
Notas:

1

Notas:

2

In computer systems, many jobs share the system resources such as CPU, disks, and other devices.
Since generally only one job can use the resource at any time, all other jobs wanting to use that
resource wait in queues. Queueing theory helps in determining the time that the jobs spend in various
queues in the system. These times can then be combined to predict the response time, which is
basically the total time that the job spends inside the system. It is not, therefore, surprising that
queueing models have become so popular among computer systems performance analysts.

Queueing theory is the key analytical modeling technique used for computer systems performance
analysis. The literature on queueing theory is vast. Several hundred papers are published every year.
Fortunately, a large percentage of day-to-day performance questions can be answered using only a
few techniques. To begin with, you need a knowledge of the queueing notation and some results on
single-queue systems. For systems with multiple queues, operational analysis, mean-value analysis,
and convolution are very useful. In addition, the technique of hierarchical modeling is helpful in
analyzing large systems. The discussion in this part has been limited to these techniques.

Following are examples of questions that you should be able to answer after reading this part:

1. What are the various types of queues?

2. What is meant by an M/M/m/B/K queue?

3. How should you obtain response time, queue lengths, and server utilizations?

4. How should you represent a system using a network of several queues?

5. How should you analyze simple queueing networks?

6. How should you obtain bounds on the system performance using queueing models?

7. How should you obtain variance and other statistics on system performance?

8. How should you subdivide a large queueing network model and solve it?

Notas:

3

A queue is a system to which customer arrive to receive a service. When the system is busy serving
others customers, incoming customers wait for thry turn . Upon completion of a service, the
customer that must be server next is selected according to some queueing policy . No customers are
allowed to leave the queue before having received service.

Notas:

4

In order to analyze such a queue, the following characteristics of the system should be specified:

1. Arrival Process: If the students arrive at times t1,t2,...,tj, the random variables τj=tj-tj-1 are called the
interarrival times. It is generally assumed that theτj form a sequence of Independent and Identically
Distributed (IID) random variables. The most common arrival process is the so-called Poisson arrivals,
which simply means that the interarrival times are IID and are exponentially distributed. Other
distributions, such as the Erlang and hyperexponential, are also used. In fact, several queueing results are
valid for all distributions of interarrival times. In such a case, the result is said to hold for a general
distribution.

2.Service Time Distribution: We also need to know the time each student spends at the terminal. This is
called the service time. It is common to assume that the service times are random variables, which are IID.
The distribution most commonly used is the exponential distribution. Other distributions, such as the
Erlang, hyperexponential, and general, are also used. Again the results for a general distribution apply to
all service time distributions.

3. Number of Servers: The terminal room may have one or more terminals, all of which are considered
part of the same queueing system since they are all identical, and any terminal may be assigned to any
student. If all the servers are not identical, they are usually divided into groups of identical servers with
separate queues for each group. In this case, each group is a queueing system.

4. System Capacity: The maximum number of students who can stay may be limited due to space
availability and also to avoid long waiting times. This number is called the system capacity. In most
systems, the capacity is finite. However, if the number is large, it is easier to analyze if infinite capacity is
assumed. The system capacity includes those waiting for service as well as those receiving service.

5. Population Size: The total number of potential students who can ever come to the computer center is the
population size. In most real systems, the population size is finite. If this size is large, once again, it is
easier to analyze if we assume that the size is infinite.

6. Service Discipline: The order in which the students are served is called the service discipline.

Notas:

5

To specify a queueing system, we need to specify these six parameters. Queueing theorists,
therefore, use a shorthand notation called the Kendall notation in the form α/σ/m/β/N/Q, where the
letters correspond in order to the six parameters listed above. That is, α is the interarrival time
distribution, σ is the service time distribution, m is the number of servers, β is the number of buffers
(system capacity), N is the population size, and Q is the service discipline.

The distributions for interarrival time and service times are generally denoted by a one-letter symbol
as follows:

M Exponential

Ek Erlang with parameter k

Hk Hyperexponential with parameter k

D Deterministic

G General

A deterministic distribution implies that the times are constant and there is no variance. A general
distribution means that the distribution is not specified and the results are valid for all distributions.

Notas:

6

Las características de las diferentes distribuciones se pueden consultar p.e. en Raj Jain:”The art of
Computer System Performance Analysis”

Notas:

7

Notas:

8

The most common discipline is First Come, First Served (FCFS). Other possibilities are Last Come,
First Served (LCFS) and Last Come, First Served with Preempt and Resume (LCFS-PR). Computer
system CPUs generally use Round-Robin (RR) with a fixed-size quantum. If the quantum size is
small compared to average service time, it is called Processor Sharing (PS) since each of the n
waiting jobs would then receive 1/nth of the processor’s time. A system with a fixed delay, for
example, a satellite communication link, is called an Infinite Server (IS) or a delay center.
Terminals in timesharing systems are usually modeled as delay centers. Sometimes the scheduling is
based on the service time required. Examples of such disciplines are Shortest Processing Time first
(SPT), Shortest Remaining Processing Time first (SRPT), Shortest Expected Processing Time first
(SEPT), and Shortest Expected Remaining Pro-first (SERPT). In the real world, occasionally one
may encounter Biggest In, First Served (BIFS) or Loudest Voice, First Served (LVFS).

Notas:

9

Example M/M/3/20/1500/FCFS denotes a single-queue system with the following parameters:

1. The time between successive arrivals is exponentially distributed.

2. The service times are exponentially distributed.

3. There are three servers.

4. The queue has buffers for 20 jobs. This consists of three places for jobs being served and 17
buffers for jobs waiting for service. After the number of jobs reaches 20, all arriving jobs are lost
until the queue size decreases.

5. There is a total of 1500 jobs that can be serviced.

6. The service discipline is first come, first served.

Notas:

10

An M/M/1 queue, which is the most commonly used type of queue, can be used to model single–
processor systems or to model individual devices in a computer system. It is assumed that the
interarrival times and the service times are exponentially distributed and there is only one server.
There are no buffer or population size limitations and the service discipline is FCFS. Th analyze this
type of queue, we need to know only the mean arrival rate » and the mean service rate μ.

The state of this queue is given by the number of jobs in the system. A state transition diagram for
the system is shown in the figure. It is similar to that of the birth-death processes.

Notas:

11

Arrival rate(λ): Whereas A counts the number of request arriving at a queueing center, λ express the
rate at which they arrive. It is the number of arrivals per units of time. For example, if an operating system is
instrumented such that it counts the number of request for service at some resource, then the total number of the
counts during the measurement period is the arrival rate.

Throughput (X): This quantity is also a rate. Since it is a direct measure of the rate of completions, it is a
counterpart of the arrival rate. As we shall see shortly, λ and X can be equal for certain types of queues. In the
event that they are not equal, we need to be able to distinguish them.

Service time (S): It is not a rate. It expresses the average amount of time required to complete the servicing of a
single request.

Mean utilization (U): expressed the average amount of time the server or resource was busy during the
measurement time T. Since U is a ratio of two quantities, it has not units and is offten expressed as a percentage.

Notas:

12

Consider a queue which is viewed as a black box. We make no specific assumptions about its
operation; it may be a network node, an information system, etc. The cumulative functions are:

• A(t) (input function): amount of work that arrives into the system in the time interval [0, t]

• D(t) (output function): amount of work done in the time interval [0, t]

Assume that there is some time t0 ≤ 0 at which A(t0) = D(t0) = 0. We interpret t0 as an instant at
which the system is empty. The main observations are:

• Q(t) := A(t) − D(t) is the backlog (unfinished work) at time t.

• Define d(t) = min{u ≥ 0 : A(t) ≤ (D(t + u)} (horizontal deviation on Figure 8.1). If there is no loss of
work (no incoming item is rejected) and if the system is first in, first out (FIFO), then d(t) is the
response time for a hypothetical atom of work that would arrive at time t.

Notas:

13

PLAYOUT BUFFER. Consider a packet switched network that carries bits of information from a
source with a constant bit rate r (Figure 8.2) as is the case for example, with circuit emulation. We
have a first system S, the network, with input function A(t) = rt. The network imposes some variable
delay, because of queuing points, therefore the output A() does not have a constant rate r. What can
be done to re-create a constant bit stream ? A standard mechanism is to smooth the delay variation in
a playout buffer. It operates as follows. When the first bit of data arrives, at time d(0), it is stored in
the buffer until some initial delay has elapsed. Then the buffer is served at a constant rate r whenever
it is not empty. This gives us a second system S, with input A() and output D(). What initial delay
should we take ? We give an intuitive, graphical solution.

The second part of the figure shows that if the variable part of the network delay (called delay jitter)
is bounded by some number Δ, then the output A(t) is bounded by the two lines (D1) and (D2). Let
the output D(t) of the playout buffer be the function represented by (D2), namely D(t) = rt − d(0) −
Δ. This means that we read data from the playout buffer at a constant rate r, starting at time d(0) + Δ.
The fact that A(t) lies above (D2) means that there is never underflow.

Thus the playout buffer should delay the first bit of data by an amount equal to Δ, a bound on delay
jitter.

Notas:

14

One of the most commonly used theorems in queueing theory is Little’s law, which allows us to
relate the mean number of jobs in any system with the mean time spent in the system as follows:

Mean number in the system = arrival rate × mean response time

This relationship applies to all systems or parts of systems in which the number of jobs entering the
system is equal to those completing service. Little’s law, which was first proven by Little (1961), is
based on a black-box view of the system. The law applies as long as the number of jobs entering the
system is equal to those completing service, so that no new jobs are created in the system and no jobs
are lost forever inside the system. Even in systems in which some jobs are lost due to finite buffers,
the law can be applied to the part of the system consisting of the waiting and serving positions
because once a job finds a waiting position (buffer), it is not lost. The arrival rate in this case should
be adjusted to exclude jobs lost before finding a buffer. In other words, the effective arrival rate of
jobs entering the system should be used.

Notas:

15

Notas:

16

Notas:

17

Notas:

18

Notas:

19

Notas:

20

Notas:

21

Notas:

22

Notas:

23

The figure show the flow of identical customers into a q-parallel queueing center where each queue
has its own server and each server has the same service time S. The stream of arrivals is split into
two separa streams. Therefore from the wiewpoint of a newly arriving customer, each queue appears
shorter (by half) than it would if there was just a single queue center.

The only difference with the simple service case is the factor p appearing with the utilization. When
the total utilization is divided by the number of servers, it is called the server utilization and is
denoted ρ. Since 0< ρ<1, it represents the probability that the server is busy.

Notas:

24

Notas:

25

Suppose we add an identical server to a common queue. Nothing else is changed. With two servers
available to service customers, we expect the mean residence time to be reduced. The question is, by
how much?.

Naively, you might expect the residence time is halved because the capacity of the uniserver has
been doubled. Things are more subtle than that, however, by virtue of what happens during the time
you arrive and wait for service. When you finally reach one of the server , it still takes the same time
S to be serviced. Like the twin center example, thos aspect is not different from the uniserver case.
It’s what happens ahead of you in the queue that is diferent. The shorter residence time (as been by
you) comes from a shorter effective service time for those customers ahead of you. The effective
service time is composed of two factors:

- The existence of anhother server halves the service time.

- The service time is weighted by the probability that a server is busy.

The first factor corresponds to the expected service time S/2 as in twin queueing center. The second
factor is new. The probability that the server is busy is given the server utilization ρ=U/2. During
those periods when both servers are busy , the queue length will grow. In this sense, the effective
server time also depends on the load ρ. Combining these two factors, we write the effective service
time as S(ρ)=(S/2) ρ.

Notas:

26

Notas:

27

The figure show the relative effect on response time, as more servers are added to an M/M/m system.
The general trend is to push the knee of the curve toward the lower right cornet of the plot. The
uppermost curve corresponds to the single server case.

Notas:

28

Notas:

29

The approximate equation generally tends to understimated the exact response time because it is
missing some of the coefficients in the Erlang C formula. The relative error as plotted as a surfacein
the next page and as a table in this page. For light loads (ρ<0.33) is a excelent approximation.The
maximum error being less than 1% at m=4 servers. Under heavy loads (ρ~0.9) the error increases
from about 1% at 3 servers to 10% at 32 servers

Notas:

30

Notas:

31

So far, we have been discussing queueing center where a customer arrives at random from external
source, queues for service, , receives service, and then departs the center, never tu return. Clearly,
there are cases in which a customer who has already received service retuns for futher service: a
customer forgot to purchase a item and must return to the grocery store, children form a line for
repeat slides in a playground; packets must be retrasmitted on a communication network and so on.
This effect is called feedback.

A general feedback mechanism of this type is represented in a simple queueing center . External
arrivals occur at a rate . Customers who have received service return to the quue with branching
probability p. The stream of retiurning customers p1 combines with new arrivals such tha
effective arrival rate at the queue is 1= +p 1.

Notas:

32

Notas:

33

The constraint on the number of customers is tantamount to a form of negative feedback or self-
regulation. The finite population of N customers is either preparing to join the queue (this is
sometimes called the thinking state with think-time denoted by Z), or they are already at a
quueueing center either enqueueed or eing serviced.

The feedback property is easily understood as follows. If, during some period, all N customers are at
the service center , then there can not be any new arrivals at the service center. The system is
maximally busy. In such circustances the response time will be at its worst. In general, as the service
center gets busy, the rate at which itgets busier decreases, thus lowering any futher congestion at the
service center.

Notas:

34

Considérese el caso de un comedor donde cada cliente es servido por el primer camarero que está
disponible de la plantilla de m camareros de que dispone. El tiempo de servicio Z representa el
tiempo medio que los clientes tardan en comer un plato (en este caso el genérico “tiempo en pensar”
corresponde al específico “tiempo en comer”). Como consecuencia de que los camareros está
continuamente sirviendo a algún cliente, el tiempo de servicio S corresponde al tiempo medio que
tarda un camarero en descubrir que un cliente está esperando y servir la comida. Este sistema puede
ser representado por un modelo de colas y analizado su comportamiento.

En la práctica cada camarero es un servidor, pero de forma diferente a la interpretación habitual, el
camararo viene al cliente y no al revés. Sin embargo, este es un detalle irrelevante en término del
modelo de performance. La realidad y el modelo son lógicamente equivalentes: Cada cliente solo
requiere un número determinado de platos (por ejemplo 3 veces), y luego abandona el comedor, pero
es inmediatamente sustituido por otro cliente que estaba esperando en la entrada. El comedor con
una determinada capacidad de N puestos, representa la atención de un número finito de clientes N y
puede representarse con una red cerrada de colas y una población de clientes N.

Un sistema de colas cerrado y si por simplificar suponemos que el número de camareros es m=1, se
puede expresar el throughput como X(N)= (N-Q)/Z. Esra expresión simplemente representa que el
throughput es una función del número de clientes que llegan al sistema, el cual ocurre con una
frecuencia proporcional a la inversa de al tiempo de comer Z, reducida al numero (N-Q) de clientes
que están esperando (han dejado de comer su plato).

Suponemos que no puede ser atendido nada mas que un cliente cada vez, por lo que usando la
fórmula de Little (Q=XR), resulta X(N)=(N-XR)/Z , de donde se puede deducir el valor del
Throughput X(N) y del tiempo de estancia medio R

Notas:

35

Notas:

36

Notas:

37

Se esperar que el caso de una población de N clientes en una cola M/M/m/N/N, se aproxime con la
cola M/M/m M/M/m/∞/∞ sean parecida cuando N => ∞ (el interés de la sustitución se deriva de
que M/M/m tiene expresiones cerradas sencillas).

Highleymann (1989) ha demostrado que el comportamiento es equivalente si la relación entre el
número de clientes de la población N y el número medio de clientes que espera en la cola Q-m, es
mayor de 10.

Notas:

38

Si comparamos colas mutiservidores con colas mono servidores con baja carga, esto es cuando no
hay encolamiento y el tiempo de servicio S es el dominante los tiempos de respuesta son siempre
equivalentes. Puesto que la cola simple (univervicio) tiene un tiempo de servicio mas bajo (1/m) que
el mutiservicio (1). Cuando la carga es pesada (ρ->1) el tiempo de espera se hace dominante en el
tiempo de respuesta y no aparecen diferencias entre el caso uniservicio y multicola.

Si comparamos los sistemas multicola y multiservicio bajo carga baja, el comportamiento es similar.
Bajo carga pesada los tiempos de servicio del sistema multicola es mucho mas alto que en el caso
multiservidor. La razón es que el caso mutiservidor aprovecha mejor los posibles tiempos en los que
los otros servidores no están ocupados.

Como conclusión los Uniservicios son mejores que los multiservicios, y entre estos el multiservidor
es mejor que el multicola. El problema está que los tiempos de servicio del uniservicio no se pueden
reducir por límites físicos, mientras que los tiempos de servicio de los multiservidores se puede
disminuir incrementando el número de servidores.

¿Por que se utilizan en los bancos el multiservicio y en los supermercados la multicola?. La razón
está en temas que no son tratados en este estudio. En los bancos las variabilidad de los tiempos de
servicios es mayor, y esto hace que si se utilizara multicola, algunos clientes tendrían tienpos de
espera muy altos. La segunda razón es logística, una única cola en un supermercado sería dificil de
implementar, y se prefiere por espacio disponer de colas (espacialmente ubicadas en sitios
distribuidos).

Notas:

39

Hasta ahora hemos supuesto que la distribución de los tiempos de servicios tiene una distribución
estadística de tipo exponencial, esto se ha hecho porque en estos casos existen soluciones
estadísticas. Pero en la realidad las distribuciones no son exponenciales sino que tienen otras muchas
formas.

Hasta ahora se supone que un cliente que llega ve a un conjunto de clientes en la cola y uno que está
siendo servido. Cada uno va a requerir un tiempo de servicio medio S. Es mas realista suponer que
como consecuencia de la variabilidad respecto de la exponencial, hay una fracción de los clientes
para los que el tiempo de servicio se decrementa en un factor 1-κ, siendo κ función de la variabilidad
de ls distribución de los tiempos de servicio ½(1+COV2)

Notas:

40

