priority” scale
with either increasing or alternatively decreasing
numerical values. Unless we properly qualify NFPs, no
common meaning will be adopted, regardless of how
detailed and expressive a property name might be. The
NFP modeling framework attempts to overcome these
kinds of ambiguities.

Figure 2 shows a partial view of the metamodel that
supports this framework. This metamodel provides key
constructs for modeling this kind of properties at two
fundamental stages: declaration and specification. NFP
declaration is intended to qualify and assign extended data
types to NFP values. NFP specification allows describing
values as constants, variables, complex expressions
(including time expressions) in a standard textual language.

NFP
type
statisticalQualifier: StatisticalQualifierKind [0..1] o1 NFP_Type
direction: DirectionKind [0..1] .
0.1 0 owningProperty 1 definingNFP
0.1
allowedUnits defaultUnit
NFP_Slot : Unit
unit
source: SourceKind [0..1] 0.1 symeoI: 'S"Fns '
reqOffer: ReqOfferKind [0..1] convFactor: Rea
owningSlot € 0..1 0.1
. baseUnit
0..1\|/ defaultValue value
P . refClock
NFP_ValueSpecification TimeValue] Clock

Figure 2. Partial view of the metamodel for NFP

NFPs are qualified by two basic attributes and by a
data type (NFP_Type). Both attributes of NFPs, statistical
qualifier and direction, have been adopted from the UML
profile for QoS&FT [5]. A statistical qualifier indicates
the type of “statistical” measure of a given property (e.g.,
maximum, minimum, range, mean, variance, percentile,
distribution). The direction attribute (i.e., increasing or
decreasing) defines the type of quality order relation in the
allowed value domain of NFPs. Indeed, this allows
multiple instances of NFP values to be compared with the
relation “higher-quality-than” in order to identify what
value represents the higher quality or importance. On the
other hand, NFP Types add the ability to carry a
measurement unit for NFP values associated with physical
dimension measures. Additionally, we provide the
capability of defining new user-specific units in terms of
existing base units, through a given conversion factor.

Since a UML viewpoint, NFPs are implemented in
MARTE as tag definitions qualified and typed as NFPs.
MARTE defines a set of NFP Types commonly used in
the real-time and embedded system domain. Examples of
NFP Types are Duration, Data Transmission Rate, Data
Size, Power, between others. As illustration, Figure 3
shows the declaration of the Duration NFP type.

« enumeration »
DurationUnitKind

«unit» s

«unit» ms {baseUnit=s, convFactor=0.001}
«unit» us {baseUnit=ms, convFactor=0.001}
«unit» min {baseUnit=s, convFactor=60}
«unit» hrs {baseUnit=min, convFactor=60}
«unit» dys {baseUnit=hrs, convFactor=24}
«unit» wks {baseUnit=dys, convFactor=7}
«unit» mos {baseUnit=dys, convFactor=30}
«unit» yrs {baseUnit=dys, convFactor=365}

« NFP_Type »
Duration
{allowedUnits: DurationUnitKind= ‘ms’}

Figure 3. Example of declaration of the Duration NFP type

A model of a system (which is considered to be
expressed in UML) can be annotated by specific NFP
values, expressing concepts from a given modeling
concern or domain viewpoint (for example Schedulability
Analysis). An annotated model element describes certain
of its non-functional aspects by means of NFP
annotations. These annotations are specified by the
designer in the models and attached to different model
elements. Examples are the response time of a task when
executed, the utilization of a resource. Thus, a NFP Slot
specifies that an annotated model element has a value or
values for a specific NFP. The values in a slot must
conform to the defining NFP of the slot (in type,
multiplicity, etc.). NFP Slots include the attributes source

to qualify different value versions (as for example
required, estimated, or calculated), an associated
measurement unit (e.g., ms, KB/s, MB) that overwrites the
default value declared in the NFP Type definition, and a
qualifier for describing the required or offered nature of a
NFP value (reqOffer).

On the other hand, NFP Value Specification defines
the textual expressions associated with NFP slots. The
NFP modeling framework provides an abstract syntax and
a grammar for specifying the values of NFPs. Indeed,
while NFPs values are often assumed to be simple values,
there are certain cases where it may be necessary to
express such values in a more complex way. For example,
it may be required for one NFP value to be related in
some way to another. This requires both a way of
referencing the value of another property as well as the
ability to use expressions, such as arithmetic or time
expressions. Thus, each value can be specified as a
constant, as a variable, as a complex expression value, a
special duration or instant expression, or as an interval of
value specifications.

Table 1 shows typical examples of the notation for the
body of value specifications.

NFP Value Specification Example
Real Number 1.2E-3
Variable $ti meout
Ordered Collection (1, 2, 5 88)
Interval [1..251]
DateTime 12/01/06 12:00: 00

Duration (between two events) ($startEvent, $endEvent)

Duration (number of clock ticks) | 5*t{refd ock}

Constraints $deadl ine < $tinmeout + 5.0

$V1=(($cl i ent s<6)?(exp(6)))

Logical Expression

Table 1. Examples of NFP Value Specifications

In Section 5, we show some examples for specifying NFP
values and attaching them to UML elements by means of
tagged values.

4. Modeling for Schedulability Analysis

All analysis methods use a simplified/abstract view of
the system to analyze, which focuses on those aspects that
are relevant to the associated analysis technique. Thus, the
analysis modeling concepts rarely map one-for-one to
application-level modeling concepts. Particularly, in
schedulability analysis, a key abstraction is the notion of a
unit of concurrency, representing some execution entity
that requires the scheduling services of the system
platform. However, application models typically do not
show the units of scheduling explicitly. Instead, they are

implied by the presence of model elements such as active
objects and asynchronous messages.

The SPT profile already included a basic collection of
UML extensions required to define analysis modeling
views, particularly for performance and schedulability
analyses. However, it was actually stated that they were
insufficient for a number of analysis techniques and for
certain real-time computing implementations, like
distributed systems, or hierarchical scheduling [3]. As a
consequence, most UML-based analysis methods did not
use/refine the SPT profile as planned, instead they created
their own refined (non-standard) extensions [10][14].

To overcome these problems, the SAM framework
described in this section defines a collection of extended
modeling concepts, as well as a set of generic and
extensible/replaceable NFPs for them, oriented to model
real-time computing systems from a wider range of
schedulability analysis techniques perspective. MARTE
provides a minimal set of common annotations for model-
based schedulability analysis. This minimal set furnishes
enough information to perform common schedulability
analyses. However, each vendor is encouraged to supply
specialized NFP annotations that extend this set in order
to perform model analysis that is more extensive.

4.1 Domain model for schedulability analysis

The Schedulability Analisys Modeling (SAM) domain
model is organized as in SPT under the concept of a Real-
Time Situation. From the predictive point of view
schedulability analysis models are intrinsically instance-
based. Hence, a real-time situation is still a kind of
analysis context that represents a specific situation of the
system, working in a particular mode and configuration,
and with concrete computational resources. Nevertheless,
high-level descriptor-based models can also be established
using the RTEM sub-profiles, and then concrete analysis
models may be instantiated for specific analyses.

A real-time situation collects the relevant quantitative
information required to perform specific analysis. Starting
with the real-time situation and its elements, a tool can
follow the links of the model to extract the information
that it needs to perform the model analysis. A real-time
situation is described by separated models associated with
three generic modeling concerns (Figure 4):

- Workload Situation: a constant load of end-to-end
responses triggered by external (e.g., environmental
events) or internal (e.g., a timer) stimuli.

- Behavior Execution: a description of the executed
actions chain as response to the workload, including
access to shared resources and their services.

- Resources Platform: a concrete architecture of
hardware and software computational resources
used.

This separation of modeling concerns permits to organize
the domain models into comprehensible parts. Moreover,
these concerns may act as a set of design sub-views at the
user modeling level, thus allowing to reduce changing
impact and to facilitate evolution and reusability.
However, this is not a mandatory user-model organization.
Users may create different views, if desired, with basis on
the fundamental SAM concepts.

! WorkloadSituation

(from SAM_Workload)

+workloadModel

1.

* +behavior

1
BehaviorExecution

RealTimeSituation (from SAM_Behavior)

+behaviorModel

*

* +platform

! ResourcesPlatform

(from SAM_Resources)

+platformModel

Figure 4. The modeling concerns of a Real Time Situation

4.1.1 The Workload domain model. This model
describes the constructs required to specify the
computation load on the system and the associated
quantitative information about end-to-end stimuli,
responses, and temporal requirements.

A workload situation of a real-time system is typically
defined by the set of stimuli starting computations. In the
SAM framework, we refer to an instance of a particular
stimulus as an event occurrence. Since the stimulus can
occur repeatedly, we refer to recurrence of events as a
trigger.

A computation that is performed as a consequence of a
trigger is referred to as the response to its event
occurrences. Depending on the implementation nature of
responses, they could be concretized in a single task
executing in one processor or in dependent tasks into
single or multiple processors. We do not include in this
model the detailed behavior involving a response (we do it
in the Behavior model).

Notice that the trigger and response concepts specify
only end-to-end behaviors, specifically, their “cause” side
and their “effect” side. Thus, in order to group these two
concepts into a single modeling unit, we adopt the concept
of transaction. A transaction [[15]] refers to the entire
cause-effect end-to-end behavior describing a separate
computation in the system. Hence, the set of particular
transactions defining one load scenario for analysis
purposes composes a single workload situation. A
workload situation may correspond to a mode of system
operation (e.g. starting mode, fault recovering, or normal
operation) or a level of intensity of environment events.

« enumeration »

TriggerKind WorkloadSituation

Internal [N
Environmental _
Timed +transaction | 1..*

Transaction

1"" timingConstraint [*]: String .1
slack: Duration
isSchedulable: Boolean

spareCap: Duration

1. +trigger +response 1

Trigger Response

cause effect
1.* 1.*

overlaps: Integer
missRatio: Real
utilization: Real
endToEndTime: Duration
deadline: Duration
maxJitter: Duration
laxity: LaxityKind

type: TriggerKind
arrival: ArrivalPattern
jitter: Duration

ResponseScenario 0.1
(from SAM_Behavior)

+behavior

Figure 5. The Workload domain model

Additionally, the transaction, trigger and response
concepts have a set of NFPs used for performing
quantitative analysis. We define NFPs as tag definitions
disambiguated by a statistical qualifier and a direction
attribute (not shown here for space reasons). Different
analysis techniques commonly use dissimilar NFPs.
However, the SAM model defines a pre-declared set of
NFPs useful for most of the analysis techniques.

For instance, a trigger is characterized by its arrival
pattern, which is a structured data type containing
concrete attributes, as for example arrival kind, period,
minimum arrival time, distribution function, among
others. On the other hand, responses specify a set of
latency NFPs concretized by end-to-end delays or
temporal requirements, e.g., end-to-end time, deadlines.
Transactions may be also annotated with efficiency NFPs,
as for example slack or spare capacity obtained from
schedulability analysis tools. Timing constraints of
transactions are expressed in the form of NFP constraints,
which relates to observers (implemented by NFP
variables) that must be attached at some point in the
sequences of actions that describe the response scenario.

4.1.2 The Behavior domain model. Figure 6
summarizes the domain concepts for defining Behavior
modeling aspects. In this model, the behavior execution
concept serves to collect detailed descriptions of the
behavior of responses, which are called in turn response
scenarios. By response scenario we mean the
specification of the smaller segment of code execution
and their precedence and concurrence relationships. This
modeling aspect is core for quantitative analysis in order
to evaluate how the execution segments contend for use
of the platform resources from a timing viewpoint.

In this manner, the detailed behavior of a given
response is represented by an ordered series of step

executions called scheduling actions (SAction).
Considering a holistic approach for the analysis, an RT
action may represent the time it takes a piece of code
execution as well as the sending of a message through a
network. The ordering of SActions follows a predecessor-
successor pattern, with the possibility of multiple
concurrent successors and predecessors, stemming from
concurrent thread joins and forks respectively. The
granularity of a SAction is often a modeling choice that
depends on the level of detail that is being considered.
Hence, a SAction at one level of abstraction may be
decomposed further into a set of finer-grained SActions.
Response Scenarios use resource services for execution
through the allocation of SActions to schedulable entities,
and for other platform services, through calls to shared
resources (acquire and release actions).

BehaviorExecution

0.1 .
1.* SchedulableEntity
’—
>

Z% - i sAction ach*ctlon

SAction AcquireAction

ResponseScenario

relAction
*

ReleaseAction

isAtomic: Boolean isAtomic= True
wecet: Duration
beet: Duration
acet: Duration

readyTime: Duration iuccesor 1 1
releaseTime: Duration Tesourcey; resource
blockingTime: Duration
preemptedTime: Duration
delayTime: Duration
deadline: Duration

laxity: LaxityKind

isAtomic= True

*

SharedResource
(from SAM_Platform)

predecessor

Figure 6. The Behavior domain model

The SAction concept is consistent with SPT, and hence
it is characterized by a similar set of NFPs, enriched with
some other and extensible latency properties like best and
average case execution time.

4.1.3 The Platform domain model. In the SAM
framework, the concept of resources platform matches to
the model of engineering resources introduced in the SPT
profile [[1]], [[6]]. This includes not only hardware
resources (CPU, devices, backplane buses, network
resources), but also software ones (threads, tasks,
buffers). Figure 7 shows a framework to describe the
platform of resources.

We shape an abstracted version of a more structured
and detailed platform model (software and hardware
execution MARTE platform sub-profiles), which is
especially useful for expressing NFPs oriented to

schedulability analysis and without distinguishing among
different abstraction levels (hardware, RTOS or
middleware).

The platform model consists of a set of resources with
explicit NFPs. This model distinguishes two kinds of
processing engines: execution engines (€.g., processors,
coprocessors) and communication engines (e.g. networks,
buses). For each, the SAM framework assigns generic
NFPs. Specifically, throughput properties e.g., processing
rate or transmission rate, efficiency properties e.g.,
utilization, slack, and overhead properties as for example
blocking times, interrupt overhead times.

Schedulable entity is a kind of active protected
resource that is used to execute SActions or complete
Response Scenarios. In a RTOS this is the mechanism that
represents a unit of concurrent execution, such as a task, a
process, or a thread. In a network, it represents a channel
or message management unit that can be characterized by
concrete scheduling parameters (like the priority for a
CAN bus).

Processing engines own shared resources as for
example I/O devices, DMA channels, critical sections or
network adapters. Shared resources are dynamically
allocated to schedulable entities by means of an access
policy. Common access policies are FIFO, priority ceiling
protocol, highest locker, priority queue, and priority
inheritance protocol.

1.*
1.x ResourcesPlatform
1.4 -
schedEntity | 1--* scheduler h
SchedulableEntity 1 Scheduler
- . - . hedul . . "
optimCriterion: OptimCriterionKind 5(1: SCUT mechanism: SchedMechanismKind
priority: Integer h algorithm: SchedAlgorithmKind
ost

1 sysScheduler

procEngine
L| ProcessingEngine

1 host

ownedResource SharedResource

policy: AccessControlPolicyKind
isPremptible: Boolean
isConsumable: Boolean

ZF priorityCeiling: Integer

utilization: Real
slack: Real

CommunicationEngine

ExecutionEngine

relExecRate: Real

transmMode: transmModeKind
relTxRate: Real
worstTxOverhead: Duration
bestTxOverhead: Duration
avgTxOverhead: Duration
maxBlockingTime: Duration
worstPacketTxTime: Duration
bestPacketTxTime: Duration
priorityRange: Interval

worstTickerOverhead: Duration
bestTickerOverhead: Duration
avgTickerOverhead: Duration
tickerPeriod: Duration
worstContextSwitch: Duration
bestContextSwitch: Duration
avgContextSwitch: Duration
worstiISRSwitch: Duration
bestISRSwitch: Duration
avglSRSwitch: Duration
schedPriorityRange: Interval
ISRPriorityRange: Interval

>

Figure 7. The Resources domain model

N

Schedulers can play two roles in this model, system
schedulers (typically a RTOS scheduler) that offer the
whole processing capacity of its associated base
processors to its allocated schedulable entities, and other
secondary schedulers that only provide the processing
capacity offered by its hosting schedulable entity. This
hierarchical structure is typically used in RTS when users
are interested in applying dynamic scheduling on top of
commercial RTOS supporting only static scheduling.
Likewise, novel algorithms exist that make possible to
perform real-time analysis of these hierarchical
configurations of schedulers [16].

5. Using the SAM sub-profile

We now examine how the domain concepts previously
presented can be represented (mapped) in the UML
modeling space. The annotations have been made over a
case study application for the real-time modeling and
analysis of a simple distributed system for the teleoperated
control of a robotized cell [10]. This example has been
reformulated in the context of the ACCORD|yy
methodology for developing real-time embedded systems.
ACCORDJyy, consists of a full MDA development
process (and the underlying modeling and execution
platforms) covering from requirements modeling, early
quantitative analysis, to full implementation.

The application system is composed of two processors
interconnected through a CAN bus. The first processor is a
teleoperation station (Station); it hosts a GUI application,
where the operator commands the robot and where
information about the system status is displayed. The
second processor (Controller) is an embedded
microprocessor that implements the controller of the robot
servos and its associated instrumentation.

The software architecture is described by means of the
class diagram shown in Figure 8. The software of the
Controller processor contains three active classes (called
real time object —-RTO in ACCORDJyy) and a passive
one which is used by the active classes to communicate.
Servo Controller is a periodic RTO that is triggered by a
ticker timer with a period of 5 ms. The Reporter RTO
periodically acquires, and then notifies about, the status of
the sensors. Its period is 100 ms. The Command Manager
RTO is aperiodic and is activated by the arrival of a
command message from the CAN bus.

The software of processor Station has the typical
architecture of a GUI application. The Command
Interpreter RTO handles the events that are generated by
the operator using the GUI control elements. The Display
Refresher RTO updates the GUI data by interpreting the
status messages that it receives through the CAN bus.
Display Data is a protected object that provides the
embodied data to the RTO in a safe way. Both processors

have a specific communication software library and a
background task for managing the communication
protocol.

« ProtectedResource »
DisplayData

displayData displayData

data: Integer [*]

read (): Data
write (D: Data)

« RealTimeObject »
DisplayRefresher

« RealTimeObject »
Commandinterpreter

updateDisplay ()
updateGraphics ()

\
\l/ comm \V comm

StationCommunication ControllerCommunication

processEvent ()
planTrajectory ()

sendCommand (C: Command)
awaitStatus (): Status

sendStatus (S: Status)
awaitCommand (): Command

4\00mm COmm/’\

« RealTimeObject » « RealTimeObject »
Reporter CommandManager
report () manage ()

servosData
servosData

« ProtectedResource » « RealTimeObject »
ServosData ServosController

servosData

Data: Integer [*
ger 1 controlServos ()

controlAlgorithms ()
doControl ()

get (): Data
set (D: Data)

Figure 8. Software architecture of the Teleoperated Robot

To organize the ACCORD|yyr models annotated for
schedulability analysis, we adopt the concept of views,
which represent the concern models composing the
SAM’s analysis context concept. In this way, we provide
separated diagrams for specifying the SAM concepts of
workload situation, behavior execution, and resources
platform. Next, we show some examples that illustrate
this organization.

5.1 Example of Workload Situation Model

The RT Situation to be analyzed contains three
transactions with hard real-time requirements. They all
use the processing resources Station, Controller and
CAN_Bus and interact by accessing protected objects.

The Control Servos transaction executes the Control
response with a period and a deadline of 5 ms. The
Report Process transaction transfers the sensors and
servos status data across the CAN bus, to refresh the
display with a period and deadline of 100 ms. Finally, the
Execute Command transaction has a sporadic triggering

pattern, but its inter-arrival time between events is
bounded to 1 s.

Figure 9 shapes a UML Interaction Overview Diagram
(I0D) for the Teleoperated Robot example. This activity
diagram represents a workload situation model consisting
of the three above-mentioned transactions characterized
by their triggers and responses. These three transactions
explicitly introduce the semantic of concurrency for the
activity partitions. Triggers introduce the semantic of
event sequence arrivals for the execution of each
interaction invocation. We also include some NFP
annotations for trigger and responses.

« workloadSituation » NormalMode /

$V1
$51}

« trigger »
ControlTrigg
{ pattern= ‘periodic’,
period= 5}

slack

ref « response »

Control
{ endToEndTime= $V2

deadline= 100 {reqOffer= ‘req’ } }

« transaction »
ControlServos
{ isSchedulable:

« trigger »
ReportTrigg
{ pattern= ‘periodic’,
period= 100 }

=$52}

ref « response »

Report
{ endToEndTime= $V4

deadline= 100 {reqOffer= ‘req’ } }

« transaction »

ReportProcess

{isSchedulable= $V3
slack:

$V5
$53}

« trigger »
CommandTrigg
{ pattern= ‘periodic’,
period= 1000 }

slack

ref « response »
Command

{ endToEndTime= $V6 >@

deadline= 100 {reqOffer= ‘req’ } }

{ isSchedulable:

« transaction »
ExecuteCommand

Figure 9. Example of Workload Situation model
5.2 Example of Behavior Execution Model

The Behavior Execution concept extends the UML
metaclass Interaction, which can be modeled by a set of
sequence or communication diagrams in UML2. In our
example, we applied it to sequence diagrams. Thus,
triggers extend the metaclass message. SActions extend
the UML2 concept of execution specification. Finally,
shared resources are lifelines of the sequence diagrams.
The chain of actions (connected by the successor-
predecessor patterns) symbolizes the concept of response
scenario.

In Figure 10, we present one of the three scenarios for the
Report transaction. This scenario represents the behavior
description of a response scenario. Thus, this response
scenario is completed with real-time constraints that
should be checked in the further schedulability analysis.

« responseScenario » Report)

« allocation »

:ContrClock
:Reporter

| { allocTo= Reporter}

« sharedResource »
:ServosData
{ policy= priorityCeiling }

«allocation »
:ControllerComm
{ allocTo= MsjStatus}

« allocation »
:StationComm
{ allocTo= MsjStatus}

« allocation »
:DisplayRefresher
{allocTo=

Display Task}

« sharedResource »
:DisplayData
{policy= priorityCeiling }

« sAction » report ()

« acquireAction » lock ()

{ weet=1.22
acet= 1.15

beet= 1.1 }u «sAction » get ()

-

{ weet= 0.02
acet= 0.0042
bcet= 0.004 }

|
|
|
|
« releaseAction » unlock dJ
|
|
T

8 « sAction »

« sAction »
awaitStatus ()
{ weet= 0.022
= 0.022
bcet= 0.022}

« sAction » sendStatus ()
{ wecet= 0.031

acet= 0.031
bcet= 0.031}

| « sAction »transmit ()

transmitCommand ()

{ wecet= 2.56

acet= 2.56

’u
B

D:l bcet= 2.56}

T transmitted (), }

« sAction »
updateDisplay ()
{wecet= 4

acet= 3.6

bcet= 0.24}

« sAction » read ()

« sAction »write ()

« sAction »
updatesGraphics ()
{ weet= 10
acet=6.5
bcet= 5}

Figure 10. Example of Behavior Execution model

5.3 Example of Resources Platform Model

In Figure 11, the “Execution Engine” domain concept
extends the metaclass nodes, and the metaclass Instance

and system slacks. These are the percentages by which
the execution times of the operations in a transaction can
be increased yet keeping the system schedulable.

« schedulableEntity »

. DisplayRefresherTask
{ priority= 22) }

« schedulableEntity »
. MsjStatus
{ priority= 24) }

« schedulableEntity »
: MsjCommand

{ priority= 24 }

« schedulableEntity »

. ServosControllerTask

{ priority= 30) }

« schedulableEntity »

. Reporter
{ priority= 24 }

« schedulableEntity »

. CommandManager
{ priority= 16 }

« schedulableEntity »
- ControllerComm
{ priority= 31 }

Specifications are used to represent schedulable entities, - Station
shared resources, and eventually schedulers. < host »..
« executionEngine » ...
[
5.4 Some Schedulability Analysis Results
y y : CAN_Bus
. « communicationEngine » «h -
Table 2 shows the most relevant results obtained from ransmMode= Half-Duplex e« host>
13 : . relTxRate= 1.0 {source= est}
the MAST schedulability analysis tools [10]. In this table, worstTxOverhead 0,047 source= meas) L
we have compared the end-to-end times of each of the bestTxOverhead= 0.047 {source= meas} « host>-.
h angxOve_rhea_d— 0.047 {source= meas}
three transactions of the Real Time Situation with their maxBlockingTime= 0.111 {source= meas}
. worstPacketTxTime= 0.064 {source= calc}
assoc1ated reésponses. bestPacketTxTime= 0.064 {source= calc}
priorityRange= [16..2047]
K - K ‘ .« host »™
Transaction/Response Slack EndToEndTime Deadline - Controller
Control Servos 101.56% « executionEngine » .
relExecRate= 0.25 e« host »
Control 3.05 ms 5ms worstTickerOverhead= 0.007 {source= meas}
tickerPeriod= 1.0 {source= est}
849 worstContextSw:tch= 0.005 {source= meas} . -
Report Process 189.84% bestContextSwitch= 0.005 {source= meas} «host »
avgContextSwitch= 0.005 {source= meas}
Report 39.1ms 100 ms maxISRSwitch= 0.0025 {source= meas}
minISRSwitch= 0.0025 {source= meas} B
Execute Command 186.72% avgISRSwitch= 0.0025 {source= meas} [« host»..
schedPriorityRange= [0..30]
Command 359 ms 1000 ms ISRPriorityRange= [31..31]

Table 2. Results of Schedulability Analysis with the MAST tool

In order to get a better estimation of how close the
system is from being schedulable (or not schedulable),
the MAST toolset is capable of providing the transaction

VME_Bus

«sy

« executionEngine »
: RobotArm

ler »

« Scheduler »
- RTOS_Scheduler
{ algorithm= ‘RM’,
mechanism= ‘fixed-priority’ }

Figure 11. Example of Resources Platform model

Notice that most analysis tools operate on a simplified
view of a system, as was illustrated in this example.
However, this profile allows annotations and
interpretations to be attached at the level of detail desired
by the designer. Indeed, even if the specification contains
extreme detail, the annotations may optionally be applied
to aggregates. This is an overriding reason to find a path
to annotations that require a minimum of effort, with a
minimum of additions to the design model, and with clear,
non-fragmented specifications of NFPs. It is also essential
that NFPs can be attached to a real software design, rather
than requiring a special version of a design created only
for analysis.

6. Conclusions

This paper describes the MARTE schedulability
analysis sub-profile for enabling timing predictions. One
of the main goals behind this sub-profile is to provide a
common framework within UML that fully encompasses
the most common schedulability analysis techniques but
still leaves enough flexibility for different specializations.

The approach is supported on the NFP modeling
framework. It defines a set of mechanisms to declare and
specify NFPs that are necessary for different kinds of
quantitative analyses. The relationships between NFPs
annotations and UML modeling elements is discussed in
order to show how to declare domain-specific NFPs, and
how to express NFP values attached to model elements.

The schedulability analysis modeling (SAM)
framework provides a common modeling basis for
different analysis techniques by factorizing concepts that
are used by the various schedulability methods. This
framework extends the previous SPT’s schedulability sub-
profile and reorganizes it into generic and consistent
modeling concerns (workload, behavior and platform).
SAM attempts to enhance the expressive power of UML
models and the profile usability by easing the
comprehension of the global framework.

The usage of NFP and SAM frameworks are illustrated
by the utilization of the proposed annotations on a typical
distributed real-time application, formulated in the frame
of the ACCORDJyy methodology. This work can be seen
as a first reflection of the UML MARTE profile’s
schedulability analysis capabilities.

7. References

[1] Object Management Group: UML Profile for
Schedulability, Performance, and Time, Version 1.1. 2005.
OMG document: formal/05-01-02.

[2] Object Management Group: Pending Issues sent to the
OMG Finalization Task Force: UML Schedulability,
Performance and Time profile.

[3] S. Gérard (edited by): Report on SIVOES’2004-SPT
Workshop on the usage of the UML profile for Scheduling,
Performance and Time Mai 25th, 2004, Toronto, Canada.

[4] Object Management Group: UML Profile for Modeling and
Analysis of Real-Time and Embedded systems (MARTE),
RFP. 2005. OMG document: realtime/05-02-06.

[5] Object Management Group: UML Profile for Modeling
Quality of Service and Fault Tolerance Characteristics and
Mechanisms. 2004. OMG document ptc/04-09-01.

[6] B. Selic, A Generic Framework for Modeling Resources
with UML. IEEE Computer, Vol.33, N. 6, pp. 64-69. June,
2000.

[71 S. Gérard: "Modélisation UML exécutable pour les
systémes embarqués de l'automobile", PhD Thesis. 2000,
Evry, Paris.

[8] Object Management Group: Systems Modeling Language
(SysML) Specification, Version 0.9. Draft. 2005.

[9] T. H. Phan: "Analyse d'ordonnancabilité¢ d'applications
temps réel modélisées en UML", PhD Thesis. 2004, Evry,
Paris.

[10] J.L. Medina, M. G. Harbour, and J.M. Drake: MAST Real-
Time View: A Graphic UML Tool for Modeling Object-
Oriented Real-Time Systems. Proc. of the 22th IEEE Real-
Time Systems Symposium, pp. 245-256. December 2001.

[11TR. Chen, M. Sgroi, G. Martin, L. Lavagno, A. L.
Sangiovanni-Vincentelli, J. Rabaey: UML for Real: Design
of Embedded Real-Time Systems, Edited by B. Selic, L.
Lavagno, G. Martin, pp. 189-270, Kluwer Academic
Publishers, May 2003.

[12] Object Management Group. MDA Guide Version 1.0.1.
2003.

[13] Object Management Group. Unified Modelling Language:
Superstructure Version 2.0. 2004. OMG document ptc/04-
10-02.

[14] S. Graf, 1. Ober, I. Ober: A real-time profile for UML.
STTT, Int. Journal on Software Tools for Technology
Transfer Springer Verlag. 2004.

[15] K. Tindell: Adding Time-Offsets to Schedulability
Analysis: Technical Report YCS 221, Department of
Computer Science, University of York, January 1994.

[16] Sha, L., Abdelzaher, T., Arzen, K., E., Cervin, A., Baker, T.,
Burns, A., Buttazzo, G., Caccamo, M., Lehoczky, J., Mok,
A., K.. Real Time Scheduling Theory: A Historical
Perspective: Real-Time Systems Journal, Vol. 28, No, 2-3,
pp. 101-155, ISSN:0922-6443, November-December 2004.

[17] H. Espinoza, H. Dubois, S. Gerard, J. Medina, D.C. Petriu,
M. Woodside, "Annotating UML Models with Non-
Functional Properties for Quantitative Analysis", Proc. of
MoDELS"2005 Satellite Events, Lecture Notes in Computer
Science, Springer, 2005.

[18] Object Management Group: UML Profile for Modelling
and Analysis of Real-Time and Embedded systems
(MARTE), Initial Submission: ProMARTE team. 2005.
OMG document: realtime/05-11-01.

[19] E. Colbert, "Overview of the UML Profile for the SAE
AADL" (presentation):
http://la.sei.cmu.edu/aadlinfosite/ AADLPublications&Prese
ntations.html, SAE World Aviation Congress Nov 2004.

[20] The ProMARTE home page: http://www.promarte.org

