
A Round Robin Scheduling Policy for Ada

A. Burns�, M. González Harbour�, and A.J. Wellings�

� Department of Computer Science
University of York, UK

Email:�burns,andy�@cs.york.ac.uk
� Departamento de Electr´onica y Computadores

Universidad de Cantabria, Spain
Email: mgh@unican.es

Abstract. Although Ada defines a number of mechanisms for specifying schedul-
ing policies, only one,Fifo Within Priorities is guaranteed to be sup-
ported by all implementations of the Real-Time Systems Annex. Many applica-
tions have a mixture of real-time and non real-time activities. The natural way of
scheduling non real-time activities is by time sharing the processor using Round
Robin Scheduling. Currently, the only way of achieving this is by incorporating
yield operations in the code. This is ad hoc and intrusive. The paper proposes a
new scheduling policy which allows one or more priority levels to be identified
as round robin priorities. A task whose base priority is set to one of these levels
is scheduled in a round robin manner with a user-definable quantum.

1 Introduction

The Real-Time Systems Annex in Ada 95 defines a number of mechanisms for spec-
ifying scheduling policies. It also provides a complete definition of one such policy:
Fifo Within Priorities. This policy, which requires preemptive priority based
dispatching, is a natural choice for real-time applications. It can be implemented ef-
ficiently and leads to the development of applications that are amenable to effective
analysis – especially when combined with the immediate priority ceiling protocol (ceil-
ing locking) on protected objects.

There are, however, application requirements that cannot be fully accomplished
with this policy alone. For example, many applications have a mixture of real-time and
non real-time activities. The natural way of scheduling non real-time activities is by time
sharing the processor, as in most general-purpose operating systems. With the standard
policy (Fifo Within Priorities), some level of rotation can be achieved by giv-
ing the set of non real-time tasks the same priority and requiring them to incorporate
periodic yield operations (such as delay 0.0). However this is an ad hoc approach, is
intrusive, and cannot easily be undertaken with legacy code or when using prewritten
or shared libraries. Real-time applications can also benefit from a round robin approach.
Although extra task switches increases run-time overheads, round robin execution al-
lows a set of tasks (with the same priority) to make progress at a similar rate.

The aim of this paper is to define a new scheduling policy for the Real-Time Systems
Annex, with a view to this definition (or one derived from it) being incorporated into



the Annex. This would be one of a set of new policies being proposed for the Annex.
For example, a non-preemptive dispatching policy has already been agreed[1].

This paper is organised as follows. First an overview of the POSIX provision is
given. Ada is closely associated with POSIX and indeed some Ada run-time systems
(e.g. GNAT) are built on top of POSIX compliant kernels. It is important that any pro-
posal for Ada is implementable on POSIX even if the details of the Ada policy are not
identical to the Round Robin facility of POSIX.Section 3 then gives the requirements
of the Ada policy and Section 4 the details of the proposal (including a discussion of
some of the priority inheritance problems that ensue). Conclusions are given in Section
5.

2 The POSIX Policies

The POSIX real-time scheduling model [3, 2] is a fixed-priority preemptive model in
which there are three compatible scheduling policies defined:

– SCHEDFIFO. It is a priority preemptive policy that uses FIFO ordering for threads
of the same priority. It is similar to Ada’s FIFOWithin Priorities policy.

– SCHEDRR. It is also a priority-preemptive policy that uses a round-robin execu-
tion quantum to share the processor among threads of the same priority level. In this
policy, when the implementation detects that a running thread has been executing
for a time period of the round robin quantum or longer, the thread is placed at the
tail of the scheduling queue for its priority, and the head of that queue is removed
and made the running thread. While a round robin thread is preempted by higher
priority threads it does not consume its unused portion of round robin quantum.
This policy ensures that if there are multiple threads at the same priority, one of
them will not monopolize the processor.

– SCHEDSS. It is the sporadic server scheduling policy, intended for processing
aperiodic threads with a guaranteed bandwidth, and with predictable effects over
lower priority threads.

These policies can be set on a thread by thread basis, because the effects of mixing
them are well defined. For example, when a round robin thread is running, its execution
time is limited to its time quantum. After the quantum is elapsed, the thread is sent to
the tail of the ready queue for its priority. If a FIFO within priorities thread now comes
into execution, it runs until completion (possibly preempted by higher priority threads
during its execution). It is the responsibilityof the application developer to make sure
that no mixture of round robin and FIFO threads is made at the same priority level, if
the round robin semantics is to be preserved.

The ranges of valid priorities for the SCHEDFIFO and SCHEDRR may coincide,
overlap, or be disjoint. Each of these ranges is required to have at least 32 distinct
priority levels. There are functions that allow the application to obtain such priority
ranges in a portable way.

In order to portably define a set of priorities that is suitable for mixing real-time
and non real-time threads, a new requirement is being proposed in the revision of the
POSIX.13 real-time profiles [4], which in essence states that there should be at least one



round robin priority level that is below the first 31 priority levels of the SCHEDFIFO
policy. In this way, in a portable application, the non real-time threads would use that
round robin priority level, while the real-time threads would use the top 31 values of
the SCHEDFIFO policy.

Real-time POSIX defines the mutex as the mechanism to achieve mutual exclu-
sive synchronization for shared data and resources. Mutexes have an optional creation
attribute, the protocol, that can be used by the application to specify a real-time syn-
chronization protocol, if desired. Two such protocols are defined:

– PTHREAD PRIO INHERIT: This is the basic priority inheritance protocol, in which
a thread that is blocking one or more threads due to the use of the mutex inherits
their priorities.

– PTHREAD PRIO PROTECT: This is the immediate priority ceiling protocol, in
which each mutex has an attribute called its priority ceiling; while a thread holds
the lock on one or more mutexes, it inherits the priority ceilings of those mutexes.
This is basically the same as Ada’s CeilingLocking protocol for protected objects.

One problem that affects real-time behavior is the relationship between the round
robin scheduler, and the mutexes. Ideally, to minimize blocking, expiration of the round
robin quantum should be delayed if the thread is holding a mutex with one of the
PTHREAD PRIO INHERIT of PTHREAD PRIO PROTECT protocols. The standard
does state that “While a thread is holding a mutex that has been initialized with the
PRIO INHERIT or PRIOPROTECT protocol attributes, it shall not be subject to being
moved to the tail of the scheduling queue at its priority”. But the standard does not list
the expiration of the round robin quantum as one of the circumstances to which this
statement applies, thus leaving the behavior unspecified.

2.1 Overheads of Implementation

Depending on the degree of precision that the implementtaion gives to round robin
scheduling, the execution time quantum can be measured in a coarse way, for example
counting ticks of a particular clock (and accounting for partial ticks as full ones), or in
a more precise way by accounting for actual execution time.

As an example, we have implemented a precise round robin scheduler in MaRTE OS
[6], and we have measured its overhead relative to the overhead of the SCHEDFIFO
policy. We have mixed the implementation of this scheduler with the execution-time
budget mechanism also available in MaRTE OS. For example, the expirations of round
robin quantum are programmed as execution time events, similar to those of other bud-
gets associated with execution-time timers. The implementation of execution time bud-
gets has taken approximately 66 lines of code, and has incremented the standard context
switch from 0.42 microseconds to 0.44, a negligible 20 ns increase (as measured on a
1.1GHz Pentium III). The implementation of the round robin policy itself has taken 30
lines of code, of which 10 lines are shared with the sporadic server scheduling policy,
also specified in POSIX and available in MaRTE OS. The context switch time due to
the exhaustion of a round robin quantum, 0.75 us, is very similar to the context switch
caused by the expiration of a relative sleep algorithm, 0.75 us. Both include the time



required to handle the timer hardware interrupt, which was not necessary for the regular
context switch. Although these numbers are those inside the OS and do not take into
account the time spent by the Ada Runtime System, it is expected that the overheads
there will be comparable.

3 Requirements for Round Robin Scheduling

Although the basic requirements for Round Robin Scheduling are straightforward, and
many examples exist in general purpose operating systems (as well as the POSIX inter-
face definition), there is more than one approach possible to providing this dispatching
behaviour; see Aldea Rivas and Gonz´alez Harbour for a discussion [5]. Clearly a non-
intrusive method is needed. Hence a policy must be defined that forces Round Robin
scheduling on a set of tasks without the need to make any code changes to the tasks
themselves. One approach, following POSIX, would be to assign Round Robin status
on a per task basis. This is a very general facility that is appropriate for an OS in-
terface definition. However, from the perspective of the Ada Language, introducing a
per-task scheduling policy represents a substantially different model than the one cur-
rently defined in the Real-Time Annex. In addition, allowing a mixture of tasks with
RoundRobin and FIFOWithin Priorities at the same priority level introduces a poten-
tial for mistakes that would degrade real-time performance. The following requirements
are therefore necessary and sufficient.

– Round Robin (RR) scheduling should co-exist with standard preemptive priority
based scheduling.

– All tasks at any priority level should be dispatched according to a single policy
(eitherFifo Within Priorities or a round robin).

– At a RR priority level, each task is given the same quantum of CPU resource.

This different uses of priority are illustrated in Figure 1.
When a task exhausts its quantum of CPU resource, it is placed at the back of the

dispatching queue of tasks at that priority level.
Hence, we take a priority-centred rather than a task-centred view. A full proposal

(see Section 4) must, therefore, cater for the use of dynamic priorities that may move a
task into or out of a RR priority level. It must also give a meaning to a protected object
being assigned a RR priority.

A significant requirement is that the proposal must deal with the situation in which
a task’s quantum is exhausted while it has an inherited priority. In particular

– No extra lock must be needed to ensure mutual exclusive execution with protected
objects.

The most straightforward use of Round Robin scheduling is to require it only at the
lowest priority level (as with the new POSIX proposal [4]). All other priorities use the
normal preemptive scheme, but the spare capacity that becomes available to the lowest
priority level is shared between a set of non real-time tasks. Scheduling analysis could
be used to give a minimum value to this spare capacity (over a relatively long time



Fig. 1. Priority Levels

period) and hence, with knowledge of the quantum size and number of tasks at the RR
level, a measure of progress could be calculated.

Round Robin scheduling can also be used at priority levels other than the lowest
one. Here, the goal is to reduce the output jitter of a set of periodic tasks which all have
the same period and deadline. Without Round Robin scheduling, the variation in the
scheduling of these tasks results in a large variation in their response times. If the tasks
are outputting to the environment, it may be necessary to bound the jitter on that output.
This use of Round Robin scheduling within a real-time program explains our proposal
to place the new policy in Annex D (the real-time annex).

A final observation concerns the size of the quantum. Ideally this should be pro-
grammable (at least during elaboration) so that each RR priority level can choose the
size of its quantum. However, some implementations, for example those built upon
POSIX, may need to impose restrictions. A compromise is therefore needed in the pro-
posal.

In a current AI (Ada Issue) a proposal is being considered for adding CPU-Time
budgeting capabilities to the Ada standard. This AI defines a new package,Execu-
tion Time (as a child ofAda.Real Time), that contains operations to measure the
execution time of the different tasks in the system, and to limit the execution time of the
tasks to desired execution time budgets, withfacilities to detect execution time overruns.
As part of this package, a private type calledCPU Time is defined to represent periods
of execution time. This type seems the most appropriate for specifying the round robin
quantum values, and therefore we have used it in this proposal.



4 Proposal

An extension is proposed for Annex D of the Ada Reference Manual (ARM). First a
new policy-identifier is defined for task dispatching.

pragma Task_Dispatching_Policy(Priority_Specific);

WhenPriority Specific is used, the dispatching policy is defined on a per pri-
ority level. This is achieved by the use of a new configuration pragma:

pragma Priority_Policy (Policy_Identifier, Priority
[,Policy_Argument_Definition]);

ThePolicy Identifier shall beFifo Within Priorities,Round Robin
or an implementation-defined identifier. ForPolicy Identifier Fifo Within
Priority there shall be noPolicy Argument Definition. ForPolicy Iden-
tifier Round Robin, thePolicy Argument Definition shall be a single
parameter,Round Robin Quantum, of typeCPU Time (from the Execution Time
proposal).

For other policy identifiers, the semantics of thePolicy Argument Definition
are implementation defined. At all priority levels, the defaultPriority Policy
is Fifo Within Priorities. The locking policy associated with thePrior-
ity Specific task dispatching policy isCeiling Locking.

An implementation that supports Round Robin Scheduling must provide the follow-
ing package:

with Ada.Real_Time.Execution_Time; use Ada.Real_Time;
package Round_Robin_Dispatching is

Default_Quantum : constant Execution_Time.CPU_Time;
Minimum_Quantum : constant Execution_Time.CPU_Time;
Maximum_Quantum : constant Execution_Time.CPU_Time;
function Nearest_Supported_Quantum

(Q : Execution_Time.CPU_Time)
return Execution_Time.CPU_Time;

Maximum_Priority_Level : constant System.Priority;
private

-- definition of constants, implementation defined
end Round_Robin_Dispatching;

Here a default quantum is given together with the minimum and maximum values sup-
ported. Note although the type is private, a value in seconds can be obtained via the
procedureSplit defined inExecution Time. If an implementation only supports
one value then the minimum and maximum are set to the default. The function is pro-
vided to deal with implementations that only support discrete values for the quantum.
If the user calls this function with a desired budget then the function returns the actual
value that will be used at run-time (this will be at least the minimum and no more than
the maximum).

The final constant in the package gives the maximum priority that can be specified
for RR dispatching. Note this is of typePriority and hence cannot be at an interrupt



priority level. The lowest value this can be isPriority’First; in which case only
the lowest priority is available for RR scheduling.

Use of pragmaPriority Policy will be checked with the following rules ap-
plying:

– If the same priority is given in more than one pragma, the partition is rejected.
– If the Policy Identifier is Round Robin and the value ofPriority

is greater thanRound Robin Dispatching.Maximum Priority Level
then the partition is rejected.

– If the Policy Identifier is Round Robin and no quantum is given, the
default inRound Robin Dispatching applies.

– If Task Dispatching Policy is notPriority Specific for the partition
in which a pragmaPriority Policy appears, then the partition is rejected.

It is now necessary to consider the dynamic semantics of the proposal. If all priority
levels havePriority Policy Fifo Within Priorities then this is equiva-
lent toTask Dispatching Policy Fifo Within Priorities. The dynamic
semantics defined in D.2.2 of the ARM forFifo Within Priorities apply to
any priority level withPriority Policy Fifo Within Priorities.

For Policy Identifier Round Robin, the same rules forFifo Within
Priority apply with the additional rules and modifications:

– When a task is added to the tail of the ready queue for a priority level withPri-
ority Policy Round Robin, it has an execution time budget set equal to the
Round Robin Quantum for that priority level. This will occur when a blocked
task becomes executable again.

– When a task is preempted (by a higher priority task), it is added to the head of the
ready queue for its priority level. If this is a RR priority level then it retains its
remaining budget.

– When a task with a base priority at a RR priority level is executing, its budget is
decreased by the amount of execution time it uses.

– When the implementation detects that a task with a round robin priority has been
executing for a time larger than or equal to its round-robin quantum, the task is
said to have exhausted its budget. When a running task exhausts its budget, it is
moved to the tail of the ready queue for that priority level. The semantics of this
move is equivalent to the task with priorityPri executingSet Priority(Pri);
see D.5(15) of the ARM. Hence, for example, it will continue to execute within a
protected operation.

The last rule together gives the important details of the proposal. First it is the base
priority of a task that is significant. If a task’s base priority is at a RR level then it will
consume its budget whenever it is executing even when it has inherited a higher priority
(i.e. its active priority is greater than its base priority). The final point deals with the
key question of what happens if the budget becomes exhausted while executing in a
protected object. To ensure mutual exclusion, without requiring a further lock, it is nec-
essary to allow the task to keep executing within the PO. It will consume more than its
quantum but the expected behaviour of system is maintained. The usual programming



discipline of keeping the code within protected objects as short as possible will ensure
that quantum overrun is minimised. Further support for these semantics comes from
observing that execution within a PO is abort-deferred. Quantum exhaustion is a less
severe state than being aborted; deferred behavior thus seems appropriate.

To complete the definition, a few details have to be covered. A task that has its
priority changed, via the use ofSet Priority, may move to, or from, a round-robin
priority level. If it is moved to a RR level then it is placed at the tail of the ready queue
and given a full quantum. If it moves to aFifo Within Priorities scheme then
it is again placed at the tail of the ready queue but no quantum is set. Figure 2 gives an
illustration of the rules defined above.

Fig. 2. State Transistion Diagram

There are no additional rules concerning a protected object with a priority assigned
that is a round robin priority. A task does not obtain a budget by executing with an active
priority at a round robin level – it is only the base priority of a task that determines its
scheduling policy.

An example of usage is as follows. Assume packageAda.Real Time is visible.
To set the default priority level to round-robin with a quantumof 50 milliseconds:

pragma Task_Dispatching_Policy (Priority_Specific);



pragma Priority_Policy (Round_Robin, Default_Priority,
Execution_Time.Time_Of(0,Milliseconds(50));

By setting the quantum to be very large (if allowed byRound Robin Dispatching.
Maximum Quantum) a ‘run until blocked’ at the lowest priority level can be requested:

pragma Task_Dispatching_Policy (Priority_Specific);

pragma Priority_Policy (Round_Robin, Priority’First,
Execution_Time.CPU_Time_Last);

This proposal introduces round-robin scheduling by assuming that such a scheme would
be used at a particular priority level (or levels) and that a single quantum value is ap-
propriate for each level. Mixing round-robin and non-round-robin at the same priority
level, or having quanta defined on a per-task basis is not considered necessary – and
could be achieved by using supervisor tasks and execution time budgeting.

Increased functionality could be achieved by allowing the size of the quantum to be
changed dynamically. This is not considered necessary.

4.1 Scheduling Analysis

Most forms of scheduling analysis (e.g. response-time analysis) assume that all tasks
have distinct priorities. If two or more tasks share a priority then the analysis has to
assume that, for each task, the other tasks execute first. This is a pessimistic but safe
assumption; whatever the actual ordering, the analysis will not underestimate the in-
terference of other tasks. Round robin dispatching is therefore already catered for by
this approach, and hence standard scheduling analysis can be applied (with a small
amount of extra overhead been factored in to allow for the increased number of context
switches).

5 Conclusions

This paper has introduced a proposal for adding Round Robin scheduling to the port-
folio of policies supported by the Real-Time Systems Annex. Although priority based
preemptive scheduling is the policy of choice for most real-time applications, it is in-
creasingly the case that large have both more complete real-time requirements and non
real-time components. With just one non real-time task it is easy to construct the code
of the task as a non-blocking infinite loop, and give it the lowest priority in the system.
But if there are two or more such tasks it is not possible to share this base priority with-
out injecting ‘relinquish CPU’ statements. Round Robin scheduling is the standard way
of time sharing such tasks. Such sharing is also of benefit to real-time code by allowing
a set of tasks to make progress at a similar rate.

The motivation for the proposal given here is to allow applications to simultaneously
use priority based scheduling and Round Robin. It is intended to forward this proposal
(or variant of it) as an AI to the ARG for possible inclusion in the next Ada revision.



Acknowledgements

The topic of Round Robin scheduling has been discussed at the Real-Time Workshops,
IRTAW – we acknowledge the input from people attending these workshops. The pro-
posal reflects work undertaken as part of the EU funded FIRST project.

References

1. A.Burns. Non-preemptive dispatching and locking policies. In M. Gonz´ale Harbour, editor,
Proceedings of the 10th International Real-Time Ada Workshop, pages 46–47. ACM Ada
Letters, 2001.

2. IEEE. Information Technology - Standardized Application Environment Profile - POSIX
Realtime and Embedded Application Support (AEP) (POSIX): 1003.13:1998, 1998.

3. IEEE. Information Technology - Portable Operating System Interface (POSIX): 1003.1:2001,
2001.

4. IEEE. Information Technology - Standardized Application Environment Profile - POSIX
Realtime Application Support (AEP) Draft 1003.13 (2), 2002.

5. M. Aldea Rivas and M. Gonz´alez Harbour. Extending Ada’s real-time systems annex with
the POSIX scheduling services. In M. Gonz´alez Harbour, editor,Proceedings of the 10th
International Real-Time Ada Workshop, pages 20–26. ACM Ada Letters, 2001.

6. M. Aldea Rivas and M. Gonz´alez Harbour. MaRTE OS: An ada kernel for real-time embedded
applications. InReliable Software Technologies, Proceedings of the Ada Europe Conference,
Leuven. Springer Verlag, LNCS 2043, 2001.


